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1.2 Research Objectives

1.2.1 Construct a Model to Capture Population Demographic Theory. With only one predictor
variable, the theory ascribed by Dent can be analyzed by regression-based modeling techniques. In an
attempt to accurately replicate Dent’s model, the model does not include current population estimates of the
number of people in a specific age group. Instead, the input variable is the number of births in any given
year, and the response is an inflation-adjusted Dow Jones Industrial Average (DJIA). Initially, the goal of
the regression analysis is to determine the validity of Dent’s assessment; simultaneously, the analysis
provides a means of evaluating other possible age groups as predictor variables for the model. After
constructing an appropriate model, it can be used to critique the conclusions Dent arrives at through his

work.

1.2.2 Apply Modeling fechniques to Other Markets. Although Dent alludes to the fact that the
same technique can be used for foreign countries, he only graphically illustrates the example of the United
States with respect to its two major indexes, the DJIA and the Standard & Poor’s (S&P) 500. This
hypothesis leads to the next goal of this research, testing his hypothesis for other countries. After the case
of the United States is addressed, scenarios for other leading economic countries, the United Kingdom
(UK), Japan, and Germany, are examined. In the same manner as the United States, the analysis can lead to
predictions about long-term trends in each country’s market. Hopefully, as a result, one distinguishable
predictor variable presents itself as the most appropriate across the board. However, with cultural
differences, every country is not likely to have identical age groups as the defining factor for their markets.
A key factor in Dent’s theory is the “Baby Boom” resulting from World War II. This cultural effect varied
from nation to nation and from victors to vanquished. The objective, thoﬁgh, is to apply the method in
other instances to evaluate the overall effectiveness of the theory. After completion of this thesis, recom-

mendations will be made about what other paths might provide additional insight.

1.3 Summary
Chapter 2 provides a discussion of background material relevant to the research issues. It outlines

the process for building regression-based models and documents the basis of Dent’s argument. Chapter 3



describes the research methodology used both to prepare the data for analysis and to estimate the regression
model for the United States. The chapter documents the steps used to build the model and comments on the
existence of other equally feasible models. Chapter 4 examines each country on a case by case scenario. It
includes the results from the model generated in Chapter 3 along with the regression models created for the
other countries. It provides graphical representation of the estimated models compared to actual index
performances. Finally, Chapter 5 summarizes the research, presents conclusions, and makes recommen-

dations for further study in this area.




I1. Literature Review

The primary research objective of this thesis is to build a regression-based model which captures
the economic theory of Harry S. Dent, Jr. With this in mind, this chapter provides a description of linear

regression followed by the background Dent uses to support his theory.

2.1 Linear Models and Linear Regression.

2.1.1 Simple Linear Regression Models. A statistical model is a model which utilizes
mathematical techniques to relate system output to a set of input variables. In regression analysis, a
statistical relation is created between input variables, referred to as predictors, and the output, called the
response. In a statistical relation, as opposed to a functional relation, the observations do not necessarily
correspond to points along a function or curve used to describe the relationship. This deviation from the
curve is variation which cannot be explained by the predictor variables. Such variation is typically
considered random in nature. Under observation, it is possible for identical sets of predictor variables to

coincide with different responses. A simple linear regression model can be stated as in Equation 1 (12:10):

Yi=Bo+B:iXi+g (i=12,..,n) )
where
Y; = value of the response variable in the ith trial
Bo . By = model coefficients, or parameters
X = value of the predictor variable in the ith trial
§ = model error term in the ith trial, representing the residual
of the system data points from the underlying model
n = the number of trials

A linear regression model with only one predictor variable is said to be a simple regression model.
In order for a model to be linear, it must be linear with respect to its parameters. Notice, in Equation 1, no

parameters are multiplied with another parameter or appear as an exponent. Notice also that no predictor



variables are multiplied by another predictor or appear as an exponent, so the model is also deemed “linear

in the predictor variable”. A model with these linear characteristics is called a first-order model (12:10).

From Equation 1, the meaning of the parameters B, and B1 needs to be clearly identified. Bi, the
slope of the regression line, represents how a unit change in X will affect the mean of the probability
distribution about Y. The value of By only has meaning when the scope‘of the problem covers X = 0. As
discussed by Neter, Kutner, Nachtsheim, and Wasserman, scope refers to the interval of coverage for the
predictor variables used in the model. They suggest using the range of the data. As the Y-intercept, By
identifies the mean of the probability distribution at X = 0. This meaning is lost for problems which do not

include X = 0 in its scope (12:8-12).

The classical assumptions for regression analysis are (15 :95):
1.) The model is linear with respect to the coefficients and error terms.
2.) The mean of the error term is zero.
3.) The predictor variables and error term are uncorrelated.
4.) The covariance between error terms for each observation is zero.
5.) The variance of the error terms is constant.
6.) The predictor variables are linearly independent of one another.

7.) The error terms are distributed normally.

The remainder of this section discusses both the conclusions based on these assumptions and the

ramifications when they are violated.

