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Abstract

Breast cancer will kill an estimated 43,900 women in the United States in 1997.
Another 180,200 women will be newly diagnosed with breast cancer in 1997. Breast can-
cer has been calculated to have the potential of striking one in eight women based on a
longevity of 95 years. Mammography is currently the best method for detecting breast
cancer. However, a significant portion, 10 to 30 percent, of women with breast cancer have
negative mammograms. Two-thirds of these false-negative mammograms prove to be evi-
dent in retrospect. Having a second radiologist perform a second reading has proven to be
successful at correctly diagnosing breast cancer.A lower cost and more reliable alternative

is a computer system to perform the second reading.

One indicator of breast cancer is a mass or density. This thesis will develop a new
algorithm to identify masses in mammograms. The system developed for this thesis is

capable of assisting a radiologist in making decisions.

The database used for algorithm development consisted of 104 mammograms selected
from cases at the Wright-Patterson Air Force Base Hospital. These mammograms contain
108 masses. The mammograms were digitized to 100 pum resolution with 12 bits of gray-

scale and cropped to create 2048 x 1024 pixel images.

The mass detection system consists of several modules. The digitized mammogram
is decimated to a 512 x 256 image, preprocessed for easier detection, and filtered with a
Difference of Gaussians filter. The system then detects objects with mass characteristics
using a Pulse Coupled Neural Network, extracts morphological and textural features from
each possible detection, and classifies as mass or normal tissue. The detection module of
the system detects 89 percent of the 108 masses, 96.36 percent of the cases, with a FP
rate of 11.37 per image. The classifier eliminates 4.67 FPs per image while retaining 92.7
percent of the detected masses. On a 2-view per case basis, the system successfully detects

and classifies 94.55 percent of masses with 13.4 FPs per case.

ix



Breast Cancer Mass Detection

Using Difference of Gaussians and Pulse Coupled Neural Networks

1. Introduction
1.1 Background

Breast cancer will kill an estimated 43,900 women in the United States in 1997-(46).
Another 180,200 women will be newly diagnosed with breast cancer in 1997 (46). Breast
cancer is the second leading cause of cancer death in women, exceeded only by lung can-
cer (46). It is the leading cause of cancer death among women aged 40 to 55. Breast
cancer has been calculated to have the potential of striking one in eight women based on

a longevity of 95 years (44).

Mammography is the use of x-ray technology to examine the internal structure of
breasts. The purpose of mammograms is to find abnormalities in the breast that are too
small to see or feel by external exam. If a tumor is found in this small stage, the survival
rate is very significantly improved (45). Mammography is currently the best method
for detecting breast cancer. However, a significant portion, 10 to 30 percent, of women
with breast cancer have negative mammograms (13). Two-thirds of these false-negative
mammograms prove to be evident in retrospect (13). These missed detections can be
attributed to the subtle nature of radiographic findings, poor image quality, eye fatigue,
or oversight by the radiologist (13). Although some lesions are missed, most recent data
indicates that death rates have begun to decline (46). Most of this apparent decrease is
believed to be a result of marked increases in the use of mammography, providing better
detection of early-stage breast cancers (46). Early detection improves the chance that

breast cancer can be located, diagnosed, and treated successfully.

1.2 Second Readings

Although mammography is the leading method of detection, mistakes occur and

women die. Having a second radiologist perform a second reading has proven to be suc-




cessful at correctly diagnosing breast cancer (2, 48). Dr. Byrd performed double readings
over a 3 year period (2). During that time, 11 of 208 total cancers were missed by the
first reader, but were identified by virtue of the second radiologist. In another study, two
experienced radiologists screened 18,827 women independently (48). Of these women, 90
total lesions were detected in retrospect. During the study, the screeners identified 70
and 62 tumors respectively (48). However, 10 extra cancerous detections were detected
by using two screeners (48). Fifteen percent more breast cancer cases were detected, be-
cause of double readings (48). The conclusions of the studies strongly suggest that double
readings should have a high priority in a screening program and be performed whenever

feasible (2, 48).

Mammography has become a high-volume x-ray procedure causing radiologists to
be consumed by the overwhelming workload (13). Employing twice as many radiologists
could double the expense of mammography, which, therefore, isn’t an option. A lower cost

and more reliable alternative is a computer system to perform the second reading (13).

1.3 Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) is when a radiologist uses the results of a com-
puterized analysis of radiographic images to assist in detecting lesions and in making
diagnostic decisions (13). The aim of CAD is to aid radiologists by increasing the number
of detections while reducing the number of false-positive diagnoses of malignancy, thereby
decreasing patient morbidity, as well as the number of surgical biopsies performed and
their associated complications (13). The measure of the success of CAD detection schemes
is the performance of radiologists when the computer output is used as an aid as compared

with the performance of radiologists alone (13).

Kegelmeyer performed a study of the success of CAD as a second reader (23). The
study involved four radiologists, who at different times, reviewed 85 cases twice, once with
and once without computer assistance. CAD increased the average radiologist sensitivity,
percent of true positives located, by 9.7 percent, moving from 80.6 to 90.3 percent with no

decrease in average specificity, percent of falsely classified benign cases (23).



1.4 Problem Statement

CAD, serving as a second reader, has been shown to improve the success of radi-
ologists at detecting breast cancer. This thesis will develop a new algorithm to identify
masses in mammograms. The system developed for this thesis will be capable of assisting

a radiologist in making decisions.

1.5 Scope

The system developed for this research detects masses in mammograms using a single
image. The research does not include microcalcification or parenchymal pattern detection,
but could be modified to work in conjunction with such systems. The basis of any CAD
system is to maintain the current practice of having the radiologist make the final decision

on patient case management.

The database used for algorithm development consisted of 104 mammograms with
108 masses selected from cases at the Wright-Patterson Air Force Base Hospital. The mam-
mograms were digitized to 100 micron resolution with 12 bits of gray-scale and cropped to
create 2048 x 1024 pixel images. The information contained in these images was manip-
ulated using Matlab and C++ code to develop an optimized system for the detection of

masses in radiographic mammograms for use as a second reading.

1.6 Owverview

The remainder of this thesis is organized as follows: Chapter II provides background
on breast cancer and mass research. Chapter III explains the methodology of the system.
Chapter IV presents the results and analyzes the performance of the system. Conclusions
are presented in Chapter V. The appendix contains detailed information about the database

and results.




1. Background
2.1 Breast Cancer

Breasts are composed of ligaments, glands, ducts, and fatty tissue (7). Breast cancer
is the result of abnormal growth of cells in the breast (26). Three indicators radiologists
look for as signs of cancers are calcification, parenchymal patterns, and masses. After
these indicators are identified, the radiologist makes a decision on patient management,

including follow-ups and biopsies, to determine malignancy (13).

2.1.1 Calcifications. Calcifications, or microcalcifications, are mammographi-
cally detectable, naturally occurring calcium deposits, which appear at the highest intensity
levels of mammograms. Microcalcifications range in size from 0.1 to 0.3 mm in diameters
and appear circular in shape. Microcalcifications are considered to be associated with can-
cer when they are grouped together and have pointed edges. Microcalcification detection
has been the subject of much CAD research at AFIT (10, 25, 31, 36). These methods
identified microcalcifications from their surroundings by filtering, adaptive thresholding,

or texture analysis.

2.1.2 Parenchymal Patterns. Parenchymal patterns are the textural patterns
which make up the breast (13). Wolfe classifies four risk groups based on four grades
for developing carcinoma of the breast (49). Tahoces et al uses a method containing
Fourier transforms, local-contrast analysis, and gray-level distribution and quantification to
classify mammograms into one of Wolfe’s four patterns. Based on this quantitative texture

measure, radiologist could assess the patients risk for developing breast carcinoma (47).

2.1.8 Masses. The word “mass” is used to indicate that a three-dimensional
lesion can be located in multiple views of mammograms. Otherwise, a lesion seen in only
one view is termed a density. In this thesis, the term “mass” is used to label detections even
when it has been located in only one view, since only one image at a time is being used
for experimentation. Examples of tissues, frequently confused with masses, are glands,

ducts, and dense portions of the breast (27). Since masses can be obscured or simulated




by these normal parenchymal tissues, interpretation can be difficult for both computers

and humans (14, 42).

Masses can vary in diameter from less than 0.5 cm to over § cm (29, 35). Masses
typically become palpable at sizes even less than 2 cm in diameter (38). Typically, mass
regions in mammograms are characterized by being 1) brighter than surrounding tissue,
although not as high contrast as microcalcifications, 2) having uniform density inside the

lesion, 3) approximately circular in shape, and 4) fuzzy around its edges (27).

Locating suspicious areas in mammograms is difficult since small differences in den-
sity between normal and tumorous tissues create low contrast between a tumor area and its
background (27). The boundaries can appear fuzzy, or possibly only partially visible (27).
Subtle masses can contain edges of low signal-to-noise ratio and complicated structured

background (37).

Two specific types of tumors being investigated in CAD are stellate and circumscribed
lesions (34). Stellate lesions consist of a central tumor surrounded by radial spicules (34).

Circumscribed lesions appear nearly circular and have a fuzzy boundary (34).

2.1.4 Utility of CAD. Computers perform various functions of image analysis
differently than humans and have potential to complement human observers (14). Thus,
the interpretation of mammograms may benefit from computer assistance by directing
radiologists to suspect regions, in order to avoid simple oversight. Computers extract
features from mammograms to classify areas that may need to be further investigated.

Depending on their nature, these features may or may not be visible to a radiologist (14).

The benefit of using computer-extracted features is the ob jectivity and reproducibil-
ity of the results. Radiologists, however, use many radiographic image features, which they
extract and interpret simultaneously and instantaneously. The development of computer-
extracted features requires initial determination of which individual features are clinically
significant prior to developing means for their extraction. The interpretation of screening
mammograms lends itself to CAD, because of the repetitive task involving mostly nor-
mal images (14). The aim of CAD is to alert the radiologist to structures that might be

otherwise overlooked.




