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AFIT/GA/ENY/97D-1

Abstract

This thesis develops two methods of compressing a track of radar observations of a satellite into a
single state vector and associated covariance matrix, and a method of estimating orbits using results from
multiple tracks. The track compression uses least squares differential correction to determine a state
vector at the central observation time. One method uses a Taylor series expansion in time, modeling first
and second order two-body effects and first order J, zonal harmonic effects to represent the system
‘dynamics. The second method uses numerical integration of the equations of motion using two-body and
J, effects to represent the system dynamics.

The resulting state vectors and covariance matrices are then used to estimate the satellite’s orbit,
also using least squares differential correction. Numerical integration using two-body, J, and an
atmospheric drag model is used to represent the dynamics. This orbit estimation produces a state vector
which includes the ballistic coefficient, as well as an associated covariance matrix.

Finally, a one-fiftieth scale demonstration of the full AFSPC catalog of satellites and debris is
conducted to demonstrate the improvement in accuracy over current practice which results. The truth
model includes J, zonal harmonic effects and an atmospheric drag model. This demonstration shows that
the orbits of 90% of the entire catalog of objects can be estimated with sufficient accuracy to allow
position determination within one kilometer after only two days of tracking. Within four days, most
satellite positions are determined within fifty meters.

This improvement in catalog accuracy would result in a reduced routine radar tracking workload,
fewer collision-avoidance maneuvers for manned space flights, more accurate over-flight predictions,
faster acquisition for ground-based observation or targeting of satellites and smaller rendezvous fuel

budgets, to name just a few advantages.

Xiv



ORBIT ESTIMATION USING TRACK COMPRESSION AND

LEAST SQUARES DIFFERENTIAL CORRECTION

1. Introduction

1.1 Background [4]

Air Force Space Command (AFSPC) is taskéd with the mission of tracking all satellites and
debris in orbit about the Earth. This mission is executed by the Space Control Center (SCC), located in
Cheyenne Mountain, which operates the Space Surveillance Network (SSN). The SSN is a world-wide
network of radar sites and optical tracking cameras which track satellites as they pass overhead.
(Throughout this thesis, the term satellite is used in its broader sense, to denote any object orbiting the
Earth, whether debris or functioning equipment.) The sites then send their information to the SCC where
it is centrally-processed using least squares algorithms to estimate the satellites’ orbits.

The radar sites of the SSN have the capability of prociucing 50 to 100 observations of a satellite
per second. Thus a single track of data, from rise to set, can consist of over 100,000 observations — for a
single pass of a single satellite over a single site. When this is factored by the number of objects in the
catalog, and the number of sites in the SSN, the enormous amount of data required for this mission

becomes evident.

1.2 Problem Statement

Currently, the SCC does not possess the computing resources to process all of this data. Current
practice consists of the radar sites reducing the size of their observation tracks by throwing away all but
three observations. These three observations, one near the beginning of the track, one at the middle, and

one near the end, are then sent to the SCC for processing. This reduced workload allows the SCC to keep



up with the incoming data at the expense of estimating orbits with far less accuracy than was available
from the original track of data.

Numerous benefits would result from a more accurate method of orbit estimation. Also, as radar
capabilities improve and space access eases, the SCC workload will undoubtedly increase. For both of
these reasons, a method of orbit estimation which allows for some distributed data processing (at the sites)

and an increase in catalog accuracy is desirable.

1.3 Method of Solution

The purpose of this thesis is to develop a means of compressing the data in a track of
observations while retaining the majority of accuracy available in the track. Specifically, least squares
differential correction is used to determine a state vector and associated covariance matrix which very
efficiently describes all of the data in the original track. This technique is applied using two dynamics
models for comparison. One model uses a Taylor series expansion of the position vector which allows
direct calculation of the position and state transition matrix at each observation time. This expansion
includes first and second order two-body acceleration as well as first order J, zonal harmonic acceleration.
The second model uses numerical integration of the equations of motion (EOMs) and the equations of -
variation accounting for two-body and J, accelerations.

To demonstrate the accuracy retained from this procedure, the scope of the thesis was extended to
include orbit estimation using state vectors and covariance matrices from multiple tracks of data,
simulating the combination of inputs from multiple sites of the SSN. This estimation was again
accomplished using least squares differential correction. The dynamics model consisted of numerical
integration of the EOMs. This time, the EOMs included acceleration due to air drag using an
atmos;;heric dénsity model. The state vector determined included a ballistic coefficient, and is thus
termed orbit estimation. The associated covariance matrix was calculated as an indication of the accuracy

of the estimate.




In order to show the applicability of this technique to the mission of trackihg an entire catalog of
thousands of objects, the scope of the thesis was again broadened to include a one-fifticth scale simulation
of the tracking and orbit estimation of the entire catalog. The justification for this scale will be discussed
in the sixth chapter, Simulation. This simulation included the satellite scheduling, observation, track
compression, orbit estimation and catalog maintenance required for the SCC mission as well as the

propagation of the truth model needed to generate the raw data used as input observations.

1.4 Thesis Description

This thesis is divided into seven chapters. The first chapter gives the background, problem
description and solution. The second discusses the relevant literature and the theoretical background.
The third chapter details the solution methodology and results of the Taylor series method of track
compression portion of the thesis. Chapter four details the solution methodology and results of the
integrator method of track compression. Chapter five does the same for the Global Estimate effort.
Chapter six does the same for the three phases of the simulation. Finally, chapter seven concludes with
recommendations. To allow for continuity of the report, several detailed derivations are removed from the

chapters and presented as appendices.



Il. Theoretical Background

2.1 Introduction

This chapter is intended to provide the reader with the background in the area of batch and
sequential non-linear least squares orbit determination necessary for a thorough understanding of the
remainder of the thesis. The chapter begins with a brief history of orbit determination and progresses
through the development of the method of least squares. The chapter concludes with a description of

modifications to the method of least squares required for sequential estimation.

2.2 Orbit Determination

The science of determining the orbit of an object using observations began in 1609 with Johannes
Kepler. He determined planetary orbits using observations made by the Danish astronomer Tycho Brahe.
Kepler determined the orbits of the known planets while formulatiﬁg his three laws of planetary motion.
However, it was not until Isaac Newton published The Mathematical Principles of Natural Philosophy
(the Principia) in 1687 that the forces behind Kepler’s three laws were explained. This began a
deterministic age in which the motion of moons, planets, and comets could be predicted. These
predictions were based on orbits determined using observation data consisting of angular measurements in
the sky. Boulet and Herget describe three methods of orbit determination using angles-only data
developed by Laplace, Gauss and Olbers. [2, 8] Escobal describes an additional angles-only method and
five methods using two position vectors as well as several mixed data techniques. [5] Depending on the
assumptions made as to the type of orbit involved, these methods require up to six independent pieces of
information, corresponding to the six constants of integration obtained from the combination of Newton’s
laws of acceleration and universal gravitation.

If these independent pieces of information, or data, were perfectly accurate, and the dynamics
were perfectly known, no new observations would be required. However, in some cases, there are forces

acting on an orbiting body, such as air drag, which cannot be exactly predicted. In all cases, observational

2-1



data contain errors. Thus, there is always a need for more than the minimum set of observations. It is the
optimal combination of these imperfect observations which launched Karl Frederich Gauss into the
history books.

In 1801, Gauss developed the method of least squares while attempting to determine the orbit of
the first minor planet to be discovered, Ceres. [5, 13, 20] He later perfected this method and published it
in 1809. This method forms the basis for modern estimation theory. It assumes that all observations
contain regular or constant errors and irregular errors. Gauss states, “it is up to the observer to ferret out
all sources of constant error and remove them.” [6: 5] “Irregular errors aré essentially different...we have
to put up with them in the observations themselves; however, we should reduce their effects on derived
quantities as far as possible by using judicious combinations of the observations.” [6: 5] The selection of

this judicious combination is rooted in the fundamentals of probability, the topic of the next section.

2.3 Probability [6, 17]

Gauss described a continuous density probability function as a means of explaining observational
errors. The probability of a particular instrument producing an error between x; and x; on a particular
observation is obtained by integrating the instrument’s continuous density probability function, f (¢), over
the range of x; to x,.

%3
P(x,<e<x2)=Jf(e)de (2.1)
%

A continuous density probability function is normalized.
P(—oo<e<oo)=Jf(e)de=1 (22)

Gauss described three such density functions which will be repeated here. The first function has -a and +a
as the limits of all possible errors, with all errors between these limits being equally probable. In this

case, f (e) would be described as



[0 e<-a
f(e)=<—1— -a<e<a (2.3)
2a
| 0 a<e
This density function is shown in Figure 2-1.
1
2a
-a 0 +a
Figure 2-1 Density Distribution Number One
In this case, the mean error, standard deviation and variance are given below.
%= =a L 2 _a’
x=0 o=a \/; 6" =73
Gauss’s second density function is described as
0 e<-a
atX _a<e<0
aa
(24)

f(e) =1

This density function is shown in Figure 2-2.



9’|v—-t

-a 0 +a
Figure 2-2 Density Distribution Number Two

In this case, the mean error, standard deviation and variance are given below.

< _ _. |1 2_a’
x=0 c—a\/; o= 6

Gauss’s third density function is described as
—ee
exp hh

f©="17

This density function is shown in Figure 2-3.

(25)

-h 0 +h
Figure 2-3 Density Distribution Number Three

In this case, the mean error, standard deviation and variance are given as



- _ 1 L 2 _h?
x=0 o—hJ; ' = 5

Substituting h=c¢ «/5 into equation ( 2.5 ) returns the more familiar form of the Gaussian or normal

distribution.

1 —e?
f = 26
(e) P exp( e ) (26)

2.4 Central Limit Theorem
Equation ( 2.6 ) is remarkable for its frequent occurrence in nature. One of the primary reasons

for this is described by the Central Limit Theorem. The Central Limit Theorem is stated as follows.

If random samples of n observations are drawn from a population with finite mean, p,
and standard deviation, o, then, when n is large, the sample mean will be approximately
normally distributed with mean equal to p and standard deviation G / \/E . The
approximation will become more and more accurate as n becomes large. [12: 153]

The Central Limit Theorem has many applications to the field of estimation theory. One of these is the
error probability density function for an instrument. If the instrument is well designed, no single source of
error will dominate the results. Instead, the irregular errors which Gauss described will result from the
summation of many small errors, none of which dominate. The Central Limit Theorem states why such
instruments exhibit errors which follow a normal distribution. This is quite significant because we will
not, in general, know the density functions of the individual sources of errors. The Central Limit
Theorem states that the resulting combination will be normal regardless of the shape of the contributing
error density functions. The only requirement is that the individual distributions each contribute an
infinitesimal standard deviation, and that many different sources are combined.

The Central Limit Theorem allowed Gauss to develop the method of least squares by enabling
him to mathematically describe the shape of the error curves without actually knowing all of the sources.
Thus, it is a cornerstone for this thesis. A second area of this thesis where the Central Limit Theorem is

used comes in the random number generator used to add noise to the observational data. A random

2-5



number generator which‘produces random numbers with a distribution similar to Figure 2-1 is called
multiple times, and the results are summed. By the Central Limit Theorem, this results in the generation
of random numbers with a distribution approximating a normal distribution, as do the real-world

observations.

2.5 Least Squares

The Central Limit Theorem and equation ( 2.6 ), the normal distribution (also known as the
Gaussian distribution), are both fundamental to Gauss’s method of least sqﬁares. To understand the
development of Gauss’s method, we must first describe the problem that was at hand. The minor planet
Ceres had been discovered and then lost. There were more than enough observations before it was lost to
provide the six pieces of information necessary for orbit determination. Astronomers attempted to
reacquire the object by fitting orbits to the observational data, but this data was not of sufficient accuracy.
Gauss theorized that the best orbit to be calculated would not necessary agree precisely with any one piece
of data, but would instead disagree as little as possible with all of the data. To calculate this orbit, Gauss
developed the method of least squares in its multi-dimensional, non-linear form. Here, we will develop it
in a single dimensional form, expand it to its multi-dimensional, linear form and finally to its full non-
linear form.

2.5.1 One-Dimensional Least Squares. If n independent observations of a single quantity, x, are
taken (call this data z;, z,, ... z,) with instrﬁments with standard deviations of &1, 65, ... Gy, these will
form a set of errors of €, €, ... €, where ¢; = x -z, We can determine the joint probability of having
obtained this particular set of data which we will call £(z), as

~(x-z)
f(z)=U \/5—11:-03 expl - ' (2.7)

i

where we could solve for this probability if we knew the actual value of x. But this value is unknown.
This is where Gauss applies the fundamental Principle of Maximum Likelihood. Instead of knowing the

true value of x, and using equation ( 2.7 ) to determine the probability of having gotten this set of data,
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Gauss assumes that, because we have already gotten this set, the true value of x must be that value which
maximizes the probability of having gotten that set. Thus, a value of x is determined which drives
equation ( 2.7 ) to a maximum. This occurs when the terms inside the exponentials are driven to a
maximum. At a glance, one can tell this equates to finding the value of x which is closest to all of the z;
with the errors being squared, thus the description, the method of least squares. The problem has thus
become one of finding a value for x (we will call this value X ) which minimizes the following sum

z(x’zi)z

~ 20/ (28)

for given values of z; and ;. The value of X is obtained by differentiating equation ( 2.8 ) with respect to

x and setting the result equal to zero.

or

Z.
25
s

C.

X= (29)

The denominator of equation ( 2.9 ) provides a measure of the relative weight of the estimate. In fact, the

variance of this estimate is given by [20]

(2.10)

Thus, equations ( 2.9 ) and ( 2.10 ) provide the best fit estimate of the true value of x and a statistical

measure of the reliability of this estimate, 0‘,_(2 .
2.5.2 Multi-Dimensional, Linear Least Squares. [3, 7, 20] To extend the results of the previous
section to a multi-dimensional case, the value to be estimated must be redefined as a state vector, x. The

individual pieces of data are now typically vectors as well. These will be denoted as z;. These vectors are



not necessarily of the same order as the state vector because, in the linear least squares development, we
no longer assume that the instrument directly measures the values of the state. In fact, the instrument is
not required to measure its quantities at the time of interest. Instead, a relationship is developed between
the state vector at the time of interest, which we will call the reference time, and the state vector at any
other time. This relationship is based on the state transition matrix. The state transition matrix allows us
to determine the value of the state vector at any time based on the value of the state vector at the reference

time and the elapsed time in between. Because this development assumes linearized dynamics, the state
transition matrix, denoted ® (t,t, ), is simply multiplied by the state vectc;r at the reference time, X (t,) .
x(t)=®(t,t,) x(t,) (2.11)
As mentioned, the instrument does not directly measure the state vector. Instead, it measures
some parameters related to the state vector and includes the ever present errors. In this development, this
observation relation is also linear and is expressed as
z, =H, x(t,) +e, (2.12)
By combining the two equations, we see the relationship between the instrument data and the state vector
at the reference time.
z,=H, ®(t,,t,) x(t,) +e, (2.13)
Finally, a covariance matrix, Q;, is now introduced. This is a square matrix composed of the
instrument variances for each element of the observation vector as the diagonal elements and the
covariances as the off-diagonals. The covariances represent the degree of statistical interdependence
between the error of one observation and the error of another. In many applications, these covariances are
Zero, maldng the covariance matrix a diagonznll matrix.
The following abbreviation is common.
T, =H, ®(t,,t,) (2.14)

Additionally, for N independent observation vectors, the matrices and vectors can be grouped as follows.
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Zl_
Z=|" (2.15)

ZN_

T, |

T= ’I,‘z

Ty |
Q 0 0
0=/ 0 & :
0 0 Q,

Using the same method as section 2.5, the following estimate of the state vector, X(t, ), results. [20]

.

X(t,) =(T" Q' T)” T Q' Z (2.16)
The reliability of this estimate is expressed as the covariance matrix, P_ . [20]

P, =(1T"Q" 1) (217)

2.5.3 Non-Linear Least Squares. [20] The non-linear least squares development differs from the
linear development in two ways. First, the H matrix and the ® matrix are obtained by linearizing about a
reference condition. Second, the method produces a correction to a reference state, and must therefore be
iterated until this correction is small.

Instead of .using a state transition matrix, ® (t,,t,) , which converts the state vector at the
reference time to a state vector at any other time, its lincarization is instead used to convert a small change
in the reference state to a small change in the state at another time.

Ox(t,)=@(t,,t,) dx(t,) (2.18)
Unfortunately, this linearization matrix is denoted the same and is still called the state transition matrix.
A more appropriate term might be state correction transition matrix. The linearization occurs about a

reference state. This reference state is obtained (in the orbit determination problem) from an initial orbit



determination. The methods described by Boulet, Herget and Escobal would all be appropriate for this
initial reference state.
Instead of the observation relation
z, =H, x(t,) +e, (2.12)
the non-linear relation becomes
z, = G,(x(t,))+e, (2.19)

This is linearized about the reference state at the observation time as follows.

_ aGi (xref (ti))

. 5y (2.20)

The T matrix and the Q matrix are defined as in the linear case and a residual vector is introduced as
r,=z, -G, (xrd‘ (ti)) (2.21)
The estimate of the state vector is given as [20]
X=X, (t,) +0X(t,) (222)
where
3%(t)=(T" Q' T)" T Q' r
and the covariance matrix is [20]
Py =(T" Q7' T)" (2.23)
Equations ( 2.22 ) through ( 2.23 ) provide the means of determining the state vector at the
reference time, and the associated covariance matrix. However, there is one more important step in the
method of least squares. The resulting reference state can be compared to the observation data to
determine the set of residuals, r;. These residuals should agree statistically with the instrument’s
accuracies. For example, if the instrument is known to have a standard deviation of ten meters in one

parameter, then approximately 68% of the residuals should be less than ten meters. This check of the data

is required in order to show that something has not gone drastically wrong with the estimation algorithm.



2.5.4 Computer Implementation. [20}] A modification to the above equations allows more
efficient computer implementation. Instead of using the large, combined matrices described by equations
(2.15), the individual T; and Q; matrices and the individual z; vector can be used in the following

equations. [20]

-1
Py = (ZTF Q~ Ti) (2.24)
5% =Py ZTiT Q'

These equations are iterated until X has converged to a small enough value. The criteria for

convergence can come from the covariance matrix. If the correction to each element of the state vector is
significantly smaller than the square root of the corresponding diagonal element of the covariance matrix,

there is no need to continue iterating.

