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Abstract

This research project investigated the design, construction and evaluation of a
pseudorandom code generator for communication and navigation system applications.
These types of codes include spreading codes, Gold codes, Jet Propulsion Laboratory
(JPL) ranging codes, syncopated codes, and non-linear codes. Such waveforms are
typically used in communication and navigation systems applications. The code generator
uses the Stanford Telecom STEL-1032 Pseudorandom Number (PRN) coder. A coder
interface was designed and constructed for manual data entry to the registers of the PRN
coder. The code generator is capable of independently clocking and generating all
possible codes with lengths up to 2°%-1 (4,294,967,295). The codes can be started with
any random phase. The code generator is capable of detecting a specific position in the
code and the coders can be truncated and restarted at that point. The three independent
coder outputs are combinable, expanding the lengths and versatility of the codes. The
generation of a non-linear code is possible using an internally programmable look-up table.
Several tests were conducted on the code generator to ensure its capability of generating
the spreading codes, gold codes, JPL ranging codes, syncopated codes, and non-linear

codes. The required documentation is being submitted for a U.S. patent.




1. Introduction

1.1 Background

Spread Spectrum (SS) communications grew out of research efforts during World
War II to provide secure means of communications in hostile environments [4]. During
the early years of spread spectrum investigation, one technique considered for operating a
transmitter and receiver synchronously with a truly random spreading signal was the
Transmitted Reference (TR) system. In a TR system, the transmitter sends two versions
of an unpredictable wideband carrier, one modulated by data and the other unmodulated,
which are transmitted on separate channels. At the receiver, the unmodulated carrier is
used as a reference signal for despreading the data-modulated carrier. The principal
advantage of a TR system is there are no significant synchronization problems at the
receiver, since the spread data-modulated signal and the despreading waveform are
transmitted simultaneously. The principle disadvantage of TR systems is the spreading
code is sent in the clear and thus is available to any listener. As such, the system is easily
spoofed by a jammer capable of sending a pair of waveforms acceptable to the receiver.
Other disadvantages include 1) performance degradation at low signal levels due to noise
being present on both transmitted signals and 2) twice the bandwidth and transmitted
power are required because of the need to transmit the reference [6].

Modern spread spectrum systems use a technique called Stored Reference (SR)
whereby the spreading and despreading waveforms are independently generated at the

transmitter and receiver, respectively. The main advantage of an SR system is that a well-
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designed code signal cannot be predicted by an unintended receiver monitoring the
transmission [6]. The noiselike code signals used in SR systems cannot be "truly random"
as in the case of a TR system. Rather, signals which possess noiselike properties called
pseudonoise (PN) or pseudorandom signals, are employed as the spreading waveforms.
While a random signal cannot be predicted, a pseudorandom signal is not random at all; it
is a deterministic, periodic signal that is known to both the transmitter and receiver. Even
though the signal is deterministic, it appears to have the statistical properties of sampled
white noise and appears to the unauthorized listener as a truly random signal.

A linear feedback shift register is often used to generate the pseudorandom spreading
code. The shift register operation is controlled by a sequence of clock pulses. At each
clock pulse, the contents of each stage in the register are shifted one stage to the right and
fed back through of series of interconnected taps. The shift register sequence is usually
defined as the output of the last stage. The shift register sequence is dependent on the
number of stages, the feedback tap connections, and the initial conditions (starting phase).
The output sequence is classified as either maximal length or nonmaximal length. A
maximal length sequence has the property that for an n-stage linear feedback shift register,
the sequence repetition period (in clock pulses p) is p =2" - 1. If the sequence length is

less than (2" - 1), the sequence is classified as a nonmaximal length sequence.




1.2 Problem Statement

The purpose of this study is to design a pseudorandom code generator for
communication and navigation system applications. This thesis addresses the need for a
flexible, highly efficient, means of providing pseudorandom signals for test, evaluation and
development of multiple systems. In addition, the ability to explore and validate new

pseudorandom codes is addressed.

1.3 Scope

The design, construction, and evaluation of the system has enormous possibilities.
Due to time constraints, it was necessary to put limitations on the project. The system
was designed for a computer interface but has yet to be implemented; a manual data entry
and addressing technique was developed for system testing. Several test code and

scenarios are analyzed and presented in Chapter 4.

1.4 Materials and Equipment

Appendix B contains the complete materials list and design schematics used in this
project. A great deal of the materials and equipment used for construction and
evaluations were provided by the Avionics Directorate of Wright Laboratories. Other

items were procured by out of pocket expenses.

1.5 Thesis Organization

Chapter 2 presents a background on spread spectrum signal codes and the PRN

coder capabilities. This chapter also includes a description of different types of spreading




codes that can be generated with this project and examples of their application. In
Chapter 3, the capabilities, performance, and operation of the STEL-1032 are fully
described and the interface design is presented and analyzed. Chapter 4 begins with an
explanation on operating the system and concludes with the analysis of several test
outputs. The conclusion and recommendations are included in Chapter 5. Appendix A
includes a table with feedback connections for generation of maximal length sequences.

Appendix B shows the complete circuit diagram for the system including a parts listing.

14




2. Pseudorandom Sequences

2.1 Pseudonoise/Pseudorandom sequences

In the Transmitted Reference (TR) system, a truly random code can be utilized for
spreading and despreading since the code signal and data-modulated code signal are
simultaneously transmitted over different regions of the spectrum. The Stored Reference
(SR) approach cannot use a truly randorh code signal because a copy of the code needs to
be stored or generated at the receiver. For a SR system, a pseudonoise or pseudorandom
code is typically used. A truly random signal is unpredictable and future variations can
only be described in a statistical sense. However, a pseudorandom signal is not really
random -- it is a deterministic periodic signal that is known to both the transmitter and
receiver. Even though the signal is deterministic, it possess statistical properties consistent
with sampled white noise and appears to be truly random to an unauthorized listener.
There are three basic properties that can be applied to any periodic binary sequence as a
test for the appearance of randomness. These properties are called balance, run and
correlation [6]. If all three properties are satisfied, the sequence is classified as a

pseudorandom sequence.

2.1.1 Balance Property

Good balance requires that within each period of the sequence, the number of

binary ones differ from the number of binary zeros by at most one digit. As an example,
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the sequence (000100110101 11 1) has seven zeros and eight ones, satisfying the

balance property.

2.1.2 Run Property

A run is defined as a sequence of a single type of binary digit(s). The appearance
of the alternate digit in a sequence starts a new run. The length of the run is defined as the
number of digits in the run. Among the runs of ones and zeros in each sequence, it is
desirable that about one-half the runs of each type are of length 1, about one-fourth are of
length 2, one-eighth are of length 3, and so on. Considering the runs of zeros in the
previous example, there are two (one-half) of length 1, one (one-quarter) of length 2, and
one of length 3. Considering the runs of ones, there are two (one-half) of length 1, one

(one-quarter) of length 2, and one of length 4. The sequence satisfies the run condition.

2.1.3 Correlation Property

If a single period of the sequence is compared term-by-term with any cyclic shift of
itself; it is desirable that the number of agreements differs from the number of
disagreements by not more than one count. Below is a bit-by-bit comparison of the

example sequence with a single end-around shift of itself.

000100110101111
100010011010111
daaddadadddd aaa




Digits that agree are labeled a and those that disagree are labeled d. As shown, the
number of agreements (7) differ from the number of disagreements (8) by 1. It is easily
shown that the example sequence satisfies the correlation property for any cyclic shift.
Given the example sequence of (000100110101 11 1) satisfies the balance, run,

and correlation properties, it is classified as a pseudorandom sequence.

2.2 Shift Registers

Many system applications require pseudorandom sequences. A convenient and
simple method for generating sequences which appear random and posses the
characteristics described in Section 2.1 is required. It is also desirable that the same
apparatus, when operated in an identical manner, produces the same sequence and that the
generator be as simple as possible. Such a sequence is easily generated using a feedback
shift register configuration.

A shift register is the arrangement of » stages, called delay elements, in a row.
Each stage contains either an "on" (1) or "off" (0); the contents of each stage are shifted
to the next stage, in time with a clock pulse. If no new signals are introduced into the first
stage during the shifting process, by the end of 7 shifts all of the stages will be "off" and
will remain that way. One way to keep the shift register "active" is to feed back the
state(s) of one or more of the » stages back into the first stage. The output(s) from
certain stage(s) feed modulo 2 adder(s), when the next shift of the register occurs the

modulo 2 sum is transferred to the first stage [2].




2.2.1 Feedback Taps

A linear code sequence generator can be made up of any combinations of stages
and feedback taps. Figure 2.1 illustrates the general form of a simple linear feedback shift
register. Outputs from the last stage (D,) and from an intermediate stage (D;) are
combined in a modulo-2 adder and fed back to the input of the first stage (D;). Table 2.1
shows the contents of each stage and the output for the first 16 clock pulses. The initial

condition, or fill, was D;=1, D=0, Ds=0 and D,=0.