2.2 CAD Mass Research

The computer is capable of detecting objects based on characteristics such as cir-
cularity, size, contrast from surroundings, and textures. Research groups have developed

various methods for finding masses and diagnosing malignancy.

2.2.1 Multiple View Schemes. Although radiologists use many mammograms
portraying multiple views over many years, CAD detection schemes use either one or
two views in making their evaluation. Yin et al use a nonlinear bilateral subtraction
technique to locate assymetric density patterns in corresponding portions of right and
left breasts (50). False positive (FP) reduction is accomplished through analysis of the
area, contrast, circularity, and border-distance based on the density and geometry of the

masses (50).

Zheng et al investigate the advantages and disadvantages of using the bilateral sub-
traction method versus a Gaussian filter method operating on a single image (51). Their
single image segmentation scheme yields more suspicious regions than their bilateral-image
subtraction scheme both prior and after feature analysis (51). The two reasons for a bilat-
eral subtraction scheme to lose true positive (TP) regions are: 1) the undetected masses
are generally small and of low contrast occurring anywhere in the image, or 2) they are
close to skin boundaries, where alignment and scaling between paired images are generally

difficult (51).

2.2.2 Single View Methods.  The following methods address mass detection using
a single image. Unless otherwise specified, the schemes are designed to work on both

circumscribed and stellate lesions.

Petrick et al use a mass segmentation procedure involving an adaptive density-
weighted contrast enhancement (DWCE) filter in conjunction with Laplacian-Gaussian
edge detection (37).The DWCE filter enhances structures within the breast followed by a
simple edge detector which defines the boundaries of the objects. An object splitting tech-
nique is used to eliminate tails from detections. Morphological features are then extracted

and used for classification.



Li et al employ adaptive thresholding and a multi-resolution Markov Random Field
(MRF) model-based method to segment suspicious regions of interest (ROIs) (29). This
process begins by decimating the digitized mammograms to obtain multiple resolutions.
Initial segmentation of the lowest resolution image is performed by adaptive thresholding.
By iteratively analyzing a varying number of a pixel’s neighbors, a pixel is classified as
background, normal tissue, or suspicious tissue. Once pixels are no longer significantly
changing classifications, the resolution is increased. Segmentation is complete when the

highest resolution image has been completely classified.

Ng and Bischof apply edge-oriented, field-oriented, and spine-oriented approaches
to detect lesions (34). Kaewlium and Longbotham use the correlation of three spatially
separated Gabor functions convolved with a digitized mammogram to highlight masses

and parenchymal patterns (20).

Chan et al use texture features derived from spatial gray level dependence matrices
to differentiate masses and normal breast tissue (8). Working on 256 x 256 ROIs, five tex-
ture features were found important. for classification based on stepwise linear discriminant
analysis. These features are derived from an original eight features of correlation, entropy,
energy (angular second moment), inertia, inverse difference moment, sum average, sum

entropy, and difference entropy.

Lai et al detect circumscribed masses with a method using a modified median filter
to enhance mammogram images and template matching to detect breast tumors (27).
The template matching stage locates suspicious areas by thresholding the cross-correlation
values and a percentile method for selecting a threshold for each image. A histogram test
eliminates false alarms. The intensity histogram of the detection and surrounding area is
found and its number of peaks is examined. If the histogram contains two peaks, the area

is considered suspicious; otherwise, it is eliminated from consideration.

Kegelmeyer detects stellate lesions using an analysis of the histogram of edge orien-
tation of local windows and also Laws texture energy measures (23). Karssemeijer and
Brake use statistical analysis of a map of pixel orientations to detect stellate patterns of

spiculated masses (21). At each level of a multiscale approach, orientation is obtained



at each pixel by taking the maximum output of three-directional, second-order, Gaussian
derivative operators. Two operators, sensitive to radial patterns of straight lines, are used

as inputs to a classifier for the detection of stellate patterns.

Huo et al analyze patterns and quantify the degree of spiculation of the detection
using radial edge-gradient analysis (19). Once an outline of a mass lesion is obtained,

analysis of the neighborhood at the margin is performed to evaluate the margin spiculation.

Each of these systems uses different means for extracting the mass and various fea-
tures for the classification of the masses. The databases used for algorithm development
and testing are all different as is the size of images, number of gray levels, and difficulty

of cases.

2.2.3 Database Comparisons. Appearing obvious from the brief descriptions
above, many investigators are involved in the development of CAD methods for mammog-
raphy. Although it would be attractive to be able to diagnostically compare these schemes,
the results have been purposefully omitted. A qualitative comparison of various methods
currently are not possible because of the use of different databases, with images varying in
size, gray-level bit depth, and case difficulty, as well as having different means of evaluating
results (13, 14, 35). It can not be assumed that a computerized scheme that achieves a
high sensitivity with one database will achieve a similar performance level with another

database or with an actual patient population (13, 35).

Chang et al attempt to display their system’s robustness to change by testing it under
different conditions. The system contains five stages where each perform an evaluation on
the mammogram. Each stage is permitted to keep the one detection which scores highest
on that stage’s criterion. The five detections are fused to form the result. Chang attempts
to show the robustness of the system based on its ability to perform while doing each
of the following: 1) selecting a maximum of two suspicious mass regions at each stage, 2)
eliminating any one individual stage, 3) adding noise, and 4) re-digitizing the mammogram

and re-processing the image.

Nishikawa experiments with the effects of case selection on the performance of a single

system (35). When testing the system on separate sets, he shows that the sensitivity can



range from 26% to 100% (at a specific false positive rate). By altering the test set by only
20% of its cases, the sensitivity can decrease by 15% to 25%. Since no practical means of
comparing results exists today, using qualitative measures such as size, contrast, and level

of subtlety of cases in a database, is suggested (35).

The ultimate test of any computerized analysis scheme is its ability to improve the
performance of the radiologist (13, 14). Since CAD systems will be used as second opinions,
the system may not have to be perfect. The overall accuracy of the system could possibly
be less than that of the radiologist because the computer detections may not completely
overlap those of the radiologist (13, 14). Best use requires radiologists to accept using a

CAD system and learn how to best use it.

2.8 Summary

Mammograms may contain three indicators, calcifications, parechymal patterns, and
masses, which provide information about the possibility of breast cancers. This thesis
attacks the problem of mass detection for use as a second opinion to radiologists. Many
groups have worked in this area. Their methods include bilateral-image subtraction, filter-
ing, region growing, and template matching. Many different features, such as size, contrast,
and textures, are extracted to try to reduce the number of false positives. At present, the
performance of the systems can not be compared since databases and metrics differ. One

means of comparison is by extensively characterizing the database used for each study (35).



II1. Methods
3.1 Introduction

This chapter describes two major areas: 1) the database and 2) the several units

forming the mass detection system.

3.2 Database

Mammograms used for this study were obtained through an agreement with the
Wright-Patterson Air Force Base Hospital. The malignant cases were verified cases with
malignant pathology between 1991 and 1995. The benign cases were chosen by selecting

the benign cases closest in time to each malignant case (17).

Once selected, the mammograms were digitized using a Lumisys 200 automatic laser
film digitizer. The full-breast films were digitized at a resolution of 100 um with 12 bits
of gray-scale per pixel. The digitizer ranges from 0 to 3.5 Optical Density (OD) at a

resolution of 0.001 OD. Therefore, each pixel contains a value equal to 100 times its OD.

By cropping patient information and extraneous edges, database images were stan-
dardized to be 2048x1024 pixels to represent the 20.48cm x10.24cm of the original film.
Pathology and location of the masses, as identified by a physician trained in radiology (17),

were maintained for algorithm development and validation of results.
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Table 1  Complete AFIT database statistics: area in number of pixels, diameter of circle
with equivalent area, contrast, and difference in optical densities inside and
outside of the mass.

Area Equivalent Contrast | Difference

Diameter(mm) in OD

Full Database mean 11519 10.99 0.068 0.357
standard deviation || 12139 5.1 0.033 0.167

Malignant Masses mean 12256 11.08 0.0680 0.366
standard deviation || 14794 5.8 0.0345 0.186

Benign Masses mean 10724 10.90 0.0677 0.348
standard deviation || 8477 4.26 0.0315 .146

Since no valid means for comparison of results exists, researchers have indicated the
best way to substantiate a breast cancer detection system is to detail the sizes and contrasts
of the masses in the database (35). Histograms detailing the AFIT database are shown
in Figure 1. The size and contrast information are obtained by first manually extracting
the mass from the digitized mammograms, then calculating the statistics. The diameter is
calculated by finding the diameter of the circle equivalent in area to the number of pixels

forming the extracted mass. Size and contrast can be defined in a variety of methods.

One definition for contrast is in terms of differences in average OD as follows (52):

Contrastmfﬁnop = Cin — Cout (1)

where C;, and C,,; are the mean OD values of the area inside and outside the mass,
respectively. The mean value outside the mass was calculated by finding the mean intensity

of the area outside the mass border as shown in Figure 2.
Another definition for contrast is (33)

Cin - Oout

Contrast = ————
Cin. + C'out

where C;, and C,,: are defined as previously stated.

The statistic for the database are found in Table 1. The statistics for each mass alone

can be found in Appendix A. In order to classify the AFIT database as comparable to others

11
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Figure 1
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The first column contains the Histograms for Mass Sizes and the second column
shows the Histograms for Contrast of the Masses. The rows are broken into (a
and b) Complete Database, (¢ and d) Malignant Masses, and (e and f) Benign
Masses. Note: all histograms are of the same scale. Contrast histograms using
the difference in OD definition are not shown here, but may be seen in Figure

4.
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Figure 2

Box containing outside area is found by finding the distance, d, from the cen-
troid to four points (immediately up, right, down, and left of the centroid) of
the perimeter of the mass. The outside box is the box containing the points
less than twice the distance from the centroid to selected perimeter point in
each direction. This method allows contrast to be less dependent on the size
of the mass, since the distance from the perimeter to the bounding box is not
a fixed number.
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This figure compares the AFIT database to other databases.
database contains a much larger percentage of small masses than the other

databases shown here.
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Table 2  Size distribution comparison for several databases found in literature. This
shows the percentages of masses less than or equal to a specified limit (11mm
and 20mm.) This measure is important since smaller masses are typically more
difficult to identify.