2.1.2 The Method of Least Squares. The method of least squares is one technique used to estimate
the parameters, By and B;. As previously stated, data points may not fall directly on the regression.
According to the classical model, the error, the distance an observation lies from the regression line or the

amount unexplained by the predictors, is assumed to be an independent random variable with a mean of




zero. It follows that the expected value of the response (denoted E(Y)) will equal By + B, X. For each

observation, ( X, Y;), an error term , €; exists such that (12:17):

&=Yi-(Bo+P:Xi) 2)

Least squares minimizes the sum of the squared deviations for the n observations. An analytical
approach applying calculus techniques can demonstrate the point estimators, b, and by, minimize this sum

by solving the simultaneous equations below (12:19).

ZYi=nb0+b12Xi (3)

EXiYi=byZX; + b T X2 )

If the assumptions stated in the previous section hold, the Gauss - Markov Theorem asserts “the
least squares estimators, by and by, are unbiased and of all unbiased linear estimators have the minimum
variance” (12:20). Thus, Equation 5 estimates the regression function and can be used as a means of

A
predicting a response, Y, for given levels of the predictors (12:23).
A
Y=by+bh X )

2.1.3 Significance Tests. After obtaining estimates for the B’s, it is important to test whether each
By is significantly different from zero; basically, the regression coefficient has a statistically significant
effect on the model. For each By , the null and alternate hypotheses are formulated.
Ho: =0

Hal Bk¢0

As previously mentioned, each € is assumed to be an independent random variable with a mean of

zero. With the added assumptions that each € has a normal distribution with a constant variance o*



(8~N(0,0’2)), Neter, Kutner, Nachtsheim, and Wasserman prove both Y and the ’s also follow normal
distributions (12:45-48). Therefore, inferences can be made concerning the B’s with a r-distribution.
Namely, the test statistic, #y = by / s(by), is computed for comparison to a table value (¢*), where s(by) is the
estimated standard error of . The test statistic is applied to the following decision rule.

If | tol < * (102 n-2), accept Hy

If Iggl > t*(l_wz; n-2), reject Hy

Above, o represents a predetermined Type I error, the probability Hy is rejected when it is true. In
addition, n is the number of sample points used for the regression analysis. The degrees of freedom (df) is
n-2 in this case since two parameters need to be estimated in the simple linear regression model (12:49).
Degrees of freedom, in general, refers to the number of opportunities a variable is free to vary for a given
set of data (12:72).

The regression results can also be tested through the analysis of variance. First, several equations

need to be introduced (12:70-72).

SSTO =X (Y;-Y ) (6)
3 2

SSE = Z (Y, - Y,) (7)
Y T2

SSR=XZ(Y;-Y) ®

where

SSTO = total sum of squares

SSE = sum of squares for error

SSR = sum of squares for regression

i = observation number

n = total number of observations

Y; = the response for ith observation

A s » .
Y; = the estimated response for ith observation
Y = the average response



After computing the sums of squares, mean squares can be calculated. The mean squares for
regression (MSR) and the mean squares for error (MSE) are computed by dividing the associated sums of
squares by their corresponding df. With the equation for SSTO, it is easier to demonstrate the concept of df.
Although there are n observations in the sample, the sum of the deviations from the averag;: must, by
definition, sum to zero. Therefore, n-1 observations are free to vary, but the last observation will be known.
For SSE, there are n-2 df since two parameters are estimated. Each estimated parameter results in the loss
of one degree of freedom. SSR, in the simple linear regression model, has 1 df. So, the equations for MSR
and MSE are as follows:

MSR =SSR )

MSE = SSE/ (n-2) 10

Having computed the mean squares, another significance test can be conducted. Neter, Kutner,
Nachtsheim, and Wasserman show that Fy = MSR / MSE follows an F-distribution when B;=0 (12:76-77).
Similar to the ¢-test, the null and alternative hypotheses for the test are:

Ho:B1=0
H,: ;20
The decision rule for this test with the risk of Type I error equal to o is:
Fy < F*(1-a; 1, n-2), accept Hy
Fy > F*(1-a; 1, n-2), reject Hy

Both tests attempt to accomplish the same goal, verifying a hypothesized relationship between the
predictor variables and the response. If Hy is accepted, the input variable cannot significantly explain the
observed deviations of the response variable from its mean. Rejecting Hy supports the notion that the two
variables are related. In essence, the level of the predictor acts as an additional measure when attempting to

explain the level of the output.

2.1.4 Goodness of Fit. In linear regression, it is also important to assess how well a model fits the

data. This “goodness of fit” is measured by the statistic R?, the coefficient of determination. R? is



interpreted as the proportion of variance between the predicted and actual responses explained by the
model. Equation 11 shows how R? is calculated. Recall Equations 6, 7, 8:
SSTO =X (Y;-Y )?
4.2
SSE=ZX (Yl - Yl)
5 e
SSR=Z (Y;-Y)
Then,

R>=SSR/SSTO =1 - (SSE/ SSTO) (11)

Based on the equations for R? and its components, it is apparent R falls between zero and one. A
higher R? value indicates a better empirical fit of the data; thus, the model may provide more meaningful
prediction results. Anderson provides a less technical explanation of R%, and his explanation translates the
equations into words. First, the total sum of squares, SSTO, represents the cumulative squared deviation
from the average response. Without the benefit of an explanatory variable, the average is the best guess for
any observation. The regression line reduces the variation between an observed response and its predicted
value based on the levels of the input variables. This variation is unexplained by the model, and it is
captured in the sum of squares for error, SSE. Therefore, the sum of squares of regression, SSR, calculates
the amount of variation explained by the model. In mathematical terms, total variation equals the sum of
explaineq and unexplained variation, and R? is the ratio of the explained portion to the total (1:16).

