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Abstract

The Generalized Gamma is an extremely flexible distribution that is useful for reliability modeling.
Among its many special cases are the Weibull and Exponential distributions. A mixture of Generalized
Gamma Distributions is even more useful because multiple causes of failure can be simultaneously
modeled.

This research studied parameter estimation of the special cases of the Mixed Generalized Gamma
Distribution and built upon them until the full nine-parameter distribution was being estimated. First,
special cases of a single Generalized Gamma Distribution were estimated. Next, mixtures of Exponential
distributions with both known and unknown location parameters were estimated. Next, mixtures of Weibull
distributions with both known and unknown location parameters were estimated. Lastly, the full nine-
parameter Mixed Generalized Gamma Distribution was estimated.

Two techniques were used to estimate the parameters of each distribution. The first technique used
was the Method of Maximum Likelihood. The log likelihood equation was maximized using a Genetic
Algorithm. The second technique used was the Method of Minimum Distance. This technique takes the
Maximum Likelihood parameter estimate as initial estimate. With this initial estimate, the mixture and the
first location parameter are sequentially varied to minimize the Anderson-Darling statistic between the
estimated cumulative distribution function and the empirical distribution function. These two parameters
are then fixed at their Minimum Distance values and the remaining parameters are re-estimated using
Maximum Likelihood.

Minimum Distance Estimation was demonstrated to improve the parameter estimates from
Maximum Likelihood for almost all of the special case distributions tested. It did not improve the estimate
for the full nine-parameter Mixed Generalized Gamma Distribution, but this was because the technique used
to find the Maximum Likelihood parameter estimates performed poorly and did not return a good initial

estimate for Minimum Distance.

ix




PARAMETER ESTIMATION OF THE MIXED GENERALIZED GAMMA DISTRIBUTION USING

MAXIMUM LIKELTHOOD ESTIMATION AND MINIMUM DISTANCE ESTIMATION
I. Introduction

1.1 Background

Weapon systems and support systems are becoming more complex and are also becoming more
expensive. In an era of shrinking defense budgets, the reliability of these systems become paramount.
Reliability analysis is used to obtain the probability of a component’s ability to perform a given mission
(26:1). Probability distributions are used to model failure times. The better the probability distribution fits
the sample data, the more likely it is to predict failure of the component or system being modeled. Accurate
failure models can save money by “right-sizing” maintenance structure. This could cause one of two
possible problems. Inaccurate models can mean either unneeded and expensive maintenance capability
could be bought. Oﬁ the other hand, not enough maintenance could be acquiréd, which would degrade
operational readiness. Typical probability distributions used in modeling failure data include the
Exponential and the Weibull distributions. Embedding these competing distributions into a single
parametric framework would allow a comprehensive test to determine which model provided the better
functional form to model failure times (12:69). Multiple distributions could be tested at once and then the
results could then be checked to see if they match any of the special cases. One candidate distribution is the
Generalized Gamma Distribution. Special cases of it include the Half-Normal, Exponential, Gamma,
Weibull and the Chi Squared Distributions (51:351). It can show four models of hazard functions—
bathtub, inverted bathtub, increasing and decreasing. It is the only distribution capable of showing all four
types with the selection of the proper parameters (47:280). The Mixed Generalized Gamma Distribution
can be used to model components that have two causes of failure, such as sudden catastrophic failures and
wear-out failures (43:1799). It is a highly flexible distribution, but there has been some reluctance to use it

because of the difficulty involved in estimating its parameters.



1.2 Problem Statement

The formal statement of the problem is compare the parameter estimation techniques of Maximum
Likelihood Estimation and Minimum Distance Estimation for the Mixed Generalized Gamma Distribution
to determine if Minimum Distance gives better parameter estimates than Maximum Likelihood Estimation
alone. The closer the estimated parameters are to the true parameters, the better the distribution fit will be
and the more accurate information the distribution will give. Two methods will be tested to estimate the
parameters from random variates generated from a Mixed Generalized Gamma distribution. One is the
Method of Maximum Likelihood, which estimates parameters by maximizing the log likelihood equation.
A second method is called the Method of Minimum Distance, which starts with the MLE parameters and
then iteratively adjusts the parameter estimates of the cumulative distribution function against the empirical
distribution function (EDF) in order to improve them. This method has been shown to improve parameter
estimation for distributions such as the three-parameter Generalized Gamma by William James in 1980
(26), the four-parameter Generalized Gamma distribution by Shumaker in 1982 (49), the mixture of
Exponential distributions by Benton-Santo (1) and the Mixed Weibull Distribution by Donald Mumford in
1996 (37). It is therefore believed that the Method of Minimum Distance will improve parameter estimates

for the Mixed Generalized Gamma Distribution.




I1. Literature Review

Five topics will be discussed in the chapter: the Generalized Gamma Distribution and its
parameter estimation, Genetic Algorithms, Maximum Likelihood Estimation, Minimum Distance
Estimation, and Random Variate Generation. Samples of random variates were generated from Generalized
Gamma Distribution. Two parameter estimation techniques were employed to calculate sample parameter
estimations: Maximum Likelihood Estimation and Minimum Distance Estimation. A Genetic Algorithm

was used to maximize the result of the maximum likelihood equation used in both estimation techniques.

2.1 Generalized Gamma Distribution

The probability distribution function of the Generalized Gamma Distribution (GGD) is given by:

bp-1 e—[(x—c)/a]p

p- (x—c)
a®?.T'(b)

f(x;c,a,b,p) =

where a,b,p 20 and x 2c¢ = 0(20:2).
The function has four parameters: ¢ is the location parameter, a is the scale parameter, b is the

shape/power parameter, and p is the power parameter. I'(z) is the Gamma function, defined by
I'(z)= L t*e™'dt (31:332).

The cumulative distribution function of the Generalized Gamma Distribution is given by (20:2):

F[(x—C)/a]” (b)

F(x;c,a,b,p) = T )

The numerator is the Incomplete Gamma Function, which means that it is the Gamma function

integrated to a finite number, instead of to infinity (32:512-513). The Incomplete Gamma Function

I’y (z) is defined by

X
Ty ()= e dr.

The finite number in this case is [(x-c)/a]’. The numerator is normalized by the denominator, thus letting

the function range from O to 1, which is a necessary condition for the definition of a cumulative distribution



function. Since the cumulative distribution function is an incomplete Gamma function ratio, this suggests
the name Generalized Gamma (20:2).
The partial derivatives of the four parameter Generalized Gamma Distribution with respect to each

of the parameters may be defined with the aid of the following two auxiliary functions:

()

T=(x-gprr! . SED)

"a®.T(b)

The partial derivatives with respect to the parameters c, a, b and p are:

T
2 he=——{-pGp-D+pis)
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a%37b =T {Pz'ln(x— ¢)—p’-In(a) - p- lII(b)}

2
L 1{s-b}
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% %p =T(x,c,a,b,p)- {1 +p-b-In(x—c) — p- S - In(%2) — p- b- 1n(a)}
Table 1 First Derivatives of the Generalized Gamma Distribution

dIn{l'(x)}

0
dx >

where W(x) is the Psi or Digamma function, which is defined as W(X) =

(32:513,3,53).

2.1.1 A Brief History of Generalized Gamma Distribution Development

The three-parameter Generalized Gamma Distribution (GGD) was originally proposed by E.-W.
Stacy in 1962 (51,10:423). His three-parameter GGD is equivalent to the four-parameter GGD with the
location parameter, c, set equal to zero. The generalization was accomplished by supplying a positive
parameter as an exponent in the exponential factor of the gamma distribution (51:1187). In 1965, Parr and

Webster demonstrated the usefulness of the distribution as a model for failure density function in reliability




predictfons (39:1). Harter made the GGD more general by adding a loca;ion parameter. Harter wanted to
enhance the usefulness of the Generalized Gamma Distribution for reliability modeling (21:159). In 1966,
Harter developed an iterative procedure for the Maximum Likelihood Estimates of Generalized Gamma
Distribution parameters and the asymptotic variances and covariance of the maximum likelihood estimators
for complete and censored samples (20:7-9). Stacy and Mihram demonstrated a further generalization by
including cases where the power parameter, p, could be negative (52:349). In 1970s, Hager and Bain
developed inferential procedures for the three parameter GGD, and compared its reliability estimates with
the Weibull (18:1601, 19:547). In 1980, Hobbs, Moore and James used Minimum Distance to estimate the
parameters for the three-parameter Generalized Gamma Distribution (26:vi, 22:237). In 1982, Shumaker
used Minimum Distance to estimate the parameters for the four-parameter Generalized Gamma Distribution
(49:22). In 1987, Wingo developed a method to find the maximum likelihood parameter estimates for the
three-parameter GGD using numerical root isolation because of the numerical difficulties that can occur
fitting the GGD parameters (64:586). In 1991, Rao, Kantam and Narasinkham developed estimators for the
location and scale parameters for the GGD (44:3823). In 1995, Pham and Almhana presented thg hazard
rate for the three parameter GGD (42:392).

In reliability and life testing, several distributions are often used to model failure times. It has
been suggested by Farewell and Prentice that embedding these competing distributions into a single
parametric framework would allow running a comprehensive test to compare them (12:69). The
Generalized Gamma contains a number of important distributions as special cases. Some examples of
special cases as shown by Stacy and Mihram are listed in Table 2 (52:351). Typical shapes for the PDF are

given in Figure 1.

Table 2 Special Cases (a, b, p>0) of the GGD4

GGD4(c,a,b,p) Equivalent Distribution

(0,B,1,1) Exponential (B)
0,B,a,1) Gamma(a,B)
(OQBSIQa) Weibull((x,B)

(O,ﬁ W2, 1) Chi Squared(n)
©, 2 1722  Half Normal
©c+2,12) c>0 Rayleigh
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15 +

—o—1(x;0,1,1,2) ~Weib(2,1)
——(x;0,1,1,1) ~ BExpo(1)
—atr— f(x;0,1,%2,2) ~ HN
——f(x;0,1,%2,1) ~ Gam(1,%2)

Figure 1 Typical Shapes for f(x; c, a, b, p)




2.1.2 A Selected History

Parr and Webster studied the Generalized Gamma distribution to discriminate between failure
density functions, particularly the Weibull and the Exponential, which are both special cases of the
Generalized Gamma (39). The Maximum Likelihood Equations that they derived for the three-parameter

Generalized Gamma distribution with known location are for the following estimated parameters:

|G

In(p) — In(n) — In(d) + 1n(§": x? ] - ({l’—] 'Y In(x,) =0

i=t i=1

In(p) - 1n(n)—1n(d)+]n(2x”)+(§)— P -i(xi”-ln(x,.))=0
I

i=1

where d = b p and b, p > 0 and n is the sample size.

Radhakrishna, Rao and Anjaneyulu derived the moment and maximum likelihood estimators for
mixture of a pair of three-parameter Generalized Gamma Distributions in order to study catastrophic and
wear-out failure life-testing data (43). Their three-parameter Generalized Gamma Distribution is the same
as the four parameter distribution with the location parameter set to zero:

-1 | —-[x/ a)?

a®?.T'(b)

f(x;a,b,p) = px”

and their mixture is defined as
g(x;a1,b1,p1, 23,by,pa,m)=m * f(x; a;,by,py) + (1-m) * f(x; a5,b,,py).

Thus their log likelihood function is

LL = ;ln{g(x;a, ,by5Pys az,bz,pz,m)} .

The maximum likelihood equations to be solved are defined as:



dLL_z“: 1 (y
de, Sgx,) /46

where 0 i is each of the seven parameters. Thus, to obtain the Maximum Likelihood Estimates, these

equations are to be solved simultaneously using a numerical technique such as Newton-Raphson or the

method of steepest descent.

2.1.3 Mixed Generalized Gamma Distribution

In reliability studies, there can be more than one cause for failure in a population of components.
Attempting to fit a unimodal distribution to account for two separate causes may not fit either type well,
particularly if the failure times associated with both are widely separated. One method of working with
multiple causes of failure is to use a mixture distribution. A mixture distribution is a distribution made of

one or more component distributions. Its probability distribution function is of the form:
p(x) = mifi(X)+ ... + mpf(x) where Zm;=1

m; is the probability of being from the component distribution i, fi(x) is the probability distribution function

of component distribution i, and n is the number of component distributions being mixed (61:1). In the case
where only two component distributions exist, the parameters can be defined simply as m and (1- m).

The Mixed Generalized Gamma Distribution considered in this thesis is a bimodal mix of the
Generalized Gamma Distribution. The probability density function for the Mixed Generalized Gamma

Distribution is as follows:

b,-p,—1 -[(x-c¢c /a]p2 b,-pa—1 —[(x—c,)/a,]P2
ppx—cp) 1P e [(x=c)/ay py(x-cy) 272 e [(x=c5)/a,]

f(x) = m-

+(1-m)-
b,- b.-

a 1p1-r(b1) a 2 p2-I‘(b2)
where a;,a3, by,by,p1,p2 >0, O<m<1 and x = €32 ¢ 20.

In this equation ¢, and c; are the location parameters, a; and a, are scale parameters, b, and b, are

shape/power parameters, p; and p, are power parameters, while m is the mixture parameter.



4 As an example of a Mixed Generalized Gamma Distribution probability distribution function,
Figure 2 contains three functions: g(x) =.5 f1(x) +.5 f2(x) where
fl(x) = GGD4(0,2,1,1) f2(x) = GGD4(10,2,1,4)
These are equivalent to:

f1(x)= Weibull(1,2) £2(x) = Weibull(4,2)+10 = Weibull(4,2,10)

0.8 +

5 ——g(x)
g —a— f1(x)
g —— f2(x)

4
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Figure 2 PDF for a Mixture of Two Generalized Gamma Distributions

The log likelihood function where g( - ) is the PDF for the mixture of two Generalized Gamma

Distributions and f( *) is the PDF for the single component Generalized Gamma Distribution is:

LL = ln(ﬁ g(x, )]

or equivalently;

LL= Zln(g(x,. ).




The derivatives of the log likelihood function with respect to each of the nine parameters are:

dL_¢ m_d,
de, 5 8(x) dc,

dLL_i m df/
da, 4 8(x,) da,

dL_& m_
dbl i1 8 (x,-) dbl

dLL & m djy
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AL &1-m djy
de, Sg(x) /4

dLL _ S 1—-m djy
da, - =1 8(x;) da,
dLL & 1-m df,
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dLL_ N 1-m djy
dp, o 8x) dp,

dLL ¢ Ji(x;5¢,a,,b0, py) — [,(X,,65,05,0,, Py)

dm I'm-f(x,,¢,a.,b,p)+(-m)- f,(x;,c,,a,,b,,p,)

Table 3 First Derivatives of the GGD9

See Table 1 for the partial derivatives of single component with respect to its four parameters.

Research has also been done on mixing with the Generalized Gamma Distribution. In 1989,
Chukwu and Gupta developed a discrete mixture using the Generalized Poisson and the three-parameter
Generalized Gamma Distribution (7:319). In 1992, Radhakrishna, Rao and Anjaneyulu developed
parameter estimates for the mixture of two three-parameter Generalized Gamma Distributions using

moment estimates and Maximum Likelihood Estimates. (43:1799). They recommended using a method
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such as Newton-Raphson to solve their Maximum Likelihood equations. They did not attempt to solve the
equations, so they did not discuss any of the numerical problems that would arise from such an endeavor. It
is believed that this work is the first to attempt to solve the Maximum Likelihoéd equations for the Mixed
Generalized Gamma Distribution. Instead of using Newton-Raphson, this work used a Genetic Algorithm

to maximize the Log Likelihood equation.

2.2 Genetic Algorithms

2.2.1 Intreduction

Genetic Algorithms are a class of heuristic optimizing techniques that were developed in the
1970’s by John Holland of the University of Michigan (59). They are a technique for finding a near optimal
solution of an equation or system of equations by mirroring genetic theories of reproduction. Ateach
generation, a fixed number of individuals exist, the “fittest” tend to survive and they reproduce better
individuals through crossover. Crossover is process by which parts of two chromosomes are joined,
hopefully improving the fitness of resulting generation. Mutations, which are random changes to the
individual solution, keep a diverse population and prevent convergence from occurring too quickly.
Mutations and crossover are operations that occur on a chromosome. In this optimization technique, the
chromosomes represent candidate solutions to the objective function. An overview of the steps in a Genetic
Algorithm are given below.

The Genetic Algorithm

1. Initialize a population of “chromosomes”, or possible solutions.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes, applying mutation and

recombination as the parent chromosomes mate.

4. Delete members of the population to make room for the new chromosomes.
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5. Evaluate the new chromosomes and insert them into the population.

6. If time is up, stop and return the best chromosome; if not, go to 3 (8:5).

The most basic Genetic Algorithm contains three operations on the chromosomes: Roulette wheel
selection, simple crossover, and simple mutation. The equation to be optimized or a transformation of it is
called the Fitness function. The equation must always return a positive ‘(non—zero) value, so it may be
transformed to ensure this is the case. The higher the value the fitness function has, the more “fit” the
solution is. This is critical to selection of individuals for the next generation.

Holland stated reproduction of a new generation uses the following three steps:

1. Reproduction according to fitness. Select strings from the current population to act as parents.

The more fit the string, the more likely it is to be chosen as a parent. A given string of high
fitness may be a parent several times over.

2. Recombination. The parent strings are paired, crossed over, and mutated to produced

offspring strings.

3. Replacement. The offspring strings replace randomly chosen strings in the current population.

The cycle is repeated over and over to produce a succession of generations (24:70).

2.2.2 Coding

Coding is the process of converting a solution into a chromosome that genetic operations can be
operated on. The coding of a solution to the equation is the conversion of the decimal base solution into a
base 2 solution. For an integer variable ranging from 0 to 15, four bits would be necessary. For example,
in base 10, “0” is converted to “0000” in base 2, “6” is converted to “0110”, and “15” is converted to
“1111”. For more than one variable, a technique called mapping is used (15:82). In this case, the bit
positions represent different variables. For example, for integers x and y ranging from O to 15, a total of
eight bits are used and stacked next to one another. One particular solution x=6, y =15 would with x
mapped first be “01101111”. The solution x=15, y=6 under this mapping scheme would be coded
“11110110”. For fractional representations of variables the process is similar. For example, let the base be

V4, then the number 22 is “1010” where the bit positions represent 2, 1, 14, V.
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2.2.3 Roulette Wheel Selection

Roulette wheel selection is a method that weights the fittest individuals, so that they are more
likely to be chosen for the next generation. The sum of the fitness of all individuals is calculated. The
probability of selecting an individual is calculated by dividing its fitness by the sum of the fitness scores.

