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Abstract

A review of the literature relating to intelligent tutoring systems (ITS) reveals that
the bulk of research to date is focused on the student, and on methods for representing
the knowledge itself. From student models to learning schemas to presentation methods,
comparatively little attention has been paid to the problem of educators attempting to
build viable lesson plans for use in an ITS environment—yet when this problem is addressed
in the literature, it is recognized as a potentially daunting one. This thesis addresses the
problem of ITS lesson plan development by proposing a practical, computable approach
for knowledge engineering that is based on proven classroom methods. The document then
details a system for dynamically creating lesson plans from a knowledge base created under
the described methodology, using already-established algorithms of proven tractability, and

then discusses how this system can be integrated into existing and future ITS design.

vi




Concept Vectors: A Synthesis of Concept Mapping
and Matrices for Knowledge Representation

in Intelligent Tutoring Systems

1. Introduction

Artificial intelligence has been applied to education for years; in fact, trend analysts
from as far back as 1983 declared such application to be “inevitable(10).” Nonetheless, de-
spite ever-growing focus on the computer as a dominant medium in the field of educational
technology(3), expert opinion concerning the utility of artificially intelligent teaching tools
ranges from statements that instructional programs “don’t know what they’re doing(10)”

to the general conclusion that such programs are of poor quality(3).

Before an intelligent tutoring system (ITS) can be employed, it must have a knowl-
edge base from which to teach. That knowledge must be represented in a tractable form
to be useful-both from a computing standpoint and from the point of view of presenting

that knowledge to a student.

In the literature one finds numerous examples of knowledge representation schemes,
from the idea idea of concept mapping(9) to the intensive, heirachical databases used in
the Air Force’s Instructional System Development (ISD) project(5). Unfortunately, even
in the case of automated tools such as provided in the ISD project, educators must face
steep learning curves, a lack of a standardized interface, and a significant amount of manual

development when constructing lesson plans(5).
1.1 Problem Statement

To date, the bulk of ITS research tends to focus on student modeling and knowledge
presentation; in short, on the student’s perspective within the learning environment. As
pointed out in the ISD project, the educator, while attempting to develop lesson plans for
an ITS environment, is often left with a significant amount of development work(5). What

is needed, before attempting to design an ITS, is a methodology for defining and developing
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lesson plans in a form directly suitable to ITS implementation. This methodology needs
to be quantifiable both in terms of content and applicability, and able to accept feedback
metrics on a given student’s progress in order to modify the lesson plan as needed. In
addition, any tool providing this capability should be useful without requiring excessive

training.

1.2 Assumptions

The design for the lesson plan generator assumes a nontrivial amount of knowledge
engineering prior to implementation. Not only must the knowledge domain itself be quan-
tified according to the procedures outlined herein, the material from which the generator
is to draw must be defined within the context of that mapping effort; again, according
to the methodology detailed in this thesis. It is further assumed that, as a heirarchical
knowledge domain is broken down into its smallest practical components, those compo-
nents (or concepts) are taught in a linear fashion, beginning with the student knowing
nothing about the concept in question and leading to the goal of complete understanding.
This perspective lends itself well to normalization of a student’s progress in mastering a
concept, and greatly simplifies the task of representation. Further, this assumption of a
linear progression within a given concept reflects not only the views of educational theory
over more than fifty years (such as Thorndike on “connectionism(12)” and Guthrie on the
contiguity of learning(4)), but the arguments of more modern educational theorists who
assert that not only does learning a concept rely on its context, but also that despite the
ability to manipulate information granted by computer technology, human learning still
ultimately comes down to step-by-step repetition within that context(6). Creating the
concept map of a given kowledge domain and mapping lesson modules to that map lies
outside of the scope of this research effort; therefore the algorithm presented assumes an
already-established database of lesson modules from which to draw a sample lesson plan,

created in accordance with the methodology described herein.
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1.8 Scope and Approach

This thesis is intended to introduce a respected and long-standing method of repre-
senting complex knowledge domains in the classroom, and to illustrate a system for map-
ping that representation into computer-readable form. It further describes a system, based
on that form, able to accept relatively simple inputs from an educator via a commonly-used
interface and return a dynamic lesson plan. It will also discuss the feasibility of a direct
interface between lesson plan development and an ITS, permitting seamless integration of

educator input and student performance into follow-in lesson plan creation.

The lesson plan generator introduced here is intended to provide the educator with
the means to generate dynamic lesson plans from an existing database of teaching mate-
rials using a simple world wide web (WWW) interface to J AVA-enabled WWW browsing
software. Not only will the educator be able to request a lesson plan covering just the
material of interest, he or she will be able to modify the request to account for the results

of previous test scores so that satisfactorily-completed material can be excluded.

The thesis will begin by introducing the idea of concept mapping, provide an illus-
trative example of a concept map, and then show how this map is used by a knowledge
engineer to define teaching materials within its domain. It will introduce concept vectors,
motivate their usefulness in representing concepts in computer-readable form, and provide
theoretical grounding for an effective algorithm for creating a lesson plan based on vec-
tor sums. It will also discuss implementation details, including samples from a prototype
system, and then conclude with a discussion of how the prototype could be enhanced via

future research.

1.4 Organization of Thesis

Chapter II consists of a review of the more influential items from the literature as ap-
plied to the research documented here. Chapter III details the methodology of constructing
a lesson plan builder under the proposed representation scheme, including algorithm and a
sample system. Chapter IV discusses the effects of the assumption of concepts being linear,

proposes an approach based on that assumption being removed, and then touches on areas
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for future research, including automated interfaces between the lesson plan builder and an

actual ITS.




II. Literature Review

The literature reviewed is mentioned in order of its applicability to the overall thesis or-
ganization. The first sources deal with education in general, with an eye to how they
contributed to this research. The following section discusses sources specific to the devel-

opment of the system itself.

2.1 Educational Theory

The sources described in this section relate to the education and knowledge engineer-

ing aspects of the research presented.

2.1.1 General Theory. Two papers written in the 1930s proposed theories on how
people learn. In 1930, E. R. Guthrie published the “contiguity theory(5)” that asserted
that once a learner has made a link between an action and learning from that action,
repetition of that action is beneficial to the continued learning process. This assertion, as
well as that made by E. Thorndike in 1932(20), states that not only does learning depend
on new situations containing elements of earlier ones but also learning responses tend
to chain together towards a goal. These assertions contributed to my representation of
learning within a single concept as a linear progression, having a beginning and end point,
and covering the entire range in between. Further, Guthrie(5) contends that instruction
must present very specific tasks, which is in keeping with my emphasis on nodes within a

concept map being as low-level and specific as possible.

Current theorists in the literature tend to bear out these earlier works, even in the
current culture of computers in the learning process. Trend watchers such as D. Ely(4) and
T. O’Shea(14) emphasize how the process of learning transcends computing, rather than
is overshadowed by it, while educational researchers such as J. Brown(7) point out that
underneath sophisticated computing tools designed to aid learning, the learning process

itself has remained relatively unchanged.

2.1.2 Concept Mapping. Novak and Gowin’s book Learning how to Learn(13)

was perhaps the most influentual single piece of literature in terms of this research. The
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idea of concept maps is a powerful one, well grounded in current educational practice(2)
as well as providing a framework for representing even complex knowledge domains in a
disciplined and easily-computable fashion. The methods detailed in this book were key
to describing the knowledge engineering effort required to quantify a knowledge domain,
and provided the context for defining lesson modules. An example supplied in the book

provided the domain partially implemented as a proof of concept in this thesis.

2.2 Algorithm Design and Theory

The sources described in this section relate to the computer science and implemen-

taion aspects of the research presented.

2.2.1 General Algorithmics. ~ While there exist numerous texts on general algo-
rithm theory, two were of particular benefit in constructing the system described in this
thesis. D. Kozen’s monograph based on his years of lecturing at Cornell(10) provided
an excellent foundation for understanding matroid theory, and how a given problem can
be mapped to one of several classic algorithmic categories, providing a solid theoretical
foundation for the algorithm selected in this research. In particular, Kozen’s rigorous def-
inition of matroids is used in this thesis to demonstrate that concept vectors are members
of this class of data structures; the importance of this membership to manipulating con-
cept vectors is discussed more fully in the next chapter. The idea of using scalar values to
contain comples underlying information through binary coding is a venerable one; similar
techniques (such as Binary Coded Decimal) were introduced well over a decade ago as

solutions for a multitude of problems in early computer design(11).

