
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2022

Generative Methods, Meta-learning, and Meta-heuristics for Generative Methods, Meta-learning, and Meta-heuristics for

Robust Cyber Defense Robust Cyber Defense

Marc W. Chale

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chale, Marc W., "Generative Methods, Meta-learning, and Meta-heuristics for Robust Cyber Defense"
(2022). Theses and Dissertations. 5549.
https://scholar.afit.edu/etd/5549

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5549?utm_source=scholar.afit.edu%2Fetd%2F5549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Generative Methods and Meta Learning for
Cybersecurity

DISSERTATION

Marc W. Chalé, Captain, USAF

AFIT-ENS-DS-22-S-056

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-DS-22-S-056

GENERATIVE METHODS AND META LEARNING FOR CYBERSECURITY

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Marc W. Chalé, BS, MS, MS

Captain, USAF

September 2022

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-DS-22-S-056

GENERATIVE METHODS AND META LEARNING FOR CYBERSECURITY

DISSERTATION

Marc W. Chalé, BS, MS, MS
Captain, USAF

Approved:

Dr. J. D. Weir
Co-Chair Date

LTC N. D. Bastian, PhD
Co-Chair Date

Dr. B. A. Cox
Member Date

Lt Col E Brooks, PhD
Member Date

Lt Col W Henry, PhD
Dean’s Representative Date

AFIT-ENS-DS-22-S-056

Abstract

Cyberspace is the digital communications network that supports the internet of

battlefield things (IoBT), the model by which defense-centric sensors, computers, ac-

tuators and humans are digitally connected. A secure IoBT infrastructure facilitates

real time implementation of the observe, orient, decide, act (OODA) loop across

distributed subsystems. Successful hacking efforts by cyber criminals and strategic

adversaries suggest that cyber systems such as the IoBT are not secure. Three lines

of effort demonstrate a path towards a more robust IoBT. First, a baseline data set of

enterprise cyber network traffic was collected and modelled with generative methods

allowing the generation of realistic, synthetic cyber data. Next, adversarial examples

of cyber packets were algorithmically crafted to fool network intrusion detection sys-

tems while maintaining packet functionality. Finally, a framework is presented that

uses meta-learning to combine the predictive power of various weak models. This re-

sulted in a meta-model that outperforms all baseline classifiers with respect to overall

accuracy of packets, and adversarial example detection rate. The National Defense

Strategy underscores cybersecurity as an imperative to defend the homeland and

maintain a military advantage in the information age. This research provides both

academic perspective and applied techniques to further the cybersecurity posture of

the Department of Defense into the information age.

iv

Acknowledgements

Just try to make the world a better place for your having been here.

James Doolittle

Thank you to the faculty who invested in me over four years. I look up to all of you.

Jeffery Weir, Bruce Cox, Eric Brooks, Ray Hill

Thank you to Nate Bastian who worked overtime to advise my research and mentor

me as an officer.

Marc W. Chalé

v

Preface

This dissertation document is compiled in the K-papers format. Each research

contribution, Chapters III-V and Appendix A, are taken from a manuscript that has

either been submitted for publication or is intended to be submitted for publica-

tion. Chapter III [1] and Appendix A [2] have been published and are included with

permission from the publisher according to their respective author rights agreements.

vi

MARC CHALÉ is a graduate student in the Department of Operational Sciences at

the Air Force Institute of Technology (AFIT) pursuing a Ph.D. degree in Operations

Research. He also earned M.S. degrees in both Industrial Engineering and Operations

Research. Prior to attending AFIT, Mr. Chalé was assigned to Air Force Operational

Test and Evaluation Center as a senior operational test analyst conducting test for

Air Force One, AWACS, and the Light Attack acquisitions programs.

In conjunction with his program of study at AFIT, Mr. Chalé is a research asso-

ciate at the Army Cyber Institute. His recent research has involved the use of dis-

criminative and generative machine learning, Bayesian methods, and meta-learning to

provide cybersecurity models that are robust to adversarial attack. His email address

is marc@marcchale.com His website is http://www.marcchale.com/resume.html

vii

marc@marcchale.com
http://www.marcchale.com/resume.html

Table of Contents

Page

Abstract . iv

Acknowledgements . v

Preface . vi

List of Figures . xi

List of Tables . xiv

I. Dissertation Introduction . 1

1.1 Motivation . 1
1.2 Research Contributions . 2

Contribution 1: Generate Realistic Synthetic Cyber
Data . 3

Contribution 2: Generate Adversarial Examples . 5
Contribution 3: Demonstrate a Robust Intrusion