Consider a population of three with fitness scores of 5, 8, and 7. The probability of selection is in Table 4.

Table 4 Example of Roulette Wheel Selection

Individual _Fitness _ Probability  Selection Range

1 5 5/20 (0.25) 0.00-0.25
2 8 8/20 (0.40) 0.26-0.65
3 7 7/20 (0.35) 0.66-1.00
Sum 20 20/20

The need for all fitness values to be positive is now apparent. If any fitness value is O or negative, it would
cause some individuals to never be selected, because it would have no probability associated with it.

The individual is selected by drawing a uniform random number between 0 and 1 and corﬁparing it
to the selection range. For example, if the random number returns a 0.553, that falls in the selection range
for Individual 2, so Individual 2 is returned. This is repeated until the total number of individuals for the

next generation is selected.

2.2.4 Simple Crossover
Simple crossover is an operation that modifies the chromosomes of the two children that are

created from the two parents chromosomes. A random integer between 1 and n-1, where n is the number of

bits in the chromosome, is selected as the site where the crossover will take place (12:62-65) . For example,

suppose the crossover site is “3” at the “I” below for the following:

Parent Solution (x,y) Parent Chromosome Child Chromosome Child Solution (x,y)
(6,15) “ot11l01111” 01110110 (7,6)

(15,6) “111|10110” 11101111 (14,15)
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The probability of crossover is typically between 0.6 and 0.7 (5). When crossover does not occur, the
children inherit the exact chromosomes of the parents, unless they are mutated. In the example above,

without crossover the children’s chromosomes will be “01101111” and “11110110”.

2.2.5 Simple Mutation

Simple mutation is the last operator on the chromosome. When it occurs, it modifies the value at a
bit position, which is also called an allele (15:65). For each allele, a random number is drawn. If the
number is below the mutation probability, a mutation occurs. When this happens an allele value will be
swapped. It may occur to a child’s chromosome whether or not it has crossed over from its parents.

Several examples with alleles to be mutated in bold follow:

Solution (x,y) Chromosome Mutated Chromosome  Mutated Solution(x,y)
6,15) “01101111” “01101011” 6,11)
(7,6) 01110110 “01011110” 5,14)
(15,6) “11110110” “11110111” (15,7)

Mutations as can be seen above, can make either small or quite large changes in the solution based on where
the mutation occurs. The purpose of mutations is to prevent the population from becoming too
homogeneous too quickly and thus not considering some potentially good solutions, i.e. it prevents the

solution technique from converging to a local maximum.

2.2.6 Deterministic Tournament Selection Strategy

Another method of selecting individuals is the Deterministic Tournament Selection strategy. It is
particularly useful when the population is small and the law of averages doesn’t hold (29:290). First,
individuals are grouped randomly and then adjacent pairs compete for selection. Two copies of the same
individuals mating with each other should be avoided (29:291). The process is

1. Randomly sort the individuals.

2. Compare the fitness values of the first pair, and keep the better as the first parent.

3. Compare the fitness values of the second pair and keep the better of the second pair as the

second parent.
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" 4. Then randomly reorder the individuals and select parents for mating until the next generation is
filled.
For example, assume the population on left of Table 5 has been randomly ordered. Individuals 1 and 2
would be compared and Individual 2 is selected as the first parent, since it has the higher value. Individuals
3 and 4 would be compared and Individual 3 is the second parent. Individuals 2 and 3 have been chosen to
mate with each other. Similarly, after reordering, in the population on the right Individuals 3 and 4 will be

selected.

Table 5 Example of Deterministic Tournament Selection

Individual Fitness Individual  Fitness
1 4 3 8
2 9 Randomly Order 5 3
3 8 1 4
4 6 4 6
5 3 2 9

2.2.7 Parameter Settings

Genetic Algorithm searches are highly sensitive to their parameter settings. Their settings greatly
affect how well a GA performs. Performance measures include how long it takes to find a solution and how
good a solution can be found. Greffenstette studied optimizing the control parameters of Genetic
Algorithms (17:5-11). Although there are a large class of GA’s, many can be described using five
parameters, as shown in Table 6. The discussion in the following section will present a summary of his

parameter descriptions.

Table 6 Parameter Codes

Parameter Code Parameter

N Population Size

C Crossover Rate

M Mutation Rate

G Generation Gap

S Selection Strategy

The population size (N) affects both the efficiency and the performance of the GA. A large

population is likely to represent more areas of the sample space and thus is less likely to converge to a
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suboptimal solution. However, it does require more evaluations per generation, which can drastically slow
down convergence.

The crossover rate (C) controls the frequency that the crossover operator is applied. The higher
the crossover rate, the more frequently new individuals are introduced into the population. If the crossover
rate is too high, then high-performance individuals can be discarded. On the other hand, if the crossover
rate is too low, the search may stagnate because of the lower exploration rate. It is a probability operator,
so it ranges from O to 1.

The mutation operator (M) is a secondary search operator that gives each bit a chance of switching
its value after selection. The mutation rate increases the variability of the population. A high mutation rate
is essentially a random search. A low mutation rate serves to prevent any given bit position from remaining
converged in the entire population. It is a probability operator, so it ranges from 0 to 1.

The generation window (G) controls the percentage of the population to be replaced at each
generation. It ranges from O to 1. The number of individuals that are randomly chosen to survive is N*(1-
G) from one generation to the next. A value of G = 1.0 means that the entire generation is replaced during
-each generation.

The Selection Strategy (S) contains two possibilities. The first, when S=P, is when a pure
selection strategy is used. This means that each individual is reproduced proportionally to the individual’s
performaﬁce. The second, when S=E, is called an elitist strategy. First, the pure selection strategy is
performed, but then the best individual always survives intact to the next generation. Without this strategy,

the best individual can disappear because of selection, crossover or mutation.

2.2.8 Micro-Genetic Algorithms

The usual choice in population size N is usually chosen to be between 30 and 200 individuals.
Micro-Genetic Algorithms (mGA) use a small sample size, far less than the typical simple Genetic
Algorithm. GA'’s with very small populations generally do very poorly because they have insufficient
processing of the many possible solutions and thus converge to suboptimal points (29:290). In

Grefenstette’s study, he showed that for small populations (20 to 40 individuals), good performance can be
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obtainea by combining a high crossover rate with a low mutation rate (17:10). Krishnakumar took this idea
even further and developed a mGA that has a population N=5. He used a high crossover rate of C=1 and a
low mutation rate of M=0 and an elitist selection strategy of S=E and a generation window of G=1
(29:291).

His work was based on the fact that simple Genetic Algorithms often prematurely converge and
must rely on the mutation operator to find the optimum. It is based on the assumption that mixing the
maximum possible solution spaces yields maximum performance. His mGA uses a “start and restart”
procedure that avoids premature convergence by replacing individuals with new randomly generated ones

once the individuals reach a convergence criteria (29:291).

2.2.9 Constrained Optimization Using Genetic Algorithms
Genetic Algorithms are often used to solve an unconstrained objective function. For a constrained
problem, this function can be transformed to an unconstrained by use of a penalty function (15:85-86). An
example follows:
Maximize g(x)
subject to hy(x)=0 fori=1,2..n
where x can be a vector

into the following unconstrained form:

max{g(x) —-r z D(h, (X))}

where ®( " ) is the penalty function
1 is the penalty coefficient.
Many possibilities exist for the penalty function, but often the square of the violation is used. The value for

r is often chosen so that moderate violations yield a penalty of some significance (15:85-86).
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2.2.9 Initializing a Population

Previous discussion has focused on the changes from generation to generation, whether through
mutation, crossover, or “restarting”. An initial population can be chosen by random or by a heuristic (17:5).
In random initialization, possible solutions are randomly generated with equal probabilty for each allele on
every generated chromosome. For example, with two possible allele settings “0” or “1” each has a 0.5
probability of being selected. A heuristic would mean that one or more individuals are created with some

other rule, not specific to the Genetic Algorithm.

2.3 Maximum Likelihood Estimation

The Method of Maximum Likelihood was popularized by Fisher in the 1920’s (38:2-3). The
definition of likelihood from Mendenhall, Wackerly and Scheaffer (36:402) is

Let yi, y2, ... , Yo be sample observations taken on corresponding random variables Y,

Y, ... Y, Thenif Yy, Yy, ..., Y, are continuous random variables the likelihood

L=L(yy, ¥2, ... ¥n) is defined to be the joint density evaluated at y, v, ... , ¥n.

Parameters are selected so the likelihood function is maximized (36:419). This means that the likelihood

function is defined as follows:

L= f(x)*f(x)**f(x,)

or alternatively,

L=l_:[f(x,-)

where f(x;) above is the probability density function associated with the observation x; and n is the sample
size.
According to Law and Kelton, the Maximum-Likelihood estimators (MLEs) are used because they

have useful properties not shared by other parameter estimation techniques (45:370). These include:
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1. For most of the common distributions, the MLE is unique; that is, L( é ) is strictly greater than
1(0) for any other value of 6.

2. Although MLEs need not be unbiased, in general, the asymptotic distribution (asn — o) of
6 has mean equal to 8 .

3. MLEs are invariant; that is if ¢ = h(8 ) for some function h, then the MLE of ¢ is h(é ).

(Unbiasedness is not invariant.) For example, the variance of an Exponential(B) random
variable is B2, so the MLE of this variance is [ X (1)]*.

4, MLE:s are asymptotically normally distributed; that is, Jn (é -0) 24N (0,0(0)),
where 3(0) = —n/ E(d*L/ d6?) (the expectation is with respect to X;, assuming that X;
has the hypothesized distribution) and —2 5 denotes convergence in distribution.
Furthermore’, if 0 is any other estimator such that «/; (é -0) —2 5N (0,0%), then
3(0) < 6%, (Thus, MLEs are called best asymptotically normal.)

5. MLEs are strongly consistent; that is, Limn_,wé =6(w.p.1).

L is the Likelihood equation and @ is the vector of parameters.

2.4 Minimum Distance Estimation

In the 1950’s, Wolfowitz presented a series of papers that developed the Minimum Distance
method for obtaining strongly consistent parameter estimates for a distribution (25:75). His technique was

to minimize the distance of the discrepancy between two distributions F, and F,:

O(F,,F,) =suplF,(x) - F,(x)l

According to Wolfowitz, “A great utility of the Minimum Distance method is that, in a wide variety of

problems, it will furnish super-consistent estimators even when classical methods, like maximum likelihood
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method, fail to give consistent estimators” (38:2-7). The technique tries to minimize the distance between
the estimated cumulative density function (CDF) and the empirical density function (EDF). The EDF is a
step function created by ordering the sample data points. One plotting pbsition for the EDF of n points

ordered X1y, X2y, ... sXn) i given by

0, X <X,
i
EDF(X) = %o SX<Xgyy, 1=1,0,0=1)

1, X2 X,

A good estimate of the parameters for the estimated cumulative density function must be derived from
another method, such as MLE, and the better the method’s estimate the better result that Minimum Distance
can give. A good initial estimate of the parameters may be obtained using the Method of Maximum

Likelihood. An example of the EDF compared to the CDF is Figure 3.

05 —o—EDF
’ —&— CDF

F(x)

Figure 3 Sample EDF vs. Estimated CDF

A lot of work has been done with Minimum Distance, with some of it already referenced in this
thesis. In 1980, Hobbs, Moore and James used Minimum Distance to estimate the parameters for the three-

parameter Generalized Gamma Distribution (26:vi, 23:237). In 1982, Shumaker used Minimum Distance to
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estimate the parameters for the four-parameter Generalized Gamma Distribution (49:22). Gallagher used
Minimum Distance to estimate the parameters for the three-parameter Weibull (14). In 1986, Benton-Santo
used Minimum Distance to estimate the parameters for the mixture of exponential distributions and the
mixture of normal distributions (1). In 1996, Mumford used Minimum Distance to estimate the parameters

for the seven-parameter Mixed Weibull(37).

2.4.1 Golden Section Search

One method of performing Minimum Distance is to vary one parameter between its upper and
lower bounds, while fixing the others, to minimize the distance between the EDF and Estimated CDF. One
method of conducting a constrained optimization of a single variable is called the Golden Section Search. It
assumes that the function being evaluated is unimodal in the area of search. It uses an interval reduction

factor based on the Fibonacci numbers (48:115-116,122-123;30:286-291). The algorithm is given by

(48:115-116):

Given:
o The interval [A,B], which contains the minimum value for function f(x)
e  The tolerance level, Tol
e  The maximum number of iterations, N

Algorithm:

1. Setlter=0

J5-1
2

2. Sett=

3. SetC=A+(1-t) * (B-A)
4, SetFc=1(C)
5. SetD=B-(1-t) * (B-A)
6. SetFd=f(D)

7. Repeat the next steps until IB-Al > Tol and Iter < N;
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7.1. Increment Iter
7.2. If Fc < Fd, then set B=D, D=C, C=A+(1-t)*(B-A), Fc = f(C ), else set A=C, C=D,D=B-
(1-t)*(B-A), Fc=Fd, and Fd=f(D).

A+B

8. Return as the minimum if Iter < N, else return an error code.

2.5 Random Variate Generation

Random variate generation for the Generalized Gamma distribution is accomplished by generating
random variates from a standard gamma distribution, which are then transformed to Generalized Gamma
distribution variates. Numerous techniques exist for generating gamma and standard gamma variates (6, 13,
27,28, 33, 55, 56, 57, 59, 58, 62, 63). The probability density function for the standardized gamma
distribution is

x*" . exp(—x)
I'(a)

x20

Py =

f(xa)=

Four-parameter Generalized Gamma variates can be generated from a standard gamma using two transforms
demonstrated by Tadikamalla (58: 199-201). The transforms are

x=z'""
and

y=x*a-c

where z is the variate generated from the standardized gamma distribution and y is the final Generalized
Gamma Distribution variate. The standardized gamma distribution generates its variates using the
Acceptance/Rejection technique.

The Acceptance/Rejection technique requires a majorizing function, h(t) which bounds f(t) above.

The majorizing equation must integrate to a finite value so that it may be scaled as a PDF. Variates are then
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generated from h(t) and are then accepted or rejected so that the accepted random variates will have the

PDF f{(t) (33:83).

III. Methodology

This research compares two methods for estimating the parameters of the nine-parameter Mixed
Generalized Gamma Distribution: Maximum Likelihood Estimation and Minimum Distance Estimation,
The assumption underlying this methodology is that the distribution is from the family of nine-parameter
Mixed Generalized Gamma Distributions. Monte Carlo analysis will be used to test the parameter
estimation techniques. Random variates are generated from the Mixed Generalized Gamma Distribution,
and then the parameters are estimated using Maximum Likelihood. The log likelihood function was
maximized using a Genetic Algorithm. The Maximum Likelihood parameter estimates are then used as a
initial estimate for the Minimum Distance parameter estimates. This initial estimate is then used to fix the
first location parameter and the mixture parameter. This estimation technique fixes the first location and
mixture parameter and solves the reduced problem using Maximum Likelihood. Samples of each size and
parameter settings were generated 1000 times and then compared using a integrated mean square error
(MSE), or integrated squared distance between CDFs. The number of times one technique was better than
the other technique for estimating each sample was recorded. This was done to guard against a few extreme

cases from dominating the comparison of the two parameter estimation techniques.

3.1 Monte Carlo Simulation

Law and Kelton define Monte Carlo simulation to be a scheme employing random numbers for
solving problems in which the passage of time plays no substantive role (31:113). Monte Carlo simulation
has been widely used to study the properties of robust estimators and to test their performance (26:19). By
using Monte Carlo simulation, parameter estimates may be calculated and then compared to the true
parameters of the underlying distribution. The basic steps in a Monte Carlo simulation for testing parameter
estimation techniques are as follow:

1. Generate sample variates from the selected underlying distribution.
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" 2. Determine the parameter estimates for each sample, using each estimation technique.

Y

Generate n Random Variates

Y

Estimate Parameters Using MLE

3. Compare the performance of the estimators.

Figure 4 shows an overview of the methodology.

1. Fix Known Parameters

2. Fix C1 from the data.
3. Estimate the remaining parameters using MLE.

Y

Estimate Parameters Using MDE

1. Minimize Distance between MLE parameter CDF and EDF
by varying Mixture (holding others constant).

2. Minimize Distance between MLE parameter CDF and EDF
by varying C1 (holding others constant).

3. Re-Estimate remaining parameters using MLE.

Y

Compare Estimates
1. Calculate distance from estimated to true distribution.
2. Compare distances of estimation techniques, record the
number of times MDE has a smaller distance than MLE.

Repeat 1000 times.

Figure 4 Overview of Methodology
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3.2 Random Variate Generation

The first random variate generator for the Generalized Gamma distribution tested was one
developed by Tadikamalla, who had written several articles on generating gamma variates (55-58). His
random variate generator did not produce the proper variates. It did not generate variates of the proper
shape when the shape/power parameter, b, was set to one. Setting b=1defines a Weibull distribution, which
is an important special case of the Generalized Gamma, particularly for reliability modeling. Although
Tadikamalla’s article stated it was good for b>1, it was not good for values near one (58:200). Further
research led to another standard gamma variate generator that was then transformed to the General Gamma
distribution using Tadikamalla’s transformations above.

The standard gamma variate generator chosen is known as GBH, which uses the
acceptance/rejection technique, and was developed by Cheng & Feast (59:229). Tadikamalla and Johnson
recommended this technique when a large number of variates are going to be generated for each b (59:226).
It was also chosen because variates with b = 1 can be generated. The random variate generator was then
constructed and tested by generating samples of 1000 variates of selected special cases such as the Weibull,
the Gamma, the Exponential and the Half-Normal. (See Table 1). Accepted Distribution fitting packages
such as Weibull++ and BestFit were used to verify the generator was working properly.

In the real world, the proportions in a mixture of component distributions are not always known.
The mixing proportion is distributed Uniform(0,1). The outcome of this random number draw determines
the number of variates generated from each component distribution. This means that the actual proportion

of variates generated from each component distribution may not equal the true mixing proportion.

3.3 Maximum Likelihood Estimation using a Genetic Algorithm

Use of a Genetic Algorithm was suggested because of the difficulties Mumford (37) had
solving the maximum likelihood equations. His seven-parameter estimation solution space turned out to be
flat with many local optima. The nine parameter Mixed Generalized Gamma Distribution would have these
difficulties compounded since two more parameters are being estimated. Newton’s Method, which

Mumford used, also requires derivative information, and can get stuck on local maximums. It was decided
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to attempt to find the optimum using a Genetic Algorithm, which is less likely to get caught on a local
maximum.