Feedback Modulo-2

Adder

< D+ - D2 1 Ds [ D

Output
Figure 2-1. Linear Feedback Shift Register.
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Table 2-1. Linear Feedback Shift Register Sequence.

) ) ) 9
0 1 0 0 0 -
1 0 1 0 0 0
2 0 0 1 0 0
3 1 0 0 1 0
4 1 1 0 0 1
5 0 1 1 0 0
6 1 0 1 1 0
7 0 1 0 1 1
8 1 0 1 0 1
9 1 1 0 1 0
10 1 1 1 0 1
11 1 1 1 1 0
12 0 1 1 1 1
13 0 0 1 1 1
14 0 0 0 1 1
15 1 0 0 0 1

As seen in Table 2-1, all of the stages are again filled with the iﬁitial values at state
15; this linear feedback shift register output sequence repeats every 15 clock pulses. The
succession of states in the shift register is periodic; with a period given by p <2"- 1. For
an n-stage shift register, each stage containing either a '1' or '0', there are a total of 2"
possible states. Therefore, if repetition occurs it must occur somewhere in the first 2" + 1
states with periodicity given by p < 2". However, if the "all 0's" state ever occurs, all
subsequent states will consist of "all 0's" and the periodicity is p = 1. Thus, a long period
can not include this state and p < 2" - 1 [2]. The output sequences are classified as either
maximal or nonmaximal length. Maximal length sequences have a repetition period

p=2"-1. For p<2"- 1, the sequence is classified nonmaximal length.




2.2.1.1 Maximal Length Sequences

Not every combination of feedback taps results in a maximal length sequence.

Using all possible linear combinations of feedback taps for an n-stage register, there are

[ (2" - 1)] / n maximal sequences that can be generated [1]. The expression

[¢ (2" - 1)] is an Euler number which is the number of positive integers (including 1) that

are relatively prime to and less than (2" - 1). Table 2-2 lists the number of possible

feedback combination for a given number of stages » that produce maximal length

sequences and the length of code (period p).

Table 2-2. Number of Maximal Sequences and Code Lengths Available from
Register Lengths 2 through 32.

Number of Code Length n Number of Code Length
Codes Codes
2 1 3 18 8064 262143
3 2 7 19 27594 524287
4 2 15 20 24000 1048575
5 6 31 21 84672 2097151
6 6 63 22 120032 4194303
7 18 127 23 356960 8388607
8 16 255 24 276480 16777215
9 48 511 25 1296000 33554431
10 60 1023 26 1719900 67108863
11 176 2047 27 4202496 134217727
12 144 4095 28 4741632 268435455
13 630 8191 29 18407808 536870911
14 756 16383 30 11880000 1073741823
15 1800 32767 31 69273666 2147483647
16 2048 65535 32 67108864 4294967295
17 7710 131071

It is difficult to find the feedback connections that produce the desired maximal

length code and to check the code once the linear feedback shift register has been
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constructed. It is possible to find a set of feedback connections experimentally, but this
requires not only constructing a shift register generator but also taking the time to check
the length of codes generated until a maximal length sequence is achieved. Tables of
feedback connections and tables of irreducible polynomials have been generated which
makes the job easier. Appendix A includes a table of feedback connections for generation

of maximal length sequences [5].

2.2.1.1.1 Properties of Maximal Length Sequences

Maximal Length sequences have a number of properties which are useful in their
application to spread-spectrum systems [4].

1. A maximal-length sequence contains one more "1" than "0". The number of
ones in the sequence is V2 (n+ 1)

2. The modulo-2 sum of an m-sequence and any phase shift of the same sequence
is another phase of the same m-sequence.

3. Ifa window of width  is slid along the sequence for N shifts, each r-tuple
except the all zero r-tuple will appear exactly once.

4. The periodic autocorrelation function is two-valued and is given by 8y(k) = 1.0
if k equals *p or By(k) = -1/N if k is not equal to /*p, where / is any integer

and p is the sequence period.




5. Defining a run as a subsequence of identical symbols within the m-sequence.
The length of this subsequence is the length of the run. Then, for any m-
sequence, there is

1. one run of "1's" of length 7.

2. one run of "0's" of length n-1.

3. one run of "1's" and one run of "0's" of length n-2.
4. two runs of "1's" and two runs of "0's" of length #-2.

5. four runs of "1's" and four runs of "0's" of length n-2.

n. 2" runs of "1's" and 2" runs of "0's" of length 1.

2.3 Composite Codes

Composite code sequences are generated by combining linear maximal length
sequences. Codes constructed this way have special properties that are most
advantageous under proper circumstances; for instance, the Jet Propulsion Laboratory
(JPL) ranging codes and the Gold codes, though constructed from maximal sequences, are
not maximal. The JPL ranging codes have special properties that permit rapid
synchronization, whereas the Gold codes allow construction of families of 2" - 1 codes
from pairs of n-stage shift registers which all codes have well-defined correlation

characteristics [1].




2.3.1 Gold Code Sequence Generator

One of the applications of the pseudorandom sequence for spread-spectrum is to
provide a means other than Frequency-Division Multiple Access (FDMA) or Time-
Division Multiple Access (TDMA) of sharing limited bandwidth. When channel resources
are shared using spread-spectrum techniques, all users are permitted to transmit
simultaneously within the same band of frequencies. Users are each assigned different
spreading codes to allow separation within the receiver via the despreading process. A
goal of the spread-spectrum system designer for multiple access is to find a set of
spreading codes such that as many users as possible can use a band of frequencies with as
little mutual interference as possible. The specific amount of interference from a user
employing a different spreading code is related to the cross-correlation between the two
spreading codes. Gold codes were invented for use in multiple-access applications of
spread-spectrum. Relatively large sets of Gold codes exist which have well controlled
cross-correlation [4].

Gold codes are generated by modulo-2 addition of a pair of maximal length linear
sequences. The code sequences are added chip-by-chip using synchronous clocking as
shown Figure 2.2. The set of Gold codes generated are the same length but are
nonmaximal. A multiple-register Gold code generator can generate (2" - 1) nonmaximal
sequences of length 2" - 1 in addition to » maximal sequences where 7 is the number of
registers and » is the number of stages in each register [1]. These codes are important and

they have been selected by NASA for use on the Tracking and Data Relay Satellite System




(TDRSS) [4]. One of the most familiar uses of Gold codes is the Global Positioning

System (GPS).

Clock

n-stage maximal |
length shift register

n-stage maximal
length shift register

Code 3

Figure 2-2. Gold Code Sequence Generator Configuration.

2.3.1.1 GPS Gold Code Generation

The Standard Positioning Service pseudorandom noise ranging code is known as

the Course / Acquisition (C/A) code. Appropriate Code-Division-Multiplexing (CDM)

techniques allow differentiating between the satellites even though they all transmit on the

same L-band frequency. The C/A code consists of 1.023 Mbps G;(t) patterns with

Modulo-2 addition of the navigation data bit train, D(t), which is clocked at 50 bps. Each

Gi(t) sequence is a 1023-bit Gold-code which is the Modulo-2 sum of two 1023-bit linear

patterns, G1 and G2;. The latter sequence is selectively delayed by an integer number of

chips ranging from 5 to 950 to produce 36 unique G(t) patterns. This allows the

generation of 36 unique C/A (t) code phases using the same basic code generator.
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The G1 and G2 sequences are generated by 10-stage shift registers having the

following polynomials as referred to in the shift register input:

GL:XY+x3+1

G2:X+X+X+X+X+X2+1

The initialization vector for the G1 and G2 sequence is (1111111111). The G1 and G2

registers are clocked at a 1.023 MHz rate. The effective delay of the G2 sequence to form

the G2i sequence is accomplished by combining the output of the two stages of the G2

shift register by Modulo-2 addition. The C/A-code generation including the G1 and G2

shift registers is shown in Figure 2.3 [8].

B4 GENERATOR

L

@, = —10101111111111

[1]2[a[«[s[ o] 7]+ o] %]

SHIFT REGISTER
1.023 S8ETTO
MBPS “ALL
CLOCK QONBES’ PHASE
SELECTOR
I___. - Gy o\ X62 s geo:.; CODE
/-C\ “\Z/ C/ACODE GIA GODE
81 ]
SHIFT REGISTER
. s 010014111111 111
—[1[2[s[+[o] e[ [o[ s  roH—>
y
[ o
\t/ DECODE
Ei! &0 BPS
Gz GENERATOR DATA
CLOCK

Figure 2-3. C/A Code Generation.
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2.3.2 JPL Ranging Code Generator

The Jet Propulsion Laboratory (JPL) ranging codes are constructed by modulo-2
addition of two or more maximal length linear sequences which are relatively prime to one
another. There are several advantages to such a technique including, 1) very long codes
useful for unambiguous ranging over long ranges are available, 2) the long codes are
generated by a relatively small number of shift register stages, 3) synchronization of a
receiver can be accomplished by separate operations on the component code. This can
greatly reduce the time required for synchronization [1].