2.6 Sequential Estimation

The methods described in section 2.5 are termed batch estimators. They take all of the available
data and process it at one time. This is the most accurate means of data reduction but can become -
cumbersome for certain systems. In the continual process of orbital éstimation for a near-Earth satellite,
data may be available spanning several decades. It would be too time intensive to attempt to process all of
this data to produce the latest orbit estimate. If the epoch time of the estimate is to be kept somewhat
current, the dynamics must be integrated from the time of the older data to the current epoch. This can
take considerable time and is not entirely accurate since the dynamics mode! used is never perfectly
accurate. Instead, a common practice is to estimate an orbit using the new data since the last orbit
estimate along with the results of the previous estimate. Thus, the previous estimate acts like data to the
new estimate and the previous covariance matrix acts like an observation covariance matrix. This process
is repeated as often as necessary. Thus, each estimate is at a current epoch and the older data is included

in the process by including the previous estimate (which was based on the older data). This process of
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continually discarding old data and keeping the estimate and covariance matrix is called sequential
estimation. The process of sequential estimation using the method of least squares for each estimate is
called a Bayes Filter.

One common problem with any sequential estimator is the reducing size of the covariance
matrix. Although this seems like a desirable result, it can eventually turn bad. As the amount of data
going into the estimate increases, the covariance matrix will eventually become so small that the estimator
essentially believes it has achieved perfection. New data is evaluated but its observation covariance matrix
will be quite large compared to the covariance of the previous estimate and’ so the new data is almost
completely ignored. If the dynamics were perfectly known, and there were no numerical errors in the
implementation, this would be acceptable. However, as mentioned previously, there are actually some
influences on the motion of the satellite which cannot be entirely predicted. Effects such as air drag are
not entirely predictable because the atmospheric density at any given point is highly unstable. Predictions
may be only accurate to an order of magnitude in some cases. Thus, the newer data is necessary to
provide a current orbit estimate, and some means of preventing the covariance matrix from shrinking
must be implemented. The method used in this thesis is called fading memory. Fading memory involves
multiplying the covariance matrix by another matrix, called a f-matrix, whose size is based on the age of
the covariance matrix. The B-matrix is a diagonal matrix whose elements are made from the reciprocal of
coefficients raised to the power of the number of days between the epoch of the covariance matrix and the
epoch of the current estimate. The coefficients are typically less than one and represent the time scale for

the accuracy of that particular state vector element.

P, =P, B (2.25)
Thus, if the B coefficients are 0.933, and the covariance matrix is 10 days old, the covariance elements
would be doubled, corresponding to a data half-life of ten days. Different state vector elements can have
different B coefficients corresponding to different time scales for the length of validity of the covariance

elements.
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2.7 Summary

This chapter has described the basics of orbit determination, least squares batch estimation, the
Bayes Filter and fading memory. The thesis makes extensive use of the non-linear, multi-dimensional
method of least squares. It uses the computer implementation method described in section 2.5.4. The
final and most important portion of the thesis uses a Bayes Filter with fading memory in a long-term

simulation. The next chapter begins the detailed description of the thesis effort.



lll. Taylor Series Track Compression

3.1 Introduction

This chapter describes the Taylor series method of track compression. It first details the
development of the truth model used to generate the various sets of input observation data. It then details
how the Taylor series method of track compression was developed using the method of least squares.
Finally, it presents the results of the Taylor series track compression portion of the thesis.

3.1.1 Notation. Throughout the thesis, bold-faced letters will be used to represent vectors. State
vectors are represented as X . Position and velocity vectors are represented as R and V. Components of

position and velocity will be represented as

Table 3-1 Notation

position velocity
R, R, RJ |[v\ V\ VI
Re R RJ | [V Vv V[
R, R, R]|[vv v, V[

3.1.2 Units. To a large extent, canonical units have been used throughout the thesis. Distances
are measured in Distance Units (DUs), time is measured in Time Units (TUs), seconds or Julian Days
(JD). ADU is defined as the mean equatorial radius of the Earth equal to 6378.137 km [22]. ATU is
defined as the time that a satellite in a circular, Keplerian orbit with a semi-major axis of one DU would
take to travel a distance of one DU. This is equal to 13.44685115881 minutes [22]. Exceptions to the
canonical units standard occur in the time steps used by the numerical integrator and the reporting of

observation times.
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3.2 Truth Model
The truth data is generated using a fourth-order Runge-Kutta numerical integrator. This
integrates a set of first-order differential equations of the form

dx = £ (x) (3.1)

The formulas for the standard fourth-order Runge-Kutta integrator are

Xy = X, +— (k +2k, +2k, +k,) (32)

n+l

where

At £(x,)
t f( +—i‘—)
il 3)

k, = At f(x, +k,) [1,11]

ll
>
N

N

In this application, the variable of interest is a state vector, X , and the differential equation takes the
vector form

aX

3.3
a4t =1 (X) (33)

3.2.1 State Vector. For the track compression portions of the thesis, the state vector, X , is

defined as
. T
x=[R, R, Ry V, V, V] (34)
3.2.2 Equations of Motion. For the track compression portions, the EOMs are derived from the

Earth’s geopotential accounting for the J, zonal harmonic caused by the Earth’s oblateness. Escobal gives

this potential, @, (not to be confused with the state transition matrix with the same symbol), as [5]



G R,’]J
b= m[1+ ;r22(1—3sin28)] (3.5)

where G is the gravitational constant
m is the mass of the Earth
R 4 is the equatorial radius of the Earth
1 is the distance from the Earth’s center
J,=1082.28 +0.3 x 10°® (unitless)

sind =z/r

The acceleration due to gravity about a planet is given as the gradient of the potential, or

‘::} =V (36)
and thesc terms are given as
%:ﬁr‘?"[H%RiJZ (1-5sin’ 8)] (3.7)
(130
a=l)
%% _ _G:];ZI:I_*_%RO;:JZ (3—5sin’ 8)}

Using canonical units allows the substitution p = Gm = 1 and R4 = 1. The equations of motion become

B VX T
Vy
\A
X 37, 2]
X = —-';3— 1+Erz 1—-5'1:3" (38)
[ 37 2]
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where r is determined from

r=,/x2+y2+z2 (3.9)

3.2.3 Reference Frames. The truth model tracks the state vector and acceleration components in
the Earth-Centered, Inertial (ECI) reference frame. This is sometimes referred to as the IIK frame, as
these letters represent the three basis vectors. This frame uses the center of the Earth as its origin, the
equatorial plane as the fundamental frame, the vernal equiﬁox as the direction of the first basis vector, and
the North pole as the direction of the third vector. The second vector is in the equatorial plane,
perpendicular to the first and third vectors in a right-handed sense.

An Earth-Centered, Rotating (ECR) frame is also used. This frame is similar to the ECI frame
except that the first basis vector always points out from the center of the Earth through the equator at a
longitude of zero degrees (the longitude of Greenwich). To speed generation of observation data, the site
position vector is determined once in the ECR frame. The state vector of the satellite is then rotated to the
ECR frame at each time step and compared to the site vector to determine visibility. By rotating the state
vector through a single, simple rotation about the third axis, the site vector does not need to be
recalculated at each time step. It remains constant in the ECR frame.

Finally, the Topocentric-Horizon reference frame is used to determine the range, azimuth and |
elevation of the satellite as seen from the site. This reference frame has the site as its origin, the local
horizon as the fundamental plane, South (in the local horizon) as the first direction, East as the second
direction, and straight up (the zenith) as the third. This frame is usually referred to as the SEZ frame
owing to the direction of the basis vectors. The SEZ frame allows easy calculation of the range, azimuth
and elevation observations which would be reported by the sites.

3.2.4 Observation Data. The truth model is used to generate the observation data for use by the
Taylor series track compression algorithm. The observation data represents a typical set of observations
which a site of the SSN could generate as a satellite passes within its field of view. The radar sites used

will be described next.
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3.2.4.1 Radar Locations. The radar site locations shown in Table 3-2 were used for this

thesis. These are the actual SSN locations. [19]

Table 3-2 Radar Sites of the SSN

Station | Latitude (deg) | Longitude (deg) | Altitude (m)
Indi -4.67174786 55.47782059 560.50
Reef -7.27003056 72.36999860 -68.375
Guam 13.61518782 144 85604938 218.93
Hula 21.56226524 201.75789406 429.42
Cook 34.82259890 239.49814705 271.53
Pike 38.805943055 | 255.471532222 1899.42
Boss 42.94782144 288.37343743 203.37
Pogo 76.51536439 291.40114169 147.03
Lion 51.11758338 359.0936545 146.59

The world-wide distribution of these sites is evident from Figure 3-1 below.

Figure 3-1 Radar Sites of the SSN

3.2.4.2 Radar Capabilities. Observation data is generated assuming that all sites have

the same type of radar. These radar measure the range, azimuth and elevation of the satellite. The rate of



observations varied for different portions of the thesis. For the track compression development, data rates
varied from one observation every five seconds to as high as twelve observations per second.

All radar sites were modeled with the same accuracy. The standard deviations used were 100
meters in range, 0.025 degrees in azimuth and 0.025 degrees in elevation. These are typical SSN
accuracies. [19}]

3.2.4.3 ECR Site Vector Calculation. To calculate the position vector of each site in the
ECR frame, one first needs to understand the effects of the Earth’s oblateness on latitude, and the
distinction between geocentric and geodetic latitudes. As shown in Figure 3-2, geocentric latitude, L, is
the angle between the equatorial plane and a line from the site to the center of the Earth. Geodetic
latitude, L, is the angle between the equatorial plane and a line through the site and perpendicular to the

local horizon. This is what is meant when latitude is typically reported.

oblateness is exaggerated

Figure 3-2 Geodetic and Geocentric Latitudes
The latitudes in Table 3-2 are geodetic latitudes. To determine the ECR position vector of a site with
geodetic latitude L, longitude A, and altitude H, the following equations are used. [1]

X COSA
R =| xsinA (3.10)

z
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a
X = |[-—=—=====+H]| cosL
1-e*sin’L
ae(l—ez) )
z=|+————=+H| sinL
Vi-¢e’sin’L

where a, is the mean equatorial radius of the Earth (1 DU)
¢’ is the squared eccentricity of the Earth (the amount of oblateness)

From [22] & = 0.00669437999013.

3.2.4.4 Observation Geometry. To predict the measurements, the position vector of the
satellite relative to the site is first calculated in ECR coordinates and then rotated into the SEZ frame.
The position components of the state vector are used to create the vector of the position of the satellite,
relative to the center of the Earth, expressed in ECI coordinates. This vector is then rotated about the
third axis by an angle equal to the local sidereal time at Greenwich, resulting in a position vector in ECR
coordinates. The position vector of the site is then subtracted from this to leave the position vector of the
satellite, relative to the site, expressed in ECR coordinates. This vector is then rotated in a positive
direction about the third axis by the longitude of the site, and fhen in a negative direction about the second
axis by the site colatitude, (egual to 90° minus the latitude). This results in a vector representing the
position of the satellite, relative to the site, expressed in the topocentric-horizon reference frame. This

vector is called RhoSEZ and is abbreviated Py .

Figure 3-3 Observation Geometry, on the next page, shows the topocentric-horizon reference

frame and the geometry involved in determining the radar observations.

3-7



azimuth

X satelite

S ¥ elevation

Figure 3-3 Observation Geometry

This figure shows the position vector of the satellite relative to the site. This vector is converted to

measurements of range, azimuth and elevation using the following equations.

mnge:lpmzz,=\/psz‘*‘pﬁz"'pz2 (3.11)

Pz

elevation = tan™ e
\VPs *+Pg

3.2.5 Noise. Equations ( 3.11) provide range, azimuth and elevation data for processing by the
track compression algorithms. This is not, however, realistic data. As discussed in chapter two, real data
consists of the true portion, and the always present, never separable error, the noise. Observations of the
SSN contain contributions from many, very small, error sources. These errors combine to form the
reported accuracy of the instrument. According to the Central Limit Theorem (see chapter two), the
errors for these measurements follow a Gaussian distribution. This means that the perfect data obtained
from equations ( 3.11 ) must be intentionally altered to obtain noisy data. This process occurs by adding
the product of a random number and the standard deviation for that type of data. The random number is
provided by a routine which determines random numbers of a Gaussian distribution with a mean value of

zero and a variance of one. Figure 3-4 shows the distribution of 10,000 of these random numbers.
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0
standard deviations

Figure 3-4 Gaussian Random Number Distribution

This error closely resembles a Gauss curve with a variance equal to one. The following three figures show
the output of noisy data from a track of 100 observations. Horizontal lines indicate standard deviation

intervals on each figure. These show the effect of adding noise to the observations for realism.

300
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Figure 3-5 Random Range Noise

3-9



0.075

|
|
|
0.05
v
} $ 0025
| g
| s
1 g °
\ [}
| =
€ o025
| E
‘ N
% ]
-0.05
|
| -0.075 i . . . r :
‘ 0 10 20 30 40 50 60 70 80 90 100

Figure 3-6 Random Azimuth Noise
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Figure 3-7 Random Elevation Noise

3.3 General Description of Track Compression
The two methods of track compression developed in this thesis are based on the use of the multi-
dimensional, non-linear least squares algorithm, described in chapter two, to determine a state vector

which represents the actual state of the satellite at a particular time. The method also produces the very
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important covariance matrix. The algorithm essentially says that if a satellite were at the state computed
at the reference time, then it would describe an arc across the sky very close to the arc actually observed by
the site. In addition, the covariance matrix describes the accuracy of the estimated state vector.

The state computed at each iteration of the least squares algorithm is called the reference state.
The time of this state is the reference time. The trajectory which the satellite would trace if it were
actually at the reference state at the reference time is called the reference trajectory. The reference
trajectory is used to predict observations to compare with the actual observations to determine the
accuracy of the reference state. |

This method does not quite determine the satellite’s orbit, because it does not provide
information about the important drag parameter, the ballistic coefficient. The time scale required for air
drag to take effect is too large to be seen during the relatively short arcs observed as one track of data.
Also, the information is only based on observations taken on a small piece of the orbit (it excludes input
from the opposite side of the orbit). If the data were perfectly accurate, this arc could be extrapolated to
completely describe the entire orbit. However, since the information determined by the method is only an
estimation, the errors involved in predicting the satellite’s position during portions of the orbit far from
the arc will be greatly increased. For these reasons, while the process of track compression does produce a
six-clement state vector which satisfies the classic definition of orbit determination [5], for purposes of
this thesis, the actual orbit estimation is not considered to occur until results from multiple tracks are
combined (see chapter five).

The two methods both require a dynamics model to predict what observations would be seen if
the reference state were the actual state. This dynamics model is used to take a reference state at the
reference time and compute the state of the satellite at each observation time. These states are then used
to predict the observations. The two methods of track compression developed in the thesis differ in the

type of dynamics model used.
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3.4 Detailed Taylor Series Track Compression Development

The first method of track compression developed for this thesis involves a simplified dynamics
model using a Taylor series expansion to determine the position vector of a reference orbit at each
observation time. This description disagrees slightly with that of the preceding section. Typically, in the
method of non-linear least squares, the entire state is determined at each observation time. In this
application, however, only the position need be computed. The observation data do not include any rate
information. Thus, the dynamics model does not need to provide the entire state at each time, just the
position.

3.4.1 Initial Reference State. To implement the non-linear least squares algorithm (see chapter
two), a method of determining an initial reference state vector must first be developed. This state must be
accurate enough to allow the least squares algorithm to converge. Additionally, the method must be fast
to allow for computer-execution thousands of times per day at each site. In this application, the reference
state is determined from observation data near the middle of the arc. Specifically, the reference time is
determined as the time midway between the first and last observation in the arc. Two observations, one
approximately five seconds before the reference time and one approximately five seconds after the
reference time are extracted from the data set. Each observation is used to create a position vector at that
observation time. This is created in a process exactly reversed from that described in section 3.2.4.4.

A short, second-order arc is then fit between the two vectors; the reference time (very near the
middle of the short arc) is used to interpolate along the arc, between the two position vectors, to determine
the position vector at the reference time. The velocity vector is determined by assuming a straight line
path is traveled between the two position vectors in the (roughly) ten seconds between the two observation
times. The position and velocity vectors are combined to create a reference state vector.

More accurate methods of preliminary orbit determination were explored. For instance, Escobal
details five different methods of orbit determination from two position vectors and time. In particular, the
Gaussian Iteration method is well suited to a time increment of roughly ten seconds. Each of these

methods, while more accurate than the arc and line method described above, take considerably longer to
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implement. Due to the inaccuracies in the observations, the velocity computed via the arc and line
method could contain significant error. Nevertheless, the least squares iteration algorithm has been
shown to correct errors in velocity as high as two orders of magnitude in only two iterations. Therefore,
even in the worst cases, the arc and line method allows convergence faster than would be possible using a
more exact method. It allows rapid reference state calculation from the data arc with sufficient accuracy
for least squares convergence in well over 99.9% of the arcs generated.

3.4.2 Dynamics Model. After determining an initial reference state, a dynamics model must be
used to determine the reference trajectory and the state transition matrix at’ each observation time. In the
Taylor series method of track compression, a Taylor series expansion of the position vector at the
reference time is used to allow direct calculation of the position vector at any other time (as opposed to
numerical integration). The state transition matrix at an observation time is also directly calculated by
taking the partial derivatives of each component of the position vector at the observation time with respect
to each component of the reference state.

The Taylor series representation of the position from the reference state is shown below as

equation ( 3.12).
. 1. 1..
R(1) =R(to)+R(to)At+ER(t0)At2 +§;R(to)At3 + oo (3.12)

where  R(t,) is the position at the reference time
R(t, ) is the velocity at the reference time
l'i(t0 ) is the acceleration at the reference time

ﬁ(t0 ) is the time rate of change of the acceleration
A tis the time between the observation time, t, and the reference time, t,

The position and velocity vectors are contained in the reference state. The acceleration and the

acceleration derivatives are obtained from the equations of motion for a satellite.
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3.4.2.1 Order of Terms. Accelerations resulting from different forces (i.. different

zonal harmonics) are calculated separately and their results are summed. This allows the determination of
the relative contribution of each term. Analysis of the contributions is used to determine how many terms
are required in order to maintain a desired accuracy in the position vector calculation. Because the
accuracy of the expansion decreases as the time interval increases, the track of data must be split up into
smaller arcs of data and each arc compressed individually. As more acceleration terms are included in the
expansion, the resulting position vectors are more accurate, which allows a track to be split into fewer
arcs, but evaluation of the equations takes longer. As the accuracy is decreélsed, the simpler equations are
evaluated faster, but the track must be split up into more arcs, thus requiring the compression scheme to
be applied to more arcs. Thus a tradeoff exists between including more terms in the model and splitting
the tracks into more arcs.

To determine the number of terms required and the size of each arc, the contribution of each of
six terms was graphed as a function of the time interval. These six terms are the first, second and third
order two-body terms, first and second order J, terms, and the first order Jsterm. This is included as

Figure 3-8.