Since the observed data points are independent of each other, their joint probability can be
calculated directly by multiplying their PDFs together. Finding the parameters that maximize their joint
probability will give the parameters that have the highest likelihood that the data came from that
distribution. Thus, the equation is called the likelihood function. The likelihood function (L) is defined

below

L=Hjmx

where f( ") is the probability density function and n is the number of observed data points. This equation,
though, can be difficult to differentiate and can also create numerical difficulties because it can evaluate to
very small numbers that can be below a computer’s “underflow.” Therefore, the log of the likelihood
function, which monotonically increases with the likelihood function, poses no such numerical difficulties,

and is often easily differentiable, is used. The log likelihood (LL) is defined as
n
LL=1n(L) = In([ ] £ (x,))
i=1
and is also equivalent to
n
In(L) = X In(f (%,)),
=l

where f(.) is the probability density function and n is the number of observed data points.

3.3.1 Range of the Parameters
In order to use a Genetic Algorithm, upper and lower bounds on the variables being optimized
must be determined. An increment size of 0.015625 was used for each of the parameters. See Table 7 for

the parameter bounds.
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Table 7 Parameter Bounds

Parameter | Lower Bound Upper Bound
< 0 Xqy- 0.0078125
a 0.0078125 15.9921875

b, 0.0078125 15.9921875

P 0.0078125 15.9921875

) ¢ +0.0078125  ¢,+15.9921875
a 0.0078125 15.9921875

b, 0.0078125 15.9921875

P2 0.0078125 15.9921875

m 0.0078125 0.9921875.

X, is the first order statistic of the variates, or the smallest variate, and Xy is the last order statistic, or the
largest variate. The c, parameter was penalized if it exceeded the largest variate since if ¢, > X means the
GA was fitting the observed data as a single distribution, not as a mixture. The mixture parameter m will
need six bits on the chromosome. The bit positions will represent ¥, ¥4, 1/8, 1/16, 1/32 and 1/64. The bits
are decoded and then the lower bound is added. For example, the upper limit of the mixing parameter is
coded “111111” and will equal 0.9921875. The location parameter c; will not be estimated by tﬁe Genetic
Algorithm, but will be calculated as Max ( X, - 0.0078125, 0 ). The other pmaﬁetcrs will require 10 bits
each on the chromosome, when not fixed prior to estimation. The ten bit positions will represent 8,4, 2,1, /2,
V4, 1/8, 1/16, 1/32 and 1/64. The chromosome is decoded and the lower bound is added. For example, the

upper limit on a, is coded “1111111111” and will equal 15.9921875.

3.3.2 Selecting GA Parameter Settings

Selection of the Genetic Algorithm’s settings greatly affect its efficiency and accuracy (17). The
optimal settings are often problem dependent. Two characteristics of parameter estimation for the Mixed
Generalized Gamma Distribution log likelihood function discussed below are that it will be a negative
number and that it will be complex to evaluate.

First, the Mixed Generalized Gamma distribution log likelihood equation will be negative. Since
probability density function will typically evaluate to a number between zero and one. Multiplying n of

these PDFs together returns a value between zero and one. The natural logarithm of any number between
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zero and one will have a negative natural logarithm. Thus, any solution technique used must work with
negative numbers. However, the simple tournament selection requires that all values be positive. This can
be resolved by transforming the negative numbers using a scaling window, though choosing the right
scaling is problematic since the solution can be very sensitive to the scaling (17:7). As an example, if one
individual has a fitness five times greater than another, it would have an expected five times as many
offspring. Scaling can modify this in ways that are not effective. For example, consider the following

scaling: y=2*(x+2()) in Table 8

Table 8 Dangers of Scaling

Individual  Fitness Relative Fitness Scaled Fitness Related Scaled Fitness
Better -1 5 38 1.26

Worse -5 1 30 1

The Better Individual, which was previously five times more fit, is now only 1.26 times as fit. The less fit
individual will reproduce relatively more with respect to the better individual as a result of the scaling. This
can even eliminate the difference between fit and less-fit strings (15). One way to avoid this problem is to
use a deterministic tournament selection strategy.

A Micro-Genetic Algorithm was chosen to maximize the log likelihood function of the Mixed
Generalized Gamma Distribution. It typically uses fewer function evaluations than a regular Genetic
Algorithm, and it can easily use a deterministic tournament selection strategy so the need to scale is
eliminated. A deterministic tournament selection strategy compares the relative fitness values not the
absolute fitness as the tournament selection does, so negative numbers are compared directly without any
need to scale the fitness. Thus, in this work, a Micro-Genetic Algorithm was used to maximize the log
likelihood equation. The population size chosen was five individuals per generation, as recommended by
Krishakumar (29). One of the most referenced works on Micro-Genetic Algorithms is by Krishakumar. He
states the key to making a Genetic Algorithm with a small population is as follows:

1. Randomly generate a small population.

2. Perform Genetic operations until nominal convergence (as measured by bit wise convergence

or some other reasonable measure).
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3. Generate a new population by transferring the best individuals of the converged population to
the new population and then generating the remaining individuals randomly.
4. Go to step 2 and repeat (29:290).

The Micro-Genetic Algorithm first randomly generated a population of five. Two sets of mates were
chosen to reproduce by crossover with probability one. An individual was not allowed to mate with itself,
as suggested by Krishakumar (29:291). The probability of mutations was zero, since enough diversity is
introduced after nominal convergence. Nominal convergence is when all the individual chromosomes are
virtually identical. This was defined to be when the all the individuals in a population had at least 95% of
the same allele structure (5). At this point, crossover no longer introduces new chromosome structures.
Therefore, four new individuals were then introduced and the best string kept as the fifth. The stopping
criteria is to check every 200th generation and then stop if the best individual has not changed after that

amount of time.

3.4 Minimum Distance

Once a parameter estimate was found using Maximum Likelihood Estimation, this estimate was
used to initiate the Minimum Distance parameter éstimation technique. The other eight parameters were
held constant and the mixing parameter was varied to find where it minimized the distance between the
empirical probability function and the estimated probability distribution function. A Golden Section
Search was performed to find the function minimum. A Golden Section Search locates the minimum within
the interval using an interval reduction technique based on interval reduction (48:115). The lower bound on
the interval was the lowest value the variable could take on and the upper bound the highest, the bounds are

in Table 9.

Table 9 Parameter Bounds for Minimum Distance

Parameter | Lower Bound Upper Bound
m 0.0078125 0.9921875

Cy 0 X(|) -0.0078125
Cy ¢;4+0.0078125 X - 0.0078125
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The mixture parameter(m) was allowed to vary and the other parameters were held constant. The value of
the mixing proportion that had the smallest Anderson-Darling statistic was kept. Next, ¢, was similarly
found. These two parameters were fixed. The other parameters were again estimated using Maximum
Likelihood Estimation with the mixture parameter and the first location parameter fixed at their MDE
values.

The Anderson-Darling statistic is one of the most powerful empirical distribution function-based

tests and takes the form:

AX(G,,Fy) = [ G, (x) = Fy()PLF, ()1 - Fy (x)]1” dF (x)

This integral is approximated using Stephens’ computational formula (54:731)

A’ = -{[Z Qi-D[nZ, +In(1-Z,,, )/ n]} -n
i=l

where Z, = Fy(x;) , Fy(x) is an estimated distribution using the maximum likelihood method and G, is

an empirical distribution based upon a random sample of size n that is taken from the true distribution G(- )
(38: 2-8 to 2-10).

Now, with the mixture parameter fixed, the c, location parameter was then fixed. The other
parameters are estimated again using the Micro-Genetic Algorithm to find the final Minimum Distance
estimate. Attempts to fix the c, location parameter only worsened parameter estimates, because Minimum
Distance selected c, parameter values that were very high. The parameter estimates using the Method Of
Maximum Likelihood and Method Of Minimum Distance were then compared to the true parameters that

the samples were generated from using the evaluation criteria below.

3.5 Evaluation Criteria

Once the two parameter estimates for a sample of random variates have been calculated, they need
to be compared so that the better method of the two may be determined. A good criteria is to compare how

close each parameter estimate is to the true parameter distribution. A distance between the CDF of the
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estimation technique and the CDF of the true parameters was calculated for both of the estimation

techniques. The better technique will have the smaller distance.

3.5.1 Integrated Squared Difference Between CDF’s

The estimated CDF for each method is compared to the true CDF. The integrated squared distance
between the estimated CDF and the true CDF is calculated as the measure of performance. It is also known
as the Integrated Mean Squared Error. This test is used because of its effectiveness and it approximated the
theoretical Cramer-von Mises statistic (37:41). If the integrated difference is smaller for one method than

the other, then it has been a better estimate. The integration is

b
dist = j {F(x)-G(x)}* dx

where F(x) represents the true CDF and G(x) represents the estimated CDF. The lower limit of integration,
a, is the smaller of the two true location parameters. The upper limit of integration, b, is chosen to ensure
that both CDF values exceed 0.999, or an upper limit of 50, which ever was smaller (37:40-41).

The numerical integration algorithm used was Gauss-Legendre Quadrature. It integrates using the

transformation
b +1
[fdx= - 0-a)[f[4-(0—a)-t+b+alit
a -1

This integral is approximated by evaluating f(x) at six points. Accuracy can be improved by
breaking the integral in subintervals, with each subinterval still requiring six function evaluations (48:81-
82,89).

The evaluation criteria is the percentage of times that the MDE was better than MLE. “Better” in
this case means having a smaller integrated distance from the true parameters than the distance the MLE

parameters were from the true parameters. This criteria was chosen because it is insensitive to outliers.
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IV. Results

In order to evaluate the performance of the parameter estimation techniques, Monte Carlo
simulation was performed. For each true parameter setting and sample size (n), a sample of random variates
was generated from the Mixed Generalized Gamma Distribution. Parameter estimates using both
techniques were then made and the MSE, or integrated distance, from each estimate to the true parameters
was calculated. The distances were then compared and the technique with the smaller distance from true
was considered the better. In case of a tie, MLE is better because MDE has not gained anything for the
effort of refining the MLE estimate. One thousand Monte Carlo replications were run. The average
distance (Ave Dist) and standard deviation of the distance (StDev Dist) are recorded in the following tables
in this chapter. The percentage of times that the Minimum Distance Estimation technique (%MDE Better)
had a smaller distance from the true parameters than the Maximum Likelihood Estimation were recorded. If
this percentage is high, then the MDE technique has been shown to be a better estimator. Following each of
the tables is a chart containing the Percent MDE Better for each sample size. The different bars at each
sample size represent the different Percent MDE Better at each mixing proportion.

Special cases of the Mixed Generalized Gamma Distribution of progressing difficulty were tested
to show the validity of the estimation techniques. First, the parameters for a single distribution with a
known location parameter were estimated using MLE. Next, the parameters for a single distribution with
unknown location parameters were estimated, using MLE and using MDE to fix the location parameter.
Next, the parameters for two component mixtures of Exponential distributions and Weibull distributions
with known location parameters were estimated using MLE and using MDE to fix the mixture parameter.
Next, the parameters for two component mixtures of the Exponential and Weibull distributions with
unknown location parameters were estimated using MLE and MDE. MDE was used to fix the mixture
parameter and then the location parameter of the component distribution nearer to zero. Lastly, the
parameters for the full Mixed Generalized Gamma distribution were estimated using MLE and MDE. MDE
was used to fix the mixture parameter and then the location parameter of the component distribution nearer

to zero. PDFs for the component distributions may be found in Appendix A.
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4.1 Single Component Distribution with Known Location Results

Four special cases of the Generalized Gamma distribution were estimated. They were the
Exponential, Gamma, a Weibull with a power parameter less than one, and a Weibull with a power
parameter greater than one. Previous research in Minimum Distance by other authors showed that it has the
most effect on estimating mixture parameters and location parameters. Since these are single component
distributions (thus, no mixing parameter) with known location parameters, Minimum Distance estimation
was not performed.

Several parameters were fixed prior to estimation. For all the distributions the location parameter
was fixed, since it was known. It was assumed that the functional form of the component distribution was
known. Therefore, for the Exponential, the parameters b and p of the GGD4 were fixed at 1; for the
Gamma, the parameter p was fixed at 1, and for the Weibull, the parameter b was fixed at 1. Parameter
estimation for the Weibull and Gamma was aided by use of a penalty function which penalized differences
from the likelihood equation first derivatives as defined by Parr & Webster, which assumes a known
location parameter (39).

Maximum Likelihood Estimation behaved exactly as expected for the four distributions. As
sample size got larger, the average distance from the true distribution decreased in all cases. The standard
deviation also decreased as sample size went up, which means that MLE techniques improves with sample
size. This is as expected, since MLE is known to improve asymptotically. They were compared to sample
results using Weibull++, which is an accepted package for estimating parameters. The results are

summarized in Table 10.
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Table 10 Single Component Distributions, with Known Location Parameters, 1000 Replications

Distribution n AveDist StDev Dist |Sample Estimate = Sample
Using W++ or Distance
BestFit
GGD4(0,2,1,1) 5 0.0409 0.1041 Expo(2.394) 0.00369
Equivalent to: 20 0.0067 0.0115 Expo(2.055) 0.00009
Expo(2) 50 0.0024 0.0035 Expo(1.983) 0.00001
75 0.0017 0.0029 Expo(1.914) 0.00025
100 0.0013 0.0019 Expo(1.875) 0.00054
500 0.0002 0.0003 Expo(1.949) 0.00008
GGD4(0,2,2,1) 5 0.0719 0.0524| Gamma(5.48,0.57) 0.18940
Equivalent to: 20 0.0286 0.0386] Gamma(2.85,1.41) 0.00605
Gamma(2,2) 50 0.0092 0.018 Gamma(2.10,1.81) 0.00171

75 0.0066 0.0136] Gamma(2.02,1.91) 0.00059
100 0.0043 0.0092] Gamma(2.06,2.01) 0.00018
500 0.0008 0.0017} Gamma(2.14,1.77) 0.00220
GGD4(0,05,1,09) | 6 0.4385 0.7672| Weib(0.623,0.584) 0.06943
Equivalent to: 20 0.0901 0.1032| Weib(0.762,0.521) 0.02951
Weibull (0.9,0.5) | 50 0.0344 0.0439] Weib(0.948,0.555) 0.01239

75 0.0223 0.0273| Weib(0.861,0.541) 0.00238
100 0.0178 0.0199] Weib(0.878,0.529) 0.00105
500 0.0045 0.0069| Weib(0.884,0.495) 0.00068

GGD9(0,2,1,2) 5 0.1214 0.1943| Weib(2.171,2.334) 0.01532
Equivalent to: 20 0.0191 0.021] Weib(2,323,2.053) 0.00607
Weibuil(2, 2) 50 0.0066 0.0075| Weib(2.036,1.818) 0.00531

75 0.0044 0.0049] Weib(1.986,1.896) 0.00162
100 0.0029 0.0031] Weib(1.999,2.000) 0.00000
500 0.0006 0.0007] Weib(1.989,1.970) 0.00014

Fixed Parameters:
Exponential; C=0,B=1,P=1
Gamma; C=0, P=1
Weibull, C=0,B=1

Note that the Average distance and average standard deviation are for 1000 replications, whereas the
sample using Reliasoft’s Weibull++ 5.0 or BestFit 1.0 is a single sample.

BestFit was used to estimate the Gamma Distributions; the other using Weibull++.
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4.2 Single Component Distribution with Unknown Location Results

Again, four special cases of the Generalized Gamma distribution were estimated. They were the
Exponential, Gamma, a Weibull with a power parameter less than one, and a Weibull with a power
parameter greater than one. Minimum Distance Estimation was performed on the location parameter.

It was assumed that the functional form of the component distribution was known. Therefore, for
the Exponential, the parameters b and p were fixed at 1; for the Gamma, the parameter p was fixed at 1; and
for the Weibull, the parameter b was fixed at 1. The location parameter was fixed using Minimum Distance
estimation. The remaining parameters were re-estimated using MLE. Parameter estimation for the Weibull
and Gamma was aided by use of a penalty function which penalized differences from the first derivatives of
the likelihood equation as calculated by Parr & Webster, which assumes a known location parameter (39).

Both estimation techniques improved their distance wiﬂm increased sample size. MDE uses MLE
as an initial estimator, so this is expected. Minimum Distance should show the most gain at smaller sample
sizes, because MLE improves with increasing sample sizes. For the Exponential, MDE was significantly
better than MLE for sample sizes of 5, but not for any higher sample sizes. For the Gamma, MDE was
significantly better than MLE for all sample sizes. For the Weibull with shape parameter less than one,
MDE provided significant improvements for sample sizes of 50 or less. For the Weibull with shape
parameter greater than one, MDE provided significant improvements for sample sizes up to 100. The

results are summarized in Table 11 and Figure 5.
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Table 11 Single Component Distributions with Unknown Location Parameter, 1000 Replications

Distribution n %MDE MLE Ave MLE MDE Ave MDE
Better Dist  StDev Dist  StDev

Dist Dist

GGDA4(5,2,1,1) 5 686% 0.1144 02159 0.1007 0.1899
Equivalent to: 20 49.2% 0.0096 0.0151 0.0160 0.0180
Expo(2,5) 50 49.4% 0.0029 0.0043 0.0076 0.0096

75 47.9% 0.0017 0.0027 0.0052 0.0079
100 456% 0.0014 0.0023 0.0048 0.0075
500 44.0% 0.0003 0.0004 0.0009 0.0034
GGDY(5,2,2,1) 5 100.0% 0.4039 0.3398 0.1975 0.2284
Equivalent to: 20 946% 0.0274 0.0270 0.0186 0.0210
Gamma(2,2,5) 50 89.3% 0.0076 0.0070 0.0064 0.0061

75 88.4%  0.0048 0.0041 0.0044 0.0038
100 81.3% 0.0035 0.0028 0.0033 0.0027
500 66.7% 0.0009 0.0007 0.0009 0.0007
GGD4(5,2,1,0.9) 5 096.3% 02484 0.2209 0.1730 0.2076
Equivalent to: 20 67.2% 0.0275 0.0356 0.0249 0.0312
Weibull(0.9,2,5) 50 55.7%  0.0089 0.0123 0.0096 0.0124

75 499% 0.0056 0.0070 0.0064 0.0076
100 48.4%  0.0040 0.0049 0.0046 0.0057
500 23.6% 0.0012 0.0015 0.0015 0.0028

GGD4(5,2,1,2) 5 100.0%  0.4437 0.3622 0.2711 0.3229
Equivalent to: 20 86.8% 0.0409 0.0408 0.0307 0.0336
Weibull(2,2,5) 50 835% 0.0120 0.0118 0.0106 0.0106

75 76.3% 0.0074 0.0069 0.0069 0.0064
100 60.4%  0.0056 0.0051 0.0054 0.0048
500 49.3% 0.0010 0.0010 0.0010 0.0010

Fixed Parameters:

Exponential; B1=1,P1=1

Gamma; P1=1
Weibull; Bl=1
Parameters fixed by MDE:

Location, C1, for all distributions
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Figure 5 Percent MDE Better for Single Distributions
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4.3 Mixture of Exponential Distributions with Known Location Results

For the case of the mixture of Exponential Distributions with known location parameters, it was
assumed that the functional form of the distribution was known. Therefore, B1,P1, B2, P2 were all fixed at
one. Since the location parameters were known, they were fixed at their known values of zero. The mixture
parameter was fixed using the Minimum Distance Estimation.

