
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1997

Message-Bundle Converting in Intenet Protocol Multicast-Based Message-Bundle Converting in Intenet Protocol Multicast-Based

High Level Architecture Exercises High Level Architecture Exercises

Tracy A. Bobo

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Bobo, Tracy A., "Message-Bundle Converting in Intenet Protocol Multicast-Based High Level Architecture
Exercises" (1997). Theses and Dissertations. 5577.
https://scholar.afit.edu/etd/5577

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5577?utm_source=scholar.afit.edu%2Fetd%2F5577&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GE/ENG/97D-20

Message-Bundle Converting
In

Internet Protocol Multicast-Based
High Level Architecture Exercises

THESIS

Tracy A. Bobo, Captain, USAF

AFIT/GCS/ENG/97D-20

19980130 147
Approved for public release; distribution unlimited

AFIT/GEFENG/97D-20

Message-Bundle Converting

In

Internet Protocol Multicast-Based

High Level Architecture Exercises

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Electrical Engineering)

Tracy A. Bobo, B.E.

Captain, USAF

December, 1997

AFIT/GE/ENG/97D-20

Message-Bundle Converting

In

Internet Protocol Multicast-Based

High Level Architecture Exercises

THESIS

Tracy A. Bobo, Captain, USAF

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Electrical Engineering)

Martin R. Stytz, LtCol,6SAF Iith A. Shomper, Major, USAF
Member Member

Richard A. Raines, Major, USAF
Chairman

Approved for public release; distribution unlimited

ii

Acknowledgments

My first acknowledgment is to God, who has given me the talent, opportunity and friends

to pursue the joys in life I have so richly cherished. My wife deserves a very heartfelt thanks for

her patience, sacrifice and support throughout my service at AFIT and my Air Force career.

While at AFIT I have been surrounded by some of the best minds the Air Force has to offer. My

thesis advisor, coach, sounding board, and motivation expert, Major Rick Raines, has been and

continues to be a tremendous help. His insight guided me through many blurry corridors and

shed much needed light in some very gloomy academic pits of despair. While I was anxious to

slay dragons, Major Keith Shomper provided the wisdom to keep my enthusiasm sharply focused

on productive areas of research. Without his knowledge of the simulations arena, most of the

publications I researched would have been nothing more than Greek poetry to me.

I also owe a deep thanks to the true code wizards; Jeff Bush, John Lewis, Scott Rothermel

and Troy Jonson. These guys reviewed and provided a lot of the syntax in the program code.

They also patiently allowed me to 'experiment' on their production simulation system using the

graphics network.

111.i

Table of Contents

A CKN OW LED GM NENTS ... iii

LIST OF FIGURES ... viii

LIST OF TABLES ... x

AB STRACT ... xii

1. INTRODUCTION ... 1-1

1.1 Sim ulation system goals ... 1-1

1.2 HLA D istribution Concepts ... 1-2

1.3 HLA Lim itations .. 1-2

1.4 Problem Statem ent ... 1-3

1.5 Thesis Presentation .. 1-3

2. BACKGROUND .. 2-1

2.1 Asynchronous Transfer M ode (ATM) .. 2-1

2.1. I Introduction ... 2-1

2.1.2 Optimizing with ATM ... 2-2

2.1.3 ATM Connections ... 2-2

2.1.4 Network M anagement .. 2-3

2.1.4.1 IP Address .. 2-3

2.2 DIS / HLA .. 2-4

2.2.1 DIS / ILA Using ATM ... 2-4

2.3 Implem entation ofATM ... 2-5

2.3.1 Virtual Path Identifier / Virtual Channel Identifier .. 2-6

2.3.2 ATM Signaling .. 2-7

2.3.3 Signaling M ethods ... 2-7

2.3.3.1 LANE ... 2-8

2.3.3.2 UNI ... 2-8

iv

2.4 Implem entation of H LA / R TI ... 2-9

2.4.1 Current Strategies .. 2-10

2.4.1.1 Ethernet IP M ulti-Cast ... 2-10

2.4.1.2 W ide Area IP M ulti-Cast .. 2-11

2.5 Possible Areas of Improvem ent ... 2-12

2.5.1 ATM instead of P ... 2-13

2.5.1.1 N-Square M esh ... 2-13

2.5.1.2 ATM M ulti-Cast Server ... 2-14

2.5.1.3 M ulti-Cast Tree .. 2-15

2.5.1.4 Current Research Efforts .. 2-16

2.5.2 Potential ATM Benefits over IP .. 2-16

2.6 Realizable implem entation ... 2-17

2.6.1 Perform ance M etrics .. 2-17

2.7 Sum m ary .. 2-17

3. A PPROACH .. 3-1

3.1 Areas of Research .. 3-1

3.1.1 Definitions ... 3-2

3.1.1.1 Packet ... 3-2

3.1.1.2 Packet Address ... 3-2

3.1.1.3 M essage .. 3-2

3.1.1.4 M essage Address .. 3-2

3.1.1.5 Bundle .. 3-3

3.1.1.6 Bundle M ask .. 3-3

3.1.1.7 Host Group / Group Address .. 3-3

3.1.2 Local Area Network versus W ide Area Network ... 3-4

3.1.3 Required Changes within DIS / HLA .. 3-5

3.2 Study 1, IP M ulticast Address Eff ects .. 3-5

3.3 Study 2, Packet-Per-Second and Byte-Per-Second Rates .. 3-6

3.3.1 Network Interface Card / M edia .. 3-6

3.3.2 Hardware Platform ... 3-7

V

3.3.3 Operating System ... 3-7

3.3.4 Study 2, Test Environm ent .. 3-7

3.3.5 Network Lab Setup .. 3-8

3.4 Study 3, Suggested Implementation - The 'Bundle Converter'. ... 3-9

3.4.1 Implem entation Requirem ents ... 3-9

3.4.2 Additional Capabilities .. 3-9

3.4.3 Implem entation Design, Software Process .. 3-11

3.4.3.1 Router interface, C_1 ... 3-12

3.4.3.2 Host interface, H_1 ... 3-13

3.4.3.3 C 2 process .. 3-14

3.4.4 Topology, Data Flow for Converter Process .. 3-17

3.4.5 Topology, Configuration Cost ... 3-18

3.4.5.1 Baseline topology ... 3-18

3.4.5.2 Switched Baseline .. 3-19

3.4.5.3 Baseline W ith Converter .. 3-19

3.4.5.4 10OM bps/lOM bps Switched converter ... 3-20

3.4.6 Test loading ... 3-21

3.5 N etwork analysis, m odeling and sim ulation .. 3-21

3.5.1 Simulation software and design ... 3-22

3.5.1.1 Simulation Design, Baseline and Switched Baseline ... 3-22

3.5.1.2 Simulation design, Converted baseline .. 3-23

3.5.1.3 Simulation design, Switched converter .. 3-24

3.6 Conclusion ... 3-25

4. RESULTS ... 4-1

4.1 O verview .. 4-1

4.2 IP M ulticast efficiency ... 4-1

4.3 Packet size and packet-per-second rate effi ciency .. 4-4

4.3.1 Packet size results presentation .. 4-4

4.3.1.1 M edia im pact on CPU utilization ... 4-4

4.3.1.2 Host impact on CPU utilization .. 4-8

vi

4.3.1.3 M ultiple processor impact on CPU utilization ... 4-10

4.3.1.4 Host operating system impact on CPU utilization .. 4-12

4.3.1.5 IP versus AAL5 impact on CPU utilization ... 4-14

4.3.1.6 Other tests conducted ... 4-16

4.3.2 Packet test analysis .. 4-19

4.4 Converter process results .. 4-20

4.4.1 Baseline ... 4-21

4.4.2 Switch 100M bps Ethernet baseline .. 4-22

4.4.3 10M bps Converter ... 4-24

4.4.4 10/100M bps Converter .. 4-24

4.5 Results summary .. 4-27

5. CONCLUSIONS .. 5-1

5.1 Summary of Research / Proposal ... 5-1

5.2 Contributions ... 5-1

5.3 Future W ork ... 5-2

5.3.1 Additional Network M edia Research ... 5-2

5.3.2 Converter Flow Control Optimization ... 5-2

5.3.3 W AN Extensions ... 5-2

5.4 Conclusions and Recomm endations .. 5-3

vii

List of Figures

Figure 2.1:ATM switch interconnection ... 2-6

Figure 2.2: IP Multi-cast Tunnel .. 2-11

Figure 2.3: N2 Mesh approach for 1 Group .. 2-13

Figure 2.4: Multi-cast server approach ... 2-14

Figure 2.5:Multi-cast tree approach .. 2-15

Figure 3-2: Overall converter process ... 3-12

Figure 3-3: C_1 flow chart .. 3-13

Figure 3-4: H_1 flow chart .. 3-14

Figure 3-5: C_2 flow chart .. 3-16

Figure 3-6: IPmc message traffic ... 3-17

Figure 3-7: Baseline topology .. 3-19

Figure 3-8: Base converter topology ... 3-20

Figure 3-9: 100Mbps/10Mbps switched converter topology 3-20

Figure 3-10: COMNET topology for baseline .. 3-23

Figure 3-11: COMNET topology for converted baseline 3-24

Figure 3-12: COMNET topology for switched converter 3-25

Figure 4-1: CPU utilization, IPmc test .. 4-3

Figure 4-2: CPU utilization, Indigo2 Ethernet .. 4-6

Figure 4-3: CPU utilization, Indigo2 ATM .. 4-7

Figure 4-4: CPU utilization vs. Packet size, Indigo2 Ethernet 4-8

Figure 4-5: CPU utilization vs. Packet size, Indigo2 ATM 4-8

Viii

Figure 4-6: CPU utilization, 586 Ethernet .. 4-9

Figure 4-7: CPU utilization, 686 Ethernet .. 4-10

Figure 4-8: CPU utilization, single processor Indigo2 ATM 4-11

Figure 4-9: CPU utilization, multi processor Onyx ATM 4-12

Figure 4-10: CPU utilization, 486 Win 95 Ethernet ... 4-13

Figure 4-11: CPU utilization, 486 Linux Ethernet ... 4-14

Figure 4-12: CPU utilization, Indigo2 ATM-IP ... 4-15

Figure 4-13: CPU utilization, Indigo2 ATM-AAL5 .. 4-16

Figure 4-14: CPU utilization, Onyx2 Ethernet .. 4-17

Figure 4-15: CPU utilization, Onyx Ethernet .. 4-18

Figure 4-15: CPU utilization, Sparc2O FDDI .. 4-19

Figure 4-16: Baseline link utilization .. 4-22

Figure 4-17:Baseline CPU use, delay .. 4-22

Figure 4-18: 100Mbps link use ... 4-23

Figure 4-19: 100Mbps CPU use .. 4-23

Figure 4-20: 100/10Mbps link use ... 4-24

Figure 4-21: 100/10Mbps CPU use .. 4-25

Figure 4-22: 100/100Mbps link use ... 4-26

Figure 4-23: 100/100Mbps CPU use ... 4-26

ix

List of Tables

Table 3-1: Converter Database ... 3-4

Table 4-1: CPU utilization, IPmc test .. 4-3

Figure 4-1: CPU utilization, IPmc test .. 4-3

Table 4-2: CPU utilization, Indigo2 Ethernet .. 4-5

Table 4-3: CPU utilization, Indigo2 ATM .. 4-6

Table 4-4: CPU utilization, 586 Ethernet .. 4-9

Table 4-5: CPU utilization, 686 Ethernet .. 4-10

Table 4-6: CPU utilization, single processor Indigo2 ATM 4-11

Table 4-7:CPU utilization, multi processor Onyx ATM .. 4-12

Table 4-8: CPU utilization, 486 Win 95 Ethernet ... 4-13

Table 4-9: CPU utilization, 486 Linux Ethernet ... 4-14

Table 4-10:CPU Utilization, Indigo2 ATM-IP ... 4-15

Table 4-11: CPU Utilization, Indigo2 ATM-AAL 5 .. 4-16

Table 4-11: CPU utilization, Onyx2 Ethernet .. 4-17

Table 4-12: CPU utilization, Onyx Ethernet ... 4-17

Table 4-13: CPU utilization, Sparc20 FDDI .. 4-18

Table 4-14: Baseline link utilization .. 4-21

Table 4-15: Baseline CPU use, delay .. 4-22

Table 4-16: 100Mbps link use ... 4-23

Table 4-17: 100Mbps CPU use, delay .. 4-23

Table 4-18: 100/10Mbps Link use ... 4-24

x

Table 4-19: 100/10Mbps CPU use, delay ... 4-25

Table 4-20: 100/100Mbps link use .. 4-26

Table 4-21:100/100Mbps CPU use, delay .. 4-26

xi

Abstract

The Department of Defense is pushing for more widespread and realistic interactive

training simulations, which increases the demand on network capacity and resources. While

network bandwidth is a measurable resource, packet bandwidth, or the number of packets-per-

second (Pk/s) a host can handle, is a shifting commodity. This research analyzes host

performance characteristics under varying data loads. The hosts include SGI single and multi-

processor systems and Intel Pentium platforms using both Windows 95 and Linux Operating

Systems. The networking media covers Ethernet, ATM and FDDI. For the ATM network, both

AAL5 and IP over ATM were analyzed. With the data from this research, a system is proposed

and developed that takes individual messages and bundles them into multi-message packets.

This bundling process overcomes the 5,000 Pk/s limitation, reduces the CPU network handling

time and introduces a flow-control mechanism at the local network level.

While the idea of bundling messages to increase CPU efficiency is not new, there are no

current methods of bundling within the new High Level Architecture (HLA). This proposed

process is a novel approach to introduce flow control, priority message handling and increase

address space while utilizing bundled data delivery. For traditional network delivery, typical

CPU usage from network data varies as a function of traffic load, ranging from 5% at 500

messages-per- second to over 80% at 4,000 messages-per-second. The new bundling process

requires 10% at 500 messages-per-second but only increases to 13% at 4,000 messages-per-

second.

xii

1. Introduction
The United States Armed Forces are modernizing the approach to training and exercising

the military services by using interactive battlefield simulations. Leveraging current networking

technology and pushing the limits of both hardware and software have provided realistic and

detailed interactive computer combat simulations. While the detail and fidelity of the simulation

places a great demand on the computer hardware alone, the interactive nature of the application

stresses both the computer host and the underlying network. Technology has always been one

small step ahead of implementation in this mad race for modernization. New off-the-shelf

components can always process a little more, go a little faster. Recent changes within the

simulation community are poised to take advantage of these latest and greatest technological

gains, but some disturbing issues involving network performance are on the horizon.

1.1 Simulation system goals
The Defense Interactive Simulation (DIS) system has been the preferred large scale

interactive distributed simulation system for the past few years, but this system is rather rigid

and does not scale very well [11]. To get a scaleable system, the High Level Architecture (HLA)

has been developed. One change within the HLA system includes a new definition of data

descriptors for the messages that flow between simulations. These new descriptors provide for a

flexible method of identifying a simulation component and its attributes. Another change within

HLA is the use of multi-cast traffic rather than the broadcast method typically used within DIS.

These changes allow for a scaleable approach to simulation design. The simulation community

is pushing this scaleable concept as far as possible. There are plans for 50,000 simulation

entities by 1998 and 100,000 entities by the year 2000 [2].