Although R? is a useful measure for the goodness of fit, the statistic may conceal the truth when
comparing the effectiveness of models. Whenever an independent variable is added to the regression
model, the value of R? increases. In comparison to the original model without the additional variable, the

_new model appears to create a better fit. However, an additional variable introduces a new parameter;
hence, the df reduces by one. An adjusted - R? statistic takes into account the different df. The equation for
adjusted- R? (R%) has a similar form to (11) for R%. The statistic is corrected by dividing both SSE and
SSTO on the right-hand side by their respective df. The result establishes the following relation where p is
the number of parameters in the model (15:49-50):

R%=1-((1-R)*(n-1)/ (n-p)) (12)



2.1.5 Residual Analysis. Recall, the basis for the statistical tests is the assumption that the error
terms are independent random variables distributed N(0,6%). To maintain this assumption, analysis of the
residuals is conducted to determine if the error terms uphold the initial assumptions (Residuals are usually
denoted e;). A plot of the residuals against either the predictor variable or the estimated response values can
assist in the determination of a model’s ability to capture the system. This graph identifies any correlation
between the residuals and the variable they are plotted against. Figure 1 provides an example of a residual

plot.
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Figure 1. Example of Residual Plot

The concept of the graph is to ensure the assumption of constant variance exists over the different

levels of the variable. Such constancy of variance is called homoskedasticity; heteroskedasticity is the term

used when the assumption is violated. Furthermore, heteroskedasticity is categorized as either pure or

impure. Pure heteroskedasticity occurs when an equation can describe how the variance behaves for

different levels of the input variable. Notice, in Figure 1, the magnitude of the residuals increases as the
input variable increases, so it appears the variance of the distribution increases as the level of the predictor
variable increases. The impure form of heteroskedasticity occurs when there is an error of specification,
usually the result of an omitted variable (15:365-371).

Heteroskedasticity has three major consequences on the regression parameters estimated by the

method of least squares. First, the coefficient estimates remain unbiased (E (b,) = B,) when pure hetero-
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skedasticity exists. The other two consequences are related and apply to both forms of heteroskedasticity.
The variances of the distributions of the estimated parameters increases; however, the method of least
squares tends to underestimate these standard errors. Without correction, the statistics used in the
significance tests are less reliable. Since the variances are underestimated, the null hypothesis may be
falsely rejected (15:374-375).

Like most problems which may arise with regression, heteroskedasticity has tests to detect its
presence. Studenmund identifies the Goldfeld-Quandt test as the most commonly used test for heteroske-
dasticity. In the Goldfeld-Quandt test, the data is reordered according to size of the predictor variable.
Using/the regression function obtained by least squares, calculate the sum of squares for error (Equation 7)
for the first and last third of the observations, labeled SSE; and SSE; respectively. The ratio of SSE; to
SSE,; is then compared to a critical F-value to determine if the null hypothesis of homoskedasticity is
accepted or rejected. The value used for the F test is F*(1-o; 1, n-2) where o is the level of Type I error
tolerated (Studenmund: 381).

Residual analysis may demonstrate that the initial assumption of constant variance does not hold
for the estimated regression model. Often, a transformation of the response or predictor variables (or both)
adjusts the model appropriately. Neter, Kutner, Nachtsheim, and Wasserman give a discussion of
transformations for different types of regression patterns (12:126-133). Taking the natural log (In) of the
response variable can perform one such transformation. The result of the operation is then used as the

output variable.

2.1.5 Econometrics. The field of econometrics applies estimation \techniques to establish
relationships based on economic theory. The process provides two related objectives, empirical testing of
the hypotheses and substantiation for predictions. The most crucial test of any theory is the ability to make
pertinent forecasts. Econometric models are categorized as either cross-sectional or time series. Cross-
sectional observations examine specific characteristics, such as household income, as a determining factor
for some economic tendency. Time series problems, the class of models this thesis falls under, focus on a
variable of interest observed at equally spaced time intervals. The variable of interest in this study is the

annual level of a market index.
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The added dimension of time invokes questions concerning the model’s economic interpretation,
especially the consideration of dynamic relationships. The full effect of a dynamic element is not realized
immediately; instead, the contribution of the variable is partitioned until a specified time period has elapsed.
Even though the current subject is an appropriate extension of this work, further discussion of this subject

exceeds the level of this thesis, and the reader is referred to Harvey’s work (8:1-8).

2.2 The Economic Philosophy of Harry Dent.

Harry Dent believes a nation’s economy is highly predictable, and he contends the single, greatest
factor in determining an economy’s position is consumption. Since markets are theoretically designed to be
indicators of the economy, they should also fluctuate based on consumbtion levels. Dent uses a unique
method to identify when a country is at its peak spending level. In Figure 2, the median income level is
given for each age group for the year 1996. Notice, the peak of the curve occurs between the ages of 45 and
54. If a constant percentage of income used for spending is assumed across the age groups, then the 45 to
54 age group has the largest impact on a per person basis. On this basis, Dent argues that a relationship

exists between market indexes and age demographics.
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Figure 2. Median Income by Age Group, 1996
Source: U.S. Bureau of the Census
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As more people enter this largest spending group, consumption must go up, and this increase
should also be reflected in market indices; Dent terms this the Spending Wave. Therefore, the population
of the age group can be used as a predictor of the market index. Furthermore, he concludes that the 46-year
old age group is the best predictor for this phenomenon (5:21-43). This thesis attempts to verify this claim.