70 {

<«—— operating location

delta-t (sec)

I - == —~
4 5 6 7 8 9 10
contribution (meters)

Figure 3-8 Contribution of Taylor Series Terms
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Based on this figure, first and second order two-body accelerations and first order J, accelerations are
included in the equations. This allows for arc lengths of 90 seconds (45 seconds on either side of the
reference time) while retaining every term which could contribute more than about three meters to the
position of the satellite. Satellites and debris can be more than three meters in size, so including more
terms would necessitate accounting for which portion of the satellite body reflected the majority of the
radar.
3.4.2.2 Reference Trajectory. Using equation ( 3.12 ) and the reference state, the

position of the satellite can be directly calculated, with three meter accurac;y, at any observation time
within 45 seconds of the reference time. This direct calculation avoids the requirement to numerically
integrate the equations of motion between observation times. The Taylor series method was originally
chosen because it was believed that this would save processing time by eliminating the requirement to
numerically integrate a state vector through many small time steps to proceed from one observation to the
next. However, as will be discussed in chapter four, this time savings did not occur.

The following is the complete development of the terms of the components of equation ( 3.12 ) in

terms of the reference state, X . To simplify the presentation of the equations, the following notation will

be used.
.
T
X=|--[=[R, R, R, V, V, V] (3.13)
V—
Rl— v
R(t,) =|R, R(t,) =V(t,)=|V, (3.14)
R3_ V3
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.- i R,’
R, R |1-5—
r )
. -1 -3] R,
R(t0)=;‘3— R, |+ 2r52 Rz(l_s r;
2
R, R3(3—5———§—
[ N3 i )|
_ . -
:iRl'r---Vl
1 T
R(to)=_r'3_ 3R2;"V2
T
L3113;--\/3

where 1= \/R,2 +R,” +R,’

4 _RVi+RV +RV,

dt T

Combining equations ( 3.12 ) and ( 3.14 ) yields the following final equation for the position of the

satellite as a function of the reference state and the time interval between the reference time and the time

of the observation, At.

i R 3R (. RZ) 3R. i )
R1+V,At—2r‘3At2— 4’r5‘ 1-5 ri At2+_6r3\ r‘ -V, |At?
)
R 31,R,( R} 1 (3R,
R=|R, +V,At——2At? =22 1-5—2 At +—| —2 —V)Aﬁ 3.15
202 2rt 4r° L r2) 6r’\ r 2 ( )
R 31,R.[ R} 1 (3R,
R.+V,At——2At? -2 3352 A2 4 —| —2 —V)Af’
| 2r? 4r® | r? ) t 6r’\ r 3 |

This equation applies equally for time before the reference time (where At is negative) as well as after.
The actual computer code which implements this equation takes advantage of the fact that each term
changes only in the time interval when evaluating the position at different observation times. To speed

processing, each term is completely evaluated with all but the At factor at the beginning of each iteration
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of the least squares algorithm. The position vector at each time is then determined by multiplying each
term by the appropriate At factor and summing. The process of evaluating the reference trajectory
consists of determining the position vector at each observation time.

3.4.2.3 State Transition Matrix. In addition to a method of computing the reference
trajectory, the non-linear least squares algorithm also requires a method of computing the state transition
matrix, ® . This is derived from the dynamics model as well. In the Taylor series method, the state
transition matrix is developed by taking the partial derivatives of the position vector (from the Taylor

series expansion) with respect to the reference state vector.

[9R,(t) OR,(t) 9R,(t) OR,(t) IR,(t) OR(1)]
0X,(0) 9X,(0) 9X,(0) 9X,(0) 9X(0) 9X (0
_3R(®M) |3R,() AR,() BR,() R, (1) IR, () IR,
T9X(0) |9X,(0) 9X,(0) 9X,(0) 9X,(0) 9X,(0) 9X,(0)
IR,(t) OR,(t) OR,(t) OR,(t) OR,(t) OR,(1)
19X,(0) 3X,(0) 9X,(0) 3X,(0) 9X,(0) 9X,(0)]

o (3.16)

where R(t) is given by equation ( 3.15 ) and X(0) is the state vector which is related to the terms of

equation ( 3.16 ) through equation ( 3.13 ). Ther and T terms are each functions of the state, thus the
development of this matrix requires multiple uses of the chain rule and becomes quite lengthy. This
development is presented in its entirety as Appendix C.

3.4.3 Observation Relation. The next step in the least squares algorithm implementation is to
determine the observation relation. The observation relation, denoted G, is usually a function of the state
vector at the observation time. In this case, however, the relation is only a function of the position
components of the state. Velocity information is neither provided by the dynanﬁcs model nor needed by
the observation relation. Therefore, the set of equations comprising the observation relation will only be
functions of the position, R(t), and of time.

range(R,t)

G =| azimuth(R,t) (3.17)
elevation(R, t)
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The three quantities observed are range, azimuth and elevation. These three quantities are
determined by a method similar to that described in section 3.2.4.4 ending with equation ( 3.11). The
process is detailed in the following three sections.

3.4.3.1 Determining the RholJK Vector. First, the position vector of the site is
subtracted from the position vector of the satellite, with both vectors expressed in the ECI coordinate

frame. The resulting vector is called the RholJK vector, also denoted Py, . The satellite position vector
is obtained in the ECI frame from equation ( 3.15). The site posiﬁon vector in the ECI frame, R , is

determined from the site’s latitude, L, longitude, A, and altitude, H, and from the observation time

(expressed as a Julian Date) using equations very similar to equations ( 3.10 ). [1]

Pox = R(1)-R, (3.18)

x cosH
R. =|xsin® (3.19)

site
z

a

==t 4+ H|cosL
* v1-e?sin’L cos
a(1-¢?)

7=
vi-¢e?sin’L

0=GST+A

+H]| sinL

where, as in equation ( 3.10 ), a, is the mean equatorial radius of the Earth and ¢’ is the squared
eccentricity of the Earth. The Greenwich Sidereal Time, GST, is determined from the Julian Date using

the following equations. [18]



GST = 175368559 + 628.3319705 JC
+6.770708127x107° JC? (3.20)
+ 04 (YD - Int(JD) - 05)

where g is the rotational rate of the Earth, (6.30038809866574 radians per day) [22]

JD is the Julian Date (not modified)
Int (JD) is the integer portion of the Julian Date
JC is the Julian Century given by the following [18]

_ Int(JD) + 05— 2451545
B 36525

ic (321)

Equation ( 3.19 ) gives the ECI position vector of the site. This is subtracted from the satellite’s ECI
position vector, given by equation ( 3.15 ), yielding the position vector of the satellite relative to the site in
the ECI frame, which is RholJK.

3.4.3.2 Determining the RhoSEZ Vector. The next step in determining the observation
relation, G , is to calculate the position vector of the satellite relative to the site measured in the
Topocentric-Horizon (SEZ) reference frame. This reference ﬁame conversion simply requires two
rotations of the RholJK vector. This is accomplished via the following rotation matrix.

cos(LST) cos(colat) sin(LST) cos(colat) - sin(colat)

D= - sin(LST) cos(LST) 0 (3.22)
cos(LST) sin(colat) sin(LST) sin(colat) cos(colat)

where colat is the colatitude of the site, equal to 90° - L. Thus, the RhoSEZ vector is computed from

Pz =D Pk (3.23)

3.4.3.3 Final Observation Relation Determination. The range, azimuth and elevation

are then computed from
range:lps}izl=\/psz+pE2+pZ2 (3.11)
azimuth = £ —tan™ Pe
Ps
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Pz

elevation = tan™ ==
VPs +Pg

Finally, the observation relation, G, is obtained by evaluating equations ( 3.18 ) through ( 3.23)
sequentially, followed by equation ( 3.11).

3.4.4 Observation Matrix. Once the reference trajectory, state transition matrix and observation
relation have all been found, the next step is to determine the observation matrix, T . The observation
matrix does for the observation relation what the state transition matrix does for the reference trajectory.
In fact, it is based in large part on the state transition matrix. T essentiallj; tells the algorithm what
change in the predicted observation would result from a small change in the reference state, X . The
observation matrix is defined as

T=H® (3.24)
The matrix H gives the change in the observation relation accompanying a change in the state vector at
the observation time. The matrix ® gives the change in the state \-/ector at the observation time
accompanying a change in the state vector at the reference time. Hence, the two matrices combine to
form T , which gives the change in the observations at the observation time caused by a change in the

reference state vector at the reference time.

=9X(,) (322)
_3X(t)
= 9X(0)

T e ne - 26 2X() 3G (326,

E - = =
0X(t,) 9X(0)  9X(0)
But in this case the observation relation and state transition matrix both contain only the position

components of the state vector, so the relation becomes

3G  IR(t) 3G
IR(t,) aX(0)  9X(0)

T=H® = (3.27)
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As described by equations ( 3.25 ) and ( 3.27 ), the H matrix is taken as the partial derivative of
the observation relation with respect to, (in the Taylor series method), the position vector. Thus, the H

matrix is a three by three matrix consisting of the following partial derivatives.

(9G, 0G, 0G,
oR, OR, OR,
9G, 9G, 9G,
H= (3.28)

dR, OR, OR,
3G, 9G, 9G,
|9R, OR, OR,

Evaluation of these partial derivatives involves the use of equations ( 3.11), (3.17), (3.18), (3.22) and
(3.23 ) as well as judicious use of the chain rule. Again, this lengthy development will not be presented
here. 1t is contained in its entirety as Appendix D.

3.4.5 Instrument Covariance Matrix. The final development for the use of the non-linear least
squares algorithm is the instrument covariance matrix, Q . The instrument covariance matrix, a diagonal
matrix, is obtained from the reported accuracies of the radar sites. The variances, (the square of the

instrument’s standard deviations), are used as the diagonal clements.

2
O e 0 0
Q= 0  Crimm 0 (329)
0 0 Gelmtionz

The standard deviations used in this thesis are shown on the next page.

G. =100 meters = 1.567856x10™° DUs

range
= 0.025 deg = 4.363323x10™* rad
=0

1o}
o

azimuth
elevation azimuth

3.4.6 Convergence Criteria. The final step in the application of the least squares algorithm is
the decision of a convergence criteria. For the Taylor series method of track compression (and throughout

this thesis) the correction applied to the reference state is compared to the diagonal elements of the state

covariance matrix, P, after each iteration. If the correction to any element of the reference state is larger
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than one percent of the square root of the corresponding covariance element, another iteration is
accomplished. [20]

3.4.7 Summary. To summarize the detailed methodology of the Taylor series method of track
compression, a track of data is split into arcs of no more than 90 seconds in length. These arcs are used as
observation data for the non-linear least squares algorithm described in chapter two. This algorithm
requires the development of a reference trajectory, dynamics model, state transition matrix, observation
relation, observation matrix and instrument covariance matrix as well as a decision of the convergence
criteria. It is the dynamics model that primarily distinguishes the Taylor séries method from the
integrator method to be described in chapter four.

The non-linear least squares algorithm is iterated until the convergence criteria is achieved.
Once the algorithm has converged to a solution, the residuals are checked to ensure that they are
reasonable (see chapter two). The algorithm produces a reference state vector, which represents the state
of the satellite at the center of the arc of data, and a covariance matrix, which represents the accuracy of

the computed reference state.

3.5 Results

This section presents the results of the Taylor series method of track compression portion of the
thesis. The results included are a sample of the program output and the first and last pass residuals from
track compressions of several different orbits and viewing geometries. The orbital elements used for the

first run are shown in Table 3-3.

Table 3-3 Orbit Number One

semi-major axis (DUs) 1.029994
eccentricity 0.003963

inclination (deg) | 40-.000302

longitude of ascending node (deg) | 19.998752
argument of perigee (deg) | 358.488511

true anomaly (deg) 46.513560
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Radar site LION was used for this first run with observations taken every 0.4 seconds. The

satellite was visible for 4 minutes, 37 seconds producing a track of 687 observations which were split into

four arcs. Analyzing the residuals shows that each arc was successfully compressed. Figures 3-9 through

3-11 show the residuals from the first pass for each type of data, for the first of the four arcs. These are

normalized by dividing by the standard deviations for each type of data. The obvious trends in the data

are clear indications that the trajectory evaluated during the first pass is not the optimal trajectory. The

residuals of the optimal, converged trajectory should appear as a random series of values with an average

near zero and a variance near one. The variance is near one because the residuals are normalized.

Approximately 68% of the residuals should be within one standard deviation of the mean.

standard deviations
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Figure 3-9 First Pass Range Residuals
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Figure 3-11 First Pass Elevation Residuals

The last pass residuals are shown in Figures 3-12 through 3-14. They show the converged solution, with

residuals statistically spread as described previously.
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Figure 3-13 Last Pass Azimuth Residuals
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Similar results appeared for the residuals of the other three arcs. To summarize these results,

once the convergence criteria has been achieved, the algorithm calculates the average normalized residual

for each type of observation data and the average normalized squared residual. These are recorded and

can be used to verify the validity of the converged solution. The following table shows these parameters

from this first run. As expected, the average residuals for all three types of data for all four arcs are near

zero and the average squared residuals are near one.

Table 3-4 Orbit One Track Compression Results

range azimuth elevation
arc 1 residuals | 00023364 .00000251 .00072454
arc 1 squared residuals .82982743 .91883676 .98655668
arc 2 residuals .00028572 .00000180 -.00016240
arc 2 squared residuals 1.02058824 .91098848 .95360661
arc 3 residuals | —- 00028598 .00000111 .00004678
arc 3 squared residuals || - 94403054 .98764160 | 1.01218600
arc 4 residuals | —. 00028314 .00000415 .00075569
arc 4 squared residuals | - 92798399 86142314 | 1.03658611

3-26



The results in Table 3-4 indicate a successful track compression. The maximum elevation

recorded in the data was less than four degrees. This indicates a very low pass in the sky. The second
orbit was selected to pass quite high in the sky over the COOK radar site. Its maximum elevation is over
68°. The following shows the second orbit used in the Taylor series method of track compression. It also

used a data rate of one observation every 0.4 seconds.

Table 3-5 Orbit Number Two

semi-major axis (DUs) 1.030011
eccentricity 0.003963

inclination (deg) 39.997386

longitude of ascending node (deg) | 225.000000
argument of perigee (deg) | 358.169601

true anomaly (deg) 46.835123

This orbit is quite similar to orbit one but with the plane rotated to allow it to pass over COOK.
This 7 minute, 28 second track of 1111 observations was split into five arcs. Table 3-6 shows the results

of the track compression of these five arcs.

Table 3-6 Orbit Two Track Compression Results

range azimuth elevation

arc 1 residuals | —- 00003263 -.00000854 -.00012728

arc 1 squared residuals .88131956 .95627818 .97985336

arc 2 residuals .00102424 .00001146 | -.00019216

arc 2 squared residuals 1.03146837 .85304246 .99571694

arc 3 residuals | —- 00343549 .00000031 .01084358

} arc 3 squared residuals | 82358193 .96928305 .99036295
| arc 4 residuals | -00100726 | —-.00000616 | -.00086904
| arc 4 squared residuals | 97109372 | 1.00082980 | 1.03648939
| arc S residuals || - 00002229 | -.00000818 | -.00020686
_arc 5 squared residuals .95489164 .87828537 .87487937
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This table indicates that the high elevation pass also converged successfully. The next step was
to apply the Taylor series method of track compression to a higher altitude orbit. For this case, an orbit
two Earth radii in size was propagated with COOK taking observations at the same data rate. The

satellite passed overhead with more than 82° of elevation.

Table 3-7 Orbit Number Three

semi-major axis (DUs) 2.029923
eccentricity 0.003921

inclination (deg) 39.997902

longitude of ascending node (deg) | 225.000684
argument of perigee (deg) | 357.730131

true anomaly (deg) 47.272337

The pass lasted 94 minutes producing a track of 13,968 observations split into 63 arcs. All arcs
were successfully compressed with valid residuals. All of these residuals were near the desired values of
one and zero. Table 3-8 shows the maximum, average and minimum of the 63 average residual and

average squared residual results for the range, azimuth and elevation of the 63 arcs.

Table 3-8 Orbit Three Track Compression Results

maximum average minimum
.00003117 -0.00011385 -0.00291641
.17498481 0.97460627 0.76891445

.00005437 0.00000135{ -0.00004202
.20066433 0.97300310 0.78152302
.00123700 | -0.00018000| -0.00898000
.19814258 0.98665555 | 0.75231942

average range residual

average squared range residual
average azimuth residual

average squared azimuth residual
average elevation residual
average squared elevation residual

= O V| O} ] O

None of these values are too far from the nominal values of zero and one. The final orbit was eccentric

with the same semi-major axis. Again, COOK recorded observations at the same data rate.
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Table 3-9 Orbit Number Four

semi-major axis (DUs) 2.030040
eccentricity 0.400019

inclination (deg) | 39.997573

longitude of ascending node (deg) | 225-.001504
argument of perigee (deg) | 357.731441

true anomaly (deg) 47.270383

This pass lasted 2 hours and 23 minutes. The track consisted of 21,296 observations split into 96
arcs. Table 3-10 presents the residual results in the same manner as for the previous orbit. Again, the

values are all reasonable and indicate successful convergence on all arcs.

Table 3-10 Orbit Four Track Compression Results

maximum average minimum
.00004056 | -0.00029802 | -0.01989010
average squared range residual .21929120 0.98029666 0.76489698

0

1
average azimuth residual 0.00011469 0.00000372 | =-0.00004421
average squared azimuth residual 1.16064348 0.96963272 0.76134938
0
1.

average range residual

.00452605 0.00004444 | -0.00474431
19675580 0.98611874 0.76251407

average elevation residual
average squared elevation residual

3.6 Summary

To summarize the results, the Taylor series method of track compression is quite successful at
reducing the large tracks of data into manageable state vectors and covariance matrices. The drawback to
this method is the large number of arcs that are required for the higher altitude, longer track passes. The
large number requires more time to compress and more data to pass to the SCC, undermining the original
intent of the thesis. The next portion of the thesis, integrator track compression, was designed to

eliminate this problem by allowing a track to be compressed in its entirety, without being split into arcs.

3-29



IV. Integrator Track Compression

4.1 Introduction

This chapter details how the integrator method of track compression was developed using the
method of least squares. It then presents the results of the integrator track compression portion of the
thesis. The notation, units, reference frames and truth model are the same as that described in the Taylor

series track compression description in the previous chapter.

4.2 Detailed Integrator Track Compression Development -

The integrator method of track compression differs from the Taylor series method primarily in
the dynamics model. This model numerically integrates the equations of motion and the equations of
variation to determine the state vector and state transition matrix at each observation time, as opposed to
directly calculating these as in the Taylor series method.