2.2.2 Specific Algorithm Treatment.  Neapolitan & Naimipour’s text(12) was the
source for the recursive sum_of subsets algorithm used in a slightly modified form in this
thesis. Although sum_of.subsets was discovered to be a poor choice for final implementa-
tion, the text’s thorough discussion of the underlying principles facilitated identifying the
problems described in the next chapter. The algorithm text by T. Cormen, et. al.(18)

provided amplifying information as to the power of matroids and greedy algorithms, as




well as the pseudocode for the implementation of the Set Covering Problem detailed in the

final proof of concept.

2.3 Other Literature

Although a search of the literature turned up little geared specifically to the problem
of the educator, one handbook published by the Air Force’s Instructional Systems Division
cited the challenge of creating lesson plans using automated tools as “extensive(6).” The
handbook described problems encountered, such as the lack of standard methodology and
non-intuitive interfaces requiring steep learning curves. These are the very problems this

research is aimed at addressing.

Two texts provided minor foundational grounding; the first, an undergraduate text
on linear algebra by J. Auer(3), was included to show basis for asserting that vectors can
be added to form a resultant. The second text, an introductory-level treatment of artificial
intelligence by P. Winston(22), set the scene for asserting the importance of knowledge
representation schemes in knowledge-based systems—an underpinning of the focus of this

research.

As stated earlier, literature searches turned up a marked dearth of material relat-
ing to the educator’s problem in composing ITS lesson plans; the bulk of the material
available centers on the problems of the teaching process itself. This trend is reflected in
prior AFIT research, as well, as attention is focused on key issues such as the difficulty of
authoring ITS content(8) and in maintinging accurate models of student behavior during
the instructional process(19). Even Matthew Kabrisky’s landmark paper, cited as the in-
stigator for AFIT’s foray into ITS research(19), focused on the quality of the classroom
interaction itself(9). Other research works seem to have continued to follow this trend of
focusing on the student. For example, Shute and Psotka’s visionary paper detailing their
view of the sum of all ITS research(16), although it mentions the concept of “curriculum”
as an important node in their ITS model, glosses over the process of how that curriculum
would be obtained, relegating it to a problem to be handled by domain experts(16). They
do concede, however, that the domain expert’s problem is a difficult one(16), which un-

derscores the cautions offered later in this thesis concerning the importance and difficulty
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of the knowledge engineering effort expected to implement this research in a real-world
system. Shute’s bias towards student models and learning behavior becomes evident in
previous research for the Air Force(17, 15), and sets the scene for the general climate in

ITS research to date.

Other works had tangential influence in this research, in some cases through the
decision not to pursue their course. Asahi et al.(21) introduced a novel class of treemaps
which allows for dynamic sensitivity analysis of search results and presenting easy-to-read
graphical feedback to the user. This technique, while intriguing, was not included in this
research; the heirarchical domain in which the lesson plan generator searches for lesson
modules is expected to remain static during the course of a search, so the paper’s methods
for dynamic weighting would not apply. There is room for further research into how Asahi’s
methods apply to the classroom environment itself, but that is an issue for presentation
methods during ITS sessions, and outside the scope of this research. A yet-unpublished
work by Ahlberg and Shneiderman(l) was of some interest during the devlopment of a
prototype WWW interface for the lesson plan generator. Their work explored the problem
of making discrete selections from a potentially wide range of choices with an eye to
enabling the user to make rapid and accurate selections. Although of general interest in the
human-computer interface arena, their work was deemed over-complex for implementation
here; one of the goals of this research was to make the user interface as simple and intuitive
as possible, which would preclude the user from being presented with enough complex

information to make something as powerful as an alphaslider necessary.
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III. Implementing Concept Vectors
3.1 Knowledge Engineering

To begin any knowledge-based system, one first needs a workable system for rep-
resenting that knowledge(13). One very good represention for even potentially abstract
knowledge domains was developed in the mid-eighties by Joseph Novak and Bob Gowin(9).
Not only does this representation, called concept mapping, enable a domain expert to map
knowledge in a heirarchical tree structure amenable to computer processing, it has the
additional virtue of being a respected and powerful tool in the classroom environment

itself(1).

8.1.1 Concept Mapping. ~ Concept maps represent an approximation of the rele-
vant concepts and propositions of a given knowledge domain(9), and their creation requires
both domain expertise and experience with the concept mapping process. Figure A.1 (see
appendix A) provides an illustrative example of a concept map created by a domain ex-
pert; in this case, an expert on the topic of Meat Science(9). The first step is to identify
the major topic to be mapped; in the case of the example, the domain expert has decided
that the overarching consideration for this domain is meat quality. This concept of quality
leads to the concepts of metrics by which to determine this quality, hence the concepts
of judging, and then criteria. From this beginning the relevant criteria follow, and below
them are identified the various conditions under which those criteria are affected, such
as an animal’s age, environment, and feeding habits. In the final form, the domain has
been subdivided into a map of 29 nodes, each node representing an atomic concept in the

knowledge domain as determined by the domain expert.

This methodical breaking down of a potentially complex domain into progressively
smaller conceptual components is key to the idea of representing knowledge as vectors. A
vector is made of components, each representing a magnitude along a single dimension in
n-dimensional space(2). In order for the vector to be meaningful, each component must
exist entirely within its dimension, having no contribution to the magnitudes of other
components in that vector. Carrying this analogue to the concept mapping domain, if

a vector represents the entire knowledge domain then each concept within the overall
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concept map can be thought of as a component of that vector. Further, the knowledge
engineer must take pains to ensure the concepts are broken down as much as possible
to prevent overlap between then—just as vector components provide contribution only in

their dimension.

Once a given concept is identified to the desired level of simplicity, the domain expert
must draw on available experience to determine what constitutes mastery of that concept.
In the meat science case, for example, there exists the concept of “grass” as relates to
feeding of meat animals(9). The domain expert might conclude that there are a finite
number of types of grass an herbivore can encounter, and that mastery of “grass” means
that a student can correctly identify each type and relate its effect on an animal’s health in
relation to the other types. Given this conclusion, a metric has been established wherein
knowledge of “grass” can be measured on a scale from total ignorance to complete mastery.
Once such a metric has been established for each concept in the domain, it is normalized so
that complete ignorance is represented by zero, and total mastery by one. Applying such
a numerical measure to each of the concepts makes it possible to represent the concepts
in a machine-readable form, and to do computations based on levels of mastery of the
knowledge domain. Further, the ability to represent any given level of knowledge within
the domain by a string of numbers—a vector-which follows known properties becomes a

powerful tool for knowledge representation.

It might be noted that the links in a concept map can contain information, and that a
concept can be perceived as having a heirarchical position within the map, with parent and
offspring dependancies. While the links are a potential source of amplifying information
about the concepts they connect, this avenue is not explored in the research documented
here; rather, the methodology presented assumes that all necessary information is contained
within the concept nodes themselves. Further research is encouraged to explore the utility
of using link information in some fashion. Information about the heirarchical relationships
between concepts is likewise not utilized. Unlike nodes in a conventional tree structure
which are traversed according to some ordering scheme, concepts as presented by an ITS
are expected to be taught as discrete components. This assumption is discussed further in

the section covering algorithm selection.
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9.1.2 Mapping Knowledge to Concept Vectors. Once a concept map has been
established for a given domain, the available teaching material must be reviewed and
defined within that context. The key to this process is again to visualize the n nodes of
the concept map as dimensions in a vector space. The teaching material available—be it
a pamphlet, a section of a chapter from a textbook, or a previously-coded instructional
module from an existing ITS—must be matched against which node(s) of the concept
map to which it relates. For example, in the meat science case, there might exist in the
curriculum a textbook on animal nutrition. Within that text might be found a chapter on
herbivores, with one section discussing grass and another detailing various grain feeds. In
this case the chapter would be treated as two distinct units of instructional material, each

relating to a different concept.