For all tested mixtures, MDE was significantly better than MLE for samples of 5. For sample sizes
larger than that, however, the results are unclear. Average distance and standard deviation for both
parameter estimation techniques decrease as sample size increases. Typically, the larger the sample size,
the less often MDE will beat MLE, but that is not the case here. In fact, Minimum Distance increased its
percentage of wins from sample sizes of 100 to sample sizes of 500. These results are summarized in Table
12 and Figure 6.

Sample sizes of 750 were also made to compare with previous research using Minimum Distance
by Benton-Santo for parameter estimation of the mixture of Exponential distributions (1:33). The
Maximum Likelihood Estimators used in this thesis provided better estimates than the Method of Moments
that she used. Her results showed that Minimum Distance did not help improve parameter estimation. The
results in Table 13 and Figure 7 show slight improvement by Minimum Distance over Maximum
Likelihood. The reason is that Maximum Likelihood provides a better estimate to begin with to initialize

the Method of Minimum Distance.
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Table 12 Mixture of Exponential Distributions, Known Location Parameters, 1000 Replications

Distribution n %MDE MLE MLE MDE MDE
Better Ave Dist StDev Ave Dist StDev

Dist Dist

GGD9Y(0,0.5,1,1,0,2,1,1, 0.25) 5 61.1% 0.1496 0.2814 0.1254 0.2437
Equivalent to 20 54.9% 0.0361 0.0593 0.0344 0.0581

0.25 Expo(0.5) + 0.75 Expo(2) 50 53.6% 0.0157 0.0199 0.0153 0.0187

75 48.1% 0.0106 0.0137 0.0109 0.0141
100 48.2% 0.0086 0.0115 0.0090 0.0128
500 52.2% 0.0022 0.0026 0.0021 0.0026
GGD9(0,0.5,1,1,0,2,1,1, 0.5) 5 57.7% 0.2399 0.5117 0.2141 0.4859
Equivalent to 20 51.8% 0.0539 0.0894 0.0518 0.0839
0.50 Expo(0.5) + 0.50 Expo(2) 50 50.2% 0.0191 0.0274 0.0197 0.0306

75 53.3% 0.0126 0.0154 0.0127 0.0158
100 52.4% 0.0109 0.0145 0.0109 0.0147
500 56.0% 0.0022 0.0027 0.0021 0.0025
GGD9(0,0.5,1,1,0,2,1,1, 0.75) 5 55.1% 0.2799 0.5469 0.2526 0.4957
Equivalent to 20 47.9% 0.0617 0.1140 0.0617 0.1141
0.75 Expo(0.5) + 0.25 Expo(2) 50 50.5% 0.0211 0.0364 0.0216 0.0381

75 54.3% 0.0150 0.0253 0.0148 0.0240
100 51.5% 0.0098 0.0147 0.0095 0.0138
500 53.5% 0.0020 0.0027 0.0019 0.0024

Fixed Parameters:

Mixed Exponential; C1=0, B1=1, P1=1, C2=0, B2=1, P1=1
Parameters fixed by MDE:

Mixed Exponential; M
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Table 13 Mixture of Exponential Distributions, 750 Variates, 1000 Replications

Distribution|  n %MD MLE MLE MDE MDE| Benton- Benton-
E Ave Dist StDev Ave Dist StDev Santo Santo
Dist Distf Moment MD
Ave Dist _ Ave Dis
GGD9(0,0.5,1,1,0,1,1,1, 0.25) | 750 50.4% 0.00091 0.00112 0.00090 0.00110{ 0.101567 0.105535
Equivalent to
0.25 Expo(0.5) + 0.75 Expo(1)
GGD9(0,0.5,1,1;0,1,1,1;0.5) 750 52.3% 0.00038 0.00042 0.00037 0.00041| 0.0862087 0.0910827
Equivalent to
0.50 Expo(0.5) + 0.50 Expo(1)
GGD9(0,0.5,1,1;0,1,1,1; 0.75) | 750 51.4% 0.00048 0.00083 0.00048 0.00081 - -
Equivalent to
0.75 Expo(0.5) + 0.25 Expo(1)
GGD9(0,2,1,1,0,0.5,1,1, 0.25) | 750 54.6% 0.00138 0.00193 0.00128 0.00164{ 0.0134047 0.0159149
Equivalent to
0.25 Expo(2) + 0.75 Expo(0.5) ‘
GGD9(0,2,1,1,0,0.5,1,1,0.5) | 750 52.7% 0.00116 0.00148 0.00113 0.00143} 0.0208788 0.0281973
Equivalent to
0.50 Expo(2) + 0.50 Expo(0.5)
GGD9(0,2,1,1, 0,0.5,1,1, 0.75) | 750 51.5% 0.00123 0.00143 0.00118 0.00136{ 0.0339208 0.0428782
Equivalent to
0.75 Expo(2) + 0.25 Expo(0.5)
GGD9(0,3,1,1,0,0.5,1,1, 0.25) | 750 52.1% 0.00111 0.00158 0.00105 0.00132] 0.0073279 0.011018
Equivalent to
0.25 Expo(3) + 0.75 Expo(0.5) _
GGD9Y(0,3,1,1,0,0.5,1,1,0.5) | 750 52.2% 0.00129 0.00147 0.00127 0.00145{ 0.136226 0.0265675
Equivalent to
0.50 Expo(3) + 0.50 Expo(0.5)
GGD9(0,3,1,1,0,0.5,1,1, 0.75) | 750 55.7% 0.00118 0.00129 0.00113 0.00128{ 0.0235877 0.0381142

Equivalent to
0.25 Expo(3) + 0.75 Expo(0.5)

Fixed Parameters:

Mixed Exponential; C1=0, B1=1, P1=1, C2=0, B2=1, P1=1

Parameters fixed by MDE:

Mixed Exponential; M

Benton-Santo used Method of Moments instead of MLE. She used 500 replications and only calculated the

Mean Square Error for the mixing proportion estimates. Her distance estimate was defined as

500
MSE = Y%w 3. (m, —m)* (1:29,33).
i=1
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4.4 Mixture of Weibull Distributions with Known Locations Results

For the case of the mixture of Weibull distributions with known location parameters, it was
assumed that the functional form of the distribution was known. Therefore, the shape/power parameters bl
and b2 were fixed at 1. A Maximum Likelihood Estimate was calculated. The mixture parameter was fixed
using Minimum Distance and the remaining parameters re-estimated using Maximum Likelihood. Although
a penalty function was tested to force the derivatives of the log likelihood function to zero, it did not appear
to help with the estimates, thus the estimates were calculated without a penalty function.

Average distances and standard deviations of distance decreased for both Maximum Likelihood
and for Minimum Distance as sample size increased. Minimum Distance showed that for this distribution it
improved the estimates for all sample sizes for a large percentage of the replications run. The results are

summarized in Table 14 and Figure 8.
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Table 14 Mixture of Weibull Distributions, Known Locations, 1000 Replications

Distribution n %MDE MLE Ave MLE MDE MDE
Dist Stdev Ave Dist  Stdev

Dist Dist

GGD9(0,4,1,0.5,0,1,1,0.5, 0.25) 5 56.0% 0.8419 55058 0.5126 2.5931
Equivalent to 20 69.3% 0.0930 0.6888 0.0493 0.2710
0.25 Weibull(0.5,4) + 50 71.4% 0.0279 0.1099 0.0144 0.0560
0.75 Weibull(0.5,1) 75 67.6% 0.0239 0.2033 0.0124 0.1177
100 69.1% 0.0188 0.1724 0.0109 0.1414

500 63.7% 0.0021 0.0057 0.0014 0.0038

GGD9(0,4,1,0.5,0,1,1,0.5, 0.5) 5 60.0% 0.7112 45078 04976 3.0340
Equivalent to 20 74.6% 0.1358 0.8827 0.0603 0.7216
0.50 Weibull(0.5,4) + 50 71.3% 0.0180 0.0533 0.0107 0.0278
0.50 Weibull{0.5,1) 75 68.7% 0.0160 0.0486 0.0081 0.0202
100 68.9% 0.0114 0.0621 0.0070 0.0575

500 64.5% 0.0019 0.0038 0.0014 0.0068

GGD9(0,4,1,0.5,0,1,1,0.5, 0.75) 5 65.4% 1.1710 8.3871 0.9754 10.2107
Equivalent to 20 749% 0.0894 0.6536 0.0412 0.2613
0.25 Weibull(0.5,4) + 50 71.9% 0.0221 0.0804 0.0095 0.0176
0.75 Weibult(0.5,1) 75 706% 0.0197 0.1580 0.0081 0.0320
100 70.6% 0.0128 0.0749 0.0059 0.0274

500 62.5% 0.0015 0.0031 0.0009 0.0014

Fixed Parameters:

Mixed Weibull; C1=0, B1=1, C2=0, B2=1

Parameters fixed by MDE:

Mixed Weibull; M
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4.5 Mixture of Exponentials with Unknown Locations Results

For the case of mixtures of Exponentials with unknown locations, it was assumed that the
functional form of the distribution was known. Therefore, B1, P1, B2, P2 were all fixed at one. A
Maximum Likelihood Estimate was found. The mixture parameter was fixed using Minimum Distance
Estimation. Next, the smaller location parameter was fixed using Minimum Distance. The remaining
parameters were then re-estimated.

Average Distance and standard deviation for both estimation techniques decreased with increasing
sample size. Minimum Distance showed significant improvement in sample sizes of 5. It provided no
significant improvements for sample sizes larger than that. The results are summarized in Table 15 and

Figure 9.
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Table 15 Mixture of Exponentials with Unknown Location Parameters, 1000 Replications

Distribution n  %MDE MLE Ave MLE MDE MDE
Better Dist StDev Ave Dist  StDev

Dist Dist

GGD9(5,0.5,1,1, 10,0.5,1,1, 0.25) 5 64.0% 22724 7.6746 11175 7.65779
Equivalent to: 20 37.6% 0.1618 0.15631 0.2599 0.2006
0.25 Expo(0.5,5) 50 45.1% 0.0927 0.0709 0.1081 0.0982
+ 0.75 Expo(0.5,10) 75 459% 0.0811 0.0620 0.0867 0.0730
100 455% 0.0797 0.0604 0.0797 0.0667

500 50.2% 0.0642 0.0517 0.0529 0.0601

GGD9(5,0.5,1,1, 10,0.5,1,1, 0.5) 5 80.2% 1.4787 3.4304 0.4949 1.1731
Equivalent to: 20 30.5% 0.1354 0.1008 0.2278 0.1374
0.50 Expo(0.5,5) 50 33.8% 0.0494 0.0424 0.0899 0.0922
+ 0.50 Expo(0.5,10) 75 32.7% 0.0330 0.0383 0.0577 0.0632
100 37.2% 0.0302 0.0353 0.0462 0.0503

500 43.6% 0.0181 0.0296 0.0215 0.0361

GGD9(5,0.5,1,1,10,0.51,1,0.75)| 5 828% 1.3638 22765 0.4414 0.4302
Equivalent to: 20 28.3% 0.1348 0.1169 0.2171 0.1114
0.75 Expo(0.5,5) 50 26.4% 0.0451 0.0406 0.1129 0.1011
+ 0.25 Expo(0.5,10) 75 235% 0.0260 0.0293 0.0767 0.0873
100 28.7% 0.0188 0.0237 0.0487 0.0640

500 37.1% 0.01567 0.0307 0.0191 0.0277

Fixed Parameters:

Mixed Exponential; Bl=1, P1=1, B2=1, P1=1

Parameters fixed by MDE:

Mixed Exponential; M, C1
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4.6 Mixture of Weibull Distributions with Unknown Locations Results

For the case of mixture of Weibull distributions with unknown location parameters, it was assumed
that the functional form of the distribution was known. Therefore, Bl and B2 were fixed at one. The other
parameters were estimated using MLE. The mixture parameter was fixed using Minimum Distance
Estimation, then the smaller location parameter was fixed using MLE. The remaining parameters were re-
estimated using MLE.

Three types of mixtures of Weibull distributions were estimated. The first was a widely separated
mixture of two Weibull distributions with power parameter less than one. The second was a widely
separated mixture of two Weibull distributions with power parameter greater than one. The third was a
non-separated mixture of two Weibull distributions with different scale parameters. For the widely
separated mixturés, MDE improved the parameter estimations over MLE. Surprisingly, for some small
sample sizes for Weibull distributions with power less than one, MDE did not appear to improve the
estimation, whereas it did for higher sample sizes. For the mixture of two non-separated Weibull
distributions, MDE did not appear to help improve the estimates too much. The results are summarized in

Table 16, 17, and 18 and in Figure 10, 11 and 12.




Table 16 Mixture of Non-Separated Weibull Distributions, 1000 Replications

Distribution n %MDE MLE Ave MLE StDev MDE Ave MDE| Mumford
Better Dist Dist Dist StDev] 9%MDE

Dist Better

GGD9(5,4,1,0.5,5,1,1,05,0.1)| 5 49.4% 13.4865 189.1606 9.5115 1 14.2607 -
Equivalent to 10 53.4% 8.7929 129.3095 4.6741 46.6752 563.5%
0.1 Weibull (0.5,4,5) + 20 60.8% 5.0829 57.0811 2.5644 32.4602 43.2%
0.9 Weibuli (0.5,1,5) 50 585% 1.4275 9.2331 0.9035 6.3840| -
75 509% 1.9690 26.1039 0.7328 7.3919 -

: 100 49.2% 1.8295 19.6849 0.4764 2.3463 42.8%
GGD9(5,4,1,0.5,5,1,1,05,0.3) | 5 46.2% 18,5703 502.2032 3.9883 16.41 49| -
Equivalent to 10 52.1% 3.6368 48.8797 2.3246 6.8973 55.2%
0.3 Weibull (0.5,4,5) + 20 59.1% 1.7274 10.1159 15340 6.8951 55.6%
0.7 Weibuli (0.5,1,5) 50 52.1% 1.2914 0.7886 0.4992 1.5360 -
75 452% 17.4282 516.9004 0.9029 17.6258 -

100 40.8% 0.7800 8.9131 0.4304 3.1905 56.3%

GGD9(5,4,1,0.5,5,1,1,05,0.5)| 5 47.9% 16.8482 304.9816 4.0251 24.0798 -
Equivalent to 10 52.7% 1.2135 3.0290 2.3620 9.9836 93.2%
0.5 Weibull (0.5,4,5) + 20 57.0% 1.5634 14.2040 1.2442 56163 98.1%
0.5 Weibull (0.5,1,5) 50 45.7% 0.5765 40628 0.4739 1.8064 -
75 41.7% 1.8968 23.1605 0.3687 1.1389 -

100 41.3% 0.2024 1.0878 0.2801 0.5711 99.0%

Fixed Parameters:

Mixed Weibull; B1=1, B2=1

Parameters fixed by MDE:

Mixed Weibull; M, C1

Mumford used a variety of Minimum Distance settings (37:42-44,50).
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Table 17 Mixture of Widely Separated Weibull Distributions with Power <1, 1000 Replications

Distribution n %MDE MLE MLE MDE MDE| Mumford
Better Ave Dist StDev Ave Dist StDev] %MDE

Dist Distf  Better

GGD9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.1) 5 595% 16.1714 108.6143 4.4572 13.9817 -
Equivalent to 10 84.5% 7.5789 405318 1.6038 9.9351] 86.3%
0.1 Weibull (0.9,0.5,5) + 20 94.4% 8.2328 76.6810 0.6658 2.4105] 82.0%
0.9 Weibull (0.9,0.5,10) 50 98.5% 7.9524 105.5130 0.5657 3.6631 -
75 98.0% 17.3983 314.9763 0.5450 2.2690] -

100 98.4% 8.1671 89.3714 0.4679 1.1362] 84.6%

GGD9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.3) 5 49.5% 28.7628 179.1810 5.8101 23.8569 -
Equivalent to 10 65.8% 7.9255 40.4792 2.0909 7.6177| 41.3%
0.3 Weibull (0.9,0.5,5) + 20 76.6% 34.5906 808.7572 1.1381 4.5695| 45.9%
0.7 Weibull (0.9,0.5,10) 50 89.5% 9.1949 101.6483 0.6468 2.8552 -
75 92.0% 4.6411 28.8257 0.6453 3.4988 -

‘ 100 93.4% 4.68561 27.6269 0.5303 3.5554| 51.9%
GGD9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.5) 5 44.6% 18.1195 136.0094 6.2287 19.1815 -
Equivalent to 10 49.0% 8.4700 43.1619 3.9416 22.3347| 86.3%
0.5 Weibull (0.9,0.5,5) + 20 57.3% 7.1467 56.5441 15195 3.2892 82.0%
0.5 Weibull (0.9,0.5,10) 50 65.9% 10.2861 139.5968 2.3714 30.1318 -
75 67.0% 16.0948 232.5186 0.7965 1.8866 -

100 .67.6% 9.2925 78.4565 0.9382 6.0059] 84.6%

Fixed Parameters:

Mixed Weibull; Bl1=1, B2=1
Parameters fixed by MDE:

Mixed Weibull; M, C1

Mumford used a variety of Minimum Distance settings (37:42-44,52).
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Table 18 Mixture of Widely Separated Weibull Distributions with Power >1, 1000 Replications

Distribution n %MDE MLE MLE MDE MDE| Mumford
Better Ave Dist StDev Ave Dist StDev Dist %MDE

Dist Better

GGD9(5,0.5,1,3, 10,0.5,1,3, 0.1) 5 80.0% 10.5399 134.3711 2.3503 13.4631 -
Equivalent to 10 74.6% 5.8005 64.5266 0.9938 3.3484 60.9%
0.1 Weibuli (3,0.5,5) + 20 78.3% 4.3341 48.4001 0.7052 0.8290 44.2%
0.9 Weibull (3,0.5,10) 50 82.4% 3.6058 37.0374 0.6286 0.7245 -

75 84.3% 10.7920 164.8084 0.5922  0.4017 -
100 85.4% 15.8059 274.6573 0.5867  0.7261 28.4%

GGD9(5,0.5,1,3, 10,0.5,1,3, 0.3) 5 68.4% 40.1347 662.1318 50.5883 1423.6050 -
Equivalent to 10 74.9% 5.0686 72.9993 1.8382  9.2338 41.6%

0.3 Weibult (3,0.5,5) + 20 76.0% 3.0514 29.3728 1.1222  3.7143 29.0%
0.7 Weibull (3,0.5,10) 50 85.7% 22.0531 602.9458 0.6748  0.9315 -

75 79.4% 89066 58.4360 4.0360 26.7977 -
100 87.0% 15.1667 196.6024 0.6447  0.7103 39.6%
GGD9(5,0.5,1,3, 10,0.5,1,3, 0.5) 5 68.1% 18.7441 286.7962 2.9921 11.6497 -
Equivalent to 10 77.7% 4.3577 47.6659 1.9486 7.5849|  82.8%

0.5 Weibull (3,0.5,5) + 20 839% 4.3289 57.9696 0.9862 2.3134 86.9%
0.5 Weibuli (3,0.5,10) 50 88.1% 2.3438 21.3958 0.7094  2.3961 -

75 89.5% 4.8142 64.7030 28.0315 866.4996 -
100 90.8% 14.5109 265.0473 0.5774  0.6980 94.7%

Fixed Parameters:

Mixed Weibull; B1=1, B2=1
Parameters fixed by MDE:

Mixed Weibull; M, Cl

Mumford used a variety of Minimum Distance settings (37:42-44,51).
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4.7 Mixture of Generalized Gamma Distribution Results

For the case of the mixture of Generalized Gamma Distributions. It was assumed that the
functional form of the distribution was known. No parameters were fixed prior to estimation All the
parameters were estimated using MLE. The mixture parameter was fixed using Minimum Distance, and
then the smaller location parameter was fixed using Minimum Distance. The remaining parameters were re-
estimated using MLE.