4.2.1 Comparison. The Taylor series method was originally chosen to provide for faster
computation. The supposed advantage dealt with the necessity of a numerical integrator to evaluate the
state frequently, across small time steps, and thus prevent a direct calculation of the state at a given
observation time. However, the savings in time did not manifest itself because the observation times are
so closely spaced that a numerical integrator can go directly from one observation time to the next without
requiring evaluation across the interval. This fact, coupled with the rather long equations that developed
out of the Taylor series method, allowed the numerical integrator to produce state vectors at each
obscrvation time at about the same rate as the Taylor series method but with three advantages. The
integrator method is more accurate, is easier to modify to account for additional dynamics and, most
importantly, does not require the track to be split into arcs. An entire track can be compressed at once,
and only one state vector and covariance matrix sent to the SCC.

4.2.2 Initial Reference State. The initial reference state for the integrator method is computed in

a manner very similar to the Taylor series reference state. The reference state is first calculated using the
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arc and line method described in chapter three. The state is then propagated backward to the time of the
first observation in the track. The preliminary orbit determination is considered more accurate in the
middle of the track, however, the integrator method lends itself to the use of a reference state at the
beginning of the track. Therefore, the reference state is calculated at the middle of the track, using the
more accurate data, and then propagated to the beginning of the track, to facilitate the integrator dynamics
model.

4.2.3 Dynamiés Model. The dynamics model is the primary difference between the two methods
of track compression. The integrator method uses the same fourth-order R;mge-Kutta integrator as was
described for the truth model in chapter three.

4.2.3.1 Reference Trajectory. The reference trajectory is computed by propagating the
reference state through each observation time. This propagation requires a set of equations of motion
describing the satellite’s trajectory. These equations take into account two-body acceleration and the
effects of the J, geopotential harmonic. They are the same as was used for the truth model.

4.2.3.2 State Transition Matrix. The state transition matrix, ®(t,1, ), is a six by six

matrix used to describe the effects of a small change in the reference state on the reference trajectory. As
such, it is different for each observation time. Initially, it is the identity matrix, I. It changes as the
interval between the reference time and the observation time changes. The state transition matrix is

computed via the following method. [7, 20]

D(t,,t,) =1 (4.1)
d
where
At)=V,g

Xo (1)

and g comes from the equations of motion of the state vector,



d
EX - g(X’ t)

Thus, the components of A (t) are evaluated as the partial derivatives of the equations of motion with

respect to the state vector. These are known as the equations of variation. Once again, the development
of these equations becomes quite lengthy and is presented as Appendix E.

The equations of motion and the equations of variation are integrated together. The equations of
motion form a six component vector of equations while the equations of variation form a six by six matrix
of equations. Thus the propagator must integrate 42 equations at each timé step. This seems quite
lengthy, but the equations are not as long as the Taylor series equations and this propagation provides
both the reference trajectory and the state transition matrix. Thus, this method is preferable to the Taylor
series method.

4.2.4 Taylor Series Similarities. The determination of the observation relation, the observation
matrix and the instrument covariance matrix is identical to the description contained in the Taylor series
development. The convergence criteria is also identical.

4.2.5 Summary. To summarize, the integrator method is quite similar to the Taylor series
method. The difference lies in the dynamics model where a fourth-order Runge-Kutta integrator is used
to numerically integrate the equations of motion and the equations of variation to provide the state vector
and the state transition matrix at each observation time. This results in a more accurate state vector

derived from the entire track of observations.

4.3 Results

This section presents the results of the integrator method of track compression portion of the
thesis. The regults will be presented in a manner similar to the previous chapter. The same four orbits
were used to test the integrator track compression method as were used with the Taylor series method.

The first set of orbital elements are reprinted as Table 4-1.



Table 4-1 Orbit Number One

semi-major axis (DUs) 1.029994
eccentricity 0.003963

inclination (deg) | 40.000302

longitude of ascending node (deg) | 19.998752
argument of perigee (deg) | 358.468511

true anomaly (deg) | 46.513560

The entire track was compressed into a single state vector and covariance matrix. The first pass
normalized residuals are shown in Figures 4-1 through 4-3. Just as in the last chapter, the trends indicate
the first pass was not the optimal solution. All three sets of residuals are closer to zero at the middle of

the track. This occurs because the reference trajectory used to generate the first set of residuals is

constructed from data from the middle of the track.
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Figure 4-1 First Pass Range Residuals

4-4




7  —
'Y
»
614 . .:°
? Lo ** o4 0 ﬁ‘
R * "3‘;"0&
¢

w 4l® ? o ¢ PR ¢ 0% e
2 ey Lo *® e It St
2 .3 $ . ¢ o 3?
5 3 X o %% ses® & s E
X e v SR WO
T 2Pl oA NP utoe S0 i alas et et
4 # % '0 ®, ® QQ.w.. “ *
B X A P8 ..”‘ S g * .’ ... o0
IR S P X432 23

0+ .io S 341 X ,. o ¢

L 4 o o %o
-1 ‘ L J PY
-2 + + ..: — + +
0 100 200 300 400 500 600

standard deviations

0 100 200 300 400 500 600

Figure 4-3 First Pass Elevation Residuals

Figures 4-4 through 4-6 show the last pass, converged residuals. As expected, they average near zero and

approximately 68% are within one standard deviation of zero.
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Figure 4-5 Last Pass Azimuth Residuals
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Figure 4-6 Last Pass Elevation Residuals

These figures indicate the compression was successful. The following table shows the average residuals

and average squared residuals (normalized) for each data type for the first orbit.

Table 4-2 Orbit One Track Compression Results

range azimuth elevation
residuals | -00056093 .00001764 .00367693
squared residuals | -94139539 92858585 | 1.00877648

The following tables complete the results for the integrator method of track compression portion
of the thesis. The tables present the last three orbits (the same orbits as the last chapter) and the residual
data. They indicate that the integrator method of track compression is also a valid technique for data

reduction at the sites. The four cases combine to provide a range of orbit types and viewing angles.



Table 4-3 Orbit Number Two

semi-major axis (DUs) 1.030011
eccentricity 0.003963

inclination (deg) 39.997386

longitude of ascending node (deg) | 225.000000
argument of perigee (deg) | 358.169601

true anomaly (deg) 46.835123

Table 4-4 Orbit Two Track Compression Results

range azimuth elevation
residuals || —-00651527 .00008277 .02216073
squared residuals .94371461 .93707563 .98504838
Table 4-5 Orbit Number Three
semi-major axis (DUs) 2.029923
eccentricity 0.003921
inclination (deg) 39.997902
longitude of ascending node (deg) | 225.000684
argument of perigee (deg) | 357.730131
true anomaly (deg) 47.272337

Table 4-6 Orbit Three Track Compression Results

range azimuth elevation
residuals | —- 00122617 .00206993 .03415182
squared residuals .98469824 .98318182 .99565793
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Table 4-7 Orbit Number Four

semi-major axis (DUs) 2.030040
eccentricity 0.400019

inclination (deg) | 39-997573

longitude of ascending node (deg) | 225.001504
argument of perigee (deg) | 357.731441

true anomaly (deg) 47.270383

Table 4-8 Orbit Four Track Compression Results

range azimuth elevation
residnals | —-04312409 .02069728 .12373816
squared residuals [| 1.02945441 | 1.00267420 | 1.02216535

4.4 Summary

The previous results indicate that the integrator method of track compression is as effective as the
Taylor series method. Additionally, the integrator method results in one state vector and covariance
matrix for a track. This reduces the data required to be sent to and processed by the SCC. Another
advantage to the integrator method is the ease with which the dynamics model can be improved.

Changing the equations of motion is a relatively simple task. As an example, additional geopotential
coefficients and atmospheric drag could be added.

Although the results of the track compression of only four orbits are shown here, many more
were actually evaluated for this thesis (for both the integrator and Taylor series methods). The final
portion of the thesis involved thousands of orbits and hundreds of thousands of track compressions. About
one track per ten thousand produced compression difficulties. This indicates the consistent performance

of the integrator method.



V. Global Estimate

5.1 Introduction

After completion of the two methods of track compression, an obvious question arose. Can the
state vectors and associated covariance matrices from multiple compressed tracks be used to provide for an
accurate orbit estimate? This would need to be possible if the track compression method is to be
implemented by the SCC. To answer this question, the scope of the thesis was extended. This new effort
was called Global Estimate. This effort involved using the compressed results from multiple tracks from
multiple sites around the world as input data to another least squa;'es differential corrector. The
application of the least squares algorithm differed from that of the integrator track compression method in
several key areas to be discussed in the following sections.

The overall goal of the Global Estimate effort was to demonstrate that, if the radar sites of the
SSN forwérded data to the SCC in the form of state vectors with covariance matrices, instead of range,
azimuth and elevation readings with standard deviations, the SCC could generate accurate orbit estimates
in a reasonable period of time. These estimates would have to include ballistic coefficient information.

This chapter details the development of the truth model used to generate the input observation
data for the Global Estimate portion of the thesis. It then details how the Global Estimate process was
developed using the method of least squares. The chapter concludes by presenting the Global Estimate
results.

Canonical units were used for the majority of the Global Estimate development. Exceptions to
the canonical units standard occur in the time steps used by the numerical integrator and reporting of
track compression reference times, as in previous sections, as well as the ballistic coefficient and air
density. The ballistic coefficient, denoted B*, is measured in units of m?/kg, while air density is

calculated in units of kg/m’.
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5.2 Detailed Global Estimate Development

This section describes the detailed development of the equations and matrices used for the Global
Estimate portion of the thesis. It details the truth model, initial reference state, and estimator
development.

5.2.1 Truth Model. The truth model used for the Global Estimate portion of the thesis is nearly
identical to that used for the track compression portions. The difference is the inclusion of air drag using
an atmospheric model presented by Regan. [15] The truth model was used to generate the radar site
observation data in essentially the same manner as for the two track oompréssion methods. The integrator
method of track compression was then used to compress the observation tracks into state vectors and
associated covariance matrices. These did not include ballistic coefficient information. The equations of
motion for the truth model Runge-Kutta integrator included drag. The equations of motion for the Global
Estimate dynamics model also included drag, however, the integrator in the track compression dynamics
model did not.

5.2.1.1 State Vector. For the Global Estimate portion, the state vector is extended to
allow for the drag calculations. The state includes a term representing half of the ballistic coefficient.
The value is only half of the ballistic coefficient simply to save the computer time involved in calculating
the acceleration due to drag, which will be shown in the following section to include a factor of 2. Thus

the seven-component state vector for these portions is defined as
B*/]"
x=[R, R, R, V, V, V, BY (5.1)

5.2.1.2 Equations of Motion. The equations of motion include the acceleration due to
the geopotential as developed in chapter three. Additionally, they include the acceleration due to air drag
based on the following equation [9]

1
D=CD5pvr2Af (5.2)

where D is the force due to drag



Cp is a dimensionless drag coefficient between one and two [16]
p is the local atmospheric density

v, is the velocity of the spacecraft relative to the local atmosphere
A¢ is the exposed, frontal cross-sectional area

By dividing this force by the mass of the satellite, m, the acceleration due to air drag is shown as

.. C,A
Re-J S
The ballistic coefficient is now introduced as [21]
C,A
B*= ‘I’n ! (54)

The velocity relative to the local atmosphere is determined by assuming an atmospheric model which
rotates with the Earth. Thus the relative velocity is the difference between the satellite’s inertial velocity
vector and the cross product of the Earth’s rotational vector with the satellite’s position vector. By
combining this with equations ( 5.3 ) and ( 5.4 ), and expressing the result in vector form, the following

equation for the acceleration of the satellite due to air drag is obtained

R=-1B*p |V-(w, xR)| [V-(e, xR)] (55)

where g = 0.05883359980154919racyTU k 221,

The satellite-dependent ballistic coefficient is constant and is included as part of the state vector.

Specifically,

x(7)=BY, (56)

and
xm=4; (B%)=0

Thus, the equations of motion are as shown on the next page.



X=| A +A, (5.7)

gl

A +A,
A +A ¢

gK

0

where A, is the acceleration due to gravity given by equation (3.8 ) and Ay is the acceleration due to air
drag given by equation ( 5.5). The local atmospheric density is determined using an atmospheric mode!
described in Appendix A. [15]

5.2.1.3 Observation Data. The same radar sites described in chapter three were used
for this portion of the thesis. For this case, however, all sites tracked the satellite whenever it was in view.
The sites produced observations at the rate of two per second. The tracks were then compressed using the
integrator method of track compression described in chapter four, and the results (state vectors and
associated covariance matrices) were used as the input observation data for the Global Estimate least
squares estimator. \

5.2.2 Initial Reference State. To start the least squares algorithm, an initial reference state is
required. For Global Estimate, the first six elements of the initial reference state are taken as the state
vector from the first track compression. The seventh element is arbitrarily assigned a value of 0.05. After
one iteration, the ballistic coefficient will typically be corrected to a value with at least two digits in
agreement with the final, converged value. Thus, the arbitrary nature o‘f this initial value does not hinder
the algorithm and convergence is still rapidly achieved.

5.2.3 Dynamics Model. The dynamics model used for the estimator is identical to that used by
the truth model integrator. The EOMs are the same as equation ( 5.7 ) described in section 5.2.1.2. The

development of the state transition matrix requires the evaluation of the A(t) matrix. This requires a

development similar to that given as Appendix E. The addition of the drag parameter and the
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atmospheric model complicate this development. The resulting equations of variation are developed in
their entirety in Appendix F.

As in the integrator track compression method, the equations of motion and the equations of
variation are integrated simultaneously. Because of the additional component of the state vector, these
now constitute 56 first-order differential equations.

5.2.4 Observation Relation. The observation relation is considerably simpler in Global Estimate
than in the previous developments. The input data consists of state vectors containing three position
elements and three velocity elements which correspond exactly to the first lsix components of the Global
Estimate state vector. The input data gives no direct information about the seventh component, the drag

parameter. Thus, the observation relation, G, is a direct relation of the first six state vector components.

[ X,(1)]
X, ()
X, (1)

G= (5.8)
X, M|

X4(t)

| X ()]

5.2.5 Observation Matrix. The observation matrix, T , is again given by the following relation.

3G 9X(t,) 3G

T=H® = = 3.26
aX(t,) 9X(0) . 9X(0) (3.26)
Now, however, the H matrix is much simpler.
1 0 0 0 0 0 O]
G 0100000
_ loo1 0000
H=3x@)=|0 001000 (59)
V10000100
00000 1 0

5.2.6 Instrument Covariance Matrix. The instrument covariance matrix changes for each

observation, as opposed to the constant Q of the track compression sections. The track compression



algorithms produce both a state vector, used as the input data to Global Estimate, and a covariance
matrix, P . This covariance matrix is different for each compressed track and serves as the instrument
covariance matrix, Q , for Global Estimate.

5.2.7 Convergence Criteria. The convergence criteria differs from that of the previous chapters
only in the number of elements evaluated. The algorithm iterates until each element of the state vector is
corrected by less than one percent of the square root of the corresponding diagonal element of the
covariance matrix. This time, this includes the seventh diagonal element which corresponds to the
ballistic coefficient parameter. |

5.2.8 Summary. To summarize, the Global Estimate effort was aimed at demonstrating the
usefulness of the track compression techniques to the overall orbit estimation problem. The project
simulated the combination of data forwarded to the SCC by many sites all tracking the same satellite. The
same non-linear least squares differential correction algorithm was used for Global Estimate as was used
for the track compression techniques, but the implementation was considerably different. Most notably;
the dynamics model requires propagating 56 equations of variation through several orbits at each
iteration, rather than propagating 42 equations through a relatively short arc, as in the integrator method
of track compression. The Global Estimate development produces a state vector which includes a drag
parameter, equal to one-half the ballistic coefficient. This state vector is derived from observations spaced

across the satellite’s orbit and is therefore considered orbital estimation.

5.3 Results

This section presents the results of the Global Estimate portion of the thesis. Results from four
orbits are included. The first orbit is nearly circular and nearly equatorial. The second is slightly
eccentric and retrograde. The third orbit is larger and more eccentric. The fourth orbit is very low with a
high ballistic coefficient, resulting in large drag effects. The Global Estimate algorithm produces a state

vector and covariance matrix at a specified reference time. In all cases, the propagator reported the actual
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Global Estimate prediction of the satellite’s state and the actual state.

The following table shows the elements of the first orbit.

Table 5-1 Orbit Number One

semi-major axis (DUs) 1.088173
eccentricity 0.000914

inclination (deg) 5.540376

longitude of ascending node (deg) | 37-686167
argument of perigee (deg) 69.042996

true anomaly (deg) | 254.358992

ballistic coefficient (m’/kg) 0.033730

. state vector at this reference time for comparison. These results include the comparison between the

This orbit was propagated for 8 hours, 17 minutes, 36 seconds. During this time, 19 tracks of
observations were recorded and compressed. After compression, the Global Estimate algorithm
successfully estimated the satellite’s orbit. The following table shows the predicted and actual state
vectors, as well as the difference. The state vectors are presented in canonical units (with the exception of
the ballistic coefficient). The errors are presented in meters, centimeters per second and square meters per
kilogram.

Table 5-2 Orbit One State Vectors

predicted actual error
X-Position (DUs) | 0.302786245] 0.302786054 | 1.218 m
Y-Position (DUs) 1.041225660 1.041225678 { ~0.115 m

Z-Position (DUs) | 0-065593099 | 0.065592718 | 2.430 m
X-Velocity (DUS/TU) || ~0.921111898 | -0.921112005 | 0.085 cm/s
Y-Velocity (DUS/TU) | 0-261496070 | 0.261495683 | 0.148 cm/s
Z-Velocity (DUS/TU) || 0.072230072 | 0.072230044 | 0.022 cm/s
B* (mPkg) | 0.040041509 | 0.033729594 | 0.006 m/kg

This shows the accuracy with which Global Estimate is able to correctly determine the satellite’s orbit.
Additionally, the covariance matrix is computed. The square roots of the diagonal elements of the

covariance matrix roughly correspond to the three axes of the error ellipsoids. Thus, the first three
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diagonals can be used to determine the expected position error, and the next three can be used to
determine the expected velocity error. The following table reports these expected errors along with the

magnitudes of the actual errors.

Table 5-3 Orbit One Covariance Statistics

actual error
2.72
0.17

error ellipsoid
3.45
3.92

position (m)
velocity (cm/s)

The second orbit was retrograde. Table 5-4 gives its orbital elements. This was propagated for 6

hours, 19 minutes, 28 seconds. Nineteen tracks were recorded. Tables 5-5 and 5-6 show the results.