The second step is to determine how much of the appropriate concept a given unit
covers. Recall that for each concept in the domain, the span from complete ignorance to
full mastery is represented as a normalized scale from 0.0 to 1.0. As a unit is evaluated
against a given concept, the domain expert determines what degree the concept is covered
and assigns appropriate start and end values. It’s important to reiterate here that teaching
material is assumed to follow a progression from ignorance to mastery. The act of defining
a unit of teaching material in this context assumes contiguous coverage from lower to
upper bound within the span-the smallest unit of teaching material in this context. If it’s
determined a unit does, in fact, have gaps in coverage as defined by the domain expert, that
unit should be further divided into smaller units until no gaps exist in a single unit—further

illustrating the importance of making the initial concept map as granular as possible.

As an illustrative example, consider Figure 3.1, a subset drawn from from Figure
A.1. Of the seven concepts depicted, the four highlighted represent the concepts in which

we're interested.

To posit a trivial case in which a single unit of teaching material-a textbook, perhaps—
is available, and provides full coverage of all four concepts. While not a particularly inter-
esting example, Figure 3.2 shows a single concept vector defined in this four-dimensional

domain.
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Figure 3.1  Subset of Meat Science Course(9)

Figure 3.2 A Single Four-Dimensional Concept Vector
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Note the presence of four numeric pairs, one for each concept represented. Within
the pair each number represents the lowest and highest level of information provided by
the unit of instruction as evaluated against the concept map and the normalized scale

established for that particular concept.

A more interesting example is reflected in Figure 3.3, which shows three lesson mod-
ules represented as three concept vectors. In this case, the three vectors each only only
address concept one; the first represents an entry-level module covering the concept from
no prior knowledge to a point defined to be three-tenths of the entire range. The second
module covers the range from two-tenths to eight-tenths, representing an intermediate level
of information, while the third is the most advanced of the three, beginning seven-tenths
of the way along the scale and covering the material up to total master of the concept.
Note that, while no one of the three vectors shown covers the whole concept, the three

taken together do provide complete cover.

e .
i

08][o.0ffo.q] n.ulu.u

u.u]o.n 0.0foo}foo m

Figure 3.3 Three Defined Concept Vectors

There is some overlap in the depicted vectors; not all lesson materials available to an
educator can be assumed to fit together without some overlap in how they cover a concept.
Further, given effective granularity in the concept map definition, one can reasonably
expect to see the typical vector providing a contribution in only one concept; in the case of
the provided example the three units of material defined as vectors might represent three
subsections of a textbook chapter on feeding techniques, with overlap reflecting review and

cross-referencing by the author.
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With the knowledge domain defined as an n-dimensional vector space, and with the
available teaching materials defined within that space, the power of this representation
becomes clear: the units of teaching material can be summed as vectors either to evaluate
the completeness of available material within the context of the overall domain, or in order
to reach a desired target vector. In the latter case, the units selected to sum to the target
vector map directly to the teaching materials the educator needs to comprise a lesson plan

designed to teach given concepts to a desired level.

At this point it is useful to re-visit the forms which lesson modules could take.
Previous discussions have mentioned such items as pamphlets and sections from texbooks,
but in practice such sources might be difficult to quantify as precisely as described in
this thesis; they are mentioned mainly for illustrative purposes. It is expected that the
design methodology presented will most useful when interfacing with an established ITS,
presumably with a database of lesson modules already defined and coded. In such a case
the knowledge domain is already defined by the material the ITS is designed to teach,
and lesson modules will already be defined in terms which the ITS can use to differentiate
between them for selection. Given this situation the KE effort becomes less daunting, and
the goal of defining discreet concepts which map back to specific subsets of lesson modules

intuitively becomes an easier one to attain.

3.1.8 Using Concept Vectors. The implementation vehicle selected for this re-
search is the Java programming language. The intent was to insure portability of the imple-
mented code across multiple platforms, and open up the possibility for creating an intuitive
user interface to reduce the burden of learning to use the system. WWW browsers are
in widespread use, provide a familiar graphical user interface (GUI), and J ava-compatible
versions are available for nearly every computer system available to today’s educator. In
a full implementation, an educator would be able to visit a lesson plan resource page with
a Java- enabled WWW browser and select a desired knowledge domain. He or she would
then be offered a representation of the concept map defined for that domain, ana be allowed
to select desired concepts from the map, as well as the desired lower- and upper bound

for the coverage level for each concept to be taught. This selection would then define a




“target vector” representing the level of knowledge the educator desires to impart in each
of the appropriate concepts. Using the summation property of component vectors(2), the
system would return a set of titles listing the appropriate lesson materials, in order, which
will cover the topics in question—in other words, a subset of the vectors in the database

which will sums to the target vector.

In this context the idea of a “best” (or optimal) solution is of interest. The educator
might be interested in finding the smallest set of modules which cover the desired material,
or might be operating under a set of constraints wherein modules from a certain source
or possessing some other attribute are deemed more desirable than others. These issues
are discussed in greater detail later in this chapter, as well some methods for achieving a

“hest” solution.

Responding to feedback derived from test scores is also possible using this system.
Since the teaching materials are already defined in terms of the domain’s concept map, it
is straightforward to map testing results against the original lesson plan. By adjusting the
lower bound of the coverage of a given concept upward (for example) to exclude material
successfuly tested, the educator can create an updated lesson plan covering only that

material the student failed to demonstrate mastery of, based on the test results.

3.2 Algorithm

The criterion for algorithm selection was to use currently defined algorithms through-
out, rather than to “re-invent the wheel.” The details of the algorithm selection, along the

the related theoretical grounding, are discussed later in this chapter.

9.2.1 General Algorithm Considerations.  The first step was to identify the gen-
eral form of the problem. As with many schemes involving search, search space pruning
and early arrival at optimal solutions is both desirable and often difficult(13). Within the
context of this research, “optimality” is defined as the lesson plan generator consistently
selecting a lesson module providing the largest overall amount of coverage (which still lies
completely within the target range) whenever such a choice exists. Such choices will have

the side benefit of tending to cover the target range using the fewest number of lesson mod-
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ules possible, though in the implementation presented situations can be contrived wherein
the number of modules selected is not minimal. The decision as to what is “optimal” is
variable; a desired result might be to use as many modules as possible, so long as each
provides at least some unique coverage within the range. The definition might be based on
some metric defining quality of the lesson modules, or recency, or something else entirely.
The important point to keep in mind is that “optimality” must be defined using some
metric, and that a given solution can be called “optimal” only within the context of that

metric. In this thesis the term “optimal” is assumed to conform to this restrictive context.

One approach to finding optimal solutions is the so-called greedy approach (7,8, 11).
A greedy algorithm selects the “best” choice (based on some metric) from the list of feasible
candidates in a list until it arrives at a solution. The selection is typically made by sorting
the candidates by the optimality metric, in nonincreasing order of desirability, so that the
selection process is reduced to examining the list in order and selecting viable members
until the solution is satisfied or found to be unreachable. By the definition of the desirability
metric, each candidate so examined is the most valuable one yet unexamined. The benefit
of this approach is that once a solution is found the algorithm terminates without searching
for alternative solutions. Unfortunately, although greedy algorithms tend to converge to
workable solutions, they can’t always be guaranteed to find an optimal solution(11). The
key to insuring optimal solutions with a greedy algorithm is in using the matroid property,

which Kozen defines as follows(7):

matroid A pair (S,S) where S is a finite set and S is a family of subsets of S such that

(i)if JeSand I CJ, then I € S;
(i) if I,J € S and | I |<| J |, then there exists an « € J — I such that TU{z} € S;

In less rigorous terms, matroids are set structures having the property that subsets
can be further broken down into smaller subsets which are still members of the original
set, and it’s possible to tranfer members from one subset to another without leaving the
original set(11). The chief benefit from a search space being a matroid is that there exist
numerous cases of greedy algorithms which have been proven to find optimal solutions for

matroids(11).
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To show that concept vectors are, in fact, matroids, one needs to demonstrate that

both properties from the definition above hold(7):

Property (i) is straightforward to demonstrate: take the family of subsets of vectors
from the database of concept vectors, S, and call it S. From that & take a subset J, and
then from J draw a subset I. It’s clear to see that I was drawn directly from the family <
and therefore I € S holds. Property (ii) is similarly straightforward: since I,J are both
drawn from S, then if I has a smaller cardinality (fewer number of vectors) than J, then
there will exist some vector z from S which is in J but not in I. If you add that z to
the set I, the resulting set will still be a subset of vectors drawn from 5, and therefore

I'U{z} € S holds.