Three types of mixtures of the Generalized Gamma Distributions were tested. The first was a
mixture of two half-normal distributions. The second was a mixture of gamma distributions. The third was
mixture of Weibull distributions. Average distances and standard deviations for each of these cases tended
to decrease with sample size, but this was not always the case, because there were some extreme outliers.
For the most part, Minimum Distance did not improve parametef estimates. This is caused by the fact that
the MLE estimates were much further from the true populations than in previous cases. The results are
summarized in Table 19, 20 and 21, as well as in Figure 13, 14 and 15.

An attempt was made to improve the Maximum Likelihood estimate by restarting the Genetic
Algorithm 15 times for the estimation of the GGD9(5, 0.5,1,2, 10,0.5,1,2 0.5) which is equivalent to 0.5
Weibull (2,0.5,5) + 0.5 Weibuil(2,0.5,10) for sample sizes equal to ten. This was attempted so that the
Maximum Likelihood estimate would not be affected by the initial population draws of the Genetic

Algorithm, It did not improve the Maximum Likelihood Estimate.
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Table 19 Mixture of GGD9, Mix of Half-Normal Distributions Results, 1000 Replications

Distribution n %MDE MLE Ave MLE StDev MDE Ave MDE StDev
Better Dist Dist Dist Dist

GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.1) 5 36.5% 17.2074 235.0678 14.7188 173.3774
Equivalent to 10 42.7% 160.2340 4065.4007 214.2402 6353.3455
0.1 Half-Normal{(0.5,5) + 20 41.4% 24.1075 317.4191 5.4549 48.8895
0.9 Half-Normal(0.5,10) 50 35.4% 9.2536 55.6258 14.6415 342.8181
75 30.1% 35.3408 800.1484 41229  19.4784

100 28.8% 12.0450 103.1655 16.2656 412.0095

GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.3) 5 359% 172.1579 4902.1669 25.8020 699.5237
Equivalent to 10 325% 57.4000 1101.7336 29.9420 764.9027
0.3 Half-Normal(0.5,5) + 20 31.7% 33.1320 655.6209 8.2653 63.0886
0.7 Half-Normal(0.5,10) 50 30.1% 233.4613 4247.8926 8.9785 107.4095
75 30.1% 34.7074 744.7061 7.3780 68.8707

100 31.5% 97.7347 2680.0596 12.8910 132.3850

GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.5) 5 228% 16.5445 . 300.2714 2.2366 10.5080
Equivalent to 10 25.0% 13.8057 122.0543 22.0262 438.7600
0.5 Half-Normal(0.5,5) + 20 29.0% 195.1772 5736.0197 8.9189 77.0940
0.5 Half-Normal(0.5,10) 50 31.0% 11.1105 60.9907 24.3062 353.2711
75 31.6% 21.0423 310.3885 44.9672 816.7931

100 32.8% 9.5300 00.2882 15.1278 157.5469

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1
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Table 20 Mixture of GGD9, Mix of Weibull Distributions Results, 1000 Replications

Distribution n %MDE MLE Ave MLE StDev MDE Ave MDE StDev
Better Dist Dist Dist Dist

GGDY(5,0.5,1,2, 10,0.5,1,2, 0.1) 5 39.2% 3254816 3041.3151 417.9064 7330.9237
Equivalent to 10 36.1%  83.6890 709.4128 102.1803 2929.3164
0.1 Weibull(2,0.5,5) + 20 40.1% 2049.55634 55100.3625 10.8364 132.0712
0.9 Weibull(2,0.5,10) 50 46.5% 141.1049 2016.3228 5.7318 45.5691
75 516% 276.7365 7004.7223  9.3178 114.8154

100 56.2%  43.2844 4520912 20.0893 371.8290

GGD9(5,0.5,1,2, 10,0.5,1,2, 0.3) 5 23.1%  48.1144 550.5923 14.5816 161.7734
Equivalent to 10 26.9%  46.4158 693.9520 19.1025 330.2501
0.3 Weibull(2,0.5,5) + 20 35.3% 117.4913 2331.9271 15.9278 179.7710
0.7 Weibull(2,0.5,10) 50 43.4% 64.7897 1028.8367 53.1290 1188.0150
75 486% 379.4672 8239.3617 15.6233 114.6346

100 48.8%  90.4284 1598.1520 11.3831 65.2074

GGD9(5,0.5,1,2, 10,0.5,1,2, 0.5) 5 20.5% 76.9953 1566.1730 16.7244 134.9463
Equivalent to 10 23.6%  54.1197 687.8037 124.5002 3058.3391
0.5 Weibull(2,0.5,5) + 20 32.3% 99.8584 2306.5141 16.9092 188.1700
0.5 Weibull{(2,0.5,10) 50 38.8% 206.1879 5423.9182 318.4078 9035.1012
75 26.0%  76.6731 810.6282 56.9058 832.25682

100 42.7% 105.9541 1635.9082 28.3106 228.3784

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1
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Table 21 Mixture of GGD9, Mix of Gamma Distributions, Results, 1000 Replications

Distribution n %MDE MLE Ave MLE StDev  MDE Ave MDE StDev
Better Dist Dist Dist Dist

GGD9(5,0.5,2,1, 10,0.5,2,1, 0.1) 5 23.0% 3839.5630 14198.2036 30965.6477 107927.1025
Equivalent to 10 208% 818.9738 3836.4657 22770.1562 97998.8013
0.1 Gamma(0.5,2,5) + 20 37.0% 253.6583 2941.2262 8244.0625 56846.6629
0.9 Gamma(0.5,2,10) 50 44.3% 1286.4060 38047.1286 105.9396 3042.7405
75 47.2% 90.1245 867.8399 17.8362 214.2934

, 100 471%  31.8820 312.7171 5.6627 48.8987
GGDY(5,0.5,2,1,10,0.5,2,1, 0.3) 5 20.3% 426.5057 4244.6433 2943.3344 20946.5659
Equivalent to 10 28.0% 115.0250 1014.4080 470.7710 6819.6270
0.3 Gamma(0.5,2,5) + 20 34.8% 169.4732 2068.7955 26.8496 277.0682
0.7 Gamma(0.5,2,10) 50 43.4% 134.8274 2012.9430 43.0410 532.2295
75 44.7% 143.5685 2194.8084 745137 1723.2606

100 46.7% 191.0620 3022.1309 12.5361 148.4399

GGD9(5,0.5,2,1,10,0.5,2,1, 0.5) 5 16.7% 212.9728 4808.2843 868.0391 24436.3313
Equivalent to 10 26.3%  88.9492 1134.4886 63.3647 781.1593
0.6 Gamma(0.5,2,5) + 20 32.8% 29.7252 401.6574 13.9387 154.2059
0.6 Gamma(0.5,2,10) 50 355%  67.2405 647.6326 95.4062 1940.4139
75 41.1% 347.8163 5096.1299 75.5659  1043.2663

100 42.1% 166.4310 2298.5811 1562.5097 3295.3148

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1

57



100%

GGD9(5,0.5,0.5,2, 10,0.5,0.5,2)

30% -
20% -
10% -

0% -

90%
. 80%
£ 70%
o 60% @0.1
g 50% mo.3
‘5 40% mo5
5 30% -
o 20% -

10% -

0% -
Sample Size (n)
Figure 13 Percent MDE Better, GGD9, Mixture of Half-Normal Distributions
GGD9(5,0.5,1,2, 10,0.5,1,2)

100%

90%
. 80%.
g 70%
E 60% mo.1
g 50% |03
£ 40% mo05
8
o

20 50 75 100
Sample Size (n)

Figure 14 Percent MDE Better, GGD9, Mixture of Weibull Distributions

58




100%

GGD#9(5,0.5,2,1, 10,0.5,2,1)

90%

80%

70%

60%

50%

40%
30%

Percent MDE Better

20% -
10% -

0% -

Sample Size (n)

mo.1
0.3
mos5

Figure 15 Percent MDE Better, GGD9, Mixture of Gamma Distributions

59




V. Conclusions

5.1 MLE Conclusions

Maximizing the Maximum Likelihood Equation using a Genetic Algorithm worked well but gave
poorer estimates as the number of parameters being estimated got larger, particularly when both location
and mixture parameters were being estimated. For the most part, it behaved exactly as expected; as sample
size grew, the average distance and standard deviation of the distance decreased. It tended to improve
relative to Minimum Distance as sample size grew larger. It provided excellent estimators for the single
component parameters. The use of the first derivative penalty function worked very well for the single
component distributions. It, also, provided good estimators for the mixture of Exponential distributions
with both known and unknown location parameters, and for the mixture of Non-separated Weibull
distributions with known location parameters without the use of any first derivative penalty functions. MLE
did not work as well for the mixture of Weibull distributions with unknown location parameters and did
particularly poorly for the mixture of Generalized Gamma Distributions. The use of first derivative penalty
functions for the mixture distributions did not help in this research, so it was abandoned, but with the proper
scaling it might work. Mumford’s technique obtained lower MSE than this research. His use of the first
derivative information for the Mixture of Weibull distributions with unknown location parameter gives

evidence that it works. There must be a way to use that information as well for a Genetic Algorithm.

5.2 MDE Conclusions

Minimum Distance provided an improvement in many of the cases tested, particularly for small
sample sizes. It improved the estimates of the Maximum Likelihood Estimator for the single component
distributions, for the mixture of Exponential distributions with known parameters and for the mixture of
non-separated Weibull distributions with known location parameters. It did not provide better esti.mates for
the Mixture of Weibull distributions with unknown location parameters or for the Mixture of Generalized

Gamma Distributions. These are the same distributions that the Maximum Likelihood Estimators did not
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provide as good as estimates for. It is known that Minimum Distance is sensitive to the initial estimate that
it is provided. For the cases where it did not receive a good initial estimate, it performed poorly. It was
hoped to show that Minimum Distance would improve parameter estimation for the Mixed Generalized

Gamma Distribution. This was not shown because the Maximum Likelihood Estimates were so poor.

5.3 Recommendations

There are several avenues for continued research that this work has shown. First of all, the
possibility of using first derivative information for the parameter estimation of the Mixed Generalized
Gamma Distribution still exists. Given that the proper scaling can be discovered, much better MLE
parameters could be calculated and thereby also improve the initial estimate for Minimum Distance, which
would then improve its estimation capability, possibly to the point that it improves relative to Maximum
Likelihood Estimation.

Minimum Distance could be applied to other parameters not covered in this research. 'Ihe large
distances seen when estimating the parameters for mixture of Generalized Gamma Distributions might be
reduced by using Minimum Distance on the power/shape parameters bl and b2. These estimated
powet/shape parameters were far from their true parameters, and were forcing the other parameters to
compensate for them. This had the unfortunate effect of driving the other estimated parameters far from
their true parameters.

Another problem that was encountered was that the second location parameter, c,, was being
pushed above the highest variates in the sample and the mixture parameter was nearing one. This means
that the estimation techniques were trying to fit the mixture with a single distribution. This research
penalized the objective if ¢, was greater than the largest variate in the sample. Further research could
determine if a different upper limit for it would improve its distance from true such as the k™ order statistic
vs. the n™ order statistic wheren >k > 1.

Another possibility for improving the efficiency of this Genetic Algorithm used is to improve the
stopping criteria. This research used a stopping criteria that perhaps was too simple. It simply checked

every 200™ generation for MLE and every 150" for MDE and then stopped if the best individual did not
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change in that amount of time. The number of generations run could possibly be reduced by a stopping
criteria based on percentage improvements in the best individual over successive generations. It could also
be reduced by storing the values of the 200 previous generations and checking the stopping criteria every
generation. This could greatly reduce the number of function evaluations that are required, which would
give significant reduction in simulation run times.

The results tables showed average distance and average standard deviation of distance. These
measures can be greatly affected by outliers. Other measures that are less sensitive to outliers, such as the
median of the distance should be considered. Study of outliers should be considered in any future research
that} will use the distance as a measure of how much Minimum Distance improves the parameter estimates of

Maximum Likelihood.
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Appendix A PDFs for Special Case Distributions

Key for Special Case Distributions taken from Law & Kelton, (location parameter added) (31:331-335):

Exponential: Expo(b,c)

—(x-¢)/b

f(x;b,c)=—-¢ x>c>0

o |-

Expo(b) = Expo(b,0) = GGD4(0,b,1,1)

Gamma: Gamma(a,b,c)

_ (X— c)a—l . e-—(x—c)/b
0="74

x>c>0

Gamma(a,b) = Gamma(a,b,0) = GGD4(0,a,b,1)

-Weibull: Weibull(a,b,c)

(v— )21, —{(x—c)/b)*
f(x)=a(x 2 bae x>c>0

Weibuli(a,b) = Weibull(a,b,0) = GGD4 (0,b,1,a)
Generalized Gamma: GGD4(c,a,b,p)
p- (x—c)®P! . g lE-0nar
a"®.T'(b)

f(x;c,a,b,p) =

where a,b,p 20 and x>c¢ 2 0 (11:2).

GGD3(a,b,p) = GGD4(0,a,b,p)
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Appendix B Source Code

Notes to the Code

1. Single quotes (‘) denote comments which are not executed.

2. All public, i.e. global or common, variables are designated with a “pv” .

3. Subroutine calls have been documented as best possible to give the module that the called routine can
be found in. If no module reference is given, the called subroutine will be in the same module as the calling
subroutine.

4. The line continuation character “_” when used is found one space after the last text on a line. It similar

to the “&” in card column 6 of FORTRAN. It continues the next line as part of the previous line.
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Public & Settings Module

Option Explicit

'Contains variables and settings used throughout the program.

Public Const pvPopSize =

5 '‘Max number of individual in a generation.

Public Const pvSmallestParam = 0.0078125 'Smallest value a parameter can be
Public Const pvBiggestParam = 15.9921875 'Biggest value a parameter can be

Public pyNumMutation
Public pvNCross

Public pvMDE

Public pvMaxVariates
Public pvCheck
Public pvLChrom

Public pvMaxLocParam
Public pvCl
Public pvC2
Public pvM
Public pvBiggestVariate

Type IndividualRecord
Chrom(76)
Ci
Al
B1
P1
C2
A2
B2
P2
M
Fitness
Parent}
Parent2
Xsite

End Type

Type Population

AsLong 'Number of mutations that occur
AsLong 'Number of crossovers that occur

As Boolean 'True if MDE, false if on mle

As Integer

As Integer 'check to see Every pvCheck for convergence.
As Integer "Length of a Chromosome

As Single "This is the biggest the LocParam can ever be.
As Single 'This is the smaller location parameter

As Single 'This is the bigger location parameter

As Single 'This is the mixture parameter

As Single 'This is the nth order statistic.

As Boolean ' Each position is an Allele: True=1,False=0
As Single

As Single

As Single

As Single

As Single

As Single

As Single

As Single

As Single

As Double ' Objective function value

As Integer ! parents

As Integer

As Integer ‘cross point

Individual(pvPopSize) As IndividualRecord

End Type
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' This initializes the settings for Maximum Likelihood Estimation
Sub SetupForMLE()

pvMDE = False

pvLChrom = 76

pvCheck = 200
End Sub

' This initializes the settings for Minimum Distance Estimation
Sub SetupForMDE()

pvMDE = True

pvLChrom = 60

pvCheck = 150
End Sub
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Driver Module

Option Explicit
' Contains the Driver Routine.

' Runs the GA for different sample sizes and writes them
' to separate worksheets.
Sub Driver()

pvMaxVariates = 50
Call RunGA

Sheets(""Output").Copy Before:=Sheets(1)
Sheets("'Output').Range("'a:iv").ClearContents
pvMaxVariates = 5

Call RunGA

Sheets("Output").Copy Before:=Sheets(1)
Sheets(""Output').Range("'a:iv'").ClearContents
pvMaxVariates = 20

Call RunGA

Sheets("Output").Copy Before:=Sheets(1)
Sheets("Output").Range("a:iv'").ClearContents
pvMaxVariates = 50

Call RunGA

Sheets(*'Output").Copy Before:=Sheets(1)
Sheets(""Output™).Range("a:iv").ClearContents
pvMaxVariates = 75

Call RunGA

Sheets("Output").Copy Before:=Sheets(1)
Sheets("'"Output').Range("a:iv').ClearContents
pvMaxVariates = 100

Call RunGA

End Sub
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' This runs the MicroGA 1000 times and saves it periodically.

t

Sub RunGA()
Dim Distrib  As String
Dim i As Integer

Dim UppLim As Single

On Error GoTo handleCancel
Application.EnableCancelKey = xIErrorHandler

Application.DisplayAlerts = False
Sheets("'Output").Select

Const TC1 =5 "True Parameters
Const TAl =2
Const TB1 =2
Const TP1 =1

Const TC2 =10
Const TA2 =2
Const TB2 =2
Const TP2 =1

Const TM = 0.5

Distrib = "GGD9(" & TC1 & "," & TA1 & "," & TB1 & "," & TP1 & "," & _
TC2&""&TA2&"" & TB2&"" & TP2&"," & TM & ") n=" & pvMaxVariates

Range("'A1").NoteText Text:=Distrib, Start:=1
Range("A1'").Value = Distrib
Range("al").Select

UppLim = FindUppLim(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TC2) 'in Integrated Dist Mod

For i=1To 1000
Application.StatusBar = Range(""A1").CurrentRegion.Rows.Count - 1
Call MicroGA(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, UppLim)
If (i Mod 48) = 0 Then
ActiveWorkbook.Save
End If
Next i

handleCancel:

Sheets("'Driver Mod").Select
ActiveWorkbook.Save

MsgBox "Data Saved. Select 'Driver' macro to Continue.", vbExclamation, "Dean's Thesis"
End Sub -
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' ClearOutputSheet Macro
* Macro recorded 2/14/98 by Dean Boerrigter
' Removes all data from output sheet and formats it.

