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Abstract

Probabilistic quantitative precipitation forecasts (PQPF) based on the medium
range forecast (MRF) ensemble are currently in operational use below their full potential
quality (i.e., accuracy and reliability). This unfulfilled potential is due to the MRF
ensemble being adversely affected by systematic errors which arise from an imperfect
model and less than ideal ensemble initial perturbations. This thesis sought to construct a
calibration to account for these systematic errors and thus produce higher quality PQPF.
Systematic errors were explored with the use of the verification rank histogram, which
tracks the performance of the ensemble. The information in these histograms was then
used in interpreting MRF ensemble forecasts to produce calibrated PQPF.

While the calibration technique did noticeably improve the quality of PQPF, its
usefulness was bounded by the natural predictability limits of cumulative precipitation. It
was discovered that higher levels of cumulative precipitation cannot be reliably predicted
in the medium range.

This limitation is likely due to the extremely high spatial and temporal variability
of precipitation. Due to this limit of predictability, for significant levels of precipitation
(high threshold), the calibration designed in this thesis was found to be useful only for
short range PQPF. For low precipitation thresholds, the calibrated PQPF did prove to be

of value in the medium range.
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CALIBRATED PROBABILISTIC QUANTITATIVE PRECIPITATION FORECASTS

BASED ON THE MRF ENSEMBLE

1. Introduction

a. Background

The primary tool of today’s weather forecaster is output from numerical weather
prediction (NWP) models. Because of this reliance on numerical guidance for lead times
beyond about six hours, improving the accuracy of NWP models represents the best
opportunity for improving weather forecasting capabilities. Even a seasoned forecaster
who correctly interprets the NWP prognostic charts in making a forecast for his local area
is still at the mercy of the quality of the charts.

Efforts over the past 50 years to improve NWP have been remarkably successful.
As computer power increased, newer atmospheric models included more realistic physics
on finer grid scales while integrating with smaller time steps. This has brought about a
steady improvement in the forecast quality of NWP models (Mullin, 1993). However,
continuing to focus on improving NWP through increasing the resolution of a single
forecast may not be the best method to pursue for future advancement of NWP (Brooks
and Doswell, 1993; Lorenz, 1993). A relatively new technique, called ensemble weather
forecasting, appears to offer the next wave of improvement for NWP.

Ensemble weather forecasting is a concept which merges NWP and chaos theory.

In the standard application of a NWP model, the model is run once from the initial state




(called the analysis) out to some future time. The analysis is the best estimate of the true
state of the atmosphere. Using a NWP model, a single deterministic forecast state of the
atmosphere at any desired time into the future can be generated. The problem is that there
are errors in the analysis which make any forecast state of the atmosphere in error as well,
even if the model is perfect. What makes matters worse for weather forecasting is that
because of chaos, these errors often increase rapidly as the tjme span of the forecast
increases. The sources of errors in the analysis include lack of both accuracy and
precision in observations, lack of complete spatial coverage of observations, and errors in
fitting observations to gridded fields (Toth and Kalnay, 1993).

Ensemble weather forecasting attempts to gain more information from the NWP
process by creating a spread of possible forecasts versus a single forecast created with
standard NWP forecasting. The basic method is to run an atmospheric model » times
with each ensemble run started from a slightly different, or perturbed, initial state. This
results in n forecast states of the atmosphere at the desired forecast time, but of course
only one true state. These n forecasts are all in error but will likely encompass the truth if
the ensemble method is correctly applied. Each of the n unique forecasts is termed a
member of the ensemble.

There are four major applications for an ensemble of model output (Anderson,
1996; Toth and Kalnay, 1993; Tracton and Kalnay, 1993). First, ensemble forecasts can
give an idea of confidence in the single, standard model run made from the analysis. The
wider the ensemble spread at some forecast time, the more likely it is that any one model

run, including the standard run, will be further from the truth. Secondly, averaging the »




erred forecasts together should produce a forecast closer to the true atmosphere than the
one standard run. Thirdly, ensemble forecasts can be examined for clusters of similar
solutions to narrow down the most likely forecast scenario(s). Lastly, since the n
forecasts give n possible values for any meteorological parameter, probability forecasts
can be produced for that parameter. This last application is the focus of this research.
Probabilistic quantitative precipitation forecasts (PQPF) are predictions of the
likelihood of exceeding a threshold of cumulative precipitation at some location in a
given amount of time. For example, in the 48 — 72 hour forecast valid period, the chance
of precipitation > 5.0 mm at Andrews AFB may be 75%. Normally, such a forecast
would be produced by a weather forecaster using standard NWP output, climatological
data, and/or a variety of other tools. As will be described in detail later, an ensemble
forecast of cumulative precipitation can also be used to derive PQPF. In general, the
more members of an ensemble which forecast an amount higher than the threshold, the
more likely it is that the verification (observed amount) will also exceed the threshold.
Quality of probabilistic forecasts is measured in two different ways, namely
reliability and accuracy. Reliability is determined by how well the forecast probability
represents the observed occurrence of the event over many samples of forecasts and
corresponding observations. Continuing the above example, suppose that over a period of
two years there were 131 cases when the chance of precipitation > 5.0 mm was forecast at
75%. Of these 131 cases, precipitation > 5.0 mm was observed for 96. This means that
the forecasts were highly reliable with an observed 73% occurrence of precipitation > 5.0

mm for the sample space of all the cases.




The other measure for probabilistic forecasts, quite different from reliability, is
accuracy. Accuracy is a measure, usually a mean square error, of the difference between
the forecast probability and the occurrence or nonoccurrence of the event. In the above
example for a single 75% forecast, suppose that precipitation > 5.0 mm is observed in the
valid period. While this was a good forecast, a more accurate forecast would have been

anything higher than 75%.

b. Problem and Objective

PQPF derived from the medium range forecast (MRF) ensemble, produced daily
at the National Centers for Environmental Prediction (NCEP), display skill but are
adversely affected by systematic errors. These errors are a result of both imperfections in
the atmospheric model and inadequacies in design of the ensemble. Since NCEP’s PQPF
production lacks any compensation for these systematic errors, PQPF are currently being
used at a level below their full potential quality.

The goal of this research was to produce calibrated PQPF from MRF ensemble
precipitation forecasts which compensate for the systematic errors. With a good
calibration technique, medium range PQPF with improved reliability and higher accuracy

may be possible.

c. Importance of Research -
This research has both a general and a specific importance to the United States Air
Force. The general importance involves the overall application of ensemble forecasting,

while the specific importance is tied to the objective of this research.



While the benefits of medium range (2 days < forecast time < 2 weeks) ensemble
forecasting have been clearly demonstrated for many years now, the vast majority of
weather forecasters in the USAF have never even heard of the term. This is most likely
due to the fact that weather operations in the Air Force concentrate on short range
forecasts (forecast time <2 days) in supporting the flying mission. Short range ensemble
forecasting (SREF) has shown promise but is still under development (Hamill and
Colucci, 1997).

Since there are still many questions concerning SREF, it is difficult to say how
much improvement could be realized by incorporating ensemble techniques into everyday
weather forecasting in the USAF. It is the firm belief of the author that the potential
benefits would be significant. The general importance of this thesis therefore is to
illustrate for the Air Force Weather Agency the potential of ensemble forecasting by
clearly describing the technique and by demonstréting just one of its many applications.

The specific value of this research comes from the obvious benefits of higher
quality PQPF. Precipitation is a weather parameter which has a large impact on many
aspects of USAF operations. It adversely affects air terminal operations, ground
operations, weapons targeting, reconnaissance operations, communication, and radar, just
to name a few. An improvement in medium range precipitation forecasts would greatly

benefit planning of such operations, thus increasing mission effectiveness.

d. Summary of Key Results
The most important result of this research is that the calibrated PQPF produced by

this project showed a significant improvement in both accuracy and reliability over the




current uncalibrated PQPF. This demonstrated that the systematic errors of the MRF
ensemble can be accounted for in making probabilistic forecasts of cumulative
precipitation. What is even more promising is that the technique used in this research
could theoretically be applied to any weather parameter.

Another important finding was that higher levels of cumulative precipitation can
not be reliably forecast in the medium range, with or without a calibration. Even at the
lowest threshold, the calibrated PQPF are only of value out to about six days. Beyond
this point, a climatologically based PQPF is the most reliable.

The third key result of this research was that systematic errors were found to be
stationary but with a regime dependence. This means that errors between the atmosphere
and the ensemble reoccur for a given atmospheric scenario. Because of this, the best
calibration to the ensemble should be based on many specific aspects of the event being

forecast (i.e., geographical location, season, atmospheric stability, etc.).

e. Thesis Organization

In this chapter, the general background of ensemble weather forecasting has been
introduced, followed by the main points of this research including its importance, the
problem statement, and its key results. Chapter 2 will cover the detailed background of
chaos theory and ensemble forecasting. The research methodology will be described in
chapter 3, followed by the research findings in chapter 4. Lastly, chapter 5 will give the

conclusions of the findings, recommendations, and possible future research.




2. Theoretical Background

a. QOverview

This chapter covers the theoretical basis of the methods used in this research,
namely chaos theory and ensemble weather forecasting. These are two extremely diverse
subject areas which can not possibly be thoroughly described within the confines of a
Masters thesis. The following discussion is limited to the main ideas of these subjects

and details which are involved in this research.

b. Chaos Theory

While ensemble weather forecasting is an expansion of the NWP process, chaos
theory is the impetus for the whole ensemble concept. Knowledge of the basic principles
of chaos theory is essential for understanding the methods and goals of ensemble
forecasting. This chapter will therefore include a brief review of applicable elements of
chaos theory.

Chaos theory describes the behavior and predictability of dynamical systems. The
key idea of a dynamical ‘system is that predictions of the system are possible based on the
system’s known initial state and some set of rules (Tsonis and Elsner, 1989). These rules
are usually defined by an equation or set of equations. For predicting the atmospheric
dynamical system, a typical model includes a set of differential equations with time as the
independent variable. By integrating these equations, a prediction of the future state of

the system can be made.




Before Edward Lorenz’s ground breaking work in the 1960s, there were geperally
two schools of thought concerning prediction of complex dynamical systems such as the
atmosphere (Lorenz, 1963; Mullin, 1993). One idea was that by somehow discovering
and solving the governing differential equations of such a system, exact predictions out to
any point into the future could be made, given that the initial and boundary conditions are
known. The contrary opinion was that such systems are totally unpredictable after a
certain time into the future because of completely random, indescribable interactions
within the system.

Lorenz (1963) showed that both of these notions were in fact wrong. He
discovered that there is indeed a limit to accurate predictions of future states of the
atmosphere, but it is not due to random behavior. Furthermore, even if you do know the
governing differential equations of a system, there is still a limit to accurate prediction.
Lorenz presented the idea that the difficulty in predicting future states of a system is a
result of sensitivity to the system’s initial conditions (IC) and not a result of random
behavior.

IC are the set of values for the dependent variables which completely describe the
system at some starting point. Recall that the independent variable is time. Lorenz
discovered that in a computer model of a chaotic dynamical system, changing the IC by a
seemingly insignificant amount results in a very different set of solutions. For a short
time into the forecast period, the two solutions evolve quite similarly. This makes it
difficult to discern any difference between the solution begun from original IC vs. the

altered IC. Further into the future, however, the two solutions diverge noticeably.




Coﬁtinuing this scenario, suppose the original IC and subsequent evolution of
solutions represent the true behavior of the system. The altered IC then represent the
erred best estimate of the state of the system at the starting point. Predictions made by
the model which initialized with the altered IC would be fairly accurate at first but
become worthless at some point. In an attempt to predict the future, apparent randomness
and unpredictability actually result from imperfect IC. Erred IC send the modeled
evolution of the system off on a completely different path through phase space when
compared to the true evolution.

Behavior of a dynamical system can be graphically represented in its phase space,
where each dependent variable corresponds to a coordinate axis. A phase space path, or
trajectory, is a continuous set of points which make up a curve. A single point on the
trajectory gives the values of the system’s dependent variables at some particular time,
thus describing the state of the system. As time progresses, the direction the trajectory
takes through phase space is determined by the dynamics of the system. To demonstrate
this, consider the trajectory of an underdamped, simple harmonic oscillator. While this
system is not actually chaotic (Lorenz, 1993), it is useful for visualizing several concepts
of chaos.

This oscillator consists of a block attached to a spring and suspended from above
(Figure 1a). Once displaced from equilibrium, the block will oscillate up and down many
times before returning to the equilibrium position. For the purposes of this

demonstration, consider the state of the system to be totally described by the block’s




(a) V27777777774

- equilibrium level

(b)
T T i T T
- ----- . ., 1
| | D nitia i
15 | "N conditions
10 | ) RN R q“ ]
a 5 B ' ‘ . ’ ‘\ 7
5 ' |
[= Y I. ]
m O —|+-—- & - f i i Rt A
< . ' .
pay ¥ '
g5 W\ | 70
O? 3 \ S 3
ST .
N . | .
Al v,
201 | =
< l
251+ ] 4 .
|
L ] I I L
-2 -1 0 1 2
downward upward

Velocity (m s1)

Figure 1. Underdamped simple harmonic motion. (a) Physical diagram of harmonic
oscillator. The block is attached to a spring which is attached from above. The damping
of the motion is provided by friction in the spring and friction between the block and the
air. (b) Trajectory of simple harmonic oscillator in phase space. Arrows show the
direction of time along the trajectory. The solid trajectory (with filled arrows) represents
the true behavior of the system while the dashed line (with open arrows) represents an
attempt to model and predict true behavior of the system.
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velocity and its gravitational potential energy relative to the equilibrium position. At the
initial time, the block is lifted then pushed downward, thus setting the IC for the system.

The IC and all points along a trajectory should be thought of as a vector in phase
space extending from the origin to the point on the trajectory. In Figure 1b, the filled
circle representing the true IC of the system is at the tip of vector (2.1 m s, 12.2 J)
which is not displayed. The solid curve shows the true trajectory of the dynamical system
as time progresses. It is clear in the figure that the system’s future position in phase space
is totally deterministic. Each vector of velocity and potential energy values along the
trajectory represents a unique state of the system at a particular time.

An important characteristic of a forced, dissipative chaotic system is that a
trajectory never intersects itself (Lorenz, 1963). If the system were to return to a previous
state, it would then repeat all the following states and get stuck on a periodic trajectory.

If friction were completely removed from the example system, making it an undamped
oscillator, its trajectory would then be an ellipse (a periodic trajectory). Friction is an
example of a system parameter. Increasing friction in the spring would alter the trajectory
but not its general pattern.

The significance of this demonstration is that the state of the system at any
particular future time looks simple to predict. All that is required is knowledge of the
system’s IC with perfect accuracy and infinite precision. As mentioned before, this is
where the problems lie since this requirement is obviously not attainable. Even with
instruments which could measure the block’s initial velocity and potential energy

extremely accurately, an infinitely precise measurement is impossible. Additionally, the
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model of the system, a numerical solution to the differential equations, computes future
states with only finite precision, which compounds error as the forecast evolves.

Suppose the dashed trajectory in Figure 1b represents the trajectory used to predict
the true (solid line) evolution of the system. The IC used for prediction (open circle) are a
little bit off from the true IC in both coordinate directions. This error is also a phase
space vector which is the vector difference of the true and perturbed IC. The error vector
points from the tfue IC to the perturbed IC.

The predicted trajectory then, begun from the slightly erred IC, never matches up
to the true trajectory, so all predictions are in error. However, this system contains an
attractor which is called a fixed point, causing all trajectories to converge (Tsonis and
Elsner, 1989). This means that predictions, although aiways wrong, actually get closer to
the truth further into the future. Unfortunately for weather forecasting, this is not the case
for the atmospheric dynamical system.

An attractor is a region in a dynamical system’s phase space that contains all
states which naturally occur (Lorenz, 1993). If a system is forced to a state outside its
attractor, the subsequent trajectory is drawn back into the attractor. Once in the attractor,
the trajectory continues to evolve there unless the system is disturbed by an outside force.
The most well known example of an attractor is the butterfly of the Lorenz system, a
simple model of atmospheric convection (Figure 2). The region of this attractor consists
of two distinct surfaces. A trajectory evolves within the attractor by spiraling outward on
one surface then passing to the other surface, but at the same time never intersecting itself

or another possible trajectory.
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Figure 2. Phase space of the Lorenz system. (a) 5000 of the infinite number of naturally
occurring states of the Lorenz butterfly (strange attractor of the dynamical system). (b) A
trajectory started from outside of the attractor converges into the attractor and is then
stuck evolving there.
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Lorenz’s butterfly is an example of a strange attractor. This term is rather
misleading because such an attractor is common to the majority of chaotic dynamical
systems, including the atmosphere (Lorenz, 1993; Tsonis and Elsner, 1989). Nearby
trajectories evolving within a strange attractor usually diverge exponentially with time
causing erred predictions to quickly get worse the further into the future a forecast is
attempted. Dealing with this nonlinear error growth is the very essence of ensemble
forecasting.

As will be described in the next section of this chapter, ensemble forecasting
actually uses this problem (nonlinear error growth) to partially defeat the problem.
Ensemble forecasting makes it possible for some of this nonlinear error growth to be
accounted for, thus quantifying the uncertainty in a forecast (Toth and Kalnay, 1993).
Since NCEP’s MRF ensemble has demonstrated this ability, it was chosen as the

foundation from which to produce calibrated PQPF for this thesis.

c. Ensemble Forecasting at NCEP

The success of ensemble forecasting is highly dependent on two fundamental
requirements concerning how the » perturbed IC are chosen (Toth and Kalnay, 1993).
The requirements are based on the objective that the trajectory of each ensemble member
must have an equally high probability of being the true trajectory of the atmosphere.
Rephrased, the atmospheric trajectory should easily be a member of the ensemble. To
accomplish this, each vector producing a perturbed set of IC must closely resemble the
error vector of the analysis in both magnitude (requirement #1) and direction

(requirement #2).
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To demonstrate these requirements, Figure 3 gives a simplistic two-dimensional
representation of atmospheric ensemble forecasting. What is the phase space dimension
of the atmosphere? Equivalently, how big is the vector which completely describes a
certain state of the atmosphere? In a typical primitive equation model, it takes eight
variables to describe the atmosphere at a point. Each point, distributed horizontally and
vertically around the earth, has a separate set of the eight variables. This puts the
dimension of phase space on the order of 10° for a low-resolution global model. In
theory, since the actual atmosphere has an infinite number of points, its phase space is of
infinite dimension (Lorenz, 1993). The best that can be done for visualization of the
atmosphere’s phase space is a snap shot in time of a very limited subspace, which is
commonly known as a weather chart. While displaying the basics of ensemble
forecasting in only two dimensions as in Figure 3 may seem absurd, it is however
meaningful because the concept of vectors and trajectories is the same no matter what the
dimension.

The first requirement for successful ensemble forecasting is that the magnitude of
the perturbations for the ensemble IC must be similar to the error magnitude of the
analysis. While the actual error in any one analysis can never be known, the distribution
of the error can be estimated from the climatic variance (Toth and Kalnay, 1993) or the
difference between separate analysis/forecast systems (Hamill, 1998). By limiting the
size of the ensemble perturbations to this distribution, all ensemble IC remain near both
the analysis and the true IC of the atmosphere. The ensemble IC are like a cloud of

plausible alternative analyses which encompass the best analysis (Wilks, 1995) and
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Figure 3. 2-D phase space schematic of an ensemble forecast. This ensemble consists of
10 members (the control forecast plus 9 perturbations). (a) Error in an atmospheric
analysis is an unknown vector away from an unknown true initial state. Perturbations to
the analysis which make up the ensemble IC are vectors away from the analysis with
magnitude similar to the analysis error magnitude. (b) All trajectories are similar but
diverge as time progresses. The true trajectory should lie within the shaded area,

.encompassed by the ensemble.
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hopefully encompass the true IC (Figure 3a). There is no guarantee that the true IC will
be encompassed since the actual vector of the analysis error is always unknown.