To conclude the general algorithm discussion, it can be shown that concept vectors
are in the family of combinatorial structures known as matroids, and therefore an optimal
solution can be guaranteed (within the context of how the greedy selection is made) using

a greedy algorithm.

3.2.2 Specific Algorithm Considerations. Before examining the specific algo-
rithms used, it is important to establish a assumption common throughout the following
discussion: vectors are selected only according to their contribution to the dimension cur-
rently being evaluated. The primary effect of this assumption is that the definition of
optimality defined for this research is only valid within the context of a single dimension;
no global checking is performed to determine how selecting a module affects coverage in
other dimensions. The rationale behind this simplifying assumption is that concepts, just
as the lesson modules which pertain to them, are expected to be taught as a unit. That is
to say that a given ITS, faced with teaching concepts B, D and E, is expected to present
those concepts as distinct entities in some ordered fashion and not mix them. In similar
fashion, the lesson plan generator will first select the set of modules to cover concept B,
then a distinct set designed to cover concept D and, finally, concept E. The resulting list
may contain modules which were coincidentally selected more than once, for contributions
in more than one concept, but the ITS is expected to be presenting the material accord-

ing to its concept map and so the distinction becomes unimportant. Furthermore, in the
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context of the expected close correlation between lesson modules as defined for the ITS
and for the lesson plan generator, it is expected that lesson modules having contribution

in more than one concept would be encountered rarely, if at all.

3.2.2.1 Failed Attempt — Sum Of Subsets Algorithm. Once it was deter-
mined that a greedy approach is suitable, the choice of the specific algorithm to use was
based on insight into the problem itself. The system is being presented a desired target
vector with components constrained within a finite range, has knowledge of a set of can-
didates each of which can provide some degree of contribution towards meeting the target
vector, and asked to compose an optimal subset of those candidates vectors which will
sum to that target vector. Viewed from this perspective, the problem can be mapped
to the classic Sum-Of-Subsets (SOS) Problem which is, itself, a variant of the Knapsack
Problem(8). The backtracking form of the SOS algorithm, given a positive total integer
weight W and a set of n positive integers, determines all combinations of n which sum to

w.

The initial problem in a straightforward implementation using Sum-Of-Subsets lies
in the fact that the vector components don’t necessarily start at zero. For example, if
the desired target of dimension one were defined as the range 0.0 to 0.8, it would seem
trivial to treat W for that dimension as 8, and find the vectors which sum to that value
(after having their contributions similarly scaled by 10). Unfortunately, what if the desired
target ranges from 0.4 to 0.87 The magnitude of the contribution can be scaled to 4, but
then 2 vectors having contributions from 0.0 to 0.2 and 0.8 to 1.0 could be considered a

solution, even though nether vector falls within the desired range at all.

The solution was to devise a schema whereby a vector’s contribution to a given
dimension could be represented by a single integer value that would still capture the in-
formation regarding upper and lower bounds of the covered range. Since the earliest com-
puters decimal numbers have been represented in binary form; this binary representation
is a straightforward mapping between a single scalar value and a serious of placeholders
(the binary digits) which are either “off” or “on.” A similar mapping was used for this

implementation. To begin, the normalized range was divided into 10 subdivisions, each
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representing a single value of 0.1 along the total range. The choice for the number of
divisions was only partially arbitrary; visualizing a span in tenths is very intuitive in the
decimal system in common use, and also maps well to the idea of percentiles as encountered
in test scores. This representation could easily be modified to use more (or fewer) bins as
desired. Figure 3.4 depicts a single dimension of a hypothetical target vector, as well as
three candidate vectors for summing to the target. Note how each vector is depicted in

terms of which of the 10 subdivisions, or “bins” covered by its range of contribution.

0.0 1.0

EEE

a

Figure 3.4 Target Vector and Three Candidates, Using “Bin” Representation

By inspection, the best fit of vectors to cover the target would be vectors a and c.

The key to this method of reducing a range to a single integer is using binary coding.
The bins are numbered, left to right, with the powers of two in the traditional sequence.
The resulting values for each bin are depicted in Figure 3.5. The bins which are included in
the target range are considered “on,” or binary one, while the remaining bins are “off,” or

binary zero. By adding the binary values of the “on” bins, one arrives at a single integer.

By following this convention, a single integer uniquely identifies precisely which bins
are to be covered. As the figure shows, the sum of vectors a and ¢ equals the value of the
target vector; this representation permits direct use of the SOS algorithm to select sets of
vectors which will sum to the target in the given dimension, while retaining the necessary

information about upper and lower ranges.
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0.0 1.0

1 hsels12] = 124
a 11 -112
b Ll =060
o ] =012

Figure 3.5 Target Vector and Three Candidates, With Binary Values

With this convention in mind, the components of the three sample vectors originally

depicted in Figure 3.3 would be converted from pairs of real numbers to single integers

containing the same information, as shown in Figure 3.6.

I ——

007

000

000

000 >

—
‘r-‘\

r[ 252

000

000

000

J—

896

000

000

000 >

—

Figure 3.6 Three Defined Concept Vectors using Binary Coded Values

Note how the overlap between the vectors (discussed previously) translates here as

the vectors summing to 1,155. Since a full span (assuming ten bins) should sum to 1,023

it’s apparent that in order to allow for overlap the SOS algorithm would have to test sums

against a target range rather than an exact value. In fact, the algorithm as presented pro-

vides for setting a fixed delta beyond the target value, while introducing a more automated

preocedure that would iteratively expand the range some number of bins at a time until a

solution were found would be a straightforward modification. In such a case, having only

10 bins might cause successive “jumps” to be too large in proportion to the overall range;

even expanding the range in a single direction would mean expansion of ten per cent per
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iteration, which could rapidly reach the bound of the range. If greater resolution were
desired the number of bins could be increased, but care must be taken not to exceed the
target platform’s limitations. Many systems have a limit of 32 or 64 bits which can be
used to represent integer values, which imposes a limit on the number of bins one can use

for this representation scheme.

9.2.2.2 Discussion of the Sum Of Subsets Approach. ~NOTE: The interested
reader is directed to Appendix D for detailed pseudo-code of this algorithm.

The vectors are sorted in nondecreasing order for each successive dimension, so that
the function promising can halt progress down a search path as soon as it’s obvious that
the next weight would exceed the limit. This continual resorting requires that each concept
vector carry an additional field of information relating to its absolute position in the original
array; this position will be needed to uniquely identify the vectors selected by the array

include.

Since a greedy approach is being used, the procedure sum_of subsets is allowed to
terminate when it has identified the first set of vectors to satisfy the dimension in question.
Once the algorithm has satisfied all n iterations, the array include will be set true for each
vector which was selected. Duplicate selections are handled trivially, since setting a vector’s
flag to true multiple times in include has no effect on the final result. Once the algorithm
terminates, the indices flagged in include are mapped back to the original vectors in A and

included in the final list, S, which is the lesson plan.

3.2.2.8 Problems with Sum Of Subsets. The first difficulty encountered
during implementation was the definition of optimality in this case. SOS, being a variant
of the Knapsack Problem(8), converges to a solution which contains as many items as
possible—the opposite of the desired result. This problem can be overcome by sorting the
candidate components in nonincreasing order, rather than nondecreasing, and modifying
the treatment of nonpromising nodes, but the resulting algorithm must include additional
bounds checking. A further problem, and one which is not so readily overcome, is treatment

of overlapping components. In such cases the integer sum of the components is greater
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than the integer value of the resultant. Although replacing addition with the bitwise OR
function can mitigate this problem, it also prevents screening out vectors whose components
provide no new contribution (63 V 55 is still 63, and so a vector having a component of 55

would be erroneously included in the solution set) without additional filtering.

In conclusion, SOS was rejected as the algorithm of choice for this implementation.