1 [ % < 11mm | % < 20mm |
[ Nishikawa [| 1667 [ 47.78 |
| Li | 1042 | 4167 |
[ Thurfjell || 2537 | 7612 |

Chang || 2727 | 8273 |

Chan || 4583 | 8750 |
| AFIT [ 6019 | 9259 |

in literature, a comparison of the sizes and contrasts of the masses is used. Figure 3 shows
the size distributions of various databases found in literature (8, 9, 29, 35, 48). Table 2
compares the distributions in terms of percentage of the databases smaller than 11 mm
and 20 mm. The AFIT database has the largest percentage of small masses, which are

generally considered those more difficult to detect.

Another comparison of the AFIT database to others is by comparing the contrasts
of the masses. Figure 4 shows the contrasts of the masses of the AFIT database and two
others found in literature. Contrast for this comparison is the average difference in optical
density of the mass and its surrounding tissue. No accepted definition has been established
for the amount of surrounding tissue to use in the definition of contrast. Zheng compares
several means for doing this and reported several statistics on his database (52). The
numbers reported here are those he calculated using an outer area 25 pixels larger in four
directions of the mass. Chang (9) uses a similar box that is 20 pixels larger than the largest
axis of the mass. Both schemes are based on a resolution of 400 pm. As previously stated,
contrast for the AFIT database is calculated using the outer box as shown in Figure 2. To
translate this measure to terms similar to Zheng and Chen, consider that the average mass
in the AFIT database has a diameter of 10.99 mm which at 400 pm is equivalent to 27.475
pixels. In Zheng’s study, he shows that larger the outer boxes increase the measure of
contrast (52). Therefore, the scheme used to calculate the contrast of the AFIT database

is similar to the other two measures, but possibly slightly biased toward higher contrasts
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Table 3 ~ Complete description of number of images per case in the AFIT database.
NOTE: Two 2-view cases, 1 malignant and 1 benign, contained two masses
in each view.

# views/case || # Malignant Cases ] # Benign Cases | Total |
4 1 0 1
2 23 23 46
1 4 4 8
TOTALS 28 27 55

than the other databases. Even though its contrast is calculated with a larger window size,

the AFIT database has the highest percentage of low contrast masses.

Since mass size and contrast has been shown to be indicative of the the difficulty of
the database, these are the selected mean for evaluating the AFIT database and therefore
results obtained using it. Both the size and contrast measures of the masses in the AFIT
database show that it is a comparable if not a more challenging database than those
described in literature. Overall, the masses in the AFIT database are small and have low

contrast making this database challenging for breast cancer research.

The AFIT database contains a total of 55 cases containing 58 masses (104 images
containing 108 masses). Most cases consist of two views, but 1 case had 4 views and 8
others had only a single view. Each view consists of one image. The number of images per

malignant and benign cases is shown in Table 3.

Mammography cases typically consist of four films, two views of each breast. The
details in Table 3 refer to the number of films for each cases in the database and not the
actual number of films taken by the radiologist. The 4-view case in the database indicates
that the patient had a mass in each breast creating a two 2-view case situation. A 2-view
case contains the two images of the breast containing the mass. A 1-view case is a situation
in which the radiologist could only locate the mass in a single view of that breast. The
database contains two 2-view cases (1 malignant and 1 benign) containing two masses in

each view.

The AFIT database consists of a balanced data set with approximately equal numbers
of malignant and benign cases and masses. As many cases as possible were selected for

this study to ensure a good cross-section of typical mass cases.
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This figure compares the contrast of the masses in AFIT database to two
other databases. The difference in OD is calculated using the mean OD in-
side and outside of the mass. The method used to calculate contrast for the
AFIT database uses a larger outside area to compute the mean outer intensity.
Therefore, the contrast is biased toward higher values than the other databases.
However, the AFIT database contains the largest percentage of low contrast
masses.
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Figure 5 Mass Detection System using a Difference of Gaussians filter and Pulse Coupled
Neural Network. The systems takes a 2048x1024 mammogram as input and
outputs a mask of all possible detections.

3.8 Mass Detection System

The system developed for this thesis is composed of six major components as shown
in Figure 5. The system has been designed to take as input a 2048x1024 pixel digitized
mammograms with 12 bits of gray-scale information per pixel. The output of the system
is a mask of all suspicious areas. The six components of the system are described in the

following subsections.

3.3.1 Segmentation of Tissue from Background. Properly segmenting the breast
tissue from the background of the digitized mammogram is important to two parts of the
mass detection system. First, the preprocessor uses the breast mask to manipulate the
decimated image for better processing. The mask allows the preprocessor to enhance just
the breast tissue or to vary the background. Second, the breast mask is used to ensure that
all detections are within the tissue. Segmentation of the breast tissue from the background
is done using a pulse coupled neural network (PCNN). To understand how segmentation

is performed, the PCNN needs to be explained.
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3.3.1.1 Pulse Coupled Neural Network. The PCNN is a physiologically
motivated artificial neural network. The basic details of how the PCNN works and the
parameters used for this research will be explained. More information on the biological

and theoretical foundations for the PCNN can be found elsewhere (5, 6, 11).

The PCNN for this research was designed to take as input a two-dimensional image.
Similar PCNNs have been previously used by AFIT students for MRI segmentation and
image fusion for object detection (1, 5), however mass detection using the PCNN has never

been previously investigated.

The significance of the PCNN is its modulatory behavior of neurons. Each pixel of
an image is considered a neuron. Each of these neurons are characterized by a modulatory

inter-neuron linking similar to the interaction of cells in primate primary visual cortex.

A neuron will respond or “fire” when its internal activity reaches a certain threshold.
The stimuli driving this internal activity is the neuron’s feeding input and linking connec-
tions. An example of feeding and linking connections of a single neuron within the PCNN

is shown in Figure 6.

The equation defining the internal activity for this PCNN is

Up = Fk(l + ﬂLk) (3)

where Fy, is the feeding input to the k*® neuron, Ly, is the linking input to the neuron, and
B is the linking strength of the connections between neurons. When the internal activity
of the k™ neuron, Uy, exceeds a threshold, 6, the neuron will fire. For this application,
Fy, is the pixel intensity of the k** pixel of the input image and the Ly is the sum of
the inputs to the k*® neuron from its connections to its neighboring neurons based on its
linking radius. In other applications, Fj can be effected by its neighboring pixels based on
its feeding radius. For this application, the feeding radius has been set to zero. Similar
to neighborhood averaging, linking radius size will determine how many of a neuron’s

neighbors will be effected when it pulses (5).

Theoretically, the operation of the PCNN is temporally based. All neurons are

considered to have fired at ¢ = 0. Normalization by the maximum intensity brings all
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Figure 6

The connectivity of a single neuron (Y) with a linking radius of 1 is shown;
Thus, Y} receives its feeding input through Fj and its linking input through
Ly, where j are the nodes providing the feeding input and ¢ are the 8 neighbors
providing the linking input. Notice that this Fj is the result with feeding radius
of 1. IHlustration provided by Capt. Randy Broussard (AFIT/DS/ENG/97-
02).
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Figure 7 As timesteps increase, the ), or amount of Total Input to a Neuron decreases ex-

ponentially making it possible for more neurons to fire. Recall that all neurons
fired at ¢ = 0.and that the intensities have been normalized so the maximum
value of U, at ¢ = 1, timestep 1, is 1.0. Illustration provided by Capt. Randy
Broussard (AFIT/DS/ENG/97-02).

inputs between 0 and 1. At ¢ = 1, the neurons with a normalized magnitude of 1 will fire.

Once a neuron pulses, its linking neighbors receive a contribution through their linking

connection. Although a neuron may not have a high enough feeding input, Fy, it may

receive sufficient linking, Ly, to fire. This will occur when Fj, = (1 + BLg) > 0. Once this

neuron fires, all its neighbors will receive a pulse. A steady state occurs when no more

neurons will fire at ¢ = 1. The timestep is then increased to t = 2, 6 decays, and the

process repeats itself until either all neurons have fired or the last timestep to be used, 7,,

is achieved.

As time increases, 6y, the level of Uy, necessary to fire, decays exponentially. As seen

in Figure 7, the relationship of number of timesteps utilized to the time constant value is

21



significant. When using the first 10 timesteps, the advantage of the PCNN to thresholding
is shown by the “tail” or additional range of Uy that pulses due to linking. For later
timesteps, this tail nearly disappears making the PCNN output at these timesteps quite

similar to simple thresholding of a section of the dynamic range.

The PCNN can be used in a variety of ways, two of which will be explained. First,
the PCNN output can be divided into two classes, pixels which have pulsed and that have
not. Second, classes can be assigned based on the timesteps when pixels pulsed. Thus, a

pixel pulsing at ¢ = 5 would be a member of class 5.

This mass detection system utilizes both of these methods. Using the first method,
the PCNN segments the breast tissue from background creating a breast mask. Later in
the system as discussed in Section 3.3.5, the PCNN identifies mass-like objects from the
DOG filter output using the second method. Other uses for the PCNN for mass detection
have been investigated and show promise. These techniques will be further explained in

Section 5.2.

After experimentation with the PCNN for full-breast segmentation, the following
parameters are selected: § =1, LR =1, T = 3, and 7, = 5. These parameters were
chosen so that the whole breast would pulse and background would not. The sensitivity
of these parameters are shown by Figure 8. With the parameters set as in Figure 8a,
nearly all of the images in the database would segment properly. However, in an image,
such as a002b00m shown in Figure 8b, a portion of the breast appears to be close to
background gray-scale. By using more timesteps and dividing the results into two classes
based on whether pixels pulsed or not, images like 2002b00m, can be segmented properly
without effecting the results for the other images. The success of this technique is shown

in Figure 8d.