Table 5-4 Orbit Number Two

semi-major axis (DUs) 1.160395
eccentricity 0.016347

inclination (deg) | 117.685067

longitude of ascending node (deg) | 232.270593
argument of perigee (deg) 93.762641

true anomaly (deg) 96.317677

ballistic coefficient (m’/kg) 0.072933

Table 5-5 Orbit Two State Vectors

predicted actual error
X-Position (DUs) | -0.798729115 | -0.798729336 | 1.410 m
Y-Position (DUs) || -0.469392066 | -0.469392202 | 0.867 m
Z-Position (DUs) | 0.6/6601563 | 0.676601794 | -1.473 m
X-Velocity (DUS/TU) | 0.124985690 | 0.124985946 | -0.202 cm/s
| Y-Velocity (DUS/TU) || 0.699969881 | 0.699969644 | 0.187 cm/s
} Z-Velocity (DUs/TU) | 0.612644198 | 0.612643960 | 0.188 cm/s
‘ B* (mYkg) | 0.077966342 | 0.072932682 | 0.005 m'/kg
|
|
|
|
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Table 5-6 Orbit Two Covariance Statistics

error ellipsoid | actual error
position (m) 3.54 2.22
velocity (cm/s) 3.83 0.92

These tables indicate that Global Estimate had no problem determining the orbit of this retrograde
satellite.

The third orbit attempted was much larger. Its elements are given in Table 5-7.

Table 5-7 Orbit Number Three

semi-major axis (DUs) 2.000000
eccentricity 0.400000

inclination (deg) | 28.702842

longitude of ascending node (deg) | 72.373285
argument of perigee (deg) | 183.806110

true anomaly (deg) | 304.719542

ballistic coefficient (m’/kg) 0.077227

Orbit three was propagated for 4 hours and 48 minutes or one-fifth of a day. There were ten tracks of data

recorded and compressed. Tables 5-8 and 5-9 show the results.

Table 5-8 Orbit Three State Vectors

predicted actual error

X-Position (DUs) | 1479112063 | 1.479112334[-1.730 m

Y-Position (DUs) | -0-208099795 | -0.208099705 | ~0.574 m

Z-Position (DUs) | -0-811761258 | -0.811761012 [ -1.569 m
X-Velocity (DUS/TU) || 0.395009244 | 0.395009444 [ -0.158 cm/s
Y-Velocity (DUS/TU) | 0.713048516 | 0.713048427 | 0.070 cm/s
Z-Velocity (DUS/TU) || -0.108714162 | -0.108713749 | -=0.326 cm/s
B* (mz/kg) 0.061626080 0.077227224 | -0.016 m°/kg
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Table 5-9 Orbit Three Covariance Statistics

error ellipsoid | actual error
position (m) 4,63 2.41
velocity (cm/s) 2.58 0.37

altitude satellite.

The fourth and final satellite had a lower perigee and a higher ballistic coefficient. These

combine to produce a high level of drag on the satellite. Table 5-10 shows the orbital elements for orbit

four.

Table 5-10 Orbit Number Four

| These tables indicate that Global Estimate was also able to successfully estimate the orbit of this higher

semi-major axis (DUs) 1.053684
eccentricity 0.01%270

inclination (deg) | ~17.205573

longitude of ascending node (deg) | 118.168059
argument of perigee (deg) | 250.330578

true anomaly (deg) | 307.348639

ballistic coefficient (m*/kg) 0.128213

Orbit four was propagated for half of a day. There were 31 tracks of data. Tables 5-11 and 5-12 give the

results.
Table 5-11 Orbit Four State Vectors

predicted actual error

X-Position (DUs) | ~0-007779346 [ -0.007779829 | 3.081 m

Y-Position (DUs) | ~1.041248918 | -1.041248650 | 1.709 m

Z-Position (DUs) 0.133952657 0.133952453 1.30l m
X-Velocity (DUs/TU) 0.938547552 0.938547812 | -0.206 cm/s
Y-Velocity (DUS/TU) || —0.027152032 | -0.027152411 | 0.300 cm/s
Z-Velocity (DUS/TU) || -0.261756518 | -0.261756653 | 0.107 cm/s
B* (mYkg) | 0-142901590 | 0.128213036| 0.015 m'/kg




Table 5-12 Orbit Four Covariance Statistics

error ellipsoid | actual error
position (m) 3.47 3.76
velocity (cm/s) 3.43 0.38

These tables show that Global Estimate was also successful with the high drag case.

5.4 Summary

To summarize, the Global Estimate effort produced an algorithm which takes compressed tracks
of data and combines them using the non-linear least squares differential correction method to estimate a
satellite’s orbit. The algorithm was successful at determining the orbits of four case satellites shown in

this chapter. Additionally, many thousands of additional orbits were evaluated in the simulation effort,

but these results are not included here.
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VI. Simulation

6.1 Introduction

After completion of the Global Estimate project, another question arose. Could the same method
of orbit estimation employed as Global Estimate be applied to an entire catalog of satellites? That is,
could the sites of the SSN observe the satellites frequently enough, and the SCC process the data quickly
enough to keep current an entire catalog of seven to eight thousand objects? The Global Estimate project
modeled every site in the network tracking a single object every time it was visible. In the real world,
such a situation wonld not exist. Sites have a limited tracking ability so not all satellites will be tracked
when the geometry allows. The visible satellites must be prioritized.

To answer these questions, the scope of the thesis was again broadened to include large-catalog
simulations. To keep the simulations tractable, 160 satellites (approximately one-fiftieth of AFSPC’s
catalog) were modeled. The sites of the SSN can typically track 50 objects simultancously. The
simulations modeled sites with the ability to track only one satellite at a time. This way, satellites would
be tracked about as frequently as if a full-size catalog was modeled with sites tracking 50 satellites
simultaneously. This provides realistic orbit estimation accuracy.

The simulation portion of the thesis was broken down into three phases. The objective of the first
phase was to verify the concept of a large-scale simulation and to verify the computer code used. Several
different sets of orbits were simulated to observe the response of the orbital estimation process in different
altitude regions. The second phase was aimed at increasing the accuracy of the covariance matrices
through the use of a fading memory filter. Phase three investigated the orbital estimation performance
under conditions of unpredictable s;)lar and atmospheric activity. This chapter describes the development

of and the results of the three phases.



6.2 Phase One

The simulations of phase one amounted to the propagation of 160 satellites through several days.
Radar sites tracked the satellites according to their priority, and compressed the observation tracks into
state vectors with covariance matrices. These compressed tracks were used to estimate the orbits multiple
(typically five) times daily. The estimates were kept in a catalog, propagated forward in time and used for
the prioritization of the next tracking period. Each of the major portions of the simulation is detailed in
the following sections.

6.2.1 Orbits Modeled. Orbital elements and drag parameters weré randomly generated to
provide a mix of different types of realistic orbits. The orbits were typically low-Earth, nearly circular
orbits. Equations ( 6.1 ) were used to determine the elements. The term random signifies a randomly
generated number between zero and one. The term Gaussian signifies a randomly generated number
obeying a Gaussian distribution with an average value of zero and a variance of one. The minimum

radius was set at 200 kilometers to prevent the generation of orbits that dipped too far into the

atmosphere.
Abs(Gaussi
R, = s( 1(;Jss}an)+MinimumRadius (6.1)
Abs(Gaussian) _ . .
, = 10 + Minimum Radius
R, +R
A — 1 2
2
= Ab R, -R,
ecc = Abs A

inc = Mod (Abs(Gaussian) X % , 1:)

Q=randomx2n

®=randomx 27w




v=randomx 2%

B* = Abs (0.055+0.05 Gaussian)

where A is the semi-major axis
ecc is the eccentricity
inc is the inclination
Q is the longitude of the ascending node
o is the argument of perigee
v is the true anomaly

B* is the ballistic coefficient

These formula provide for a range of semi-major axes and eccentricities which do not allow the satellites’
orbits to intersect the Earth’s surface. They provide a range of inclinations, mostly less than 45° but
possibly as high as completely retrograde. The next three elements are all angles randomly distributed
between zero and 360°. Finally, the radius and ballistic coefficient formulas were varied to allow the
study of different ranges of perturbation effects, but always retéined the same basic form as above. The
elements of a set of 160 satellites generated from equations ( 6.1 ) and used during a typical simulation are

shown in Figures 6-1 through 6-9 and listed in a table as Appendix G.
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6.2.2 Propagation. Afier the elements were randomly generated, the corresponding seven-
element state vectors were determined using the method described in section 2.5 of Bate, Mueller and
White. [1] The satellites’ orbits were then propagated through one time period. Usually, this period was
one-fifth of a day. In one case, the length was doubled. All 160 satellites in the catalog were propagated
simultaneously. The radar sites tracked the satellite in view with the highest priority. The prioritization
scheme will be described in section 6.2.8. Observation data was generated using the method described in
chapter three.

Additionally, four more zonal harmonics, J; - Js, were included in the truth model. The
development of the equations of motion due to these effects proceeds identically to that of J, shown in

equations ( 3.6 ) through ( 3.8 ). This lengthy development is provided in Appendix B.
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6.2.3 Track Compression. Whenever the satellite being actively tracked by a site set (passed
below the local horizon of the site) the track compression program was called to compress the
observations into the same type of state vector and covariance matrix described previously. The integrator
method of track compression was again used for the simulation.

6.2.4 Global Estimate. After the propagator had generated observation data for one period, and
the track compression subroutine had compressed all of this data into state vectors and covariance
matrices, the Global Estimate method of orbit estimation was applied to each of the 160 satellites. The
results of Global Estimate were retained as the catalog. This included the feference time, the seven-
element state vector and the 49 by 49 element covariance matrix.

6.2.5 Bayes Filter. For the second and subsequent estimations, a slightly different method of
orbit determination was required. The method chosen is the Bayes filter described in chapter two. This is
identical to the least squares method, except that the results of a previous estimate are used as both the
initial reference trajectory and as an observation to be processed. This observation differs from the others
only in the level of accuracy and the inclusion of the drag parameter. The Bayes filter produces the same
type of state vector and covariance matrix as Global Estimate.

The observation matrix for the Bayes filter is different when using the previous estimate as a
piece of data. In this case, the matrix is a seven by seven identity matrix. The instrument covariance
matrix now becomes the seven by seven covariance matrix of the previous estimate. The state vectors and
covariance matrices for the remainder of the .data (from the newly compressed tracks) are handled exactly
as described in the Global Estimate method.

6.2.6 Update Satellite. After the Global Estimate or Bayes filter method of orbit estimation has
been applied to all 160 satellites, the catalog is updated to the end of the propagation cycle. This is
required because the two estimation processes provide results for each satellite at tﬁe same reference time
as each satellite’s last track compression. At the end of the estimation portion of the cycle, the propagator
is at the end of the cycle time, but the estimates in the catalog are at the various reference times of the

track compressions. The update satellite portion propagates the state vector and covariance matrix for



each satellite from its catalog reference time to the same reference time as the simulator, which is the end
of the one-fifth day period.

6.2.7 Truth Catalog Comparison. Once the catalog of estimates has been propagated to the end
of the cycle, it is compared to the truth data. For each satellite, each element of the vector is compared to
determine the true error in the prediction. The results of this comparison are the key output desired from
the simulation.

6.2.8 Prioritize. At the completion of each cycle, the satellites are reprioritized. Each
covariance matrix is propagated to the end of the next cycle to determine How big the covariance would
become if no estimates occurred during the next cycle. The satellites are rank ordered based primarily on
covariance matrix size, but also predicted satellite reentry is taken into account and given high priority. If
a satellite’s orbit has not been successfully estimated, it is not propagated. Instead, that satellite is also
assigned a high priority.

6.2.9 Output. The simulator produces several output files at various points of the cycle. Alog
file is kept which keeps track of when each process is started and stopped, the significant results of some
processes and error messages generated during execution. At the end of the propagation phase, the
catalog of truth data is recorded. At the end of the estimation phase, the catalog of estimates is recorded.
At the end of each cycle, a file is generated recording the differences between the true state vectors and the
estimated state vectors. These differences are also normalized by the associated covariance element and
recorded. These files combine to provide a detailed record of the simulation.

6.2.10 Simulation Robustess. Several pieces of code were specifically modified to prevent
program crashes during long-term simulations. The majority of these modifications were designed to
prevent the attempted propagation of a satellite through regions of the atmosphere too low to be effectively
described by the atmospheric model. These modifications included preventing a compressed track of data
from being used as the initial reference trajectory during a Global Estimate run if the track of data was too
short and hence not of sufficient accuracy. Additionally, ballistic coefficients were checked after each

iteration to ensure they were not so far out of range that the satellite would reenter or escape during the
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next iteration. After convergence, the resulting ballistic coefficients were again checked against a more
stringent window. This prevented such obvious anomalies as negative values. Additionally, code was
added which watched for an iteration that was diverging. If three successive corrections to the state vector
each increased in magnitude, the estimation was postponed until more data was available (the next cycle).
Round-off error occasionally causes a diagonal element of a covariance matrix to become negative.
Theoretically, this could never happen, and the elements are assumed positive at several points in the
simulation where the square root of the element is needed. To prevent crashes, the diagonal elements
were monitored to ensure that no attempt was made to evaluate the square ’root of a negative covariance
clement.

By adding code to prevent crashes, and by recording frequent data files for restarting in case it
did crash, the simulation code was made quite robust. As a result, simulations can be run spanning

several weeks, with no loss of data.

6.3 Phase One Results

The objective of phase one was to verify the integration of the various algorithms used previously
in the thesis. Additionally, research objectives included evaluating the effect of varying levels of
atmospheric drag on the ability to estimate the orbits of the catalog, and the use of different periods for the
propagate-estimate-update cycle. The elements for the first simulation were generated using equations
(6.1). The elements generated are shown in Figures 6-1 through 6-9 and listed as Appendix G. The
simulation was run for two days.

The key parameters monitored during each simulation will now be described. First, the number
of satellites whose orbits have been estimated is tracked. This parameter is reported as a fraction of the
size of the current catalog. The size of the catalog changes with time as some satellites’ orbits will decay
to reentry. These satellites are then removed from the catalog and their statistics are no longer relevant.
The number of satellites removed due to reentry is reported as a percentage of the original size of the

catalog. The number of satellites whose positions are predicted within one kilometer of their true



positions is tracked. This parameter is reported both as a fraction of the catalog, and as a fraction of the
number of estimated satellites. Obviously, after every satellite in the catalog has been estimated, these two
descriptions become identical. Finally, a covariance accuracy parameter is tracked. The covariance
matrices computed at each cycle should statistically match the actual estimation accuracies according to
the three-dimensional Gaussian probability distributions. This states that approximately 19.9% of the
actual error vectors should lie within the one-sigma error ellipsoid reported as the diagonal elements of
the covariance matrices. The number of position error vectors that lie within their respective one-sigma
error ellipsoids is reported as a fraction of the number of estimated orbits. ‘Ifthe dynamics were perfectly
described by all of the estimation algorithms used in the orbit estimation process, then we would expect
that this parameter would average around 19.9%. However, since the dynamics used by the truth model
are not perfectly modeled by the estimator algorithms (as in real life) the actual errors may be much
larger. These five percentages are all plotted at the completion of each cycle. These same parameters are
used to show the results of most of the simulations in the thesis. Figure 6-10 shows the results of the first

simulation.
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Figure 6-10 Simulation One Results
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Over the two-day period, five satellites reentered, all satellites’ orbits were estimated, and at one point,
nearly 80% of the catalog was estimated within one kilometer. However, the accuracy of the estimations
decayed. By the end of the second day of tracking, this parameter was down to 60% and was still falling.
Additionally, the covariance matrices computed were far too optimistic. This manifests itself in the decay
of the % of estimated within one sigma parameter to zero. Both of these problems are caused by
differences in the dynamics of the truth model and the estimator models.

The next set of orbits was generated to observe increased drag effects. The following two figures

show the altitudes of perigee and ballistic coefficients used in simulation two.
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Figure 6-12 Ballistic Coefficient -- Simulation Two
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The lower altitudes and increased ballistic coefficients were expected to increase the number of satellites

which reentered and decrease the accuracies of the reported covariance matrices. Figure 6-13 shows the

actual results observed.
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Figure 6-13 Simulation Two Results
As expected, more satellites reentered during the two day period, and the accuracy of the covariance
matrices dropped dramatically. The accuracies of the estimates did not change substantially over
simulation one, despite the increased drag. This is likely because many of the satellites with more drag
have reentered by the end of the second day, thus they are not included in the % within 1 km parameters.
Also, the lower orbits allow more frequent observation opportunities, which improves the estimations.
The next set of orbits was generated‘to see the effects of the estimation process for higher altitude
satellites. The same ballistic coefficients as simulation one were used. These same ballistic coefficients
were used for all other simulations of all three phases as well. The altitudes of perigee are shown in

Figure 6-14.
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Figure 6-14 Altitude of Perigee -- Simulation Three
This simulation was expected to be less accurate than the previous two, as less frequent tracks of
observations are recorded. A decline in reentries was also expected.
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Figure 6-15 Simulation Three Results

During the two day simulation, no satellites reentered, and it took the full two days to estimate every orbit.

This is because of the lower frequency of observation tracks. Also, the average accuracy was lower, but

not significantly.
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The next simulation was designed to show the effect of increased cycle period. Instead of the
propagate-estimate-update cycle running over one-fifth day periods, it was extended to two-fifth day

periods. All other parameters were the same. Figure 6-16 shows the results.
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Figure 6-16 Simulation Four Results
The parameter trends are basically the same, indicating that the period is not much of a factor in
determining the accuracy of the estimates or of the covariance matrices.
The fifth simulation, the final simulation of phase one, modeled orbits substantially higher than
simulations three and four. The size of the orbits stretched to nearly three Earth radii, as shown by the

perigee altitudes in Figure 6-17.
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Because it took much longer to estimate a substantial portion of the catalog, the simulation was run for

three days instead of the usnal two. Figure 6-18 shows the results.
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Figure 6-18 Simulation Five Results
After three days, the accuracy of the catalog seemed to have peaked and began a decline, so the simulation
was terminated despite having only estimated 101 satellites.
The first phase of the simulation showed that the different software components worked together
as expected. The various parameters behaved as expected. Thus, having achieved the objectives of phase

one, the next phase was entered.

6.4 Phase Two

The objective of phase two was to increase the accuracy of the covariance matrices. Because the
dynamics models of the track compression and orbit estimation algorithms differ from that of the truth
model, the actual orbit estimations are not as accurate as reported. This was seen in the majority of the
phase one simulations. The covariance matrices must be accurate if they are to be used operationally to
provide a confidence level for the estimates. As described in chapter two, a fading memory filter is one

way to attack this problem. A fading memory filter allows the estimator to place less weight on older data
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and also allows the update portion of the cycle to increase the size of the covariance matrices with time,
thus making them more realistic. This requires the determination of a set of coefficients to use as the
diagonals of the B-matrix. Phase two of the simulation was devoted to determining the correct values to
use for the seven coefficients.

Assumptions were made as to the structure of the B-matrix. The same value was used for the
first six cpeﬁicients and a value of one was used for the seventh. This amounts to full remembrance of the

ballistic coefficient information, and equal remembrance of each of the other state elements.