1-1

1.2 HLA Distribution Concepts

The HLA message distribution system is based upon the Internet Protocol's (IP) multicast

addressing scheme [12]. This allows the network to provide some filtering based upon the host's

interest. This is an improvement over the broadcast mechanism DIS uses since each host will

not be interrupted for every message on the network. The routers and networking components

provide for management of the multicast address space, but timely access to the data by the

simulation is critical [17]. While local IP multicast address management is very quick, wide area

IP multicast address management may introduce data latency [4]. IP multicast data transfer is

based upon the User Datagram Protocol (UDP).- UDP provides point-to-point and point-to-

multi-point communications within a network, but the sender has no feedback from the receiver.

1.3 HLA Limitations

Multicast distribution exposes some limitations inherent in the networking infrastructure.

The first limitation is address space management. Since routing tables must traverse the same

network as the data, there is a cost associated with having extensive address spaces. As the

number of HLA entities increase, more network bandwidth and more address space will be

required. Providing more address space comes at the expense of bandwidth, so these are

opposing desires. Simulations also require timely access to network data, but as the network

scales in size, address management will introduce more propagation delays as the host changes

its address table. Another limitation of using multicast addresses is the issue of bundling. A

source will not know which host is interested in the data, so each message must be sent as a

distinct unit. While this is more efficient in terms of network bandwidth, it places an increased

load at the host in terms of packets-per-second (Pk/s). Bandwidth is an easy resource to identify

since it is one of the networks defining elements. Host Pk/s processing capability is very hard to

define, since it is a function of the host, operating system, network interface type and even what

type of data is currently on the network. For this reason, it is often assumed that if the network

1-2

can simply deliver the data to the host, then the host can process it. While this assumption is true

in most cases, there are limitations where the host simply can not handle all the data that a

network can provide [12]. Furthermore, if the host can process the data, it does so at a cost in

terms of CPU usage. Since the simulation also demands CPU resources to keep the fidelity of

the interaction believable, we face a dilemma. Too much data slows the simulation beyond

believable tolerance; too little data and we lose significant meaning in the environment.

1.4 Problem Statement

This thesis analyzes specific limitations inherent in the current networking environment.

These limitations include Pk/s processing capabilities of various hosts, operating systems,

networking media / protocols, and IP multicast processing. In addition, a system is proposed and

developed to move CPU intensive message handling off the simulation hosts and place the

burden on an inexpensive set of computers.

1.5 Thesis Presentation

This thesis is divided into five chapters with one appendix. Chapter 2 introduces ATM

and other networking infrastructures as well as the operations of the IP multicast protocol.

Chapter 3 discusses the approach to measure the limitations of IP multicast, and host Pk/s

processing. Chapter 3 also introduces the design concept of the 'converter' process that will

shift the message handling tasks onto inexpensive PC type hosts. Chapter 4 presents the results

of the testing; including the comparison of several simulated converter based networks to their

baseline network counterparts. Chapter 5 includes a final analysis with recommended

implementation strategies. Included in Chapter 5 is a list of future areas of research for the

converter-based network. Appendix A details specific implementation data and Appendix B lists

the source code used in the converter process.

1-3

2. Background
With the advent of Asynchronous Transfer Mode (ATM) there are now many ways to use

networking resources in a particular distributed processing environment. The High Level

Architecture (HLA) and the Defense Interactive Simulation (DIS) are examples of a distributed

environment that relies very heavily on the underlying network. In order to evaluate

optimization methods for the DIS and HLA network, an understanding of current networking

media protocol (Ethernet) and a possible alternative media protocol (ATM) is necessary.

2.1 Asynchronous Transfer Mode (ATM)

2.1.1 Introduction

ATM is a networking strategy based on the concept of media level connection-oriented

delivery. A connection-based delivery system means that the path between sender and receiver

must exist. In a connection-less environment, the sender has a 'fire-and-forget' strategy; the host

packages the data and then transmits it directly to the network for delivery. The current

networking paradigm based on this connection-less data delivery is the Internet Protocol (IP).

The difference between connection and connection-less delivery can be thought of as the

difference between making a phone call and mailing a letter. A phone call requires both parties

to have a communication path (logical or physical circuit) open between them, a person drops a

letter in the mailbox and the mail system handles the delivery.

The debate over which media scheme is best, connection or connection-less, has never

reached a definite conclusion. For a small community of highly interactive computer systems, a

connection-based network has the lowest packet delays and therefore performs best [7]. This is

evident by the recent surge of switching devices for local networks. A switch provides a

temporary dedicated path between end users to increase the overall throughput of the system. In

a common access network, like Ethernet, each computer must compete with other computers for

2-1

the limited amount of shared communications bandwidth that is available. Studies have shown

that as the utilization rates rise for the Ethernet network, packet delays go up quickly [7]. At a

usage rate of 70%, the data has almost totally saturated an Ethernet network. Packet delay rates

go up exponentially with only a small increase in traffic beyond this point. A switched system

however, can be pushed to over 90% utilization with only a linear increase in packet delays [7].

2.1.2 Optimizing with ATM

A switched network, however, does have a drawback. Dedicated bandwidth is a wasted

resource if unused. A long-haul T-1 (1.544Mbps) line is a very expensive resource and users

typically want as much utilization over a leased communications line as possible. The classical

answer has been to multiplex several low data rate users onto one faster rate line. Each user has

the benefit of the increased data rate while the overall utilization of the line is high. As long as

all the users do not attempt to use the entire bandwidth at once (low to medium utilization), this

arrangement works fairly well [15]. ATM is an attempt to give networks the benefit of

multiplexed channels (dedicated bandwidth) and the flexibility of global connectivity.

2.1.3 ATM Connections
The ATM network establishes a virtual connection between sender and receiver to

ensure low data latency while combining multiple users' data across one physical

communications line to ensure high utilization. This 'best of both worlds' approach by the basic

ATM network is usually too simple to handle intricate networking scenarios [6]. ATM

signaling, the process of setting up and tearing down the Virtual Connection (VC) has evolved

very quickly to fill in these gaps. One important note is that ATM can carry IP traffic. This

occurs because the true ATM protocol resides at a lower layer in the networking model than IP.

A person can think of ATM as either the interconnection of wires and circuits providing a path

2-2

for higher level protocols, or as a native data delivery mechanism. All further references to

ATM in this document will mean native ATM, unless otherwise specified.

2.1.4 Network Management

The management of the underlying network is typically the job of the next higher layer

in the protocol stack. The most influential layer in network management is the transport layer.

Currently, the most pervasive transport protocol is the Transmission Control Protocol (TCP).

Networks usually couple TCP with IP to form TCP/IP, an addressing and data delivery platform

that has made the World Wide Web, or Internet, what it is today. Looking closer at how TCP

uses IP to do its job will shed some insight into why the distinction between connection versus

connection-less data delivery is important. A typical TCP/IP application is the web browser. A

user enters a requested web site and the network transparently responds with the appropriate

data. A quick look at what actually happens in this request will demonstrate how the network

'works'.

2.1.4.1 IP Address
The user enters a destination name; a name server then converts this name to an IP

address. Once the system knows this address it sends a request packet to the remote computer

via a process called routing. Routing is based on the IP address, which has two parts: the

network id and a host id. In decimal, or 'dot', notation this is something like 157.221.143.15. In

this example the first two numbers are the network id. This network id is like the zip code in a

mailing address. It narrows the actual destination down to a specific region. The US post office

groups the zip codes so that each number in the code narrows down the region a little further.

The Internet works in a similar manner with network addresses. The router has a table of

'known' network id codes that identify where to forward each packet. The routers share these

tables of information on how to reach different portions of the network among themselves. This

2-3

information updates the routing tables of other routers and ultimately any host can reach any

other host with the aid of the router network.

IP relies upon this routed addressing scheme where the actual address contains information

on how to reach the distant host. An IP packet is a self-contained entity with both the sender's

address and destination address encapsulated in the header. This equates to the connection-less

model of networking where each packet contains both the data and delivery information. ATM

does not require this additional per-packet overhead since the host places each packet into a

preexisting virtual circuit. A cell only requires 5 bytes of overhead for every 48 bytes of data as

compared to UDP/IP, which requires 40 bytes of overhead per packet [6].

2.2 DIS / HLA

The Distributed Interactive Simulation (DIS) system and its replacement the High Level

Architecture/Run Time Infrastructure (HLA/RTI) are both wide area interactive simulation

environments. This environment uses local and wide area networks to provide inter-simulation

data transfer. DIS and the HLA/RTI require fast data transfer times, since the simulations are

running in real-time. Inter-host communication delay must be less than 100 milliseconds for

DIS [14]. Each simulation must be capable of communicating with any and all other hosts on the

network. The simulations also require low computational overhead for network processing.

Since the simulation is running in real-time, any excessive processor activity will cause

noticeable skips and delays in the interactive simulation. These requirements dictate a very

careful approach to the design and implementation of a network infrastructure.

2.2.1 DIS I HLA Using ATM

ATM provides for very low and fixed cell delays across both local and wide area

networks. ATM also provides for low computational overhead since each cell is of fixed size

and requires very little processing per cell. ATM provides for very precise data delivery so only

2-4

the intended hosts receive the network traffic. This allows for very fast throughput at the host

and can potentially reduce line traffic; allowing the use of inexpensive, lower rate leased lines.

2.3 Implementation of ATM
ATM is a collection of low level and intermediate level processes that allow for rapid

configuration of local and remote switches. Much like a bank of phone exchanges, each switch

can logically connect several physical ports together across a 'fabric mesh'. The fabric maps

each incoming cell to an outgoing port. Since the ATM switch may map an incoming cell to

several different physical outgoing ports, the switch must manage virtual connections within

each physical port.

The overhead mentioned earlier is a combination of bits that identify which virtual

connection a cell is moving along. As a cell arrives, the switch examines these bits of data and

maps the cell to the corresponding outgoing physical port, and virtual channel. For instance, if a

cell arrives from a host on physical port A of switch a with the number 15 as its virtual circuit,

there will be a logical mapping of, say A: 15 to D: 102. The switch would then strip off the

number 15 from the header of the cell, replace it with the number 102 and transmit the cell on

physical port D. The switch that was at the other end of port D, switch 0, will receive the cell on

port C. As the cell comes in on port C, switch 13 will then map the cell to port B with a new

header of 2. The mapping of (physical port): (logical circuit) to (physical port): (logical circuit)

is the heart of ATM and requires something called signaling. Figure 2.1 shows a possible switch

mapping.

2-5

Port C PortD Port C Port D

Figure 2.1: ATM switch interconnection

There are several things to note about logical connections within an ATM network. The

connections are uni-directional (one way only). One port may have more than one destination

(point-to-multi-point). The logical circuit of each port connects to either the transmitter or

receiver of each physical port depending upon current call setup. An important consideration is

that the cell address has significance only on the current physical port. Once the cell has been

switched to the outgoing port, it will probably be assigned a new header address (virtual circuit

number) based on the switch matrix.

2.3.1 Virtual Path Identifier / Virtual Channel Identifier

The numbers used as virtual circuit identifiers mentioned previously are actually a little

more complicated within an actual ATM network, but they perform the same job. Each logical

circuit is composed of a virtual path and a virtual channel within that path. Our virtual circuit

number 15 for instance would actually be a number like 14:258 where 14 would be the Virtual

Path Identifier (VPI) and 258 would be the Virtual Channel Identifier (VCI). There can be 256

VPIs per physical link and 65536 VCIs per VPI for a total of over 16 million potential circuits

per port [6].

2-6

2.3.2 ATM Signaling

Signaling in an ATM network performs the same function as routing in a traditional

network. It provides a road map from one host to another host, or one circuit to another using

the VPI/VCI switch mapping. The 16 million connections per port may seem overwhelming but,

in reality, the host can only use a fraction of these logical circuits. In most ATM interface ports,

there is a limit of 1024 concurrent connections is due to memory constraints [5]. This limitation

arises since each logical circuit must have a physical buffer in memory associated with it on the

host. Another distinction of these logical circuits is that they are unidirectional. Since host to

host data transfers are not usually equal, that is a host will not typically receive as much data as it

sends, ATM specifies the link separately in each direction. This is important because each link

may also include a data rate requirement. If a host expects to send (or receive) a significant

amount of data, it can request a large data rate channel for the call. This allows the network to

pick the most optimum path (for high data rates) available in the network. Signaling also allows

the network to tell the host that the network can not handle that amount of data at the current

time and negotiates a lower rate with the calling host.

2.3.3 Signaling Methods

There are currently several methods for signaling within ATM. These methods consist

of processes that run either on the switch, the host, or both to help configure the switching fabric.

This becomes the ultimate goal of signaling, to establish the inner VPI:VCI mapping of the

switch. When ATM was first fielded, one goal was to replace the legacy Ethernet network

currently in place. In order to do this, the LAN Emulation, or LANE signaling was developed.

As ATM matured the ATM FORUM, a consortium of industry leaders provided another method

of signaling known as User Network Interface (UNI). While LANE and UNI are not true equals,

they both perform the same functionality and will be compared on a functional level.

2-7

2.3.3.1 LANE
LANE has several pieces; a client, a configuration server, an emulation server and a

broadcast-unknown server (BUS) [5]. The client process resides on all interconnected hosts and

performs all signaling communication for the host. The configuration server provides predefimed

mapping of which host belongs to which network. Since the switch can break down the physical

network into several logical networks, this mapping creates a virtual LAN within a network. The

emulation server provides an address mapping of all known hosts in the network. Each client

has a predefined map of the configuration server and emulation server network address. Once a

client has connected to the configuration server and the emulation server, the client can reach

any other known host using the emulation server as a guide. The client uses the broadcast-

unknown server when the emulation server does not know of a particular host, or when the client

requests delivery to all connected hosts. The BUS basically redistributes the data to every

connected host in the network.

2.3.3.2 UNI
UNI and the Network to Network Interface (NNI) work together to build up VPI / VCI

connections in a wide area network. UNI is the local switch connection protocol and is most

often referenced in standards publications [6], since it is the interface most applications deal

with. UNI is a set of signaling commands that the host may give directly to the switch to

establish connectivity. Within UNI there are subsets of servers such as the ATM Address

Resolution Protocol Server (ATMARP) and the Multi-Cast ATM Server (MARS). ATMARP is

basically like the name implies, it provides an address database that the client may query for

addresses of local computer hosts. In Ethernet, a host simply requests another host's address

using a broadcast. Since the broadcast does not exist in ATM, each host registers its address

with an ATMARP server using a predefmed connection. The client makes any future address

requests directly to the ARP server. MARS provides a collection of addresses that have

2-8

identified an interest with a specific Multi-Cast (mc) group. The mc group provides a method of

mapping one transmitter to several receivers. This is like registering for a conference call.

Anyone joining the call contacts the MARS to list their own address and then joins any current

group call in progress. The ATMARP and MARS both function according to Request For

Comment (RFC) standards publications established by the Internet Engineering Task Force

(IETF).

2.4 Implementation of HLA / RTI

In order for a simulation to be realistic, it must have reasonably accurate knowledge of

the simulated environment. This occurs when each simulated entity knows of all other pertinent

entities. With current simulations having over five thousand entities, filtering must be performed

or the simulations will grind to a halt just keeping track of each other [17]. The network filters

data in HLA by an 'interest' expression. This expression reflects what the simulation can see,

hear, touch, feel, etc. It can be a geographical region (a tank can see a two square mile area at

position 'x'), a radio frequency, or any other logical division. The goal is to divide the

simulation environment into manageable clusters so that each simulation does not need to know

everything that happens within the entire simulation. An F-16 pilot, for instance, does not need

to know about a grenade burst ten miles away. Thus each expression reflects a small piece of the

overall simulation.