3.3.2 Decimation.  Since the mammograms are digitized at 100 um and the focus
of this research is masses ranging from less than 0.5 to greater than 2 cm (5000 to 20000 zm)
in diameter, the images can be decimated to drastically reduce the computational intensity
of the system. Decimation is typical for mass detection (23, 37). Through experimentation,

decimation by a factor of 4 in each direction was selected. The effects of this decimation on
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Figure 8
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These are two sets of results of using the PCNN to segment the breast tissue
from the background in two mammograms. (a) and (b) are images a001d00m
and a002b00m processed using the same PCNN parameter. The settings used
for (a) and (b) properly segment most images, however difficulties arise for
images such as (b), which contain portions of the breast, that did not block
the x-rays. Therefore, the image in those areas appears similar to background
intensity. (c) and (d) were processed with different parameter settings. The
combination of these settings and the use of multiple timesteps to assign class
labels allow the breast tissue to segment properly in images such as a002b00m.
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Figure 9 When decimating by a factor of 4 in each direction, the amount of information

will be 1/16th the original as visually shown. The diameter in pixels represent-
ing a lem mass is only decreased by 1/4, since diameter is 1-dimensional.

the image size is shown in Figure 9. The effect decimation has on identifying a 1 cm mass
is that the task of locating an object with a 100 pixel diameter is changed to detecting
objects with a diameter of 25 pixels. The effects of this in the whole range of images is
that masses ranging from 0.5 to 2 cm in diameter will be 12.5 to 50 pixels in diameter

respectively.

The lower resolution did not lose important information for finding masses from
the mammograms. Preprocessing the 2048x1024 image with an averaging filter prior to

decimation was not necessary due to the size of the objects being detected.

3.3.8 Preprocessing. Once decimated, the image needs to be improved to en-
hance the probability of later detection, as well as to reduce the probability of later false

detections. Preprocessing for a CAD system is different than preprocessing for a human vi-
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sual and recognition systems. One form of preprocessing generally used to enhance images
for the human visual system is histogram equalization. Basically, histogram equalization
spreads the gray levels of the image increasing the dynamic range of gray levels and, conse-
quently, producing increased contrast. For further discussion and derivation see (15). The

result of histogram equalization on one mammogram is shown in Figure 10b.

An alternate means of preprocessing is to find the mean of the intensities within
the breast tissue and make the entire background this level. This technique reduces the
extreme difference between the breast tissue and background. By doing this, the DOG
filter does not detect the edge of the breast as strongly and therefore allows for better
detection of objects within the breast. Yet another technique is to mirrorpad the image
about the breast edge. This method also attempts to reduce processing edge effects due
to the intensity differences of tissue and background by reflecting the breast tissue about
the breast edge from the segmentation mask. Examples of these techniques are shown in
Figure 10(c,d). Comparison of results obtained using these methods are presented later in

Chapter IV.

3.8.4 Difference of Gaussians (DOG) Filtering.  As discussed previously in Sec-
tion 2.2.2, DOG filtering is widely used in breast cancer detection systems. This section
will briefly discuss how a DOG filter is created, how it works, and how it may be tuned
for this database.

3.3.4.1 Definition and Background.  The difference of two Gaussian proba-
bility density function distributions (DOG) filter is motivated by the first stages of visual
processing (30). The visual system contains orientation and spatial frequency selective
channels. Each point in the visual field has four size-tuned filters. The spatial receptivev

fields of each of these filters has approximately the shape of a DOG.

The two-dimensional DOG filter is defined as

2.,.2 2, .2
7+ y ¥ty
G(z,y) = C1693p(—~—2-7;;?—) — coexp(— pE ) (4)
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Figure 10  Three techniques for preprocessing a breast image before DOG filtering. (a)
Original decimated mammogram, (b) Histogram equalized, (c) Technique
making the background equal to the mean intensity of breast tissue, and
(d) Mirrorpadding about the breast edge.
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Figure 11  The (a) 1-dimensional and (b) 2-dimensional Difference of two Gaussian dis-
tributions (DOG) kernels used to filter the images. This particular kernel
has a dogsize or diameter at zero crossing of 25 pixels (equivalent to 1 c¢m).
The gray-scales in (b) have been scaled from the largest negative (darkest) to
greatest positive (brightest).

where ¢ and ¢p normalize the area under each Gaussian to unity, oy and oy represent the
standard deviations, and « and y are the horizontal and vertical indices. The best approx-
imation from an engineering perspective is when the Gaussians have standard deviations
in the ratio 1:1.6 (30). For this reason, this ratio was maintained for this thesis. One and

two-dimensional views of the DOG in the spatial domain are shown in Figure 11.

8.3.4.2 Functionality. The DOG can be tuned spatially or in the frequency
domain. The functionality of this will be shown through example. Figures 12 and 13 show

the results of DOG filtering two mammograms.

The two different sizes of masses show the difficulty of detecting masses with a
single DOG filter. As shown in Figures 13c and 13d, when the DOG filters a digitized
mammogram, densities of the size of the DOG are enhanced whereas areas which are
much smaller or larger are eliminated. If the DOG filter is tuned for smaller masses like

the one in a001d00m, larger masses, such as the a002b00m mass, are missed. The converse
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Figure 12 Original decimated mammograms, a001d00m and a002b00m, are shown in (a)
and (b) respectively. (c) and (d) are the results of filter with a DOG filter
with dogsize of 10. By doing this, small objects like the mass in a001d00m
are enhanced, while only, at most, a small portion of the mass of the size
of a002b00m will be found. The truth box is provided to show the goal of
filtering.

28




50 100 150 200 250 50 100 150 200 250

(a) (b)

150 200 250

50 100

(c)

Figure 13  (a) and (b) are the result of DOG filtering with a dogsize of 20. (c) and (d)
were created by filtering with a dogsize of 30. Through the course of these two
figures, the size restriction of a DOG filter can be seen. The mass in a001d00m
was best found using a smaller DOG kernel. The mass in a002b00m needed

a larger DOG kernel to be properly identified.
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Figure 14  The results of the PCNN on a DOG filter image is shown in (a). This was
accomplished with # = .35, linking radius = 1, T = 50 timesteps, and 7, =
100. (b) shows how the PCNN output can be turned into a detection mask.

of this is also true. Therefore, the DOG filter needs to be designed to find as wide a range
as possible. An intelligent postprocessor to the DOG filter also aids in detecting masses

even after being filtered with other than an ideal sized filter.

3.3.5 PCNN to Obtain Detections. Another use of the PCNN, described in
Section 3.3.1.1, is as an object detector. The DOG filtered image is used as the input to
this second PCNN module. The desired output is an image with the information necessary
to extract mass-like objects from its surroundings. The results of using the PCNN for

object detection are shown in Figure 14.

The PCNN parameters are adjusted through experimentation to reach a range where
the PCNN could detect masses from the DOG filter output. These PCNN parameter
adjustments are needed for use as an object detector instead of a full-breast segmentor.
For object detection, localized linking is desired instead of linking within the whole breast,
but linking strength, 3 still needed to be strong enough to make detections large enough
to be considered masses. A detection of a small number of pixels would be disregarded

since masses are relatively larger areas. For this reason, through experimentation 8 was

30



found to work best in the range from 0.3 to 0.4 while the linking radius, LR, remains 1
so that each pixel still connects only to its 8 neighbors. Since masses will not always be
the most intense areas in the DOG image, a means of detecting these areas is needed. By
increasing the theta time constant, 7,, to 100 and by using 50 timesteps of these 100, the
PCNN was allowed to work in the zone where linking works best. By using 50 timesteps,
masses with low global intensity, but with a local peak, are still detectable. A method is

now needed for translating the results of the PCNN into a detection mask.’

3.8.6 PCNN to Detection Mask. The PCNN to Detection Mask module takes
the PCNN image as input, searches each timestep, also called “layers”, for areas of the
correct size that pulse prior to its surroundings, and creates as output a mask of all possible
detections. The process of evaluating each possible detection of each layer of the PCNN
image is best described by the following steps with their accompanying images as well as

a flow diagram seen in Figure 15.

Recall that pixels of the input image will contain the value of the timestep when
each pulsed; For example, a pixel which pulsed at timestep 10 will have a value of 10 and

a pixel that did not pulse within the number of timesteps will contain a zero.

1. Make an image of the first timestep (¢ = 1). (Figure 16b)

2. Separate image into individual detections of this PCNN slice, since multiple areas

can pulse at a single timestep. (Figures 16c)
3. Examine one detection or blob. (Figures 16d)
4. Calculate the area of the blob.

5. If 122 < area < 1963 (or 0.5cm < diameter < 2cm), continue, else go to 3 and look
at the next blob.

6. For ¢ =1 add all blobs directly to the detection mask and go to step 1 and examine

the next timestep slice.

7. Check to see if the blob is a doughnut. (Figure 17)
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Figure 15
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The PCNN to Detection Mask module creates an output of all possible de-
tections. The module receives as input an image created by using the PCNN
on the output of the DOG filter. A detection mask is created by iteratively
examining each “blob” of each timestep slice. A “blob” is a termed used to

refer to possible detections in a timestep.
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Figure 16 The PCNN output for the DOG image of a002b00m is shown in (a). (b)
contains everything that pulsed at the first timestep, ¢ = 1 and shows how
each blob is labeled (given a unique value) for individual inspection. (c) shows
one such blob which will be used to demonstrate doughnut removal. The first
doughnut situation occurs at ¢ = 14. (d) contains all blobs which made it
through the detection scheme through the first 14 timesteps.
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Figure 17  The pixels that pulse at ¢t = 14 are shown in (a). There are two doughnuts
at this timestep. The doughnut in (b) will be analyzed. (c) shows overlaying
the doughnut in (b) and the dilated image of all prior pulsed pixels. Since
an overlap existed, the doughnut was eliminated and not included into the
detection mask shown in (d). This mask shows the complete results of this
mammogram at the output of the PCNN to Detection stage.
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(a) Take all previous timesteps and create an image of all pixels which pulsed at

those timesteps.
(b) Dilate this image once.
(c) Check for an intersection of the blob image and the dilated image.