Detection System . 6
Impact . 7

II. Dissertation Literature Review . 8

2.1 Cybersecurity . 8
Intrusion Detection Systems . 8
Adversarial Attacks . 11

2.2 Generative Machine Learning . 18
Generative Adversarial Network . 20
Boltzmann Machine . 21
Score Matching . 30
Denoising Autoencoder . 33
Dirichlet Process . 37

2.3 Meta-Learning . 38
Transfer Learning . 38
Local Interpretable Model Agnostic Explanations 39

2.4 Data Sets . 41
KDD CUP 99 . 41
NSL-KDD Data Set . 42
UNSW-NB15 Data Set . 42
Recent Research . 43

2.5 Distributionally Robust Optimization . 44

viii

Page

III. Generate Realistic Synthetic Cyber Data . 48

3.1 Introduction . 48

3.2 Literature Review . 50

Cybersecurity . 50

Issues and Progress in Cyber Data . 51

Data Augmentation . 53

Data Sampling . 54

Generative Methods . 55

3.3 Methodology. 58

Collect Baseline Cyber Data . 59

Generate Synthetic Cyber Data . 61

Machine Learning Classifiers . 66

Calculate Metrics of Quality . 71

Computational Experiments . 71

3.4 Experimental Results and Discussion . 74

Does quantity of real training data affect quality of
synthetic data set? . 74

Does the ratio of real and synthetic data affect
classification performance? . 81

3.5 Conclusion . 85

IV. Generate Adversarial Examples . 89

4.1 Introduction . 89

4.2 Literature Review . 92

Cybersecurity . 92

Intrusion Detection System . 93

Adversarial Machine Learning . 102

4.3 Methodology. 105

Problem Overview . 105

Data Preprocessing . 108

Train Models . 110

Meta-heuristic . 112

Optimize Meta-heuristic Settings . 119

Fool Rate of Adversarial Examples . 121

4.4 Results and Discussion . 123

Designed Experiment . 123

Resulting Fool Rates of Adversarial Examples . 125

4.5 Conclusion . 131

ix

Page

V. Demonstrate a Robust Intrusion Detection System . 135

5.1 Introduction . 135
5.2 Literature Review . 136

Cyber . 137
Meta-learning . 144

5.3 Methodology. 145
Adversarial Example Generation . 146
Data Preparation . 149
Base Models . 150
Robust Framework . 151

5.4 Results and Discussion . 152
5.5 Conclusion . 165

VI. Conclusion . 166

Appendix A. Meta-learning to Streamline Algorithm Selection
for Cyber . 168

A.1 Introduction . 168
A.2 Related Works . 169

Intrusion Detection . 169
Algorithm Selection Problem . 172

A.3 Methodology. 173
Characterizing the Problem . 173
Step 1: Map Problem to Category and Approach 174
Step 2: Rank Techniques . 176

A.4 Results . 180
A.5 Conclusion . 183

Appendix B. Referenced AFIT Theses . 184

Appendix C. Tabulated Performance of Models Trained With
Synthetic Data for Contribution 1 . 185

Appendix D. Tabulated Performance of Adversarial Examples
Constructed for Contribution 2 . 195

Bibliography . 204

x

List of Figures

Figure Page

1 (a) The restricted Boltzmann machine model is
visualized with bipartite weighted graph where there are
connections between hidden and visible variables. (b) A
deep belief network. (c) A deep Boltzmann machine.
Figure credit: [3] . 24

2 The blue function represents a one dimensional
manifold, where the component (dimension)
corresponds to vertical translation of a baseline image.
Note that the manifold is represented in fewer
dimensions than the original image. Figure credit: [3]. 29

3 The vector field produced by a DAE, shown in green,
transforms corrupted data back to the distribution
manifold. Figure credit: [3]. 33

4 CTGAN includes a generator network that is input to a
discriminator network, as proposed by [4]. 64

5 TVAE is a tabular variational autoencoder with an
encoding network and a decoding/generator network,
proposed by [4]. 66

6 Classification recall of models trained with real or
synthetic data. 75

7 Significance of treatment groups on classification recall
of models trained with real or synthetic data. 77

8 Classification recall by ML algorithm and data set. 79

9 Similarity between real and synthetic data sets. 79

10 Classification recall of models trained with a mixture of
real and synthetic data. 82

11 Plot of recall of the real, synthetic, and 50/50 synthetic
and real data on the left, and connected groups with
Tukey’s HSD test of equivalent means on right. 83

12 Classification recall of models trained with a mixture of
real and synthetic data. 86

xi

Figure Page

13 Classification recall of models where percent TVAE
synthetic data is varied. 87

14 The methodology requires data preprocessing, training
a surrogate model and three NIDS models, generating
adversarial examples, and testing the adversarial
examples on the NIDS. 109