Simulations identify what parts of the battle space are important to them by subscribing to

those expressions [12]. For example, if a user tunes a radio to frequency 102.4MHz, the

simulation will request a copy of all radio traffic on that frequency. Similarly, if a tank moves

over a hill, the simulation will join the group of simulations already in that area. Likewise, a

simulation lets other simulations know of its own whereabouts by publishing to these identified

groups. This mapping of what area, or expression, a simulation is interested in to the data

2-9

available in that area is a crucial step in filtering out irrelevant traffic. Each simulation then

knows exactly what data it needs and what data it is producing. The battle to reduce the amount

of irrelevant traffic received by the host is almost won; the only job now is to get the network to

cooperate with the hosts.

2.4.1 Current Strategies

The current networking strategy is to use an IP Multi-Cast (IPmc) group for each interest

expression. IPmc relies upon the connection-less User Datagram Protocol (UDP) as the transport

layer. UDP, unlike TCP, sends data when it is ready for transmission rather than bundling the

data into efficient data packets. This reduces transmission time down to a minimum, but does

mean more packets-per-second at the receiving host. The use of IPmc accomplishes several

things. First, each host can subscribe and unsubscribe from these IP address groups at will.

Next, the router network provides for a path to forward data to all users within an IPmc group.

Finally, the network layer on each host will forward to the simulation host only the data that

matches the host's current interest.

IPmc is a special case of the IP broadcast-addressing scheme. In an Ethernet environment,

every host can physically 'hear' any data on the network, regardless of the data address. The

host analyzes each packet's destination address to see if the address matches the host's address.

Local Ethernet IPmc packets have a slightly different impact on the network from the wide area

IPmc packets.

2.4.1.1 Ethernet IP Multi-Cast
A host can reconfigure its IPmc address very quickly, usually in a few hundredths of a

second. The interface card must also update its Media Access Control (MAC) layer address to

accept the incoming multicast addresses. The host can implement the MAC layer as either an

explicit-accept (treat all multicast packets as broadcast) or as a programmable layer like the IP

2-10

network layer. This allows the MAC layer to filter the data packets prior to delivery to the IP

networking layer. Unfortunately the MAC layer can not filter large groups of addresses as

efficiently as smaller groups. Each Ethernet interface card will have a table of current IPmc

addresses at the network layer that the host belongs. The interface card will forward any packet

with an IPmc destination address that matches one in the host's table up to the transport layer

(UDP) for IPmc address confirmation. These IPmc address confirmations require host

processing time, and can be CPU intensive since they require a CPU interrupt process.

2.4.1.2 Wide Area IP Multi-Cast
Processing IPmc packets in a LAN is simple, but routing IPmc traffic within a wide area

network is rather complex. The first case, when the routers are unaware of IPmc traffic, occurs

with older routers, which reject all IP broadcast traffic. To overcome this limitation, certain

hosts 'tunnel' the information from one network to another. The tunneling process requires a

host (D) on network 1 to forward all IPmc traffic to another host (D) on network 2. Once the

host on network 2 receives the tunneled packet, it retransmits the packet as an IPmc packet on

the local network. Figure 2.2 shows this process

Tu"Iar. Host I:D to Host 2:D

Net 1

Router

Net 2

Figure 2.2: IP Multi-cast Tunnel

2-11

If the router is IPmc aware, each router will manage the IPmc groups via the Internet

Group Management Protocol, IGMP [4]. The router periodically (every two minutes or so)

queries all IPmc hosts on the local network for a listing of the groups to which the hosts belong.

The router only requires one entry per IPmc address since all local network hosts receive IPmc

traffic. If the router does not get a response for a certain address, it retires that group and any

routes associated with it from the router's list. New groups become active by a host sending an

unsolicited IGMP request to the router. As the router gets a request for a new group number,

(depending upon routing implementation) it sends a request for the nearest upstream router that

belongs to that group. Once the router finds the nearest neighbor belonging to the new group, it

sets up a route for this new group. The router forwards any data generated locally while any

remote traffic from that group to the local router is delivered to the local network.

2.5 Possible Areas of Improvement
The IPmc implementation has some network performance shortfalls. The first is if

tunneling is used; a host has to become a communication server, which is a potential bottleneck

to high-speed data. If an IPmc aware router is used, there is no way to immediately retire IPmc

routes. The router must 'age' the route until it is removed. For frequent IPmc address hops this

can create a large number of 'ghost' groups that generate useless network traffic. A third

problem deals with the interface cards. Typically a host stores a multicast MAC address on the

interface card as a condensed 6bit hash code [10]. This saves memory space and speeds up the

address matching process, but if the host caches a large number of groups, the probability of an

accidental match (not a true address) increases greatly. This inadvertent delivery wastes host-

processing time. Also, as the number of cached addresses grow, the host must spend more time

searching through the 'data base' of current IPmc addresses to weed out these false deliveries.

One last problem is with the number of packets being delivered in a short period of time. As the

number of Pk/s increases, the effect on CPU utilization could be dramatic.

2-12

2.5.1 ATM instead of IP

As described earlier, ATM is basically a point-to-point network. The UNI signaling

process includes a point-to-multi-point service, but it is currently only for local network hosts

[6]. There are several approaches to true wide area native ATM Multi-Cast (ATMmc), but each

has significant drawbacks. Currently the ATM FORUM is investigating several options to

standardize wide area Multi-Casting within ATM, but to date only an outline of problems that

must be overcome has been drafted [1]. Current options for ATMmc (local and wide area)

include using an N2 mesh, using an ATMmc server, using an ATMmc tree-switch or waiting for

future network development [6].

2.5.1.1 N-Square Mesh
The N2 mesh approach requires each host to have a potential multi-point connection with

every other host in the network, hence the name N by N connections. Each host can then

distribute the data according to these interconnected mesh circuits. The drawback to this

approach is that each address group will usually have a different make-up of hosts, so each group

will require N2 connections. Figure 2.3 illustrates the mesh approach.

Workstation Workstation

Workstation Workstation

Figure 2.3: Y2 Mesh approach for I Group

The number of potential M-Cast connections for each host is on order of G* N2 where G is

the number of Multi-Cast (ATM or IP) groups. For the DIS / HLA network, this equates to

2-13

almost 10 billion at 400 Groups with 5000 nodes [9]. Obviously a host will not use all

connections, but the hard limit currently imposed by ATM interface cards is on the order of

1000. With the large number of virtual connections a large amount of duplicate data will be

transferred over physical circuits. A pure N2 mesh would be a poor choice for DIS / HLA for

these reasons.

2.5.1.2 ATM Multi-Cast Server
The ATMmc server approach is similar to the tunneled IPmc approach. A designated

host receives an incoming cell and retransmits the cell to a local group of hosts. Since only local

hosts are involved, a limited number of locally managed ATM interconnections are required. A

single host is typical, but a group of hosts may act as the server to distribute the data load and

prevent bottlenecks. Figure 2.4 illustrates the ATMmc server approach.

Workstation Workstation

M-Cast Server Workstation

Figure 2.4: Multi-cast server approach

The drawback to the server approach is that a host could receive copies (reflections) of a

message the host itself transmitted. This comes about when a host sends a packet to a group that

it belongs. A filter process would be needed to discard duplicate messages. Another drawback

comes from interfacing with the wide area network. Local hosts will know which servers belong

to which groups, but getting data from a remote network host requires an inter-network database

2-14

of servers and groups. This highlights the main disadvantage of ATM; that is it requires a rather

sophisticated controlling mechanism for call management.

Another drawback is the sheer number of IPmc groups being used within DIS / HLA.

Currently there are plans for around 10,000 IPmc groups. Even with a fraction of these being

active at a host, the possibility of having an interest in more IPmc groups than the interface card

can manage (about 1000) is a real risk. To help off set this, a strategy of overlaying more than

one IPmc group to an ATMmc group could be developed.

2.5.1.3 Multi-Cast Tree
The ATMmc tree approach borrows the spanning tree functionality of a router. This

process establishes a root node as a starting point in an actual wide area ATM network. As new

hosts wish to connect; a tree is built out from the root to the new node. Figure 2.5 shows what an

ATMmc tree looks like.

* ATM Switch

Wa1taltk

Figure 2.5:Multi-cast tree approach

The new node, called a leaf, is grafted into the tree at the nearest branch. This greatly

reduces the amount of redundant data on the network, but it requires a host processor at each

switching station to direct the growth and pruning of the tree. Again a complex management

2-15

scheme must be used in order to harness the true power of the ATM network. Unfortunately,

there are no current working implementations of the ATMmc tree process in a switch.

2.5.1.4 Current Research Efforts
There are current research activities trying to optimize which processes could be placed

within an ATM switch to handle the ATMmc issues. For the tree approach, the grafting and

pruning process could be handled automatically by a super set of current signaling. The switches

could communicate route and path information on data flows to help optimize the overall virtual

connections. The question is, how smart does the switch have to be? Routers started very

humbly as bridging devices, but current routers require more computational power than many of

the workstations on the Internet. Large supercomputers carry out current core routing processes

just to handle the amount of address data and routing information [8]. ATM was developed to

keep processing simple to avoid this pitfall.

2.5.2 Potential ATM Benefits over IP

Once the native ATM network has been built, several advantages over IP routed networks

become apparent. The host interface card will only receive data that the host is interested in, this

reduces the chance of inadvertent data. IP routing becomes more resource intensive as the

number of IPmc groups increase. This is due to the increased amount of routing information that

a router must process to keep track of the different groups. ATM does not have this routing

information avalanche, but ATM does require processing time at startup to establish the set of

interconnection links [6]. A connection oriented network layer will also provide for efficient

'bundling' of data to reduce the amount of CPU interruptions required for data delivery.

2-16

2.6 Realizable implementation

With all the identified tradeoffs and drawbacks to each implementation, can a 'best'

approach really be reached? If so, is the cost required for that approach higher than the gain over

the current scheme? To answer these questions, a study of DIS and HLA requirements needs to

be performed to determine which implementation best matches the DIS/ HLA system's current

and future needs. Once the requirements and implementation strategies are outlined, an analysis

of how each strategy performs based on host processor usage, delivery time and resource

utilization can be performed. With quantitative results, a cost versus performance study could be

done to determine what resources would be needed to achieve a specific host performance

increase.

2.6.1 Performance Metrics

The challenge with measuring a system's performance is coming up with meaningful

statistics. Which metric has the greatest impact on the system? Will a cleaner data delivery pipe

increase host performance, or will more data simply slow down the system? The first

requirement is to establish a performance baseline of host processor usage based on IPmc data

traffic. The host processor usage metric is being used to reflect how much processing time the

host will use processing data as opposed to running the simulation. The main goal of the

simulation is to provide a very high fidelity, real time interactive environment to the user. Once

this baseline is established, the native ATM host processor usage can be measured to determine

what, if any, performance gains there are. These measures will need to be conducted in an

isolated local network setting to ensure a fair comparison.

2.7 Summary

The main objective of this thesis is to evaluate the practicality and performance of

introducing native ATM in the DIS/HLA network for local data distribution. There are no

current practical methods for using native ATM for wide area distribution, as outlined in section

2-17

2.5, so a local network application is the most obvious place for evaluating this approach. The

most significant challenge is to synthesize a method for mapping IPmc groups to ATMmc

groups. This method must reduce the IPmc groups (order of 10,000) down to a small number

(order of 500) of ATMmc groups without losing any data and must maintain integrity of the wide

area network.

2-18

3. Approach

Current developmental efforts to optimize simulation performance rely heavily upon IP

multi-casting to provide packet filtering. The ability to use the network to 'filter' unwanted data

and deliver only what is required is a definite plus, but current multi-casting techniques are

limited in the number of IP multicast (IPmc) addresses that can be implemented. This limitation

is a result of the memory limits of the routers and LAN switches as well as the limited number of

IPmc addresses that the host interface card can effectively filter. A router's limit is around 1,500

IPmc addresses and switches' limit is about 3,000 IPmc addresses [3]. Another limitation

imposed by IPmc addressing is that each message is a distinct unit, since each message probably

falls into different addressing groups. With each message being sent as a distinct packet, the

messages may hit the Pk/s limitation of the simulation host, effectively blocking any additional

data communication with the host. This limitation is currently around 5,000 packets per second

[12].

3.1 Areas of Research
This thesis has three main areas of research. The first studies the effects that larger IPmc

groups have on host CPU efficiency. As the number of IPmc groups increases, more CPU time

will probably be required to manage and filter these groups. The second area of research

examines the Pk/s issue. The focus here is on three key components that make up this limitation,

namely the hardware platform, the LAN interface card and the operating system. The various

impact of each component allows for a maximizing approach to increase the actual Pk/s that a

host can receive. The third area of research is the study of a proposed method for overcoming

the IPmc address and packet per second limitations. This method is to use a series of hosts to

first filter the IPmc data traffic and then deliver the data to the simulation hosts in efficient

message bundles.

3-1

3.1.1 Definitions

Several definitions are presented here to establish a sense of order. These definitions keep

a sense of perspective when comparing current concepts with the studies and approaches

developed later in this document.

3.1.1.1 Packet
A packet is the set of data presented to the networking media for transmission. A packet

may contain one or more distinct data sub elements.

3.1.1.2 Packet Address
The packet address is the address placed on the packet for physical network delivery. A

packet address and IP network address are the same. Typical packet addresses follow the

"234.2.5.1" dotted decimal notation and may be unicast, multicast, or broadcast. The message

address generates the packet address by dividing the message address by the number of messages

per IPmc address. Typical simulation packet address ranges are from 300 to 2000 distinct entries

[16].

3.1.1.3 Message
A message is a unique simulation data entity. The message is variable in length, but

always contains a message address field that is currently two bytes in length. The typical

message is 150 Bytes in length (commensurate with current DIS standards).

3.1.1.4 Message Address
The message address is from the 'subscribe / publish' address of a message and is well

defined across all simulation hosts. This address space is established for all simulation exercises.

With a 2byte address, the message addresses range from 0 to 65535 with no priority flag or may

range from 0 to 32767 when using a priority flag. Increasing the number of bytes allocated to

the message address will increase the address space. Obviously the message address comes from

3-2

a much larger range than the packet address, so we must convert between the addresses.

Currently, the packet address is the message address divided by 32. This provides for a packet

address range from 0 to 2048.

3.1.1.5 Bundle
A bundle consists of a two byte bundle mask, from 1 to 255 messages, an indexed field

identifying the ending position of each message and the last byte containing the message count

of the bundle. Figure 3-1 shows the structure for the bundle.

UBul e g I M I . Msg, End, End2 , Endn t
Mask 10001 Coun

........ A 4... 4 No 4 10
2 Bytes X, Bytes X2 Bytes Xn Bytes 2 Bytes 2 Bytes 2 Bytes 1 Byte

Figure 3-1: Bundle structure

3.1.1.6 Bundle Mask
The bundle mask is a 2byte source-identifier. The bundle mask has the two most

significant bits set on with the least most bits set to indicate the converter number. Each local

host has a unique mask where only one bit is on. Host one for example, has the mask (hex) 00

01. The third host has a mask (hex) of 00 04 up to the sixteenth host with a mask (hex) of 80 00.

The host mask prevents messages from being accidentally transmitted back or 'reflected' to the

sending host.

3.1.1.7 Host Group / Group Address
A group is the logical association of hosts expressing an interest in, or 'subscribing' to a

particular message address. Each message address therefore has a corresponding host group

associated with it. These host groups are dynamic, since a simulation host may subscribe and

un-subscribe to any group at any time during the simulation. The group address is simply the

3-3

2byte representation of the sixteen hosts within the group. Table 3-1 illustrates the converter

database.