Synchronization, via the JPL component codes is accomplished by first cross-
correlating one of the component codes with the composite code. Once this component
code reaches the point of synchronization with its mate, which is embedded in the
composite code, a partial correlation occurs. The partial correlation is then the signal for
the second component code cross-correlation to be initiated which causes the partial
correlation level to be increased. This process contiﬁues until all the component codes
making up the overall composite code are individually synchronized with their
counterparts in the received signal. When all are individually synchronized, the correlation
is the same as if the process had simply synchronized the composite code. As an example,
when the component codes are 200, 500 and 1000 chips in length, a separate search
process over these individual lengths (a total of 1700-chips search) can be accomplished

much more rapidly than a search of the composite 10° chips [1].

2-12




Figure 2.4 shows a typical JPL code generator configuration, which has three basic
maximal length shift register generators, each with a different number of stages. This is

identical to the Gold code generator except for the difference in the individual code

lengths.
Shift Repister 1 Code a
(2"'-1%1;?: i 23 Output
¥ ¥ JP L Code
atb¥c
Clock i (20-1)(2-1)(22-1) chips
Shift Register 2 Code b
(2"-1) bits
Shift Register 3 Code ¢
(2°-1) bits

Figure 2-4. Typical JPL Code Sequence Generator Configuration.

2.3.3 Syncopated-Register Generator

A syncopated-register generator is a technique that multiplexes two or more
slower generators to generate a high-rate sequence. The method is similar to that used in
Gold code sequence generators in that two separate sequences are modulo-2 added to
produce a composite output. The difference lies in that separate clocks, phase shifted by

360/P degrees, each at a rate R/P, where R is the desired output code chip rate and P is

2-13




the number of registers used. Figure 2.5 shows a two-register generator of the syncopated
type. Timing for this code generator is also shown in Figure 2.6. Note the chip rate of
code 1 modulo-2 added to code 2 is twice that of either code 1 or code 2 before their
combination. The overall length of any number of syncopated codes is the product of the

lengths of all the composite codes [1].

Shift Register 1 Code 1
(2"-1) bits
1
Clock T i Code3
G R) (code 1+ code 2)
(2-1)2*-1) chips
Shift Register 2 (rate R)
(2-1) bits Code 2

Clock T + 180 degrees
(rate R/2)

Figure 2-5S. Syncopated Code Generator.

Code 1

Code 2

AT AT

Code 3

Figure 2-6. Syncopated Code Example.
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2.4 Non-Linear Codes

In applications where security is important, it is necessary that the unintended
listener not be able to obtain complete knowledge of the spreading code or encryption
stream being employed. If this code is known, the eavesdropper can decipher or
demodulate the transmitted signal just as the desired receiver. Therefore, the task of
determining the code generator configuration from knowledge of the transmitted signal
should be as difficult as possible. The feedback connections for an n-stage maximal length
sequence can easily be determined from knowledge of 27 successive code symbols [1].
For this reason, m-sequences are never used when a high degree of security is required.
The use of non-linear sequences is one way to increase security. These codes can not be
described by the simple linear recurrence. One way to achieve a non-linear sequence is to
use the output from three linear feedback systems as an address to a
look-up table. This method combines the three output bits to produce one bit based on
the look-up table. Other methods of increasing complexity exist such as using modulo-2

multiplication in addition to modulo-2 addition or using nonlinear feedforward.
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3. System Design

3.1 System Qverview

The purpose of this study is to design a pseudorandom code generator for
communication and navigation system applications. The system designed utilizes the
Stanford Telecom STEL-1032, pseudorandom number (PRN) coder [9]. The STEL-1032
PRN coder generates codes using three independent 32-bit register code generators
(Coder0, Coderl, and Coder2). Feedback tap connections for each code generator are
controlled by the MASK Registers content -- any combination of tap connections may be
selected. In this way, each of the three code generators are capable of independently
generating all possible codes with lengths up to 2** - 1 (4,294,967,295) bits. The PN
codes can be started with arbitrary phase by loading the starting phase code into the INIT
Registers. A specific sequence in the code generator registers can be detected and a pulse
generated via a 32-bit magnitude comparator and the values stored in the EPOCH
Registers. The 32-bit COUNT Register is used to set the counter stop point; once
triggered, the counter will run for a number of clock cycles equal to the number stored in
the COUNT Register and then generate a COUNT pulse. The code generators and
counters can be reset on the EPOCH or COUNT pulse. The codes can be made to restart
at this point if desired. In addition to the three independent codes that can be generated,
the outputs of the code generators can be EXORed together, Coder0 and Coder1 can be

EXORed or all three code generator outputs can be EXORed. The output of code
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combiner is also available both late and early by one-half of a clock cycle relative to the

punctual code (on time). Non-linear codes are generated by means of an internally

programmable look-up table. A block diagram for the STEL-1032 is shown in

Figure 3.1.
CSN. ——# gpT i e XOR012
ADDRA n ..2:.......' DECODE | ..........._..._p CODE mp ﬁ?x@gga
o 07 g ‘ COMBINER [ e EARLY.
: Jrmi g LATE
e FyY) o
L v - —§» CODEO "
‘ghko - , _ - EPOCHO:
BN e P COUNTY'
LOADO . CODERD | S » MODCCDG
STIMD -4 . : > LOSYNCO
$TLD » 3 REF150
: —b - STSYNG
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>
.
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e .'.:‘";‘ '

- 'LDSYNG2

REF15-2

Figure 3-1. STEL-1032 Block Diagram.

Each of the three separate coders contain a number of functional blocks, shown in

Figure 3-2. The three coders are completely independent, except for the COUNT and

EPOCH which are interconnected through the coders' control logic. This allows each

coder to be controlled by either of the two other coders.
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Figure 3-2. Individual Coder Block Diagram.

The STEL-1032 is programmed by means of the data stored in the registers. Each
of the three independent code generators consists of a complete set of internal registers as

shown in Figure 3-3. The 8-bit data bus is mapped into the 32-bit registers by means of

address inputs ADDR, through ADDR5.
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Figure 3-3. Registers Connections of Individual Coder.

3.1.1 STEL-1032 Inputs

As shown in Figure 3.1, the STEL-1032 has the following inputs: an eight bit
address bus (ADDR), an eight bit data bus (DATA), three coder clocks (CLKO, CLK1,
CLK?2), three load pulses (LOADO, LOADI1, LOAD?), three data lines and a clock for
modulation (STIMO, STIM1, STIM2, and STLD), a chip select (CSN), and a register

write control (WRN). Not shown in Figure 3.1 is the reset (RESET) line.
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3.1.1.1 ADDR,- ADDR;

The PRN Coder has an 8-bit address bus. The addressing scheme is shown in the
tables below where A7 represents the Most Significant Bit (MSB) and AO represents the

Least Significant Bit (LSB)):

Table 3-1. Address bits ADDR; - ADDRs.
Coder Selected A7 A6 AS

Coder 0 0 0 0
Coder 1 0 0 1
Coder 2 0 1 0

All Coders 0 1 1
Code Combiner 1 0 0

Each independent code generator has the following internally programmable registers

described below.

Table 3-2. Address bits ADDR, - ADDR,.

Register Selected A4 A3 A2

MASK 0 0 0 X; X
INIT 0 0 1 X Xo
EPOCH 0 1 0 Xy Xo
COUNT 0 1 1 X1 Xo
MUX 1 0 0 0
CTL 1 0 0 0 1

Variables x; and x, are determined according to the table below such that the selected

32-bit register is sequentially loaded 8 bits at a time.




Table 3-3. Address bit ADDR, - ADDR, for 32 bit DATA.

Register bits loaded

bits 0-7 0 0
bits 8-15 0 1
bits 16-23 1 0
bits 24-31 1 1

3.1.1.1.1 Mask Register
The 32-bit PRN code generator genérates codes with programmable lengths and
polynomials. The polynomials are set by programming the desired taps in the MASK
Register. Each bit in the MASK Register which is set to a logic "1" enables the
corresponding tap in the PRN generator polynomial and a logic "0" disables the tap.
G =1+Dy(x) + Dy(x?) + D3(x’)... + Dyi(x>") + Dsa(x’?)
Where D; = bit 0, D, =bit 1, D; = bit 2, etc.

The last tap set determines the effective length of the PRN generator register.

3.1.1.1.2 INIT Register

The 32-bit NT Register is used to define the start value of the code generated in
the PRN generator. The contents of the INIT Register are loaded into the PRN generator
when a load command is issued or a control pulse occurs. A control pulse occurs when

the function is enabled and a COUNT or EPOCH pulse occurs.

3.1.1.1.3 EPOCH Register
During every clock cycle, active bits of the PRN generator output are compared
with the value stored in the EPOCH Register. The contents of the 32-bit EPOCH define

the distinct code value to be detected. All bits in the EPOCH Register beyond the most
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significant feedback tap in the PRN generator must always be set to "0", otherwise a

match will never be detected.