(d) If an intersection exists, eliminate blob from consideration, else add blob to the

detection mask.
8. Perform steps 3 through 7 until each blob at this timestep has been examined.

9. Perform steps 1 through 8 incrementing the timestep each time until all valid timesteps

have been analyzed.
10. Detection mask is sent as output of module. (Figure 17d)

Some comments about this process need to be presented. Since the PCNN normalizes
intensities prior to pulsing, it is guaranteed that something will pulse at the first timestep,
(t =1). Also, the blobs at the first timestep do not need to go through the doughnut stage,
since they are first to pulse and could not be a doughnut. In step 4, area is calculated as
the number of pixels forming the blob under consideration. The purpose of the area check
in step 5 is to keep only those blobs whose equivalent circular diameter would be between
0.5 and 2.0cm. The valid timesteps, referred to in step 8, are those which have pixels that
have pulsed since each timestep is not guaranteed to have had pixels pulse. The output of
the PCNN to Detection module is a binary mask of all areas of local maxima with areas

in the range of 122 to 1963 pixels.

3.3.7 False Positive (FP) Reduction. Once the detection phase of a pattern
recognition system has selected all possible detections, feature extraction and classification
need to be performed to reduce the number of false detections. This is done by calculating
features from all possible detections and using a classifier to reduce the number of false
detections while keeping the true positives (TPs). The following subsections will address

the features and the classifier used for FP reduction.

3.3.7.1 Feature Fztraction. A total of 34 features are extracted from each

detection. These features are divided into two categories: morphological and textural.
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The purpose of using morphological features is to keep detections that have mass-
like shapes, locations, and areas. Circularity measures make good features because the
density patterns of actual masses are generally more circular than those of glandual tissues
or ducts (50). These circularity features, as well as other morphologically based features,
make up 9 of the 34 features. The nine features are circularity, rectangularity, compactness,
four normalized radial length features, minimum distance to border, and the area of the

object.

Circularity, rectangularity, and compactness, the first three features, provide a mea-
sure of the overall shape of the tumor without specific detail to the tumor boundary.
The circularity feature is found by creating a circle with an area equivalent to the object
area, centering this circle at the object’s centroid location, and analyzing the overlap (37).

Circularity is defined as

area(Agp; N Acq)
area(Aep;)

; (5)

Circularity =

where A; is the area of the object and A4 is the area of the equivalent circle. Figure 18

shows an example of circularity and rectangularity. Rectangularity is defined as (37)

A g
Rectangularity = AObJ , (6)
bb

where Ay, is the area of the minimum sized bounding box completely containing the object.

Compactness is defined as (24, 38, 43)

2

.
Compactness = Ob]' , (7)
obj

where Py is the number of perimeter pixels of the object. Compactness is a measure
of how the perimeter pixels vary in relation to the center. A circle would have a lower

compactness than a jag- edged object.

The four normalized radial length features provide more details about the tumor
boundary than the gross shape features, such as circularity (24). The radial length is

defined as the Euclidean distance from the tumor centroid to each of the points of the
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Abb

Aeq

Figure 18  Circularity and rectangularity defined pictorially as defined in equations (4)
and (5). The circle is the circle with the equivalent area of the detection. The
rectangle is the bounding box which completely contains the detection.
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tumor perimeter and normalized by dividing by the maximum radial length (24). The
normalized radial length (NRL) features of mean, standard deviation, area ratio, and zero
crossing count are calculated based on the following definitions. The NRL plot is the

border of the detection stretched into a one-dimensional plot based on the NRL.

The mean and standard deviation of the NRL line plot for tumor 7 are calculated as

LN
M:-ﬁkz::lrk (8)

_ |1 Y 9
i =4 D (e — i) 9)

k=1
where 7y, is the value of the normalized radial length at pixel k along the tumor perime-
ter (g, Yr), p; is the mean of the normalized line plot, o; is the standard deviation of the

normalized line plot, and N is the number of pixels in the tumor perimeter.

The area ratio finds the intersection of the circle with a radius equal to the mean
NRL and the tumor when the circle is positioned at the centroid of the tumor. The area

ratio is defined as

N
1
AreaRatio = N kgl(rk — 1) (10)
where
Area Ratio = 0 Vrg, < ;. (11)

The zero crossing count feature gives detailed information about the tumor boundary.
The zero crossing count is simply the number of times the line plot of the tumor boundary

crosses the mean radial length or

ZCC = number of zero crossings of {ry — s }_;. (12)
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Table 4 Laws five 1-dimensional kernels or 5-vectors. The kernel names and correspond-
ing labels are line (1), spot (s), ripple (r), edge (e), and wave (w).

label kernel
1 [14641]
s |[1020-1]
r [1-46-41]
e [-(1-2021]
w [[120-21]

Table 5 This 1515 kernel is an example of a Laws 5x5 convolutional kernel.

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

The last two features in this category are area and minimum distance to the border.
The area is calculated by summing the number of pixels forming the mass. The minimum
distance to the border feature uses information about the location of the tumor to aid in
reducing false alarms. Generally, most detections along the breast edge are false alarms
due to the filtering of the image. Tumors are typically found in the interior of the breast

further away from the skin (3).

Since the morphological features are not able to completely differentiate between the
masses and the false detections, features utilizing information from the pixels interior to
the detection are desired. A set of such features are found using Laws texture energy
measures (28). These features have previously been used for breast cancer detection (22,
23, 39). Laws created five one-dimensional kernels, which may vary in length; they were

chosen to have a length of five for this research and are shown in Table 4.

A 5x5 kernels is generated by convolving a vertical 5-vector, such as 15,‘With a
horizontal 5-vector(28). This operation may also be considered as a cross-product or vector
multiplication. Each 1-dimensional kernel is multiplied by the transpose of itself and each
of the four others to create twenty-five 5x5 kernels. The example shown in Figure 5, the

1515 kernel, is the result of the 15 kernel vector multiplied by its transpose. These kernels
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Table 6 The maximum result of each Laws 5x5 convolutional kernel when convolved
with an image with a maximum gray-scale value of 4095.
rbrd | 524160 | ebsb | 49140
15s5 | 131040 | 15e5 | 196560
whrb | 196560 | sbsh | 32760
sbeb 49140 ebwb | T3710
15r5 | 524160 | 15w5 | 196560
s515 | 131040 | s5r5 | 131040
sbwb | 49140 r5s5 | 131040
rbl5 | 524160 | rbeb | 196560
rbwb | 196560 | 515 | 196560
ebrd | 196560 | ebeb | 73710
wbl5 | 196560 | whwb | 73710
wbed | 73710 | whsb | 49140
1515 | 1048320

are then used to calculate the texture of the detections. The feature is extracted of each

of the 25 kernels using the following steps:

1. Extract from the original decimated image, a box containing the detection with a

border the size of the kernel about the extreme points of the detection.
2. Convolve the kernel with the box.
3. Sum the absolute value of the parts of the box containing the detection.
4. Divide by the area of the detection to normalize for size.
5. Normalize this value by the maximum possible response of the kernel.

In step 1, the box to be extracted from the image must be large enough to contain the
entire detection and the kernel on each side. This technique ensures that the information
about the border is not lost. Step 5 is a technique developed for this thesis. Since these
features are being used in a classifier, the maximum and minimum responses to the kernels
need to be known for feature vector normalization. The 1515 kernel is the only kernel
which does not sum to zero. The maximum response to this kernel is achieved when the
5x5 kernel is positioned over a 5x5 block of pixels inside the detection all with the value
of 4095, the maximum intensity using 12 bits. This maximum, as well as the maximums

for the other 24 kernels, are shown in Table 6. The minimum for all kernels is zero.
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Since the other 24 kernels have both positive and negative values, which sum to zero,
the maximum response occurs under two circumstances: 1) all positive cells are positioned
over pixels with values of 4095 and all negative cells are positioned over zeros, or 2) since
the absolute value is taken in step 3, the opposite of the first case occurs and negatives lie
over 4095 pixels and positives lie over zeros. Although these circumstances have extremely
low probabilities, this technique allows all features to be within a given range in proximity
to the scale of other features. The importance of this is that the classifier can be trained
using normalized training data without difficulties when testing with samples that could

results in much greater values.

Feature extraction is now complete. The mask of possible tumors that entered this
module has now been transformed into vectors containing information about the shape
and texture of each detection. Having extracted these 34 features from each of the suspect
regions, a classifier is used to differentiate between masses and normal tissue to reduce the

number of false positive detections.

3.8.7.2  Classifier. Through experimentation, an artificial neural network
(ANN) was selected as the classifier for the mass detection system. Background on ANNs

can be found elsewhere (40). This thesis will only describe its ANN configuration.

Figure 19 shows the feedforward back-propagation ANN used as the mass detection
system classifier. The initial neural network had the 34 features as inputs. The number
of features was later reduced through feature selection, which will be discussed in Section
4.3.3. Tangential sigmoids were experimentally selected for the activation function for the
hidden and output nodes. The network produced the most favorable results using five
hidden nodes. A single output node was chosen so that a threshold could be set to get

specific TP and FP rates during training and then used to test.

The network was trained on 10 different sets of 45 true mass samples and 45 samples
of false alarms. A threshold was set on the outputs of the network and used to test the

remaining data. Results of the ANN will be discussed in Chapter IV.
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1 output node

34 input features

5 hidden nodes

Figure 19  Multilayer Perceptron Classifier Architecture using 34 features as input and
generating a single output value that is compared to a threshold for classifi-

cation.

3.4 Summary

This chapter introduces the AFIT database and the methods used in the mass de-
tection system. The database consists of 55 cases, totaling 104 images, which contain 108
masses. Size and contrast of each mass was calculated and presented. When compared to
other databases, the AFIT database contains the largest percentage of small, low contrast
masses. The mass detection system was discussed by detailing each of its components.