Table 3-1: Converter Database

Message address Group address

21 205 (11001101... in binary)

22 45(00101101... in binary)

23 223(11011111... in binary)

The binary representation is the real key to the database. Each bit represents an interest

flag for a particular host within that group. For message address 21, the first two hosts (from left

to right) subscribed and have a code of 1. The next two hosts have no interest and have a code of

0. As each host joins a group by subscribing to that message address, the field bit position for

that host becomes to a one. As a host leaves a group, the bit position changes to a zero. This

process accommodates up to 16 hosts using a two-byte address field. A larger field will

accommodate more hosts. To facilitate message filtering at the simulation host, the converter

process removes the actual message's address and replaces it with the group address during

bundling. As the messages are received, the hosts simply look for its 'bit' in the group address

of a message to determine if the message is meant for that host.

3.1.2 Local Area Network versus Wide Area Network

The reason the focus of this study is on the local network instead of the wide area network

is the issue of scale. While Wide Area Networks use ATM it requires a VC for every data path.

If host-to-host or LAN-to-LAN multicast interconnections are attempted using ATM, the

physical number of VC's required is more than either the host interfaces or the ATM switches

can handle. Even if ATM VC's are established and managed on the WAN, the signaling

mechanisms have to approximate what is being done with Protocol Independent Multicast (PIM)

3-4

which can handle IP traffic as well as ATM. VC call setup and tear down also introduces 'per

call' delay and traffic. As each host changed their multicast group associations, multiple VCs

have to be established or released, creating exponential (N2 Mesh design) signaling traffic and

delays.

3.1.3 Required Changes within DIS I HLA

The Message-to-Bundle converter is a set of software processes running on either one or

multiple hosts. These hosts act as gateways between WAN message traffic and local bundled

traffic. This allows the WAN to stay 'one message per packet' based IPmc, since this appears to

be the most optimal method for wide area traffic. With the small change of adding the message

address to HLA systems, full data interchange is possible, since all LAN traffic is converted to

IPmc messages for transmission, and from IPmc messages when received. The change to legacy

systems involves placing the 'subscribe to' message address as a two byte header within the

message itself. This may seem redundant, since the message address generates the actual IPmc

address of the packet. Unfortunately, there is no way to recover this address from the IPmc

packet upon receipt. The only way for the converter host to know the message address is if the

address is part of the message itself.

3.2 Study 1, IP Multicast Address Effects

The first study, the IPmc test, is for one type of host and one network media. This

limitation focuses on the impact of the networking card alone. The only computers available in

this study to test IPmc efficiency were the Ethernet SGI hosts. This limits the variety of testing,

but the results are indicative of standard Ethernet interface cards. The test runs a series of

network performance evaluations on the SGI Indigo2 (see Section 3.3.5 for exact host

descriptions) that is receiving a variety of IPmc network traffic. The host subscribes to a

percentage of the available IPmc addresses. A sending host transmits IPmc traffic uniformly

3-5

distributed across the entire test range of available IPmc groups. The uniform distribution allows

for the tests to be reported as time average CPU utilization rates. If we used another distribution,

the utilization rates would have to be converted to averages to provide for a meaningful

comparison. The test keeps the size of the packets identical, as well as the actual number of

packets per second being delivered to the host. This ensures that the only deviation in CPU

utilization is the actual process of filtering IPmc addresses from among the arriving data. The

subject host runs a timed loop of floating operations while receiving the IPmc traffic. We

measured a floating operation per second or FLOP performance level from this loop. Each test

had an additional run using the SGI's native 'osview' performance indicator. While the 'osview'

does not provide as precise a measure as the FLOP test, it is still useful to corroborate the FLOP

performance test.

3.3 Study 2, Packet-Per-Second and Byte-Per-Second Rates
The second study delves into the area of network performance known as 'packet-limited'.

This area comes about when the media could provide additional data to the host, but the host is

incapable of processing additional packets from the network. In order to fully understand the

elements that influence packet-limited performance, several areas of the network architecture are

evaluated.

3.3.1 Network Interface Card / Media

The first area to be evaluated is the interface card / media component. We expect this

component to have some impact on performance, but because NIC cards must be interchangeable

among PC platforms, it is doubtful if one vendor could significantly optimize an interface card

beyond what the standard architecture allows. Two SGI hosts, an Onyx, and an Indigo2, are

configured with both a 1OBase Ethernet and a 155Mbps ATM interface card to evaluate the

media effects. Identical tests will determine if the ATM card with its superior data rate can

3-6

provide more packets per second than the Ethernet card. This test uses 1-byte UDP packets to

ensure that the media bandwidth does not influence the outcome.

3.3.2 Hardware Platform

The second evaluated component is the host hardware. It is expected that this component

has a significant impact on the actual number of Pk/s that can be processed since the hardware

dictates such metrics as bus and CPU speed, interface architecture and other physical

optimizations. To evaluate the hardware platform's influence, three host's running the same

version of the Linux operating system with identical interface cards are tested. The first host is

an Intel 486 33Mhz system, the second is an Intel 100Mhz Pentium system and the third is a

200Mhz Intel Pentium Pro system. The researcher understands that the Linux operating system

is compiled for each host individually, and therefore does not provide identical operating

systems but does provide a common reference. The native Linux performance meter validated

the netperf results. A test to evaluate the effect of multiple CPUs on network performance is run

on the single CPU Indigo2 and a quad CPU Onyx, both using the 250Mhz R4000 processors.

3.3.3 Operating System
The final component is the actual host operating system. While the operating system

contains the code that handles interface card interrupts, we doubt it can provide a substantial

increase in the number of packets the host can process. To evaluate the effects of the operating

system we analyzed the results from the hardware test to determine if there were any differences

between a host running Linux and the same host running Windows 95.

3.3.4 Study 2, Test Environment
The Pk/s test used 'netperf', a relatively standard Internet network performance tool. The

Pk/s test used the UDP protocol with packets of one byte to ensure that the media bandwidth did

not create an artificial limit. In order to measure the theoretical bytes-per-second that a host

3-7

can process, the netperf test uses the internal loop-back port for testing. The internal loop back

test isolates the host from the interface card and from the media. This loop back test allows

testing of the actual CPU and internal bus and is the only way to get fair hardware and operating

system results. As with the FLOP test, the native performance meter software confinmed the

netperf results.

3.3.5 Network Lab Setup

There are actually three labs used to conduct the tests. The graphics lab has three 250Mhz

R4000 Indigo2's, two quad 250Mhz R4000 Onyx's, a 200Mhz R4000 Indigo Challenge and a

quad 195Mhz R10000 Onyx2 connected via a l0BaseAUI Ethernet segment. Two of the

Indigo2s, the two Onyx hosts and the Indigo Challenge are also interconnected by a FORE ATM

switch. The SGI's are running Irix version 6.2, use the NFS process and have a standard

complement of background processes running. Since other researchers use the labs at AFIT it is

impossible to strip a network down to a 'pristine' condition. The results are more indicative of

real world situations and therefore the background processes are left running. This introduces

variability to the tests, so each test is performed a minimum of five times with at least three of

the results in a 3% margin of error for validity.

The second lab is the PC lab, composed of the following computers: an Intel 486 CPU at

33Mhz, an Intel Pentium CPU at 100Mhz, and an Intel Pentium Pro CPU at 200Mhz. A l0Base2

LAN interconnects these computers which run both Linux and Windows 95 operating systems.

The third lab, the Zoo, is an FDDI-based ring of 25 Sparc20 hosts running the SunOS 4.2

operating system. The Zoo also uses NFS with a standard set of background processes left

running.

3-8

3.4 Study 3, Suggested Implementation - The 'Bundle Converter'

The goal of this implementation is to reduce the number of Pk/s presented to a simulation

host during processing while maintaining, or increasing the actual number of messages delivered

to the host. We expect that reducing the number of Pk/s that a host must process will free up a

significant amount of CPU processing capacity.

3.4.1 Implementation Requirements

As a minimum, the implementation must provide for the same level of performance and

communications capabilities currently in place within the HLA simulation environment. This

dictates that the simulation software and networking hardware does not require any

modifications to be inter-operable. To this end, the bundle converter must:

"* Receive 'native' IPmc message packets from the WAN router

"* Timely deliver messages to the simulation host (less than 1Oms delay)

"* Accept bundled message traffic from the simulation host and deliver to the

WAN and other simulation hosts as required

"• Prevent packets from being 'reflected' back to the originating host

"* Update IPmc tables at the WAN router via IGMP control packets

3.4.2 Additional Capabilities
By implementing a layer three programmable device into the LAN environment, several

additional capabilities become realizable. Below are just a few of the additional capabilities

provided by this implementation. Further study and optimization efforts may show even more

capabilities, but for this effort the following additional capabilities will suffice:

"* Reduce CPU utilization by bundling the message packets

"* Extend message address space from 2,000 to over 65,000

"* Establish flow control and quality of service

3-9

"* Provide for reliable delivery

"* Exceed the 5,000 message per second limitation of the simulation host

The first benefit reduces CPU utilization. While there is a certain amount of processor

time wasted as it sifts through unnecessary message traffic within a bundle, we expect that the

CPU processor savings provided by reduced network interrupt handling will compensate for this

wasted time. Even so, this bundling method has a 'break-even' point in terms of when the

bundling process pays for itself. The break-even point will be measured in Pk/s. If a host

routinely exceeds this point in normal HLA traffic, it is a good candidate for the bundling

process.

The second benefit is the extended message address space. Conventional IPmc

subscription regions have a limit of one to two thousand addresses, depending on the networking

components. The next generation of IPmc routers and switches boast on the order of three

thousand IPmc addresses. Much like sub-netting breaks one IP network into several smaller

networks, the bundling process subdivides each IPmc address into zones. An analogy is the

cache memory of a computer system. The larger resolution of the IPmc network will contain

several related subscription regions. As a host moves among these related regions, the converter

simply adds and drops the host from the local IPmc group address. There is no need to subscribe

and wait for the wide area network to 'catch-up' since the converter already receives the

necessary data.

A third benefit is the element of flow control and quality of service. This occurs since

the converter knows exactly how much data is being transmitted to the wide area and local area

networks. The converter passes congestion data back to the hosts, which in turn limit the amount

of non-critical data they are transmitting. If congestion is only at the wide area interface, the

converter employs 'source quench' and reduces the amount of wide area non-priority traffic.

3-10

Another benefit is the element of reliability on the local network. Since a message can

have a priority tag, the converter and hosts can track it and send acknowledgments even though

the User Datagram Protocol (UDP) is an unreliable protocol. Unfortunately we cannot

implement wide-area reliability with the converter process, but with flow control the priority

messages have a better chance of being delivered.

One final benefit is that the simulation hosts are capable of sending and receiving more

than 5,000 messages per second. Under the current methodology, each packet contains one

message. The physical Pk/s limitation forces the message per second limit. Overcoming this

physical limitation is possible with an arbitrary number of messages per packet.

3.4.3 Converter Implementation Design, Software Process

The design is broken into three main components: a set of level 1 converters, a central

converter, and a set of host interface processes. The architecture allows for up to six first level

converters labeled Clx, where x is replaced by a, b, c, up to f. There is only one central

converter, labeled C_2. The C_2 processor can support up to 16 hosts. The host interface

processes are labeled H-1, H_2, through H_16. Figure 3-2 shows the overall design with packet

interchange format.

3-11

Router Packet Format
<network address>:DATAGRAM

<lPmc Address> :[Msg addr][Msg Data]
C-1 a C-1lb

<C Address> :[Bundle mask][Msg 1 addr][Msg 1 data]...
[Msg, addr][Msg data][End 1]...[End J]n]

C-2 <C_2 Address> :[Bundle mask][Msg , addr][Msg data]...
[Msgn addr][Msg data][End 1]...[End,][n]

<H_ mc Address> :[Grp, addr][Msg 1 data]...

[GrPn addr][Msg , data][End 1]...[End n][n]

Figure 3-2: Overall converter process

3.4.3.1 Router interface, C_1
The router interface accomplishes several functions. Its primary job is to receive and

transmit message-packets to the router. The C_1 converters must also advertise IGMP message

traffic to the WAN, but the C_1 converter must be careful so that the C_1 converters do not

overlap addresses. If the addresses were to overlap, another C_1 converter would

inappropriately receive one C_1 transmission. The three processes identified in the flow chart

run in parallel on the C_1 host. Figure 3-3 shows the software flowchart for the C_1 process,

which listens for messages from the router. A temporary buffer stores the message and the

message end point. The C_1 host checks for the congestion level specified by the C_2 host. As

the congestion approaches 80 % of the media's capacity, the converter may drop some low

priority messages. The converter sends high priority traffic regardless of congestion.

3-12

Process 1 Process 2 Process 3

Receive Msg Wait 5ms Since Receive from
from router TimeA C 2

Copy Msg to e
M Buffer (Based Time(A)
on con estion)

Store End No Msg in Extract nex a
Pointer Butter Convert to IPmc addr

Yes

Copy End Points a Mag a No Send Msg to
to end of MBuffer IPmc addr

Send bundle Join / Drop IPmc addr
to Co_02 or set congestion

No a this the
sat Msg?

Yes

Figure 3-3: C-1 flow chart

The second C_1 process waits for a 5millisecond timer to expire and then checks to see if

the converter bundled any messages. If so, then it appends the bundle buffer with the end point

identifiers and number of messages in the bundle, then sends the bundle to the C_2 host. The

third process listens for traffic from the C_2 host. When a bundle arrives, the C_1 host unpacks

the bundle and processes the messages. The C_1 converter changes each message address to an

IPmc address for transmission. If the message is data, it is simply transmitted to the router. If

the message is a control message, the C_1 host must either send out an IGMP message or update

its congestion level.

3.4.3.2 Host interface, H_I
The host interface has the primary job of direct simulation connectivity. Since the

simulation provides the host interface with bundled message traffic, the host interface must be

the bundle to message interpreter. Figure 3-4 shows the software flowchart for the H_1 process.

3-13

Process 1 Process 2 Process 3S............................... °

Receive Msg Wait 5ms Since Receive from
from simulation TimeA CA2

Copy Mag to Get time(G

MBuffer (Based - A Get Msg Count
on congestion) Time A)

Store End No ExtraMegxIn
Pointer

Yes

Copy End Points H

.rp
to end of MBuffer ddr?

Send bundie Proces Meg
to C-.2C nrl................................ YL00*~ ess * o

Figure 3-4: HI1 flow chart

The host process, H-1, is very similar to the C1 process, since it has much the same

functional requirements. The main difference is that the simulation is the message source

instead of the router. A control message from the C_2 process indicates that a congestion level

has changed. The H_1 simulation also initiates all message address joins and drops via control

messages. These control messages drive the C_2 and ultimately the C-1 hosts to respond by

updating the local router or switch to start sending the IPmc traffic.

3.4.3.3 C_2 process
The C_2 processor is the central communications and control point within the converter

system. Since all data passes through the C_2 converter, it keeps track of how much data is

being moved and calculates potential congestion problems based on bandwidth usage. The C_2

process is the most complex and requires a more careful description. There are multiple Cjlx

send processes, where the x would be replaced by an a, b, etc., corresponding to the number of

C_1 converter hosts being used. The C_2 host can segregate the message traffic bound for the

C_1 hosts since each message will be destined for only one C_1 converter for transmission.

3-14

There is only one H send process, since the message transmissions to the simulation hosts occur

as a broadcast, and all simulation hosts receive the broadcast. These C_1 send and H send

processes are very similar to those described earlier.