Over the two decades from 1945-1964, the number of births in the United States increased by fifty
percent over the first ten years, and this level was sustained over the next ten years. Termed the Baby
Boom, this generation produced by the largest number of births in the country’s history is currently entering
this economically influential age group. Applying Dent’s suggestion, Figure 3 projects the total number of
births for a given year plus 46 years into the future. Therefore, those born in 1934 entered the influential
age group of 45-54 in the year 1980. Figure 2 shows that the number of people entering the influential age
group continues to increase from 1994 until 2007 when a steady decline sets in for a 15-year span before

another upturn takes place around 2022.
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Figure 3. U.S. Births Lagged 46 Years
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One upsetting feature of Dent’s work overlays two graphs with different scales (4:71)(5:32), the
projection for. number of births similar to Figure 3 and an inflation-adjusted market index, without any
mathematical justification. Neither scale uses zero as a lowest value, and no indication of statistical relation
is stated. As Dent’s work is proprietary, one of the first steps will be to outline a statistical model to
confirm his conclusions while establishing the mathematical support for reproducing his graphical results.
Using the Consumer Price Index as a means to calculate inflation, Figure 4 and Figure 5 chart the inflation-
adjusted DJIA and S&P 500 respectively. Both graphs possess the same general tendencies. In addition,

the indexes experience significant increases over the last twenty years similar to Figure 3.
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Figure 5. Inflation-Adjusted Standard & Poor’s 500
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Another factor determining economic growth is capital accumulation. The majérity of capital is
provided by consumer savings and corporate profits, with the prior being the largest sector. Similar to
spending, saving fluctuates along the lines of age demographics. In fact, Dent says saving rates peak shortly
after the peak of spending waves - occurring for U.S. citizens in their late forties to earlier fifties. One way
to measure the relative savings rate in a society is to take a ratio of the number of older people to the
number of younger people (3:72). Figure 6 charts the “Old / Young” Ratio, with the elderly reflected by the
ages 45-54 and young people by the ages 25-34. A value above one indicates an older society while a
younger population will correspond to a value below one. Notice, the curve’s low occurs around 1986, and
the ratio reaches its zenith in 2007, similar to the peak obtained in Figure 3. As more people save,
companies are able to obtain more capital at a less expensive price in the form of equity (stocks) and debt
markets; however, prices for capital accrue greater profit margins, and larger corporate profits allow
businesses to finance other projects internally (3:72-73). These are two signs of a growing economy. The

ratio in Figure 6 is another indication of the predicted economic boom over the next decade.
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Figure 6. Old/ Young Ratio for the United States
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Dent believes this kind of analysis can be accomplished for any country. Few people have
commented to the validity of his assertions; however, what has been written is supportive in nature.
Hokenson, an economist with the same philosophy as Dent, places more emphasis on the younger
generation leaving their parents’ home and creating a new household. He uses Japan in thé early 1990’s as
an example. With an aging culture, Japan’s increased savings resulted in a current account surplus and
bolstered the yen with respect to other currencies. He also concludes the United States will experience this
type of economic strengthening until 2010 when the labor force size will actually begin to decrease

(9:18-21).

2.3 Assessing the Model

| Neter, Kutner, Nachtsheim, and Wasserman identify three primary purposes for regression analysis
(12:9). These are description, control, and prediction. In practice, it is possible for a study to involve all
three. In a regression model used for description, the model parameters attempt to describe why certain
responses result from a given set of predictor variables. When control over the predictor variables exists,
the regression model is used to identify what levels are necessary to maintain a specific response. Finally,
regression models can be used to forecast system responses based on known levels of predictor variables.
This thesis focuses on this last aspect since it involves verifying a method for predicting future market
indices based on given birth figures.

The scope of a given study is critical in determining a useful model. To reiterate, scope defines an
interval of effectiveness for the model. As part of this research, the United States’ birth levels used as
forecast data lie outside the range of birth levels used to construct the model. Since no evidence has been
considered in the study outside these bounds, some doubt must prevail in the model’s prediction capability.

Anderson provides a method to evaluate a market-timing strategy based on a forecasting process.
For starters, the forecast needs to be compared to a baseline model of investing passively (1:119). Dent
decides on investing based on the difference between his forecast and the actual value of the index. For

example, when the “real value” of an index falls below his forecast, Dent recommends investing.
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‘Another goal of this thesis is to explore market-timing strategies for the models constructed during
the regression analysis phase. Maturi and Plummer provide numerous examples of forecasting theories
developed over time (11)(13); however, neither book examines a theory based on population waves.