Various options, such as different preprocessing, were discussed. Experimetnal results will

be discussed in Chapter IV
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IV. Results and Analysis
4.1 Introduction

This chapter explains the conditions of evaluating the mass detection system, the

selection of parameters, and the performance of the system on the AFIT database.

4.2  Evaluating Results

The mass detection system was designed using a database of 104 images containing a
total of 108 masses. As Nishikawa showed, system performance can be drastically skewed
based on choice of database (35). Since the database contains low contrast masses of a
variety of sizes and not simply a small set of easy cases, the detection portion of the system
is designed using the entire 108 masses. Due to the diverse content of the database, using
the entire database is the best means of setting parameters for the DOG filter and PCNN.
However, for feature selection and classifier design, 10 separate training sets of 45 TPs and

45 FPs are used to allow for good generalization of the classifier.

The goal of the thesis is to detect masses while maintaining a practical false detection
rate. The approach is to first detect as many masses as possible and, then to reduce the
number of false detections without significantly lowering the number of true positives

detected.

A mass is considered detected if the mass intersects the truth box and the centroid is
within 0.5 cm of the truth box. Under these conditions, the results would aid the radiologist

by drawing attention to the location of the mass.

4.2.1 Parameter Selection.  Parameter selection and system design are performed
using two means of analysis. 1) A genetic algorithm (GA) is used to find a range of good
parameters. 2) Free-response receiver operating characteristic (FROQ) analysis is used to

evaluate system performance using specific parameters.

4.2.1.1 Genetic Algorithm. A GA is an adaptive search procedure based
on genetic search techniques, such as mutation and sexual recombination (18). For more

details on GAs and function optimization see (18, 36). For this thesis, the GA performs
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function optimization to find the optimal combination of DOG filter size and PCNN set-
tings to detect masses. The optimization function is designed to obtain as many TPs as

possible with a reasonable number of FPs.

4.2.1.2 FROC Analysis.  The FROC curve is the tool used to graphically
report the performance of CAD systems (32). The FROC curve relates the trade-off of TP
fraction to the number of FPs per image. Results may be reported as a point on the curve
or by the area under the curve. In this thesis, FROC analysis is used to make decisions on

parameter settings.

4.2.1.83 Combining Techniques. Due to the size of the database and the
time to process each mammogram, a combination of search techniques is needed to find the
optimal parameters for the system. The system is first designed and functionality proven
by experimenting with parameters. Next the GA is assigned a optimization function to
minimize. Since it takes the GA several hours to evaluate a single point in the search
space. The results of the GA are used to seed further experimentation in a particular
range of parameter settings. When a low fitness value is returned by the GA, independent
experimentation is performed in the immediate area of the settings the GA used to obtain
the fitness. Once a large enough range of settings have been analyzed, a FROC is developed

to further compare parameter settings.

4.3 Component Results

The results of the system can be tracked by its performance at different locations
which are component and parameter dependent. Analysis will be presented on the effects
of the following on the performance of the system: 1) preprocessor selection, 2) choice
of DOG filter and PCNN parameters, 3) selection of features and 4) design of the neural

network for classification. These points can be found in Figure 20.

4.8.1 Preprocessor Module.  The performance of the system using different pre-
processing modules is best analyzed using Table 7. While fixing the DOG filter and PCNN

module parameters, each preprocessor is inserted into the system. Although results could
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Load Mammos

Decimate Image

P

. v Translate PCNN
Feature Extraction results to <
Detection Mask
(PCNN to Detection)
O
Classifier Mask of all
N Possible Detections
Figure 20
will be discussed.
Table 7

= .35, timesteps = 50.

vary slightly with different parafneter settings, the mean background is chosen as the pre-

processor since it detects the largest number of TPs under these set conditions. This

Segment the
Breast from the
background using
PCNN

PCNN to Obtain
Detections

——»

Preprocess

DoG Filter

TPs | FPs

No Preprocessor 79 | 642
Histogram Equalization 83 | 926
Mean Background 89 | 824
Mirror-padding the Breast Edge | 63 | 499

preprocessor is used to obtain the remaining results in this chapter.

4.3.2 PCNN to Detection Mask Module.
calculated at the output of the PCNN to Detection Mask module and later at the output
of the neural network (points 2 and 4, respectively, in Figure 20. Parameters for the DOG
filter and PCNN modules are set based on FROC analysis. The results of several DOG

filters are processed by the PCNN with varying linking strength, 3, to find the combination
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Mass Detection System using a Difference of Gaussians filter and Pulse Cou-
pled Neural Network. The labels indicate points where decisions and results

Performance of the System at the output of the PCNN to Detection Mask stage
as effected by using different preprocessors. The results are based on 104 images
containing 108 TPs. The following parameters were fixed: dogsize = 25, beta

The performance of the system is first



Table 8  Per case results of the system at the output of the PCNN to Detection module
for the database of 55 cases. The following parameters are used to achieve these
results: dogsize = 19, beta = .39375, timesteps = 50. On an individual basis,
this translates to 96 detections out of 108 possible masses.

I “ 4-view | 2-view | 1-view |

# detected 1 45 7
#f possible 1 46 8
% 100 97.83 | 87.50

to maximize the number of detections. Figure 21 is a FROC curve to analyze the settings
for these stages. The parameters are chosen as those which generated the highest curve
peak, the highest TP fraction. The DOG filter to achieve this point has a distance between
zero crossings of 19. This size DOG filter is able to detect a broad size range of masses. The
choice of the 3 is important to the DOG size selection. A larger § will permit the use of a
smaller DOG filter and vice versa, since the number of pixels pulsing at one time will effect
the size of the detection and whether it is too large or small to remain in consideration as
a mass. A 3 of .39375 achieved the highest TP fraction with a DOG filter size of 19. The
results of the entire database at the output of the PCNN to Detection stage using these

settings are shown in Table 8. Complete results for each mass is found in Appendix A.

4.3.3 Feature Selection. A problem, frequently encountered when designing a
classifier, is the “curse of dimensionality” whereby designing a good classifier becomes
rapidly more difficult as the dimensionality of the input space increases (4). One way of
dealing with this problem is to reduce this dimensionality prior to designing the classifier.

This is done through feature selection.

The mass detection system began with 34 features as shown in Table 9. The classifier
is trained using 45 TP and 45 FP samples. According to Foley (12), 3n feature vectors
should be used for each class. To maintain this boundary, the number of features would
need to be reduced to 15. The Foley criteria is actually a lower bound and the number
of features should be reduced even further (41). For this reason, the dimensionality of
features is reduced from 34 to 10 through feature selection. This reduction should improve

accuracy, reduce computations, and allow a classifier which will generalize to be designed.
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Results of Using different size DoGs and Beta
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Figure 21  The parameters for the DOG and PCNN modules are chosen based on their
performance. The curves are created by fixing the § and varying the dogsize
from 31 to 11 from left to right on the curves. The arrow points to desired
location. The following parameters were used to achieve this point: dogsize =
19 and § = .39375.

Table 9 The 34 features to be reduced. Features 9 through 33 represent the 5x5 Laws
kernel name.

| Number I Feature || Number | Feature “ Number | Feature ” Number I Feature |

1 Circularity 10 E5S85 19 L5W5 28 E5R5

2 Rectangularity 11 L5S5 20 S5L5 29 ESES

3 Min Distance 12 L5E5 21 S5R5 30 W5L5

4 Compactness 13 W5R5 22 S5W5H 31 W5W5
5 Mean NRL 14 S555 23 R5S5 32 W5ES

6 Standard Dev NRL 15 S5E5 24 R5L5 33 W5S5

7 Area Ratio NRL 16 E5W5 25 R5E5 34 Area

8 ZCC NRL 17 L5L5 26 R5W5

9 R5R5 18 L5R5 27 E5L5
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Three techniques, Fisher Ratio, Forward Selection, and Cascade Correlation, are
used to evaluate ability of features to discriminate and level of correlation between features.

Each technique is evaluated over ten separate datasets consisting of 45 TPs and 45 FPs.

1. Fisher Ratio

The Fisher Ratio (F-ratio) is defined as (4)

variance of the means (over all classes)

F-ratio = :
mean of the variances (within-classes) ’

or for two classes
RY:
Fratio = W1~ F2) (14)
o7 =+ g5
where p1 and pg are the class means and o7 and oy are the standard deviations for

classes 1 and 2 respectively.
2. Forward Selection

Forward feature selection iteratively finds the best combination of features which
achieve the best classification accuracy. Forward feature selection first finds the one
feature which best classifies the data. The next feature found is the one that performs
the best as a pair when grouped with the first feature. This process continues until

all features have been added. One example of this process is shown in Figure 22.
3. Cascade Correlation

Cascade correlation generates a set of uncorrelated features. This process iteratively
selects the feature most correlated with class label and eliminates features which are
correlated above a threshold with this feature(16). The threshold is adjusted until
the desired number of features are eliminated. The results of this process are shown

in Table 10.

After all three techniques are used on each of the ten datasets, results are calculated
and features ranked based on the frequency of occurring in the top 10 and top 5 of the
features. Complete results are shown in Table 11. Table 12 displays the Top 10 features

of each technique. A fourth set of ten features is created by combining the top 4 features
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% Err

Figure 22

50

0 1 1 <1

0 10 20 30 40
Number of Features :

33 2 1 02 710 24 20 30 5 8 26 15 139 14 17
31 25 3 28 12 16 32 27 21 18 9 13 6 29 4 23 11

Features

The results of one forward feature selection process. The feature numbering
at the bottom of the graph should be incremented by 1 to translate with the
feature labeling in this thesis. The features listed on the bottom are in the
order as they were used to obtain the results in the graph. Thus for this set
of data, feature 32 obtained the best classification accuracy alone. Note: the
lowest error occurs using less than the total set.
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Table 10 The results of a single trial of Cascade Correlation keeping the feature with
the highest class correlation and eliminating all features correlated above .7
with it. This is done iteratively across the remaining features. The bottom 2
features were both uncorrelated with class and uncorrelated with each other.