The receive-bundle process is the controlling function within the C_2 converter. It also

controls the other C_1 converters. The process receives a bundle, extracts the message count /

bundle mask, and determines where the bundle came from. If the bundle is from the C_1

converter, it must contain message data for the simulation hosts. Therefore the C_2 process

extracts the messages, looks up the group address, and sends the message to the host-send buffer,

based upon the message priority and congestion. If the bundle is from a host, then the messages

can be either control or data. If the message is a control message, the host will either join or

drop a message address. When a host wants to join a group, the C_2 converter adds that host into

the C_2's group address database. There can be more than one message address associated with

an IPmc address. Therefore, if no other host is receiving message traffic from the corresponding

IPmc address, the C_2 host must tell the least used C_1 host to request the IPmc address. If

there is a C_1 host already getting IPmc traffic for that address, the C_2 host does nothing.

Figure 3-5 shows the software flowchart for the C_2 process.

3-15

Wait 5ms Since41 Time A
SReceive Bundle "

Get-time(
Time A)

Get Meg Count,

Bundle Mask N
No Mug in

1 s.Butter
Yes

Copy End Points
Y to end of ClxBuffer

Extract next Msg /Extract next Msg/J

Msg address Msg address Send bundle
to C.jxCopy Msg Jr:

IsMga No to C lx buffer Get Group
Coto?(congestion) Addr for Meg

Scopt~sg;.................................

Update group Get Group Wait 5ms Since
address Addr for Msg to t fer TimeA

[AGeTime(A

I~ ~ ~~~~ n 9 t - J I Icnslon l

• h Unge A .' II tOb u ffe r t Last~ n sg • e_ ti m e (

S(congestion) I TimeA)

Send Controi No M:gin
MsgtoC_.x HIBufter?

Yes

Is thin Copy End Points
Last Mug? to end of HBuffer

* Yes

.* Send bundle
*/ tot H

Figure 3-5: C2 flow chart

If the simulation host wants to drop a message address, the C_2 host then removes it from

the message group address and checks the other groups belonging to the IPmc address for that

message address. If no other simulation hosts want traffic corresponding to that IPmc address,

then the C_2 host tells the appropriate C_1 host to drop that IPmc address.

If the message contains data, the C_2 process copies the message to the appropriate C_1

send buffer and looks up the group address to see if a local simulation host wants that message.

If so, the C_2 host looks up the group address that determines the local simulation hosts that will

receive the message. The C_2 process then removes the sending host's bit from the group

3-16

address to prevent reflection. The process then replaces the message address with the modified

group address and copies the message and address to the host send buffer for local delivery.

3.4.4 Topology, Data Flow for Converter Process

11111111 * (-Bundle mask) r 1 lme Coud
10001101 (group cods) ll E] (Router based)
10001101 New address 1

Convert52 iPmc Address 224.1.2.2

Switch

Workstation Pos 0 Workstation Pos 1 Workstation Pos 2 Workstation Pos 7

Figure 3-6: IPmc message traffic

Figure 3-6 shows the stages of data flow for the converter. The converters labeled C_lA

and C_lB are the 'front line' converters. Their job is to receive and transmit message traffic to

the wide area network. One benefit of using multiple C_1 hosts is that they can aggregate the

traffic throughput across their interface points. Two C_1 hosts can handle 10,000 Pk/s; three

hosts can handle 15,000 Pk/s and so forth. Much like combining four 64k circuits into one 256k

circuit to reduce queuing delays, this aggregate Pk/s performance reduces the amount of time a

message spends in the system queue. There are two drawbacks to using a bundle converter

system. The first drawback is the obvious need for more hardware. Fortunately, a Pentium class

machine running at 100Mhz or better should satisfy the Pk/s and data rate requirements. The

other drawback is that each additional level-one converter imposes another 400 Pk/s of data (200

Pk/s from C_1 to C_2 plus 200 Pk/s from C_2 to C_1) on the C_2 converter. Therefore, the

number of C_1 converters used is limited to a maximum of about six to eight, depending upon

the number of simulation hosts serviced.

3-17

The level-one converter receives all IPmc message traffic associated with it and performs a

preliminary bundle on the data. It is important to spread the data load equally across the C_1

converters to maximize their Pk/s rate. The C_1 converter receives bundles from the C_2

converter and transmits them as individual messages. Since each level one converter is

responsible for a distinct set of IPmc addresses, no cross talk from one converter back to another

occurs.

3.4.5 Topology, Configuration Cost

Figure 3-6 shows a general topology for the converter process. There are three specific

topologies evaluated in this study. The common elements in the topology are the converter

hosts. Since each converter host is a Pentium-class machine with very little graphics or disk

storage requirements, we assign the nominal cost per converter at $1,000. This is a very

reasonable estimate for common Intel Pentium machines today. The variable elements within

the topology are the interface cards and the LAN hub. The converters will have 10/100Mbps

interface cards installed.

3.4.5.1 Baseline topology

The baseline topology is the standard configuration of six simulation hosts interconnected

by a standard 1OBase Ethernet LAN with a router as the WAN interface. The cost of the baseline

topology is no cost, or zero dollars for comparison. Figure 3-7 shows this topology.

3-18

Wfrl.itilon P.. 0 Workeldlion Po0 1 Work.s.tion P.. 2 Work.ll.on P.. 7

Figure 3-7: Baseline topology

3.4.5.2 Switched Baseline
The change for the second topology is to simply replace the 10Mbps shared media with a

100Mbps switched media. This demonstrates one of the possible future upgrades to improve

network performance. The cost for this topology is $2,000 for a 100Mbps switch and $300 per

host interface card. Total cost is $5,000 for a 10-host system. This has the same physical and

simulation topology as the baseline topology with the hub replaced by a 100Mbps switch.

3.4.5.3 Baseline With Converter
This topology introduces the converter hosts to the baseline network. The baseline media

is the 10Mbps shared Ethernet. All other components remain the same so the cost for this

topology is $3,000, which is simply the cost of the three converters. Figure 3-8 illustrates this

topology.

3-19

Figurn e 3-8:A Bas conv erte topologyF

3.4.5.4 l~~~onorbsltbsSithdcovre

cads on ksthetconvertes an 10Mbpstcardsn on th Wrsimuati on hosts Th addi sttionPalcst heei

for the four port 100Mbps switch, which has a nominal price of $1,500 bringing the total cost to

$4,500. Figure 3-9 illustrates this topology.

Figuere -9: lO onbv/orkbs swthdcovre tplg

1ý3-20

The third topology changes the 10Mbps hub to a 16 port 100Mbps hub interconnecting the

simulation hosts which are retrofitted with 100Mbps interface cards if necessary. The switch and

hub both have an expected price of $1,500 while the interface cards are about $300 each. This

brings the total cost to $9,000 for a 10-simulation host network. This has the same physical

topology as the 100/10 switched topology with the 10Mbps hub changed to a 100Mbps hub.

3.4.6 Test loading

The actual tests require a variety of data loading to evaluate the expected and actual

performance gains. There are seven test cases. The first three tests have each host originating

200 messages per second and receiving 1000, 2000 and 3000 messages per second, respectively

from the WAN. In all tests, each simulation host sends its data to two other random hosts in the

network. Host originated data is 'inside' traffic while WAN originated data is 'outside' traffic.

The last four tests have the simulation hosts originating 450 messages per second and receiving

4000, 5000, 6000 and 7000 messages per second, respectively from the WAN. These last four

tests measure extreme data delivery cases.

3.5 Network analysis, modeling and simulation
Since the makeup of the networking lab here at the Air Force Institute of Technology is

relatively fixed and under constant use, simulation software will expand the converter process

beyond what is physically realizable. These simulations utilize the data gathered from the

physical tests to include processing usage per packet and per byte, processing requirements for

the actual converter software and network characteristics of several media / component

combinations. These simulations explore the impact of new technology such as fast Ethernet,

multicast aware switches and mixed media networking topologies on both the conventional and

bundled networking approaches.

3-21

3.5.1 Simulation software and design

COMNET HI, Version 1.3 is the network simulation software used to evaluate

configurations and data loading that are physically unrealizable here at AFIT. The test cases that

can be physically duplicated are analyzed to make sure that the simulations accurately depict real

world results. The simulation design closely follows the actual operation of the converter

process. Standard COMNET models simulate the media, switch, hub and router components.

The hosts are customized for packet and data CPU usage to measure the data loading impact on

CPU performance as well as data delay. The baseline topologies mirror the physical topologies

as closely as possible.

3.5.1.1 Simulation Design, Baseline and Switched Baseline
The baseline simulation design is a router, six simulation hosts and a lOBaseT Ethernet

hub (see figure 3-7). The router has a message source that generates 150 Byte all-host multicast

packets with an exponential inter-arrival time. While we expect that DIS and HLA WAN traffic

is not for all hosts, this approximation provides for even data loading and reduces the simulation

run times. A random distribution can be used, but the test results have to be reported in average

Pk/s loading to provide for a meaningful comparison. This testing focuses on average delays and

CPU usage, not specifically the variations so the test is performed on this average basis. The

hosts generate 150 byte multicast packets destined for two random hosts with an exponential

inter-arrival time. The switched baseline uses the same model as the baseline with the hub

replaced by a switching component. Figure 3-10 shows the COMNET representation of this

topology.

3-22

IndiI Ii

Outside Router

Id - E Ind-

Inside InsideInside

Figure 3-10: COMNET topology for baseline

3.5.1.2 Simulation design, Converted baseline
The converter augmented baseline simulation has several processes that reflect actual

design functionality. The outside message source is identical to the baseline, as are the media

and router modules. The ClxBundler process listens for outside messages and then writes them

to a zero delay disk file to emulate a memory buffer. Every 5ms the Clx_wl process reads this

disk file, sends that data on to host C_2 and then erases the file. The Clx_1w process listens for

bundles from the C_2 host and then transmits them to the router using a modified UDP protocol.

In order to get the model to accurately send out 150 byte messages, the maximum transmission

unit, or MTU for the modified UDP protocol was set to 150 bytes. This forces the Clx

processor to break down the large bundle traffic into 150 byte packets, just as the real converter

will do. This is important, since CPU interrupts occur when the host sends packets as well as

when the host receives packets. At host C_2, the C_2wl process listens for bundles from the C_1

hosts and writes them to a file called 'host'. The C_21w process listens for bundles from the host

and copies them into the host file as well as a file called 'wan' since the process must send these

3-23

messages to the router as well. Every 5ms the rebundle-in process reads the host file, broadcasts

this data as bundles to the simulation hosts and then erases the file. Every 5ms the rebundle-out

process reads the wan file, sends the data to a uniformly distributed random C_1 host and then

erases the file. The actual C_2 host will attempt to keep the data load as evenly distributed

among the C_1 hosts as possible so the uniform distribution is a good approximation. Every 5ms

the inside message source creates a random number (zero to four) of 150 byte messages, bundles

them up and sends them to the C_2 host. Figure 3-11 shows the COMNET model.

Outside Rut '.oWANA

C1A..Bundter t ,NB Bundler

Con Znv 1Hý Ci B Hostl Inside

C~WC1BI Host2 Inside

AAN

Hos 1a Hos3 Inside

CL Host4 Inside

C~~lw Inside Host6 ot
I dHost Inside

Figure 3-11: COMNET topology for converted baseline

3.5.1.3 Simulation design, Switched converter
The switched converter has the same modeling components as the switched baseline, only

the media has been changed to reflect the addition of the 100Mbps switches and hubs. Figure 3-

12 shows the COMNET topology for the switched converter.

3-24

Outside Ro tsr\ toWANA

r1 18un, LtoWANIB Gl tI _uridler

C1Al n .nviA lA-1 % 100 1B100 OnV1B 018 Osti Inside

ClANw Swtch Cl 1w ost Inside

O~t2 100 H-ost3 ,sd

reburdis in',,, ebundle-out

Host4 Inside

02-wI 02-lw ~ ~ot1
C 1rilside Host6 Host5 Inside

Figure 3-12: COMNET topology for switched converter

3.6 Conclusion
The converter process basically uses a broadcast for data delivery to the hosts, forcing

each host to receive and filter all message traffic by group address. However, it does allow for

the bundling of messages and transmission to the hosts at 200 bundles per second. We expect

that the filtering process will be very cheap, in terms of CPU usage when compared to the usage

of network interrupts [13]. Since current HLA traffic is approaching 2,000 Pk/s, we expect that

almost half of the CPU's capacity is spent processing packet interrupts. As the number of Pk/s

rise due to higher fidelity models and increased number of hosts, we expect that simulation hosts

will be unable to handle the volume of message traffic.

As indicated earlier, the interrupts created by the network interface card creates a heavy

load on the CPU. The message to bundle converter provides a method to reduce the network

interrupts at the host, help reduce congestion and increase the available subscription space for the

simulations to use.

3-25

4. Results

4.1 Overview

The results obtained from this research show that the distinction between packet limited

(unable to receive additional data due to the Packet-per-second (Pk/s) limitation of the host) and

byte limited (unable to receive additional data due to media bandwidth) can be exploited to yield

higher data throughput and lower CPU utilization without excessive delays. The use of UDP as a

data protocol, combined with a programmable network layer device provides for a reliable, low

latency, efficient, priority driven data delivery process that is a significant improvement over

current methods. The following individual results are from three specific tests; IP multicast

efficiency, packet size efficiency and the converter process.

4.2 IP Multicast efficiency

The IP multicast test revealed that the host operating system does use the CPU to filter IP

multicast packet addresses from the pool of subscribed addresses. As the interface card accepts a

packet from the network, the card performs an initial hardware hash check to determine if the

packet 'could be' for this host. If the packet clears the hash check, the O/S kernel receives the

packet for processing at the IP layer. The first action the IP layer process performs is another

address check to ensure that the multicast packet is for this host. If the packet IPmc address

matches the host database, the IP process unwraps the IP layer and submits it to the UDP layer

for further processing. Our tests confirm that as the numbers of address groups increase beyond

50 to 100, the O/S receives a larger number of packets where the interface card inadvertently

accepted the packet. As noted earlier, this is due to the limited hash space the interface card has.

Figure 4-1 illustrates the percentage of CPU time taken to process the packets. Each

category has a constant data reception rate from 200 to 2,000 Pk/s as shown in figure 4-1. At

2,000 groups and 100% reception rate, the CPU utilization is higher than if data used a broadcast

4-1

address, since the CPU checks each multicast packet for address relevance. At 5,000 groups and

80% request rate (1,600 Pk/s host load), the CPU usage is higher than the 100 group, 100%

request rate (2,000 Pk/s host load) even though the load is lower. This indicates that there is a

diminishing return when using IPmc as a filtering mechanism.

The CPU performance loss is a function of both the total groups and the number of

requested groups from that pool. For instance, if the number of requested groups remains

constant, say 40 or fewer, then the interface card can still efficiently filter the traffic even though

the total group population may be very large. Typically though, the number of requested

addresses increase as the available address space increases, and this is where CPU performance

degrades quickly. For this reason, a limit of between 200 and 1,000 total group addresses

appears to be a good choice. Another factor is how much irrelevant IPmc data is present on the

LAN. Figure 4-1 demonstrates a sharp increase between the 200 and 500 group case at the 20%

request rate indicating an increase in irrelevant IPmc traffic. This degradation stems directly

from the interface card's inability to filter out this unwanted data without relying on the O/S IP

stack. A curve traced along the path of about 20 requested addresses shows where the

degradation starts. The 10% interest line increases sharply at 200 group addresses. The 40%

interest line also sharply rises at the 50-group address point. This indicates that the interface

card's optimal filtering range is at or below 20 requested addresses.