8.2.2.) Set Covering Algorithm.  NOTE: The interested reader is directed

to Appendix E for detailed pseudo-code of this algorithm.

While revisiting the original problem, especially with a focus on dealing with overlap-
ping vector components, the underlying misconception which led to attempting the SOS
approach became clear. Rather than visualizing the target vector as a container into which
lesson modules are stored, the true nature of the problem is closer to attempting to cover

a given set with as few subsets as possible.

To define “cover” in this context, the original bin representation is retained. For
example, a target vector component ranging from 0.2 to 0.8 would be a set containing six
of the possible ten bins as members. The optimal solution would be the fewest number of
lesson module vectors which, when combined, contain at least one of each of the six target
bins. The total lesson plan would be, then, the set of lesson module vectors which cover

all n dimensions of the target vector.

The key issues in implementing this algorithm are filtering out candidates which
either lie outside the desired range or cover only elements already covered, and insuring
greedy selection of candidates from F. The first issue is resolved using the same binary
conversion of the bins as described in the SOS attempt. Since a single integer then uniquely
describes every bin in the range, candidate selection is performed by bitwise comparison.
Given target range X and a candidate F, F lies entirely within the range of X if XAF = F.
Also, given a partially-covered range U and a candidate F, F' will cover at least one more
element of U if U A F > 0. Insuring greedy selection of candidates is performed by
sorting the members of X by the width of their range and then selecting candidates in
nonincreasing width order. This insures that each candidate selected covers at least as

many elements as any candidate as yet untried.
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8.8 Results

NOTE: The interested reader is directed to Appendix C for an annotated transcript

of a session with the lesson plan generator.

The lesson plan generator was tested using a notional database of twenty lesson
modules, five per concept. The session transcript in Appendix C lists the actual modules

in detail.

The first sample execution was a trivial one, designed to insure no spurious modules

were accepted outside of the selected range:

s sk 3k ok ok ok ok ok sk 3k 3k ok ok ok 3k ok ok 3 ok ok 3k ok 3k ok ok 3k ok sk ok sk ok s sk ok ok o ok ok ok sk ok ok ok sk ok ok ok ok ok kok koK sk kok ok

The target vector selected is:

Lower Bound: 0 Upper Bound:
Lower Bound: 0 Upper Bound:

Lower Bound: 0 Upper Bound:

o (=] (o] (]

Lower Bound: O Upper Bound:

Selected Modules (by title):

ko ok Aok Rk Kok K Kk ok ok sk ok sk ROk R K K oK ok ok ok ok ok ok ok ok K
The system correctly rejected all candidate modules, as shown above.

The next execution was designed to select a range wherein the opportunity arose to

select two modules or a single one covering the same range.

s ok 3 3k 3k ok ok 3 5k 2 3K ok 3 e Sk 3K ok 3K ok ok ok ok 3k ok ok ok ok 3k ok ok ok A o ok sk ok sk ok ok ok e ok ok sk ok ok ok ke skok ok ok ok ok ok sk ok ko

The target vector selected is:

Lower Bound: 0.2 Upper Bound: 0.7
Lower Bound: O Upper Bound: O
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Lower Bound: 0 Upper Bound: O

Lower Bound: O Upper Bound: O

Selected Modules (by title):
Feeding Four

sk sk ok ok ok ok o ok ok ok ok 3k o ok 3K ok ok oK ok ok oK 3k oK e ok 3k ok R ok ok sk ok ok ok ok sk sk ko Kok sk skok sk ok skok ok ok sk ok ok ok ok

The system correctly selected the single, larger module which matched the target
range and rejected “Feeding Three” (range of 0.4 to 0.7) and “Feeding Five” (range of 0.2
to 0.4).

The next execution was designed to show that one of the modules rejected above
would, in fact, be selected under the proper cicumstances. The target range was adjusted

to a range wherein “Feeding Three” was the expected selection.

sk ke ok ok 3 ok ok ok o ok 3k 3k 3 sk ok ok 3k ok sk ok ok 5k ok ok ok sk oK ok ok sk ok sk ok ok ok sk sk o ok ok ok ok skok sk sk ok sk ok ok sk ok ok Kok ok

The target vector selected is:

Lower Bound: 0.4 Upper Bound: 0.7
Lower Bound: 0 Upper Bound: O
Lower Bound: O Upper Bound: O

Lower Bound: 0 Upper Bound: 0

Selected Modules (by title):

Feeding Three

3k sk ke ok ok ok 3 sk ok sk ok e sk ok ok ok ok ok ok ok 3k 3k Sk ok ok sk sk ok sk ok ok ok sk ok ok ok dk ok ok ok sk sk Sk ok ok skok ok ok ok ok kok ok ok

As shown above, the previously rejected module was selected in this case, demon-
strating that the sole criterion for the earlier rejection was, in fact, its suitability to cover

the target range within the programmed selection criteria.
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The next example reinforces the selection of an optimal cover by introducing another
case where multiple smaller vectors cover the same range as a larger one, only this time with
some overlap. In addition, the expected selection should be two lesson modules instead
of just one (if the dual coverage of the same range is incorrectly handled by rejecting
all modules in that range) or three (if the system incorrectly selects the two smaller,

overlapping vectors instead of the single one covering more of the range).

|
\
|
{ sk ook s ok ok s o ok ok ok o sk ok ok ok sk ok ok ok KoK ok sk kK KKk kR ok sk sk skokok ok kK sk sk sk Kk sk ok ok
|
|
The target vector selected is:

Lower Bound: 0 Upper Bound: O
Lower Bound: O Upper Bound: O
Lower Bound: O Upper Bound: 0.8

Lower Bound: O Upper Bound: O

Selected Modules (by title):
Intra-Muscular Fat One
Intra-Muscular Fat Five

sk sk ek 3 ok ok ok ok ok sk ok ok ok sk ok oK o sk ok ok ok oKk sk sk sk sk Kok sk ok ok ok ok Kok ok ok ok ok ok ok sk ok ok ok okok sk ok o ok ok

As depicted in the output above, the system rejected the smaller modules and cor-

rectly covered the target range with only two lesson modules; the optimal solution.

The final sample execution is a combination of insuring overlapping vectors are still
allowed to contribute to covering the goal, while smaller ones are rejected in favor of ones
providing more coverage. The expected outcome is that three out of the five possible
modules related to the concept will be selected, while “Meat Juiciness Three” will be
rejected for lying below the desired range énd “Meat Juiciness Four” will be rejected

because its contribution is inferior to that of “Meat Juiciness Five.”

s 3k 3k 3k ok ok 3k 3 sk ok ok ok 3k o ok sk ok ok sk ok 3k 3k ok ok ok ke 3k ok ok ok ok sk ok ok kb 3k ok ok ke ok ok ok ok ok sk ok ok ok ok ok K ok ko sk ok ok K
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The target vector selected is:

Lower Bound: O Upper Bound: 0
Lower Bound: 0 Upper Bound: O
Lower Bound: 0 Upper Bound: O

Lower Bound: 0.3 Upper Bound: 1

Selected Modules (by title):
Meat Juiciness One

Meat Juiciness Two

Meat Juiciness Five

sk ok ok ok ok ok ok 3k ok sk st ok sk sk ok ok sk ok ok o ok ok e ok sk ok ok sk ok sk ok sk ok sk ok K sk Rk ko kok kol kok ok kR ok ok ok

As shown in the output above, the expected three modules were chosen.
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IV. Enhancements and Future Research
4.1  Enhancements

During the course of this research, numerous avenues for program enhancements
came to mind, or were pointed out during discussions with faculty and fellow students.

Some of those enhancements are detailed here.

4.1.1 Graphics. Ideally, the user interface could present a graphic of the concept
map for the desired domain, allowing the educator to click directly on the depicted nodes
as desired and enhancing the intuitive feel of interacting with the system. In addition,
generating graphical, flowchart-like output bearing some relation to the original concept

map could be useful.

4.1.2  Quality of Instructional Material. Each concept vector could carry an
additional field of information: an evaluation of quality. Awarded when evaluated for
inclusion into the database of concept vectors, this measurement would allow for qualitative
selection of superior lesson materials in cases where more than one unit would otherwise

provide the same coverage.