Data for regression analysis is obtained in one of two fashions, either experimental or non-
experimental. The discussion will focus on non-experimental data since this thesis focuses on historical
observations from several countries. Observational data has limitations associated with deriving cause-and-
effect relationships, especially when the purpose of the regression model is description. Other variables

may be overlooked which have a more direct explanation of the relationship (12:14).

2.4 Stock Indexes

Charles H. Dow, the first editor of the Wall Street Journal, theorized that a select group of stocks
could be used to determine the trend of overall stock prices. With the assistance of S.A. Wilson, Dow
constructed the first market index, the Dow Jones Industrial Average (DJIA). The list of companies on the
DJIA is periodically changed in order for the index to be more representative of the market as a whole.
Reasons for adjustments to the list include stock splits, takeovers, and bankruptcy. First, the average is
price-weighted, placing more weight on higher priced stocks. In addition, the DJIA is composed generally
of giant industrial and service companies, so representation of the multitude of securities for smaller
companies seems to be excluded. As a result of the dissatisfaction with the DJIA, other indexes gained
acceptance as market indicators. Today, the Standard & Poor’s (S&P) 500 serves as a benchmark for other
indexes and mutual fund performance. It consists of 400 industrial, 40 financial, 40 utility, and 20
transportation companies (11:13-16). The Nikkei 225, FTSE-100, and DAX are the major indexes

respectively for Japan, the United Kingdom, and Germany.
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IIl. Methodology

Throughout this chapter, the outlined method will refer to the model constructed in order to fulfill
the primary objective of this thesis, capturing Dent’s theory. The discussion will focus on the model for the
United States with the number of births lagged 46 years as the predictor variable for the adjusted Dow Jones
Industrial Average (DJIA(A)); however, commentary will be provided on the overall acceptability of this
model. In Chapter 4, the forecasts based on this model will be presented, and the methodology will be

applied to other countries and their respective indexes.

3.1 Data
The following pieces of data and sources were used to build a regression model with the number of
births as an independent variable (X) and the DJIA(A) as the response (Y):
1.) The number of births for each country for the years 1934 - 1994 from the United
Nations Demographic Yearbook (14).
2.) The closings on the DJIA from The Dow Jones Averages: 1885-1990 (6) and Irwin
Iﬁvestor’s Handbook (7). The values listed fbr a given year correspond to the
-recorded fourth quarter closings, the last day of operation in any year.
3.) The measures of the Consumer Price Index (CPI) from the Bureau of the Census
website (2).
For the DJIA and‘ the CPI, the listings in Table 1 on page 20 are the values recorded for December

of that year.

3.2 Procedure

3.2.1 Discounting Closings for a Common Year. Before regression analysis was performed, the
closings on each index were converted into terms of a common year. Like any other product, the DJTA
must be adjusted for inﬂation in order to determine the amount of “real” growth that has occurred. The
indices in this work are adjusted to the earliest recorded entry. For the United States, the DJIA was

translated into a base year of 1997.

18



First, the CPI for each year was used to obtain inflation rates. For example, the CPI for the United
States was 469.9 in 1996 and 480.8 in 1997. Thus, an inflation rate of 2.32% was calculated for the United

States in the year 1997 according to Equation 13.
Inflation , = (CPI, - CPI, ) / CPI, (13)
In the same manner, growth rates for the DJIA were calculated for each year by Equation 14.
Growth rate , = (DJIA, - DJIA,.,) / DIIA, (14)
Since both the CPI and DJIA closings were measured on the last day of the year, a “real” growth
rate for each year could be calculated by taking the difference between the growth rate and the inflation rate
of the same year, shown in Equation 15.
“Real” Growth Rate ;, = Growth Rate , - Inflation , (15)
Once the “real” growth rates for each year were calculated, the index was discounted
appropriately. With 1997 as the base year, the DJIA closing for this year remains unchanged at 7,915.97.
For the preceding years, the 1997 value of the DJIA was discounted using the “real” growth rate. Algebraic
manipulation and substitution of the “real” growth rate for the growth rate in Equation 14 provided the
necessary computations.

DJIA(A)p.1 = DIIA(A), /(1 + “Real” Growth rate )

The values calculated for the series DJIA(A) are also shown in Table 1 on the next page.
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Year Births DJIA Return CPIl Inflation DJIA(A) Real Return
1934 2,168 104.04 40.1 1418.10