The degradation in CPU performance is due to the IP protocol stack in the host but the

network media may affect the IPmc degradation. When using IP over ATM, the CPU probably

would not experience this degradation since the interface card would only receive traffic over the

ATM virtual circuits corresponding to the requested IPmc addresses. Unfortunately there is a

limited number of ATM virtual circuits available for multicast mapping. The ATM interface

will run out of virtual circuits at about 500 IPmc addresses. Another option is to use an Ethernet

4-2

switch that is capable of understanding the Internet Group Management Protocol (IGMP) to add

and remove IPmc addresses from the Ethernet port. Current IGMP switches can handle about

3,000 multicast addresses per switch. This will significantly reduce the amount of unwanted

packets being processed by the interface card, but the host must still filter the packet to ensure an

IP address match. This IP layer filtering could waste up to 5% of the CPU's processing time, as

in the case of the 10,000 IPmc groups at 100% interest level. Even though the host subscribed to

all traffic (100% case) and the data load is constant, the CPU is at 35% usage for 10,000 groups

but only about 30% for 10 group. Table 4-1 and Figure 4-1 shows the actual performance

measurements taken during the test.

Table 4-1: CPU utilization, IPmc test

Total number of groups transmitted at 2000 Packets I Sec
Rcvd packet / sec 10 20 50 100 200 500 1000 2000 5000 10000

(% of groups)

2000 p/s (100%) 30 30 30 30 30 31 30 31 33 35
1600 p/s (80%) 26 27 27 28 28 29 28 29 30 33

1200 p/s (60%) 23 23 23 26 26 26 26 27 27 29

800 p/s (40%) 19 20 19 22 24 24 24 24 25 26

400 p/s (20%) 16 16 16 17 19 22 22 22 22 23

200 p/s (10%) 14 14 14 15 16 19 21 21 22 22

IP multicast CPU utilization

40

35

S30

=25

20 2000p/s (100%)

-- 13600 p/s (80%)
-- -. 1200 p/s (60%)

-4800 p/s (40%)
-*--400 p/s (20%)

10 20 50 100 200 500 1000 2000 5000 10000 0 0 s 10%

of Groups

Figure 4-1: CPU utilization, IPmc test

4-3

Another point to consider is the dynamics of the network. One area noted during the

testing was the time required to process an IGMP message. A simple loop test showed that the

host could only send out about 1,500 IGMP messages per second. The reason for this limitation

is not clear, but it most likely comes from the table updates on both the interface card and the

host IPmc address tables. Although it is not expected, if a large enough group existed in an

extremely dynamic environment, the host's IGMP messages may have trouble keeping up with

the application, or significant IGMP delays could occur.

4.3 Packet size and packet-per-second rate efficiency

The packet size and packet-per-second (Pk/s) rate studies showed that the media, host

platform and even host operating system play a large role in determining capability and

efficiency. One interesting thing about UDP is the collapse of data throughput. This happens

because a sender can typically generate data faster than the receiver can physically accept it. In

TCP, the software flow-control mechanism simply adjusts the window size, or number of

outstanding packets, to throttle back the source. In UDP there is no flow control so the sender

can virtually drive the receiver into overload, corrupting data currently in the receiver's buffer.

In the Ethernet environment, the throughput collapse tends to be gradual, since packet collisions

occur more often at the higher data rates where throughput collapse occurs, creating an artificial

flow control system. In the ATM network, the collapse is very pronounced and usually occurred

between 7,500 and 8,000 Pk/s.

4.3.1 Packet size results presentation

4.3.1.1 Media impact on CPU utilization
The first analysis focused on the impact of the actual network media on the CPU

utilization. The study compared identical hosts using Ethernet and ATM as the network media.

The test host was the Indigo2. The results where there are no data points occur when data

throughput collapse occurred. For the Ethernet case this usually occurs at about 9.0 (± 0.5)

4-4

Megabits per second as expected since the media bandwidth is 10 Megabits per second.

Collapse begins to occur in the ATM network as the host approaches 90% CPU utilization.

Table 4-2 and 4-3 show the CPU utilization for both the ATM and Ethernet network media under

various packet sizes and rates. By comparing these two tables we see the ATM media is between

1 and 25% more efficient, in terms of CPU utilization, than the Ethernet, depending upon the

packet rate and size. While the maximum improvement is impressive, it occurs when the CPU

has already reached over 60% utilization. When the data rates are below 1,000 Pk/s, about 10%

is the maximum improvement with around 4% being the average. These tests show that the

actual CPU utilization improvement realized by converting to an ATM will be very dependent

upon the underlying network traffic.

Table 4-2: CPU utilization, Indigo2 Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkt/Sec 96 128 160 256 512 1024 2048
100 p/s 3 4 3 4 5 6 6
500 p/s 12 11 12 13 12 13 15
1000 p/s 17 19 24 24 26 28
2000 p/s 30 33 44 45 47
3000 p/s 41 51 53 54
4000 p/s 54 63 76
5000 p/s 67 80 90

Max Packet / Sec 7000 Max bits / Sec* 116Mbps

4-5

1 Packet size

........... (bytes) 128
60i X. Packet size

(bytes) 160
40-. .. Packet size

20 (bytes) 256
X*K: Packet size

.. • : : : " •.... y e s 2 5 6

.(bytes) 512
-- Packet size

100 500 1000 2000 3000 4000 5000 (bytes) 1024
/S Olt D/S Ot D/ D/S /S ""-- Packet size

(bytes) 2048

Figure 4-2: CPU utilization, Indigo2 Ethernet

Table 4-3 reveals that throughput collapse for the ATM network only occurs when the

CPU approaches 100% utilization with a maximum data rate of 142 Megabits per second. Since

the underlying media is an OC-3 (155 Megabit per second) data channel, this shows that the CPU

is actually the bottleneck in this case. While data throughput is higher than the Ethernet case, the

maximum Pk/s rate is actually lower. The cause for this is unknown, but the test showed that

when the ATM interface received packet rates higher than 5,000 Pk/s, the interface would reject

about 10% of the first 1,000 packets. The interface became stable after this initial loss, but only

as long as the Pk/s rate was constant. Any change in the Pk/s rate produced another 10% packet

loss. For this reason, the ATM network is stable only to 5,200 Pk/s.

Table 4-3: CPU utilization, Indigo2 ATM

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 2 2 2 2 2 2 2
500 p/s 14 14 15 16 14 15 14
1000 p/s 11 13 15 13 18 30 34
2000 p/s 23 24 25 28 34 39 55
3000 p/s 35 40 44 45 55 60 85
4000 p/s 52 53 55 66 77 82
5000 D/s 58 62 64 68 90

Max Packet / Sec 5200 Max bits / Sec 142Mbps

4-6

8 Packet size80 ••• : • •• i (bytes) 96

. Packet size
60 (bytes) 128

. Packet size40 :::::::••••!:!• (bytes) 160

n' Packet size20 ::::::: ::::.... .:iiiii~:::!::::::: : (bytes) 256

0__ Packet size
S(bytes) 512

100 500 1000 2000 3000 4000 5000 -- Packet size
(bytes) 1024

ID/S ID DA D/S ID IDA WO Packet size

Messaa er second (bytes) 2048

Figure 4-3: CPU utilization, Indigo2 ATM

These two cases show the assumption that packet processing would be comparatively

more CPU intensive than byte processing. Figures 4-4 and 4-5 show CPU utilization rate to

packet size instead of CPU utilization rate to packet rate. Since both size and rate affect the

overall data throughput, this comparison shows how each parameter impacts CPU utilization. In

the previous charts, a steep increase is evident as the Pk/s increase from 100 to 5,000 Pk/s. A

plot of CPU utilization versus packet size shows only a moderate increase is evident. The most

critical observation is a comparison of specific data throughputs on both charts. In Figures 4-2

and 4-3, we see that by increasing our throughput by an order of magnitude using a higher packet

rate we experience a five to ten fold increase in CPU utilization. The same order of magnitude

increase in data throughput by changing the packet size (Figures 4-4 and 4-5) has virtually no

impact at data rates less than 500 PkIs, and at most a three fold increase at 1,000 Pk/s. The most

dramatic example of this is at 100 Pk/s and 2048 Bytes per packet where the CPU is being used

at two and six percent for the ATM and Ethernet, respectively. The same data rate (200

Kilobytes per second) at 96 Bytes per packet requires 2,200 Pk/s; at this same throughput rate the

CPU is being used 23% and 30% for ATM and Ethernet, respectively.

4-7

-*0-'- 100 p/s

---1-50 p/s

60 1000 p/s

"40-'-2O000 p/s

30 '........8000 p/s

20 -0--4000 p/s

0
96 128 160 256 512 1024 2048

Packet size
(bytes)

Figure 4-4: CPU utilization vs. Packet size, Indigo2 Ethernet

90 0~ i
80----soo p/s•500 p/s

70
60 1000 p/S
50~
40 2000 p/s

-- 3000 p/s

0 4-0-4000 p/s

09.
96 128 160 256 512 1024 2048

Packet size
(bytes)

Figure 4-5: CPU utilization vs. Packet size, Indigo2 ATM

By increasing packet size and reducing packet rate, the data throughput remains

constant, but the CPU utilization can be reduced by up to an order of magnitude. This was

common among all platforms, media and operating systems tested.

4.3.1.2 Host impact on CPU utilization

A second series of tests analyzed the impact different host platforms could have on

network performance. The two test platforms were a 60Mhz 586-based system and a 200Mhz

686-based system. Both computers used the Red Hat Linux version 4.2 operating system. The

tables show the difference the host platform can make on the CPU efficiency, especially at

higher packet rates. The 686 platform had the highest packet per second processing of all hosts

at over 15,000 Pk/s. In fact, even an Onyx2 could not generate enough packets to overload the

interface card. While the 686 platform had a much higher Pk/s rate, it still could not handle the

4-8

higher data rates that the SGI computers could (22Mbps for the 686 as compared to 140+Mbps

for the SGI). Tables 4-4, 4-5 and Figures 4-6 and 4-7 show the 586 and 686 system results, with

the absence of data again indicating a collapse in data throughput.

Table 4-4: CPU utilization, 586 Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 pI/s 3 3 4 4 6 9 18
500 p/s 9 11 12 16 26 58 91
1000 p/s 18 20 23 31 51 89
2000 p/s 35 39 41 59 99
3000 p/s 51 59 65 87
4000 p/s 67 77 86
5000 p/s 83 95

Max Packet Sec 6600 Max bits I Sec* 12.6Mbps

0Packet size
60 :(bytes) 96

Packet size

SPacket size
20 ___ (bytes) 160

SPacket size
0 (bytes) 256

100 500 1000 2000 300W 4000 5000 + Packetsize
(bytes) 512

I D/S � D/S DIS D'S 0 Packet size
(bytes) 1024

+Packet size
(bytes) 2048

Figure 4-6: CPU utilization, 586 Ethernet

4-9

Table 4-5: CPU utilization, 686 Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 3 3 4 6 12 16 21
500 p/s 8 14 18 22 32 38 45
1000 p/s 15 18 21 26 46 54
2000 p/s 21 23 26 45 58
3000 p/s 41 42 45 54 75
4000 p/s 44 48 58 66
5000 D/s 54 64 66

Max Packet / Sec 15000+ Max bits / Sec* 22.5Mbps

80-- Packet size

SPacket size

40__ Packet size

(bytes) 256
100 500 1000 2000 3000 4000 5000 + Packet size

(bytes) 512
10/S 50/S 1 0 /00 20 30 /S 40 /S 0 Packet size

(bytes) 1024
+ Packet size

(bytes) 2048

Figure 4-7: CPU utilization, 686 Ethernet

4.3.1.3 Multiple processor impact on CPU utilization
The multiple processor tests utilized the ATM networking media. The results from the

multiple CPU tests indicate that the quad R4000 Onyx system could provide CPU utilization

performance gains depending upon the packet rates. At moderate to lower data rates (less than

2,000 Pk/s), the quad system proved to be only 5% to 10% more efficient. The osview

performance meter indicated that only one of the four CPU's handled network interrupts. The

largest gain in efficiency over single CPU systems was around 40% at 3,000 Pk/s and 2048 bytes

per packet. This shows that while multiple CPU systems have an advantage, they can not

provide a true 1 to 1 processor to performance increase. The multiple CPU systems cannot

exceed the Pk/s or bit per second performance of the single CPU system. The quad processor

4-10

system was unstable in the ATM case at 100 Pk/s rate, therefore rates are not reported. In the

100 Pk/s case the CPU utilization rates were uniformly spread from two to five percent across all

packet sizes. The quad system could sustain 5,400 Pk/s with the ATM media, but as explained

earlier, only when the packet rates were constant. Tables 4-6 and 4-7 show the comparative

performance levels of the single and multi CPU systems.

Table 4-6: CPU utilization, single processor Indigo2 ATM

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 2 2 2 2 2 2 2
500 p/s 14 14 15 16 14 15 14
1000 p/s 11 13 15 13 18 30 34
2000 p/s 23 24 25 28 34 39 55
3000 p/s 35 40 44 45 55 60 85
4000 p/s 52 53 55 66 77 82
5000 p/s 58 62 64 68 90

Max Packet ! Sec 5200 Max bits Sec 142Mbps

80
60 Packet size

(bytes) 96
4H Packet size(bytes) 128

20 Packet size
(bytes) 160

M " Packet size(bytes) 256
100 500 1000 2000 3000 4000 5000 W Packet size

ID a• a a r aS a• (bytes) 512
0Packet size

Mess ces neo second (bytes) 1024
+ Packet size

(bytes) 2048

Figure 4-8: CPU utilization, single processor Indigo2 ATM

4-11

Table 4-7:CPU utilization, multi processor Onyx ATM

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s
500 p/s 15 15 16 18 16 17 18
1000 p/s 21 21 22 24 23 22 27
2000 p/s 35 35 35 36 37 36 36
3000 p/s 45 44 45 45 47 44 44
4000 p/s
5000 D/S

Max Packet / Sec 5400 Max bits / Sec 141 Mbps

SPacket size
50 •(bytes) 96

-0- Packet size
40 (bytes) 12830 -er- iPacket size

(bytes) 160
SPacket size20 (bytes) 256

10 -N-Packet size
(bytes) 512

0 - F_0 Packet size
(bytes) 1024

100 500 1000 2000 3000 --- Packet size

D/S D/S 0/8 NO D/S (bytes) 2048

Messaces ow second

Figure 4-9: CPU utilization, multiprocessor Onyx ATM

4.3.1.4 Host operating system impact on CPU utilization
The assumption that the operating system would have little impact on CPU utilization was

proven wrong. The test proved that the exact same computer could have significantly greater

performance by simply changing to a more efficient operating system. The reason is that the

operating system must handle each network interrupt. A specific set of instructions must be

executed for each received packet. Depending upon the way the vendors construct the interface

drivers, this set of instructions may become rather extensive. The first operating system,

Windows 95, is built to be highly inter-operable with different hardware. This inter-operability

requires extensive layering to allow each third-party vendor to supply the required interface

drivers. The Linux operating system however, is compiled into an executable kernel for each

4-12

specific machine and for each specific interface card. The host operating system also impacted

the maximum Pk/s rate. The operating system did not have a significant impact on the maximum

data rate, since the actual hardware bus speed determines this. Tables 4-8 and 4-9 illustrate the

performance ratings for the Windows 95 and Linux operating system study. The absence of data

indicates where the CPU's reached the 100% threshold.