Sub ClearOutputSheet()

Sheets("'Output').Select
Sheets("Output").Range(*a:iv").ClearContents

Columns("A:A").ColumnWidth = 3.57
Columns("A:A").ColumnWidth = 4
Columns("'B:B").ColumnWidth = 5.86
Columns("'C:C").ColumnWidth = 35.57
Columns("D:D").ColumnWidth = 38.43
Columns("E:E").ColumnWidth = 11.29
Columns("F:F"").ColumnWidth = 11.29
ActiveWindow.Zoom = 75

Range("'B2").Select
ActiveWindow .FreezePanes = True
End Sub
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Gen Gamma Module

Option Explicit
'Contains the Mixed Generalized Gamma Functions.

' Cumulative density function for the 9-parameter Generalized Gamma

' Distribution

t

Function GGD9cdf(X As Single, C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single) As Double

Dim cdf1 As Single
Dim cdf2 As Single

cdfl =M * GGD4cdf(X, Cl1, Al, B1, P1)

cdf2=0
If X > C2 Then

cdf2 = (1 - M) * GGD4cdf (X, C2, A2, B2, P2)
End If

GGD9cdf = cdfl + cdf2
End Function

' Probability density function for the 9-parameter Generalized Gamma

' Distribution

Function GGD9pdf(X As Single, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single) As Single

Dim pdf1 As Single
Dim pdf2 As Single

pdf1 = M * Exp(InGGD4pdf(X, C1, Al, B1, P1))

If X > C2 Then

pdf2 = (1 - M) * Exp(InGGD4pdf(X, C2, A2, B2, P2))
Else

pdf2=0
End If

GGD9pdf = pdf1 + pdf2
End Function
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' This function returns the value of the
' 4-parameter Generalized Gamma function Cumulative Distribution Function
Function GGD4cdf(X As Single, c As Single, a As Single, b As Single, p As Single) As Single

Dim IncompleteGamma As Single
Dim UpperLimit As Double

UpperLimit=((X-c)/a)*p

If UpperLimit > 1000000000000# Then
GGD4cdf = 0.999999
Exit Function

End If

IncompleteGamma = GaussLegendreQuadrature(0, UpperLimit, 10, b)
GGD4cdf = IncompleteGamma / Exp(InGamma(b)) '
End Function

' The natural log of the probability density function for the 4-parameter

' Generalized Gamma Distribution

' The "on error" is needed to integrate

Function InGGD4pdf(X As Single, ¢ As Single, a As Single, b As Single, p As Single) As Single
Dim d As Single '

d=b*p
On Error GoTo err:
InGGDA4pdf = Log(p) + (d - 1) * Log(X - ¢) - (X -c)/ a)  p - d * Log(a) - d * InGamma(b)

Exit Function
err:

InGGD4pdf = -200
End Function

"'This is the function to be integrated.
' Set up for incomplete Gamma.
Function f(t As Double, b As Single) As Double
If t <> 0 Then
f=Exp(-t)*t (b-1)
Else
f=0
End If
End Function
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' This Integrates f(x,b) from xFirst to xLast.

' Shammas Mathematical Algorithms in VB, pg 89

' McGraw-Hill, 1996

Function GaussLegendreQuadrature(xFirst As Single, xLast As Double, nSubIntervals As Integer, B1 As
Single) As Single

Dim xA As Single, xB As Single

Dim h As Single, hDiv2 As Single

Dim Sum As Double, area As Double, xJ As Double
Static Xk(5) As Single

Static Ak(5) As Single

Dim n As Integer, i As Integer, j As Integer

Xk(0) = -0.9324695142
Xk(1) = -0.6612093865
Xk(2) = -0.2386191861
Xk(3) =0.2386191861
Xk(4) = 0.6612093865
Xk(5) = 09324695142
Ak(0) =0.1713244924
Ak(1) = 0.360761573
Ak(2) = 0.4679139346
Ak(3) = 0.4679139346
Ak(4) = 0.360761573
AK(5) =0.1713244924
area=0

n = nSublntervals

h = (xLast - xFirst) / n
XA = xFirst
Fori=1Ton
Sum=0
xB=xA+h
hDiv2=h/2
' obtain area of sub-interval
Forj=0To5
xJ = xA + hDiv2 * (Xk(j) + 1)
Sum = Sum + Ak(j) * f(xJ, B1)
Next j
area = area + hDiv2 * Sum
xA =xB
Next i

GaussLegendreQuadrature = area
End Function
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' InGamma function

' It returns the value of the LN(Gamma(XX) for XX>0

' Full accuracy is obtained for XX>1

' Numerical Recipes 11/15/92
Function InGamma(xx As Single) As Single

Dim i As Integer

Dim cof(6)  As Single

Dim stp As Single
Dim X As Single
Dim tmp As Single
Dim ser As Single
cof(1) = 76.18009173
cof(2) = -86.50532033
cof(3) = 24.01409822

cof(4) = -1.231739516
cof(5) = 0.00120858003
cof(6) = -0.00000536382

stp = 2.5066282746

X =xx - 1#
tmp=X+5.5
tmp = (X + 0.5) * Log(tmp) - tmp

ser = 1#

Fori=1To6
X=X+1#
ser = ser + cof(i) / X
Next i

InGamma = tmp + Log(stp * ser)
End Function
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ALGORITHM AS 103 APPL. STATIST. (1976) VOL.25, NO.3

Calculates DIGAMMA(X) = D( LOG( GAMMA(X))) / DX
Also known as the Psi function
Function DiGamma(X As Single) As Single

'
L]
t
'
'

DimS As Single
Dimc As Single
Dim S3 As Single
Dim S4 As Single
Dim S5 As Single
Dim dl As Single
DimY As Single
DimR As Single

' Set constants, SN = Nth Stirling coefficient, D1 = DIGAMMA(1.0)

Const ZERO = O#
Const HALF = 0.5
Const ONE = 1#

S = 0.00001

c=8.5

S3 = 0.08333333333
S4 =0.0083333333333
S5 = 0.003968253968
dl = -0.5772156649

'
' Check argument is positive
1

DiGamma = ZERO

Y=X

' Use approximation if argument <= §
'
If (Y <=S) Then ‘
DiGamma=dl -ONE/Y
Return
End If

' Reduce to DiGamma(X + N) where (X + N) >=C
1
linel:
If (Y >= ¢) Then GoTo line2:
DiGamma = DiGamma - ONE/ Y
Y=Y + ONE
GoTo linel:
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' Use Stirling's (actually de Moivre's) expansion if argument > C
line2:

R=ONE/Y

DiGamma = DiGamma + Log(Y) - HALF *R

R=R*R

DiGamma = DiGamma - R * (83 - R * (S4 - R * §85))

End Function
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MicroGA Module

Option Explicit
' Contains the Micro Genetic Algorithm Driver.

1

"' This driver executes the Micro-GA algorithm and calculates an

' MLE & MDE estimate.

Sub MicroGA(TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As
Single, TB2 As Single, TP2 As Single, TM As Single, TrueParmUppLim As Single)

Dim OldPop As Population ' Two non-overlapping populations
Dim NewPop As Population

Dim BestIndividual As IndividualRecord

Dimn As Integer ' Number of variates
Dim i As Integer '1=MLE, 2=MDE

Dim Gen As Integer

Dim SumFitness As Double

Dim Avg As Double

Dim Max As Double

Dim Min As Double

Dim CheckFitness As Double
Dim X(500) As Single 'Variates array

Dim StartTime As Date

Sheets("'output").Select
Call HeaderBest

n = pvMaxVariates
Call GenerateRV(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, X, n) 'in RNG Mod
Cail SetupForMLE
Fori=1To2
StartTime = Time
Gen=0
CheckFitness = -1.79769313486232E+302 ' A very negative number
Call Initialize(OldPop, X, n, SumFitness, Max, Avg, Min, BestIndividual) 'in Init mod

Do
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Gen=Gen + 1

Call Generation(OldPop, NewPop, SumFitness, X, n, BestIndividual)  'in generation mod
Call Statistics(NewPop, SumFitness, Max, Avg, Min, BestIndividual, False) 'in stat mod

'Call Report(Gen, OldPop, NewPop, Max, Min, Avg, SumFitness)

OldPop = NewPop ' advance the generation

If MicroGAConvergance(OldPop, BestIndividual) Then  'in ops mod
Call InitPop(OldPop, X, n, False, BestIndividual) ' in init mod
End If

If (Gen Mod pvCheck) = 0 Then
If CheckFitness = BestIndividual Fitness Then
Exit Do
Else
CheckFitness = BestIndividual.Fitness
End If
End If
Loop

Call ProcessBestIndividual(BestIndividual, X, n, Gen, StartTime, _
TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TrueParmUppLim)

Next i

End Sub
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' This prints out the best individual, and sets up variables for
' Minimum Distance and performs min dist and distance from true
Sub ProcessBestIndividual(BestIndividual As IndividualRecord, X() As Single, n As Integer, Gen As
Integer, StartTime As Date, _
TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, _
TC2 As Single, TA2 As Single, TB2 As Single, TP2 As Single, _
TM As Single, TrueParmUppLim As Single)

Dim Distance  As Single
Dim UpperLimit As Single
Dim NewM As Single
Dim NewCl1 As Single
Dim NewC2 As Single

With BestIndividual

UpperLimit = FindUppLim(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TrueParmUppLim) 'in int
dist mod

‘Integrate from lower limit c1 to Upperlimit
Distance = IntegratedDistance(.C1, UpperLimit, 20, .C1, .Al, .B1, .P1, .C2, .A2, .B2, .P2, M, TC1,
TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM)

Call PrintBest(BestIndividual, n, Gen, StartTime, Distance)

If Not pvMDE Then
Call SetupForMDE
Call RSort(X(), n)
NewM = MinDistM(BestIndividual, X, n)  'Found in MinDistM Mod
NewCl1 = MinDistC1(BestIndividual, X,n) 'Found in MinDistC1 Mod

.M = NewM
.pvM = NewM

.C1 = NewCl
pvCl = NewCl
Fitness = ObjFunc(.C1, .Al, .B1, .P1,.C2, .A2, .B2, .P2, M, X, n)

End If

End With
End Sub
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' Prints the bestIndividual and all necessary statistic

' on the next line on the activesheet.

Sub PrintBest(Best As IndividualRecord, n As Integer, Gen As Integer, StartTime As Date, Dist As Single)
Dim RowOut As Integer, Off As Integer
Dim Better As String

With Best

If pvMDE Then
RowOut = Range("'al").CurrentRegion.Rows.Count
Off =1

Else
RowOut = Range("'al").CurrentRegion.Rows.Count + 1
Off =0

End If

Cells(RowOut, 1) = RowOut - 1
Cells(RowOut,3 +Off) = C1 &"" & A1 &""& B1 &""& P1&""& C2&""& A2&""&
B2&""& P2&"" & M

Cells(RowOut, 5 + Off) = Dist

Cells(RowOut, 7 + Off) = .Fitness

Cells(RowOut, 9 + Off) = Format(StartTime - Time, "n,ss")
Cells(RowOut, 11 + Off) = Gen

1f pvMDE Then
If Dist < Cells(RowOut, 5).Value Then
Better = "MDE"
Else
Better = "MLE"
End If
End If

Celis(RowOut, 2) = Better

End With
End Sub
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' Header for the Best individual report

Sub HeaderBest()

Range("B1") = "Better"
Range("C1") = "MLE Param"
Range("D1") = "MDE Param"
Range("E1") = "MLE Dist"
Range("F1") = "MDE Dist"
Range(""G1") = "MLE Fit"
Range("H1") = "MDE Fit"
Range("I1") = "MLE Time"
Range("J1") = "MDE Time"
Range("K1") = "MLE Gen"
Range("L1") = "MDE Gen"
End Sub




Interface Module

Option Explicit
' Contains the Objective Function and Decode routines for the GA.

" This is the Fitness function

' It calculates the Sum of the logs of GGD9

* and penalizes for probilities = 0 and c2 > greatest variate.

Function ObjFunc(C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single,
B2 As Single, P2 As Single, M As Single, X() As Single, n As Integer) As Double

Dimi As Integer

Dim InGGD4c1 AsDouble  'log of GGD4 Component1 pdf

Dim InGGD4c2 AsDouble 'log of GGD4 Component2 pdf

Dim InGGD9 AsDouble  'log of GGD9 pdf

Dim GGD9 AsDouble '  GGD9 pdf

Dim Constl As Single  'constant portion of GGD4 component1
Dim Const2 As Single  'constant portion of GGD4 component2
Dim DIminusl As Single

Dim D2minusl As Single

InGGD9 =0

Constl = Log(P1) - B1 * P1 * Log(A1) - InGamma(B1)
Const2 = Log(P2) - B2 * P2 * Log(A2) - InGamma(B2)

Dlminusl =B1 *P1 -1
D2minus]l =B2*P2 -1

Fori=1Ton
If X(@i) > C2 Then
InGGD4c2 = Const2 + D2minusl * Log(X(i) - C2) - (X(i) - C2)/ A2) " P2
End If

InGGD4cl = Constl + DIminus! * Log(X(i) - C1) - (X(i) - C1)/ A " P1
GGD9 = M * Exp(InGGD4c1) + (1 - M) * Exp(InGGD4c2)
If GGD9 > 0 Then
InGGD9 = InGGD9 + Log(GGD9)
Else
1nGGD9 = InGGD?9 - 50 'Penalty
End If
Next i
If C2 >= pvBiggestVariate Then InGGD9 = InGGD9 - 200

ObjFunc = InGGD9
End Function
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' Decode string as unsigned binary integer - true=1, false=0
' C2 always > cl.
Sub Decode(Chrom() As Boolean, C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single)
Dim i As Integer

Dim C2Tot As Single
Dim Al1Tot As Single
Dim A2Tot As Single
Dim B1Tot As Single
Dim B2Tot As Single
Dim P1Tot As Single
Dim P2Tot As Single
Dim MTot As Single
Dim PowerOf2 As Single

C2Tot = pvSmallestParam 'to avoid zero's
AlTot = pvSmallestParam

A2Tot = pvSmallestParam

B1Tot = pvSmallestParam

B2Tot = pvSmallestParam

P1Tot = pvSmallestParam

P2Tot = pvSmallestParam

MTot = pvSmallestParam

PowerOf2 = pvSmallestParam
Fori=1To 10
PowerOf2 = PowerOf2 * 2
If Chrom(i) Then A1Tot = A1Tot + PowerOf2
If Chrom(i + 10) Then A2Tot = A2Tot + PowerOf2
If Chrom(i + 20) Then P1Tot = P1Tot + PowerOf2
If Chrom(i + 30) Then P2Tot = P2Tot + PowerOf2
If Chrom(i + 40) Then B1Tot = B1Tot + PowerOf2
If Chrom(i + 50) Then B2Tot = B2Tot + PowerOf2
' If Chrom(i + 60) Then C2Tot = C2Tot + PowerOf2
Next i

If Not pyMDE Then

PowerOf2 = pvSmallestParam
Fori=1To 10

PowerQOf2 = PowerOf2 * 2

If Chrom(i + 60) Then C2Tot = C2Tot + PowerOf2
Next i

PowerOf2 = pvSmallestParam
Fori=1To 6
PowerOf2 = PowerOf2 * 2
If Chrom(i + 70) Then MTot = MTot + PowerOf2
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Next i

M = MTot
C2 =C2Tot + pvCl
Else
M=pvM
C2=pvC2
End If

Cl=pvCl
Al = AlTot
B1=BITot
P1 = P1Tot

A2 = A2Tot
B2 =B2Tot
P2 = P2Tot

End Sub
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' Calculates the summations needed for the log likelihood function

Sub LikelihoodSums(C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single, A2 As
Single, B2 As Single, P2 As Single, M As Single, _

X() As Single, n As Integer, SumLNu As Single, SumUtoP As Single, SumUtoPInU As Single)

Dim i As Integer

DimU As Double
Dim UtoP As Double
Dim InU As Double

SumUtoP =0
SumLNu =0

Fori=1Ton
U=X(i)-Clt
UtoP=UA"P1
InU = Log(U)

SumUtoP = SumUtoP + UtoP
SumLNu = SumLNu + InU
SumUtoPInU = SumUtoPInU + UtoP * InU
Next i
End Sub

' 3rd Equation of Parr & Webster

' A method for Discriminating Between Failure Density Functions Used

' in Reliability Predictions

' Technometrics Vol 7, No 1, pg 1-10 (Feb 1963)

' Used to find 0 of GGD4

Function Parr3(n As Integer, p As Single, b As Single, SumLNu As Single, SumUtoP As Single) As Double
Dim d As Double
d=b*p
Parr3 = Log(p) - Log(n) - Log(d) + Log(SumUtoP) + DiGamma(d / p) - (p/ n) * SumLNu

End Function
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' 4rd Equation of Parr & Webster
* A method for Discriminating Between Failure Density Functions Used
' in Reliability Predictions
' Technometrics Vol 7, No 1, pg 1-10 (Feb 1963)
' Used to find 0 of GGD4
Function Parrd(n As Integer, p As Single, b As Single, SumUtoP As Single, SumUtoPInU As Single) As
Double
Dim d As Double
d=b*p
Parr4 = Log(p) - Log(n) - Log(d) + Log(SumUtoP) + DiGamma(d / p) + (p/ d) - (p/ SumUtoP) *
SumUtoPinU
End Function
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Generation Module

Option Explicit
' Contains the GA routines that create a new generation.