3.1.1.1.4 COUNT Register

The 32-bit COUNT Register sets the counter stop point. Once the PRN generator
starts, the counter runs for a number of clock pulses equal to the number stored in the
COUNT Register and then generates a COUNT pulse. Contents of the COUNT Register
are loaded into the PRN generator when a load command is issued or a control pulse
occurs. A control pulse occurs when the control (CTL) function is enabled and a COUNT

or EPOCH pulse occurs.

3.1.1.1.5 Phase MUX Register

The 5-bit Phase MUX Register selects the PRN generator register output bits used
for the code output. The value stored in the MUX register is decoded and determines the
tap number used. If the MUX register value is 00101, the code output will come from the
6" PRN generator register. For MUX Register value 00000, the 1* is used and a MUX

Register value of 11111 corresponds to the 32 tap being used.

3.1.1.1.6 CTL Register
The 8-bit CTL register determines the reloading of the coder and counter. The

functions performed by the bits in the CTL register are shown in the following tables.



Table 3-4. Control (CTL) Register Bit Functions: (a) B;-Bg, (b) Bs-B, (c) B;-B,,
(d) B;-B,.

B- B Function

0 | Counter is not reloaded on any EPOCH pulse
1 Counter is reloaded on EPOCH, pulse
0
1

Counter is reloaded on EPOCH, pulse
Counter is reloaded on EPOCH, pulse

(@)

< B, Function

0 | Counter is not reloaded on any COUNT pulse
1 Counter is reloaded on COUNT, pulse
0
1

ol Ll =} [

(=e)

Counter is reloaded on COUNT, pulse
Counter is reloaded on COUNT, pulse

®)

;3 B- Function

0 | PRN generator is not reloaded on any EPOCH pulse
1 PRN generator is reloaded on EPOCHj pulse

0 PRN generator is reloaded on EPOCH; pulse

1 PRN generator is reloaded on EPOCH, pulse

©

B, By Function
0

PRN generator is not reloaded on any COUNT pulse
1 PRN generator is reloaded on COUNT, pulse
0 PRN generator is reloaded on COUNT, pulse
1 PRN generator is reloaded on COUNT, pulse
(d

—t e OO

)

—t e | OO

0
0
1
1

3.1.1.1.7 Code Combiner Lookup Register
The Code Combiner block shown in Figure 3-1 uses the MODCOD outputs of the
three coders to address a lookup table, shown as Table 3-5, to produce the MIXCOD

output. This allows the production of non-linear codes.
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Table 3-5. Code Combiner Lookup Register Table.

MODCOD2 MODCOD1 MODCODO MIXCOD
0 0 0 Look-up Register Bit 0
0 0 1 Look-up Register Bit 1
0 1 0 Look-up Register Bit 2
0 1 1 Look-up Register Bit 3
1 0 0 Look-up Register Bit 4
1 0 1 Look-up Register Bit 5
1 1 0 Look-up Register Bit 6
1 1 1 Look-up Register Bit 7

3.1.1.2 DATA,- DATA;
The 8-bit DATA bus writes data into the registers. DATA; is the most significant
bit (MSB) and DATA, is the least significant bit (LSB). The 8-bit address directs the data

to the proper register.

3.1.1.3 Reset
When the reset input is set low, all of the registers inside the PRN generator are
reset to zero. Normal operation will not commence until an initialization value has been

loaded into the coders from their corresponding INIT registers.

3.1.1.4 CLK,- CLK,

These are the clocks for coder 0 through coder 2 respectively. All operations
occur on the rising edges of the clocks, with the exception of the early and late outputs,
which change on the falling edges of CLK,. The clocks should nominally be square

waves, with a maximum frequency of 30 MHz.




3.1.1.5 WRN and CSN

The register write control (WRN) is normally high. When this line goes low, data
is written into the register(s) selected by the address lines and latched on the rising edge of

WRN. The Chip Select (CSN) must also be low to enable the data loading.

3.1.1.6 LOAD,- LOAD;,
On the rising edge of the clock following the falling edge of a LOAD input, a load
command is issued. This will cause the corresponding coder register and counter to be

loaded with the contents of the corresponding INIT and COUNT Register, respectively.

3.1.1.7 STIM, - STIM; and STLD

Data applied to the STIM, - STIM, inputs is modulo-2 added with the outputs of
the corresponding coder (Coder, - Coder,). The data is latched in on the falling edge of

the STLD input.

3.1.2 STEL-1032 Outputs

As shown in Figure 3-1, the STEL-1032 has a total of 25 outputs. The code
combiner outputs XOR01, XOR012, MIXCOD, EARLY, LATE, and PUNCT. Each
coder outputs a CODE, EPOCH, COUNT, MODCOD, LDSYNC, and REF;5s. An

STSYNC signal comes from Coder0.

3-10




3.1.2.1 CODE,- CODE,

The CODE, - CODE, outputs are the outputs of the Coder, - Coder,. The register

bit in the coder from which the output is derived is set by the Phase MUX.

3.1.2.2 MODCOD,- MODCOD,
The MODCOD, - MODCOD,, outputs are the CODE, - CODE; signals after
modulation by the STIM, - STIM; inputs. The register bit in the coder from which the

output is derived is set by the Phase MUX.

3.1.2.3 LDSYNC,- LDSYNC,
The LoaDSNYC output goes low for one clock cycle after the contents of the
corresponding INIT register been loaded into the corresponding coder. This pulse

indicates the clock cycle in which the coder value is identical to that of the INIT register.

3.1.2.4 REFI15,- REF15,

The REF15, - REF15; outputs are the reference codes derived from the taps
number 15 of the corresponding coder. These outputs will be identical to the
corresponding CODEy- CODE; outputs when the data stored in the corresponding Phase

MUXis 01111 (tap number 15).

3.1.2.5 EPOCH, - EPOCH;
The EPOCH, - EPOCH,; outputs are normally high and go low whenever the
corresponding coder code is equal to the code stored in the EPOCH Register for that

coder. This condition will not be detected and the EPOCH output will not go low if this
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condition occurs within 2 clock cycles of the rising edge on the corresponding EPOCH

input.

3.1.2.6 COUNT,- COUNT,
The COUNT, - COUNT; outputs are delayed replicas of the LDSYNC, -
LDSYCN; outputs. The length of the delay is equal (in clock cycles) to the value stored

in the corresponding COUNT Register.

3.1.2.7 XORoI andXORm

The XORy; output is the result of the modulo-2 addition (XOR) of CODE, and
CODE, signals. The XORy,, output is the result of modulo-2 addition of the CODE,,
CODE,, and CODE,; signals. The results are delayed by one clock cycle before appearing

on the XORy; and XORy;, outputs.

3.1.2.8 MIXCOD
The MODCOD, - MODCOD; signals are used to address the Code Combiner
Lookup Register, shown above in Table 3-5. The data bit stored in the location addressed

by the three bits of the MODCOD, - MODCOD, is the MIXCOD output.

3.1.2.9 PUNCT, EARLY, and LATE

The PUNCT output is an exact replica of the MIXCOD output delayed by one
clock cycle. The EARLY output is an exact replica of the PUNCT output advanced by a
half clock cycle. The LATE output is an exact replica of the PUNCT output delayed by

half a clock cycle. This is achieved by clocking the signals into the output register on the
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falling edges of CLKy. In order to make the advance and delay exactly half a clock cycle,

the duty cycle of CLK, must be exactly 50%.

3.1.2.10 STSYNC
The STSYNC output is normally high and goes low for one clock cycle following
a falling edge on the STLD input signal. The result of the new modulation bits will appear

on the output codes MODCOD, - MODCOD,, during this clock cycle.

3.2 Code Generator Addressing Design

An 8-bit address is utilized by the STEL-1032 to ensure that data is directed into
the proper register. The addressing scheme is shown in Tables 3-1 through 3-3. Several
methods were considered when designing the address interface. By examining the
addressing tables, it can be seen that the address can be broken into three separate blocks,
coder selection, register selection, and 32/8 bit data selection. The 32-bit registers are
loaded in 8-bit groupings with the two least significant bits of the address (ADDR, and
ADDR,) designating which 8-bit group is being loaded. When 32-bit data is being loaded,
a 2-bit binary counter is employed to toggle through the ADDR, and ADDR;
combinations. When 8-bit data is being loaded, ADDR, and ADDR, are fixed. After the
8-bit address is formed, it is sent to two sets of octal buffers (part number SN74L.S244) as
shown in Figure 3-4, where in each set only one buffer is enabled at a time. If the code

combiner lookup table was selected, octal buffer number 2 is enabled and its 8-bit address
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is passed on; otherwise octal buffer number 1 is enabled and the formed address is passed

on to octal buffer number 3. When the code generator is operating in manual entry mode

the address is passed on to the STEL-1032 via octal buffer number 3. If external

programming is being performed, octal buffer number 4 passes the address. The design

of the coder selector, register selector and 32/8 bit data selection is descrided below.