1935 2,155 144.13 | 38.53% 41.1 2.49% 1929.17 36.04%
1936 2,145 179.90 | 24.82% 41.5 0.97% 2389.17 23.84%
1937 2,203 120.85 | -32.82% 43.0 3.61% 1518.60 -36.44%
1938 2,287 154,76 | 28.06% 42.2 -1.86% 1972.97 29.92%
1939 2,266 150.24 | -2.92% 41.6 -1.42% 1943.39 -1.50%
1940 2,360 131.13 | -12.72% 42.0 0.96% 1677.52 -13.68%
1941 2,513 110.96 | -15.38% 441 5.00% 1335.61 -20.38%
1942 2,809 119.40 | 7.61% 48.8 10.66% 1294.86 -3.056%
1943 2,935 135.89 13.81% 51.8 6.15% 1394.08 7.66%
1944 2,795 152.32 | 12.09% 52.7 1.74% 1538.42 10.35%
1945 2,735 192.91 | 26.65% 53.9 2.28% 1913.34 24.37%
1946 3,289 177.20 | -8.14% 58.5 8.53% 1594.23 -16.68%
1947 3,700 181.16 2.23% 66.9 14.36% 1400.95 -12.12%
1948 3,535 177.30 | -2.13% 72.1 7.77% 1262.20 -9.90%
1949 3,560 200.13 | 12.88% 71.4 -0.97% 1436.98 13.85%
1950 3,554 235.41 | 17.63% 721 0.98% 1676.22 16.65%
1951 3,751 269.23 14.37% 77.8 7.91% 1784.51 6.46%
1952 3,847 291.90 8.42% 79.5 2.19% 1895.78 6.24%
1953 3,902 280.90 | -3.77% 80.1 0.75% 1810.03 -4.52%
1954 4,017 404.39 | 43.96% 80.5 0.50% 2596.72 43.46%
1955 4,047 488.40 | 20.77% 80.2 -0.37% 3145.86 21.15%
1956 4,163 499.47 2.27% 81.4 1.50% 3170.09 0.77%
1957 4,255 435.69 | -12.77% 84.3 3.56% 2652.34 -16.33%
1958 4,204 583.65 | 33.96% 86.6 2.73% 3480.71 31.23%
1959 4,245 679.36 | 16.40% 87.3 0.81% 4023.36 15.59%
1960 4,258 615.89 -9.34% 88.7 1.60% 3582.95 -10.95%
1961 4,268 731.13 | 18.71% 89.6 1.01% 4217.01 17.70%
1962 4,167 652.10 | -10.81% 90.6 1.12% 3714.12 -11.93%
1963 4,098 762.95 | 17.00% 91.7 1.21% 4300.38 16.78%
1964 4,027 874.13 14.57% 929 1.31% 4870.78 13.26%
1965 3,760 969.26 | 10.88% 94.5 1.72% 5316.97 9.16%
1966 3,606 785.69 | -18.94% 97.2 2.86% 4158.06 -21.80%
1967 3,521 905.11 | 15.20% 100.0 2.88% 4670.28 12.32%
1968 3,502 943.75 4.27% 104.2 4.20% 4673.51 0.07%
1969 3,600 800.36 | -15.19% | 109.8 5.37% 3712.27 -20.57%
1970 3,731 838.92 | 4.82% 116.3 5.92% 3671.36 -1.10%
1971 3,556 890.20 6.11% 121.3 4.30% 3737.93 1.81%
1972 3,258 1020.02 | 14.58% 125.3 3.30% 4159.78 11.29%
1973 3,137 850.86 | -16.58% 133.1 6.23% 3210.97 -22.81%
1974 3,160 616.24 | -27.57% 147.7 10.97% 1973.35 -38.54%
1975 3,144 852.41 | 38.32% 161.2 9.14% 2549.25 29.18%
1976 3,168 1004.65 | 17.86% 170.5 5.77% 2857.48 12.09%
1977 3,327 831.17 | -17.27% | 181.5 6.45% 2179.70 -23.72%
1978 3,333 805.01 | -3.15% 195.4 7.66% 1944.17 -10.81%
1979 3,494 838.74 | 4.19% 217.4 11.26% 1806.74 -7.07%
1980 3,612 963.33 | 14.85% | 246.8 13.52% 1830.78 1.33%
1981 3,629 875.00 -9.17% 272.4 10.37% 1473.01 -19.54%
1982 3,681 1046.54 | 19.60% 289.1 6.13% 1671.48 13.47%
1983 3,639 | 1258.94 | 20.30% | 298.4 3.22% 1956.95 17.08%
1984 3,669 1211.57 | -3.76% 311.1 4.26% 1800.03 -8.02%
1985 3,761 1546.67 | 27.66% 322.2 3.57% 2233.66 24.09%
1986 3,757 1895.95 | 22.58% 328.4 1.92% 2695.10 20.66%
1987 3,809 1938.83 | 2.26% 340.4 3.65% 2657.57 -1.39%
1988 3,910 2168.57 | 11.85% 354.3 4.08% 2863.96 7.77%
1989 4,041 2753.20 | 26.96% 371.3 4.80% 3498.64 22.16%
1990 4,158 2633.66 | -4.34% 391.4 5.41% 3157.34 -9.76%
1991 4,111 3168.83 | 20.32% 408.0 4.24% 3665.01 16.08%
1992 4,084 3301.11 4.17% 420.3 3.01% 3707.52 1.16%
1993 4,000 3754.09 | 13.72% 432.7 2.95% 4106.88 10.77%
1994 3,979 3834.44 | 2.14% 444.0 2.61% 4087.53 -0.47%
1995 5095.80 | 32.80% 456.5 2.82% 5317.07 30.08%
1996 6509.78 | 27.75% 469.9 2.94% 6636.37 24.81%
1997 791697 | 21.60% 480.8 2.32% 7915.97 19.28%

Table 1. Data Series for United States and DITIA
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3.2.2 Building Linear Regression Models. Regression analysis was conducted with the data
obtained in 3.2.1. Attempting to verify Dent’s claim, simple linear regression models were built with the
number of births as the input variable, and the DJIA(A) as the output. In each instance, a lag period was
identified. Equation 16 shows the linear relationship between the predictor variables and the response (X

represents the number of births for the corresponding year). For example, in the 46-year lag model:
DIIA(A)a = Bo + B1 * Xnss (16)

In this instance, the number of births in 1934 and the DJIA(A) for 1980 were combined to form a
data point. The regression analysis was performed, and Table 2 illustrates the results obtained using the
corresponding lag between input and output. For the models built with lags from forty to forty-six, eighteen
data points were used. When the lag exceeds forty-six, a data point is lost for each additional year added to
the lag. As mentioned in Chapter 2, the heading R, reports the adjusted - R%. The reported #-statistic is
associated with b, since a relationship was trying to be established for the predictor variable. GQ refers to

the statistic calculated by performing the Goldfeld-Quandt test (2.1.5).