4.1.83 Nonlinear Coverage Within a Concept. This research assumes blocks of
coverage to be selected via an upper and lower bound, with every “bin” in between included.
The method of assigning numeric values through binary coding of bins used in this system
would easily permit selecting non-contiguous bins for coverage, but would introduce added
complexity in terms of the user interface. Not only would the educator be required to click
each individual bin desired, the interface itself would be tied to the number of bins—which

might not remain constant between knowledge domains.

4.2 Recommendations for Future Research

One of the most interesting avenues of outgrowth for this system is the possibility
of direct integration into an ITS. As discussed in previous chapters, units of instructional

material can easily be lesson modules coded into an existing ITS. Using this sytem, it

4-1




is entirely possible to have the lesson plan feed directly into the module selection for an
ITS session. Further, with the close coupling this system enforces between lessons and
concepts, test results could be fed back to the lesson plan generator directly, resulting in

dynamic updating of the plan to accomodate needed remedial lessons in the next session.
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Appendiz A. Complete Concept Map
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Figure A.1 Complete Concept Map of Meat Science Course(9)

A-1




Appendiz B. Prototypical WWW based interface
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Figure B.1  Prototypical WWW Interface

B-1




Appendiz C. Sample Session

The following sample session is based on a notional database of twenty lesson modules
based on the four-concept subset of the Meat Science example depicted in Figure 3.1. The
initial output is for illustrative purposes only, and is designed to provide documentation

of the twenty vectors in the lessons database.

The session begins with the instructor selecting all four concepts, with complete

coverage of each (selected range from 0.0 to 1.0 in each case).

Initial print-out of all twenty lesson modules:

sk ko ok o ok sk ok ok 3k ok ok ok ok ok ok 3K ok ok ok o ok sk ok Sk Sk ok Sk ok Sk ok ok ok K ok ok ok sk ok ok ok ok Sk ok sk ok sk okok ok Kok ok k

* *
* Dynamic Lesson Plan Generator *
* *

e sk e e o ok ok ok ok o sk e Sk sk ok o ok o ok ok ok sk sk ok ok ok ok sk ke s ok sk ok ok ok sk sk ok ok ok ok sk ok ook ok okok skeok ok ook

The complete lesson module database is:

Dimensionality: 4

Number of Modules: 20

Index: 1 // Title: Feeding One
Lower Bound: 0.5 Upper Bound: 1
Lower Bound: O Upper Bound: 0
Lower Bound: 0 Upper Bound: 0

Lower Bound: O Upper Bound: 0

s 3k s sk 3 ok e sk ke 2k sk ske sk sk sk sk ok ke ok ok 3k ok sk ok ok ok ok e sk sk ok ok ok ok ke ok ek ke sk ok

NOTE: Throughout this sample session the above line of asterisks will
appear immediately before and after inserted author comments to distinguish

them from actual program output.
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Key to module descriptions:

Dimensionality The number of nodes (dimensions) in the vector space.
Number of Modules The total number of modules defined in the database.

Index An index for locating the given module within the database. Can be an array
index, a hashing key, or any other appropriate value. Note this index is intended for

a machine use.

Title The actual title of the given lesson module. Note this is intended as a human-
readable index for locating the module, but could be useful for string oriented ma-

chine searches.
Lower Bound The lowest level covered by the given module along the normalized scale.

Upper Bound The highest level covered by the given module along the normalized scale.

s ok 3k ok 3k 3k 3k ok 3k ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ke skok koo sk sk skok kok sk Rk Rk

Index: 2 // Title: Feeding Two
Lower Bound: O Upper Bound: 0.3
Lower Bound: 0 Upper Bound: O
Lower Bound: O Upper Bound: O
Lower Bound: 0 Upper Bound: 0

Index: 3 // Title: Feeding Three
Lower Bound: 0.4 Upper Bound: 0.7
Lower Bound: 0 Upper Bound: O
Lower Bound: 0 Upper Bound: O

Lower Bound: O Upper Bound: 0

Index: 4 // Title: Feeding Four
Lower Bound: 0.2 Upper Bound: 0.7
Lower Bound: 0 Upper Bound: 0
Lower Bound: O Upper Bound: 0
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Lower Bound: 0 Upper Bound: 0

Index: 5 // Title: Feeding Five

Lower Bound: 0.2 Upper Bound: 0.4
Lower Bound: 0 Upper Bound: O ‘
Lower Bound: O Upper Bound: 0

Lower Bound: 0 Upper Bound: 0

Index: 6 // Title: Grass Concerns One
Lower Bound: O Upper Bound: O

Lower Bound: 0.5 Upper Bound: 0.8
Lower Bound: 0 Upper Bound: O

Lower Bound: O Upper Bound: 0

Index: 7 // Title: Grass Concerms Two
Lower Bound: O Upper Bound: 0

Lower Bound: 0.1 Upper Bound: 0.4
Lower Bound: 0 Upper Bound: O

Lower Bound: 0 Upper Bound: 0

Index: 8 // Title: Grass Concerns Three
Lower Bound: O Upper Bound: 0

Lower Bound: 0.2 Upper Bound: 0.5
Lower Bound: 0 Upper Bound: 0

Lower Bound: 0 Upper Bound: 0

Index: 9 // Title: Grass Concerns Four
Lower Bound: 0 Upper Bound: 0

Lower Bound: O Upper Bound: 0.2

Lower Bound: O Upper Bound: 0
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Lower Bound: 0 Upper Bound: 0

Index: 10 // Title: Grass Concerns Five
Lower Bound: O Upper Bound: 0

Lower Bound: 0.7 Upper Bound: 1

Lower Bound: O Upper Bound: O

Lower Bound: O Upper Bound: 0

Index: 11 // Title: Intra-Muscular Fat One
Lower Bound: O Upper Bound: 0

Lower Bound: 0 Upper Bound: O

Lower Bound: 0 Upper Bound: 0.4

Lower Bound: 0 Upper Bound: O

Index: 12 // Title: Intra-Muscular Fat Two
Lower Bound: O Upper Bound: 0

Lower Bound: 0 Upper Bound: 0

Lower Bound: 0.8 Upper Bound: 1

Lower Bound: 0 Upper Bound: O

Index: 13 // Title: Intra-Muscular Fat Three
Lower Bound: O Upper Bound: 0

Lower Bound: 0 Upper Bound: O

Lower Bound: 0.5 Upper Bound: 0.8

Lower Bound: O Upper Bound: 0

Index: 14 // Title: Intra-Muscular Fat Four
Lower Bound: 0 Upper Bound: 0

Lower Bound: 0 Upper Bound: O

Lower Bound: 0.4 Upper Bound: 0.6
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Lower Bound: 0 Upper Bound: O

Index: 15 // Title: Intra-Muscular Fat Five
Lower Bound: 0 Upper Bound: O

Lower Bound: 0 Upper Bound: O

Lower Bound: 0.4 Upper Bound: 0.8

Lower Bound: O Upper Bound: O

Index: 16 // Title: Meat Juiciness One
Lower Bound: 0 Upper Bound: O
Lower Bound: 0 Upper Bound: O
Lower Bound: 0 Upper Bound: 0

Lower Bound: 0.5 Upper Bound: 0.8

Index: 17 // Title: Meat Juiciness Two
Lower Bound: O Upper Bound: 0
Lower Bound: 0 Upper Bound: 0
Lower Bound: 0 Upper Bound: 0

Lower Bound: 0.3 Upper Bound: 0.7

Index: 18 // Title: Meat Juiciness Three
Lower Bound: O Upper Bound: 0O
Lower Bound: O Upper Bound: O
Lower Bound: O Upper Bound: O
Lower Bound: O Upper Bound: 0

Index: 19 // Title: Meat Juiciness Four
Lower Bound: 0 Upper Bound: 0
Lower Bound: 0 Upper Bound: 0

Lower Bound: O Upper Bound: 0
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Lower Bound: 0.7 Upper Bound: 0.9

Index: 20 // Title: Meat Juiciness Five
| Lower Bound: O Upper Bound: O
Lower Bound: 0 Upper Bound: 0
Lower Bound: O Upper Bound: O