[ Feature Kept ” Features Eliminated
32 14,15,22,23,24,25,26,30,31,33
9 13,21
20 27
17
28 10,16
5 1,4,6,7
29
18 11,12
34
8

from the forward selection with the top 3 from the Fisher Ratio and cascade correlation

techniques. This set is used to evaluate the performance of the other three sets.

- For each of these four pools of features, 10 datasets of 45 TPs and 45 FPs are created.
The dimensionality of each of these sets are 90x10, 90 feature vectors of 10 features each.

Each dataset is used to design a classifier configuration.

4.3.4 Classifier. Classifier selection was accomplished by evaluating classifier
performance over 10 iterations of data of each of the 40 datasets previously discussed.
Results varied dependent both on the technique used for feature selection and the dataset
being used, so results were compared over all datasets. Through experimentation, the
neural network is chosen to have its 5 hidden nodes and 1 output node to have tangential
sigmoidal activation functions and is trained for 100 epochs. This configuration is shown

in Figure 19.

Once the configuration is set, the neural network is trained using 10 different sets
of 45 TPs and 45 FPs for each feature selection technique. Figure 23 shows a FROC of
the average performance of the four techniques and also using the initial 34 features. The
best performance, in terms of lowest number of FPs per image while maintaining a TP
fraction above .9, is obtained using the Cascade Correlation features with a threshold of

6. At lower levels of TP fractions, the method using all 34 features achieves lower FPs per
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Table 11

Each technique is run on 10 different sets of training data. The shown rank-
ordered features based on the number of times each appear in the Top 10/Top
5 best features for classification during the 10 iterations. 6/2 as seen for feature
1 indicates that this features was among the Top 10 features 6 out of the 10
iterations and among the Top 5 features 2 of those times. When selecting
the best features, first the Top 10 frequency is examined and then the Top 5
frequency if features appeared in the Top 10 the same amount of times.

Fisher Ratio Forward Selection | Cascade Correlation
Feature || Top 10 | Top 5 | Top 10 | Top 5 | Top 10 ] Top 5
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Table 12 The Top 10 features of each selection technique as ranked by the number of
times in the Top 10. When a tie occurs, the number of times in the Top 5 is
compared. The last way to differentiate between features is the lower combined
total placement, such that if a feature placed 3, 4, and 5, the score would be

] Rank ” F-Ratio | Forward Selection | Cas. Corr l

1 32 27 34
2 25 10 8
3 23 24 17
4 26 16 3
5 30 6 20
6 15 5 5
7 33 20 19
8 7 22 29
9 22 13 2
10 6 21 26

in 104 images.

Table 13 Results of the System on the Entire Set. Final TP and Final FP are the
results after the neural network. Detection TP and Detection FP are the
results prior to entering the classifier. Thus the classifier misclassified 7 TPs
while successfully eliminating 456 FPs. Calculations are based on 108 masses

| TP | TP Fraction | FP | FP/img |

Detection

96

.89

1183

11.37

Final

89

.824

697

6.7

4.4 Analysis of Results

techniques provides the best results.
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image rates. However, at point greater than a TP fraction of .9, the Cascade Correlation

Once the entire neural network is configured, the 104 images of the database are

processed through the entire system. The results of the system are found in Table 13.

The complete results of each of the 108 masses are shown in Appendix A. The final
results of the system on a per image basis are 82.4% detection of TPs with 6.70 FP per
image. 12 masses were never detected. Possible reasons for this are that the masses were
too small or large, completely hidden in its background tissue, or something remained on

the digitized image, which did not allow the film to be processed correctly.




Results of Using different Data Sets
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Figure 23  The results of using 5 different techniques to train a neural network to classify
masses from FPs. Each technique is the average performance of the network
over 10 different sets of training data. Totfeat is the results of the network
using a training set of 90 vectors (45 TPs and 45 FPs) with all 34 features.
The other four techniques are those discussed in Section 4.3.3. The o,x, etc.
represent the different thresholds that can be set to obtain the indicated
results. The arrow points to the lowest FP fraction possible while maintaining
a TP fraction of greater than .9. This point is achieved with the Cascade
Correlation features and a threshold on the outputs of the neural network of
0.6. Note: the y-axis is based on percent of masses retained by the classifier.
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Table 14  These results are based on the performance of the system on a per case basis. If
the mass was detected in one view, then the case is considered to be detected.
| || # Cases | # PCNN Detected I % [ # NN Detected | % I
4-view 1 1 100 1 100
2-view 46 45 97.83 44 95.65
1-view 8 7 87.5 7 87.5
Total 55 53 96.36 52 94.55

The complete case results for the system are shown in Table 14. Based on a two view

per case basis, these results translate to .9455 TP fraction with 13.4 FPs per case.

These results show that the detection scheme performs well in detecting masses in
mammograms. The classifier is capable of maintaining an acceptable detection rate while

eliminating 4.67 FPs per image.

4.5 Conclusion

This chapter presents how results are evaluated, how parameters are selected, and
the total results of the system. The goal of this thesis is to detect masses. For this reason,
parameters are selected through FROC analysis to detect as many masses as possible and

then to eliminate FPs using a classifier. The final results were 1) a per case TP fraction

of .9455 with 13.4 FPs and 2) a per image TP fraction of .824 with 6.7 FPs.
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V. Conclusion

The aim of this research was to develop a new CAD algorithm to identify masses in
mammograms to aid a radiologist in making decisions. This chapter explains how this goal
was accomplished through the development of a mass detection system using a Difference
of Gaussian (DOG) filter and a Pulse Coupled Neural Network (PCNN). The contributions

of this research and recommendation for future work are also addressed.

5.1 Contributions

This research made the following contributions to AFIT and the field of CAD re-

search:

1. Completely characterized the AFIT database for easy comparison to other databases.
2. Designed a new mass detection algorithm using a PCNN.

3. Created self-normalized Laws texture features.

5.2 Conclusions and Recommendations

The mass detection system performed well in detecting masses in digitized mammo-
grams. On a per case basis, the system detects 96.36 percent (54 of 55 cases) of masses.
Its per image detection rate is 89 percent (96 of 108 masses). However, this high TP
rate results in a high FP per image rate as well. Therefore, a classifier is used to lower
the number of FPs per image while attempting to maintain an adequate TP fraction. The
classifier retained 92.78 percent of the TPs it received and successfully eliminated 456 FPs.
Therefore, the final results on a per image basis were a TP fraction of .824 with 6.7 FPs

per image and on a per case basis, were a TP fraction of .9455 with 13.4 FPs per case.

These results show that the Difference of Gaussians filtér is capable of detecting a
wide range of masses. Possible work in this area would be to use multiple DOG filters and
fuse their outputs, such that the number of FPs per image does not multiply. The PCNN
proved to be a good tool for both segmenting the breast from background and detecting
masses in the DOG filter output. Future use for the PCNN include using it to 1) detect
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masses from the original image, 2) obtain better features of ROIs, and 3) adaptively set
itself over the entire database to perform best in the mass detection system. The classifier
results show that work remains in discriminating between TPs and FPs. Among the ways
this can be accomplished is through creating better features or better detections from
which to calculate features. Ultimately, the best way to evaluate the success of the system
is through a clinical study to develop a better understanding of how a CAD mass detection
system can best aid a radiologist and, more importantly, how this mass detection system

will help radiologists.

56



Appendiz A. Mass Statistics and Results

This appendix details the characteristics of each mass as well as specifies if the mass was
detected and whether it was classified correctly. Area is in terms of the number of pixels
contained in the mass. Diameter is calculated as described in Chapter 3. Exterior and
Interior Intensity are the mean intensities of the pixels inside and outside the mass also
as described in Chapter 3. Contrast is the difference of the mean intensities divided by
the sum of the mean intensities. Difference in OD is the mean exterior OD subtracted
from the mean interior OD. Detected is a binary indicator (1/0 = Yes/No) of whether the
mass was detected at the output of the PCNN to Detection module. Classified is a binary

indicator (1/0 = Yes/No) whether the mass was retained by the neural network.
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Name Area Equivalent Exterior | Interior | Contrast OD Detected | Classified
(# pixels) | Diameter (mm) OD OD Difference