Lag R%, bo b t-stat F-stat GQ
40 0.702 -5125.45 2.49 6.40 40.97 5.61
41 0.686 -4475.52 2.37 6.18 38.21 6.45
42 0.715 -4276.58 2.39 6.61 43.66 11.04
43 0.732 -4030.03 2.39 6.89 47.42 15.47
44 0.737 -3843.05 2.41 6.98 48.72 25.78
45 0.756 -3817.05 2.48 7.33 53.75 71.79
46 0.758 -3863.34 2.58 7.38 54.45 54.79
47 0.741 -3964.81 2.70 6.84 46.83 20.57
48 0.802 -4154.78 2.86 7.86 61.84 23.51
49 0.884 -4585.30 3.14 10.38 107.79 9.36
50 0.880 -4927.18 3.39 9.85 96.97 1.93

Table 2. Data for Simple Linear Regression Models with Corresponding Lag
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For each model, the following hypotheses were formed.
H() . B] =0

H,: B:20

The #-statistic and F-statistic were both used either to accept or reject the null hypothesis, Hy.
When the model was based on eighteen data points, the #-statistic has sixteen degrees of freedom (df), and
the F-statistic has 1df in the numerator and sixteen df in the denominator. The critical values, t* and F*, for
a Type I Error level o= .05 and those df are:
t*(.975, 16) = 2.12
F*(.95,1, 16)=4.49
All the models rejected the null hypothesis for both tests, implying a statistically significant
relationship does exist. Again, for each data point lost, the df for the r-statistic and the denominator of the
F-statistic were reduced by one. Therefore, the critical values were different when making a decision rule
for Hy; however, in all cases, Hy was rejected.
After the two tests were conducted, analysis of the residuals was performed. Focusing on Dent’s
claim, Figures 7 shows the fitted regression line and residual plot when the number of births were lagged by
forty-six years. The deviation of the points from the line increased as the predictor variable increased, an

indication of possible heteroskedasticity.
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Figure 7. Scatterplot of 46-year Lag with Fitted Simple Linear Regression Model
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Figure 8. Residual Plot of 46-year Lag

The residual plot in Figure 8 reiterated the existence of heteroskedasticity, and similar plots existed
when other lags were used. As a means of verification, the Goldfeld-Quandt test was performed on all the
models. The hypotheses for this test are:

H, : Homoskedasticity exists, E(g;) = 0°
H, : Homoskedasticity does not exist, E(g;) # 6°

As stated in the literature, the predictors were ordered by increasing value because there is
evidence that higher levels of the predictor produce larger variances. Dividing the series into thirds, fhe
residuals corresponding to the data points in the first and last third were squared and then summed. When
the number of data points was not divisible by three, an effort was made to keep the same number of data
points in the first and last third. For example, sixteen data points were broken into sets of five, six, and,
five. When the lag ranged from forty to forty-seven, the two groups éach contained six data points, and the
GQ-statistic follows an F distribution with one df in the numerator and four in the denominator. The other
lags produced groups of five data points, so the df in the denominator was reduced to three. Referring back
to Table 2, the GQ-statistic was compared to the following critical values for o = .05:

F*(.95,1,4)=17.71

F*(.95,1,3)=10.13

The test rejected Hy for lags from forty-two to forty-eight. The GQ was especially low for the fifty
year lag, but the number of data points comprising the model was also low compared to the others.

Nevertheless, further examination of this model was conducted, and the results are in Chapter 4.
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3.2.3 Transformation. ~ Continuing pursuit of Dent’s theory, a transformation was necessary to
potentially eliminate heteroskedasticity. As suggested by Neter, Kutner, Nachtsheim, and Wasserman an
exponential transformation was performed on the response(8:130). In this instance, a natural log (In)
transformation of the output was suitable. Equation 17 demonstrates the transformation for a forty-six year
lag.

In (DIIA(A),) = Bo + P * Xnas eY))

Among the simple linear regression models which required a transformation, the forty-six year
yielded the highest correlation before the transformation. Table 3 gives the regression results for the
transformed models. Again, the ¢-test and F-test were used to assess the hypotheses:

Ho: B;=0
H,: B;#0
Similarly, all models reject Hy, ; = 0, for both tests based on the critical values.
t*(.975, 16) = 2.12
F*(.95, 1, 16) = 4.49

In addition, all models accept Hy, homoskedasticity exists, for the GQ-test with the same critical
values.