' Create a new generation through select, crossover, and mutation
Sub Generation(OldPop As Population, NewPop As Population, SumFitness As Double, X() As Single, n
As Integer, BestInd As IndividualRecord)

Dim Cnt As Integer
Dim j As Integer

Dim Matel  As Integer
Dim Mate2  As Integer
Dim NextMate As Integer
Dim jCross  As Integer

NextMate = pvPopSize
For j=1To 3 Step 2 ' select, crossover, and mutation loop until newpop is filled

Call SelectMate(Matel, NextMate, OldPop)
Call SelectMate(Mate2, NextMate, OldPop)

' Crossover
Call CrossOver(OldPop.Individual(Mate1).Chrom, OldPop.Individual(Mate2).Chrom, _
NewPop.Individual(j).Chrom, NewPop.Individual(j + 1).Chrom, _
pvLChrom, jCross)

' Decode string, evaluate fitness, & record parentage date on both children
With NewPop.Individual(j)

Call Decode(.Chrom, .C1, .Al, .B1, .P1,.C2, .A2, .B2, .P2, M)
Fitness = ObjFunc(.Cl1, .Al, .B1, .P1, .C2, .A2, .B2, P2, M, X, n)

JParent! = Matel

JParent2 = Mate2

Xsite = jCross
End With

With NewPop.Individual(j + 1)

Call Decode(.Chrom, .C1, .Al, .B1, .P1,.C2, .A2, .B2, .P2, M)
Fitness = ObjFunc(.C1, .Al, .B1, .P1, .C2, .A2, B2, .P2, M, X, n)
Parent]1 = Matel
JParent2 = Mate2
Xsite = jCross

End With

' Increment population index

Next j
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NewPop.Individual(pvPopSize) = Bestind
End Sub
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Operations Module

Option Explicit
' Contains the GA operators

' 3-operators: Reproduction (selectMate), Crossover (crossover),
! & Mutation (mutation)

' Selects a mate and then advances the MatePointer

' Randomly sorts the population and resets the MatePointer

' as needed.

Sub SelectMate(Mate As Integer, MatePointer As Integer, OldPop As Population)

If MatePointer >= pvPopSize Then
Call RandomSortPopulation(OldPop)
MatePointer = 1

End If

If OldPop.Individual(MatePointer).Fitness > OldPop.Individual(MatePointer + 1).Fitness Then
Mate = MatePointer

Else
Mate = MatePointer + 1

End If

MatePointer = MatePointer + 2
End Sub

' Select a single individual via roulette wheel selection
Function Selectind(Pop As Population, SumFitness As Double) As Integer

Dim Rand As Double
Dim PartSum As Double 'Random point on wheel, partial sum

Dim j As Integer ' population index
PartSum = O#
j=0 ' Zero out counter and accumulator

Rand = rnd * SumFitness ' Wheel point calc. uses random number (0,1)
Do 'Find wheel slot

j=j+1

PartSum = PartSum + Pop.Individual(j).Fitness
Loop Until (PartSum >= Rand) Or (j = pvPopSize)

SelectInd = j ! Return individual number
End Function
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' Cross 2 parent strings, place in 2 child strings

Sub CrossOver(Parent1, Parent2, child1, child2, pvLChrom, jCross As Integer)
Dim i As Integer
Dim j As Integer

jCross = RandomInteger(1, pvLChrom - 1) ' Cross between 1 and I-1
pvNCross = pvNCross + 1 ' Increment crossover counter

' {st exchange, 1 to 1 and 2 to 2
For i = 1 To pvLChrom
child1(i) = Parent1(i)
child2(i) = Parent2(i)
Next i

' 2nd exchange, 1 to2 and 2 to 1
For j = jCross + 1 To pvLChrom
child1(j) = Parent2(j)
child2(j) = Parent1(j)
Next j
End Sub

' Test to see if the Convergence rule has been met.
' from Carroll's GAfortran 1.6.4 subroutine gamicro.

Function MicroGAConvergance(OldPop As Population, BestInd As IndividualRecord) As Boolean

Dim i As Integer
Dim j As Integer
Dim Count  As Integer

Count=0
For i = 1 To pvPopSize
For j =1 To pvLChrom
If Not BestInd.Chrom(j) = OldPop.Individual(i).Chrom(j) Then
Count = Count + 1
End If
Next j
Next i

If Count < 0.05 * (pvPopSize - 1) * pvLChrom Then
MicroGAConvergance = True

Else
MicroGAConvergance = False

End If

End Function
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' Sorts the population into a random order
- Sub RandomSortPopulation(Pop As Population)

Dim i As Integer
Dim SwapTo As Integer

Dim Hold As IndividualRecord

For i = 1 To pvPopSize
Hold = Pop.Individual(i)
SwapTo = RandomInteger(1, pvPopSize) ‘Found in Rand mod
Pop.Individual(i) = Pop.Individual(SwapTo)
Pop.Individual(SwapTo) = Hold

Next i

End Sub
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Rand Module

Option Explicit
' Contains the random number operators needed for the GA.

' Flip a biased coin - true if heads

Function Flip(probability As Double) As Boolean
Flip = (rnd <= probability)

End Function

' Pick a random integer between low and high
Function RandomInteger(Low As Integer, High As Integer) As Integer
Dim i As Integer

If Low >= High Then
i=Low ’

Else
i = Fix(rnd * (High - Low + 1) + Low) 'return an integer
If i > High Then i = High

End If

RandomInteger = i
End Function
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Initial Module

Option Explicit
'Contains the initialization routines for the GA

! Initialization Driver
Sub Initialize(OldPop As Population, X() As Single, n As Integer, SumFitness As Double, Max1 As
Double, Avgl As Double, Min1 As Double, BestInd As IndividualRecord)

Randomize )

Call InitPop(OldPop, X, n, True, BestInd)
Call Statistics(OldPop, SumFitness, Max1, Avgl, Minl, BestInd, True)
End Sub

t

' Initialize a population at random

'if first call initialize the whole population, otherwise

' initialize n-1 and keep the best individual

Sub InitPop(Pop As Population, X() As Single, n As Integer, Initial As Boolean, Bestlnd As
IndividualRecord)

Dimi As Integer
Dim j As Integer
Dim NumNew As Integer

If Initial And Not pvMDE Then
NumNew = pvPopSize
Call VariateStatistics(X, n)
pvCl = pvMaxLocParam
Else
NumNew = pvPopSize - 1
Pop.Individual(pvPopSize) = BestInd
End If

For i = 1 To NumNew
With Pop.Individual(i)
For j =1 To pvLChrom
.Chrom(j) = Flip(0.5) ' A fair coin toss
Next j

Call Decode(.Chrom, .C1, .Al, .B1, .P1,.C2, .A2, .B2, .P2, .M) ‘in inteface Mod
Fitness = ObjFunc(.C1, .Al, .B1, P1,.C2, .A2, .B2, P2, M, X, n) ‘in inteface Mod
JParent! =0
JParent2 =0
Xsite =0
End With
Next i
End Sub
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' This finds the Smallest Variate and then sets the
' ¢l location parameter based on its value.

' and the biggest variate.

Sub VariateStatistics(X() As Single, n As Integer)

Dim i As Integer
Dim SmallestX As Single
Dim BiggestX As Single

SmallestX = 3.402823E+38 'Largest Value stored in single precision
BiggestX = -3E+38

Fori=1Ton
If X(i) < SmallestX Then
SmallestX = X(i)
End If

If X(i) > BiggestX Then
BiggestX = X(i)
End If

Next i

If SmallestX - pvSmallestParam < O Then
pvMaxLocParam = 0
Else
pvMaxLocParam = SmallestX - pvSmallestParam
End If

pvBiggestVariate = BiggestX
End Sub
' Not currently used.

! Interactive data inquiry and setup
Sub InitData()

Call Output("" ")

Call Output("A Simple Genetic Algorithm - SGA")
Call Output(" (c) David Edward Goldberg 1986'")
Call Output("  All Rights Reserved "

Call Output(" ")

Call Output("*****++x SGA Data Entry and Initialization *¥##*skkikikxiy
Call Output

Cali Output("population size ------- > " & pvPopSize)

Call Output("chromosome length ----- > "' & pvL.Chrom)

Call Output(" Check every X generations (pvCheck) = " & pvCheck)

End Sub
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' Not currently Used

' Initial report

Sub InitReport(SumFitness, Max, Avg, Min)

Call Output(" )

Call Qutput("l A Simple Genetic Algorithm - SGA -v1.0  IY)

Call Qutput("l () David Edward Goldberg 1986 "

Call Output("l All Rights Reserved "

Call Output(" "

Call Output("  SGA Parameters')

Call Output("  ---------m-- ")

Call Output(" Population size (pvPopSize) = " & pvPopSize)
Call Qutput(" Chromosome length (pvL.Chrom) = " & pvLChrom)
Call Output(" Check every X generations (pvCheck) = " & pvCheck)
Call Output(" Initial Generation Statistics')

Call Output(" ™)

Call Output(" Initial population maximum fitness = "' & Max)

Call Output(" Initial population average fitness = " & Avg)

Call Output(" Initial population minimum fitness = "' & Min)

Call Output(" Initial population sum of fitness =" & SumFitness)

End Sub
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Reéport Module

Option Explicit
' Contains the test report for the Ga.
' Only used for testing.

"'This prints out all the individuals for the population
1

Sub Report(Gen As Integer, OldPop As Population, NewPop As Population, Max, Min, Avg, Sum)

Dim i As Integer
Dim RowOut As Integer

Dim ChromoString As String

Worksheets(*'output'').Select
RowOut = Range(""al1").CurrentRegion.Rows.Count + 1

Cells(RowOut, 1) = "Generations" & Gen - 1 & ","' & Gen

For i = 1 To pvPopSize
RowOut = Range(*'a1").CurrentRegion.Rows.Count + 1

Cells(RowOut, 1) =i
With OldPop.Individual(i)
Call ChromToString(ChromoString, .Chrom)
Cells(RowOut, 2) = ChromoString
Cells(RowOut,3)=.C1 &""& A1 &""& Bl &""& P1 &""& C2&"" & .A2&"" & .B2
&E""&EP2&" &M
Celis(RowOut, 4) = Fitness
End With

With NewPop.Individual(i)
Cells(RowOut, 5) = Parent] & "," & .Parent2
Cells(RowOut, 6) = .Xsite
Call ChromToString(ChromoString, .Chrom)
Celis(RowOut, 7) = ChromoString
Cells(RowOut, 8) = .C1 & ""& A1 &""& B1 &""& P1&""& .C2&"" & .A2&"" & B2

&""& P2&"" & M

Cells(RowOut, 9) = .Fitness

End With

Next i

RowOut = Range("a1").CurrentRegion.Rows.Count + 1
Celis(RowOut, 1) = "Max"
Cells(RowOut, 2) = "Min"
Celis(RowOut, 3) = "average"
Cells(RowOut, 4) = "SumFitness"
Cells(RowOut, 5) = "Mutates"
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Cells(RowOut, 6) = "Cross"

Cells(RowOut + 1, 1) = Max
Cells(RowOut + 1, 2) = Min
Cells(RowOut + 1, 3) = Avg
Cells(RowOut + 1, 4) = Sum
Cells(RowOut + 1, 5) = pvNumMutation
Cells(RowOut + 1, 6) = pvNCross

Cells(RowOut + 2, 1) = String(Number:=100, Character:="*"")
End Sub

' Header Macro

' Macro recorded 11/14/97 by Dean Boerrigter'

Sub Header()
Range("al").FormulaR1C1 = "#"
Range("B1").FormulaR1C1 = "String"
Range("C1").FormulaR1C1 = "X"
Range("D1").FormulaR1C1 = "Fitness"
Range("E1").FormulaR1C1 = "Parents"
Range("F1").FormulaR1C1 = "Xsite"
Range("G1").FormulaR1C1 = "String"
Range("H1").FormulaR1C1 = "x"
Range("'1").FormulaR 1C1 = "Fitness"

Range("'A2").Select
ActiveWindow.FreezePanes = True
End Sub

! this write the String to the Output worksheet on the
' next empty line
Sub Output(Optional StringOut)

Dim RowOut As Integer

With Sheets("output'’)
RowOut = Range("'al").CurrentRegion.Rows.Count + 1
.Cells(RowOut, 1) = StringOut
End With
End Sub

' write a chromosome as a string of 1''s (true''s) and 0"'s (false"s)
Sub ChromToString(TextOut As String, Chrom)
Dim j As Integer

TextOut="""
For j = pvL.Chrom To 1 Step -1
If Chrom(j) Then
TextOut = TextOut + "1"
Else
TextOut = TextOut + "0"
End If
Next j
End Sub
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Stat Module

Option Explicit
' Calculates the statistics for the GA.

' Calculate population statistics
Sub Statistics(Pop As Population, SumFitness As Double, Maximum As Double, Avgl As Double,
Minimum As Double, TopIndividual As IndividualRecord, Initialize As Boolean)

Dim j As Integer

If Initialize Then
Minimum = Pop.Individual(1).Fitness
Maximum = Pop.Individual(1).Fitness
Toplndividual.Fitness = -1.79769313486232E+302

End If
SumPFitness = 0
For j =1 To pvPopSize
With Pop.Individual(j)
SumFitness = SumFitness + .Fitness ' Accumulate fitness sum
If .Fitness >= Maximum Then Maximum = [Fitness ' New Current Maximum

If Fitness >= TopIndividual.Fitness Then
TopIndividual = Pop.Individual(j) 'Save Best Individual
End If

If Fitness < Minimum Then Minimum = .Fitness ' New Current Minimum
End With
Next j

Avgl = SumPFitness / pvPopSize
End Sub
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MinDistM Module

Option Explicit
'Contains the Minimum Distance Routines for the mixture parameter, m.

' finds the Minimum Distance for the mixture parameter
Function MinDistM(BestInd As IndividualRecord, X() As Single, n As Integer) As Single
With BestInd '

Call RSort(X(), n) 'Found in Sort Mod
MinDistM = GoldenSearchMinM(pvSmallestParam, 1 - pvSmallestParam, 0.0001, X, n, .C1, .Al, .B1,

P1,.C2, A2, B2, P2) :

End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinM(xA As Double, xB As Double, tolerance As Double, Variates() As Single, n
As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
C2 As Single, A2 As Single, B2 As Single, P2 As Single) As Single

Const MaxIter = 1000

Dim Xc As Single, Xd As Single
Dim Fc As Single, Fd As Single
Dim oneMinusTau As Single
Dim iter As Integer

iter=0
oneMinusTau =1 - (Sqr(5) - 1)/2
Xc = xA + oneMinusTau * (xB - xA)
Fc = CalcAD(Variates, n, C1, A1, B1,P1, C2, A2, B2, P2, Xc)
Xd = xB - oneMinusTau * (xB -~ xA)
Fd = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xd)
Do
iter = iter + 1
If Fc < Fd Then
xB = Xd
Xd =Xc
Xc =xA + oneMinusTau * (xB - xA)
Fd=Fc
Fc = CalcAD(Variates, n, C1, Al, B1, P1, C2, A2, B2, P2, Xc)
Else
xA =Xc
Xc=Xd
Xd = xB - oneMinusTau * (xB - xA)
Fc=Fd
Fd = CalcAD(Variates, n, C1, A1, B1,P1, C2, A2, B2, P2, Xd)
End If
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Loop While Abs(xB - xA) > tolerance And iter < MaxlIter
If iter <= MaxIter Then
GoldenSearchMinM = Xc
Else
GoldenSearchMinM == -31
End If
End Function
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MinDistC1 Module

Option Explicit
'Contains the Minimum Distance Routines for the C1 parameter.

! finds the Minimum Distance for the C1 parameter

Function MinDistC1(BestInd As IndividualRecord, X() As Single, n As Integer) As Single
Dim MaxCl1 As Single

With BestInd
MaxC1 = pvMaxLocParam

MinDistC1 = GoldenSearchMinC1(0, MaxCl, 0.0001, X, n, .Al, .B1, .P1,.C2, .A2, .B2, .P2, M)

End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinC1(xA As Single, xB As Single, tolerance As Double, Variates() As Single, n
As Integer, A1 As Single, B1 As Single, P1 As Single, _
C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) As Single

Const MaxIter = 1000

Dim Xc As Single, Xd As Single
Dim Fc As Single, Fd As Single
Dim oneMinusTau As Single
Dim iter As Integer

iter=0

oneMinusTau =1 - (Sqr(5) - 1)/ 2

Xc = XA + oneMinusTau * (xB - xA)

Fc = CalcAD(Variates, n, Xc, A1, B1,P1,C2, A2, B2,P2, M)
Xd = xB - oneMinusTau * (xB - xA)

Fd = CalcAD(Variates, n, Xd, A1, B1, P1, C2, A2, B2, P2, M)

Do
iter = iter + 1
If Fc < Fd Then
xB = Xd
Xd=Xc
Xc = xA + oneMinusTau * (xB - xA)
Fd =Fc
Fc = CalcAD(Variates, n, Xc, Al, B1,P1,C2, A2, B2, P2, M)
Else
XA =Xc
Xc =Xd
Xd = xB - oneMinusTau * (xB - xA)
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Fc=Fd
Fd = CalcAD(Variates, n, Xd, Al, B1, P1, C2, A2, B2, P2, M)
End If
Loop While Abs(xB - xA) > tolerance And iter < MaxlIter
If iter <= MaxlIter Then
GoldenSearchMinC1 = Xc¢
Else
GoldenSearchMinCl1 = -31
End If
End Function
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MinDistC2 Module

Option Explicit

' finds the Minimum Distance for the C2 parameter
Function MinDistC2(Bestind As IndividualRecord, X() As Single, n As Integer) As Single
Dim MaxC1 As Single

With BestInd
MaxC1 = pvBiggestVariate - pvSmallestParam

MinDistC2 = GoldenSearchMinC2(pvC1 + pvSmallestParam, MaxC1, 0.0001, X, n, .C1, .Al, .B1, .P1,
A2, B2, P2, M)

End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinC2(xA As Single, xB As Single, tolerance As Double, Variates() As Single, n
As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
A2 As Single, B2 As Single, P2 As Single, M As Single) As Single

Const MaxIter = 1000

Dim Xc As Single, Xd As Single
Dim F¢ As Single, Fd As Single
Dim oneMinusTau As Single
Dim iter As Integer

iter =0

oneMinusTau =1 - (Sqr(5) - 1)/ 2

Xc = xA + oneMinusTau * (xB - xA)

Fc = CalcAD(Variates, n, C1, A1, B1, P1, Xc, A2, B2, P2, M)
Xd = xB - oneMinusTau * (xB - xA)

Fd = CalcAD(Variates, n, Cl, A1, B1, P1, Xd, A2, B2, P2, M)

Do

iter = iter + 1

If Fc < Fd Then
xB = Xd
Xd=Xc
Xc = xA + oneMinusTau * (xB - xA)
Fd=Fc
Fc = CalcAD(Variates, n, Cl, Al, B1, P1, Xc, A2, B2, P2, M)
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Else
xA =Xc
Xec=Xd
Xd = xB - oneMinusTau * (xB - xA)
Fc=Fd
Fd = CalcAD(Variates, n, Cl1, A1, B1, P1, Xd, A2, B2, P2, M)
End If
Loop While Abs(xB - xA) > tolerance And iter < MaxIter
If iter <= MaxlIter Then
GoldenSearchMinC2 = Xc
Else
GoldenSearchMinC2 = -31
End If
End Function
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AD Module

Option Explicit
' Contains the Anderson Darling Test routines.