Coder Selector
A7, A6, AS
Octal Buffer |
Number l 8 Address Lines
(created address) [ |
Register
Selector
Ad A3, A2
Register
Location
Selector
Al, A0 Octal Buffer
Number2 N
(Code Combi
fixed address)

Figure 3-4. Address Block Diagram.

Octal Buffer

Number 3
(manual entry)

Octal Buffer

Number 4
(computer entry)

8 Address Lines

External Address Input
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3.2.1 Coder Selector Design

As shown in Table 3-1, the coder selector has five options and occupies the three
most significant bits of the address (ADDR; - ADDR;). The coder selector takes one of
five choices and outputs the three bits corresponding to the address of the coder selected.
A shown in Table 3-6, an 8-line to 3-line priority encoder (part no. SN54148) produces a
3-bit output based on the location of the first low level logic encounter. Figure 3-5 shows

how this TTL device was used in the coder selector design.

Table 3-6. 8-Line to 3-Line Priority Encoder Function Table.

INPUTS OUTPUTS

Ol 123|456 7] A2} A1 ]| A0
H|H|H H| H|  H| H|H| H H H
x | x| x| x|x|x|x|L]| L L L
X | x{x|x}|x|{x|L|H{|UL L H
x| x| x|x|x|L{H|H| L H L
x| x| x| x| L|H|H|H| L H H
x| x| x| LITHI H|H|H| H L L
x| x| LI H|H|H|H|H| H L H
x |L{IH|IH|{H|H|H|{H| H H L
LIH{H|IH|H|(H|H|H| H H H
é é é 5 Volts
N T
Coder 0
NPT A7
Coder 1
L /T | 8Lineto3-Line
OCoderz Priority Encoder A8
— ORI Coders ) AS
CCode Combiner

Figure 3-5. Coder Selector Design.
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Using a 2.2K(Q resistor as a pull-up resistor, the input lines remain a logic high
until selected. The coder selector switch is a push button switch tied to ground which
allows one selection at a time. By selecting a coder, the corresponding line is grounded
and a logic low appears on the input line and ADDR; - ADDR; are output from the

encoder in accordance with Table 3-6.

3.2.2 Register Selector Design

As shown in Figure 3-6, the register selector is almost identical to the coder
selector. The difference is there are six registers to select and only five combinations of
ADDR, - ADDR; are output. The MUX and CTL, 8-bit data registers, share ADDR;, -
ADDR; but have different ADDR,; and ADDR, bits. The MUX and CTL lines are
brought through an AND gate; if either register is selected the output of the AND gate is

low and input to the encoder otherwise the line is high.

N
l MASK
W W Y A4
INIT
o S e 8-Line to 3-Line A3
EPOCH Priority Encoder
o N A2
p— COUNT
0
MUX
T @L
CTL

Figure 3-6. Register Selector Design.
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3.2.3 32 or 8 bit Data Address

Since the STEL-1032 has an 8-bit address and data bus, the 32-bit registers must
be loaded in four 8-bit blocks, each with a different address. As shown in Table 3-3, the
two Least Significant Bits (LSBs) of the address, ADDR; and ADDR,, direct the 32-bit
data into the proper location in the register. In the 8-bit registers, ADDR,; and ADDR, are
fixed. Figure 3-7 shows the design for generating the ADDR; and ADDR bit required for
32-bit data entry. With the load switch depressed, the reset on the clock (part number
555) goes high and the clock begins to run. Resistor and capacitor values are chosen to
produce a high-to-low square wave clock with a frequency of about 1 Hz. This allows the
address and data to stabilize before being loaded in to the PRN coder. Waveform timing
is presented in Section 3.4. The clock output increments the binary counter and triggers
the one-shot multivibrators used to load the registers. The clock is controlled by the reset
input; it continues to run as long as the reset line is held high. Because it was desirable to
have the clock run for 4 cycles and toggle through the various ADDR; and ADDR,
combinations, several logic gates are employed to control clock operation. The
following conditions must simultaneously occur to force the reset line and stop the clock:
a) both A, and A, from the binary counter go high, b) the clock transitions to a low state,

and c) the load switch is released.
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Figure 3-7. Clock and Counter Design.

As shown in Figure 3-8, when 32-bit data is being loaded, address bits ADDR; and

ADDR; equal the counter output; when the MUX or CTL Registers are being loaded,

ADDR,; and ADDR, are fixed.
A,
A,
Tri-
Enable | gpate — " ADDR,
ADDR, {>c Octa!
ADDR4 Enable Buffer S
J
I ~ ADDR,
MUX

Figure 3-8. ADDR1 and ADDRO Generation.
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3.3 Code Generator Data Entry Design

Since the STEL-1032 has eight data line inputs, severai options were considered
for data entry. As discussed in the previous sections, the entire 32 bits of data may be
entered on the thumbwheel switches but through TTL logic gates, only eight bits are
loaded into the registers at a time. Figure 3-9 shows an overview of the data entry design.
Data is entered via 11 octal thumbwheel switches. The 33 data lines are routed to three
different banks of octal buffers. The first set of four octal buffers are connected to the 32
Least Significant Bits (LSB) of the thumbwheel switches for entering data into the
following 32-bit registers: INT, EPOCH, and COUNT. The second set of buffers contains
a single octal buffer connected to the LSB on each of the eight right most thumbwheel
switches. This allows the 8-bit data to be entered in binary format. The third set contains
four octal buffers connected to the 32 Most Significant Bits (MSB) of the 11 thumbwheel

switches. This allows data to be entered into the MASK Register.

Bank of Manual E
: 4 Octal Buffers N anual Entry :
T-”’__“‘_E“ﬁ\> (INIT, EPOCH 8 Data Lines Data Buffer §Deta I""“: >
and COUNT)

To

STEL-1032
Bank
;)f Mo Co E
- Octal Buffer - mputer Entry
Octal | "ot (Code Combiner, ol Data Buffer
Thumbwheel MUX, CTL)
Switches

1 Bank of
32 Data Lines 4 Octal Buffers 8 Data Lines
(MASK)

Figure 3-9. Data Entry Design Block Diagram.
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3.3.1 Data Buffer Enable Design
The octal buﬁ‘érs are tri-state devices with output characteristics as shown in
Table 3-7. To ensure data is properly loaded into the desired register two things must

occur, the correct buffer must be enabled and the proper address must be present.

Table 3-7. Tri-State Octal Buffer Qutputs.
Enable  Input  Output

L L L
L H H
H X HI-Z

As shown in Figure 3-10, TTL logic and the binary counter outputs used to set
ADDRI1 and ADDRO lines ensure the octal buffers are enabled in the proper order. For
the data to be correctly entered, only one buffer enable can be low at any time; logic gates
prevent two or more buffers from being enabled at one time. The Code Combiner and
MUX / CTL lines are normally low but if one is chosen the line transitions high and passes
through the OR gate. The high level inverts and the low output level enters the AND
gates keeping them low and disabling the 32-bit buffers. When 32-bit data is loaded,
through the use of inverters and AND gates the binary counter output enables one buffer
for each count. The OR gates in the 32-bit buffer enables are controlled by the MASK
selection. If the MASK is selected, the line to the MASK buffer OR gates is low and its
buffers are enabled by the counter otherwise it remains in a high state and the OR gate

output remains in a high state disabling the buffers.
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Figure 3-10. Data Buffer Enabling Design.

3.3.2 Data Entry Format

Data enters via 11 octal thumbwheel switches with the LSB occupying the
rightmost position. Since data is loaded into registers with the LSB first, data is set on the
rightmost thumbwheel and work to the left. The 8-bit data (Code Combiner, MUX, and
CTL) is entered in binary format on the eight rightmost thumbwheels with the LSB on the
right. The 32-bit data is entered in octal format. The binary-to-octal conversion is
accomplished by grouping the binary bits into groups of three starting with the LSB and
working toward the MSB. A group of three bits are converted to their octal equivalent

and entered on the thumbwheel switches starting on the right with the least significant
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octal number. For example, if the initial fill of a 17 stage register wastobe 1011001 1
00010110 1 with the last bit to be entered into the By register, the thumbwheels
would be set at 00002 63 05 5. Octal thumbwheels were chosen because tables are
readily available with the octal representation of primitive polynomials that produce

maximal length sequences. Appendix A includes a partial list these octal representations.

3.4 Code Generator Data Loading

To load data into the STEL-1032, sequential Chip Select (CSN) and Write Enable
(WRN) pulses must occur following data and address stabilization. A low level CSN
input enables the loading of data via the data lines and when the WRN line is low data is
written into the register(s) selected by the address lines; the data is latched on the rising
edge of the WRN pulse. Figure 3-11 shows the how these pulse are created. Dual non-
retriggerable one-shot multivibrators (part number 741L.S221) are used to generate the

necessary pulses.