Table 4-8. CPU utilization, 486 Win 95 Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 pls 24 26 26 29 32 38 50
500 p/s 53 54 56 66 75 89
1000 p/s 84 86 88 100
2000 p/s 100
3000 p/s
4000 p/s
5000 D/S

Max Packet Sec 2500 Max bits Sec* 12.6Mbps

80
*0- Packet size

60 •(bytes) 96
SPacket size

0 (bytes) 128
Z Packet size

20 4 (bytes) 160
Packet size0 (bytes) 256

1 000 SI 1 000 2000 3000 4000 5000 --)--Packet size
S(bytes) 512

Dt DAt a/ DAS a/ A DAS -0 Packet size

(bytes) 1024
Packet size
(bytes) 2048

Figure 4-10: CPU utilization, 486 Win 95 Ethernet

4-13

Table 4-9: CPU utilization, 486 Linux Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 8 8 8 9 9 11 21
500 p/s 19 21 22 25 35 48 98
1000 p/s 32 34 38 45 63 93
2000 p/s 57 63 68 85 100
3000 p/s 80 89 94
4000 p/s
5000 D/s

Max Packet / Sec 3500 Max bits / Sec* 13.5Mbps

"0 Packet size
60 (bytes) 96

;i• !: :. • Packet size
40 (bytes) 128

-i- Packet size
20- i(bytes) 160

0*: Packet size
(bytes) 256

100 500 1000 2000 3000 4000 5000 X Packet size
(bytes) 512

WO/S 0ID i/ /S D /S I /S D /S a Packet size
(bytes) 1024

+ Packet size
(bytes) 2048

Figure 4-11: CPU utilization, 486 Linux Ethernet

4.3.1.5 IP versus AAL5 impact on CPU utilization
The data protocol, either IP or ATM Adaptation Layer 5 (AAL5), had a rather unexpected

impact. The networking industry has often criticized ATM for being less efficient than IP in its

data handling. While this is typically true for bandwidth utilization, it is not always true of CPU

utilization, as this test shows. The AAL5 protocol is much less efficient at lower data delivery

thresholds. It appears this protocol has a handicap of 10% CPU utilization with no data

throughput. As the data rates increase beyond 4,000 Pk/s, the CPU utilization rates turn back to

AAL5's favor. Unfortunately data loss starts to occur in the ATM network at 5,000 Pk/s, so it is

unknown if this trend is useful at extremely high packet rates. ATM has a larger maximum

transmission unit (MTU) of 9188 bytes / packet versus Ethernet's 1500, allowing for more data

4-14

in each packet. The larger MTU allows for the very high data rates (150Mbps) that the ATM

network can provide. Ethernet would theoretically reach a maximum of 5,000 packets at 1,500

bytes each or 60Mbps if the host bus interface and media provided the necessary bandwidth.

Tables 4-10 and 4-11 compare the results of the two protocols using the ATM network.

Table 4-10:CPU Utilization, Indigo2 ATM-IP

% CPU utilization rate as a function of Packet size (bytes)

Pkt/Sec 96 128 160 256 512 1024 2048
100 p/s 3 4 3 4 5 6 6
500 p/s 12 11 12 13 12 13 15
1000 p/s 17 19 24 24 26 28
2000 p/s 30 33 44 45 47
3000 p/s 41 51 53 54
4000 p/s 54 63 76
5000 p/s 67 80 90

Max Packet / Sec 7000 Max bits / Sec* 116Mbps

100"
80"

---- Packet size
W, (bytes) 96

40 "0- Packet size

20 " - Packet size

Packet size

(bytes) 256
10(0 500 1 000 2000 3000 4000 5000 * Packet size

cDS I/3 IDS I/ ,/ OS I (bytes) 512
X Packet size

M~less$ces Io' second (bytes) 1024
. Packet size

(bytes) 2048

Figure 4-12: CPU utilization, Indigo2 ATM-IP

4-15

a I/ DI ID IDIbts 1

Table 4-11: CPU Utilization, Indigo2 ATM-AAL 5

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 17 17 19 18 19 25 29
500 p/s 20 22 21 22 22 23 26
1000 p/s 24 24 25 26 26 29 36
2000 p/s 32 32 31 33 38 42 53
3000 p/s 37 38 37 41 45 53 69
4000 p/s 44 43 43 46 53 67 66
5000 D/s 51 50 51 55 67 80 99

Max Packet Sec 4800 Max bits / Sec 143Mbps

0 Packet size
(bytes) 96

40 -0Packet size

(bytes) 160
20~ Packet size(bytes) 126.. (bytes).96400- Packet size

Mesco e eod(bytes) 1602
0 .. Packet size

(bytes) 256
100 50Fgr 40 1 2000 30ti n 4000 5A A L Packet size10t: ID D/s IDA DiY IDAs IDA (bytes) 512

SPacket Size
Messacies Der second (bytes) 1024

SPacket size
(bytes) 2048

Figure 4-13: CPU utilization, Indigo2 ATM-AAL5

4.3.1.6 Other tests conducted
Two additional tests used a quad processor Onyx2 and an FDDI-based Sparc20. The

Onyx2 proved to be the more efficient host on the majority of the tests. The four advanced

R10000 processors provided increased processing capabilities relative to the other hosts. It is

also by far the most costly host in the testing lineup. The Onyx2's performance is compared to

the quad R4000 Onyx host. As the Tables 4-11 and 4-12 show, the Onyx2 is more efficient at

the lower data rates but is almost the same as the Onyx above 2,000 Pk/s.

4-16

Table 4-11: CPU utilization, Onyx2 Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 3 3 4 4 4 4 5
500 p/s 7 7 7 7 8 9 12
1000 p/s 10 10 10 12 14 16
2000 p/s 17 16 19 19 22
3000 p/s 21 22 24 29
4000 p/s 27 30 30
5000 D/s 33 36 36

Max Packet / Sec 7700 Max bits / Sec* 142Mbps

40
Packet size

30 .(bytes) 96
........-. .Packet size

S(bytes) 128
1a-- Packet size

10 .(bytes) 160
-.- Packet size0 (bytes) 256

-- Packet size
100 500 1000 2000 3000 4000 5000 (bytes) 512
p/s p/s p/s p/s p/s p/s p/s -0--Packet size

(bytes) 1024Messages per second -- Packet size
(bytes) 2048

Figure 4-14: CPU utilization, Onyx2 Ethernet

Table 4-12: CPU utilization, Onyx Ethernet

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 4 5 5 7 9 10 12
500 p/s 8 7 12 15 19 21 25
1000 p/s 13 13 16 17 18 19
2000 p/s 23 27 28 30 32
3000 p/s 34 35 40 42
4000 p/s 42 44
5000 D/S

Max Packet / Sec 6800 Max bits / Sec* 151 Mbps

4-17

0 Packet size
50 ; (bytes) 96

0 Packet size
40 (bytes) 128

SPacket size30 i(bytes) 160
4* Packet size

20 (bytes) 256
10 Packet size

____ - (bytes) 512
- Packet size(bytes) 1024

100 500 1000 2000 3000 -+ Packet size

DA O/S D/t /S D/S (bytes) 2048

Messaooes ow second

Figure 4-15: CPU utilization, Onyx Ethernet

The last test performed was on an FDDI-based Sparc20. This test reveals the packet per

second limitation of the FDDI network media. This is probably due to the nature of token

passing, where each host must 'touch' the packet as it passes around the ring. As more hosts

enter the FDDI ring, the packet is received and transmitted more often. The FDDI network

quickly becomes the bottleneck in the packet-limited environment even with its 100Mbps

bandwidth. This shows that a higher bandwidth network does not always yield an increase in

performance. The only way for FDDI to reach the 100Mbps data rate is to have a very large

MTU, much like ATM. The FDDI MTU is 4500 bytes per frame, three times that of Ethernet.

Table 4-13 shows results for the Sparc20.

Table 4-13: CPU utilization, Sparc2O FDDI

% CPU utilization rate as a function of Packet size (bytes)

Pkts/Sec 96 128 160 256 512 1024 2048
100 p/s 3 3 4 4 4 4 4
500 p/s 8 9 8 9 9 11 14
1000 p/s 16 16 16 16 18 21 29
2000 p/s 29 29 32 32 32 39 47
3000 p/s 45 45 46 47 52 60 62
4000 p/s
5000 o/s

Max Packet / Sec 3000 Max bits / Sec* 126Mb

4-18

7 Packet size
(bytes) 96

00 "-" Packet size

50- IM,(bytes) 128
0 Packet size

40- (bytes) 160
30- Packet size

(bytes) 256

O Packet size

(bytes) 1024
100 500 1000 2000 3000 -- Packet size

D/S D/S Olt D/ i/ (bytes) 2048

Messaces pe second

Figure 4-15: CPU utilization, Sparc2O FDDI

4.3.2 Packet test analysis

The Ethernet media has a maximum transmission unit (MTU) size of 1500 Bytes. The

ATM network had an MTU of 9188 Bytes, which gives it an advantage when it comes to

handling large volumes of data. This advantage of ATM is evident in the maximum data transfer

rates of the two media.

A graphical CPU meter confirmed various data points in the table. The CPU meter agreed

with the netperf data to within 5% for all tests verified using the CPU meter. At the higher levels

of CPU utilization, the meter reported that more than 50% of the actual CPU's usage handled

network interrupts, not data. This supports the assumption that per packet processing is more

CPU intensive than per byte processing. Even on the quad processor, only one CPU handled

network traffic. When this one CPU reached saturation, data throughput collapsed, putting an

artificial limit on CPU utilization. While adding additional processors will free up CPU time for

other tasks, it can not increase the amount of data or number of packets that the native

architecture can support. This became evident for the Onyx processor running ATM. As the

CPU responsible for handling network traffic reached 100% utilization, the throughput

collapsed, even though overall CPU usage was around 40%.

4-19

As the packet size increased, the rise in CPU utilization was not as pronounced as when

the packet rate increased. All of the SGI workstations using the IP protocol had between 9% and

21% processor usage for the 500 Pk/s, 1024 Bytes per packet case. The average was 15%,

showing a 6% deviation across all SGI hosts for this size / rate combination. At the higher

packet rate (4,000 Pk/s) and lower data size (128 Bytes) end of the spectrum, the utilization rates

were from 30% to over 60% for the same SGI hosts. These utilization's are for the exact same

data rate (512Kbytes / sec) as the previous case.

A general conclusion is that each host has a limit of about 5,000 to 6,000 Pk/s, regardless

of media, host processing speed or operating system. The case of the 686 processor and the

Onyx2 shows that future hardware and operating system optimizations can go beyond this

limitation, but only with extremely high CPU usage.

4.4 Converter process results

Results from the converter process tests and simulations show that as data rates increase,

the converter processes can keep the CPU utilization rates of the hosts relatively low. This

architecture also breaks the 5,000 message per second barrier, sending as many as 10,000

messages per second during the highest volume loads with the simulation host processing this

data at roughly 13% CPU utilization. There is a 'break-even' point between the converted and

non-converted network of 10% CPU utilization or about 1,200 messages per second. The break-

even point comes about because all incoming message traffic, regardless of message address, is

sent to the simulation host for processing at 200 Pk/s.

One other benefit of the converter process is that the simulation host CPU load remained

relatively constant. Even if the simulation host does not average 1,200 messages per second, it

may have periods where the loading becomes significant enough to cause performance

degradation. In this case, the converter could prevent these performance lags. In a real-time

4-20

interactive simulation, these performance lags could be severe enough to jeopardize the

simulation's usefulness [2]. The final benefits, message priority and flow control, can

'artificially' limit the amount of traffic a host might get. Even though the network media, host

interface and operating system could handle these new message bundles, the simulation might

not be able to handle the tremendous volume. In light of this, the receiving host could establish

its own internal saturation levels. If the message traffic exceeds this saturation level, the host

interface process would start rejecting non-priority traffic.

There were five topologies for the simulations; the baseline, the switched 100Mbps

baseline, the baseline with converter, the 100/10Mbps converter and the 100/100Mbps converter.

4.4.1 Baseline
The baseline performed as predicted and matched the real network test-bed's results using

the osview performance meter. The traffic generated for this test pushed each host uniformly.

While this does not conform to expected traffic, it does allow the network to run at peak

efficiency. The actual traffic makeup is still unknown at this time [18], but the converter process

was compared with the most highly optimized conventional network traffic. The performance

data seen in Tables 4-14 and 4-15 reflect that the Ethernet link is the bottleneck for high-speed

data. As link utilization goes beyond 70% (3,000 messages per second), delays begin to increase

exponentially. Table 4-15 illustrates these measures. The first number (250 or 450) is the

number of messages being generated by the host and the second number (1,000 to 7,000)

indicates the number of incoming messages from the Wide Area Network.

Table 4-14: Baseline link utilization
From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

host-link % 53.9 69.5 71.5 71.9 82.3 93.2 89.3

4-21

80'
6 0 :::::::::::

250/1 k 250/2k 250.3k 450/4k 450/5k 450/6k 450/7k

Loading

Figure 4-16: Baseline link utilization

Table 4-15: Baseline CPU use, delay

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

Host % 33.7 49.2 54.1 58.4 64.7 91.4 82.3

Msg delay (ms) 1.5 95 220 360 515 1345 3000+

% 40

20

0

250/1k 250,2k 250/3k 450/4k 450,5k 450/6k 450/7k

L oadlna

Figure 4-17:Baseline CPU use, delay

4.4.2 Switch 10OMbps Ethernet baseline

A common network upgrade is to change the media to 100Mbps switched Ethernet. This

is the new 'standard' Ethernet media being shipped on all new computer equipment. At first

glance, it seems that increasing the media speed would eliminate the bottleneck, and therefore

greatly increase network performance. Unfortunately the CPU's themselves quickly become the

bottlenecks as they reach 100% utilization.

While the message per second rate does approach the magic 5,000 mark it does so at a

cost of over 90% CPU usage. For a single CPU system, this means the simulation has virtually

4-22

stopped dead in its tracks. If the hosts were multiple CPU systems, the hosts would still be

capable of processing the simulation, but could not handle additional network data. At this

point, message delay quickly increases because the CPU cannot process the data as fast as it is

coming in from the network. Tables 4-16 and 4-17 illustrate this case.

Table 4-16: 10OMbps link use

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

Host-Link % 5.4 7.1 8.6 11.2 12.7 13.6 14.9

250/1 k 250/2k 250,Gk 450/4k 450r5k 450/6k 45097k
Loadlna

Figure 4-18: 10OMbps link use

Table 4-17: 10Mbps CPU use, delay

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

Host % 33.8 49.3 65.1 84.7 99.5 100 100

Msg delay (ms) 0.6 0.5 0.7 1.2 6.5 195 565

60 • iiiiiiiiiiii

250/1 k 250/2k 250/,k 450/4k 450r6k 450/6k 45097k
Loadlng

Figure 4-19: 10Mbps CPU use

4-23

4.4.3 1OMbps Converter

Unfortunately, the converter process puts too much of a data load on the local 10Mbps

Ethernet. The network saturated at 1,000 messages per second with a delay of over

200milliseconds, which is beyond tolerance of the application.

4.4.4 10/10OMbps Converter

This test proved that the host CPU usage begins at about 10% and is less than 15% at over

7,000 messages per second. The two C-1 hosts demonstrate the shared loading of the incoming

and outgoing data traffic as they approach 90% utilization. The extremely high utilization levels

are now at the C_1 hosts instead of the simulation hosts. Delays are also below 100 milliseconds

up to 6,000 Pk/s. Beyond this rate, the host 10Mbps Ethernet link begins to saturate and delays

the messages. Tables 4-18 and 4-19 illustrate these tests.