The second requirement for successful ensemble forecasting is that the
perturbations must be distributed in phase space in such a way that the ensemble will
likely encompasseé the true trajectory as the forecast evolves (Figure 3b). In other words,
the true trajectory must be a plausible member of the ensemble. If the true trajectory were
to separate from the ensemble members, the ensemble forecast would be just as poor as
the control forecast. The advantage of an ensemble forecast is that althbugh the specific
value of truth is not known, its area of possible values is known (shaded region of Figure
3b). With only a control forecast, which is known to be in error, it is impossible to know
how far off or in which direction the truth may lie. The limit to the advantage of an
ensemble forecast is that as the members continue to evolve, the ensemble variability
eventually gets too high, making the truth’s range of possibilities too great to be of value.

Meeting the first requirement for successful ensemble forecasting is fairly
straightforward. The magnitude of the perturbations can easily be scaled to be within the
estimated error distribution of the analysis. Conversely, there are many theories
regarding the best method to meet the second requirement.

One way to make it likely that the ensemble forecast encompasses the truth is to
simply start off with an extremely large number of random perturbations to the analysis
with the correct magnitude. This generates a large number of ensemble members,
increasing the chance of encompassing the truth. This method, called Monte Carlo, is

however too impractical and inefficient because of the amount of computer power it
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requires in order to get good results (Lorenz, 1993; Toth and Kalnay, 1993; Wilks, 1995).
Only a method which uses a reasonable number of ensemble members can be applied
operationally. This paper will now discuss the method used at NCEP in creating IC of the
MRF ensemble which was used in this research.

Perturbations for the MRF ensemble are created by the method of Breeding of
Growing Modes (BGM) (Toth and Kalnay, 1993). This method is designed to create
highly variable ensemble trajectories by perturbing along growing modes. Given fwo
states defined by phase space vectors 4 and B, a mode is the vector difference in phase
space between the states. For a growing mode, the trajectory from A must diverge from
B’s trajectory. A growing mode is really a two-way vector since if B isa gfowing mode
away from 4, 4 must be a growing mode away from B.

It was mentioned previously that within the atmosphere’s strange attractor,
trajectories usually diverge exponentially. This implies that almost any mode would be a
growing mode. However, it is easy to define a perturbation which lies off the attractor
but is of course still in the phase space. The trajectory of such a perturbation converges
back to the attractor, thus making it a nongrowing mode. An example of this behavior is
displayed back in Figure 2 on page 13. The IC in the figure would represent a
nongrowing mode to any nearby state on or off of the attractor.

More importantly for ensemble forecasting, modes within the attractor diverge at
different rates. For the highest ensemble variability, the mode with the maximum growth
rate is desired. The BGM method estimates the maximum growth mode by a process

similar to an analysis cycle (Toth and Kalnay, 1993).
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The analysis cycle is the common method in NWP for producing the best possible
analysis of the atmosphere for a single model run. In the period prior to a model’s initial
time, many short, sequential model runs are carried out to produce temporary first guesses
to the true state of the atmosphere. At the end of each short model run, the first guess is
nudged closer to truth by combining it with current observations. This process continues
right up to the model’s initial time when the final combination guess/observation state is
used as the analysis. While this process does produce an analysis with an acceptably
small error, the difference between the analysis and truth is believed to project
increasingly onto a growing mode (Toth and Kalnay, 1993).

The analysis contains both random, nongrowing errors (convergent perturbations
off the attractor) and organized, fast-growing errors which are growing modes (Toth and
Kalnay, 1993). At the end of each short model run of the analysis cycle, the fast-growing
errors dominate the total error of the first guess because the random errors decay or
remain approximately the same size. When the first guess is combined with observational
data, the error from growing modes is reduced but remains a major part of the analysis
error. In the following shbrt model run, these modes grow even further. In this way, a
growing mode is bred so that by the end of the analysis cycle, the error in the analysis is a
growing mode vector which extends from the true state of the atmosphere to the analysis,
very close to the maximum growing mode.

To generate perturbations for an ensemble which resemble the errors in an
analysis, the BGM method uses a breeding cycle which coexists with the analysis cycle

(Toth and Kalnay, 1993). The process begins with an initial arbitrary perturbation to the
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analysis (at first 00Z point in Figure 4). Next, the MRF model is run from both the
analysis and the perturbed IC to produce two separate 6-hour forecasts. The difference (a
phase space vector) in the two forecasts is then found. After the new analysis is
produced, it is perturbed using a vector with the same direction as the forecast difference
vector just calculated but scaled back to the size of the initial arbitrary perturbation.
These steps are repeated so after a few short forecasts, the perturbation vector becomes a
close estimate of the error in the analysis and thus also an approximation of the maximum
growing mode.

There are several details of Figure 4 that must be noted. The two forecasts and the
atmosphere’s trajectory are always divergent. The exception to this is the initial
perturbed forecast (first 00Z point) which originated from an arbitrary perturbation to the
analysis. In this example, the initial perturbation is not along a growing mode as would
normally be the case for a random perturbation. However, toward the end of the 6-hour
forecast period, the fast-growing errors begin to show up, making the forecasts diverge.
These fast-growing errors are then carried forward to the next perturbation so that after
four cycles (second 00Z point of Figure 4), the vector for the perturbation is quite similar
to the vector of the analysis error.

An ensemble composed of many of these growing mode perturbations is
necessary to increase the probability of encompassing the true atmospheric trajectory.
The NCEP MRF ensemble, containing a total of 17 members, is created by concurrently
running seven independent breeding cycles (NCEP, 1995). Each cycle produces a similar

but different estimate of the maximum growing mode. Recalling that a growing mode is
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Figure 4. Schematic of the breeding cycle. The goal of this process is to get the
perturbation (vector with single line) to be a maximum growing mode by forcing it to
closely resemble the analysis error (vector with double line). The analysis error is close
to the maximum growth mode by nature of the analysis cycle. Each new perturbation is
determined by scaling down the vector difference between the control and perturbed
forecasts at the end of a 6-hour forecast period.
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a two way vector, one cycle actually produces two ensemble IC by adding and subtracting
the mode to the analysis. So, the seven breeding cycles produce 14 of the 17 IC for the
ensemble. The other 3 IC are control forecasts.

Due to limitations in computer resources, the ensemble initialized daily at 00Z
actually consists of 12 members from 00Z model runs and 5 members run at the previous
127 initial time. Of the 12 00Z members, 10 are bred perturbations and 2 are control
forecasts run from the analysis at different model resolution. Of the 5 12Z members, 4
are bred perturbations and 1 is the control forecast from the analysis. The model runs are
made out to 384 hours so with the 127 time-lagged forecasts, each 00Z ensemble has a
372-hour or 15.5-day valid period.

In summary, NCEP’s BGM method is an effective and efficient way to generate
an ensemble which meets the fundamental requirements of successful ensemble
forecasting (Toth and Kalnay, 1993). The perturbations of the MRF ensemble IC truly
represent the errors that likely exist in the analySis. The ensemble trajectories all diverge
at near maximal rate making it probable that the true trajectory of the atmosphere is

encompassed.
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3. Experimental Methodology

a. QOverview

This chapter details the methodology involved in this research. It begins with
information on the data that were used, how the data were processed, and possible
limitations of the data. Next, the chapter shows the theory behind Anderson’s (1996)
binned probability ensemble (BPE) technique and its application in examining the MRF
ensemble precipitation data for systematic errors. Lastly, different methods for producing
PQPF are described with a focus on the theory for the calibrated PQPF which follows the

work of Hamill and Colucci (1997).

b. Research Data
1) Ensemble Data

Probabilistic forecasts for any weather parameter can be produced from ensemble
model output. This research was applied only to precipitation over the conterminous
United States for reasons of observational data availability and for comparison to a
different research project carried out at NCEP. NCEP concurrently worked on a project
with the same goal as this research but with an entirely different approach (Toth et al.,
1998). NCEP’s approach is briefly described in section d of this chapter. By using the
same weather parameter (precipitation) and geographical location (US), the results of the
two projects could be directly compared.

To construct the calibration for this Thesis and test its reliability, an archive of

many ensemble forecast cases was needed. A total of 358 daily MRF ensemble forecast
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cases from the period SEP 96 through NOV 98 were used. Many forecast case days over
this period were missing. The available data was downloaded in gridded binary (grib)
format from an archive at the Climate Diagnostics Center, an office of the National
Oceanic and Atmospheric Association. With each case day giving 17 separate global
precipitation forecasts, each valid every 12 hours over a 16-day valid period, the
information totaled approximately 4 gigabytes in size.

Fortran programs were used to process this large amount of data into a useful
format. First, programs provided by NCEP were used to decode the grib data. Next,
another program reconstructed the ensemble. Recall that each 00Z MRF ensemble
consists of 5 members from the previous 12Z model run and 12 members from the 00Z
model run. Since the downloaded data gave the 17 original forecasts, valid times of the
two sets of forecasts had to be correctly matched up to reconstruct the ensemble.

Concurrently with this reconstruction, the forecast data over the 25x11 MRF 2.5°
subgrid over the US used in this research (Figure S5a) was separated out from the global
data. Latitudinal spacing between grid points is 278 km. Longitudinal spacing between
grid points is 252 km at row J = 1 and decreases by the cosine of the latitude to 179 km at
rowJ=11.

Further processing was required to get the forecast data to match up with the
observational data. The observational data used, described in the next section, gives 24-
hour cumulative precipitation (pcp24) valid every 127 instead of 12-hour cumulative
precipitation which is forecast by the MRF ensemble. For this reason, the 127 — 00Z and

00Z - 12Z forecasts for every day of the forecast valid period were added together to
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Figure 5. Forecast region of the research. (a) 25x11 MRF 2.5° subgrid for ensemble
forecast data. Grid points with dots are locations where precipitation observations were
available for verification of the ensemble forecasts. (b) Network of rain gages belonging
to the National Weather Service’s River Forecast Centers.
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make a pcp)4 forecast at each 12Z point. Thus each ensemble member consists of 15
pcp2 4 forecasts valid at the 36-hour, 60-hour, ..., and 372-hour valid times. Note that the
first 12Z valid point of the ensemble can not be used since with a model initial time of
00Z, there is only one 12-hour cumulative precipitation forecast at the 12-hour valid
point. The 15 valid points of the ensemble are hereafter referred to in days (E.g.: The first
valid point at 36 hours, is a 1.5-day forecast or a forecast with a 1.5-day lead time).

The full data set of 358 forecast case days was divided by month into a training
data set and a forecasting data set (Table 1). The training data set was used exclusively
for construction of the calibration. The forecasting data set was used in generating PQPF
after development of the calibration, so forecasts were made with no prior knowledge of
the verification value. This allowed for fair evaluation and comparison of PQPF quality.

2) Observational Data

In developing a calibration for PQPF, an important aspect was the choice of
verification data. At first, it seems peculiar to have to choose between differen;[ values of
truth. This dilemma, presented earlier in this thesis in a different context, comes about
because the truth can never really be known. It follows then that there may be more than
one estimate of what is considered truth. Since the goal here was to account for
systematic errors, different truths would likely indicate different errors and result in
different calibrations.

The choice of truth was particularly difficult for this research because of the
weather parameter being forecast, precipitation. Suppose that a pcp 4 forecast for

Vandenberg AFB, CA, was 5.5 mm. -The most obvious way to verify such a forecast is
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Table 1. Division of forecast case days into training and forecasting data sets.

Training  Forecasting

Month Data Data Dates of Ensemble Forecast Case Days

SEP 96 X 20212223242526272829 30

OCT 96 X 2345678910111215161718192021
222324 25262728293031

NOV 96 X 234567891011121314151617 1819
202122242526272829 30

DEC 96 X 12345678910121314151617181921
22232425262728293031

JAN 97 X 12345678910111213141517181920
2122252627283031

FEB 97 X 12345678910111213141516171819
2021222324252728

MAR 97 X 123457101213 14151617 18192021 23
24252628 29 30 31

APR 97 X 13567891014151617 182021222324
252627 28 29 30

MAY 97 X 1345678910111213141516171819
20212224252627282930

JUN 97 X 12345678910111314151617181920
21222324252627282930

JUL 97 X 12345678910111314151618192122
2324252627 282930

AUG 97 X 1234567811121314151617 192021
222324 252728293031

SEP 97 X 126789101112131415182327282930

OCT 97 X 345612131416 192024 25262728

NOV 97 X 4678910131415192021222326
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to use the air terminal’s rain gage total over the forecast period. However, because of the
high spatial variability of rainfall, the gage’s total could easily be significantly different
than the forecast value even though the forecast was excellent (Baldwin, 1997). What is
needed is a precipitation total which is consistently representative for the local area about
the point of interest. This can be provided by averaging the totals from many nearby
gages.

Since this research worked with output from the MRF, representative precipitation
totals at the MRF grid points were desired. NCEP provided pcp4 observations valid
daily at 12Z for MRF 2.5° grid points within the conterminous United States for SEP 96
through NOV 98. This data was prepared by NCEP using reports from a network of
approximately 10000 rain gages belonging to the National Weather Service’s River
Forecast Centers (Figure 5b) which were first spatially averaged onto a 40 km grid. The
40 km grid was then remapped by NCEP to the MRF 2.5° grid.

NCEP’s remapping process is schematically depicted in Figure 6 (Baldwin, 1997).
The first step is to divide up each original grid box into 16 sub grid boxes which each
take on the original box’s pcp24 value. Next, the new grid is overlaid onto the origingl
grid. The pcpy4 value for a new grid box is calculated by taking an area weighted
average of all the values from sub grid boxes whose centers fall within the new grid box.

The uncertainty in rain gage measurements is + 0.01”, or + 0.25 mm (ABRFC, no
date). In the spatial averaging step and the subsequent remapping, the value of pcp24 in
the hundredths digit is carried along in the computations. The final pcp)4 should

therefore be rounded off to the nearest 0.25 mm to reflect the true precision of the data.
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Figure 6. (from Figure 4 in Baldwin, 1997) Schematic of the remapping process. Thin
solid lines show grid boxes from the original spatial averaging of rain gage data. Dashed
lines break up each original grid box into 4x4 sub grid boxes. Thick solid lines outline a
box of the new grid being remapped to. Shaded sub grid boxes are used to get a value for
the new grid box.

However, since the ensemble forecasts are made to the nearest 0.1 mm, it was decided to
preserve the unrealistic 0.01 mm precision of observed pcp24 to reduce the number of ties
between forecasts and verification. This has a positive impact on the PQPF calibration
which will become evident later in this chapter.

Another alternative choice of truth to be used for verification purposes was
seriously consjdered. NCEP has developed a multisensor analysis of cumulative
precipitation which combines data from the rain gage network described above with data
from the nationwide network of NEXRAD sites. The resulting cumulative precipitation
analysis should in theory be more accurate because of the extremely high resolution of
information. However, a major difficulty lies in estimating precipitation rates from the
radar returns. Since the reliability of the multisensor analysis is as yet unproven, it was
not chosen to represent truth.

A possible source of error for this research came from using the spatially averaged

rain gage data for verification purposes. The error stems from the fact that the theoretical

29




distribution of precipitation typically follows a gamma distribution bounded on the left by

zero (Wilks, 1995). For wet events of widespread precipitation, the gamma distribution

has a large value of the gamma shape parameter, «. Since such a distribution is near
normal, the spatial average is valid as a representative value with the mean being the

precipitation value most likely to occur. Conversely, events of very low precipitation

have a gamma distribution with a small & making the distribution more exponential. The
mean would then be too high to be a representative value for the event since the most

likely value of precipitation would be closer to zero.

c. Systematic Error

The need for this research was based on the premise that the MRF ensemble
contained signiﬁ;:ant systematic errors. Once these errors were found, some sort of
calibration could then be developed. If the systematic errors were insignificant or not
present at all (e.g., a perfect model and an ideal choice of ensemble perturbations), the
ensemble would be described as well calibrated. The resulting PQPF of such an
ensemble would display perfect reliability, and there would be no need for further
calibration. For this reason, the first step of this research was to investigate the MRF
ensemble precipitation forecasts for systematic errors.

To understand what is meant by systematic error from the point of view of chaos
theory, refer back to Figure 3b on page 16. For a well calibrated ensemble, the true state

of the atmosphere will most likely lie in the shaded region, encompassed by the ensemble

members. Using an ensemble with an imperfect model and less than ideal perturbations
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causes problems. The ensemble trajectories would still all behave in a similar manner,
but this behavior would be slightly different compared to the atmosphere’s trajectory.
The result, shown in Figure 7, is that the region in phase space encompassed by the
ensemble members is shifted with respect to the truth. The ensemble may still encompass
the true state of the atmosphere, but with less likelihood.

Further comparison of Figure 3b and Figure 7 reveals another important
distinction. Recall that trajectories evolving chaotically can not intersect themselves or

any other trajectory, thus avoiding periodic motion. Note in Figure 7 that while the

Figure 7. Schematic of a forecast from the same IC as in Figure 3 using a poorly
calibrated ensemble. The trajectory of the atmosphere is necessarily exactly the same.
Trajectories of the ensemble members behave quite differently than the atmosphere
because of both an imperfect model and poorly chosen ensemble perturbations. The
ensemble then fails to encompass the truth.

31




ensemble members’ trajectories do not intersect themselves, several do intersect the
atmospheric trajectory. This happens because the ensemble trajectories are governed by a
set of rules (the model) different from those of the atmosphere. The dynamical system of
the model is an erred approximation of the atmospheric dynamical system, precisely the
reason why the truth is less likely to be encompassed by the ensemble. The better the
model and choice of ensemble perturbations, the more Figure 7 looks like Figure 3b.

The true goal of this research can now be clearly seen. Rather than try to reduce
the error by making a better model and/or improving the ensemble perturbation scheme,
this research demonstrates improvements achieved by correcting systematic error. The
investigation of such error was actually an attempt to define the shifting of the ensemble
region away from truth. Once this shift was defined, it was used to interpret the ensemble
data in order to make a calibrated PQPF. This process was complicated by the fact that
the shift varies depending upon the region of phase space (i.e., the atmospheric
conditions). For this procedure to be useful, some stationarity in the shift had to be
found. If the shift were totally random, it would be impossible to design a calibration.
Thus it was necessary to identify conditions that repeatedly led to similar shifts. This is
thoroughly discussed in the next chapter.

The main tool for investigating the systematic error was the verification rank
histogram created with the BPE technique. There are several terms involved here which
need to be defined. The verification is the observed value of the forecast variable. A
rank is simply the ordinal place number of a value among other values which are arranged

from smallest to largest. A bin is a possible rank of the verification when it is pooled and
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ranked among the ensemble forecast values. Therefore, an ensemble of » members
contains » + 1 bins. A bin covers the range of forecast variable values which exist
between the values of two ranked members of an ensemble, or beyond either extreme
value of the ranked members.

Figure 8 shows an example of 5 bins and their range of verification values for a
hypothetical 4-member ensemble of 12-hour precipitation forecasts. Recall that each
member of the ensemble is forecasting for the same event. If this forecast verified with
an observed 12-hour precipitation of 2.1 mm, the verification rank would be 2.

In the event that the verification exactly equals one or more of the ensemble
members, the rank is randomly assigned among its possible values (Hamill and Colucci,
1997). Suppose the verification value for the forecast in Figure 8 was 5.8 mm. The
verification rank would then randomly take on one of its two possible values, a 3 or a 4.

With a perfect model and an ideal sét of ensemble IC, the verification has an
equally likely chance of falling into any of the » + 1 bins, giving verification ranks a

uniform distribution (Anderson, 1996). This is counterintuitive since the verification

Ranked

Ensemble {0.9, 32, 5.8, 92}
Members

Bin # 1 2 3 4 5

Verification
Range 0.0<V<09 i09<V<32 i32<V<58i58<V<92i 92<V

Figure 8. Example of verification bins of the BPE technique for a 4-member ensemble of
12-hour precipitation forecasts in mm. The value of each ensemble member represents a
break in the verification range of the bins. Notice that the ranges are unequal in size.
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range of each bin is not the same size. The reason for the uniform distribution is that
while the probability distribution of the variable may not be uniform, the process which
generates values of the random variable (ensemble or observation values) is uniform.
Values of the variable are tied to quantiles through the variable’s cumulative distribution
function (CDF). It is the quantiles which vary uniformly.