2001d00m 1215 39.33 2.4281 | 2.6518 | 0.0440 0.2237 1 1
2002b00m 14642 136.54 2.8452 | 3.2513 | 0.0666 0.4062 1 1
2002d00m 18664 154.15 3.4630 | 3.5657 | 0.0146 0.1027 0 0
2003a00m 2697 58.6 2,5440 | 3.0297 | 0.0871 0.4856 1 1
a003c00m 8430 103.6 2.8144 | 3.2939 | 0.0785 0.4795 1 1
a004b00m 11032 118.52 2.5608 | 3.1882 | 0.1091 0.6274 1 1
a004d00m 11211 119.48 2.7993 | 3.0311 | 0.0398 0.2318 1 1
a005b00m 9107 107.68 2.1267 | 2.3124 | 0.0418 0.1857 1 0
2005d00m 6720 92.5 2.4334 | 2.7936 | 0.0689 0.3602 1 1
a007200b 16045 142.93 24945 | 3.2259 | 0.1278 0.7313 1 1
a007c00b 14792 137.24 2.8729 | 3.2304 | 0.0586 0.3575 1 1
a008b00b 14200 134.46 2.4168 | 2.9020 | 0.0912 0.4853 1 1
2008d00b 9838 111.92 2.6506 | 3.0574 | 0.0713 0.4069 1 1
a009a00m 2996 61.76 2.4868 | 2.8381 | 0.0660 0.3513 1 1
2009¢00m 5885 86.56 2.7965 | 3.2288 | 0.0717 0.4323 1 1
2011b00m 9438 109.62 2.6610 | 2.9346 | 0.0489 0.2735 1 1
a011d00m 9321 108.94 27145 | 2.9402 | 0.0399 0.2258 1 0
a012b00b 3525 66.99 2,7890 | 2.9639 | 0.0304 0.1749 1 1
2012d00b 3465 66.42 2.8505 | 3.0323 | 0.0309 0.1818 0 0
2013b00b 3766 69.25 2.4941 | 2.6786 | 0.0357 0.1845 1 1
2015a00m 7221 95.89 2.2179 | 2.6439 | 0.0876 0.4260 1 1
a015c00m 11113 118.95 2.7394 3.1390 0.0680 0.3996 1 1
a017b00b 22574 169.53 3.0489 | 3.3135 | 0.0416 0.2646 1 1
2017d00b 13936 133.21 2.8534 | 3.1831 | 0.0546 0.3297 1 1
2018a00m 4771 77.94 3.4062 | 3.5334 | 0.0183 0.1273 1 1
a018c00m 3749 69.09 2.3486 | 2.6808 | 0.0661 0.3322 1 1
2019a00b 9325 108.96 2.4473 | 2.6504 | 0.0399 0.2032 1 1
a019c00b 7059 94.80 2.6925 | 2.9102 | 0.0389 0.2177 1 1
a020b00 9691 111.08 1.9530 | 2.3474 | 0.0917 0.3944 1 1
a020d00b 1274 40.28 1.8459 | 2.0891 | 0.0618 0.2432 0 0
2021a00m 3755 69.14 2.7000 | 2.9914 | 0.0512 0.2914 1 1
2021c00m 5549 84.05 2.6697 | 2.9438 | 0.0488 0.2741 1 1
2022a00m 1779 47.59 27154 | 2.8831 | 0.0300 0.1677 0 0
a022c00m 3880 70.29 2.3995 | 2.5852 | 0.0373 0.1857 1 1
a023a00b 6352 89.93 2.8718 | 3.1502 | 0.0462 0.2785 1 1
a023c00b 9543 110.23 2.2120 | 2.6861 | 0.0968 0.4741 1 1
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Name Area Equivalent Exterior | Interior | Contrast oD Detected | Classified
(# pixels) | Diameter (mm) oD OD Difference
2025a00b 0.4221 0.7331 2.2661 | 2.4863 | 0.0463 0.2203 1 1
a025a00b 0.1917 0.4940 2.7769 | 3.0026 | 0.0390 0.2257 1 1
a025c00b 0.3387 0.6567 2.3664 | 2.5711 | 0.0415 0.2047 1 1
2025c00b 0.4859 0.7866 2.3692 | 2.5921 | 0.0449 0.2229 1 1
a027b00m 0.4765 0.7789 2.8469 | 3.0987 | 0.0424 0.2518 1 1
2027d00m 0.6309 0.8963 2.7506 | 2.9919 | 0.0420 0.2413 1 1
2028d00m 0.4264 0.7368 2.5344 | 2.7747 | 0.0453 0.2403 1 1
a030b00b 2.9332 1.9325 2.9127 | 3.2471 | 0.0543 0.3345 1 1
2030d00b 2.3664 1.7358 2.3833 | 2.9798 | 0.1112 0.5965 1 1
a031a00b 1.0527 1.1577 2.4664 | 2.7687 | 0.0577 0.3023 1 1
a031c00b 1.2282 1.2505 2.0704 | 2.5247 | 0.0989 0.4544 1 1
2032a00m 0.3212 0.6395 2.7984 | 3.0051 | 0.0356 0.2067 1 1
2032c00m 0.4546 0.7608 2.5497 | 2.8135 | 0.0492 0.2638 1 1
a034b00b 3.5862 2.1368 2.5137 | 2.7679 | 0.0481 0.2543 1 1
2034d00b 2.0585 1.6189 2.6358 | 2.9789 | 0.0611 0.3431 1 1
a035a00b 3.6601 2.1587 2.5642 | 2.8831 | 0.0585 0.3189 1 1
a035c00b 2.8473 1.9040 2.9284 | 3.3038 | 0.0602 0.3754 1 1
a037b00m 0.8110 10162 2.5732 | 2.7603 | 0.0351 0.1871 1 1
a037b00m 1.4187 1.3440 2.5276 2.9597 0.0787 0.4320 1 1
2037d00m 3.3756 2.0731 2.5471 | 2.8049 | 0.0482 0.2577 1 1
2037d00m 2.1760 1.6645 2.7645 | 3.1185 | 0.0602 0.3540 0 0
2038200m 0.2055 0.5115 2.8328 | 3.0507 | 0.0370 0.2178 1 1
2038¢c00m 0.8321 1.0293 2.6147 | 2.9137 | 0.0541 0.2990 1 1
a039a00b 0.8674 1.0509 2.8086 | 3.1909 | 0.0637 0.3823 1 1
a039c00b 0.8211 1.0225 2.6620 | 3.1158 | 0.0785 0.4538 1 1
a040a00b || 1.1684 1.2197 2.7733 | 3.1276 | 0.0600 0.3542 1 1
a040c00b 1.3470 1.3096 2.1839 | 3.0095 | 0.1590 0.8256 1 1
2042a00b 1.3135 1.2932 2.5547 | 3.2001 | 0.1121 0.6454 1 1
a042c00b 1.0965 1.1816 2.4880 | 3.0015 | 0.0936 0.5135 1 1
2044b00m 0.1659 0.4596 21451 | 2.4175 | 0.0597 0.2724 0 0
2044d00m 0.3238 0.6421 2.2963 | 2.5266 | 0.0478 0.2303 0 0
2045a00m 0.6146 0.8846 2.8911 | 3.1529 | 0.0433 0.2618 1 1
a045c00m 0.5869 0.8644 27419 | 3.0216 | 0.0485 0.2797 1 1
a046b00b 1.3342 1.3034 2.9120 | 3.2408 | 0.0534 0.3288 1 1
a046d00b 0.5656 0.8486 2.8672 | 3.0706 | 0.0343 0.2034 1 0
a047b00b 1.2303 1.2516 2.8056 | 3.1626 | 0.0598 0.3569 1 1
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Name Area Equivalent Exterior | Interior | Contrast OD Detected | Classified
(# pixels) | Diameter (mm) 0D OD Difference
2049200m 0.3629 0.6797 2.9137 | 3.2422 | 0.0534 0.3285 1 1
a049b00m 4.3183 2.3448 2.7557 | 3.4857 | 0.1170 0.7300 1 1
2049c00m 1.3563 1.3141 2.5357 | 2.9324 | 0.0725 0.3967 1 1
2049d00m 2.0726 1.6245 2.2264 | 3.3476 | 0.2011 1.1212 1 1
2050a00m 0.3670 0.6836 2.6967 | 2.9179 | 0.0394 0.2213 1 1
a050c00m 0.6356 0.8996 2.8326 | 3.0185 | 0.0318 0.1859 1 1
a051a00b 0.5796 0.8591 2.3194 | 2.6419 | 0.0650 0.3226 1 1
2051c00b 0.5366 0.8266 2.0842 | 2.3364 | 0.0571 0.2522 1 1
a053b00m 3.5237 2.1181 2.4195 | 3.2902 | 0.1525 0.8706 1 1
a053d00m 2.1449 1.6526 2.8494 | 3.3832 | 0.0856 0.5337 1 1
a054b00m 18811 1.5476 2.0735 | 2.5519 | 0.1034 0.4784 1 1
2054d00m 4.1078 2.2870 2,6627 | 3.1746 | 0.1067 0.6119 1 1
2055a00b 0.2546 0.5694 2.5667 | 2.85563 | 0.0532 0.2886 1 1
a055c00b 0.7672 0.9883 1.9155 | 2.5230 | 0.1369 0.6075 1 0
a056a00b 0.4039 0.7171 2.2168 | 2.5290 | 0.0658 0.3123 1 1
a059b00b 0.5316 0.8227 2.6572 | 2.8859 | 0.0604 0.3288 1 1
2059d00b 0.4478 0.7551 0.9849 | 1.3177 | 0.1445 | 0.3328 0 0
2061a00b 0.6737 0.9262 24970 | 2.7735 | 0.0525 0.2765 1 1
a061c00b 0.5389 0.8283 2.3646 2.5813 0.0438 0.2167 1 0
2063200m 0.7104 0.9511 1.8387 | 2.0920 | 0.0645 0.2534 1 0
a063c00m 0.2776 0.5945 21236 | 2.4336 | 0.0680 0.3100 1 0
2064b00m 0.4122 0.7245 1.3781 | 1.8097 | 0.1354 0.4316 0 0
2064d00m 0.3318 0.6500 2.15633 | 2.5446 | 0.0833 0.3913 1 1
a065b00b 0.3378 0.6558 2.0744 | 2.5921 | 0.1109 0.5176 1 1
a065d00b 0.4335 0.7429 2.7247 | 2.9899 | 0.0464 0.2653 0 0
a066b00b 2.0936 1.6327 2.9968 | 3.1455 | 0.0242 0.1487 1 1
a066d00b 1.6551 1.4517 2.9139 | 3.0946 | 0.0301 0.1808 0 0
a070c00b 0.4420 0.7502 1.9839 | 2.4014 | 0.0952 0.4175 0 0
a071b00b 0.1792 0.4777 1.9125 | 2.2938 | 0.0907 0.3813 1 1
a071d00b 0.4374 0.7463 2.1009 | 2.5227 | 0.0912 0.4217 1 1
a072b00m 0.6768 0.9283 2.6086 | 3.1612 | 0.0958 0.5527 1 1
a072d00m 1.0128 1.1356 2.3157 | 2.9055 | 0.1130 0.5898 1 1
a074a00m 1.2648 1.2690 2.3232 | 2.7246 | 0.0795 0.4014 1 1
a074c00m 0.8806 1.0589 2.3008 | 2.7333 | 0.0859 0.4326 1 1
a075¢c00m 7.0754 3.0014 1.9458 | 2.4741 | 0.1195 0.5283 1 1
a076c00m 7.0852 3.0035 2.9149 | 3.4609 | 0.0856 0.5460 1 1
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