Lower Bound: 0.7 Upper Bound: 1

o 3k ok sk 3 sk 3K ok 3k ok o ok 3k sk ok ok 3k ke ok ok 3k sk ok o ok ke Sk ok ke sk ok sk ok ok ok ke sk ok ok ke ok

The following portion of output is an echo to the instructor to verify the target vector
about to be used as the goal of a lesson module search.

sk 3k ok 3k o 3k sk ok sk ok sk ok sk 3k ok ok 3k ok sk sk sk ok ok ok sk ok ok 3k sk ok ok sk ok ok ok ok ok ke ok sk

The target vector selected is:

Lower Bound: O Upper Bound: 1
Lower Bound: O Upper Bound: 1
Lower Bound: O Upper Bound: 1

Lower Bound: 0 Upper Bound: 1

sk 3k sk sk ok sk e sk ok ok 3 ok ok 3k ok sk ok ok sk 3 2k sk sk e sk sk ok ok s 3k e sk ok ok ok ske sk ok ke sk %k

The following portion of output is the listing (by title) to the instructor of the les-
son modules selected by the program. Note that each title bears an associated index
value which can be passed to an existing ITS in the desired format to enable the ITS to
automatically select the appropriate modules for a session.

sk s 3 ok ok sk ok sk ok 3 s f¢ e ke ok sk sk sk sk 3k ok 3k ok ok ok sbe sfe e ok e e 3k ke ok ok ok ok ok ok sk ok
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Selected Modules (by title):
Feeding One

Feeding Two

Feeding Four

Grass Concerns One
Grass Concerns Two
Grass Concerns Three
Grass Concerns Four
Grass Concerns Five
Intra-Muscular Fat One
Intra-Muscular Fat Two
Intra-Muscular Fat Five
Meat Juiciness One

Meat Juiciness Two

Meat Juiciness Three

Meat Juiciness Five

o sk ok ok sk s ok ok ok ok ok sk Sk ok sk e ok ok ek skok sk ke sk ke sk sk sk skosk ko sk ok kR ke sk R ok ok

It’s interesting to note some aspects of the results from this initial session. For
example, the modules “Feeding Three” and “Feeding Five” were not selected, because
their coverage is entirely handled by module “Feeding Four,” which was selected. This
reflects the assumption that covering the goal using the fewest possible number of modules
is optimal. Other modules in the concepts of “Intra-Muscular Fat” and “Meat Juiciness”

were similarly rejected in favor of single modules providing the same coverage.

As the student progresses through the entire session, each concept would be tested
by the ITS and the scores retained and mapped against the concept scales. Ideally, as in
this notional session, the tests for each module are matched to the normalized scale used

to measure progress within the concept. Once the session is completed, the ITS identifies
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the range(s) within each concept wherein the student failed to perform, and sends these

values back to the lesson plan generator to select appropriate remedial modules.

sk 2k 3k 3k 3k sk sk ok 3 ke 3 ok ok ke sk ke o s sk ke ok e sk sk ok sk sk ke ke sk sk sk sk sk ke sk sk ok ok K

The target vector selected is:

Lower Bound: 0.2 Upper Bound: 1
Lower Bound: O Upper Bound: 0

Lower Bound: 0.5 Upper Bound: 1
Lower Bound: 0.7 Upper Bound: 1

sk sk sk ok 2k sk 3k ok ok 3k 3k ok ok ok ok sk ok ok ok ok sk ok ok 3k sk 3k ok ok 3k ok ok ok o ok ok ok ok ke ok sk ok

In this example, the student performed very poorly during the “Feeding” concept
scoring only 20 per cent, but mastered the concept of “Grass Concerns.” The other two
concepts resulted in a mixed level of success, 50 and 70 per cent, respectively. In this
example a required threshold of 80 per cent is assumed in order to avoid remediation, and

so three concepts are to be covered in the next session.

s sk sk sk ok ok ok 3k 3 ok ok 3k 3 ok ok 3 ok sk sk ok ok ok ok s ok ok e ok ok sk ok ok ok sk s ok ke ke sk ke ok

Selected Modules (by title):
Feeding One

Feeding Four

Intra-Muscular Fat Two
Intra-Muscular Fat Three

Meat Juiciness Five

sk o sk ke ok ok o ok 3k s o ok ok ok ok ok sk ok sk e ok ok sk ok ok sk ok ok ok e e sk sk ek skok ok ok
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Again, some aspects of these results are of interest. For example, “Feeding One”
and “Feeding Four” are retained as providing complete coverage using the fewest vectors.
Since the only criteria available to the lesson plan generator is level of coverage, this is an
expected result. Were additional criteria added, such as a scale for weighting the quality
of a module against some metric, remediation selection could be expected to vary as the

quality metric were adjusted to reflect demonstrated effectiveness.

The module “Intra-Muscular Fat Three” is selected for the remedial session while
“Tntra-Muscular Fat Five” is dropped. This selection reflects the fact that the smaller
level of coverage provided by the new module maps more exactly to the reduced goal, and
demonstrates the assumption that selecting modules which provide coverage outside the

goal is not desireable.

Note, too, that module “Meat Juiciness Five” is selected, and so the module “Meat
Juiciness Four” is not. This selection again reflects the greedy nature of the algorithm,
where the largest coverage was selected first and subsequent smaller modules which do not

contribute by covering previously uncovered bins are rejected.

s sk sk 3k 3k sk sk sk ok ok ok ok ok ok 3k ok ok 3k oK sk ok ok ok sk ok ok ok ok sk sk sk kol ke skok sk ok ok skesk

end of run
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Appendiz D. Sum Of Subsets Pseudo-Code(8)

Problem: Given a target concept vector V of size n, a delta d, and an array A of m

concept vectors in the same knowledge domain as V', derive a subset S from A consisting

of k vectors which sum to V plus d.
Inputs: V, A, m, n.

Outputs: S.

/*********************************************************/

procedure generate_plan (in concept_vector:
in vector_list:
in integer:

in out vector_list:

integer i, j, W, total;

boolean include[m];

begin
for(i := 1 to m) do
include[i] := false;
endfor

initialize_to_null(S);
for(i := 1 to n) do

total := 0;

for(j 1 to m) do

total := total + A[il[j];

endfor

W :=V[il + 2°(i + d); //target plus delta in bins

sort_array_nondecreasing_on_i(A, i);

//must recall prior position

sum_of_subsets(0, 0, total, A, i, W, include);

endfor
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for(i := 1 to m) do
if include[i] = true then
add_to_S(S, A[il);
endif
endfor

end;

/*********************************************************/

procedure sum_of_subsets (in integer: index;
in integer: weight;
in integer: total;
in vector_list: A;
in integer: i;
in integer: W;

in out boolean[]: include);

begin
if promising(index, weight, total, A, i, W) then
if weight = W then
return;
else
include{index + 1] := true;
sum_of_subsets(index+1, weight+A[i] [index +1],
total-A[i] [index +1], A, i, W, include);
include[index + 1] := false;
sum_of_subsets(index+1l, weight,
total-A[i] [index +1], A, i, W, include);
endif
endif

end;
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/*********************************************************/

function promising(in integer: index
in integer: weight;
in integer: total;

in vector_list: A;

in integer: i;
in integer: W) : boolean;
begin
promising := (weight + total >= W) and
((weight = W) or (weight + A[i][index + 1] <= W));
end;

/*********************************************************/
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Appendiz E. Set Covering Pseudo-Code(11)

The revised algorithm is as follows (procedure generate_plan omitted):

Problem: Given a target concept vector X of size n, and an array F of m concept
vectors in the same knowledge domain as X, derive a minimal subset C from F consisting

of k vectors which cover X.
Inputs: X, F, m, n.

Outputs: C.