This key point .of the BPE technique is illustrated in Figure 9 for a hypothetical
gamma distribution of 12-hour cumulative precipitation (the random variable) at some
location. Samples of the randorri variable are generated through random quantiles which
have equal (uniform) chance of being any value between 0 and 1. A quantile corresponds
to a value of the random variable on the CDF curve. (E.g.: In Figure 9a, the 0.85 quantile
gives a cumulative precipitation of 4.7 mm.) Bins for the verification, previously
described as intervals of the random variable, are actually quantile intervals of equal size
when averaged over many samples. Given any two quantile intervals of equal size, a
single sample has an equally likely chance to occur in either interval (bin). Because the
CDF is nonuniform, the equal-size quantile intervals do not correspond to equally sized
intervals of the random variable (Figure 9a).

With a large set of independent samples of ensemble forecasts and verifications, a
verification rank histogram can be built. It shows the number of times the verification
occurred in each rank (bin) over the entire sample space. The histogram can be tested for
uniformity using the > goodness-of-fit test with p value significance of 0.01. A
histogram failing this test is an indication that systematic errors exist in the ensemble data

(Anderson, 1996). As will be described in the next section of this chapter, the
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Figure 9. Demonstration of equal bin probability of the BPE technique for a perfect
model and an ideal set of ensemble IC, for a gamma distribution of 12-hour cumulative
precipitation. (a) Two possible bins are represented by quantile intervals of equal size
(0.1) on the CDF graph. These correspond to unequal cumulative precipitation ranges.
Probability that a value of cumulative precipitation will occur in either range is 1/10. (b)
The two ranges also bound equal areas under the probability distribution curve. Each
shaded area represents a probability of 1/10.
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nonuniform verification rank can then be used to produce calibrated probability forecasts
(Hamill and Colucci, 1997).

An example of such a histogram from this research is displayed in Figure 10 for
the results of verification ranking for ensemble forecasts with 2.5-day lead times.
Clearly, the occurrences over the ranks are far from uniform showing that the ensemble
has significant systematic errors. Since ranks #1 and #18 got by far the highest number of
occurrences, the ensemble often completely underforecast or completely overforecast the
verification value of precipitation. Histograms of this sort are analyzed in more detail in

chapter 4.

9000 -
8000 |
7000 1
6000 L
5000 {
4000 |
3000 |
2000 1
1000 |

# of Occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Verification Rank #

Figure 10. Verification rank histogram for 2.5-day pcp )4 forecasts from a sample of
42065 ensemble forecasts.
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d. Producing PQPF from the Ensemble

Even with no knowledge of the nonuniformity of verification rank (i.e., presence
of systematic errors), skillful but poorly calibrated probability forecasts can still be
derived from an ensemble with systematic errors. As a basis for compafison, two such
methods were applied to produce PQPF from the MRF ensemble. These first two
methods, which should be considered approximations, will be called the democratic
voting method (Doran, 1997) and the uniform ranks method.

NCEP developed a methodology designed to account for the systematic errors
(Toth et al., 1998). NCEP’s approach to calibrating PQPF, which has not yet been fully
implemented, is to adjust the distribution of the ensemble precipitation forecasts to more
closely match the observed distribution of precipitation. The process involved is to fit

both the ensemble and the observations to a three-parameter gamma distribution:

. _ 1 a- —(x=7)
f(x,a,ﬂ,V)—m(x—y) lexp(Tyj (1)

for each grid box over the US. That is, each grid box produces a set of ensemble vs.
observed parameter values (o, S y) for two different gamma distributions. For an
ensemble containing systematic errors, the difference between the two distributions is
similar over the entire sample space. Assuming that the stochastic process producing the
systematic errors is stationary, the averaged difference in the two sets of parameters can
be used to correct the distribution of future ensemble forecasts and arrive at PQPF with

improved calibration.
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This research applied a completely different method from NCEP’s approach to
account for systematic errors. This method, termed the weighted ranks method in this
thesis, was introduced by Hamill and Colucci (1997). Its basic idea is to use the
information in the nonuniform verification rank distribution(s) to produce calibrated
probabilistic forecasts which account for systematic errors.

Before obtaining any probabilities, categories for the forecast variable must be
defined. The ranges for pcp)4 categories used for this research are identical to the ones in
operational use at NCEP in reporting PQPF. The categories are CAT1: pcp24=>0.17,
CAT2: pcpp4 2 0.25”, CAT3: pcpr4 > 0.5”, and CAT4: pcpr4 > 1.0”. Since this research
worked with SI units, the category thresholds are 2.54 mm, 6.35 mm, 12.70 mm, and
25.40 mm respectively. Notice that the categories are designed to give decumulative
probability rather than mutually exclusive and collectively exhaustive (MECE)
probability.

With decumulative type categories, the ranges of the forecast variable in each
category overlap. For one particular forecast, probabilities for all categories do not sum
to 1.0 and must decrease or remain the same as category threshold increases. It should
also be noted that the choice of the number of categories, their thresholds, and their type
(MECE vs. decumulative) has no impact on the construction of the calibration. The
somewhat arbitrary categories are simply a useful way to present probabilistic forecasts.

For demonstration of differences between category probabilities produced by the

three methods, consider an actual example of a MRF ensemble pcp 24 forecast (in mm):

ENS={08,13,6.8,7.1,7.7,8.7,9.0,10.2, 11.0,
11.2, 14.9, 14.9, 16.2, 19.2, 20.6, 23.0, 24.0}
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where each of the 17 members is an alternative forecast of the same event. In this case,
the event was pcp24 from 127 on 13 OCT 97 to 127 bn 14 OCT 97 at grid point (16,6) in
western Kentucky (see Figure 5, page 25). The model iﬁitial time was 00Z on 12 OCT 97
so the forecast period corresponds to the ensemble forecast lead time of 2.5 days.
Obtaining probability in each category (PC4T#) using the democratic VOtiilg
method is the most straightforward method. As the name implies, each ensemble member
gets an equal vote on which categories the verification will occur in. Mathematically, the
number of ensemble members which fall into a category’s range are first tallied.
Dividing this result by the total number of members yields the probability for that
category. Table 2 shows the results of this process for ENS. The vote from members that
forecast below the lowest category’s threshold is ignored in practice but included here for
completeness as PNoC4T. Because this is the method currently used at NCEP to derive
PQPF, reliability of its PQPF was considered the benchmark from which to measure the

improvement of the calibrated PQPF produced from the weighted ranks method.

Table 2. Computation of category probabilities by the democratic voting method for the
example MRF ensemble pcp o4 forecast, ENS.

pep24 Number of Ensemble
Category Range (mm) Members in Range Probability Calculation
none <2.54 2 PnocAT = 2/17=0.12
CATI >2.54 15 PcaT] = 15/17=0.88
CAT2 >6.35 15 PcaT2=15/17=0.88
CAT3 >12.70 7 Pcarz= 717=041
CAT4 >25.40 0 Pcat4= 0/17= 0.0
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A slightly better but more involved approximation of probabilities is obtained
using the uniform ranks method (Hamill and Colucci, 1997). It was included in this
research as a simplification of the weighted ranks method and another benchmark for
comparison. The method begins by assuming that the ensemble contains no systematic
errors. Probability is assigned to the four categories by summing the probabilities from
appropriate ranks of a verification rank histogram with uniform probability in each rank
(F\igure 11a). Which ranks’ probabilities to sum for a particular catégory is based on
where the category threshold falls among the ranked ensemble members. As with the
democratic voting method, some probability may not fall into any category (PNoCAT)-

To better understand this process, consider category 3 probability in detail. The
question is: What is the probability that the verification will exceed the category threshold
of 12.7 mm? In Figure 11a, the dashed lines between the ranked ensemble members are
the verification ranks (i.e., possible ranked placements of the verification within the
ensemble). The category 3 threshold is in rank #11, so if the verification were to occur in
any rank greater than 11, the threshold would be exceeded. Therefore, the probabilities of
the verification occurring in each of ranks #12 — #18 are summed. For the uniform ranks
method, the probability in each rank is simply 1/18 since it was assumed that the
verification has an equally likely chance of falling anywhere among the 17 ordered
ensemble members. This makes PC473 =7 - (1/18) = 0.39, the bulk of the probability
for category 3. A bit more probability comes from the fact that the verification can
exceed the threshold if the verification occurs in rank #11. This additional probability is

what makes this method a better approximation than the democratic voting method.
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Figure 11. Calculation of PQPF for each pcp4 category from the sample ensemble
forecast, ENS, using the (a) uniform ranks method, and (b) weighted ranks method. The
position of a category’s threshold among the ranked ensemble members determines the
starting point. The category probability is found by summing each rank’s probabilities in
the histogram to the right of the starting point. The starting points for each category are
identical for both methods. However, the two methods produce different results since the
probabilities of the ranks which get summed for (a) are much different than for (b).




When a category’s threshold falls between two members, the portion of
probability from the corresponding verification rank is broken out by Equation 2 (adapted
from Equation 4, Hamill and Colucci, 1997) to be summed with the probabilities from the

ranks described above.

x,.1—-T
LJ RP,, )

Xivl =%

P(T <V < xi+1)=(
where T is the threshold value, V'is the verification value, x;,, is the value of the ensemble
member with rank i + 1, x; is the value of the ensemble member with rank i, and RP;+ is
the amount of probability in verification rank 7 + 1. This step assumes that the random
variable pcp)4 is uniformly distributed between ensemble members. (Note: Equations
adapted from Hamill and Colucci (1997) were altered to give decumulative probability.)

Returning to the category 3 example, approximately 6/10 of the probability in
verification rank #11 is added to P 473 since the category 3 threshold of 12.70 is six
tenths of the way from 14.9 toward 11.2. So for the total probability, PC473 = 0.39 +
(6/10) - (1/18) = 0.42. According to the uniform ranks method there is a 42% chance of
pep24 >12.7 mm.

When a category’s threshold is in the highest verification rank, as for category 4
in Figure 11, a much different procedure is followed. The probability is found by taking a
portion of probability in rank #18 based on the numerical distance between the highest
member and the category threshold. The probability of rank #18 is considered to be the

upper extreme end of the sample’s theoretical Gumbel CDF: (from Equation 4.43, Wilks,

1995).
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E—x
F(x) = —exp| 2— 3
(x) eXP[ exp[ F; H 3)

where x is the random variable, and £ and & are the Gumbel parameters estimated with the

equations: (from 4.44a and 4.44b, Wilks, 1995)
p== @

s=x-18 (5)
where s is the sample standard deviation, x is the sample mean, and yis Euler’s constant.
The Gumbel distribution was used because of its ability to characterize extreme events
(Hamill and Colucci, 1997; Wilks, 1995). The probability value for the category is found
with Equation 6 (adapted from Equation 5, Hamill and Colucci, 1997).

P(T<V)= [11__—;()(?—)} RPg (6)

where Vis again the verification value, F(T) is the Gumbel CDF value at the threshold
value T, F(x,,) is the Gumbel CDF value at the value of the highest ranked ensemble
member, x,;, and RP,, is the amount of probability in verification rank #18.

In Figure 11a, probability of 0.04 goes into P4 T4 from verification rank #18.
Figure 12 shows a graphic display of this computation. This probability reflects the
chance that the verification may occur in category 4 even though all the ensemble
members predict values below the category 4 threshold. For the opposite extreme, a
threshold falling below the lowest ensemble member, the portion of rank #1 is found
using Equation 2 where 0.0 is used for the value for x;. This technique assumes a uniform

distribution between 0.0 and the lowest ensemble member (Hamill and Colucci, 1997).
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Figure 12. Determination of probability for a category whose threshold exceeds the
highest ensemble member. (a) Verification rank probabilities for uniform ranks method.
The fraction of rank #18 probability for category 4 is determined on the CDF. (b) Full
view of the fitted Gumbel CDF for the sample ensemble forecast, ENS. (c) Zoomed view
of CDF with markers for highest forecast pcp,4 value (24.0) and category 4 threshold
(25.4), and corresponding quantiles, 0.94 and 0.953. The ratio (1 — 0.953) /(1 - 0.94) ~
0.8, so 4/5 of the probability of rank #18 is the PQPF for category 4.
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The weighted ranks method should theoretically produce the most reliable PQPF
(Figure 11b). The probability in each rank came from the verification rank histogram
constructed when investigating systematic error (Figure 10). For example, the probability
of the verification occurring in rank #1 is the observed number of rank 1 occurrences
divided by the total number of verifications, 5735 / 42065 ~ 0.14. In assigning
probability to the four PQPF categories, each category sums probabilities from the same
verification rank numbers as with the uniform ranks method. Notice that in Figure 11a &
b that the four dashed lines within the verification ranks are identically placed. Compared
to the uniform ranks method, the end result of the weighted ranks method is that the total
probability in each category is quite different because, while the same ranks get summed
for each category, the probability in each rank is far from uniform.

The ranks’ individual probabilities in the weighted ranks method are based on
how the ensemble typically performs. The verification rank histogram in this case
(Figure 10) showed that in the past the ensemble often under or overforecast pcpp4. If the
process which generated these results is stationary, this information can be used to adjust
the probability which gets assigned in each category for future PQPF. By usir}g rank
probability based on past performance of the ensemble, systematic errors in the ensemble
are compensated for.

Figure 13 summarizes the contrasting PQPF for the sample ensemble forecast,
ENS, determined by the three different methods. Although the uniform ranks method is a
slightly better approximation than the democratic voting method, it can be seen that the

difference is not significant. Noticeably different PQPF is produced by the weighted
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ranks methods. It will be shown in the next chapter that the calibrated PQPF produced

with the weighted ranks method does indeed produce the highest quality forecasts.

Probability
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Figure 13. PQPF by category for the sample ensemble forecast, ENS, determined by the
three different methods.

46




4. Analysis and Results

a. Overview

This chapter presents the findings of this research. Since this research is so novel,
it was necessary to make many choices concerning how best to construct the calibration
for PQPF. Section b gives details of how the calibration was designed and justifies the
major choices that were made. Next, section ¢ presents and discusses the results of the
application of the calibration. The accuracy and reliability of the calibrated PQPF
produced from the weighted ranks method is compared against PQPF from the
democratic voting method, uniform ranks method, and persistence forecasts. Section d
then presents an analysis of the limits of predictability of cumulative precipitation.

Lastly, section e is an aside on the subject of the difficulty of probabilistic forecasting.

b. Construction of the Calibration
1) Use of Correlated Data

As described in chapter 3, the MRF pcp)4 ensemble forecasts had to be examined
for systematic errors in order to build a calibration following the weighted ranks method.
This was done with the use of verification rank histograms. A histogram testing as
nonuniform indicates the presence of systematic error in the ensemble forecast. For the
construction of a histogram, it was briefly noted that samples should be indepegdent (ie.,
no correlation between verification points). If correlated data were used, population in

the ranks could become unrepresentative. However, it was hypothesized that use of
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correlated data presented no such problem. If sampling were done over a very disperse
geographical region, the unrepresentativeness of the ranks might be balanced out.

Precipitation data is highly correlated over small spatial scales and short time
scales. Since data points in the sample space of this research were on average 200 km
and 1 day apart, a high degree of correlation was considered likely. The initial question
was: How far apart in space and time do samples from the full sample space need to be
taken to reach an acceptably low level of correlation? To answer that question, a detailed
correlation study of the precipitation data would then have been necessary.

An alternative approach was to simply run the verification ranking process twice,
sampling once from the highly correlated data and again from data with reduced
correlation (Toth, 1997). If the resulting histograms were to show no statistical
difference, it could be confidently concluded that use of correlated data is legitimate in
making verification rank histograms.

This hypothesis was tested using ensemble forecasts with 5.5-day lead times. One
verification rank histogram was created using the complete sample space (all case days,
all grid points), a total of 41704 verifications (Figure 14a). The sample space was then
divided up to produce two more histograms from data with lower correlation. Forecast
case days were divided by every other day giving two distinct sets of forecast cases
(called 4 and B) with at least two days (more for missing days) between forecast initial
times. The grid (Figure 5a) was divided up in checkerboard fashion giving two distinct
sets of grid points (called a and b) with increased distance between points. One

verification rank histogram used data from 4 with a (Figure 14b) while the other used B
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Figure 14. Verification rank histograms of 5.5-day forecasts of the MRF ensemble from
(a) highly correlated data using complete sample space, (b) less correlated data using
forecasts 4 and grid points a, and (c) less correlated data using forecasts B and grid points
b. Minor differences are noticeable, but the histograms are effectively the same.
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with b (Figure 14¢). The size of the sample space for these histograms was 10634
verifications, % of the complete sample space.

From a visual examination of Figure 14, it is difficult to see any differences at all
between the‘ three histograms. To be thorough, ¥ tests were done to test the statistical
significance of the differences in the histograms. All comparisons strongly passed with p
values of 1.0. Tests performed at other forecast lead times gave similar results.

Since verification rank histograms produced at different levels of data correlation
yielded the same results, it was concluded that use of correlated data is legitimate. It will
become more evident in the following sections of this chapter that this was a very
important finding for this research. To produce a robust calibration, the samples had to
be finely divided up into groups of similar behavior. If, to achieve ldw correlation, these
divisions had to be made from an already reduced Sample space, there would not have
been enough data to accomplish the desired calibration. A more generic calibration
would still have been possible however.

2) Stationarity of Systematic Errors.

As previously discussed in chapter 3, the most difficult aspect of designing a
calibration was in identifying conditions that repeatedly led to similar errors. If the
ensemble’s systematic errors lacked this stationarity, any attempt at constructing a
calibration would be futile. It seems reasonable though to expect the differences between
the dynamical system of the model and the atmosphere to be fairly constant, resulting in
reoccurring errors in the ensemble. Evidence of this is that numerous technical reports

are written on model performance to aid forecasters in interpreting future model output.
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Given only the ensemble pcp24 forecasts, the question was: What conditions can
be identified that will result in similar errors? It would be possible to construct one
verification rank histogram from the full sample space of all forecasts, at all grid points,
and for all 15 valid times. This would make a generic calibration which would improve
PQPF for some cases and worsen it for others. What was needed was a flexible
calibration which would change according to the conditions of the particular forecast.

The first logical step was to construct a separate histogram for each forecast lead
time of the ensemble, fifteen in all. Amount of time into the future was therefore
considered a condition upon which the systematic error has some dependence. The
reasoning behind this choice is that the vcharacter of the ensemble changes over the
forecast period. Recall that the IC of the seventeen members are very similar, but since
they exist near the maximum growing mode, the members diverge exponentially as the
forecasts evolve. This results in an increase in ensemble variability further into the
forecast period.

This phenomenon can be seen in the spaghetﬁ diagrams of Figure 15. Spaghetti
diagrams are one of the tools used in displaying the overwhelming information that
comes out of ensemble forecasting. A single isopleth of the parameter is chosen and then
plotted on the same chart for each ensemble member. The result looks similar to a dish of
pasta, albeit without the sauce or meatballs. Such a diagram is useful in determining
confidence in a forecast. When the spaghetti is stuck together, the ensemble members are
in strong agreement and a forecast can be made with high confidence. As the spaghetti

gets more dispersed and tangled, forecasts are made with decreasing confidence.
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(a) Observed pcp, 4 for 12Z, 27 SEP 96
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Figure 15. Spaghetti diagrams showing the increase in ensemble variability with increase
of forecast lead time. Five different ensemble forecasts of the same event are displayed.
Panel (a) shows observed pcpo4 for 127, 27 SEP 96 with a computer analysis of the 6.35-
mm isohyet. Panels (b) through (f) are 1.5-day through 5.5-day forecasts, each showing
seventeen possible locations for the 6.35-mm isohyet. Initial times of these forecasts
were 00Z on (b) 26 SEP 96, (c) 25 SEP 96, (d) 24 SEP 96, (e) 23 SEP 96, and (f) 22 SEP
96.
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Figure 15. (continued)
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Figure 15. (continued)
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In Figure 15, the chosen isohyet (line of constant precipitation amount) was pcp24
of 6.35 mm, the category 2 threshold. Five separate ensemble forecasts made in the five
days leading up to 27 SEP 96 are shown in (b) through (f). For corhparison to the
verification, the grid of observed values of pcp4 for 12Z on 27 SEP 96 is displayed in (a)
along with the computer analysis of the 6.35-mm isohyet. The prognosis of all five
ensemble forecasts is roughly the same, significant rainfall from the Midwest to the Gulf
of Mexico. What is important to notice is that the spread of the members increases with
forecast lead time. This is the direct result of the divergence of members’ trajectories in
phase space and has an impact on systematic error.