=

Cou Rl
Clock———8 Q
Delay
A al

[ = N

& T

o1 ?l

sV

I._ BC.|

Clear
sv

Figure 3-11. Load Pulse Design.
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As discussed in Section 3.3, after the LOAD button is depressed the clock is
triggered incrementing the counter that enables the buffers and sets ADDR1 and ADDRO.
The clock pulse also triggers the first multivibrator which serves as a delay to allow the
address and data to stabilizé. On the falling edge of the delay pulse, the second
multivibrator is triggered producing the CSN pulse. The falling edge of the CSN pulse
triggers a third multivibrator, producing the WRN pulse. The total delay between the
CSN and WRN pulses is the internal delay from the multivibrator. The pulse width are
controlled by the proper selection of resistors and capacitors. Figure 3-12 shows the

relationship of these pulses.

\ Clock

’ Delay

CSN

v

0 Time

Figure 3-12. Data Loading Pulse Comparison.

After data is loaded into the registers, a LOAD pulse is necessary to fill the PRN

Generator with values stored in the INIT register. On the rising edge of the clock pulse
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following the falling edge of a LOAD pulse, the PRN Generator register and counter
register are filled with the contents of the INIT and COUNT registers, respectively. A
momentary push button switch is connected to a multivibrator to generate the LOAD

pulse.

3.5 Other Code Generator Inputs

There are eight other inputs available on the code generator; a reset, three clocks,
three external data lines and a data clock. The code generator is reset via a momentary
push button switch which sets all register contents inside the PRN coder to zero. The
three PRN coders are clocked independently (clock inputs are provided via a BNC
connector on the front of the code generator). Data applied to the STIM inputs via BNC
connectors are modulo-2 added with the outputs of the corresponding PRN coder. Data is

latched on the falling edge of the signal on the BNC connector to the STLD input.

3.6 Code Generator Outputs
The code generator has a total of 25 outputs, the 15 waveforms and 10 pulses

previously described in section 3.1.2. Each output is connected as shown in Figure 3-13.
A 50Q quad 2-input NOR gate line driver (SN74128) was chosen to interface between
the code generator and front panel. The output of the STEL-1032 is inverted before
entering the line driver inputs since it also inverts the output. The result is a waveform or

pulse of proper orientation.
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Output

To BNC
From {>° 1__Do—> Connector
STEL-1032 S0 ohm on Front Panel

line driver

Figure 3-13. Output Design.

3.7 Code Generator Construction

The code generator was constructed using a 15" x 17" x 4" box. The layout is
shown in Figure 3-14. The 120VAC power is passed through a line filter and fuse before
going to the front panel power switch. From the switch, the 1220VAC enters the system
5VDC power supply. The chassis ground and the OVdc are tied together because the
front panel BNC connector are grounded to the chassis. The front panel, shown in Figure
3-15, contains 12 octal thumbwheel switches, 32 BNC connectors, two 6-button selectors,
three momentary push button switches, one LED, two toggle switches, and a power
switch with an indicator light. The wire-wrap board shown in Figure 3-16 contains 45

chips along with various resistors and capacitors.

Figure 3-14. Code Generator Case Layout.
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Code Generator Front Panel.
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3.8 Code Generator System Design Summary

The interface design consists of several TTL logic gates. Programming the code
generator is accomplished via the front panel. Depressing the LOAD button causes the
data entered on the thumbwheel switches to be loaded into the STEL-1032 in accordance
the coder(s) and register(s) selected. With construction of the code generator complete,

the outputs presented in Section 3.1.2 are authenticated in Chapter 4.
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4. Code Generator Evaluation

4.1 Code Generator Loading Pulses

Before code generation begins, initialization data is loaded into the STEL-1032
Pseudorandom Number (PRN) coder registers. Data is loaded into the coder registers
using sequential Chip Select (CSN) and Write Enable (WRN) pulses which occur
following data and address stabilization. As discussed in Section 3.2.3, a clock circuit
increments a counter to enable the data buffer and establish the address. A set of one-shot
multivibrators are sequentially triggered to generate the CSN and WRN pulses. The
following equation is used to determine the proper resistor and capacitor values to obtain
the desired high-to-low square wave clock period. Period = /n(2) * (Ra+2Rg) * C. For
R4 equal to 750 KQ, Rp equal to 360 K, and C equal to 1 pF, the period is 1.019

seconds or .98 Hz. The actual data loading clock circuit output is shown in Figure 4-1.

C1 Fre
833.40mHz

: : ] : : : : C1 Ampl
R EEERI = SRR BN PR G4 424V

F st e o1 4width
: : S 490ms

C1 ~width
710ms

Figure 4-1. Code Generator Data Loading Clock.
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As shown, the period of the actual clock is 1.2 seconds. The rising edge of the data
loading clock triggers a one-shot multivibrator, the resultant output pulse serves as a delay
which triggers another one-shot multivibrator, generating a CSN pulse. The CSN pulse
then triggers another one-shot multivibrator, producing the WRN pulse. Figure 4-2 shows
the actual pulses for loading the data. The data loading clock is displayed as Reference
number 1 (R1), the CSN pulse is on Channel 1 (1), and the WRN pulse is on Channel 2
(2). The delay between the rising edge of the clock and the CSN pulse allows the
STEL-1032 data and address inputs to stabilize prior to loading. The delay time, CSN
and WRN pulse widths are determined by the following equation. Width = /n(2) * R *C.
For implementation, 150 K< resistors are used. A delay capacitance of 1 uF, CSN
capacitance of 4.7 uF, and WRN capacitance of 2.2 uF are used to provide a delay of 104
milliseconds, a CSN pulse width of 487 milliseconds and a WRN pulse width of 229

milliseconds, respectively.

{ €1 -Width
] 484.0ms

{ Low signal
amplitude

RI: : i : ’ ; : ]
5 . . . . + . . . . {1 €2 -width

frn Bl I ; s oo 1ed 240.0ms

it :!;::2!;:22 'ZZ:"”xr!x”r!.,;!..,,!.,..-Ref-l_’c-lDly
- . : . T : : : 1 112.0ms
IHE : . . I : ; . : 1 Low signal

e
2 T T N NS

Figure 4-2. Data Loading Clock, CSN, and WRN Pulses.




4.2 Coder Outputs

The STEL-1032 code generator consists of four major components, three
independent coders (Coder0, Coder1, and Coder2) and a code combiner (See Figure 3-1).
The results presented in this section are derived from tests performed on Coder0 and are
representative of outputs for all three coders. The following outputs are authenticated:
pseudorandom code, LDSYNC, COUNT, EPOCH, REF;s, and MODCOD. Each test is
performed using the 3-stage linear feedback shift register configuration shown in

Figure 4-3.

Modulo-2

Adder

» X, ——————  Output

Figure 4-3. Test Linear Feedback Shift Register.

The linear feedback shift register of Figure 4-3 may be represented by a polynomial
of the form X2 + X + 1; the binary representation is (1 0 1 1) and octal representation
which is set on the thumbwheel switches is [1 3]. The register contents following each

clock cycle are shown in Table 4-1 where all of the registers are initially filled with a '1".




Table 4-1. Linear Feedback Shift Register State Values.

Register Contents

N[N IWINI= O
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At the seventh state (after seven clock cycles), the register contents are the same
as the initial conditions and the output begins to repeat. The linear feedback shift register
generates a code of length 7, a maximal length sequence for this three stage shift register
configuration since 2° - 1 =7 (See Section 2.2.1). This sequence may seem trivial but is
easy to analyze; therefore it is used throughout the testing of the code generator. The
testing techniques and results presented here are extendible to any length code produced

by the code generator.

4.2.1 Pseudorandom Qutput Code Demonstration

By loading the MUX register with the 5-bit data [0 0 0 1 0], a pseudorandom code
is output from the third stage of Coder0. From Table 4-1, the expected output is shown
as(1110100...). The MASK, INIT and MUX Registers are loaded as previously

described and an external 1 KHz clock is applied to the Coder0 clock input. The Coder0
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pseudorandom output, CODEQ, is shown on Channe! 1 along with the coder input clock

on Channel 2 in Figure 4-4.

LI S B L S B St S M A wt S LB ot B S B U B e S 4 T

Figure 4-4. CODEO and Input Clock.
The code appears as expected but it is difficult to determine the period of the code

from Figure 4-4. By changing the time scale as shown in Figure 4-5, the length of the

code is easily determined as 7, i.e., 7 input clock cycles per code period.

50 00
Salla i Wlailili

E@ . . . . . : . . g

Figure 4-5. Multiple Periods of CODEO and Clock Pulse,
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4.2.2 LDSYNC Pulse Output Demonstration

After the contents of the INIT register are first loaded into the coder, the “Load
Synchronization” LDSYNC output is expected to go low for one clock cycle. Shown in
Figure 4-6, CODEQO is displayed on Channel 1 and the expected LDSYNC pulse is shown

on Channel 2.