F*(.95,1,4)=17.71

F*(.95,1, 3) = 10.13

Lag R% bo b, t-stat F-stat GQ
42 0.868 5.74 7.09E-04 10.61 112.52 2.51
43 0.873 5.83 7.03E-04 10.84 117.44 3.38
44 0.865 5.90 7.04E-04 10.5 110.27 4.45
45 0.867 5.93 7.17E-04 10.59 112.22 5.96
46 0.848 5.94 7.37E-04 9.83 96.54 3.45
47 0.809 5.97 7.54E-04 8.31 69.15 1.88
48 0.839 6.07 7.49E-04 8.91 79.32 1.43

Table 3. Data for Transformed Regression Models with Corresponding Lag
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After the transformation, a feasible model was created to capture Dent’s prognostication; however,
a feasible model could have been created for any of the lags. Even though the forty-three year lag produced
the highest correlation, the model with a forty-six year lag will be used in Chapter 4 to assess the
conclusions Dent formulates based on this lag. The figures below document the fitted regression line and

residuals for the forty-six year case. Notice, the residuals suggest homoskedasticity as the test verified.
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Figure 9. Scatterplot with Fitted Regression Line for Transformed 46-year Lag
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Figure 10. Residual Plot for Transformed Regression Function with 46-year Lag
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Also, a residual plot with respect to time indicated the error terms were not serially correlated, a

problem in time series analysis.
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Figure 11. Residual Plot With Respect to Time

3.3 Application

A similar procedure as the one outlined in the previous section was carried out for the following
countries and their respective indices, Japan with the Nikkei 225, the United Kingdom with the FI‘SE—IOO,

Germany with the DAX, and the United States with both the DJIA and the S&P 500. The details for each

scenario are presented in Chapter 4.
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1V. Results

In Chapter 3, the methodology showed a feasible model could be created for any lag between forty
and fifty for the United States’ births lagged by forty-six years and the adjusted Dow Jones Industrial
Average (DJIA(A)). This chapter will make projections based on the model with a forty-six year lag and
compare these forecasts with Mr. Dent’s. In addition, the results of the best simple linear regression model,
a fifty year lag, will be presented. Finally, application of the procedure to other major indexes will be
performed, and prognostications for these indexes will also be shown if a proper model can be formulated.
As for the data, located in Appendix A, all country’s births were obtained from The United Nations’
Demographic Yearbook (14), and Brian Taylor of Global Financial Data (16) supplied the Consumer

Price Index and index closings for the foreign countries.

4.1 The United States

4.1.1 The Dow Jones Industrial Average. From Chapter 3, both the forty-six year transformed
and the fifty year linear model are feasible. In either case, skepticism should exist simply because of the
size of the data sets available to build the models. Notwithstanding, forecasts will be made for both models

in comparison to Dent’s theories.

4.1.1.1 Log Transformation- Forty-six Year Lag Model. Recall from Chapter 3, the equation

(where X represents the number of births) computed to fit the DJIA(A) with a forty-six year lag is:
In (DJIA(A),) = 5.94 + 7.37%10™* * X, 4 (18)

Since the model was constructed with the births from 1934-1951, the remainder of the years can be
used as forecast data. To project the DIIA(A), insert these values into the regression equation, and take the
exponential of this number to obtain a forecast of the “real” Dow Index. The results are graphed in Figure

12 on top of the next page.
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Figure 12. DJIA(A) Forecast Using Transformation Model 46-Year Lag

Several statements can be made about the graph. First, the actual outcomes and model predictions
remain relatively close until 1992 when the forecast tends to overestimate the actual level before the market
makes a recovery in 1995. For the most recent year, 1997, the model indicates the market is overvalued. In
his newsletter, Dent has been predicting a correction in the market toward 7500; however, this model would
suggest an even harsher setback in the neighborhoo& of 7000. Asa résult of the forty-six year lag, the curve
peaks in 2007 before a downward trend over the next fifteen years.

Since a base year of 1997 was used to discount the index, the prediction for 1997 is expressed in
comparable terms to the actual closing for that year. At the same. time, all predictions cast into the future
are void of inflation. Therefore, inflation was incorporated into the forecasts in the following manﬁer.
First, the predicted value for 1997 remains the same. Then, similar to the discounting procedure, the growth

rate between observations is augmented with an inflation rate. The result is:

DIIA,,; =DIJIA, * (1 + Growth rate , + Inflation n) (19)

Tables with varying inflation rates are located in Appendix C. The graph on the next page

exemplifies the procedure with three percent inflation.
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Figure 13. Estimated DJIA with 3% Inflation Rate and 46-year Lag
With inflation, the downturns do not appear quite as drastic as before. In this instance, the DJIA
tops 12,000 around 2007, nowhere near the forecast of 20,000 by Dent. Of course, the gaps between the

peaks and valleys still depend on the forty-six year lag.

4.1.1.2 Simple Linear Regression Model With Fifty Year Lag. While attempting to model Dent’s
theory, a fifty year lag produced a particularly low GQ-statistic for homoskedasticity even though only
fourteen data points were used. It was difficult to avoid analysis of such a highly correlated model with a

prediction very close to the true 1997 close.  The regression function is:

DITA(A), = -4927.18 + 3.39 * X, (20)
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Figure 14. Estimated DJIA with 3% Inflation Rate and 46-year Lag

29