To explore how the systematic errors change over the forecast period, verification
rank histograms were constructed for each forecast lead time. The resulting histograms,
converted to probability for better comparison, are shown for a few of the forecast lead
times (Figure 16). Comparatively low ensemble variability in the early part of the
forecast period appears to increase the chance for the verification to occur in the outer
ranks. As ensemble variability increases, the verification seems to occur more often in
the inner ranks. This result follows intuition but is misleading because these histograms
are still much too general. A more in-depth analysis was required.

Since increased spread of the ensemble over time affected the relationship
between the ensemble members and the verification, the next step was to investigate the
impact of increased spread over space. This was the approach used by Hamill and
Colucci (1997) in designing a calibration for short range ensemble forecasts. Ensemble

variability is quantified by the sample standard deviation (s) of the seventeen ensemble
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Figure 16. Verification rank histograms at forecast lead times (a) 1.5-day, (b) 5.5-day,
and (c¢) 10.5-day using the full sample space at each time. All histograms test as
nonuniform, but there is a progression toward uniform probability as forecast lead time
increases. This is due to the increase in ensemble variability further into the forecast
period.
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members at a grid point. In an ensemble forecast at one valid time, s varies significantly
over the grid. Generally speaking, the wetter the forecast at a point, the higher the value
of s.

The next question was how to divide up the range of s in constructing multiple
verification rank histograms at one forecast lead time. Hamill ahd Colucci (1997)
constructed only three verification rank histograms based on high, medium, and low s,
since they were limited by a small number of samples. Since this research had a plethora
of data, a more detailed analysis was possible.

The distribution of s for wet forecasts (at least one member forecasts some
precipitation) was found to be skewed to the right with a minimum of 0.024 mm. Totally
dry forecasts of course have 0.0 for a s Value. With increased forecast lead time, the s
distribution steadily shifts away from the origin becoming more normal (Figure 17).

With roughly 20000 sample verifications available in the training data set at each
lead time, it was possible to divide s into many class intervals while at the same time
maintaining large enough subsample space sizes. A unique verification rank histogram
could then be constructed for each interval. Sixteen class intervals were chosen based on
the distribution of s to give around 1000 samples for each histogram. The range of the
class intervals therefore increases with increasing s. Table 3 gives the class intervals used
in constructing the 16 histograms for 2.5-day forecasts. Note that dry forecasts (s = 0.0)
are a unique class and were handled quite differently, since they represent a special case.

The question for dry forecasts was: When all members forecast 0.0 mm, what is

the chance of getting some precipitation and how much? In other words, should dry
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Figure 17. Empirical cumulative distribution of sample ensemble standard deviation
from 21324 wet cases of (a) 1.5-day forecasts, (b) 5.5-day forecasts, (c) 10.5-day
forecasts, and (d) 15.5-day forecasts. Note the steady progression toward a normal CDF.

forecasts be figured in to the calibration? Figure 18 gives the answer. In nearly half of
the 2.5-day dry forecast cases some precipitation was observed, but the amount of
precipitation was very low. This is an indication that the observation data may indeed be
an overestimate of precipitation for dry events. The majority of the cases do not reach the
category 1 threshold of 2.54 mm, making them insignificant for PQPF. Therefore, for the

calibrated PQPF, each category is assigned 0% probability in the case of a dry forecast.
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Table 3. Class intervals of ensemble standard deviation for 2.5-day forecasts.

Interval Sample Median In of
Number Size Range of s of Interval  Median

N/A 4089 =0.0 N/A N/A

1 1504 0.0<...<0.1 0.05 -3.00

2 1456 01<..<03 0.20 -1.61

3 1043 03<..<05 0.40 -0.92

4 915 05<...<07 0.60 -0.51

5 1122 0.7<..<1.0 0.85 -0.16

6 899 1.0<..<13 1.15 0.14

7 1084 13£..<1.7 1.50 0.41

8 941 1.7<..<2.1 1.90 0.64

9 1010 21<..<26 2.35 0.85

10 1001 26<...<32 2.90 1.06

11 1214 32<...<40 3.60 1.28

12 1194 40<...<5.0 4.50 1.50

13 1243 50<...<63 5.65 1.73

14 1287 63<...<82 7.25 1.98

15 1205 82<..<115 9.85 2.29

16 1120 11.5<...<25.0 18.25 2.90

Using the class intervals in Table 3, the resulting 16 verification rank histograms
gave a very interesting picture when viewed together (Figure 19a). Discounting the noise
due to the reduced sample sizes, the rank probability appeared to vary smoothly along the
class intervals as well as across the ranks. This result is actually what should be expected
if the systematic error does have some dependence on ensemble variability. The
consequence of this discovery is that it was possible to fit functions to the behavior at
each rank. Instead of a discrete number of verification rank histograms at each lead time,
there could now be an infinite number.

Before attempting to find these functions, the histograms at each class interval had

to be smoothed to remove the noise between the ranks. The first step of the smoothing
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Figure 18. Histograms of observed pcp4 for dry ensemble forecasts (all 17 members
forecast 0.0 mm) with class interval of 0.1 mm for (a) 1756 cases of 2.5-day forecasts,
and (b) 473 cases of 10.5-day forecasts. Most of the observations are very close to zero,
and only rarely does an observation occur above the category 1 threshold (2.54 mm).
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Figure 19. Processing of verification rank histograms for 2.5-day forecasts. (a) Raw data

with noise in both directions. (b) After smoothing between the ranks at each class
interval of standard deviation. (c) After fitting third-order polynomials at each rank.
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process was accomplished with the Mathcad software function called ksmooth using a
bandwidth of 5. The smoothed value of rank probability (RP) for rank i was found with

Equation 7 (adapted from Equation on p 312, Mathsoft, 1995).

s
2
&
5

where j is the index for the rank number, K is a Gaussian kernel determined by the

RP, =

1

18
YK
j=1

18
2.
j=1

Mathcad software, and r is the rank number. Next the probability of the outside ranks (#1
and #18) were reset to their pre-smoothed value. This was done because the smoothing
function reduced the probability in these ranks too much. Lastly, the histograms were
normalized to one, since the probability over all the ranks must sum to one. Figure 20
shows the raw and processed data for class interval #3 of 2.5-day forecasts. Figure 19b

shows all 16 smoothed verification rank histograms.
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Figure 20. Example of data smoothing of verification rank histogram for class interval #3
of 2.5-day forecasts. Raw data is plotted as dots (e). Solid line connects the values of
smoothed, normalized data points.
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The next process, also performed in Mathcad, was to fit a function at each rank.
First, the median of each class interval was chosen to represent the valué of the
independent variable (standard deviation) for the corresponding 18 values of the
dependent variable (rank probability). Table 3 back on page 58 gives the median values
for the 2.5-day forecasts. Plotted on linear scale, the data showed a logarithmic quality so
the independent variable was transformed to a log scale. It was then found that third-
order polynomials made an excellent fit to all the ranks. Figure 21 is an example of this
process for the function fit to rank #17 for 2.5-day forecasts.

For the sake of comparison, Figure 19¢ displays the resulting histograms for all
the original class intervals of the 2.5-day forecasts. The information now available
should no longer be displayed in this fashion since any one of the multitude of possible
histograms does not represent a discrete range of standard deviation anymore. There is
now a continuum where any particular value of standard deviation determines a histogram

with a unique set of 18 rank probabilities.

Rank #17
0.3 T T T T | T | | | T T I T

02 -

0.1 -

Rank Probability

0.0 Y AU NN AN NN NSNS MY AN (R AU A
-3.5 -30 25 -20 -15 -1.0 05 00 05 10 15 20 25 3.0 35

In (standard deviation)

Figure 21. The rank #17 third-order polynomial fit to the natural log transformation of
the median values of the 16 class intervals. Raw data is plotted as dots (e).
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The name given to this continuum of verification rank histograms is a probability
surface. An example for 2.5-day forecasts is shown in Figure 22 along with the
coefficients of the third-order polynomials at each rank in Table 4. Technically, it is not a
surface because while it is continuous along the In(s) axis, the ranks are still discrete
integer quantities. The surface is really just a series of 18 separate functions. Viewing
the functions as a surface is useful tool for interpreting and understanding how they work
in the calibration scheme.

Notice that the In(s) scale extends beyond the range of the transformed median
values in both directions. For these values, the functions are extrapolating to In(s) values
outside of the original data values so the rank distribution becomes less realistic. The
lowest possible value of s is 0.024 mm, which transforms to —3.73 on the log scale. The
high value plotted of 4.0 is for s ~ 55 mm, an extremely high s value which rarely occurs.
While the extrapolated regions of the probability surface may be less realistic, this does
not have a serious impact on the calibration since the majority of s values will not occur
there. On some surfaces, the extrapolated curves fall below 0.0 probability. For these
cases, the rank probabilities are frozen at the last s value that had no probability values
less than 0.0. All s values beyond this point then repeat the same histogram.

As previously discussed, verification rank histograms constructed at vatrious lead
times showed noticeable differences. It was theorized that this difference was due mainly
to increase in ensemble spread (standard deviation) over the forecast period. Since the
independent variable of a probability surface is also standard deviation, it is logical to

believe that one probability surface could be constructed to include all forecast lead
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Table 4. Coefficients of the third-order polynomials for each rank of 2.5-day forecasts.

0

1

2

3

Rank X x X X

# Coefficient Coefficient Coefficient Coefficient
1 0.1224011069  0.0462129592  0.0030028403  -0.0001408405
2 0.0629425734  0.0191124113 0.0003974715  -0.0003835922
3 0.0523940448 0.0148657563 0.0000405033  -0.0004423607
4  0.0438376060  0.0114929703  -0.0002944019  -0.0004983181
5 0.0382419099  0.0091084098 -0.0006195941  -0.0005342973
6 0.0353169303 0.0073305730  -0.0009218651  -0.0005249800
7  0.0339843883 0.0056719217 -0.0011547687 -0.0004508821
8 0.0333723629  0.0039249373  -0.0012895197 -0.0003182181
9 0.0332651455 0.0021737302 -0.0013599443  -0.0001610409
10  0.0338671813 0.0005634714  -0.0014328944  -0.0000161406
11 0.0354209811  -0.0009108059  -0.0015364163 0.0001057972
12 0.0380993826 -0.0024602339 -0.0016327575 0.0002199798
13 0.0421687845 -0.0044560885 -0.0016339727  0.0003388527
14  0.0481424036 -0.0073931691  -0.0014015055 0.0004533682
15 0.0565541426 -0.0117156145 -0.0007764539  0.0005454445
16 0.0673212360 -0.0173883491 0.0002938198 0.0006061855
17  0.0794237736  -0.0237213075 0.0016654037  0.0006375191
18 0.1432460468 -0.0524115719  0.0086540553 0.0005635236

—0.4
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: — [=]
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Figure 22. Probability surface for 2.5-day forecasts. The curves at each rank are the

third-order polynomials with coefficients given in Table 4.
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times. This would eliminate much complication. Unfortunately, this simplification
proved too elusive.

Probability surfaces created for different lead times have significant differences.
The most noticeable changes occur within the first six days of the forecast period (Figure
23a - ¢). For forecasts beyond 5.5 days, the probability surfaces still steadily change with
increasing lead time but not as drastically. The fact that there are noticeable changes
from one lead time to the next means that a particular value of s, say 0.7 on the log scale,
does not correspond to the same systematic error at each lead time. For a 1.5-day
ensemble forecast with s = 0.7 (Figure 23a), the verification is most likely to occur in
rank #1 or #18. Alternatively, the same s value for a 5.5-day forecast (Figure 23c) will
most likely have a verification occur in one of the lower ranks or rank #18.

Besides being useful for the calibration, these surfaces convey the MRE’s
precipitation bias. Consider a very wet (high value of s) forecast with 1.5-day lead time
(Figure 23a). Since it is early in the valid period, ensemble members are in relatively
good agreement compared to previous forecasts for the same events. One might conclude
that the MRF has a serious problem with its parameterization of moisture resulting in an
overforecasting bias. More plausibly, high precipitation occurs less often and over a
more limited area than low or no precipitation. A wet forecast that is in error in space
and/or time will then likely overforecast the verification value. Notice that as the valid
time increases, this phenomenon becomes less pronounced because of increasing
ensemble divergence. The wet forecasts are still overforecasts, but with a larger spread

the ensemble manages to encompass the verification more often.
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For producing the calibrated PQPF for this research, the weighted ranks method
used this set of fifteen probability surfaces. The third-order polynomial coefficients for
all fifteen surfaces are given in appendix A. Further analysis of systematic error was
explored to examine the possibility of an even more flexible determination of rank

probabilities. The results were however not used in the final calibration.
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Figure 23. A few of the 15 probability surfaces of the calibration. Surfaces shown are for
(a) 1.5-day, (b) 3.5-day, (c) 5.5-day, (d) 10.5-day, and (e) 15.5-day forecasts.
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3) Regime Dependence

The veriﬁcatién rank distribution was shown to have a strong dependence on both
ensemble standard deviation and forecast lead time. This indicates that the strategy of
using the probability surfaces should produce a good calibration. Is there a further
stratification that may provide a better calibration? To examine this possibility, the
regime dependehce of the surfaces was briefly explored.

A weather regime is described by a defined set of conditions over an area in which
some similar relationships and/or influences on atmospheric dynamics are shared (i.e.,
low atmospheric stability, warm ocean temperatures, continental polar air, etc.). The
reasoning behind a regime dependence of systematic error is that within a one weather
regime, the ensemble’s systematic errors will actually differ from another regime due to
differences in dynamical forcing. Each regime would then require a more specific
calibration. Since this research had only the ensemble pcp)4 data to work with, regimes
defined only by geography and season were explored here.

The approach was to create two separate probability surfaces for 5.5-day forecasts
using data from two completely different regimes. If these surfaces proved to be
different, then a regime dependence for the surfaces could be concluded. Two
geographical regimes were created by dividing the grid diagonally from WA to FL giving
a NE US regime and a SW US regime. Two seasonal regimes were defined as summer
(MAY through SEP) and winter (NOV through MAR).

Various combinations of these regimes were used to produce 5.5-day forecast

probability surfaces. All the resulting surfaces had similarities but noticeable differences.
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Figure 24 shows the probability surfaces for the regimes of NE US in summer and SW
US in winter. The same general pattern is evident in both, but they do produce different
calibrations. There is a regime dependence.

Thus a more specific calibration than the one used in this research is possible.

However, because the differences in the regime probability surfaces are small when
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Figure 24. Probability surfaces of 5.5-day forecasts constructed for the different weather
regimes of (a) NE US in summer and (b) SW US in winter. The surfaces display the
greatest differences in the extreme ranks.
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compared with the probability magnitude of the more general 5.5-day surface (Figure
23c), the benefit of this analysis would be small compared to the amount of effort it

would take. For this reason, regime dependent probability surfaces were not pursued.

c¢. POPF Comparison
1) Value of Improved PQPF

Before examining the quantitative improvements of the calibrated PQPF, it should
be shown that the calibration produces a forecast that represents a significant difference to
the user (both the forecaster and the customer). Increased quality of a probability forecast
is desirable but if the new, improved forecast differs by only a few percent, the
improvement might be of no consequence to the user.

As a hypothetical example, say the MRF shows the possibility of a major winter
storm five days hence along the East Coast of the US. The wing commander at McGuire
AFB, N1J, is concerned about the operational impact of heavy snow. He asks for the
probability of getting more than 1 foot of snow over a 24-hour period. Using the general
12 to 1 rule for liquid precipitation to snow amount, the forecaster accesses the
probability at 11% by using the uncalibrated CAT4 PQPF (pcp24 > 25.4 mm or 1.0”)
with a 5.5-day lead time. From this forecast, the wing commander’s decision is to no}
prepare to deploy his aircraft to an alternative location.

If the calibrated PQPF produced a slightly higher probability, say, 13%, the wing
commander would likely make the same decision, so the improvement would not be

useful. Alternatively, suppose the calibrated PQPF gave a CAT4 probability of 24%.

Now the commander’s decision may be to begin preparation for a deployment. The
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difference between uncalibrated and calibrated PQPF may need to be at least 5 — 10% to
represent a useful improvement.

Figure 25 gives a typical example of the forecast probability differences between
the democratic voting, uniform ranks and weighted ranks methods. Comparing the
uniform ranks PQPF (Figure 25d) to democratic voting PQPF (Figure 25c), the
differences are quite small. Therefore, even though the uniform ranks PQPF is of higher
quality, as will be seen in the next section of this chapter, the improvement is
insignificant from an operations point of view.

Conversely, the calibrated PQPF of the weighted ranks method does show
significant differences over the democratic voting PQPF (Figure 25a). From west of the
Mississippi up through the Ohio Valley, the calibrated PQPF is less than the uncalibrated
by up to 20%. According to Figure 25b, the verification failed to reach the category 2
threshold over this region so the calibration corrected PQPF in the right direction. The
calibration had the capability to recognize that for the conditions of this forecast, the
ensemble is typically an overforecast. Similarly in Michigan and parts of western
Virginia and southern West Virginia, the calibrated PQPF predicted a slightly higher
chance of occurrence, which was correct.

The calibration does not, however, always make the correct adjustments.
Consider eastern Kentucky where probability was decreased but the verification did occur
above the threshold. Since the calibration is based on the typical errors of the ensemble,
it only makes the right adjustment most of the time. The value of the calibration is that

over many samples, its incorrect adjustments are far outweighed by the correct ones.
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Figure 25. Sample PQPF for CAT2 (pcp24 > 6.35 mm) from the MRF ensemble
initialized at 00Z on 12 MAY 97. Forecasts with lead time of 3.5 days (i.e., pcp24 from
127 14 MAY to 12Z 15 MAY) produced by (c) democratic voting method, (d) uniform
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There is a cautionary note to be made concerning this analysis of Figure 25.
Instances in which the PQPF is nonzero and pcp) 4 fails to occur above the threshold do
not necessarily denote a bad forecast. Consider the weighted ranks PQPF for Wright
Patterson AFB, OH, indicated by the star in Figure 25¢c. The probability of getting pcp24
> 6.35 mm was put at 48%, but only 1.76 mm was observed in that grid box. What the
probability really means is that given 100 cases with the exact same ensemble IC, the
atmosphere will evolve to produce pcp24 > 6.35 mm at that location in 48 of the cases.
Each of these hypothetical 100 cases is an attempt to forecast a very similar but unique
trajectory of the atmosphere that yielded the same exact setup in the ensemble. This
particular forecast just happened to be for one of the 52 times that pcp4 did not occur
above the threshold.

| This example also brings up the point that the calibration can only improve the
quality of PQPF to a certain degree (Hamill, 1998). If the model is seriously deficient,
post-processing is of little gain. The goal of this research was not to produce more
accurate model output but higher quality PQPF based on the typical performance of the
MRF ensemble. The calibration improves accuracy and reliability of PQPF by
compensating for systematic errors of the MRF ensemble through an interpretation of the
raw ensemble forecast data. Improvement in accuracy of the raw ensemble forecast data
is obtainable through advancements in the model and/or better ensemble techniques.