/*********************************************************/

procedure greedy_set_cover(out set C)

begin
U := X; //tempory working copy
C := NULL;

index := 1;
' while((U > 0) && (index <= masterDB.m)) do
if( F[index] covers only elements of X and
Flindex] covers at least one elemet of U then
U := U - Flindex];
C := C + F[index];
endif;
increment index;
endwhile;
if U not empty then
print error message;
return;
endif;

end;

/*********************************************************/
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Appendiz F. Java Source Code

//package thesis;
// convec.java

import java.lang.*;
import java.io.DatalnputStream;
import java.io.DataOutputStream;
import java.io.FilelnputStream;
import java.io.FileOutputStream;
import java.io.File;

import java.io.IOException;

[ [ x sk kR kR R kR Rk kR R ok ok Rk kR sk KRRk ko ok b ok
class Component {

private float begin;

private float end;

private float size;

private int binaryValue;

public Component(float beginValue, float endValue) {
if (((beginValue < 0) || (beginValue > 1)) || ((endValue < 0)||(endValue > 1))

|| (endValue < beginValue)) {

System.out.println("Bad Component constructor values #11");

}

else {
begin = beginValue;
end = endValue;

size = endValue - beginValue;
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binaryValue = binval(begin, end);

public float begin() {
return begin;

}

public float end() {
return end;

}

public float size() {

return size;

}

public int binaryValue() {

return binaryValue;

}

public int binval(float start, float finish) {

int temp = 0;

float a start * 10;

float b = finish * 10;

i
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for(int i = (int) a; i < (int) b; ++i)
{
temp += Math.pow(2, i);

return temp;

¥

public void beginSet(float beginValue) {
if ((beginValue >= 0)&&(beginValue <= 1)&&(beginValue <= end)) {
begin = beginValue;
size = end - begin;
binaryValue = binval(begin, end);
}
else {
System.out.println("Tried to set bad begin in beginSet!");
}
}

public void endSet(float endValue) {
if ((endValue >= 0)&&(endValue <= 1)&&(begin <= endValue)) {
end = endValue;
size = end - begin;
binaryValue = binval(begin, end);
}
else {

System.out.println("Tried to set bad end in endSeti");
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public String toString() {

return new String("("+String.valueOf(begin)+","+String.valueOf(end)+")");

}
}

//***************************************************************************

class LessonVector {

Component components([];
float length;
int index;

String title;

public LessonVector(int n) {
components = new Component[n];

length = 0;

public void SetComponent(int j, float a, float b) {
components[j] = new Component(a, b);

length += components[jl.size();
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//***************************************************************************

class LessonsDataBase {

int m, n;

LessonVector lessonList[];

public LessonsDataBase(String s) throws IOException {

String inputBuffer;
Integer intBuffer;
Float  floatBuffer;

float a, b;

File file = new File(s);

FileInputStream inFile = new FileInputStream(file);

DatalnputStream inStream = new DatalnputStream(inFile);

inputBuffer = inStream.readLine();

intBuffer = Integer.valueOf (inputBuffer);

n = intBuffer.intValue();

inputBuffer = inStream.readLine();

intBuffer = Integer.valueOf (inputBuffer);

m = intBuffer.intValue();

lessonlList = new LessonVector[m + 1];

for(int i = 1; i <= m; ++i) {
lessonlist[i] = new LessonVector(n + 1);
lessonlist{i].index = i;
lessonList[i].title = inStream.readLine();
for(int j = 1; j <= n; ++j) {

inputBuffer = inStream.readLine();
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floatBuffer = Float.valueOf (inputBuffer);
a = floatBuffer.floatValue();

inputBuffer = inStream.readLine();
floatBuffer = Float.valueOf(inputBuffer);
b = floatBuffer.floatValue();

lessonList[i].SetComponent(j, a, b);

//***************************************************************************

class TargetVector {

LessonVector target;

public TargetVector(String s, int n) throws IOException {

String inputBuffer;
Integer intBuffer;
Float floatBuffer;

float a, b;

File file = new File(s);

FileInputStream inFile = new FileInputStream(file);
DataInputStream inStream = new DatalnputStream(inFile);
target = new LessonVector(n + 1);

for(int i = 1; 1 <= n; ++i) {

inputBuffer = inStream.readLine();
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floatBuffer = Float.valueOf (inputBuffer);
a = floatBuffer.floatValue();

inputBuffer = inStream.readLine();

i

floatBuffer = Float.valueOf (inputBuffer);
b = floatBuffer.floatValue();

target.SetComponent(i, a, b);

//***************************************************************************

class run {

static boolean include[];

static boolean finalList[];
static boolean tempList[];
static LessonsDataBase masterDB;
static TargetVector goalVector;
static int W;

static int currentlndex;

static int currentDimension;

static int currentDim[];

public static void main(String args[]) throws IOException {

int i, j;

int total;

masterDB = new LessonsDataBase("testdb.txt");
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// goalVector in production implementation would be recieved
// from WWW interface and/or test results supplied by ITS
goalVector = new TargetVector("testvecl.txt", masterDB.n) ;
finallist = new boolean[masterDB.m + 11;

tempList = new boolean[masterDB.m + 1];

currentDim = new int[masterDB.m + 1];

System.out.println(" ");

System.out.println("***********************************************************”);

System.out.println("* *) 5
System.out.println("* Dynamic Lesson Plan Generator x");
System.out.println("* *");

System.out,println("***********************************************************");
System.out.println(" ");

System.out.println("The complete lesson module database is:");
System.out.println(" ");

printDB(masterDB);

System.out.println(" ");

System.out.printin("The target vector selected is:");

System.out.println(" ");

printVec(goalVector);

System.out.printin(* ");

for(i = 1; i <= masterDB.m; ++i) {

finallList[i] = false;

for(i = 1; i <= masterDB.m; ++i) {

for(j = 1; j <= masterDB.m; ++j) {
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tempList[j] = false;

W = goalVector.target.components[i].binaryValue();
currentIndex = masterDB.lessonList[i].index;

currentDimension = ij;
quicksort (masterDB, 1, masterDB.m, i);

for(j = 1; j <= masterDB.m; ++j) {

currentDim[j] = masterDB.lessonList[j].components[i].binaryValue();

greedySetCover(1);

System.out.println("Selected Modules (by title):");

for(i = 1; i <= masterDB.m; ++i) {

if(finalList[i] == true) {
for(j = 1; j <= masterDB.m; ++j) {
if (masterDB.lessonList[j].index == i) {
System.out.println(masterDB.lessonList[j].title);

break;
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public static void greedySetCover(int index)

throws I0Exception {

int U = W;
while((U > 0) && (index <= masterDB.m)) {
if (((currentDim[index] | W) == W) && ((currentDim[index] & U) > 0)) {
U = (U & “currentDim[index]);

tempList[index] = true;

}
index++;

}

if(U > 0) {
System.out.println("No cover found for dimension "+currentDimension) ;
return;

}

for(int zz=1; zz <= masterDB.m; ++zz) {
finalList[masterDB.lessonList[zz].index] |= tempList[zz];

}

}
sttt

public static void printDB(LessonsDataBase A) throws IOException {

System.out.println("Dimensionality: "+A.n);

System.out.println("Number of Modules: "+A.m);

for(int i = 1; i <= A.m; ++i) {
System.out.print("Index: "+A.lessonList[i].index+" // ");
System.out.println("Title: "+A.lessonList[il.title);
for(int j = 1; j <= A.n; ++j) {

System.out.println("Lower Bound: "+A.lessonList[i] . components[j].begin()+
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" Upper Bound: "+A.lessonList[i].components[j].end());

}
System.out.println(" ");

public static void printVec(TargetVector A) throws IOException {

for(int j = 1; j <= masterDB.n; ++j) {
System.out.println("Lower Bound: "+).target .components[j].begin()+

" Upper Bound: "+A.target.components[j].end());

¥

System.out.printin(" ")

public static void quicksort(LessonsDataBase A, int p, int r, int k) throws IOExceptic
if (p<1o) {
int q = partition(A, p, r, k);

quicksort(A, p, q, k);

quicksort(A, q+t, r, k);

public static int partition(LessonsDataBase A, int p, int r, int k) throws IOExceptior

float x = A.lessonList[p].components[k].size();
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int i =p - 1;
int j = r + 1;

LessonVector temp;

while(true) {
do {
i=i- L
} while(A.lessonList[j].components[k].size() < x);
do {
i=1+1;
} while(A.lessonList[i].components[k].size() > x);
if(i < ) {
temp = A.lessonList[jl;
A.lessonList[j] = A.lessonList[il];

A.lessonlList[i] = temp;

}
else {
return j;
¥
}
}
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