' Converts the variates to their CDF probability

' and then calculates the Anderson-Darling Statistic

Function CalcAD(X() As Single, n As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2
As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) As Single

Dim Z(500) As Single

Call XtoZ(X,Z,n,C1, A1, B1,P1,C2, A2, B2,P2, M)

CalcAD = AndersonDarling(Z, n)
End Function

! Translates the variates to their cdf values.

!

Sub XtoZ(X() As Single, Z() As Single, n As Integer, C1 As Single, Al As Single, B1 As Single, P1 As
Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) '

Dim i As Integer

Fori=1Ton
Z(@i) = GGDY9cdf(X(i), C1, A1, B1,P1,C2, A2, B2,P2, M)
If Z(i) >= 1 Then
Z(i) = 0.999999
Else
If Z(i) = 0 Then Z(i) = 0.000001
End If
Next i
End Sub

' Anderson Darling test statistic
' Stephens. "EDF Statistics" JASA Vol 69,No.347, Pg 731
Function AndersonDarling(Z() As Single, n As Integer) As Single
Dim i As Integer
Dim Sum As Single

Fori=1Ton
Sum = Sum + (2 *1i - 1) * (Log(Z(i)) + Log(1 - Z(n + 1 - i)))
Next i

AndersonDarling =-Sum/n - n
End Function

104



Sort Module

Option Explicit
' Contains routines for sorting an array into ascending order

' sorts.an array into ascending order
' Mumford, pg. 140
Sub RSort(X() As Single, n As Integer)

Dim i As Integer
Dim j As Integer
Dim Low As Integer
Fori=1Ton-1
Low =i
Forj=i+1Ton
If X(j) < X(Low) Then
Low=j
End If
Next j
Call Swap(X(i), X(Low))
Next i
End Sub

' Swaps two real values
Sub Swap(r1 As Single, 12 As Single)

Dim temp As Single
temp =rl
rt=r2

r2 = temp
End Sub
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RVG Module

Option Explicit
'Contains the Random Variate Generation routines.

' Generate the random variates.

Sub GenerateRV(C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
C2 As Single, A2 As Single, B2 As Single, P2 As Single, _
M As Single, RV() As Single, n As Integer)

Dim i As Integer

Fori=1Ton
RV(i)) = GGD9RVG(CI, Al, B1,P1,C2, A2,B2,P2, M)
Next i

End Sub

' Returns a 9-parameter Mixed Generalized Gamma Variate
' m = mixing proportion
1
Function GGDIRVG(C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single, A2 As
Single, B2 As Single, P2 As Single, M As Single) As Single
If rnd <= M Then
GGDI9RVG = GGD4RVG(C1, Al, B1,P1)
Else
GGD9RVG = GGD4RVG(C2, A2, B2, P2)
End If
End Function

' Returns a 4-parameter Generalized Gamma Dist variate

! Location scale power/shape power

' Harter ¢ a b p

' for b>.25

' Transforms from Tadikamila "Computing", (1979)

Function GGD4RVG(c As Single, a As Single, b As Single, p As Single) As Single

DimZ As Single
Dim X As Single
DimY As Single
Z = GBH(b)
X=Z"(/p)

GGD4ARVG =X *a+c
End Function
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' Cheng & Feast (Comm of the ACM, 1980)

'For Alp >0.25

' Found in Tadikamalla & Johnston (1980)

' Amer J. of Math. & Manage Sci. "A complete guide to
' Gamma Variate Generation"

Function GBH(Alp As Single) As Single

Dim a As Single
Dimb As Single
Dim ¢ As Single
Dimd As Single
Dimt As Single
Dim hl As Single
Dim h2 As Single
Dim U As Single
Dim U1 As Single
Dim U2 As Single
Dim w As Single

a=Alp-025

b=Alp/a

c=2#/a

d=c+2#

t=1#/ Sqr(Alp)

hl =(0.4417 +0.245* t/ Alp) * t
h2=(0.222-0.043 *t) * t

linel:
Ul =rnd
U=rnd
U2=Ul+hl *U-h2

If (U2 <= 0) Then GoTo linel:
If (U2 > 1) Then GoTo linel:
w=b*Ul1/U2)"4

If w = 0 Then GoTo linel: ‘added since Excel generates rng=0
Ifc*U2-d+w+1/w <=0 Then GoTo line4:
If ¢ * Log(U2) - Log(w) + w - 1 >=0 Then GoTo linel:

line4:

GBH=a*w
End Function
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IntegratedDist Module

Option Explicit
' Contains the routines for calculation the Integrated Distance.

' This finds the upper limit of integration

' the point at which F(X)>0.999

' Xin is the point to start the search for the upper limit.

Function FindUppLim(C1 As Single, A1 As Single, Bl As Single, P1 As Single, C2 As Single, A2 As
Single, B2 As Single, P2 As Single, M As Single, Xin As Single) As Single

Dim X As Single
X =Xin

While (GGD9cdf(X, C1, A1, B1,P1,C2, A2, B2, P2, M) <0.999) And (X < 50)
X =X+0.05
Wend

FindUppLim = X
End Function

' This compares the pdf of the estimated and true parameters at
' point x and then squares the difference ’
Function Comp(X As Single, C1 As Single, Al As Single, B1 As Single, P1 As Single, C2 As Single, A2
As Single, B2 As Single, P2 As Single, M As Single, _

TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As
Single, TB2 As Single, TP2 As Single, TM As Single) As Single

Dim dif As Single

dif = GGDYpdf(X, C1, A1, B1, P1, C2, A2, B2, P2, M) - GGD9pdf(X, TC1, TA1, TB1, TP1, TC2, TA2,
TB2, TP2, TM)

Comp =dif ~ 2
End Function
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' GaussLegendreQuadrature
' This Integrates f(x,b) from xFirst to xLast.
' Shammas Mathematical Algorithms in VB, pg 89
' McGraw-Hill, 1996 '
Function IntegratedDistance(xFirst As Single, xLast As Single, nSublntervals As Integer, _
C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2
As Single, M As Single, _
TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As Single, TB2 As
Single, TP2 As Single, TM As Single) As Single

Dim xA As Single, xB As Single, xJ As Single
Dim h As Single, hDiv2 As Single

Dim Sum As Single, area As Single

Static Xk(5) As Single

Static Ak(5) As Single

Dim n As Integer, i As Integer, j As Integer

Xk(0) = -0.9324695142
Xk(1) = -0.6612093865
Xk(2) =-0.2386191861
Xk(3) =0.2386191861
Xk(4) = 0.6612093865
Xk(5) = 0.9324695142
Ak(0) = 0.1713244924
Ak(1) =0.360761573
Ak(2) =0.4679139346
Ak(3) = 0.4679139346
Ak(4) = 0.360761573
Ak(5) =0.1713244924
area=0

n = nSublntervals

h = (xLast - xFirst) / n
xA = xFirst
Fori=1Ton
Sum=0
xB=xA+h
hDiv2=h/2
' obtain area of sub-interval
Forj=0To5
xJ =xA +hDiv2 * (Xk(j) + 1)
Sum = Sum + Ak(j) * Comp(xJ, C1, A1, B1,P1,C2, A2,B2,P2, M, _
TC1, TAt, TB1, TP1, TC2, TA2, TB2, TP2, TM)
Next j
area = area + hDiv2 * Sum
xA =xB
Next i

IntegratedDistance = area
End Function

109




Appendix C Summarization Code

110




Summary Mod

1

' Summarizes all the worksheets in the active book and
' checks for completeness
Sub Driver()
Worksheets.Add before:=Sheets(1)
ActiveSheet.Name ="Summary"
Call SummaryHeader

Call SummarizeAll
Call setupPrintDriver
Call Check

ActiveWorkbook.Save
Beep
End Sub

t

' Summarizes all the worksheets in the active book.
" "Summary Worksheet" must be in activebook.
Sub SummarizeAli()
Dim wsht As Object
For Each wsht In ActiveWorkbook.Worksheets
wsht.Select

If Not wsht.Name = "Summary" Then
Call Summarize
End If

Next wsht
End Sub

' Summarize the active sheet.
' "Summary Worksheet' must be in activebook.
Sub Summarize()

Dim RowOut As Integer
Dim NumRows As Integer
Dim NumReplications As Integer

Dim d As String
'Count number of times MDE and MLE are better

Range("Z1").FormulaR1C1 = "=COUNTIF(R2C2:R1001C2,""MDE™)"
Range("'Z2").FormulaR1C1 = "=COUNTIF(R2C2:R1001C2,""MLE"")"
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With Sheets("'summary")
mleDistCol = GetCol("MLE Dist")
mdeDistCol = GetCol("MDE Dist'")
MLETime = GetCol("MLE Time")
MDETime = GetCol("MDE Time")

RowOut = .Range("'al").CurrentRegion.Rows.Count + 1

Call AverageSummary(MLEAveTime, MDEAveTime, NumReplications)
d = ActiveSheet.Name

.Cells(RowOut, 1) = Range("A1").NoteText
.Cells(RowOut, 2).FormulaR1C1 = Range(*'z1").Value / (Range("'z1").Value + Range(''z2").Value)

.Cells(RowOut, 3).FormulaR1C1 = "=AVERAGE(" & ActiveSheet.Name & "!R2C" & mleDistCol &
"R1001C" & mleDistCol & ")"

.Cells(RowOut, 4).FormulaR1C1 = "=STDEV(" & ActiveSheet.Name & "!R2C" & mleDistCol &
"R1001C" & mleDistCol & ")"

.Cells(RowOut, 5).FormulaR1C1 = "=AVERAGE(" & ActiveSheet.Name & "!R2C" & mdeDistCol &
".R1001C" & mdeDistCol & ")"

.Cells(RowOut, 6).FormulaR1C1 = "=STDEV(" & ActiveSheet.Name & "!R2C" & mdeDistCol &
"R1001C" & mdeDistCol & ")"

.Cells(RowOut, 7) = Format(MLEAveTime, "0.0"")
.Cells(RowOut, 8) = Format(MDEAveTime, "0.0")

.Cells(RowOut, 9) = NumReplications
.Cells(RowOut, 10) = d

Select

End With
NumRows = Range("al").CurrentRegion.Rows.Count
Cells(NumRows + 1, 2).Select

End Sub

' This calculates some statistics for the summary
1

Sub AverageSummary(MLEAveTime, MDEAveTime, NumRepl)

Dim i, sec, Min, TimeTot, TimeCol, FitCol, FitTot, NumRows As Integer
Dim Timeln As String

Dim UppLimTrue As Single, UppLim As Single

MLECol = GetCol("MLE Time'")
MDECol = GetCol("MDE Time'")

mleTot =0

mdeTot =0
NumRows = Range("'al"").CurrentRegion.Rows.Count
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For i = 2 To NumRows

MLETimeln = Cells(i, MLECol).Value
MLEsec = Val(Right(Left(MLETimeln, 4), 2))
MLEMin = Val(Left(MLETimeln, 1))

mleTot = mleTot + 60 * MLEMin + MLEsec

MDETimeln = Cells(i, MDECol).Value
MDEsec = Val(Right(Left(MDETimeln, 4), 2))
MDEMin = Val(Left(MDETimeln, 1))

mdeTot = mdeTot + 60 * MDEMin + MDEsec

Next i

NumRep! = NumRows - 1
MLEAveTime = mleTot / NumRepl
MDEAveTime = mdeTot / NumRepl

End Sub

Function GetCol(Stringln)
Fori=1To 256
If Cells(1, i) = StringIn Then
GetCol =i
Exit For
End If
Next i
End Function

' SummaryHeader Macro

' Macro recorded 1/22/98 by Dean Boerrigter

1]

Sub SummaryHeader()
Range("'A1").Formula = '"Distribution"
Range("'b1") = "%MDE Better"
Range(""C1") = "MLE Ave Dist"
Range("D1") = "MLE Std Dist"
Range("El") = "MDE Ave Dist"
Range("F1") = "MDE Std Dist"
Range('G1") = "MLE Ave Time (s)"
Range("H1") = "MDE Ave Time (s)"
Range("'11") = "Replication"
Range("J1") = "Wsht"
Range("'B2").Select
ActiveWindow.FreezePanes = True

End Sub
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Check Mod

' This checks for completeness
Sub Check()
Dim hold As String

Range("al").Sort Keyl:=Range("A2"), Orderl:=xlAscending, Key2:=Range _
("B2"), Order2:=x1Ascending, Key3:=Range("'J2"), Order3:=xIDescending, Header:=xIGuess,
OrderCustom:=1, _
MatchCase:=False, Orientation:=x1TopToBottom

hold = Range("'a2").Value
For i = 2 To Range("al").CurrentRegion.Rows.Count
If Cells(i, 1) <> hold Then
hold = Cells(i, 1)
Range(Cells(i - 1, 1), Cells(i - 1, 12)).Select
Call BorderLines
End If

If Cells(i, 2).Value = Cells(i - 1, 2).Value Then
Cells(i, 12) = "*"
End If
Next i
End Sub

' Puts a border beneath selection

Sub BorderLines()
With Selection.Borders(x1Bottom)
.Weight = xIThin
.ColorIndex = xlAutomatic
End With
End Sub
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Print Mod

' Setups up Summary Sheet for Printing.
'

Sub setupPrintDriver()
Call ReplaceSingleDistribution
Call SplitVariates
Call SetupPrintSummary

End Sub

' SetupPrintSummary Macro
' Macro recorded 2/23/98 by Dean Boerrigter

Sub SetupPrintSummary()
Columns("A:K").EntireColumn. AutoFit
Range("'C2:C400").NumberFormat = "0.00%"

Range("'D2:G400").NumberFormat = "0.00000"
' Range("E2:E400").NumberFormat = ""0.00000"
' Range(""F2:F400").NumberFormat = "'0.00000"

Columns("H:I").EntireColumn.Hidden = True

With ActiveSheet.PageSetup
LeftHeader = "&D"
.CenterHeader = "&A"
.RightHeader = "&F"
LeftFooter =""
.CenterFooter = """
RightFooter = ""

FitToPagesWide = 1
FitToPagesTall = 1
End With
End Sub

' Macro2 Macro
' Macro recorded 2/23/98 by Dean Boerrigter

Sub ReplaceSingleDistribution()

Columns("'A:A").Select
Selection.Replace What:=", 99999,0,0,0, 1)", Replacement:=")", _
LookAt:=x1Part, SearchOrder:=xIByRows, MatchCase:=False
End Sub
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1

' SplitVariates Macro
' Macro recorded 2/24/98 by Dean Boerrigter

v

1

Sub SplitVariates()
Range("B1").Select
Selection.EntireColumn.Insert

Range("'A1").CurrentRegion.Select

Selection. TextToColumns Destination:=Range(*'A1"), DataType:= _
xIDelimited, TextQualifier:=xIDoubleQuote, ConsecutiveDelimiter _
:=False, Tab:=True, Semicolon:=False, Comma:=False, Space _
:=False, Other:=True, OtherChar:="=", FieldInfo:=Array(Array( _
1, 1), Array(2, 1))

Selection.Replace What:="n", Replacement:=""", LookAt:=xIPart, _
SearchOrder:=x1ByRows, MatchCase:=False

Range("B1").FormulaR1C1 = "Variates"

End Sub
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Open Files Mod

Public Const pvDir = "C:\AFIT\Data\"
Public Const pvFileString = "MEFeb08"

' OpenFiles Macro
' Macro recorded 1/24/98 by Dean Boerrigter

Sub OpenFiles()
Dim FileName As String
On Error Resume Next
Fori=1To26 .
FileName = pvFileString & Chr(CharCode:=i + 96) & ".xls"

Workbooks.Open FileName:=pvDir & FileName

' Call CopyToSummaryWorkbook

' Windows(FileName).Activate

' If ActiveWorkbook.Name <> ThisWorkbook.Name Then
! ActiveWorkbook.Close

' EndIf

Next i

' Windows("'Summarize Code.xls").Activate
End Sub

' CopyToSummaryWorkbook Macro
' Macro recorded 1/22/98 by Dean Boerrigter

Sub CopyToSummary Workbook()
Dim namelt As String
Dim SummaryWbk As Object

namelt = ActiveWorkbook.Name
Sheets("'Output").Copy after:=ThisWorkbook.Sheets(1)

ActiveSheet.Name = namelt
End Sub
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' Renames the sheets
Sub RenameSheets()
Dim wsht As Object
Dim namelt As String

namelt = Application.InputBox('"Rename sheets")

i=0 :
For Each wsht In ActiveWorkbook.Worksheets
wsht.Select
If wsht.Name <> "Summary" Then
i=i+1
wsht.Name = namelt & i
End If
Next wsht

End Sub
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The Generalized Gamma is an extremely flexible distribution that is useful for reliability modeling. Among its many special

cases are the Weibull and Exponential distributions. A mixture of Generalized Gamma Distributions is even more useful
because multiple causes of failure can be simultaneously modeled. This research studied parameter estimation of the special
cases of the Mixed Generalized Gamma Distribution and built upon them until the full nine-parameter distribution was being
estimated.

Two techniques were used to estimate the parameters of each distribution. The first technique used was the Method of
Maximum Likelihood. The log likelihood equation was maximized using a Genetic Algorithm. The second technique used
was the Method of Minimum Distance. This technique takes the Maximum Likelihood parameter estimate as initial eé;imate.
With this initial estimate, the mixture and the first location parameter are sequentially varied to minimize the Anderson-Darling
statistic between the estimated cumulative distribution function and the empirical distribution function. These two pémmeters
are then fixed at their Minimum Distance values and the remaining parameters are re-estimated using Maximum Likelihood.

Minimum Distance Estimation was demonstrated to improve the parameter estimates from Maximum Likelihood for
almost all of the special case distributions tested. It did not improve the estimate for the full nine-parameter Mixed Generalized
Gamma Distribution, but this was because the technique used to find the Maximum Likelihood parameter estimates performed
poorly and did not return a good initial estimate for Minimum Distance. v
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