2) The Calibration's Improvement of POPF

This research measured and compared quality of PQPF with four different tools,

namely the Brier score, ranked probability score, reliability diagram and the confidence
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diagram. Explanations of each tool along with their results are presented in that order in
this section. The PQPF produced by the weighted ranks method proved to be the best
forecasts.

In addition to measuring reliability of the three PQPF methods which were based
on the MRF ensemble, a persistence forecast was created to compare the reliability of an
unskilled forecast. In a persistence weather forecast, whatever weather just happened is
forecast to reoccur. (E.g.: If the high temp in Boston was 10°C today, it is forecast to be
10°C tomorrow.)

To create persistence PQPF, the observed pcp24 in the 24 hours before the
forecast initial time is first converted into categorical probabilities and then used for a set
PQPF. For example, say the observed pcp24 was 7.2 mm. The event’s observed
probabilities for the four categories, in vector format, are (1.0, 1.0, 0.0, 0.0) since the
verification occurred in CAT1 and CAT2. This is now the PQPF used repeatedly at that
grid point for every forecast lead time over the entire 15.5-day valid period. With every
grid point handled in this same manner, such a forecast would be quite unskilled.

a) Brier Score

The Brier score (BS), essentially a mean square error measure of a probability
forecast, is useful for examining the accuracy of each PQPF category separately (Wilks,
1995). The BS can be calculated for each forecast category using Equation 8 (from

Equation 7.22, Wilks, 1995):

Bs=1 f (FP,-0Bs ) )
n .
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where # is the total number of forecasts/observation samples for the category, and FP; is
the forecast probability of the i sample. OBS; equals 1 if the value of the predicted
variable occurred in the category for the i sample, and 0 if it did not occur. Therefore,
BS varies between 0 (perfectly accurate) and 1 (totally inaccurate).

The tables and figures on the next few pages present the BS for each of the four
PQPF categories at each lead time in the forecast period. These results may be
considered robust because of the large sample size applied. Sample sizes for each lead
time varied within a few hundred of 22000 due to a few missing days of observations.
Table 5 through Table 8 give the raw BS for all four forecast types and percent
improvement over the democratic voting method for the uniform ranks and weighted
ranks methods. Figure 26 through Figure 29 show graphs of the BS.

The most important information here is that PQPF derived using the weighted
ranks method is the most accurate since it has the lowest BS. All the BSs generally
increase with forecast time and converge indicating two things: (1) PQPF accuracy is
lower further into the forecast period which is as anticipated; and (2) the effectiveness of
the calibration decreases with forecast time. This point is also evident in the percent
improvement over the uncalibrated PQPF shown in Table 5. While quite high early in the
forecast period, the improvement steadily falls off. This is due to the decrease in
predictability as forecast lead time increases.

Notice that the BS scales on the five graphs are quite different. The range of BS
for the lower categories is considerably higher than that of the higher categories. This

appears to indicate that PQPF is generally better at higher thresholds — the reason being
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Table 5. Brier scores for CAT1 for all lead times.

Lead Democratic Uniform Ranks Weighted Ranks Persistence
Time (days) Voting BS BS /Improvement  BS /Improvement BS
1.5 0.1306 0.1268  2.9% 0.1168 10.6% 0.2605
2.5 0.1460 0.1426 2.3% 0.1330 8.9% 0.3239
3.5 0.1599 0.1567  2.0% 0.1489 6.9% 0.3329
4.5 0.1692 0.1665 1.6% 0.1618 4.4% 0.3340
55 0.1802 0.1777 1.4% 0.1749  2.9% 0.3316
6.5 0.1906 0.1879 1.4% 0.1854 2.7% 0.3171
7.5 0.1955 0.1930 1.3% 0.1914 2.1% 0.3191
8.5 0.2033 0.2009 1.2% 0.2004 1.4% 0.3394
9.5 0.2033 02010 1.1% 0.2018  0.7% 0.3423
10.5 0.2000 0.1981 1.0% 0.1977 1.2% 0.3418
11.5 0.1935 0.1920 0.8% 0.1942 -0.4% 0.3257
12.5 0.1975 0.1960 0.8% 0.1999 -1.2% 0.3358
13.5 0.2008 0.1991 0.8% 0.2034 -1.3% 0.3391
14.5 0.2046 0.2027 0.9% 0.2060 -0.7% 0.3493
15.5 0.2021 0.2003  0.9% 0.2036 -0.7% 0.3426
0.35 e
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Figure 26. Graph of CAT1 Brier scores over the entire valid period.
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Table 6. Brier scores for CAT2 for all lead times.

Lead Democratic Uniform Ranks Weighted Ranks Persistence
Time (days) Voting BS BS /Improvement  BS /Improvement BS
1.5 0.0823 0.0796  3.3% 0.0671 18.5% 0.1586
2.5 0.0909 0.0888 2.3% 0.0772 15.1% 0.1866
3.5 0.0970 0.0954 1.6% 0.0866 10.7% 0.1876
4.5 0.1023 0.1010 1.3% 0.0943 7.8% 0.1892
5.5 0.1074 0.1066  0.7% 0.1018 5.2% 0.1889 -
6.5 0.1094 0.1089  0.5% 0.1044 4.6% 0.1798
7.5 0.1126 0.1122  0.4% 0.1087 3.5% 0.1818
8.5 0.1172 0.1170  02%  0.1139  2.8% 0.1918
9.5 0.1142 0.1144 -0.2% 0.1119  2.0% 0.1932
10.5 0.1131 0.1133  -0.2% 0.1095  3.2% 0.1941
11.5 0.1104 0.1108 -0.4% 0.1079  2.3% 0.1843
12.5 0.1121 0.1125 -0.4% 0.1101  1.8% 0.1903
13.5 0.1164 0.1167 -0.3% 0.1150 1.2% 0.1945
14.5 0.1198 0.1200 -0.2% 0.1183 1.3% 0.2022
15.5 0.1183 0.1184 -0.1% 0.1160 1.9% 0.1986
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Figure 27. Graph of CAT2 Brier scores over the entire valid period.
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Table 7. Brier scores for CAT3 for all lead times.

Lead Democratic Uniform Ranks Weighted Ranks Persistence
Time (days) Voting BS BS /Improvement  BS/Improvement BS
1.5 0.0409 0.0399 2.4% 0.0327 20.0% 0.0750
2.5 0.0444 0.0439 1.1% 0.0370 16.7% 0.0847
3.5 0.0449 0.0447  0.4% 0.0397 11.6% 0.0835
4.5 0.0474 0.0473  0.2% 0.0430 9.3% 0.0854
5.5 0.0482 0.0484 -0.4% 0.0448 7.1% 0.0840
6.5 0.0489 0.0492 -0.6% 0.0461 5.7% 0.0814
7.5 0.0492 0.0497 -1.0% 0.0469  4.7% 0.0814
8.5 0.0489 0.0498 -1.8% 0.0469 4.1% 0.0837
9.5 0.0482 0.0491 -1.9% 0.0461 4.4% 0.0854
10.5 0.0480 0.0489 -1.9% 0.0458  4.6% 0.0850
11.5 0.0476 0.0485 -1.9% 0.0457  4.0% 0.0843
12.5 0.0479 0.0488 -1.9% 0.0458  4.4% 0.0873
13.5 0.0504 0.0513 -1.8% 0.0487 3.4% 0.0880
14.5 0.0519 0.0528 -1.7% 0.0503  3.1% 0.0913
15.5 0.0512 0.0520 -1.6% 0.0493  3.7% 0.0896
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Figure 28. Graph of CAT3 Brier scores over the entire valid period.
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Table 8. Brier scores for CAT4 for all lead times.

Lead Democratic Uniform Ranks Weighted Ranks Persistence
Time (days) Voting BS BS /Improvement  BS /Improvement BS
1.5 0.0101 0.0100 1.0% 0.0082 18.8% 0.0181
2.5 0.0105 0.0105 0.0% . 0.0091 13.3% 0.0202
3.5 0.0099 0.0100 -1.0% 0.0091 8.1% 0.0202
4.5 0.0103 0.0104 -1.0% 0.0098 4.9% 0.0210
55 0.0109 0.0111 -1.8% 0.0104 4.6% 0.0213
6.5 0.0115 0.0117 -1.7% 0.0111  3.5% 0.0215
7.5 0.0111 0.0113 -1.8% 0.0108  2.7% 0.0206
8.5 0.0104 0.0107 -2.9% 0.0101 2.9% 0.0200
9.5 0.0100 0.0103 -3.0% 0.0097  3.0% 0.0203
10.5 0.0106 0.0109 -2.8% 0.0103 2.8% 0.0209
11.5 0.0111 00114 -2.7% 0.0108 2.7% 0.0218
12.5 0.0104 0.0108 -3.8% 0.0101 2.9% 0.0211
13.5 0.0118 0.0122 -3.4% 0.0116 1.7% 0.0225
14.5 0.0123 0.0126 -2.4% 0.0120 2.4% 0.0228
15.5 0.0118 0.0121 -2.5% 0.0116 1.7% 0.0225
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Figure 29. Graph of CAT4 Brier scores over the entire valid period.
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that the BS is a mean square error measurement. For forecasting in CAT4, the sample
space is dominated by cases where the verification did not occur above the threshold and
the PQPF was 0.0%, resulting in 0.0 for a BS. These numerous low contributions cause
an overall low mean BS. At lower thresholds, the proportion of these 0.0 contributions
decreases so larger mean BSs result. In a sense, it is more difficult to forecast at the
lower categories because the rate of occurrence is higher. This point is examined further
in section c.

b) Ranked Probability Score

An overall score which is an extension of the BS to multicategory forecasts is
given by the ranked probability score (RPS) (Wilks, 1995). It is a mean square error
measure of probability forecasts which takes into account the error at each category. To
do this, a probability forecast vector (PQPF at all 4 categories) is compared to an
observation vector (0 or 1 for the same 4 categories) for each sample. For example, the
forecast vector for the sample ensemble forecast ENS given in chapter 3 would be (0.80,
0.76, 0.49, 0.16). If the verification value were 15.1 mm, the observation vector would be
(1.0, 1.0, 1.0, 0) since the verification occurred in CAT1, CAT2 and CAT3. The RPS is
found by summing the squared errors of the components of the vectors for many samples

as in Equation 9 (adapted from Equation 7.33b, Wilks, 1995).

> 24:(FVi,j - OV, ; )2 )]

i=1 j=1

RPS =
n

where n is the total number of samples, i is an index for the sample number, j is an index

for the category, FV is the forecast vector, and OV is the observation vector. For the
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example, RPS = (0.8 — 1.0)> + (0.76 — 1.0)* + (0.49 — 1.0)* + (0.16 — 0.0)* = 0.3833. As
with the BS, a perfect score is 0 while the worst possible score is 1.

The resulting RPS data for the research is presented in Table 9 and Figure 30 in a
similar fashion to the BS results. Conclusions drawn from this data are the same as with
the BS but worthwhile since the RPS gives an overall score rather than scores broken out
by category. PQPF derived using the weighted ranks method is consistently the most
accurate. The increase and convergence of the RPS of each method with increasing
forecast lead time is even more evident than with the BSs.

An interesting side note concerns the plot of the persistence forecasts. First of all,
notice the steep climb in the persistence RPS in the first 2.5 days of the valid period. This
indicates that there were often occasions when the weather reoccurred for up to two days.
In other words, the persistence forecast was occasionally correct. Further into the forecast
valid period, there is a notable dip in RPS just past the 6.5-day lead time and again around
11.5-day lead time. This indicates that there is again a common reoccurrence of
precipitation at these times in the valid period. This behavior of the persistence RPS is
likely caused by the synoptic cyclone timescale (Hamill, 1998).

¢) Reliability Diagram

A reliability diagram is a graphic display of the performance of a set of
probabilistic forecasts for a certain category. Observed relative frequency of occurrence
in the category is plotted as a function of forecast probability for the category (Wilks,
1995). For simplification and to increase the population at each probability bin, forecast

probabilities are rounded to the nearest 10%. For an example plot value, consider 10
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Table 9. Rank probability scores for all lead times.

Lead Democratic Uniform Ranks Weighted Ranks Persistence
Time (days) Voting RPS RPS / Improvement ~ RPS / Improvement RPS
1.5 0.2639 0.2563  2.9% 0.2247 14.9% 0.5123
2.5 0.2918 0.2858 2.1% 0.2563 12.2% 0.6154
3.5 0.3117 0.3067 1.6% 0.2842  8.8% 0.6242
4.5 0.3291 03252  1.2% 03089 6.1% 0.6296
5.5 0.3467 0.3438  0.8% 03319 43% 0.6257
6.5 0.3604 0.3578  0.7% 0.3470  3.7% 0.5998
7.5 0.3683 03663  0.5% 03578  2.9% 0.6029
8.5 0.3798 03785 0.3% 03714 2.2% 0.6349
9.5 0.3756 03749 0.2% 0.3694 1.7% 0.6412
10.5 0.3716 03712  0.1% 03633 2.2% 0.6418
11.5 0.3626 03626  0.0% 03585 1.1% 0.6161
12.5 0.3679 0.3680  0.0% 0.3659  0.5% 0.6346
13.5 0.3795 0.3792  0.1% 0.3787 0.2% 0.6441
14.5 0.3885 0.3882 0.1% 0.3866  0.5% 0.6657
15.5 0.3833 03828 0.1% 0.3805 0.7% 0.6533
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Figure 30. Graph of rank probability scores over the entire valid period.
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different forecasts that all rounded to a 50% chance for pcp24 > 2.54 mm. For the set of
these forecasts to be considered reliable, the observed relative frequency should be 5 out
these 10 (50%) that verify with pcpo4 > 2.54 mm.

Figure 31 gives an example of a reliability diagram from this research. For
explanation purposes, this example displays much more information than is normally
contained in the diagram. The plot of a perfectly reliable forecast is a line with a slope of
1.0 starting at the origin. The further the departure from this line, the less reliable the
forecast. Points above the perfect line equate to underforecasting while points below
equate to overforecasting. The histogram in Figure 31 (normally inset within the
diagram) is a display of the relative frequency of usage of the forecast probabilities. It
shows how many times 0%, 10%, 20%, etc. was forecast over the entire set of forecasts in
the category.

Besides reliability, the diagram also displays the resolution and the skill of the
forecasts (Wilks, 1995). These attributes are actually directly related to the BS. In fact,
the reliability diagram is a visual break out of the BS which gives valuable information on
the strengths and weaknesses of the forecasts. The BS can be decomposed into the three
terms of reliability, resolution, and uncertainty as in Equation 10 (from Equation 7.28,
Wilks, 1995).

2 2

1 4
- =~ Y.N;(0RF; -sC) + sc(i-sc)  (10)

i=1

1 11
BS = — Y N,(FP, - ORF,)
=1
(reliability) (resolution) (uncertainty)

where # is the total number of forecasts/observation samples for the category, i is the

index for the 11 plotting points, N ; is the number of forecasts at each forecast probability,
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Table 10. Raw data and reliability diagram data for CAT2, 1.5-day forecasts for PQPF
derived from the democratic voting method. The observed (Obs.) relative frequency of
occurrence is found by dividing the number of occurrences (Occ.) by the number of
forecasts (Fcsts.). The percentage of occurrences is the number of occurrences divided by

the total number of occurrences.

Forecast # of # of Obs. Relative % of “Perfect Forecast”
Probability Fests Occ. Frequency Occ. #0f Occ. % of Occ.
0 15609 210 0.01 83 0 0.0
1 1483 152 0.10 6.0 148 4.0
2 884 121 0.14 48 177 4.8
3 273 61 0.22 2.4 82 2.2
4 457 102 0.22 4.0 183 5.0
.5 395 92 0.23 3.6 198 54
6 369 130 0.35 5.1 221 6.0
7 209 78 0.37 3.1 146 4.0
.8 595 267 0.45 10.5 476 12.9
.9 716 328 0.46 13.0 644 17.5
1.0 1412 990 0.70 39.1 1412 38.3
TOTAL: 22402 2531 3687

Observed Relative Frequency

Democratic Voting
(CAT2, 1.5-Day Fcst)

negative
skill

4

6 8 1.0

Forecast Probability

Bs=0082 Rel-=

Unc. =0.100

Freq. of Usage

sample

Forecast Probability

climatology (SC)

=0.019

Figure 31. (adapted from Figure 7.8, Wilks, 1995) Reliability diagram for CAT2, 1.5-day
PQPF derived from the democratic voting method. Dots (0) showing the observed
relative frequency at each tenth of forecast probability are connected with line segments.
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FP; is the rounded forecast probability, ORFj is the observed relative frequency, and SC
is the sample climatology. This BS is only a close approximation to Equation 8 because
rounded forecast probability is used. If rounded values were used in Equation 8, the
results would be equivalent. This equation can best be underétood by applying it to the
data in Table 10 which made up the example diagram.

The ORF (plotted value on reliability diagram) is simply the number of
occurrences at a particular FP divided by the number of forecasts, N. In the example, out
of 884 20% forecasts there were 121 times that the observed value occurred in category 2.
This gives an ORF = 121/884 ~ 0.14, an overforecast. The reliability term is just a
measure of the distance away from the perfect forecast line weighted by the number of
forecasts at each FP. Better forecasts result in a smaller reliability term and thus a BS
closer to zero.

The SC is the overall frequency of observed values occurring in the category. In
the example, pcp24 occurred in category 2 a total of 2531 times out of the total of 22402
possible times. This gives an SC = 2531/22402 ~ 0.11. In other words, this is the
probability value a forecaster would give if he based his forecast solely on the
climatological average occurrence. The resolution is a measure of distance away from the
climatological probability forecast (dashed line labeled zero resolution) weighted by the
number of forecasts at each FP. Better forecasts result in a larger resolution term and
thus a BS closer to zero.

The uncertainty term (plotted in Figure 32) is set by the SC and thus independent

of the forecast. It can be thought of as a measure of how easy it is to forecast the event.
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Figure 32. Graph of the uncertainty term of the BS. Maximum uncertainty of 0.25
occurs at a sample climatology of 0.5.

The highest uncertainty (most difficult to forecast) is an event that occurs half of the time
on average. An event that rarely occurs or frequently occurs has a lower uncertainty
(easier to forecast). The extreme is an event that either never occurs or always occurs
which is of course quite simple to forecast for and thus has an uncertainty of zero.

The skill score (SS) of the forecasts is determined by (resolution — reliability) /
uncertainty (Equation 7.29, Wilks, 1995). Therefore, for a point to contribute positive
skill, it must have a reliability value smaller than its resolution. This is represented by the
shaded region in Figure 31. Outside of this region, reliability is larger than reéolution and
skill is negative. Forecasts that exhibit an overall negative SS performed worse than a
climatological forecast. In other words, PQPF based simply on the climatological norms
would be a higher quality product.

Figure 31 is an example of forecasts which are somewhat reliable but have rather
low skill. It is clear that even for forecasts with only a 1.5-day lead time, the uncalibrated
democratic voting method produces low quality PQPF. The information in Figure 31 is

repeated in the more standard reliability diagram format in Figure 33b. The arrows next
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Figure 33. Reliability diagrams for all 4 categories of 1.5-day forecasts for uncalibrated
(democratic voting) and calibrated (weighted ranks) PQPF. Panels are organized for

vertical comparison (E.g.: CAT1 for democratic voting (a) is directly above weighted

ranks (c) ). Arrows before score names remind the reader of the desired direction for
better forecasts. Up arrows (1) where a higher number is better and down arrows ()

where lower is better.
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Figure 33. (continued)
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to the BS, SS, reliability (rel.), and resolution (res.) are reminders of the desired
quantitative direction for higher quality forecasts.

Reliability diagrams for all four PQPF categories for 1.5-day forecasts are
displayed in Figure 33 and for 3.5-day forecasts in Figure 34. Only the democratic voting
and weighted ranks PQPF results are shown to reduce the clutter. Also, the relative
quality of the uniform ranks and persistence PQPF has already been well established with
the BS and RPS. The lead time of 1.5 days was selected to be displayed since 1.5-day
forecasts showed the most significant improvements. The lead time of 3.5 days was
selected since it is in the medium range and shows several interesting features.