LIS S S SISt e M A B S B S SR SN S SN M R B B LI S B Saunn B M SR SEEUS M S an Sueng ER NS SN Sy S S S S

Figure 4-6. CODEO and LDSYNC Pulse.

4.2.3 COUNT Pulse Qutput Demonstration

The COUNT pulse is a delayed replica of the LDSYNC. The amount of delay is
determined by the value loaded into the count register. By loading the count register with
[8], a low LDSYNC pulse is expected to occur on the eighth clock cycle, the first bit of
the second period in CODEO. As shown in Figure 4-7, the COUNT pulse output appears

as expected on the lower trace of the display.

4-6




L e e e L0 L0 R NN A e S 2 T e e 20 I S e e S e

IJU,L_L“L;_“.E“, [N S SNV IR PN BTN

Figure 4-7. CODEO and COUNT Pulse.

4.2.4 EPOCH Pulse Output Demonstration

The EPOCH output is normally high and goes low whenever the coder register
contents are equal to the value set in the EPOCH register. Loading [4] in the EPOCH
register represents stage X3 = 1, X, =0, and X; =0. From Table 4-1, ;chis condition
occurs at state 4, the fifth output bit. Figure 4-8 shows the resultant EPOCH pulse output

relative to CODEO on traces 2 and 1, respectively.

] MR b H H 1 H
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Figure 4-8. CODEO and EPOCH Pulse.




4.2.5 Pseudorandom Code at REF15 Demonstration

The REF15 output is the pseudorandom code taken from tap number 15 ( the 16™
tap, taps number from 0 to 31 per Figure 3.3). The output is identical to the CODE
output if the MUX is loaded with (0 1 1 1 1) which corresponds to tap number 15.
Figure 4-9 shows the CODEQO (third tap) on Channel 1 and the REF15 output on
Channel 2. The REF15 output remains in a low state for thirteen clock cycles which
means the REF15 output is thirteen stages from the CODEO (tap number 2) output. This
confirms that loading the MUX with a binary fifteen (0 1 1 1 1), CODEO output taken
from tap number 15, CODEO and REF15 outputs are identical. This is contrary to

information provided by the vendor. [9]

PEEPIN S S ST T VAN S0 W S0 S S T N U0 WO SO0 W A S N PO TR S A N U S N N W D S T S S S S L A S S B

Ca = = == = = = =

Figure 4-9. CODEO at Tap Number 2 and REF13.
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4.2.6 MODCOD Output Waveform Demonstration

The MODCOD is the CODE signal modulated by the STIM inputs and delayed by
one clock cycle before appearing on the output. Figure 4-10 shows CODEO and the

MODCOD when the STIM input is '0'".

1 3
L ) 2T i ==t e —wx + = L X

Figure 4-10. CODEO and MODCOD.

4.3 Code Combiner Outputs

The code combiner is capable of producing the following output codes: XORO01,
XORO012, MIXCODE, EARLY, PUNCT, and LATE. The following tests are performed
using the linear feedback shift register configuration of Figure 4-3 for Coder0 and the
configuration of Figure 4-11 for Coder!l and Coder 2. It is easily verified that the 3-stage

configuration of Figure 4-11 provides a maximal length sequence.
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Figure 4-11. Test Linear Feedback Shift Register (Coderl and Coder2).

The linear feedback shift register of Figure 4-11 may be represented by the polynomial

X® + X2 + 1; its binary representation is (1 1 0 1) with an octal representation loaded into
the MASK register of [1 5]. The register contents are shown in Table 4-2 where all
registers are initially filled with a '1'. This linear feedback shift register along with the shift

register of section 4.2 are used in this section for testing combined code outputs.

Table 4-2. Linear Feedback Shift Register State Values.
Register Contents
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4.3.1 XORO01 Output Waveform Demonstration

The XORO1 output is a waveform resulting from the modulo-2 addition of
CODEO and CODE1 output signals. The resultant waveform is delayed by one clock
cycle before appearing on the XORO01 output. By loading the MUX register with the 5-bit
data [0 0 0 1 0], the pseudorandom code (CODE1) is taken from the third stage. From
Table 4-2, the expected output is shownas(1110010...)and from section 4.2,
CODEOis(1110100). The modulo-2 addition of these codes is:

CODEO: 1110100

CODE1: 1110010
XORO01: 0000110

Figure 4-12 shows CODEDO as Reference 1 (R1), CODE1 as Reference 2 (R2), and
XORO1 on Channel 1 (1). Since the XOR01 output is delayed one clock cycle before

appearing on the output, both CODEO and CODEl are shown delayed by one clock cycle.

L S L S B BB AL B RN AL BUSLEL L LA AL LR L LR

Lot PSR EN SRR N N ST 3
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Figure 4-12. CODEO, CODE1, and XOR01.
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Since CODEO and CODE]1 are maximal length sequences, the modulo-2 addition
of them is a Gold code of the same length but nonmaximal. The seven bit sequence could
also be generated using a single linear feedback shift register with a generator polynomial
of X+ X° + X* + X*> + X* + X + 1, the modulo-2 multiplication of the two generator
polynomials. Since the 6 stage linear feedback shift register is nonmaximal, the initial
conditions produce outputs of varied length. Using the first six bits of the Gold code
generated (0 0 0 0 1 1) as the initial conditions in the 6 stage register, the pseudorandom
code is identical to the Gold code. Figure 4-13 shows the Gold code, and the nonmaximal

pseudorandom code generated using Coder2.

Figure 4-13. Gold Code and Nonmaximal Pseudorandom Code.

By changing the initial conditions in Coder1 (a phase shift), a different Gold code
is produced. With an initial condition of X; = 1, X, =0, and X3 = 0, the expected Gold
code is

CODEO: 1110100

CODEl: 0010111
Goldcode: 1100011
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The new Gold code along with CODEO and CODE]1 are shown in Figure 4-14.

s - . - - + . . . .
PP TS0 SRS S W W 1 P BT FRSEE IR BN S S S | i }

Figure 4-14. CODEO, CODELl, and Gold Code.

4.3.2 XORO012 Output Waveform Demonstration

The XORO012 output is the result of the modulo-2 addition of CODEO, CODEL1,
and CODE2. With Coder0 and Coderl unchanged from the previous demonstration,
Coder2 is configured the same as Coder! except the initial conditions are (1 1 1). The
expected code is given as:

CODEO: 1110100
CODEl: 0010111

CODE2: 1110010
XOR012: 0010001

The generator outputs are shown in Figure 4-15 with CODEO through CODE2 as

Reference 1 through 3, respectively, and XOR012 on Channel 1.
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Figure 4-15. CODEO, CODE1, CODE2, and XOR012.

4.3.3 MIXCOD Output Waveform Demonstration
The MODCOD, - MODCOD; signals address the 8-bit code programmed into the
code combiner lookup register. With the STIM, - STIM, inputs held low, the MODCOD,
- MODCOD; signals are a one cycle delay of CODEO - CODE?2 respectively. The
MODCOD signals are:
MODCOD,: 1110100
MODCOD;: 0010111

MODCOD,: 1110010
Look-up Register Address Bit: 5570362

The code combiner lookup register is loaded as shown in Table 4-3.
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Table 4-3. Example Look-up Table.

Address  Output Bit

0 0

N[ AN R WIN—
—_— = Ot = [ O

Using MODCOD, - MODCOD:., to address Table 4-3, the predicted MIXCOD is
(0010110). Figure 4-16 shows the MIXCOD output waveform in addition to

MODCOD, - MODCOD, as Reference waveforms.

Figure 4-16. MODCOD, - MODCOD, and MIXCOD.
4.3.4 PUNCT, EARLY, and LATE Output Waveform Demonstration

The PUNCT output is an exact replica of the MIXCOD delayed by one clock

cycle; as shown in Figure 4-17. The EARLY output is an exact replica of the PUNCT
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output advanced by half a clock cycle as shown Figure 4-18. The LATE output is an

exact replica of the PUNCT output delayed by half a clock cycle and is shown in

Figure 4-19.
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Figure 4-18. PUNCT and EARLY Outputs.
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Figure 4-19. PUNCT and LATE Outputs.

4.4 Special Codes

The code generator can produce truncated pseudorandom codes. Truncating the
pseudorandom code is useful when combining two pseudorandom codes where one is not
an integer multiple of the other. As an example, if a 10 stage maximal length sequence
generator (1023 bits) is to be combined with a seven stage maximal length sequence
generator (127 bits), the 127-bit sequence can be truncated to 93 bits and produce a
pseudorandom code of length 1023 bits. The 8-bit CTL Register is used to define the
reloading of the coder and counter; Table 3-4 describes the bit functions. The coder can
reload the initial values when an EPOCH or COUNT pulse is encountered. With the
coder set as described in Section 4.2 and the EPOCH set at [4], the CTL Register is
loaded with [0 000 0 1 0 0]. The result is shown in Figure 4-20; Coder0 is truncated at

five bits when the EPOCH pulse occurs.
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------------------------

.......................