15 Distribution of CICIDS data used to train/test
surrogate model and to train/test the NIDS models. 111

16 The architecture of the convolutional neural network
selected for the surrogate model and the first NIDS
model. 113

17 The architecture of the fully-connected neural network
used for the second NIDS model . 114

18 Chromosomes from the population are probabilistically
chosen as parent chromosomes for crossover according
to a stepwise linear distribution. 117

19 A designed experiment is used to select meta-heuristic
settings for creating adversarial examples. 120

20 The meta-heuristic maximizes the cross-entropy of an
SSH payload by performing crossovers and mutations of
the best known solutions at each generation. The
suprema and infima of threshold cross-entropy to fool
the surrogate are shown with a grey dotted line. 126

21 Classification performance is presented for raw packets,
best performing randomly perturbed packets, and best
performing near optimal packets against the surrogate
and NIDS models. 133

22 Generation and test of adversarial examples is presented
as a 4 step process . 148

23 The meta-learning framework is hardened against
adversarial attack by intelligently combining the
predictive power of each base model. normally trained
classifiers are trained with normal cyber traffic. The
adversarially trained classifiers are trained from an
augmented data set outlined in 5.3. 151

xii

Figure Page

24 The artificial neural nets were trained using an early
stop callback with a patience of 3 and threshold of
0.0005 nats . 157

25 Detection rate of adversarial examples is plotted as AE
count during adversarial training is increased . 160

26 Pareto frontier of accuracy and detection rate . 161

27 Pareto frontier of accuracy and recall . 162

28 Pareto frontier of detection rate and recall . 163

29 Performance trends among meta-models that are
normally trained and adversarially trained . 164

30 The meta-learner version of Rice’s framework [5]. 172

31 The factors identified are superimposed with the stages
of algorithm selection which they impact. 173

32 The considerations are shown for each factor which
drives analytical approach and analytical technique
selection. 174

33 The assigned task for an IDS is classify. Classify is one
of 11 common assigned tasks. It belongs to the
predictive and prescriptive categories of analysis. 175

34 A portion of the proposed taxonomy is high-lighted to
show its structure. 176

35 The decision tree represents the logical tests used to
rank the recommendations via the rules of thumb
strategy . 177

36 The predicted recall and observed mean recall are
compared for each algorithm. 182

xiii

List of Tables

Table Page

2 Data Fields and Feature Engineering Technique . 13

1 Quick reference table of notable manuscripts that cover
key topics . 47

3 Data fields and feature engineering technique. 60

4 Classification models are trained with data sets where
the percent synthetic data is varied. 74

5 Connection table of recall by data source using Tukey
HSD All Pairs test with a confidence of 0.95. 81

6 A full factorial design of experiment is performed with 4
repetitions for each attack type. 122

7 Statistically significant factors for cross-entropy with
significance of 0.05 . 125

8 Test accuracy and recall is measured on the surrogate
model using data sequestered prior to training. 126

9 Test accuracy and recall is measured on three NIDS
models using data sequestered prior to training. 126

10 Classification performance for infiltration raw packets,
best performing randomly perturbed packets, and best
performing near-optimal packets against the surrogate
and NIDS models. 131

11 Classification performance for slowloris raw packets,
best performing randomly perturbed packets, and best
performing near-optimal packets against the surrogate
and NIDS models. 132

12 Classification performance for hulk raw packets, best
performing randomly perturbed packets, and best
performing near-optimal packets against the surrogate
and NIDS models. 132

xiv

Table Page

13 Classification performance for SSH raw packets, best
performing randomly perturbed packets, and best
performing near-optimal packets against the surrogate
and NIDS models. 132

14 Raw packet feature vectors are partitioned into training,
validation, and test sets. Data sets are augmented with
adversarial examples. A hold-out set of adversarial
examples is reserved for testing detection rate. 150

15 The classification performance is presented for 14
models. The first three models are base models trained
on normal data. The next three models are
adversarially trained from a training set augmented by
adversarial examples. There are four meta-models
trained with features derived from normal data. Finally,
there are four meta-models trained with features
derived from a data set augmented with adversarial
examples. Each model is ranked by its accuracy, recall,
and adversarial example detection rate. 158

16 Feature importance is reported for random forest and
XGboost level-1 meta-models. Regression coefficients
are reported for the logistic regression level-1
meta-models. The rows are the meta-models and the
columns are the base models used to generate predictive
meta-features. The first three meta-models are trained
with features derived from predictions on normal traffic.
The bottom three meta-models are trained with
features derived from a data set augmented with
adversarial examples. 159

17 Results compare the recommendations of each strategy
to observed algorithm performance. 182

18 AFIT Theses referenced in this manuscript . 184

19 Classification recall of machine learning models trained
with CTGAN synthetic data. 185

20 Classification recall of machine learning models trained
with TVAE synthetic data. 186

xv

Table Page

21 Classification recall of machine learning models trained
with real data. 187

22 Inverted Kolmogorov Smirnov D-Statistic of data
generated by TVAE and CTGAN, varying the quantity
of real data to fit the generators. 188