The most important feature of these diagrams is that the calibrated PQPF of
weighted ranks method is shown to consistently outperform the uncalibrated PQPF of the
democratic voting method. This is evident in the line plots of observed relative frequency
as well as with the BSs and the SSs. However, it is also evident that the calibrated
forecasts exhibit the same basic problem as the uncalibrated forecasts, a tendency towards

~overforecasting of probability.

Another important point to be drawn from these diagrams concerns what happens
to the quality of PQPF as the category threshold increases. In the previous section, it was
noted that the BS is lower for the higher category thresholds which appears to indicate
that PQPF is better at higher thresholds. The reason for the lower BS at higher thresholds
is simply because of the lower uncertainty. The BS is only useful for comparing different

forecasts at one threshold, not comparing different thresholds of the same forecasts.

91




(a) Democratic Voting
(CATl, 3.5-day)

1.0 ~
g I BS=0.159

o g 185=0.106
% 8+ g-
r 6+
2
3 44
14
O
;2, 2+ { Rel. =0.021
8 | T Res. = 0.040
© , Unc. =0.178

O+t

.0 2 4 .6 .8 1.0
Forecast Probability
(c) Weighted Ranks
(CAT]1, 3.5-day)
1.0
g 4 BS =0.149

> |3 T8S=0.162
S 8 1%
o g
o J= s
u_ 7/

6 |
2
©
& 44
°
2
24 4 Rel. =0.010
5 | , T Res. = 0.039

0 g Unc.=0.178

.0 2 4 .6 .8
Forecast Probability

1.0

. Forec.ast Probability

Figure 34. Reliability diagrams for all 4 categories of 3.5-day forecasts for uncalibrated

(democratic voting) and calibrated (weighted ranks) PQPF.
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Figure 34. (continued)
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The SS is useful for comparing both different forecasts and different thresholds.
From the trend in SS and the reliability diagram plots, it is now‘ clear that the quality of
PQPF decreases as the category threshold increases. To examine these results in more
detail, Figure 35 plots the SS of both PQPF methods for the four categories over the
entire valid period.

These plots show that the calibration did do its job (improved skill of PQPF) but
only to a limit. Recall that a negative SS indicates forecasts with predictive skill below
that of forecasts based on climatology. Inthe CAT1 SS plot (Figure 35a), both PQPF SSs
drop below the zero line soon after a lead time of 5.5 days. Beyond this point then,
neither forecast is of any use since a climatological forecast is more skilled. The
calibration’s ability to improve PQPF appears to be limited by the general predictability
of cumulative precipitation. The calibration can extend this predictability to a certain
degree. A more dramatic extension of predictability by the calibrated PQPF is seen in the
higher thresholds. The usefulness of PQPF is advanced by over one day in CAT2 and
CATS3. In CAT4, the uncalibrated forecasts were totally unskilled while the calibration
managed to briefly exhibit positive skill.

d) Confidence Diagram

There is a very important aspect of probability forecasts that the reliability
diagram does not directly display. That is, of the times an event actually occurred, how
much probability was typically given for the chance of occurrence? The reliability

diagram gives results for all forecasts, whether the event occurred or not, thus missing
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Figure 35. Skill scores over the entire forecast valid period determined from reliability
diagrams of uncalibrated (democratic voting) and calibrated (weighted ranks) PQPF. A
score below zero indicates forecasts that have a predictive skill below a forecast based on

climatology.
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this point. While the BS and the SS do reflect this aspect of the forecasts, a visualization
of this factor is necessary to comprehend its significance.

It is possible to make highly reliable, positively skilled forecasts that are not very
useful from the customers point of view. This is because in general, weather forecasters
and their customers are much more concerned with the occurrence of an event as opposed
to the non-occurrence. For this reason, a measurement tool for probabilistic forecasts was
designed called the confidence diagram. The name comes from the fact that it shows to
what degree of confidence the forecasts were made. It also relates how much confidence
a customer would put in a forecaster’s ability to forecast the event.

Before discussing the new diagram, the need for the diagram must be clearly
explained. Consider a hypothetical example of two different forecasters, 4 and B, who
made predictions on the chance of the temperature rising abové 38°C in Atlanta during 5
days in August. Forecaster 4 made 5 forecasts all at 20% chance. Forecaster B made 4
forecasts at 0% and the last one at 100% chance. The observation was that days 1 — 4
were below 38°C and day 5 was above. Both forecasters achieved perfect reliability.
However, forecaster B achieved a better skill score because of a high resolution.
Obviously, the customer would be more happy with B’s forecasts than 4’s. With this
simple example, it is easy to comprehend the difference in the forecasts. With large
samples of forecasts which use all the probability values, it éets difficult to understand the
meaning behind the skill score.

The confidence diagram is a histogram of how the occurrences (events where

pcp24 occurred in the category) were forecast. In a large sample of probabilistic
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forecasts, the event will likely occur for all forecast probability bins. If these forecasts are
highly reliable, the observed relative frequency of the occurrences will be close to
forecast probability value in each bin. What is desirable is to have most of the
occurrences in the bins of higher levels of forecast probability. In the above example,
forecaster A had a low confidence so the 1 occurrence was forecast at 20%. Forecaster B,
with high confidence, correctly forecast 1 occurrence with a 100% forecast.

Referring back to the sample data in Table 10 on page 86, the percent of
occurrences column was computed by dividing the nuﬁber of occurrences at the forecast
probability by the total number of occurrences. This information is shown in the black
histogram bars of Figure 36b. In this case, the majority of the occurrences were in the
higher forecast probabilities, the desired characteristic. However, a significant portion of
the occurrences was forecast at lower percentages. Also shown are the results for the
same forecasts if they had been perfectly reliable. The gray shaded histograms show
percentage of occurrences for a set of perfectly reliable forecasts that have the same
numbers of forecasts at each forecast probability as the actual forecasts. These perfectly
reliable forecasts are not the set of forecasts with both perfect reliability and perfect
accuracy (i.e., forecast set containing only 0% or 100% forecasts with perfect reliability).

Figure 36 and Figure 37 display confidence diagrams for the same categories and
lead times as in Figure 33 and Figure 34. The reliability and the SS are repeated since
their values are visually depicted in the diagrams. Both the uncalibrated and calibrated
PQPF show a steady decrease in confidence with increased threshold and increased valid

time. This is evident in the steady shifting away from the higher forecast probabilities.
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Figure 36. Confidence diagrams for all 4 categories of 1.5-day forecasts for uncalibrated
(democratic voting) and calibrated (weighted ranks) PQPF. Black bars are percentages of
the occurrences for the actual set of forecasts while gray bars are for the same forecasts,
but with perfect reliability.
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Figure 36. (continued)
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Figure 37. Confidence diagrams for all 4 categories of 3.5-day forecasts for uncalibrated
(democratic voting) and calibrated (weighted ranks) PQPF.
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Figure 37. (continued)
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Consider the democratic voting CAT4, 1.5-day forecasts (Figure 36f). What
makes these forecasts so unskilled is that in nearly 1 out of 4 times that pcp2 4 measured
greater than 25.4 mm, the PQPF was 0%. This is clearly not a useful forecast product.
While the calibration (Figure 36h) improved upon the percentage of occurrences at 0%
forecast probability, its overall usefulness is also questionable since the majority .of
occurrences were given 50% chance or less.

An additional aspect of these diagrams is that they reveal the effect of the
calibration on the PQPF. Compare any set of uncalibrated and calibrated confidence
diagrams. Notice that the calibration consistently shifts the percentage of occurrences
from the extremes toward the center. This means that the calibration decreases the
confidence for the higher PQPF percentages and increases it for the lower PQPF

percentages. In this way, an overall higher quality PQPF is created.

d. Limits of Predictability

Referring back to Figure 35 on pagé 95, the limits for skillfully predicting
cumulative precipitation with the MRF ensemble are approximately 6.0 days for CAT1,
4.4 days for CAT2, 3.3 days for CAT3, and 2.1 days for CAT4. This finding brings up
two questions: (1) What is the relationship between pcp24 threshold and predictability;
and (2) is this finding simply due to the limitations of the MRF ensemble or is i.t a more

fundamental truth?
Figure 38 was designed to help answer the first question. After a log
transformation of the pcp 4 threshold values, a third-order polynomial function was fit to

the four limits of predictability described above. While the curve is an excellent fit, it
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should be taken only as a gross approximation in the extrapolated regions to the left and
right of the four data points. The curve indicates that predictability falls off sharply at
first with increasing pcp4 threshold then decreases more gradually at higher levels of
pcp24 threshold.

This result is consistent with the ideas presented by Lorenz (1969) who proposed
that smaller scales of motion have shorter ranges of predictability. Low levels of pcpoy
are generally associated with widespread precipitation events occurring on the synoptic
scale. An event with a large pcp24 amount occurs on a smaller scale, more likely due to
convective activity than a synoptic scale storm. Therefore, predictability should decrease

with increasing pcp 24 threshold (i.e., decreasing scale) as displayed in Figure 38.
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Figure 38. Limit of predictability as a function of pcp24 threshold. Results from skill
score analysis are plotted as dots (). The solid line part of the curve shows the more
credible results while the dashed parts of the curve are less credible extrapolations.
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Lorenz (1969) also described the limits of predictability as intrinsic to a chaotic
dynamical system, and can not be increased by reducing observational error. This helps
in answering the second question which can now be rephrased as: Are the limits of
predictability displayed in Figure 38 the intrinsic limits which exist because the
atmosphere is a chaotic dynamical system? It is logical to presume that the limits
analyzed here are shorter than the true limits due to deficiencies in the MRF ensemble.

While no definitive answer can be provided within the context of this research, a
reasonable supposition can be made. It is true that the MRF is not perfect and the
ensemble IC are less than ideal, but it is also true that the calibration was designed to
compensate for these inadequacies. That was in fact the whole point of the calibration.
Therefore, the limits of cumulative precipitation predictability indicated by the analysis of
calibrated PQPF skill score may be close to the true limits.

It should be noted that the limits of predictability shown in Figure 38, whether
they are the true limits or not, represent the average predictability over a large sample
space. The limits can vary depending upon the local divergent nature of the atmosphere’s
attractor for a particular forecast period. In other words, some weather patterns are much

more predictable than others even though they are of similar scale.

e. Difficulty of Probabilistic Forecasting
In the discussion of the decomposition of the BS earlier in this chapter, the idea
was introduced that uncertainty in the occurrence of an event contributes to the difficulty

in forecasting that event. Referring back to Figure 32 on page 88, events which rarely or
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always occur were described as easier to forecast since a forecaster and/or model would
generally be more certain of the future. However, this is not the whole story.

Consider the confidence diagrams displayed in the previous section of this
chapter. If CAT4 pcp2y4, an event of rare occurrence, is easy to forecast for, why is the
confidence and the skill of these forecasts so low compared to the other categories at the
same lead time? The answer is that the difficulty in making a probabilistic forecast must
be a combination of uncertainty and fargetability. This term is so named because
forecasting an event can be considered like trying to hit a target. A big target (an event
that often occurs) is easy to hit. As the target gets smaller (event occurs less often) or
further away (increased lead time), it quickly gets harder to hit the target.

The term for targetability is therefore a function of both the sample climatology
(SC), or average percent occurrence of the event, and lead time (f). Compared to the
uncertainty term which has quantitative meaning, targetability is only a qualitative term
based on logic and experience of the author. The qualitative function for forecast

difficulty (Equation 11) is simply a linear combination of the two terms.

Forecast Difficulty = t(l —5¢
SC

) + SC(1-5C) (11)

(targetability) + (uncertainty)

The plot of the forecast difficulty function at one lead time (Figure 39a) explains
why the quality of the PQPF gets worse for higher pcp) 4 thresholds. The targetability
term behaves asymptotically so its influence is small for common events (high SC) but
dominates for rare events (low SC). PQPF for CAT4 are made with low uncertainty but

they are extremely hard to target since CAT4 rarely occurs. This makes CAT4 much
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more difficult to forecast. Furthermore, targetability gets harder with increased lead time
as shown in Figure 39b, making forecasting at any category more difficult.

While there is no hard scientific proof of the validity of the forecast difficulty
function, it does offer an intuitive understanding for the challenges involved in
probabilistic forecasting. Additionally, it provides another explanation for the trends in
PQPF quality analyzed in section ¢ of this chapter as well as the findings concerning the

limits of predictability.
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Figure 39. Plot of the forecast difficulty function. Forecast difficulty and lead time axes
are not numbered because this plot is qualitative. (a) Forecast difficulty (solid curve) is a
combination of the uncertainty term (long dashed curve) and the targetability term (short

dashed curve). (b) Forecast difficulty increases with lead time due to time dependence of
targetability term.
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5. Conclusions and Recommendations

a. Overview

This chapter begins by presenting the major conclusions drawn from the results of
this research. It goes on to discuss recommendations concerning the specific subject of
this thesis as well as ensemble forecasting in general. Lastly, three suggestions for future

research are given.

b. Conclusions

Calibrated PQPF produced by the weighted ranks method does dramatically
improve the quality of PQPF, as was clearly shown by the findings of the various
measurement tools discussed in chapter 4. Unfortunately, the calibration can only do so
much. In comparing the calibrated and uncalibrated PQPF, it was discovered that the
limit of predictability for significant amounts of cumulative precipitation is much shorter
than was originally surmised.

Referring back to Figure 38 on page 104, it was found that for higher levels of
cumulative precipitation, of more concern to meteorologists and their customers, it is not
possible to produce reliable and/or accurate PQPF based on the MRF ensemble in the
medium range. The spatial and temporal variability of high amounts of precipitation is
too great to be forecast with skill beyond the short range. However, PQPF based on the
MREF ensemble is of value in the medium range for very low thresholds of cumulative
precipitation. In other words, in the medium range it is possible to forecast the

probability of precipitation vs. dry conditions with skill but not possible to predict
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precipitation quantity. These conclusions may apply to all forecasts of cumulative

{

precipitation, not just to forecasts based on the MRF ensemble.

¢. Recommendations

Concerning the focus of this research, there are two recommendations: (1) PQPF
based on the MRF ensemble should not be employed in the medium range for any
purpose other than the lowest possible threshold PQPF (i.e., cumulative precipitation >
0.1 mm); and (2) the calibration designed by this research should be implemented by
NCEP to maximize the skill of PQPF over the United States. This is of course provided
that the calibration designed in this thesis is more robust than the technique developed at
NCEP. A comparison of the skill found in this research to the skill of NCEP’s calibrated
PQPF needs to be accomplished to answer this question. Whichever technique proves
better, that calibration process should then be applied to other regions of the world where
improved PQPF would be beneficial.

A more far reaching recommendation concerns the overall science of ensemble
forecasting and the USAF: The Air Force Weather Agency should seek to employ
ensemble forecasting in all aspects of weather operations. Instead of focusing on
improving NWP with smaller scale models, more effort must be made in researching how
the USAF can benefit from ensemble forecasting. The fact that short range ensemble
forecasting is still in development is even more reason to get involved now.

The most obvious benefit of using ensemble forecasting would be that forecasters
would have a better comprehension of the confidence in a particular model, which should

be known when using any NWP product. Determination of confidence in a model is
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currently done to some extent by USAF forecasters by comparing different models or
previous runs of the same model and by examining a model’s performance early in the
forecast period. Such techniques are worthwhile but quite inferior compared fo the
information provided by spaghetti diagrams or standard deviation charts from an
ensemble forecast.

Other potential benefits of short range ensemble forecasting are both promising
and exciting. Using an ensemble mean as the best forecast over the control represents a
way to improve a model’s output without increasing its resolution. Probabilistic forecasts
based on an ensemble (as presented in this research) for any weather parameter are a new

concept for USAF weather operations and have countless applications.

d. Future Research

Since ensemble forecasting is still a new application of NWP, there is a
tremendous amount of research yet to be done before the full potential of the technique
can be realized. Concerning the narrow sub topic of this thesis (calibration of'
probabilistic forecasts based on an ensemble), there are three areas for possible future
research.

(1) If a more effective calibration could be designed, the quality of PQPF would
be improved even further. Such a calibration may be similar to the one presented in this
thesis but based on more than just ensemble standard deviation. In general, the more
flexible and detailed the calibration, the more accurate and reliable the probability
forecast. Of course, this improved quality comes at a price. To design a better

calibration, a bigger sample space is required along with a more detailed analysis,
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requiring more effort. A trade-off between improved quality and design effort would
therefore need to be made. The most straightforward choice would be to design a
calibration based on weather regimes as discussed in chapter 4.

(2) If it could be confirmed that the weighted ranks calibration technique works
well for probabilistic forecasts of different weather parameters (i.e., temperature, wind
speed, visibility, etc.), then ensemble based probabilistic forecasts would have many more
applications. There is no reason why such forecasts should be restricted to precipitation.
For instance, say Kadena AFB, Japan, is concerned about the possibility of damaging
winds from a typhoon that may pass nearby in several days. A probabilistic forecast for
winds > 50 kt over a particular time period could be based on a ensemble forecast. This
ensemble would of course contain systematic errors which could be effectively accounted
for by a calibration technique just like the one presented in this thesis. Theoretically, the
result would be a more accurate and reliable probability forecast for damaging winds and
consequently, more effective resource protection actions could be taken.

(3) If the methods of this research were repeated with better observational data,
the findings wbuld be more credible. Once the problems with the cumulative
precipitation data from the multisensor analysis are solved, it would be the best choice to
represent the true precipitation. A new study using this data would have the same general
conclusions as this thesis but would be able to give more detailed results conceming the

true limits of predictability of cumulative precipitation.
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Appendix A: Polynomial Coefficients of Probability Surfaces

This appendix lists the coefficients of the third-order polynomial curves which
were fit to the 18 ranks at each of the 15 lead times in the forecast valid period. The
coefficients were generated with a Mathcad template then saved to a data file for use by
the Fortran program PQPF (see Appendix B). The coefficients were taken to ten decimal
places since regular precision (seven digits) was used in the Fortran program. Most of the
smallest coefficients begin in the 100002 place thus yielding seven digits. Larger
coefficients carry more precision than could be used by the program.

Recall that the independent variable, represented by x in the tables, is the natural
log of the ensemble standard deviation at a grid point. The resulting dependent variable is
the probability that the verification will occur in a given rank at that grid point. The
distribution of probabilities from all 18 ranks makes up a verification rank histogram.
PQPF for any threshold of cumulative precipitation is then determined through the
weighted ranks method. :

Table Al. Third-order polynomial coefficients for 1.5-day forecast probability surface.

Rank x° x! X x
# Coefficient Coefficient Coefficient Coefficient
1 0.1775610385  0.0638091547 -0.0011161261 -0.0017389848
2 0.0730167671 0.0221600419  -0.0007423021  -0.0007895930
3 0.0566826981 0.0154827506 -0.0006939424  -0.0006187144
4 0.0439144021 0.0101767501  -0.0006482525 -0.0004715114
5 0.0354335348  0.0066217836  -0.0006055787 -0.0003663912
6  0.0303341911 0.0044901352  -0.0005755097  -0.0003013095
7 0.0273276092 0.0031601223  -0.0005733968  -0.0002534419
8  0.0257491579  0.0021668981  -0.0006204150 -0.0001983891
9  0.0254943479  0.0012729110 -0.0007494752  -0.0001276395
10  0.0265803054  0.0003380975  -0.0009819390  -0.0000441998
11 0.0288981793  -0.0007682515 -0.0012755500  0.0000531551
12 0.0322327701  -0.0022090556  -0.0015047276  0.0001739125
13 0.0365157033  -0.0042431142  -0.0015036938  0.0003238523
14 0.0421789797 -0.0072416417 -0.0011319832  0.0004902996
15  0.0501323267 -0.0115494180 -0.0003246924  0.0006452856
16  0.0609388896 -0.0172141979  0.0008708084  0.0007704992
17 0.0739621305 -0.0238123170  0.0022945029  0.0008717093
18  0.1530469686 -0.0626406490  0.0098822733 0.0015814609
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Table A2. Third-order polynomial coefficients for 2.5-day forecast probability surface.