Figure 4-20. Truncated CODEO and EPOCH Pulse.

Taking this a step further, an individual coder can reset another coder.

Figure 4-21 shows Coder0 reset by an EPOCH pulse from Coderl.
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Figure 4-21. Truncated CODEO and Coderl EPOCH Pulse.



Another type of special pseudorandom code involves providing a pseudorandom
clock to the coder. By connecting the output of a coder to the clock of another coder, the
output would be another pseudorandom code. With Coder1 set as described in Section
4.3, the pseudorandom code output is (1 1 1 0 0 1 0). The coder shifts the register bits to
the next stage on a low-to-high transition of the clock. With the output of Coderl
connected to the clock of Coder0, the length of each output bit is varied. The following
shows a comparison:

Coder1:1110010111001011100101 10
Coder0: 1 1 1 0 1 0 O 1

Figure 4-22 shows CODE1 and CODEO outputs where CODE] is used as the Coder0

clock input.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 4-22. CODE1 and CODEO with CODE1 Clock Input.
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4.5 Code Generator Evaluation Summary

The test results presented in the previous section clearly demonstrates the
flexibility and capabilities of the code generator design. The individual coders are capable
of producing independent pseudorandom codes of various length. The code combiner
provides the added capability to produce Gold codes and non-linear table look-up codes.
The code generator is capable of efficiently creating codes using pseudorandom input

clocks.
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5. Conclusions and Recommendations

5.1 Conclusions

This research project investigated the design, construction and evaluation of a
pseudorandom code generator for communication and navigation system applications. A
United States Patent application is being submitted for the code generator and interface
design. The heart of the system is the Standford Telecom, STEL-1032, pseudorandom
number (PRN) coder. The PRN coder is comprised of three independent 32-bit linear
feedback shift registers and a code combiner. The feedback tap connections for each shift
register are programmably controlled by the user. Any combination of feedback tap
connections is possible, giving each shift register the capability to produce all possible
codes with length up to 2°2 - 1. Appendix A includes a table of generator polynomials
used for determining feedback tap connections to produce maximal length sequences. The
starting phases of the PN codes are user selectable via loading of initial contents into the
shift registers. The code generator is capable of detecting a specific sequence in the PN
code or a distinct length of the PN code, both of which are user defined.

The code combiner provides the added capability of producing Gold codes and Jet
Propulsion Laboratory (JPL) ranging codes by EXORing the outputs of the first two linear
feedback shift registers or all three outputs. A user programmable look-up table is
employed by the code combiner to provide a non-linear code generation capability. This

mixed code is also available in an early, punctual, and late format. The early code is




advanced by one-half a clock cycle compared to the punctual code and the late code is
delayed by one-half of a clock cycle.

The code generator is able to produce a pseudorandom code modulated by
operator defined data inputs. Since independent external clocks are used for each linear
feedback shift register, the output code sequence of one coder may be used as the clock
input to another coder. This allows codes with pseudorandom bit intervals to be

produced.

5.2 Recommendations for Future Study

Manual programming of the code generator consists of making an address
selection and setting input data via front panel switches. The system interface design
allows for the future development of a computer interface to the code generator. The
design of the interface to the STEL-1032 consists primarily of TTL logic gates making the
interface design a prime candidate for Application Specific Integrated Circuit (ASIC)
technology.

Given the ability to easily generate pseudorandom codes for use in communication
and navigation system applications, the code generator’s flexibility provides an excellent
opportunity for code development and exploration. Another potential area of study is the
use of the code generator for data encryption applications. The Avionics Directorate of
Wright Laboratory has expressed great interest in using the code generator to assist in the

development of future spread spectrum systems.




Appendix A : Octal Representation of Primitive Generator Polynomials.

The following table lists the octal representation of primitive polynomials that
produce maximal length sequences. The table is nowhere near the complete listing of
generator polynomials that produce maximal length sequences; Table 2-2 includes the
number of polynomials that generates maximal length sequences and the sequence length
for a given number of stages, 7. The following example demonstrates the proper use of
the table. Figure A-1, represents a three stage linear feedback shift register that produces

a maximal length sequence.

Modulo-2

X X X; Output

Figure A-1: 3 Stage Linear Feedback Shift Register.

The polynomial that represents the linear feedback shift register shown in Figure A-1 is
given by X* + 0X>+ X + 1. The binary representation of the polynomial is 1011 where
the Most Significant Bit (MSB) is on the left and the Least Significant Bit (LSB) is on the
right. By combining the binary digits in groups of three starting at the LSB, the
polynomial is given by [1, 011] and converting this to octal number the polynomial

representation is [1 3]. This octal representation is include in Table A-1 for degree 3.[5]




Table A-1: Octal Representation of Primitive Generator Polynomials.

Degree. Octal Representation ( do on right to d, on left)

2 [7]

3 [13], [15]

4 [23], [37]

5 [45], [75], [67]

6 [103], [147], [155]

7 [211), [217], [235], [367], [277], [325], [203],
[313], [345]

8 [435], [551], [747], [453], [545], [537], [703],
[543]

9 [1021], [1131], [1461], [1423], [1055], [1167],

[1541], [1333], [1605], [1743], [1617], [1553]

10 [2011], [2415], [3771], [2157], [3515], [2773],
[2033], [2443], [2461], [3023], [3543], [2745]

11 [4005], [4445], [4215], [4055], [6015], [7413],
[4143], [4563], [4053], [5023], [5623], [4577]

12 [10123], [15647], [16533], [16047], [11015],
. [14127], [17673], [13565], [15341], [15053]

13 [20033], [23261], [24623], [23517], [30741],
[21643], [30171], [21277], [27777), [35051]

14 [42103], [43333], [51761], [40503], [77141],
[62677], [44103], [45145], [76303], [64457]

15 [100003], [102043], [110013], [102067], [104307],
[100317], [177775], [103451], [110075], [102061]

16 [210013], [234313], [233303], [307107], [307527],
[306357], [201735], [272201], [242413], [270155]
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Degree Octal Representation ( do on right to d, on left)

17 [400011], [400017], [400431], [525251], [410117],
[400731], [411335), [444257], [600013], [403555]

18 [1000201], [1000247], [1002241], [1002441],
[1100045], [1000407], [1003011], [1020121]

19 [2000047], [2000641], [2001441], [2000107],
[2000077], [2000157], [2000175], [2000257]

20 [4000011], [4001051], [4004515], [6000031],
[4442235]

21 [10000005], [10040205], [10020045], [10040315],
[10000635], [10103075], [10050335], [10002135]

22 [20000003], [20001043], [22222223], [25200127],
[20401207], [20430607], [20070217]

23 [40000041], [40404041], [40000063], [40010061],
[50000241], [40220151], [40006341], [40405463]

24 [100000207], [125245661], [113763063]

25 [200000011], [200000017], [204000051],

[200010031], [200402017], [252001251]

26 [400000107], [430216473], [402365755],
[426225667], [510664323], [473167545]

27 [1000000047], [1001007071], [1020024171],
[1102210617], [1250025757], [1257242631]

28 [2000000011], [2104210431], [2000025051],
[2020006031], [2002502115], [2001601071]

29 [4000000005], [4004004005], [4000010205],
[4010000045], [4400000045], [4002200115]

30 [10040000007], [10104264207], [10115131333],
[11362212703], [10343244533]
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Degree Octal Representation ( dq on right to d, on left)

31 [20000000011], [20000000017], [20000020411],
[21042104211], [20010010017], [20005000251]

32 [40020000007], [40460216667], [40035532523],
[42003247143], [41760427607]
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Appendix B : Parts Listing and Circuit Diagram
Table B-1 is a complete listing of parts used in the construction of the STEL-1032
interface. The interface is constructed on a MUPAC wire wrap board with a power plane
on top and a ground plane on the bottom. A capacitor is placed in parallel between the

power and ground at each integrated circuit to filter the 5 VDC.

Table B-1: Parts Listing.

S1 5 position switch
S2 6 position switch
S3, S6 2 position toggle switch
S4, S5, S7 momentary push button switch
C1, C8, C9, C10 capacitor .33 uF
C2,C4,C7 capacitor 1 uF
C3 capacitor .01 uF
C5 capacitor 4.2 uF
C6 capacitor 22 uF
Rp pull-up resistor 2.2KQ
R1,R8 resistor 2.2KQ
R2 resistor 360 KQ
R3 resistor 750 KQ
R4 -R7 resistor 150 KQ
RO resistor 1.0 KQ
U1,02 8-to-3 encoder 74148
U3-4, U6-7, Ul1-16, octal tri-state buffer 741.8244
U20-21, U42-45
U5, U17, U27, U30-34 hex inverter 741L.S04
U8, U18, U22, U26 quad AND gate 741508
U9 timer 555
U10 binary counter 74L.5163
U19, U25, U46 quad OR gate 741.832
U23-24 dual one-shot 7418221
U35-41 quad NOR 50 Q line driver 74128
U50 PRN Coder STEL-1032
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