6.5 Phase Two Results
The first value used (for the first six elements) was 0.93. This equates to a data half-life of about
nine and one-half days. The same orbital elements and ballistic coefficients used for simulation one were

used for all of phase two. The results of simulation six (with B = 0.93) are shown in Figure 6-19.
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Figure 6-19 Simulation Six Results
After 1.4 days, the simulation was stopped. The figure clearly shows that the value of 0.93 is too large,

i.e. a lower value should be used to allow the estimator to reduce the weight of the older data even more.
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The next value attempted was 0.90. This corresponds to a data half-life of approximately 6.6 days.

Figure 6-20 shows the results.
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Figure 6-20 Simulation Seven Results

Again, the value of 0.90 is still too high. The third attempt was with a value of 0.85 corresponding to a

data half-life of 4.3 days. Figure 6-21 shows these resuits.
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Figure 6-21 - Simulation Eight Results
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The value of 0.80 was still too high. The next figure shows the results when the value of 0.50 was tried.

This extreme case corresponds to a half-life of only one day.
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Figure 6-22 Simulation Nine Results

After simulation nine was stopped, a new approach was evidently required. The covariance
matrices were far too optimistic, even with an extreme fading memory filter. Additionally, the estimates
themselves were not as accurate as expected. The suspected cause of both of these problems was the
additional dynamics of the truth model. The estimator should be able to maintain a high degree of
accuracy even without all of the dynamics included in the truth model, as long as the additional dynamics
do not introduce a systematic error. The truth model can even include a random acceleration to model a
stochastic system, and the estimator should still produce good estimates. The suspected problem in this
case was the inclusion of the additional zonal harmonics in the truth model. Additional harmonics will
cause the orbital period to decrease very slightly. For this estimator, the size of the orbit is being
determined so precisely that this small change in period is noticeable. If this were the cause of the
problems, then the actual errors would likely lie in the direction of the velocity vectors. To investigate
this possibility, the following plots were generated to show the component of each actual error vector,

after one day of propagation, resolved along three different axes. The first figure shows the fraction of
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each error vector which lies in the direction of the corresponding velocity vector. The second shows the
fraction resolved along the radial direction. The third shows the out of plane fraction. These were
determined by taking the dot product of each error vector with a unit vector in each of the three directions.
Because the orbits are not perfectly circular, the three directions are not orthogonal. Nevertheless, the

three figures show a very clear trend.
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Figure 6-24 Radial Error Components
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Figure 6-25 Out-of-Plane Error Components

These figures clearly show that the majority of the errors lie in the in-track direction. The vast

majority were caused by the satellite’s position being estimated behind its actual position. This indicates

that the inclusion of the additional zonal harmonics introduced a systematic error into the estimation

process. To prove that the zonal harmonics were indeed the source, an additional simulation was

completed with the B-coefficient set to one (full remembrance of all elements) and the values for the

additional zonal harmonics (J3-Js) set to zero in the truth model. Figure 6-26 shows these results.
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Figure 6-26 Simulation Ten Results
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Based on Figure 6-26, it was decided that the estimator was accurate enough to see the effect of
the additional harmonics. These harmonics introduced a systematic erroﬁ This raised a very important
point in the effectiveness of this entire process of orbital estimation. All sources of systematic errors must
be determined and included in the estimator dynamics model. For phase three, the zonal harmonic
coefficients were left at zero in the truth model to remove their effect. In an operational environment, the
estimator model should include a much more accurate geopotential model. In fact, any source of
systematic, as opposed to random, error should be included. These are typically deterministic in nature
and their inclusion is not particularly difficult. For example, luni-solar effécts might become significant
in an operational orbit estimator. These effects are easily predicted and would be included in the
estimator’s dynamics model.

The objective of phase two was to increase the accuracy of the covariance matrices. This
objective was achieved, although not through the use of the fading memory filter as expected. Instead, the
dynamics of the truth model had to be modified to more closely match those of the estimator. This is not
the most desirable situation, however, the effects of the additional zonal harmonics could be included in
both models. Since these effects are completely deterministic, they would not significantly change the

results.

6.6 Phase Three

The first two phases used an atmospheric model which was identical in both the truth model and
the estimator model. In reality, nearly all orbital perturbations can be predicted except for air drag. This
is because the atmospheric density varies quite significantly both spatially and temporally. Solar heating,
solar flares, geomagnetic storms and local atmospheric weather all affect the local density at any given
time. These effects are largely unpredictable, leading to inaccurate atmospheric deﬁsity models. To
model real world effects, phase three of the simulation included a different atmospheric model in the

dynamics of the truth model. The estimator dynamics remained the same. This allows for a more
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realistic simulation of the actual results which could be expected from the use of the orbital estimation
process with real data.

The original atmospheric model described in Appendix A produces a local density based on the
altitude and the sea-level atmospheric pressure. By varying the sea-level pressure, slightly different
densities are calculated. The variation of this pressure is the basis for the alterations of the atmospheric
model of phase three. Three different effects were modeled.

An investigation of more accurate models led to altering the sea-level pressure by + 25% to allow
day-night density variations more in line with actual density profiles. [10, i4] This first effect modeled
the atmospheric bulge caused by solar heating on the sunward side of the Earth. This was included in
simulation eleven by increasing or decreasing the sea-level pressure by up to 25% depending on where the
satellite was relative to the sun. For purposes of the simulation, it only matters that the bulge isin a
consistent area relative to the Geocentric-Inertial reference frame. Therefore, the bulge was modeled in
the positive direction of the I-axis. The amount of increase or decrease was based on the angle between
the satellite’s instantaneous position vector and the I-axis. By changing the dynamics of the truth model
to provide this 25% variation, the simulation was made more realistic.

Additionally, because the density fluctuates because of other, unpredictable factors, an additional
random variation was added. The sea-level pressure was changed by a random percentage following a
Gaussian distribution. The standard deviation of this distribution is 5%. The third variation was not
included in simulation eleven and will be discussed later.

Finally, because the more realistic atmospheric model was employed, an attempt was also made
to generate a catalog of satellites with altitudes which more closely resembled those of the actual catalog.
84% of the objects in the actual catalog are over 800 kilometers in altitude. [4] The equations generating
the catalog were modified to provide a distribution with 84% of the semi-major axes over 800 kilometers.

The following histogram shows the new distribution of semi-major axes.
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Figure 6-27 Phase Three Altitude Distribution
This distribution was used for all simulations of phase three.

Finally, a number of changes to the estimation algorithm were implemented to make the
estimations more accurate. Among these changes was a check of the residuals after the orbit was
estimated. If the residuals were unrealistic, the new solution v?as rejected. Additionally, the number of
successive estimation attempt failures, for any reason, for each satellite was tracked. The priority of a
given satellite was raised if the algorithm failed to estimate the orbit. This provides more tracks of data
fof the problem satellite during the next estimation attempt. Finally, if the Bayes filter failed to arrive at
an accurate estimate with more than 30 new tracks of data, the previous estimate was dropped and the
least squares batch estimator was used to provide a new estimate. If this was not successful, the oldest
tracks of data would be dropped, one at a time, until the least squares estimator was successful, or until
only 30 tracks of data remained. This prevexits outdated data from causing failed estimate attempts when

sufficient new data is already available to provide an accurate orbit determination.

6.7 Phase Three Results
Figure 6-28 shows the results of simulation eleven. Again, simulation eleven included a + 25%
variation in sea-level pressure representing the sunward bulge in the atmosphere and a random variation
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with a Gaussian distribution of + 5% standard deviation. The orbital elements were chosen to represent a

realistic catalog, with 84% of the catalog above 800 kilometers in altitude.
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Figure 6-28 Simulation Eleven Results

Comparing this to Figure 6-26 shows that the variation in atmospheric density reduces the
accuracy of the estimator. Although the density profile used in this simulation could be made more
accurate, the important point is that the profile of the truth model is far more accurate than (and different
from) the estimator model. Changing the truth model to make it more realistic would not change the
results of the simulation. This figure attests to the fidelity with which the estimator can successfully
determine orbits. During the simulation, the average error was as low as two to three kilometers at the
end of a propagate-estimate-update cycle. AFSPC currently reports an average error of 12 kilometers as
soon as an estimate is made. This indicates the estimator developed in this thesis is far more accurate
than that currently operational.

Although Figure 6-28 indicates an improvement in estimation accuracy, the results were further
analyzed to try to find a way to improve the accuracy even more. The individual errors of all 160

satellites were plotted as a function of time. Figure 6-29 shows the results for the first 15 satellites.

6-24



100000

error (meters)

1.2 1.4 1.6 18 20 22 24 26 28 30
days

Figure 6-29 Individual Satellite Estimation Errors

A few low-altitude satellites contributed the vast majority of the error at each point in the
simulation. Satellites nine and fourteen are two of these low altitude satellites, with altitudes of perigee of
194 and 265 kilometers, respectively. The large errors of these two satellites are obvious in thl;S figure.
The ther altitude satellites were estimated with much better accuracy. The accuracy of satellite nine -
only improved once during the ten cycles shown. This occurred when the orbit was estimated using the
least squares batch estimator instead of the sequential Bayes filter. These results indicate that the low
altitude satellites are too difficult to estimate because of the differences between the dynamics models of
the estimator and the truth model.

To address this problem, a simulation was conducted using only the five satellites with the lowest
altitudes of perigee and all nine tracking stations. This provided frequent tracks of data for the estimator.
The goal was t;a see if a higher rate of tracking would allow for more accurate orbit estimation for the low-
altitude satellites. This simulation was conducted for 1.4 days and the errors at each point were recorded.

Figure 6-30 shows these errors.
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Figure 6-30 Low-Altitude Satellite Errors

This figure shows that, even if the entire tracking network were dedicated to tracking only these
five satellites, the errors would still average as high as a kilometer or more. While this seems to indicate
that further adjustments to the tracking priority would be futilg, another useful fact can be taken from the
results. The errors of three of the five satellites dropped dramatically after the 1.2 day cycle. This
occurred because these three satellites’ orbits were estimated using the least squares batch method instead
of the Bayes filter. This indicates that the batch method is better suited to the low altitude satellites,
where the changing atmospheric model makes the older data much less reliable.

This analysis was used to adjust the estimator algorithm in two ways. First the prioritization
scheme was changed to place a higher priority on satellites with low altitudes of perigee. Second,
satellites which have perigee altitudes below 350 kilometers are flagged as low-altitude satellites and their
orbits are only estimated using the least squares batch method. These two modifications were aimed at
improving the total accuracy of the estimated catalog.

After these modifications were implemented, another simulation was conducted to show the
effects. All other parameters of the simulation were identical to simulation eleven. Figure 6-31 shows the

results.
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Figure 6-31 Simulation Twelve Results
This figure indicates that the modifications were successful in improving the accuracy of the
catalog. Additionally, another set of parameters were tracked for this simulation. The following figure
shows the average error and the median error in the catalog at the end of each cycle. The percentage of
the catalog accurately estimated within one kilometer is plotted, as in the previous simulations. In this

plot, however, the percentage within 100 meters, within ten meters and within one meter are also shown.
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Figure 6-32 Simulation Twelve Error Trends
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Figure 6-32 shows the trend in catalog accuracy during the simulation. By the end of the four
day simulation, half of the satellites’ positions were predicted within 63 meters. This represents a very
significant improvement over the current method. Because the results were better with the increased
likelihood of batch estimations for low altitude satellites (simulation twelve) over the previous result
(simulation eleven), another simulation was conducted to see if increasing the tendency toward batch
estimations for all satellites would increase the accuracy further. To investigate this, the algorithm was
modified so that the batch method was implemented after any unsuccessful sequential estimation attempt

with at least three new tracks of data. Figure 6-33 shows the results of this simulation.
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Figure 6-33 Simulation Thirteen Results
The results were better than simulation twelve but only marginally. Nevertheless, this simulation
represents the best accuracy obtained during this thesis with a realistic catalog and a realistic truth model.
Consistently, more than 85% of the catalog was estimated within one kilometer and the median error
averaged less than 50 meters.
The third atmospheric effect modeled is that of a significant solar flare. The effect of this flare

on the estimation process was analyzed for the final simulation. Figure 6-34 shows the atmospheric
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density profile modeled for this simulation. It includes a day-night variation of + 25% and a solar flare

variation of a factor of two in sea-level pressure.
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Figure 6-34 Atmospheric Density Variations

As shown above, the day-night variation in sea-level pressure of + 25% results in a change in
density of + 11% at 200 kilometers. At this same altitude, the‘increase in sea-level pressure by a factor-of
two from the solar flare results in an increase in density by a factor of two. To model the flare in the truth
model dynamics, the sea-level pressure was instantaneously doubled, and then exponentially returned to
normal during the following day. This approximately models the density changes at altitude resulting
from a large solar flare.

Simulation fourteen shows what would happen to this estimation process if a solar flare of
significant magnitade were to affect an increase in atmospheric density. This scenario is quite plausible
and repreﬁents a significant obstacle for an estimation algorithm to overcome. A large solar flare will
dramatically and unpredictably increase the atmospheric density at a particular altitude. This causes a
major increase in atmospheric drag on low-altitude satellites causing large orbital perturbations and even
premature reentry. The solar flare began at the end of the second day, and returned to normal near the
end of the third day. This simulation was expected to demonstrate the significant impact which a solar
flare will have on the estimation accuracy. Figure 6-35 shows the results of this simulation.
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Figure 6-35 Simulation Fourteen Results
As expected, this figure shows that the solar flare dramatically impairs the estimator’s ability to accurately
predict orbits. Even in this worst case scenario, the track compression/Global Estimate process still

recovers to outperform the current method.

6.8 Summary

In summary, the simulations showed that the track compression/Global Estimate method of orbit
estimation will work on a full size catalog and that the results are much better than current practice. The
results showed that different types of orbits produce a wide variation in accuracies, with low altitude orbits
being the most difficult to estimate. This is both because the low altitude dynamics are stronger, meaning
that any error will grow quickly, and because the low altitude satellites are subjected to the unpredictable
atmosphere, making an estimator’s dynamics model less valid.

The results also showed that the covariance matrices are, in general, overly optimistic in the
prediction of the amount of error in any estimate. Several attempts were made at making the covariance
matrices a better indicator of estimator performance. The application of fading memory coefficients did

not significantly improve the results. One simulation which did improve the results placed the Global
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Estimate dynamics model and truth model in perfect agreement. When the more realistic atmospheric
effects were added, the covariance accuracies were again optimistic. This is one area which requires
further evaluation. A more accurate fading memory matrix with unique values for all elements should be
developed. The best values potentially are altitude-specific.

Finally, phase three demonstrated that the track compression/Global Estimate method would
produce accuracies measured in meters or tens of meters rather than kilometers. The method requires
modest computer time. Time trials show that a 133 MHz personal computer running in a Windows
environment could handle the real-time processing of approximately 320 tc; 400 satellites using the

algorithm developed in this thesis.
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VII. Conclusions and Recommendations

7.1 Summary

This thesis presents two successful methods of compressing tracks of observation data into state
vectors and covariance matrices. It also presents an estimator which determines orbits using track
compression results as input data and shows the applicability of this process to the satellite tracking

mission by simulating its use on large-scale catalogs.

7.2 Conclusions

To conclude, the track compression methods were successful. The Taylor series method
successfully compressed every arc to which it was applied. Because of the requirement to split each track
into multiple arcs, this method was abandoned in favor of the integrator method. The integrator method
successfully compressed over one hundred thousand tracks of data taken from thousands of different
orbits. This represents a success rate of greater than 99.99%. ' Additionally, the method showed that the
orbits could be determined even though the track compression dynamics model was much less accurate
than the truth model. In simulation ten, the track compression dynamics model did not include air drag,
yet the orbit estimator was still able to use the track compression results to predict orbit positions within
one kilometer for more than 99% of the catalog. This shows that the state vectors and covariance matrices
retain enough of the accuracy of the original arcs that a sufficiently accurate orbit estimator can correctly
determine orbits with this greatly reduced amount of data.

Additionally, the simulations showed that the Global Estimate algorithm would produce a
significant improvement in catalog accuracy over current methods. Today, the SCC reports orbit
estimations with a one sigma error of twelve kilometers. This indicates that about twenty percent of the
orbit determinations are within twelve kilometers. The simulation results indicate that the methods

developed in this thesis would result in twenty percent of the orbit predictions within ten to twenty meters.



This represents an improvement of two to three orders of magnitude over the orbit estimation models
currently in use by the SCC.

There are also two reasons which indicate that the actual accuracies may be much better than
those predicted by the simulations. First, the latest simulations were conducted on a catalog with 84% of
the semi-major axes above 800 kilometers. A more accurate catalog would probably have 84% of the
altitudes of perigee above 800 kilometers. [4] The estimation process conducted in the latest simulations
focused much attention on trying to estimate orbits which were low enough to have significant drag
effects. These satellites produce the majority of the error of the catalog. With the actual catalog, most
satellites are not nearly as influenced by air drag as those modeled in this thesis. Therefore, the estimator
would spend less time trying to estimate the low altitude, difficult satellites and would produce more
accurate predictions of the higher altitude satellites.

Secondly, the one sigma accuracy reported by the SCC applies at the instant that a satellite’s
orbit is determined. This process is called filtering. [7] The one sigma accuracy reported during the
simulations is taken at an epoch corresponding to the end time of each cycle. This could be several orbits
after the reference time of the orbit determination. This process is called prediction. [7] State prediction
is much less accurate in orbital mechanics than filtering because even the best estimate of an orbit will
lose accuracy with time. Also, if a limited number of observations are available for a satellite, the epoch
of the prediction could be far from the time of the observations, meaning that the estimator is trying to
predict where the satellite will be on one side of its orbit based on information from only the opposite side.
Both of these reasons point to an improvement potentially greater than the two to three orders of

magnitude stated above.

7.3 Recommendations
This thesis showed that the use of the track compression/Global Estimate method of orbit
estimation for the operational satellite tracking mission should be considered. The computational

requirements of this new method are modest enough to be implemented by the SCC. It would greatly



improve the accuracy of orbit determinations which would result in a reduced routine radar tracking
workload, fewér collision-avoidance maneuvers for manned space flights, more accurate over-flight
predictions, faster acquisition for ground-based observation or targeting of satellites and smaller
rendezvous fuel budgets.

There are several areas which remain to be investigated. These deal with the operational
implementation of the algorithm. First, the long term behavior of the estimator needs to be evaluated.
This will require extended computer simulation time. A Monte-Carlo analysis should be conducted to
determine appropriate values for each element of the fading memory coefﬁéient matrix, The optimal
values for these elements will likely be functions of altitude.

A number of different techniques were employed to increase the reliability of the code. Each of
these should be investigated to determine any adverse effects caused by their implementation. These
include the exclusion from the estimation process tracks of data which have less than 40 observations and
the exclusion of tracks with less than 240 observations from use as the reference trajectory during the
estimation process. The ballistic coefficient was carefully monitored during the convergence process. The
algorithm had to give a reasonable ballistic coefficient at each iteration, or else it would be stopped.
Additionally, the algorithm had to converge on a tighter set of ballistic coefficient criteria. Finally, a
check was made at each iteration to see if this parameter was diverging.