:

0

1

2

3

x b X X
# Coefficient Coefficient Coefficient Coefficient
1 0.1224011069  0.0462129592  0.0030028403  -0.0001408405
2 0.0629425734  0.0191124113 0.0003974715  -0.0003835922
3 0.0523940448  0.0148657563 0.0000405033  -0.0004423607
4  0.0438376060  0.0114929703  -0.0002944019  -0.0004983181
5 0.0382419099  0.0091084098 -0.0006195941  -0.0005342973
6  0.0353169303 0.0073305730  -0.0009218651  -0.0005249800
7  0.0339843883 0.0056719217  -0.0011547687  -0.0004508821
8 0.0333723629  0.0039249373  -0.0012895197 -0.0003182181
9  0.0332651455  0.0021737302 -0.0013599443  -0.0001610409
10  0.0338671813 0.0005634714 -0.0014328944 -0.0000161406
11 0.0354209811  -0.0009108059  -0.0015364163 0.0001057972
12 0.0380993826 -0.0024602339 -0.0016327575  0.0002199798
13 0.0421687845 -0.0044560885 -0.0016339727  0.0003388527
14 0.0481424036  -0.0073931691  -0.0014015055  0.0004533682 '
15 0.0565541426 -0.0117156145 -0.0007764539  0.0005454445
16 0.0673212360 -0.0173883491 0.0002938198 0.0006061855
17  0.0794237736  -0.0237213075 0.0016654037  0.0006375191
18  0.1432460468 -0.0524115719  0.0086540553 0.0005635236

Table A3. Third-order polynomial coefficients for 3.5-day forecast probability surface.

Rank x° x! x? x
# Coefficient Coefficient Coefficient Coefficient
1 0.0955836770 0.0289734371 0.0020450516  0.0003949331
2 0.0555405666 0.0151473753 0.0008156506  -0.0000162624
3 0.0483806485 0.0128581072 0.0005598459  -0.0001084625
4  0.0424989663 0.0110231671 0.0002809421 -0.0002238413
5 0.0386119280  0.0097259741  -0.0000337536  -0.0003548625
6 0.0367146296  0.0087531750  -0.0003726030 -0.0004701399
7 0.0362649074  0.0078568894  -0.0006913198  -0.0005329187
8 0.0366424486  0.0069894618 -0.0009574006 -0.0005313499
9 0.0374305635 0.0061858161 -0.0011800766  -0.0004824221
10  0.0385004422 0.0052979488 -0.0013887096  -0.0004040929
11 0.0400315900 0.0039478326  -0.0016039628 -0.0002883834
12 0.0424611564  0.0017490510 -0.0018146861 -0.0001135526
13 0.0463627734  -0.0015079144  -0.0019452449  0.0001169648
14 0.0523432557 -0.0059373725 -0.0018508045 0.0003670368
15 0.0608049201 -0.0116201648 -0.0013801314  0.0005962674
16  0.0714390061 -0.0183316431 -0.0004772819 0.0007740565
17  0.0830546076 -0.0253735994 0.0007632280  0.0008792021
18 0.1373339130  -0.0557375413 0.0092312566 0.0003978274
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Table A4. Third-order polynomial coefficients for 4.5-day forecast probability surface.

Rank x° x! x? x
# Coefficient Coefficient Coefficient Coefficient
1 0.0721224212  0.0177842591 0.0001485665  0.0013324025
2 0.0485425994  0.0135232255  0.0008905945  0.0000803946
3 0.0440524983 0.0131339242  0.0010212823  -0.0002467189
4  0.0403466052  0.0128862052  0.0010597569 -0.0005606093
5 0.0380211330  0.0126441783 0.0009429220 -0.0008063599
6 0.0371593385  0.0121929324  0.0006621365 -0.0009397073
7  0.0373577870  0.0114235810  0.0002725504 -0.0009529761
8 0.0381161994 0.0104032898  -0.0001664762  -0.0008785280
9 0.0392178156  0.0092022939  -0.0006553410  -0.0007522523
10  0.0408198845  0.0077200423 -0.0012346174  -0.0005785349
11 0.0432398443 0.0057438065 -0.0018955477 -0.0003468118
12 0.0467537180  0.0030581629 -0.0025310994  -0.0000672038
13 0.0516529025 -0.0006197811  -0.0029625404 0.0002313632
14  0.0582987641 -0.0056669736 -0.0029728005  0.0005201748
15  0.0668365654 -0.0122537608 -0.0023636579  0.0007674631
16  0.0767957375 -0.0199711297 -0.0010981807  0.0009401936
17 0.0871359522 -0.0279301335  0.0006143085  0.0010306705
18  0.1335302339 -0.0632741225  0.0102681437  0.0012270399

Table AS. Third-order polynomial coefficients for 5.5-day forecast probability surface.

Rank x° x! x* x
# Coefficient Coefficient Coefficient Coefficient
1 0.0620442287 0.0133749367 -0.0014235310  0.0011176499
2 0.0452024624  0.0122485000  0.0005906334  0.0001765333
3 0.0419024336  0.0119028293 0.0009020144  0.0000109316
4  0.0390348391 0.0119207576  0.0010443182 -0.0002139324
5 0.0371579134  0.0122754433 0.0009434673  -0.0004743604
6 0.0365631413 0.0125936585 0.0006238243  -0.0006934120
7 0.0371254879  0.0124465197  0.0001775914  -0.0007965694
8 0.0384857903 0.0116598170  -0.0003208830 -0.0007657466
9 0.0403528212  0.0103078009  -0.0008569212  -0.0006329088
10 0.0426611354 0.0085451035 -0.0014512241  -0.0004439348
11 0.0455559136 0.0064171574  -0.0021045505 -0.0002279726
12 0.0493451428 0.0036596633  -0.0027546334  0.0000244024
13 0.0544834912 -0.0003001295 -0.0032551062 0.0003460478
14  0.0614161866 -0.0059417849  -0.0033482663 0.0007160538
15 0.0701453762  -0.0131232543  -0.0027061013 0.0010048677
16  0.0799162442 -0.0210086458 -0.0011633211 0.0010632809
17 0.0895522033  -0.0285823972 0.0010698210 0.0008677699
18 0.1290551889  -0.0583959754  0.0140328680 -0.0010787003
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Table A6. Third-order polynomial coefficients for 6.5-day forecast probability surface.

Rank x° x! x X’
# Coefficient Coefficient Coefficient Coefficient
1 0.0493559171 0.0138553649  0.0006293231 0.0003989841
2 0.0405808560  0.0139016745  0.0006452422  -0.0002917755
3 0.0386558363 0.0138965586  0.0007361379  -0.0004267167
4  0.0371769947  0.0137493398  0.0007565050  -0.0005284283
5 0.0364629250  0.0134039396  0.0006554589  -0.0005844533
6  0.0365484219  0.0129578944  0.0004434400 -0.0006179943
7  0.0373519124  0.0125213833  0.0001383873  -0.0006571016
8 0.0389107907  0.0119415711 -0.0002977012  -0.0006797597
9 0.0412708167  0.0108881747 -0.0008999471  -0.0006250993
10  0.0443015908  0.0092230034 -0.0016154668  -0.0004653403
11 0.0479005596  0.0070119285  -0.0023403233  -0.0002275002
12 0.0523112320  0.0041143009 -0.0029873265  0.0000592588
13 0.0580091230  -0.0000259791  -0.0034325510 0.0003935002
14  0.0652760424  -0.0060313633 -0.0034271887  0.0007615064
15 0.0739021640 -0.0139541661 -0.0026785546 0.0010928497
16  0.0831609689 -0.0229639670 -0.0010962202  0.0012897290
17  0.0920871887 -0.0317743356  0.0010774229  0.0013064577
18  0.1267366595 -0.0627153223 0.0136933623  -0.0001981168

Table A7. Third-order polynomial coefficients the 7.5-day forecast probability surface.

Rank x° x! x’ x
# Coefficient Coefficient Coefficient Coefficient
1 0.0485741877  0.0113280257 -0.0002196018 0.0000371929
2 0.0391626648 0.0118360986 0.0005734400 -0.0002415247
3 0.0378097821 0.0118939480  0.0007052461 -0.0003313120
4  0.0367651668 0.0120214539  0.0008183037  -0.0004320301
5 0.0360863043 0.0123348667  0.0008881652  -0.0005428487
6 0.0358300637 0.0128713112 0.0008692285  -0.0006598437
7  0.0362028946  0.0133947778 0.0006818317  -0.0007520106
8 0.0375106177  0.0134278489  0.0002430901 -0.0007628625
9 0.0399910119  0.0125828081  -0.0004734988  -0.0006576332
10 0.0437713049 0.0107871703  -0.0014204833  -0.0004512048
11 0.0488949030 0.0081029736  -0.0025018821 -0.0001687521
12 0.0552958151 0.0044178502  -0.0035750740  0.0001997978
13 0.0627694680  -0.0005843409  -0.0044001345 0.0006670483
14 0.0709284036  -0.0071284785  -0.0045940533 0.0011598518
15 0.0791304483 -0.0149636888  -0.0037419239  0.0015022676
16  0.0865948493  -0.0232590075 -0.0017140614 0.0015397692
17 0.0927652496  -0.0310020314  0.0011419890 0.0012721558
18 0.1119168646 -0.0580615857  0.0167194188  -0.0013780608
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Table A8. Third-order polynomial coefficients for 8.5-day forecast probability surface.

Rank x° x! x? x
# Coefficient Coefficient Coefficient Coefficient
1 0.0455635556  0.0056693079  -0.0007478273 0.0009771662
2 0.0373346412  0.0096259155  0.0001792018  0.0000946553
3 0.0361600367 0.0099183704 0.0004020019 0.0000183124
4  0.0355135114  0.0102689375  0.0005600100 -0.0000554556
5 0.0355084979  0.0108683701 0.0005883603  -0.0001544064
6  0.0360084980  0.0118322508  0.0004843217 -0.0003031272
7  0.0368498981 0.0130672419  0.0002993184  -0.0005053173
8 0.0381561836  0.0142024506  0.0000436280 -0.0007250544
9  0.0403568314  0.0146969718 -0.0003675114  -0.0008879469
10  0.0438667729  0.0140952019  -0.0010391473  -0.0009159956
11 0.0488242261 0.0121260346  -0.0019811240 -0.0007605351
12 0.0551741575  0.0085425217 -0.0030672975 -0.0004066152
13 0.0628094166 0.0030303061 -0.0040326606 0.0001190845
14  0.0713857845 -0.0045316176 -0.0044386150  0.0007091477
15 0.0801063866 -0.0136789807 -0.0037726649 0.0011731072
16 0.0880141693 -0.0233538652 -0.0018258635  0.0013501028
17 0.0945257285 -0.0323989571 0.0010543955  0.0012300804
18 0.1138417039 -0.0639804601 0.0176614739  -0.0009572029

Table A9. Third-order polynomial coefficients for 9.5-day forecast probability surface.

Rank x° x! x x
# Coefficient Coefficient Coefficient Coefficient
1 0.0424368670 0.0036355507  -0.0020979281 0.0014235433
2 0.0362049905 0.0085375295  -0.0012924653 0.0009312608
3 0.0346489544  0.0097212825 -0.0007500722  0.0006384046
4  0.0330711674  0.0112113146  0.0000290314  0.0001740775
5 0.0319887391 0.0129155316  0.0008884414  -0.0004053011
6  0.0321016632  0.0144951341 0.0014932314  -0.0009271749
7  0.0338487005 0.0155575627  0.0015519259 -0.0012236110
8 0.0371432781 0.0159000573 0.0010039739  -0.0012484879
9 0.0415953188 0.0154553626  -0.0000336823  -0.0010525228
10 0.0468610945 0.0140797941  -0.0014065251  -0.0006937327
11 0.0527454050 0.0115377112  -0.0029723730  -0.0002020292
12 0.0591342152 0.0076524876  -0.0045291653 0.0003842441
13 0.0659486590  0.0022947733  -0.0056545141 0.0009567486
14 0.0730924497 -0.0047481218 -0.0056657694  0.0013288267
15 0.0803200560  -0.0135263541 -0.0039713232  0.0013288639
16  0.0871934308 -0.0233999559  -0.0006242930  0.0009308007
17 0.0932895336 -0.0331216862  0.0035979032  0.0002788926
18 0.1183754773  -0.0681979739  0.0204336038  -0.0026228035
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Table A10. Third-order polynomial coefficients for 10.5-day forecast probability surface.

Rank x° x! x? x
# Coefficient Coefficient Coefficient Coefficient
1 0.0376830029  0.0060776544  -0.0027704793 0.0018335062
2 0.0338400483 0.0103913192  -0.0008175634  0.0003332639
3 0.0323880739  0.0118444595 0.0001107899  -0.0001672876
4 0.0311658889  0.0134877876  0.0009951670 -0.0006423880
5 0.0307277456  0.0152051769  0.0016328116  -0.0010451716
6 0.0314219117  0.0168552034  0.0019522877 -0.0013885700
7  0.0333406974  0.0181690327  0.0019305063  -0.0016640990
8 0.0365515905  0.0187534170  0.0014178538 -0.0017726331
9 0.0411093576  0.0182839448  0.0002101274 -0.0015899925
10  0.0468420409  0.0165845840 -0.0016983038 -0.0010690559
11 0.0534059031 0.0134734439  -0.0040345879  -0.0002501898
12 0.0606366031 0.0086735270  -0.0063634922  0.0007647831
13 0.0685906040  0.0019291212  -0.0080850454  0.0017820130
14  0.0770726207 -0.0068314620 -0.0083486443 0.0025019488
15 0.0853140905 -0.0172846486 -0.0063713219  0.0026450153
16  0.0923535343  -0.0285127697  -0.0021399055 0.0021522893
17 0.0976822809 -0.0392481707  0.0034002599  0.0012328405
18  0.1098740059 -0.0778516206  0.0289795402 -0.0036562723

Table A11. Third-order polynomial coefficients for 11.5-day forecast probability surface.

Rank x° x! x x
# Coefficient Coefficient Coefficient Coefficient
1 0.0350030217  0.0059900724  -0.0001842269  0.0002993229
2 0.0285201947  0.0103944341 0.0016806603  -0.0006011246
3 0.0271311511 0.0117025268 0.0028503813  -0.0010590706
4  0.0261849973 0.0132282834 0.0041311586  -0.0015899875
5 0.0262942669 0.0147952202 0.0051059241  -0.0020593923
6 0.0279891629 0.0162299298 0.0052443851  -0.0022924093
7  0.0314717857 0.0174428033 0.0041271334  -0.0021512431
8 0.0365408238 0.0182952739 0.0016699979  -0.0015886856
9  0.0426863727  0.0184731657 -0.0017880192 -0.0006691181
10 0.0493419457  0.0176083867 -0.0056277889 0.0004458989
11 0.0561919581 0.0154398638  -0.0092000823 0.0015587590
12 0.0632607233 0.0116863378 -0.0118963485 0.0024934661
13 0.0706769737  0.0057578064  -0.0129948995 0.0030901108
14 0.0783828776 -0.0031462055 -0.0116700059 0.0031910357
15 0.0860438874 -0.0152211902 -0.0075018201 0.0027107562
16  0.0931685485  -0.0292407000 -0.0010872177  0.0017411331
17 0.0993457776  -0.0430050292 0.0061235590  0.0005383611
18 0.1217655311  -0.0864309794 0.0310172092  -0.0040578129
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Table A12. Third-order polynomial coefficients for 12.5-day forecast probability surface.

0

1

2

3

Rank X b b X
# Coefficient Coefficient Coefficient Coefficient
1 0.0236983952  0.0088951793 0.0007878787  0.0000807272
2 0.0236539482  0.0096166983 0.0038111751  -0.0009646580
3 0.0236505324  0.0107312644  0.0049065881 -0.0014268139
4  0.0240569814  0.0122805689  0.0059602535 -0.0019485215
5 0.0252522629  0.0141108014  0.0064353263  -0.0023436352
6 0.0275416431 0.0159368754 0.0058572140  -0.0024204245
7  0.0310453193 0.0174698215 0.0042213159  -0.0021535067
8 0.0357698467  0.0184731352  0.0018932138 -0.0016618364
9 0.0417553132  0.0187095797 -0.0008994095 -0.0010106372
10  0.0490044169  0.0179354383  -0.0042318410 -0.0001431047
11 0.0572054502 0.0158942201  -0.0080328230 0.0009677283
12 0.0657481855  0.0121144059 -0.0116111301 0.0021791519
13 0.0741283287  0.0057649128 -0.0137173320  0.0031980828
14  0.0821546036 -0.0038954084 -0.0131191100  0.0036996994
15 0.0897565819 -0.0165818737 -0.0094111150  0.0034980062
16  0.0967863540 -0.0305911928 -0.0034655755  0.0026843874
17  0.1030254163  -0.0437029156  0.0031167657  0.0015626913
18  0.1257664204 -0.0831615108  0.0274986050 -0.0037973364

Table A13. Third-order polynomial coefficients for 13.5-day forecast probability surface.

Rank x° x! x? x
# Coefficient Coefficient Coefficient Coefficient
1 0.0282776712  0.0077591241  -0.0022865495 0.0008358755
2 0.0266849484 0.0084401969 0.0015530212  -0.0001285872
3 0.0269975173 0.0091122855 0.0020934130  -0.0002561455
4  0.0278198844  0.0102457811 0.0025866262  -0.0004639543
5 0.0292362388 0.0119154387 0.0029595898  -0.0007922561
6 0.0312523818 0.0139984369 0.0031103556 -0.0012143507
7  0.0339094292 0.0161923429 0.0028937115  -0.0016259997
8 0.0374540300  0.0180849327 0.0020163027 -0.0018430154
9  0.0423074561 0.0191922662 0.0000723876  -0.0016352060
10 0.0487131544 0.0190050246  -0.0031082328  -0.0008600947
11 0.0563841999 0.0170299653  -0.0070316843 0.0003715325
12 0.0645891190 0.0127615658 -0.0104362886  0.0016676986
13 0.0726517174 0.0056655392  -0.0117679359  0.0025491775
14 0.0802887240 -0.0045490389 -0.0100311113 0.0027265366
15 0.0874010221 -0.0173065328 -0.0054085893 0.0022277439
16 0.0937336913  -0.0308760562 0.0008394936 0.0013116964
17 0.0989523909 -0.0431576157  0.0071526526  0.0002848596
18 0.1133464239 -0.0735136563 0.0247928380  -0.0031555107
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Table A14. Third-order polynomial coefficients for 14.5-day forecast probability surface.

Rank x° x! x* X
# Coefficient Coefficient Coefficient Coefficient
1 0.0301418242  0.0050444712  -0.0015230981 0.0005278317
2 0.0266736757  0.0071542114  0.0033183506 -0.0009350046
3 0.0265002533 0.0086611205 0.0042128615 -0.0013093895
4  0.0268789899  0.0104609484  0.0050196842 -0.0016716002
5  0.0279590659  0.0125526419  0.0054778090  -0.0019681277
6  0.0297850351 0.0149106702  0.0053409681 -0.0021661074
7  0.0324710029  0.0172333126  0.0044623289  -0.0022194425
8  0.0363228931 0.0189135869  0.0027126932  -0.0020171241
9 0.0416568145 0.0193803005 -0.0000223084  -0.0014315598
10  0.0484838858  0.0184032504 -0.0036160663 -0.0004524118
11 0.0564444331 0.0159339381 -0.0075013371 0.0007563405
12 0.0650438847  0.0116240339 -0.0107326003  0.0019426122
13 0.0738528342 0.0046753275 -0.0122168343 0.0028595894
14  0.0824160172 -0.0055172352 -0.0110127994  0.0032684304
15 0.0900797844  -0.0183333079 -0.0068532430 0.0029918028
16  0.0961682449 -0.0317099711  -0.0006485058  0.0020951011
17  0.1004244896  -0.0433351823  0.0058709988  0.0009225532
18  0.1086968716 -0.0660521170  0.0177110985 -0.0011934936

Table A15. Third-order polynomial coefficients for 15.5-day forecast probability surface.