Table 4-18: 100110Mbps Link use

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

Cl-Router 4.4 6.2 7.9 10.2 12.5 13.7 15.3

CI-C2 9.1 10.2 11.4 9.2 11.3 12.4 13.8

C2-Host 52.4 51.8 51.7 61.4 75.2 66.7 67.3

80

60 XIII C-R
40~ 1--D C

20-C c2Hclst0

250/1 k 25012k 250,0k 450/4k 450/5k 450/6k 450/7k
Loadlna

Figure 4-20: 100/1OMbps link use

4-24

Table 4-19: 100/1OMbps CPU use, delay

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

Cl 32.6 40.9 49.1 62.5 75.1 81.8 91.5

C2 39.2 39.3 40.9 41.7 48.8 47.4 49.7

Host 9.9 9.9 9.8 11.3 12.4 11.5 11.6

Msg delay (ms) 12.2 18.5 23.1 45 65 111 198

100
60

.0 C2

2 0 - '

01
250/1 k 250)2k 250,Gk 450Ak 4A50Sk 450/6k 10Sflk

Loadna

Figure 4-21: 100/1OMbps CPU use

The 100/100Mbps topology performed very much like the 100/10Mbps up to 5,000

messages per second. The most noticeable difference was the host link utilization and message

delays. The message delays remain below 100 milliseconds, due to the higher bandwidth of the

host link. Even at the highest traffic level the delays are still well below 100 milliseconds. The

CQI processors were approaching maximum CPU usability at the highest traffic point, so

anything beyond this level would require additional C_1 hosts. The C_1 hosts saturate due to the

high number (over 5,000) of incoming and outgoing IPmc packets. The C_2 processor was

operating at a maximum of about 55% usage, and the data links were below 25% indicating that

the system could handle even more data. Since a three or four C_1 converter based system could

not be implemented in the test lab, only the two C1 converter based system is tested in the

modeling environment. Additionally, the C_1 converters model the 586-based system. The C_1

converters would handle even higher data rates using the 686 system as a model.

4-25

Table 4-20: 100/100Mbps link use

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

ClI-Router 4.2 6.4 7.9 8.5 12.7 14.2 16.1
Cl-C2 9.1 10.3 11.5 13.5 18.4 19.2 20.9

02-Host 5.2 5.3 5.3 6.5 7.9 7.9 8.1

25
20~

% 100

250/1 k 250/2k 250/3k 450/4k 450,5k 450/6k 450/7k
Loadina

Figure 4-22: 100/100Mbps link use

Table 4-21:100/100Mbps CPU use, delay

From: Host/Router 250/1k 250/2k 250/3k 450/4k 450/5k 450/6k 450/7k

cl 38.6 40.5 48.5 55.5 75.5 83.7 94.5

02 38.9 39.4 40.9 45.5 49.6 50.9 53.1

Host 9.9 10 10.1 11.5 12.5 12.5 12.7
Msg delay (ins) 12.1 12.2 12.5 13.1 14.3 18.4 22.5

100'

60-

% 40

20

250/1 k 250/2k 250,5k 450/4k 450)5k 450/6k 450/7k
Loadinn

Figure 4-23: 100/100Mbps CPU use

4-26

4.5 Results summary

The tests confirmed that host processors could handle larger packets at a lower rate better

than they can handle smaller packets at a higher rate. The tests also confirmed that 5,000 Pk/s is

a maximum for virtually every host and on all networking media. While the converter process

was not run in an actual HLA simulation, a graphical simulation with the same data traffic as in

the COMNET HI models was executed. In addition, an interactive simulation on an Indigo2

with a 'frames-per-second' meter as the performance indicator was conducted. The simulation

could process 4.2 frames-per-second at idle and dropped to 1.8 frames-per-second at 4,000

messages-per-second. The same simulation using the converter process provided 3.8 frames-per-

second at the same 4,000 message-per-second load. This confirmed the 10% CPU utilization

level indicated by the model.

These results indicate that there is room for optimization within the data delivery structure

of the DIS / HLA infrastructure. With minimal retrofitting, namely the addition of the address

field within the message itself, the converter process provides for a scaleable, inexpensive option

to implement these optimizations. Shifting the network intensive loading off the simulation

hosts will allow for higher message throughput, eliminate simulation 'brown-outs' and provide

for a customizable priority based message handling system.

4-27

5. Conclusions

5.1 Summary of Research / Proposal
This thesis researched several areas of a computer host's performance operating in a

network environment. These areas included IP multicast efficiency, host CPU utilization under

various data loads, and maximum data throughput. While IP multicast traffic proved to have an

optimal range of CPU performance at lower group counts, the performance degradation had a

gradual increase in relation to the group count. In short, IP multicast would not be a true 'show

stopper' for DIS and HLA performance requirements. Data throughput based upon the one-

message-per-packet paradigm did have dramatic limitations, especially at the higher data rates.

Based upon this limitation to data throughput, an implementation was proposed that would

combine, or bundle, multiple messages into a packet for efficient data delivery.

5.2 Contributions
This 'bundle-converter' process provides the benefits of lower CPU utilization and data

prioritization over conventional data delivery methods. The converter does have a 'break-even'

point of 1,500 messages-per-second, but this level includes both transmitted and received

message traffic. Above the 1,500 message-per-second level, the converter process reduces CPU

utilization on the simulation host to a range of 10 to 15 percent. As the message-per-second load

increases beyond 5,000 messages-per-second, the converter process benefit of prioritization

becomes evident. In a conventional network delivery system, if the data traffic bursts beyond

what the host or network can handle, there is no way to determine which message traffic will be

lost. The converter process tags each message with a priority status. If network or host

congestion occur, the converter process will drop non-priority traffic to reduce the congestion.

This ensures that priority traffic has the best chance for delivery.

5-1

5.3 Future Work
While the converter process does provide advantages over conventional networking, there

are several areas where further networking performance research is required. Additional

networking media should be fully researched in terms of performance criteria, the flow control

scheme should be optimized according to traffic patterns and a Wide Area Network (WAN)

extension to the converter process should be explored.

5.3.1 Additional Network Media Research

The networking media at AFIT limited the research to UDP/IP over OC-3 ATM, 1OBase

Ethernet and FDDI. Networks such as 10OBase Ethernet, Token Ring, Token Bus and other

media should be researched for the same per-packet limitations as seen here. If there is a

networking media/protocol combination that significantly reduces the per-packet processing, it

might be a good alternative to the hardware based bundle-converter system presented here.

5.3.2 Converter Flow Control Optimization
The flow control in the bundle-converter system is a simple on-off mechanism based upon

media utilization. When data traffic for HLA becomes available, an optimized flow control

scheme can be developed that would incorporate media utilization, data distributions and host

signaling. This combination of flow-control parameters would ensure optimum data flow to the

host under all data loading conditions.

5.3.3 WAN Extensions

While the converter process is intended for local network use, a possible wide area

adaptation could be developed. The WAN extension could utilize a 'flow-tag' process allowing

several C_2 converters to be joined together as a superset of converters. This would allow the

bundles to be transmitted to each LAN directly, reducing the per-packet processing and

bandwidth overhead on the WAN infrastructure.

5-2

5.4 Conclusions and Recommendations
The converter process provides for optimized data communications under moderate to

heavy data loading within the DIS/HLA arena, reducing 80% CPU usage at 4,000 messages-per-

second to only 13% for the same data load. The cost of additional hardware will restrict the

initial feasibility of the converter process to high traffic sections within the HLA arena. The

probability of data loss and performance degradation is based upon the traffic load experienced

by the host. As this number of simulated entities and the fidelity of the simulations increase,

there will be a greater chance of lost data and reduced system performance. Comparing the

performance of a conventional HLA system to a bundle-converter based HLA system will give a

definite cost performance analysis. Using the probability of data loss and performance

degradation, a user can determine if and when to deploy the bundle-converter system.

5-3

Appendix A: Implementation Data

This appendix includes details for implementing the bundle converter within an SGI

environment. Several items require specific mention, namely the sprocO function, memory use

and the usleepO command when used in a graphics environment.

The sprocO function generates a stand alone child process that can share memory with the

parent and sibling processes. While the sprocO function is truly essential in this process, it is

specific to the SGI machines. Other functions provide similar functionality, such as clone() with

Linux and threads() with Posix C, but most have machine dependent structures. For this reason,

only SGI and Linux code are presented in detail. Other system implementations can be used, just

check the specifics for the code syntax.

Memory management on an SGI machine not as bullet proof as originally anticipated,

especially when graphics processes are used. I initially went with a static memory allocation, but

any graphics initialization routine caused these static pointers to occasionally become invalid.

This problem cleared up when I went to a mallocO based memory assignment. Still, care should

be taken to 'refresh' these pointers when using long term memory pointers within an SGI

processor.

Millisecond timing within the converter process is critical, so the Unix usleepO function is

used. When multiple processes are running, as in our case, occasionally one of the processes

would go comatose, calling usleep, but never receiving a wake-up call. The exact cause is not

certain, but a fix was to refrain from running graphics programs on the SGI host running that

process. The problem appears only for the C_2 and C1 processes, which should be running on

Linux boxes anyway, so a detailed fix action is not required.

A-1

Configuring a Linux host to use IP multicast in the bundle converter system has a few

special steps, as follows:

A. Install the Linux version 4.1 or higher system from CD-ROM with all possible

components. This will require about 400Meg of hard drive space.

B. Change the following line in /usr/include/linux/socket.h from 20 to 2000 i.e.

#defme IPMAXMEMBERSHIPS 2000

C. Run the 'make menuconfig' option as outlined in the installation manual and chose

the 'advanced / developer options'. Scroll to the network section and chose IP

multicast enabled.

D. Recompile the kernel and store it as the boot image file. Reboot.

These steps assume some familiarity with Linux, but any good reference manual will be

able to fill in the specific details for your version.

A-2

00

C u

0
10

Q C.) .0 &0 ,

ob
U 4-

u I

0 0 0 mu

z I

9bO7 5*. ;aU

.0 89 E § 1 1 .

0 o C.4

1U

12 04

* -40

u0 u0- ý, ,

~ - ~ -A

>~..

ef 0

u Z

v ~ ~ ~~92 ~ ~ I

4)4)) 4).~ 44)4)U42

~ ~ 0 ~~ 4 4)44)44))4))4)44)44)44)+

*IS

'50

WI.M

.I 4

~ -u

4t u
o4t,

~ ~ -zi

I ~ .gzi
S ~ 44

*0ON-
U*

*C
*.N

A, z Z

1 110~ 0 u

> -.* PQ

a~ ~- 4

00 ~ A ~ Iop

~C
~51

~~ I

~ ~ ~I
0u

IU~~ ~ ~ 0 0%,ff0

~I ~ e

- 0
4,5~

4 44 ý44

79 -- ' -. 0

I x
,I*

0W) Z30 72

CSI
I n

r~ 00 0.0 0

0 0

cv 2

Ul

UA

U _

04
-o ~ .- ~ -d .

v Clq .I,I I ý 00 0 0ý iu pqo M-nE 1

Ul
>~ >% I

- ~044

C;~

~ ~ V U i~ ~ r,10

* .~ .~I0+~,~j 10

~~~w 70-~QUC

u u u I 4

m~ 0 0

1J1
..0.0.

l~* ~Z-

";03 ~



u

U lo "
C4t

'S0CIq

Au

Cqfu 0 *0 00I

0 6 1~ I ,

w=I ;4 tI S) 10 'z *

U u. u)

C4i

Ra u ,

0 PU ý E 0 0"

z- I.

> go





E It

10 u > 1

4. u

z~ u ue~

Uu < 2 .6

0z 0 2

CU'

a 4Z

00-

_~ III *I.I,-
0 

>

;09;f wo 0*0Q 0 oi O I i I 1 ;09 1I 10I1 l i i



KgU

u ~
94U

>~

U *u

u. U0 U

U,,

`51' - .
U

M. Pu --

> ~ J

.,,x ~I
* u**ý

o m



05,0

ii8

04 u

11 42 ~



pU U

Ul Q 

r
1w m II Iu-- 

I U 
a~

-0 0~ *-1 1-

l o 9 1+0 
'- 0AP

u:: U 
l

V 1:14 > 0

* Z*

z-

0 boU

~ ~ ~I Z z

=~0 0 U 1
0A

U 0 0 zO.z

1+ >0 P 0~:~u 0 l Zi '
106



0

* 0

z4-
.44~ C

I 
-, 

)

-44 -.0 D

-9 z

1i' 1 Iz

> 0

'- -. EQ A

pqu

00 P 4

-ý 01 9.-
P. C )I



pc
+

zz

ji *-

Et , .0*

.1C-

+ A

+ +

-~ 7-1 -"1

m, IY 'p ul u, ,

" M m El V)) &0 ,W

II II.1292 " 106ll

;I 51u O= 52 I

OlII I I o4.

&0) EnwjU W .
U,~~ d --71 11 Z

UUU~r.>



A

zl N

0

I 
du 0 C4 0

I~~~Io C ejI )

_~ *0

0 L

0u

*U

-4 it i0,

0 liSUu I

it~ 
o I

C', f, ý 0 . 4.

04P4



A 0
� p I

U

�-' .�

0'

�I..I

�0I
� �

* '-- �I �I

,� I � � �I � �UU

I -
-'-2 �

0



4A

. 4Z

0 -

02 eI 
.0

t~~ 5 2

~~OuO

00 in

0nm

0 n bIU P4c V w r

A 9 4 RI



90
z

.0~)G ++ l

7g I

AI V

o C.

002

~~~C -- S ~~I

*0~

28 m

Od~f 15 l 1 24 n4

+:Ii
gL~ '6 0

4- .0 0 oz

dd;

w C4r -W

1.4~

e lee

- 0 U1

4),04)..,P- I

400

~1 1.

-- 12

0 04

81 W

ug4 44 0
.4, .4 CI ,

30

~o.

4gI

u W

*
S

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1997 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MESSAGE-BUNDLE CONVERTING IN IP MULTICAST-BASED HIGH LEVEL
ARCHITECTURE EXERCISES

6. AUTHOR(S)

Tracy A. Bobo, Captain USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, REPORT NUMBER

WPAFB OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The Department of Defense is pushing for more wide-spread and realistic interactive training simulations which increases the
demand on network capacity and resources. While network bandwidth is a measurable resource, packet bandwidth, or the
number of packets-per-second (Pk/s) a host can handle, is a shifting commodity. This research analyzes host performance
characteristics under varying data loads. The hosts include SGI single and multi-processor systems and Intel Pentium
platforms using both Windows 95 and Linux Operating Systems. The networking media covers Ethernet, ATM and FDDI.
For the ATM network, both AAL5 and IP over ATM were analyzed. With the data from this research, a system is proposed
and developed that takes individual messages and bundles them into multi-message packets. This bundling process
overcomes the 5,000 Pk/s limitation, reduces the CPU network handling time and introduces a flow-control mechanism at
the local network level.
While the idea of bundling messages to increase CPU efficiency is not new, there are no current methods of bundling within
the new High Level Architecture (HLA). This proposed process is a novel approach to introduce flow control, priority
message handling and increase address space while utilizing bundled data delivery. For traditional network delivery, typical
CPU usage from network data varies as a function of traffic load, ranging from 5 % at 500 messages-per- second to over
80% at 4,000 messages-per-second. The new bundling process requires 10% at 500 messages-per-second but only increases
to 13 % at 4,000 messages-per-second.
14. SUBJECT TERMS 15. NUMBER OF PAGES

122
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Message-Bundle Converting in Intenet Protocol Multicast-Based High Level Architecture Exercises
	Recommended Citation

	tmp.1679068912.pdf.4tHgo