During the propagation of the state vector at each iteration of the estimation process, the altitude
and energy of the orbit were checked to see if the orbit was being propagated too low into the atmosphere,
or if the orbit had escaped. The former would be an indication that the satellite was very near reentry
while the later is a sign of divergence. Additional divergence checks were also used.

The track compression algorithm would give up if it failed to converge within 15 iterations. The
same limit was placed on the Global Estimate algorithm. The residuals were checked after convergence
to see if the result was reasonable. If the algorithm detected that a covariance matrix diagonal element
had become negative, it was assumed that this was the result of a numerical precision limitation and that

estimate was postponed until more data was available. Also, if an orbit could not be successfully
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estimated using the Bayes sequential method, and 30 or more tracks of new data were available, the new
data would be fed into a.least squares batch estimator. For the last two simulations, this was changed to
three or more new tracks of data. If the satellite were flagged as a low altitude satellite, only batch
updates were performed.

Finally, the satellites were prioritized in part based on the size of the covariance matrices, but
also on the number of successive failed estimation attempts and the altitude of the satellite. All of these
methods of modifying the basic theoretical algorithm produced either more robust code, more accurate
results or both. The optimal means of implementing each of these modiﬁcétions should be investigated
both to determine if there is a more effective way of modifying the algorithm or if the change adversely
affects the process. Some of these may require more processing time than they are worth. The multitude
of combinations of the above adjustments makes this optimization study far too time consuming to be
attempted in this thesis.

Additional variables which were not investigated significantly in this thesis include varying the
length of time for each cycle and estimating orbits using altitude-specific estimation algorithms. Also, a
method of prioritizing satellites which looks at which parts of the orbit have not been observed could be
considered. Finally, the covariance matrix for each satellite could be propagated along with the state
vectors during the observation portion of the cycle, and reprioritized at each time step. This may be a
more optimal prioritization scheme. Because the change in the covariance matrix due to new data is only
a function of the accuracy of the new data, thé covariance matrix could be altered after a new track is
compressed even before an estimate is performed. These and many other methods of optimizing the
prioritization algorithm could be explored.

By exploring the effects of the robustness modifications, examining potential improvements not
investigated in this thesis and by optimizing the prioritization algorithm, the track éompression/Global

Estimate method of orbit estimation can be improved and prepared for operational use.
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The results indicate that a significant improvement in estimation accuracy would be seen if
AFSPC were to move to this method. The use of this method for the operational satellite tracking mission

should be considered.



Appendix A Atmospheric Model

For the truth model, Global Estimate and Simulate portions of this thesis, an atmospheric model
was required. The model provided the density and density gradient as a function of altitude. The
atmospheric model used is taken from Regan. [15] It is derived from a combination of two standard
atmospheric models. These models essentially provide a description of the variation of temperature with
altitude and the relationship between density and temperature. The model§ divide the atmosphere into
altitude regions called strata. The relationship between temperature and altitude is different for each
strata.

The first model, U.S. Standard Atmosphere 1976, provides seven strata between sea-level and 86
km of altitude. Within each of these strata, the temperature either varies linearly with altitude or the
strata is isothermal. Above 86 km, four more strata serve to define the atmosphere up to an altitude of
1000 km. One of these regions defines an elliptic variation of temperature with altitude. A second region
defines an exponential variation. To keep the model simpler, Regan recommends that, above 86 km a
1962 model be used. This model defines thirteen regions between 86 and 700 km, all with linear
temperature-altitude relationships. Attempts were made to prevent the propagation of a satellite into
regions of the atmosphere defined by the 1976 model but the code describing these strata was included for
the occasion when those altitudes had to be evaluated.

The density, p, for a given altitude is determined from the following two equations

s \Z—Z.
pP=p; expy— &)%T;—‘“) [1—%(Z-Zi)] (A1)

RLy

b=p. [(RL'F; ) (z-2)+ l]‘{(ngz,- % +1+,,({—“2-zi)]} exp {(:;}; ) (z-z ,)} (A2)

where i is the region
p; is the density at the base of the region




& is the sea-level gravitational acceleration

Z is the altitude in kilometers

Z; is the altitude at the base of the region

R is the atmospheric gas constant, given by R = R*/M,

R* is the universal gas constant

M, is the sea-level molecular weight of air

Ty is the molecular temperature at the base of the region

b=2/Rg

Ry is the radius of the Earth

Lz; is the thermal lapse rate, the linear constant of variation of temperature for the region

The following table provides the values used for many of these cbnstants.

Table A-1 Atmospheric Constants [15] .

% 9.806 m/s”

R* | 8.31432 x 10° (kg-mole)™
M, 28.964 kg/(kg-mole)
Rg 6.3781 x 10°m

The values for the different strata are provided in the following two tables.

Table A-2 1976 Standard Atmosphere [15]

layer index geometric altitude  molecular temperature lapse rate
km K K/km

0 0.0 288.15
6.5

1 11.0102 216.65
0.0

2 20.0631 216.65
1.0

3 32.1619 228.65
2.8

4 47.3501 270.65
0.0

5 51.4125 270.65
-2.8

6 71.8020 21465
. 2.0

7 86.0 186.946 ’
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Table A-3 1962 Standard Atmosphere [15]

layer index  geometric altitude = molecular temperature lapse rate
km K K /km
7 86.0 186.946
1.6481
8 100.0 210.65
5.0
9 110.0 260.65
10.0
10 120.0 - 360.65
20.0
11 150.0 960.65
15.0
12 160.0 1110.65
10.0
13 170.0 1210.65
, 7.0
14 190.0 1350.65
5.0
15 230.0 1550.65
4.0
16 300.0 1830.65
33
17 400.0 2160.65
2.6
18 500.0 2420.65
1.7
19 600.0 2590.65
1.1
20 700.0 2700.65

These two tables, along with equations ( A.1) and ( A.2 ) are used to determine the density for a given
altitude. Equation ( A.1 ) applies to the isothermal regions (where Lz; = 0) while equation ( A.2 ) applies
to the linear regions.

To determine the density gradient, (the derivative of the density with respect to altitude),
equations ( A.1) and ( A.2) are differentiated. Recognizing that

0Z 9dZ
____.=1

or  dalt

leaves
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for the linear regions.
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Appendix B Geopotential and the Equations of Motion

The purpose of this appendix is to present the oblate Earth model of the geopotential and to
develop equations of motion for a satellite under the influence of this potential. These equations of motion
were used in the truth model to propagate the satellites’ orbits. Since the accelerations due to the Earth’s

geopotential are only functions of the satellite’s position, the following simplified notation will be used
T
R= [x y z]

and the equations of motion will take the form

The geopotential model presented here does not include sectoral or tesseral harmonics.

The aspherical potential of the Earth, modeling zonal harmonics through Js, is provided by

Escobal as [5]
Gm R®2J2 2
o= " l:l+ Yo (1-3sin® 3)
Rg’J . .
+ ;r33(3—581n28)sm8 :
RgJ
—~ @r44(3-—305in26+35sin48) (B.1)
R,'J
- ;rs >(15—-70sin® 8 + 63sin* 8)sin

Ry‘J |
+ lzr66(5—1055in28+315$in45-231sin68)]
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where G is the gravitational constant
m is the mass of the Earth
R g is the equatorial radius of the Earth
r is the distance from the Earth’s center
sin 8 = z/r
and the zonal harmonic coefficients are taken from the following table [5]

Table B-1 Coefficients of Gravitational Harmonics

5 + 1082.28 " +0.3x10°
s - 23 +02x10°
1, - 212 +05x10°
Js - 02 +0.1x10°
Je + 1.0 +08x10°

Using canonical units allows the substitution . = Gm = 1 and Rg = 1. The acceleration due to gravity

about a planet is given as the gradient of the potential, or

d’R
57 = VO (B2)
and these terms are given as
o0 X 3]
—é;—=—;—3—|:1+5;-§—(1—55in28)
5]
+E-r—§’—(3— 7sin’ §)sind
51, ) . 4
—§7(3—42an 8+ 63sin* 3) (B3)
317, . 2 .4 Q)
-g;;(35-—210s1n 8 +231sin* §)sind

17
+T6—~r—g-(35—9455in2 8+ 3465sin* 8 — 3003 sin® 8)]

QU
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a@ Z 3J2 .2
5, = |:1+2 D (3-5sin>3)
517
+—2——%(6— 7sin §)sin§
5

r
J

—g 7+ (15-70sin’ 3+ 63sin* 3)
37

—g—;(los—nssin2 8+ 231sin* §)sind
r

1] : .
+E}%(245'2205 sin” 8+ 4851sin* 8 — 3003sin° 5)]

2@
Jx
d’R _| 0@ (B4)
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Appendix C Taylor Series Track Compression State Transition Matrix

This appendix presents the state transition matrix, @ , used in the Taylor series method of track

compression. The state transition matrix relates a change in the elements of the position vector at time, t,

to a change in the reference state, X , at time, t,.

_dR(1)
‘I’:aX(O)
where the following notation is used
R,]
R2
R,(t)
R3
R(t)=R=|R,(t) X(0)= v
R 1
5(1) v,
_V3_
Using this notation, the state transition matrix becomes.
CIR,(t) OR,(t) OR,(t) IR,(t) AR, () OR,(t)]
9X,(0) 9X,(0) 3X,(0) 9X,(0) 9X,(0) 9X,(0)
_OR(t) [9R,(1) IR, () IR,(1) IR, () IR, (1) dR, (1)
T 9X(0) |9X,(0) 9X,(0) 9X,(0) 9X,(0) 9X,(0) 9X,(0)
dR,(t) dR,(t) OR,(t) IR, (t) IR,(t) IR;(D)
19X,(0) 9X,(0) 3X,(0) 3X,(0) 09X (0) 9X,(0)]

(C.1)

(3.16)

To determine these partial derivatives, R(t) as a function of X must first be written. This function is

developed in section 3.4.2.2 as equation ( 3.15 ) and is reprinted on the following page.



[ R 31.R 2 (3R, i
Rl+V1At-—2r13At2- 42r5‘ 1-5 ;)At2+——1—- ‘r—Vl)At3
L

5
4r \

R 3J,R
R3+V3At—2r33At2— 23

R
T
R 3],R R} (3R, f
R=|(R, +V,At—-—2At? ——22[1-5 i)At2+—1— : ~V2)At3 (3.15)
2r r \
R
r

41’

L

where 1 =4R;+R,?+R,’
. d  R,V,+R,V,+R,V,
f=—r=
dt r

At =t-t

J,=1082.28 x 10°®
Replacing the individual terms of equation ( 3.15 ) with another shorthand notation will allow the
components of the partial derivatives to be developed piecemeal. The equation is reprinted below in the

same form to allow an easy understanding of which notation corresponds to each term.
Ay +B, At+C At + Dy At? + Eg AL
R=|A, +B,At+C At +D, At’ +E At (C2)
A, +B,At+C,At’+D, At +E, At’

As an example, the first partial derivative of equation ( 3.16 ) becomes

dR, (1) dA, 0B,

aCX 2 an 2 aEX 3
3%,(0) = 3%,(0) T ax, (0 At At + At + At (C3)

3%, (0" TaX, (9" T9X,(0)

and is abbreviated

dR, (1)
0X,(0)

=A . 1+B,1At+C,1At> +D,1At* +E, 1 A¢? (C4)
X X X X X

Therefore, determining the eighteen components of equation ( 3.16 ) becomes a process of
determining the five partial derivatives of equation ( C.3 ) for each of the eighteen equations which have a

form identical to ( C.3 ). These 90 terms are denoted A, 1 through E, 6. These will be much simpler

to obtain and describe than if all five terms were evaluated as one. In many cases, they are trivial.



Use of a simplified notation will also be seen in the extensive application of the chain rule. The
partial derivatives of certain terms will occur frequently and will not be evaluated each time. Instead, the
term will be indicated in the appropriate equation and evaluated below. In the actual computer code, this
process occurs in the reverse order. The terms are evaluated and stored beforehand, and then retrieved
frequently during the evaluation of the appropriate equations.

The remainder of this appendix is devoted to presenting each of the 90 partial derivatives.

Ayl=1 A,2=0 Ay3=0 Ay4=0 A,5=0 A,6=0

A;1=0 Ay2=1 A,3=0 A,4=0 A;5=O A,6=0

A,1=0 A,2=0 A,3=1 A,4=0 A,5=0 A,6=0

B1=0 By2=0 B,3=0 B,4=1 B;5=0 B;6=0
By1=0 B;2=0 B,3=0 B,4=0 B,5=1 B,6=0
B,1=0 B,2=0 B,3=0 B,4=0 B,5=0 B,6=1

_=1_ 3R, or 3R, or _3R, or
Cl=or+3aR,  Cx2=%27 3R, Cx3=27 3R,
Cx4—0 CX5=O CX6=0
_3R, dr _~-1_3R, or _3R, or
Cl=97 3R, G235t ar, O3=37 9k,
Cy4=0 Cy5=0 C,6=0
3R, or _3R, or _=1, 3R, or
C1=27 3R, C2=97or, O35t 270R,
C,4=0 C,5=0 C,6=0
R,> Y157, or S R,> dr |37,
Dxl—(RI-—SRI 2 )4 ear |75 I0R e




4 r
D,4=0 D,5=0 D,6=0
_ -1 ar I ) 1 (L1 1 T r ar
Exl=0 3R1(3R'r—vl tor O TOR, RITTIR,
S WL (e o )+ r{3E43n Of p 19
EX2—2r4 IR, (3R1 \'A +6r3 3r+3 +aR2 3R, 793R
[ . ) or
-1 Br r __1___ I 1 r R el
Ex3= 48R3(3R1 _V])+ r’ \3r+3 TR, R BR)
ga=-LfsRof
X _61'3 T aV,_
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g s=-L[sR 9
X _61'3 r aVZ
g o=—L {380
X _61'3 T 8V3
_ =1 ar( i ) 1 (i, R, Of i 91
E,l= IR, 3R, =V, [+ o3| 3043 +3R, 3R, 5K,
__—_l_af( i )_l_i R, ot i or
By2=—7 3R, Ry =V, 43 \3 +3 3R 3R, Ty
__:Lar( i )__1_1 ,  Of i or
E,3= IR, 3R, E-V, +6r3\3r+3 +3R, 3R, 5%
__1 Ez__a_r_
Eyd=_5|37 v, 1)
E 5__1_._ 3_15_2_ aI' 1
6\ 7 1 9V,
__1(,R, df
EY6—6I3(3 2V, 1)
__—_L._af( i 1 (i, Ry Of i or
E,1=—= 3R, 3R, -V, +6r3(3r+3 SR, 3R, TS

6r 9V,
g s——L ;R0
z _6r3 r avz—
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where 1= JRIZ +R,”+R,?

3t R, 9t R, 9 R,

vV, 1 oV, r oV, r

Inserting these substitutions into the 90 partial derivatives, inserting these 90 partial derivatives into the
eighteen equations of the form ( C.4 ), and finally inserting these eighteen equations into equation ( 3.16 )

yields the final form of the state transition matrix, @, for the Taylor series method of track compression.
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Appendix D Track Compression H Matrix

This appendix develops the H matrix, described in section 3.4.4.1. This matrix relates the

change in the observation relation, G, with a change in the position vector, R .

[0G, 0G, 09G, |
R, 9R, OR,
q<|36 3G, 3G, : .

“|9R, OR, OR, (328)
9G, 090G, 9G,

dR, OR, oR,

The observation relation, G, is given by the following equations

range(R,t)
G =| azimuth(R,t) (3.17)
elevation(R, t)

range=|pSEZ|=\/psz +pg2 +p,’ (3.11)

4 Pe

Ps

azimuth = 1 —tan

Pz

elevation = tan™ — T
V pS + pE

Because the partial derivative of G must be taken with respect to R, and G is expressed in terms of

Pz » the relations between the various terms are used to create a chain of derivatives as follows.

H_aG_ 0G 0Py, 9Py
“OR T 9py, Ipx OR

(D.1)

where G is given in terms of Py, by equations ( 3.17 ) and ( 3.11 ) above, Py, and Py are related

through equation ( 3.23 ), and Py and R are related through equation ( 3.18 ), both on the next page.



Psez = D Py (323)
Pux =R()-R,, (3.18)

The three terms of equation ( D.1 ) are now determined in reverse order. From equation ( 3.18 ),

1 0 0
9Pyx
SR - I=|0 1 | 0 (D.2)
0 0 1
From equation ( 3.23 ),
0
Pz _p (D3)
Pox
where
cos(LST) cos(colat) sin(LST) cos(colat) - sin(colat)
D= —sin(LST) cos(LST) 0
cos(LST) sin(colat) sin(LST) sin(colat) cos(colat) (322)
oG
The third derivative, 3 0y’ will now be developed from equations ( 3.17 ) and ( 3.11).
EZ
0
nee B (D4)

s o2 +pg’+p,
drange Ps
N

drange _ Ps
s o’ +py” +p,’

dazimuth  —p; p~

9p;s - 1+(p% )2
s




1
dazimuth "%)S
apE - P :
1+ )

d azimuth _
op,

)-%

delevation _ TP PS(P52 +pg’

9ps Ps’ +ps” +pz’
1
delevation _ TPz P (Ps2 +PE2) %
dpg - ps2 + pE2 + pzz
delevation _ v s’ +Pg’
apz (ps2 +PE2 +p22)

These nine equations are inserted into the following matrix.

" Orange drange orange |
a pS a pE » a pZ
G N dazimuth dazimuth dazimuth
Pz | 9P 9Py 9p,
delevation delevation delevation
9ps 9P ap,

(D.5)

Equation ( D.2 ), the identity matrix, has no effect on the H matrix. When equations ( D.4 ) are inserted

into equation ( D.5 ), and then multiplied by equation ( D.3 ), the final form of the H matrix results.

[ drange drange drange
9ps 9P 9p,
He 0G B 0 azimuth 0 azimuth 0 azimuth
“OR | dp Ipg ap,
delevation delevation delevation’
9ps 9P ap,

D-3
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Appendix E Integrator Track Compression Equations of Variation

This appendix develops the equations describing the 36 elements of the A matrix of the equation

below. These equations are called the equations of variation. [7]
d :
77 @(L1) = AW O(t.to) (42)

where

At)= Vx gl

Xo(t)

and g comes from the equations of motion of the state vector,

d
—&-{X - g(Xz t)

The 36 element form of the A matrix is used for the integrator track compression dynamics
model. Therefore, the dynamics do not include air drag and the state vector does not include the ballistic
coefficient. The A matrix is defined as the partial derivative of the equations of motion with respect to the

state vector. Equation ( 3.8 ), below, shows the equations of motion for the six-clement state vector.