Rank x° . X! x* x
# Coefficient Coefficient Coefficient Coefficient
1 0.0255450877  0.0077190699  -0.0007001435  0.0003332527
2 0.0253701855  0.0096644706  0.0019342288  -0.0008236392
3 0.0252538124  0.0110219695  0.0029459468 -0.0012469473
4 0.0253334757 © 0.0129222554 0.0042265694  -0.0018136751
5  0.0258943268  0.0151963907  0.0055999248  -0.0024910147
6 0.0273765392  0.0174487969  0.0065762099  -0.0031055361
7  0.0302561267  0.0192722665  0.0064795370 -0.0033830622
8 0.0348287315 0.0203962944  0.0047951339  -0.0030976949
9  0.0411295583 0.0205481103 0.0014459569 -0.0021810119
10  0.0490108675  0.0192867422 -0.0031337924  -0.0007346256
11 0.0581873350 0.0160899817 -0.0080814202 0.0010018359
12 0.0681737793 0.0105278979  -0.0122461765  0.0026893785
13 0.0781529705  0.0023269018 -0.0143060298  0.0039272016
14  0.0869810103 -0.0084863962 -0.0130680153 0.0043400382
15  0.0936510436  -0.0212004246 -0.0082439434  0.0037892678
16 0.0979406112  -0.0342373973  -0.0010854250 0.0025519729
17 0.1004355634  -0.0457837677  0.0062625985  0.0011619227
18 0.1064789755 -0.0727131619 0.0205988400 -0.0009176634
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Appendix B: PQPF Program

This appendix is the Fortran program used to compute the PQPF by the
democratic voting, uniform ranks, and weighted ranks methods. Out of the many
programs written for this research, this program was included as an appendix because of
its uniqueness.

PROGRAM PQPF

This program determines the probabilistic quantitative precipitation
forecasts (PQPF) by the three different methods, each based on the
MRF ensemble precip forecast.

Written by Capt Tony Eckel

* ok k ok

K e e e Variable Declarations ~~~~~mnvmnmmnmasannnnnon
IMPLICIT NONE

INTEGER I, 1IE ! index "x" grid axis, max val
INTEGER J, JE ! index "y" grid axis, max val
INTEGER T, TE ! index valid time, max val
INTEGER M, ME ! index ensemble member, max val
INTEGER R, RE ! index for RANKS, max value

' !
PARAMETER (IE=25,JE=11, TE=15,ME=18, RE=18)

REAL COEF (TE,RE,4)! coefs 3rd order polynomials
REAL LIMIT(TE, 2) ! range of allowable 1n(SD)
COMMON /A/COEF, LIMIT

CHARACTER*30 CFILE

CHARACTER*50 ENSPATH ! path of ensemble datafile
CHARACTER*50 DATEFILE

CHARACTER*6 EFILE ! datafile containing ensemble
INTEGER FS ! TOSTAT file status

REAL ENS (IE,JE,TE,ME) ! array for ensemble forecast
LOGICAL DONE

INTEGER EDATE

CHARACTER*2 YR(100) I year of data file

INTEGER IYR | integer value for year
INTEGER IMN ! integer value for month
CHARACTER*2 MN(12) ! month of data file

INTEGER IDY ! integer value for day
CHARACTER*2 DY (31) | day of data file

INTEGER LOM(12) ! last day of each month

REAL inTOmm ! conv factor, inches to mm
PARAMETER (inTOmm=25.4)

REAL CT (4) ! precip cat thresholds, in mm
REAL DPROB(IE, JE,TE,4)! Democratic Voting PQPF

REAL UPROB(IE,JE,TE,4)! Uniform Ranks PQPF

REAL WPROB(IE,JE,TE,4)! Weighted Ranks PQPF

B R R A R S e e R A A S A P R e N A A B e A e P A N e N e s e s P N P i i P A A s e e A N e e e

CT(1)=0.1 * inTOmm
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CT(2)=0.25 * inTOmm
CT(3)=0.5 * inTOmm
CT(4)=1.0 * inTOmm
YR(96) = '96'
YR(97) = '97"
YR(98) = '98'

DATA MN/'01','02','03','04','05','06','07','08','09",
$ '10','11','12/

DATA LOM/31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

DATA DY/'01','02','03"','04','05"','06','07",'08",'09','10",

$ '11','12','13','14','15','16','17",'18",'19",'20",
$ |2ll,122I,|23|,'241,125',|26l'127|,128!,'29|’|30l,
$ '31'/

DO 20 T=1, 15
CFILE = '~/Thesis/PQPF/COEF/'//DY(T)//'dayM.dat"
OPEN (15, FILE= CFILE, ACCESS='sequential',
[ FORM="'formatted', STATUS='OLD'")
READ(15,12) LIMIT(T,1),LIMIT(T,2)
12 FORMAT (2F4.1)

DO 18 R=1, RE
READ(15,14) (COEF(T,R,I), I=1, 4)

14 FORMAT (4F13.10)
18 CONTINUE
CLOSE (15)

20 CONTINUE

DATEFILE = '~/Thesis/EnsDATA/CATALOG/fcst_M'
OPEN (40, FILE= DATEFILE , ACCESS='sequential',
S FORM="'formatted', STATUS='old' )
MAIN LOOP

A e N A A A A A e P A P e e e P e e N e e o N P N N e P s P A N A N N s A A N A e P e A A

DO WHILE (.NOT. DONE)

41 READ(40,42) EDATE
42 FORMAT (I6)

IF (EDATE .EQ. 999999) THEN ! End MAIN loop when reach end

DONE = .,TRUE. ! of data marker of 999999

GOTO 500
ENDIF
IF (EDATE .EQ. 0) THEN ! 0 is an end of month marker

GOTO 41 ! so just skip to next EDATE
ENDIF
IYR = EDATE / 10000 ! Pick out int values for the
IMN = (EDATE - IYR*10000) / 100 ! year, month, and day of
IDY = EDATE - IYR*10000 - IMN*100 ! ensemble date to verify
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* 0 ~mssssssa s Read in ensemble forecast data ~~~~~~~n~m~nons
EFILE = YR(IYR)//MN(IMN)//DY(IDY)
ENSPATH = '~/Thesis/EnsDATA/Ens'//EFILE//'.12Z.dat"

OPEN(11, FILE= ENSPATH, ACCESS='sequential',
$ FORM='formatted', STATUS='old', IOSTAT=FS )

IF (FS .NE. 0) THEN .
GOTO 500 | Skip to next day i1f no ens file
ENDIF ! available for this day

DO 100 T = 1, TE ! Read in entire ensemble forecast
DO 90 M = 1, ME
READ (11, 45) ( (ENS(I,J,T,M), I=1, IE), J=1, JE)
45 FORMAT (25f5.1)

90 CONTINUE
100 CONTINUE

CLOSE (11)

PRINT *, ' !
PRINT *,'-==——m—————— Forecasting for ',EFILE,' -————====—-- !

o~ Determine PQPF by the Democratic Voting method ~~~~~~
CALL DEMOCVOTE (DPROB, ENS, IE, JE, TE, (ME-1),CT)
PRINT *, ':) COMPLETED Democratic Voting method’

fo e adadatard Determine PQPF by the Uniform Ranks method ~~~~~~~~~~
CALL RANKPROB (UPROB, 'U',ENS,IE,JE,TE,ME,CT)
PRINT *, ':) COMPLETED Uniform Ranks method'

o i Determine PQPF by the Weighted Ranks method ~~~~~~~~~~
CALL RANKPROB (WPROB, 'W',ENS,IE,JE,TE,ME,CT)
PRINT *, ':) COMPLETED Weighted Ranks method'

CALL DATOUT (DPROB,UPROB,WPROB, IE,JE,TE,4,EFILE)
500 END DO

CLOSE (40)

END ! PROGRAM
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SUBROUTINE DEMOCVOTE (PROB, ENS,IE,JE,TE,ME,CT)
* This subroutine calculated PQPF by the democratic method
IMPLICIT NONE
INTEGER IE,JE,TE,ME
REAL ENS(IE,JE,TE,ME)
REAL PROB(IE,JE,TE, 4)
REAL CT (4)

INTEGER CAT, I, J, T, M
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REAL COUNT

DO 50 T = 1, TE
DO 40 CAT =1, 4
DO 30 I =1, IE
DO 20 J =1, JE

COUNT 0

DO 10 M = 1, ME

IF (ENS(I,J,T,M) .GT. CT(CAT)) THEN
COUNT = COUNT + 1

ENDIF
IF (M .EQ. ME) THEN
PROB(I,J,T,CAT) = (FLOAT(COUNT) / FLOAT(ME))
$ * 100.0

ENDIF
10 CONTINUE
20 CONTINUE
30 CONTINUE
40 CONTINUE

50 CONTINUE

RETURN
END ! SUBROUTINE DEMOCVOTE
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SUBROUTINE RANKPROB (PROB,METHOD,ENS,IE,JE,TE,ME,CT)

* This subroutine calculated PQPF for the uniform ranks method or the
* weighted ranks method

e Variable Declarations ~ ~ ~ ~ ~ ~ ~ ~o e~
IMPLICIT NONE

CHARACTER METHOD ! 'U': Uniform ranks

!' "W': for weighted ranks
INTEGER I, 1IE
INTEGER J, JE
INTEGER T, TE
INTEGER M, ME
INTEGER R, RE
PARAMETER (RE=18)
INTEGER CAT ! index category number
REAL PROB (IE, JE, TE, 4)
REAL ENS (IE, JE, TE, ME)
REAL SUMRANKS ! sum of prob from all ranks
REAL ERR ! error for normalization
REAL CT(4) ! category thresholds
REAL RP(18) ! rank probabilities
REAL COEF (15,18,4)
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single ens fcst

mean of ens fcst

temp val for standard dev
standard dev of ens fcst
natural log of STDDEV
beta parameter (Gumbel)
x1 parameter (Gumbel)

declare function EXTRPROB

D O T T . T N . T T

55

60

65

70

REAL LIMIT(15,2)
COMMON /A/COEF, LIMIT
REAL FCSTPCP (17)
REAL MEAN
REAL S
REAL STDDEV
REAL LNS
REAL BETA
REAL XI
COMMON /B/BETA, XI
REAL EXTRPROB
DO 160 T = 1, TE
DO 150 I =1, IE
DO 100 J =1, JE

DO 55 M = 1, ME-1
FCSTPCP (M) = ENS(I,J,T,M)
CONTINUE

CALL SORT (FCSTPCP,17)

MEAN = 0.0
DO 60 M=1, 17
MEAN = MEAN + ENS(I,J,T,M)/17.0
CONTINUE
IF (MEAN .EQ. 0.0) THEN ! Skip prob calc when all 17
DO 65 CAT=1, 4 ! mem fcst 0 pcp; Assign 0.0
PROB(I,J,T,CAT) = 0.0 ! for prob in each cat, then
CONTINUE ! advance to next grid point.
GOTO 100
ENDIF
s = 0.0
DO 70 M=1, 17
s = 8 + (FCSTPCP(M) - MEAN)**2
CONTINUE
STDDEV = SQRT (s / 16.0)
SUMRANKS = 0.0
DO 75 R=1, RE
IF (METHOD .EQ. 'W') THEN ! make rank histogram
LNS = ALOG (STDDEV)
IF (LNS .LT. LIMIT(T,1)) THEN ! Set LNS to min
LNS = LIMIT(T,1) !' wvalue if too low
ENDIF
IF (LNS .GT. LIMIT(T,2)) THEN ! Set LNS to max
LNS = LIMIT(T,2) ! wval if too high
ENDIF
RP(R) = COEF(T,R,1) + COEF(T,R,2)*LNS +
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COEF(T,R,3)* (LNS**2) + COEF(T,R,4)* (LNS**3)
SUMRANKS = SUMRANKS + RP(R)

ELSE
RP(R) = 1.0 / 18.0

ENDIF
CONTINUE

IF (METHOD .EQ. 'W') THEN
ERR = 1.0 - SUMRANKS

SUMRANKS = 0.0 ! This code normalizes
DO 77 R=1, RE ! the sum of the rank
RP(R) = RP(R) + ERR/18.0 ! prob to 1.0
SUMRANKS = SUMRANKS + RP(R)
CONTINUE
ENDIF
BETA = ( STDDEV * SQRT(6.0) ) / 3.141592654 | Gumbel
XI = MEAN - 0.577215664 * BETA ! parameters

~~~ for the case when all thresholds < member#l7 ~~~
IF (FCSTPCP(17) .GT. CT(4)) THEN
DO 80 CAT=1, 4
CALL BULKPROB(PROB(I,J,T,CAT),CT(CAT), FCSTPCP,RP)
CONTINUE

~~~ for the case when CAT4 threshold < member#l7 ~~~
ELSE IF (FCSTPCP(17) .GT. CT(3)) THEN
DO 85 CAT=1, 3 o
CALL BULKPROB (PROB(I,J,T,CAT),CT (CAT), FCSTPCE, RP)
CONTINUE
PROB(I,J,T,4) = EXTRPROB('HI',CT(4),FCSTPCP(17),RP(18))

~~~ for the case when CAT3&4 thresholds < member#17 ~~~
ELSE IF (FCSTPCP(17) .GT. CT(2)) THEN
CALL BULKPROB(PROB(I,J,T,1),CT(1l),FCSTPCP,RP)

CALL BULKPROB(PROB(I,J,T,2),CT(2),FCSTPCP,RP)
PROB(I,J,T,3) = EXTRPROB('HI',CT(3),FCSTPCP(17),RP(18))
PROB(I,J,T,4) = EXTRPROB('HI',CT(4),FCSTPCP(17),RP(18))

~~~ for the case when CAT2,3&4 thresholds < member#17 ~~~
ELSE IF (FCSTPCP(17) .GT. CT(l)) THEN
CALL BULKPROB (PROB(I,J,T,1),CT(l),FCSTPCP,RP)
DO 90 CAT=2, 4 o
PROB(I,J,T,CAT) = EXTRPROB('HI',CT (CAT),FCSTPCP(17)
+RP(18))
CONTINUE

~~~ for the case when all thresholds > member#l7 ~~~
ELSE !
DO 95 CAT=1, 4
PROB(I,J,T,CAT) = EXTRPROB('HI',CT(CAT),FCSTPCP(17)
+RP(18))
CONTINUE

ENDIF
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100

150

160

210
220
230
240

CONTINUE
CONTINUE
CONTINUE

DO 240 T = 1,
DO 230 CAT
DO 220 I IE

DO 210 J 1, JE
PROB(I,J,T,CAT)
CONTINUE
CONTINUE
CONTINUE
CONTINUE

! change probabilities to percentages

=3
==

;4
’

PROB(I,J,T,CAT) * 100.0

RETURN

END ! SUBROUTINE RANKPROB
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SUBROUTINE BULKPROB (P, THOLD, FCSTPCP, RP)

* This subroutine finds the bulk of the probability for one category

* for

10

either rank type method

IMPLICIT NONE

REAL P ! (OUTPUT) probability for the category
REAL THOLD ! (INPUT) the category threshold
REAL FCSTPCP(17) ! (INPUT) the 17 ensemble members
REAL RP(18) ! (INPUT) prob values of the 18 ranks
REAL EXTRPROB
INTEGER I ! indexing variable
P=20.0
I =17
DO WHILE (FCSTPCP(I) .GT. THOLD) ! Sum prob from all verif ranks
!  that exceed the threshold
P =P + RP(I+1)
I=1I-1
IF (I .LT. 1) THEN
GOTO 10
ENDIF
END DO
IF (I .EQ. 0) THEN ! take part of rank #1 probability
P = P + EXTRPROB('LO', THOLD, FCSTPCP(1),RP(1))
ELSE ! take part of prob from rank where threshold occurs
P =P + ( (FCSTPCP(I+1l) - THOLD) /
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$ (FCSTPCP (I+1) = FCSTPCP(I)) ) * RP(I+1)
ENDIF

RETURN
END ! SUBROUTINE BULKPROB
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FUNCTION GCDF (RV)

* This function returns the cumulative probability for the Gumbel
* distribution with parameters BETA and XI for a given value of the
* random variable.

REAL RV ! value of the random variable
REAL BETA,XI ! parameters of the Gumbel distribution
COMMON /B/BETA, XI

GCDF = EXP( -1.0 * EXP({ (XI - RV) / BETA ) )

RETURN
END ! FUNCTION GCDF
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FUNCTION EXTRPROB (HILO, THOLD, EXMEM, RP)

* This subroutine calculates the fraction of probability from either
* extreme rank when the category threshold falls outside of the
* ensemble members.

CHARACTER*2 HILO HI: right extreme, LO: left extreme

!
REAL THOLD ! category threshold )
REAL EXMEM ! value of the extreme ensemble;member
REAL RP ! probability in rank #1 or #18
REAL GCDF ! define GCDF as real function

IF (HILO .EQ. 'HI') THEN

EXTRPROB = ( (1.0 - GCDF(THOLD)) / (1.0 - GCDF(EXMEM)) ) * RP
ELSEIF (HILO .EQ. 'LO') THEN
EXTRPROB = ( (EXMEM - THOLD) / EXMEM ) * RP
ENDIF
10 RETURN

END ! FUNCTION EXTRPROB
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SUBROUTINE SORT (ARRAY,N)

* This subprogram sorts the values within a one dimensional array from
* least to greatest.
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IMPLICIT NONE
INTEGER N

REAL ARRAY (N)
INTEGER I, J
INTEGER SWAP
REAL MIN, TEMP

DO 20 I=1, N-1
MIN = ARRAY (I)
SWAP =TI

DO 10 J=I+1, N

IF (ARRAY (J)

SWAP = J
ENDIF
10 CONTINUE

IF (SWAP .NE.
TEMP =
ARRAY (I) =
ARRAY (S

ENDIF

20 CONTINUE

RETURN

WAP)

Length of the array

Array to be sorted

Index variables

Index of array value to get swapped

.LT. MIN) THEN
MIN = ARRAY (J)

I) THEN
ARRAY (I)
MIN

= TEMP

END ! SUBROUTINE SORT
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SUBROUTINE DATOUT (DP,UP,WP,XL,YL,TL,LL, FNAME)

* This subroutine writes the PQPF to a direct access data file to be
* used by the Gridded Data Analysis and Display System (GrADS) and

* the program Reliability.f which measures PQPF

IMPLICIT NONE

INTEGER
INTEGER
INTEGER

REAL
REAL
REAL

INTEGER
CHARACTER*6

INTEGER
INTEGER

XL, YL
TL
LL

! dimensions of the grid

! time dimention (# of valid points)
! level dimention (# of categories)

DP (XL, YL, TL, LL)
UP (XL, YL, TL, LL)
WP (XL, YL, TL, LL)

FNAME
IREC
ILEN

ILEN = XL * YL * 4

OPEN (25, FILE=

L I indicies for dimensions

! index for record number
! length of each record

'~/Thesis/PQPF/FORECASTS/'//FNAME//'.12Z.dat",
S ACCESS='direct', FORM='unformatted', RECL=ilen)
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IREC = 0
DO 100 T=1,TL

DO 50 L=1, LL
IREC = IREC +1
WRITE (25, REC=IREC) ( ( DP(X,Y,T,L), X=1,XL ), Y=1,YL )
50 CONTINUE

DO 60 L=1, LL
IREC = IREC +1
WRITE (25, REC=IREC) ( ( UP(X,Y,T,L), X=1,XL ), ¥Y=1,YL )
60 CONTINUE

DO 70 L=1, LL
IREC = IREC +1
WRITE (25, REC=IREC) ( ( HP(X,Y,T,L), X=1,XL ), ¥Y=1,YL )
70 CONTINUE :
100 CONTINUE
CLOSE (25)

RETURN
END ! SUBROUTINE OUTtoGRADS
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