IH
NN
[
!
(V.
|~

(38)

i
™~
_/

Cf g
N

z

r3

1
’-’wlg<

Ll —

+ -+

Nlw NDjw Njw

NlN

fa—

|

(¥,

ol
w
I
T

-

P
-t | N
[N}

N

where x, y and z are the three components of the position vector, V, , Vy and V  are the three components

of the velocity vector and r is the magnitude of the position vector.

E-1



Differentiating equation ( 3.8 ) with respect to the state vector yields the following 36

components. Three of the three-by-three submatrices are trivial. The remaining nine elements will now

be determined individually.
0 0 0 1 0 0
0 0 0 0 1 0
i{k_ B 0 0 0 0 0 ' 1 .
XT3k, 3%, KX, . ., (ED
93X, 9%, X,
aX. oX. ox.
3%, 9%, ox, ° ° ¢
aX. oK. X
0 0 0

aX, 09X, 09X,

As in previous developments, application of the chain rule allows a simpler development as well as easier

computer coding.

9K, _y? ] N
“=3§;——13———3--;2—[1+35 = -5% tz] (E2)

90X, _xy 15J,xy 22
aX2—3—rg'+ 5 T 1-7

0X, _,xz _ xz[ _ 15 1057
X, —3-1:;'+J2 }7[15+72—-Tr—2

90X, _xy 157J,xy z2
aX1—3';g'+ > —|1=-7

aX 2 J 2,2 2+ 2
2oy L 30201y g5 Y 2 Y 22

X, "r  2r r
0Xs .y yz[ . 15 105 z°
39X, =3 o +Jz7' 15+"'2"Z-—’7—2



X, _xz ISJziz_"1 7_Zi—
aX, - rs 2 r7 L B |
X, .yz 151225'1 7£2_"
BXZ e 2 7L r
X 52 1 30 3—3052—4-353“1]
8X3 - 1‘5 r3 2 rs I'2 1_4

Inserting equations ( E.2 ) into equation ( E.3 ) yields the final form of the A matrix.



Appendix F Global Estimate Equations of Variation

This appendix develops the equations describing the 49 elements of the A matrix of the equation

below. These equations are called the equations of variation.
d .
43 2(tt) = A DALt (42)
where

A()=Vyg,

and g comes from the equations of motion of the state vector,

d
E;X =g(X,1)

The 49 element form of the A matrix is used for the Global Estimate and Bayes Filter dynamics

models. Therefore, the dynamics include air drag and the state vector includes the ballistic coefficient

parameter.
X(7) = B% (56)

The A matrix is defined as the partial derivative of the equations of motion with respect to the

state vector. Equation ( F.1), below, shows the equations of motion for the seven-element state vector.

X=|A,, +A,, (F.1)

F-1



where V., V, and V, are the three components of the velocity vector, A, is the acceleration due to gravity

given by equation ( F.2 ) and A, is the acceleration due to air drag obtained from equation ( 5.5 ) and

given in component form by equation ( F.3 ).

V,
Vy
VZ
X 312( Zz)
=21 22155
X, = r3: 2 r? r?
v, 35 2
-ff*er(‘ s)
z|, 3% (, 2°
—r3_1+2r2(3—5T2)
| 0

J1

(F.2)

where x, y and z are the three components of the position vector and r is the magnitude of the position

vector.

b

\[(V we,y) + Vy+o)&3x)2

0

+V?

z

(F.3)

where g = 0.05883359980154919 rayTU [22] and the local atmospheric density is determined

using the atmospheric model described in Appendix A.



The A matrix is formed from the partial derivative of equation ( F.1 ) with respect to the seven-

component state Vvector.

[0 0 0 1 0 0 0 |

0 0 0 0 1 0 0

0 0 0 0 0 1 0

g 19X X, 9k, Bk, Ak, Ak, X,
s=|3% 9%, X, 9K, X, X, 9%
aX, 9X, 9%, oX, 09X, %X, 0JX,

oX, 00X, 0X, o0X, 0X, 90X, X,

aX, aX, o9X, oX, 9X, 09X, 0X,

aX, 9X, 0X, X, 0X, 09X, 0X,

| 0 0 0 0 0 0 0

(F4)

Of the 49 elements, 28 are trivial. The remaining 21 will now be determined. As in previous instances,

use of the chain rule will simplify the notation. Also, the partial derivatives of the acceleration terms due

to gravity were determined in Appendix E as equations ( E.2 ). Only the partial derivatives of the

acceleration terms due to air drag will be developed here.

X,
axX,

1

0 %
~1B%(V, ~0,y) a—i[(vx ~0gy) +(V, +0g %) +v;] :

(F5)

Mg P (Vy + W, x)
]
[(Vx ~0gy) +(V, +@ex) +V,? ]/2

—EB*(VX il O PN )’)

ax ; )
aX? = _%B* E)%(Vx - Mg Y)[(Vx - Mg y)2 +(Vy + 0, x)2 +sz] 2
2
V,
+%B*p ® [ + %y)]

[(Vx—m@y +(V, + 0o x )2+V2]

1

d
X = - B* 5_(Vx ~ e Y) [(Vx ~0gy) +(V, +og x)2 +V22:| ’




0X,,
X,

1

(Vx —Wg Y)z

(Vx —We y) (’Vy +®q x)

(500 (3,200 o0

%
-5 B* P[(Vx —Wg Y)2 +(Vy + Wy x)2 + sz:| 2

Vz (Vx O Y)

[(vi-wg y) +(v, +oox) + 2]

%

(V, —0,)

[(Vx ~ %o y)2 +(Vy +0, x)z + sz:l

%

ap

=——B* _r

+=B*

1
2

2

1

2

B*ﬁg+u%x)%$ﬂv;—mny4(V;+me@2+V:]

(0$(Vx —Wgq Y) (Vy + g x)

(v, 00 3) (¥, + 0 +V,]

[(Vx —Wq Y)2 'I‘(Vy + g x)2 +sz]

(Vy +Wg x)

0z

We P (Vx - Mg y)

%

%

dy (Vy + W, X) |:(Vx -4 y)2 +(Vy + 0, x)2 + sz]

F-4

et ous o]

%

%

%

(v, 00~ ) ]



(Vx - Wg y) (Vy +0g x)

(Vx O y)2 + (Vy + Mg x)2 + sz:

0X - 5
aXSd —_-—-%B*p (Vx—w@y)2+(Vy+wex)2+sz ’
\ | _

2
. V, + g X
__-él—B*p ( y ® ) yz

[(Vx ~0ey) +(Vy + g x)2 +V22]

X, 1 v, (V, + 0o %)

%

[(Vx -y y)2 + (Vy + 0, x)2 + sz]

8X5d _ lp (Vy+a)$ X)
=% 1
9% 2 [(V" ~Wg y)2 + (Vy_+ We x)2 + VZZ]A
Xt _ 1. 2Py [(V ) +(v, + )2+V2]%
0%, 2> 9x 2 [\VxTPe¥) TN TOeX] T,
—%B*p(Vy+m®x) @ V,

[(Vx - W, y)2 +(Vy + 0, x)2 +sz]%

%
B* %%Vz [(Vx —wgy) +(Vy + 0, x)2 +sz] ’
Wy V,

[(Vx ~— 0, y)2 +(Vy + 0, x)2 + sz:l

%

3 %
B* 32V, [(V, -0, y) +(V, +o, x) +V,2] 2
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aXﬁd 11 V, (Vx —Wq Y)
X _—EB P 2 2 %
! [(Vx—w@y) +(V, +0g x) +vz2]

3X6d 1 X Vz (Vy +0)® X)

90X, —3B%p 2 2 %
[(Vx ~We Y) +(Vy+0)9 x) +V22]

90X \%&

aX6: =—%B*p 2 2 %
I:(Vx—mey) +(V, + 0, x) +Vj]

—EB*p[(Vx ~ 0, y)2 +(Vy + W, x)2 +V12]

0Xe 1 %

5% ="2° v, [(Vx ~0ey) +(V, +e x)2 +V22:|

and

——————— (F6)

dz drdz orr

The atmospheric model provides the gradient of the atmospheric density for use in equations (F.6).

Inserting equations ( E.2 ), and ( F.5 ) into equation ( F.4 ) yields the final form of the A matrix.
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Appendix G Orbital Elements

The following table provides the orbital elements for the satellites used in simulation one and
simulations six and after. Note it is given as B*, not B¥/2.
Table G-1 Orbital Elements

axis ecc apogee perigee inc Q ® v B*

(DUs) (DUs) (DUs) (deg) (deg) (deg) (deg) mzlkg
1.1431 0.0649 1.2173 1.0689 66.6670 337.0477 149.2720 111.0444 0.0871
14176 0.0207 1.1408 1.0944 71.4925 33.6281 24.0132 299.7730 0.0978
1.1189 0.0260 1.1480 1.0898 71.1933 87.8515 239.2868 14.8873 0.1107
1.1284 0.0422 1.1760 1.0807 17.9057 84.9663 288.6909 157.0855 0.0326
1.1023 0.0207 1.1251 1.0795 52.7924 239.9506 13.1372 186.1254 0.0554
1.0882 0.0009 1.0892 1.0872 5.5404 37.6862 69.0430 254.3590 0.0337
1.1030 0.0374 1.1443 1.0617 72.2489 41.9233 119.3513 128.8672 0.0365
1.0933 0.0134 1.1079 1.0786 4.7114 265.1745 77.5812 201.5614 0.0191
1.0744 0.0398 1.1171 1.0316 58.5559 81.1987 224.7762 133.9783 0.0605
1.1655 0.0231 1.1925 1.1386 39.7510 148.1973 72.3493 14.8886 0.0613
1.1305 0.0028 1.1337 1.1273 10.7826 66.0109 51.2450 88.9736 0.1042
1.1594 0.0438 1.2101 1.1086 62.3430 218.0545 30.7839 247.9762 0.1302
1.1165 0.0516 1.1740 1.0589 2.9282 282.5804 39.1168  8.1137 0.0096
1.0627 0.0243 1.0885 1.0369 33.2378 240.0768 346.7636 65.6831 0.0738
1.0948 0.0327 1.1306 1.0590 31.5112 206.3120 204.8270 166.3494 0.0378
1.1828 0.0771 1.2740 1.0916 13.0270 353.7673 100.4942 314.4835 0.0052
1.1267 0.0061 1.1336 1.1198 89446 17.8261 84.0984 153.2555 0.0474
1.1697 0.0145 1.1866 1.1528 43.1829 171.8751 20.9602 169.0522 0.0548
1.0947 0.0230 1.1199 1.0695 13.8640 14.1571 95.0683 123.6986 0.1150
1.1209 0.0667 1.1957 1.0461 50.8408 266.5706 147.4709 289.1914 0.0815
1.0681 0.0063 1.0749 1.0614 27.9660 183.5601 311.3900 27.5289 0.0142
1.1650 0.0143 1.1816 1.1483 58.1834 287.9121  4.4881 285.3072 0.0339
1.0869 0.0315 1.1211 1.0526 27.7908 275.2574 71.9475 57.3137 0.0762
1.0769 0.0304 1.1096 1.0442 64.8925 262.4626 214.3987 319.7559 0.0203
1.1694 0.0884 1.2728 1.0661 6.1776 102.7449 238.3270 121.0557 0.1074
1.0541 0.0112 1.0659 1.0423 16.7671 69.6316 227.7882 84.9530 0.0274
1.0708 0.0291 1.1020 1.0397 52.3488 28.1130 204.8310 359.6201 0.0012
1.1139 0.0084 1.1233 1.1046 49.0407 222.6593 189.3927 333.3271 0.0698
1.0553 0.0165 1.0727 1.0379 4.8674 327.9385 0.3699 216.3699 0.1252
1.0844 0.0357 1.1232 1.0457 33.3252 320.9543 184.2456 277.3348 0.0372
1.2088 0.0181 1.2306 1.1869 50.9498 301.9593 197.2199 163.3539 0.0789
32 1.1266 0.0175 1.1462 1.1069 11.8503 40.0213 108.4510 277.6716 0.0002
33 1.1065 0.0021 1.1089 1.1042  1.9064 281.0339 268.8070 102.5428 0.0050
34 1.1203 0.0096 1.1310 1.1095 12.8023 297.6429 281.1327 356.7522 0.1513
35 1.1373 0.0056 1.1436 1.1310 7.8831 24541 20.7305 242.0845 0.0312
36 1.1360 0.0551 1.1986 1.0735 18.4088 189.6166 344.1614 957255 0.1098
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63

65

67
68
69
70
71
72
73
74
75

- 76

77
78
79
80
81
82
83
84
85
86

1.1555
1.0863
1.0781
1.0992
1.1745
1.1206
1.1186
1.0808
1.0904
1.1576
1.0882
1.0660
1.1678
1.0816
1.0739
1.1033
1.0633
1.0537
1.0876
1.1219
1.0431
1.1890
1.1060
1.0662
1.0722
1.0917
1.0828
1.0745
1.1324
1.1055
1.1080
1.0851
1.1215
1.0483
1.1059
1.0887
1.1397
1.0958
1.0872
1.1176
1.1216
1.0888
1.1488
1.1176
1.1327
1.1542
1.0823
1.2027
1.1321
1.0996

0.0801
0.0478
0.0211
0.0217
0.0087
0.0658
0.0465
0.0220
0.0184
0.0161
0.0254
0.0132
0.0164
0.0232
0.0088
0.0287
0.0101
0.0193
0.0425
0.0335
0.0087
0.0478
0.0189
0.0114
0.0148
0.0190
0.0368
0.0385
0.0307
0.0041
0.0352
0.0196
0.0219
0.0029
0.0584
0.0197
0.0554
0.0353
0.0013
0.0169
0.0044
0.0304
0.0013
0.0682
0.0857
0.0578
0.0062
0.0280
0.0405
0.0521

1.2479
1.1382
1.1009
1.1231
1.1847
1.1944
1.1706
1.1046
1.1105
1.1762
1.1158
1.0800
1.1870
1.1067
1.0833
1.1350
1.0740
1.0740
1.1338
1.1594
1.0522
1.2459
1.1270
1.0783
1.0881
1.1124
1.1226
1.1158
1.1672
1.1100
1.1471
1.1064
1.1460
1.0514
1.1705
1.1101
1.2028
1.1345
1.0886
1.1364
1.1265
1.1219
1.1504
1.1939
1.2298
1.2209
1.0891
1.2365
1.1780
1.1569

1.0630
1.0344
1.0554
1.0753
1.1642
1.0469
1.0666
1.05670
1.0704
1.1389
1.0605
1.0520
1.1486
1.0566
1.0645
1.0716
1.0526
1.0334
1.0413
1.0843
1.0340
1.1321
1.0851
1.0541
1.0563
1.0709
1.0430
1.0332
1.0976
1.1010
1.0689
1.0639
1.0969
1.0453
1.0414
1.0672
1.0766
1.0571
1.0857
1.0988
1.1167
1.0557
1.1473
1.0413
1.0356
1.0874
1.0756
1.1690
1.0862
1.0423

26.7252
7.3939
30.0380
65.3707
8.7431
17.7696
28.7028
37.5336
53.9295
59.6470
24,9452
45.4555
48.6396
8.0752
8.2498
20.9109
55.6062
17.2056
46.6057
4.8253
28.9611
17.0618
3.0777
20.9841
22,8532
0.3572
86.2770
19.5698
17.2969
9.2470
18.5225
7.7002
44.3934
84.9628
- 5.2258
40.8379
74.6453
51.5872
1.2687
59.8006
32.5231
23.1912
5.1364
41.6074
10.3841
15.5084
23.5461
14.8856
113.9529
1.7771
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1.8692
148.0673
314.0126

31.9341
269.2701
164.5883

75.3733

26.2564

4.1245
131.5987
278.1446
245.8460

27.0271

9.2708
319.9620
320.3864
164.4913
118.1681
112.6308
345.4804
294.7578
233.0833
160.0468

68.3871
331.1518

89.2465
309.6474

51.5868
164.5896
250.9242
124.2972

10.6279

88.7568
327.4103
109.9359
130.7821
291.5189
222.3257
316.0793
339.4066
128.4403
183.7182

87.7743
264.9887
269.9463

95.6579
161.4358
348.5631

91.0082
104.1121

228.3934
274.4587
264.2481
330.4760
138.8004
2.1040
183.8061
223.7465
12.5513
202.4999
117.9650
190.7447
345.1981
28.5075
165.1917
132.8557
1.1809
250.3306
81.9692
46.4249
332.1956
82.9705
16.7335
272.9238
311.0460
255.6719
148.5171
27.0432
65.3758
160.4322
192.4976
20.4620
19.6555
64.8151
314.6927
22.1982
229.0588
283.4561
305.6106
256.8701
21.6407
20.0149
115.6297
109.2273
19.7305
140.3718
109.3949
169.2374
334.7344
353.4131

138.8889
36.7271
1.7241
86.7126
72.5979
43.9168
304.7195
107.4421
342.3633
153.0539
168.0659
76.6971
99.4496
195.4267
329.4712
39.8585
121.1371
307.3486
337.5289
337.4609
294.3451
67.1935
264.0200
102.8918
341.9078
18.0779
28.7410
40.7247
356.6559
263.8602
92.1080
243.6264
192.5299
287.5925
330.3650
167.3150
216.6272
189.4006
51.4051
256.4840
258.1910
258.2101
122.2167
310.2476
213.0376
325.3227
120.4272
139.1684
83.4499
284.9476

0.0736
0.0954
0.0323
0.1797
0.0946
0.0466
0.0772
0.0924
0.0102
0.0972
0.1082
0.0755
0.0828
0.0490
0.10985
0.1393
0.0917
0.1282
0.0069
0.0347
0.0264
0.0322
0.0324
0.0608
0.0829
0.0716
0.0424
0.0544
0.0610
0.0846
0.0304
0.0668
0.0881
0.0527
0.0070
0.1092
0.0184
0.0831
0.1176
0.0417
0.2264
0.0475
0.0595
0.0340
0.1358
0.0914
0.0805
0.0341
0.0507
0.1186



87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

1.1935
1.1654
1.1443
1.1262
1.0605
1.1604
1.1436
1.0813
1.1067
1.1224
1.1477
1.2096
1.2029
1.0709
1.0538
1.0958
1.1224
1.1276
1.1308
1.0813
1.0705
1.1690
1.0773
1.1061
1.1008
1.0658
1.0509
1.1181
1.1129
1.1386
1.1625
1.1543
1.1143
1.1883
1.1241
1.1439
1.0756
1.0643
1.1884
1.1594
1.1117
1.0913
1.1089
1.0830
1.0820
1.0904
1.0470
1.1073
1.0500
1.0804

0.0196
0.0280
0.0086
0.0635
0.0094
0.0163
0.0416
0.0400
0.0056
0.0305
0.0310
0.0141
0.0593
0.0302
0.0179
0.0264
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