23 Classification recall of machine learning models trained
with half CTGAN synthetic data and half real data. 189

24 Classification recall of machine learning models trained
with half TVAE synthetic data and half real data. 190

25 Classification performance of machine learning models
trained with 25,000 examples of a mixture of real and
CTGAN synthetic data. 191

26 Classification performance of machine learning models
trained with 100,000 examples of a mixture of real and
CTGAN synthetic data. 192

27 Classification performance of machine learning models
trained with 25,000 examples of a mixture of real and
TVAE synthetic data. 193

28 Classification performance of machine learning models
trained with 100,000 examples of a mixture of real and
TVAE synthetic data. 194

29 Detailed performance of infiltration adversarial
examples tested against the surrogate model and NIDS
models. 196

30 Detailed performance of slowloris adversarial examples
tested against the surrogate model and NIDS models. 198

31 Detailed performance of hulk adversarial examples
tested against the surrogate model and NIDS models. 200

32 Detailed performance of SSH adversarial examples
tested against the surrogate model and NIDS models. 202

xvi

GENERATIVE METHODS AND META LEARNING FOR CYBERSECURITY

I. Dissertation Introduction

1.1 Motivation

The United States Department of Defense (DoD) anticipates future wars will be

fought largely over the cyber domain against both strategic competitors and non-

state actors. Because the United States has never fought a full scale cyber war,

the “rules of the road” are not well understood [6]. Adversaries are likely to target

American interests through both known and unknown threat vectors. The effects of

these attacks may be either non-kinetic, meaning unpermitted access or control of

information systems, or kinetic, implying the attack leads to the destruction of phys-

ical assets, damage to infrastructure, or death. Many legacy cyber-physical systems

are built with no foresight to cyber vulnerabilities [7]. As the internet of battlefield

things grows to include more of these systems, the potential cyber threat exposure

also grows. Imagine the confusion as a soldier’s wearable device malfunctions in com-

bat due to cyber attack. It is critical that we address our military’s cybersecurity

shortcomings with novel techniques before adversaries exploit them. Generative ma-

chine learning and meta-learning are emerging fields that may offer solutions to some

longstanding roadblocks in cybersecurity research.

Intrusion detection systems (IDS) are an approach to deter and defend from cyber

attacks [7]. Unfortunately, IDS require large data sets for training [2]. Organic cyber

attack data, with labelled entries, is notoriously scarce. The NSL-KDD [8] attempts

to rectify issues in the well cited KDD-CUP benchmark dataset, however, even the

1

improved version is outdated and limited in scope.

Generative machine learning is a field of artificial intelligence with potential to

address unsolved problems in new ways. Methods such as Markov Chain Monte Carlo,

Autoencoders and Generative Adversarial Networks (GANS) and autoencoders are

used to estimate unknown probability distribution functions. Applications for diverse

and realistic generated data are pressing, especially for cyber. Generative methods

provide an avenue to analyze and synthesize cyber data, while the combination of

generative methods with meta-learning offer an opportunity to protect from certain

cyber attacks.

The remainder of this chapter introduces three research topics promoting the secu-

rity of United States cyber systems. Chapter 2 provides an an overarching literature

review of related topics and a quick reference table of hand picked sources that may be

especially valuable to readers. Chapters 3-5 provides completed research manuscripts

corresponding to contributions 1, 2, and 3. Previously published research is Chapter

VI concludes by summarizing the primary findings of the research and how they im-

pact modern defense. The appendices provide additional information not suitable for

the main document. Appendix A is a related study in meta-learning NIDS that does

not fit into stated contributions. Appendix B is a table of referenced AFIT theses.

Appendix C includes data tables supporting contribution 1.

1.2 Research Contributions

Three research topics are presented to support modernization of the military’s

security posture. Although each topic could have been pursued independently, this

dissertation takes a sequential approach where results of the early research enhances

the later work. The overarching goal of this dissertation is to demonstrate significant

progress towards an intrusion detection system robust against adversarial attacks.

2

Contribution 1: Generate Realistic Synthetic Cyber Data.

The first research goal is to model the probability distributions of modern cyber

data and generate additional, realistic, data from the baseline distributions. The

intended generative model may be explicit, in the form of a probability distribution

function, or implicit as with a GAN. Generative methods are discussed in Chapter

2.2. Regardless, the realistic data generated by the model must provably match the

distribution of the baseline data. Unlike other benchmark data sets such as NSL-KDD

[8], KDD-CUP [9], UNSW-NB15 [10], critiqued in Chapter 4.2, the generated data

must be representative of network traffic in modern government systems, including

examples for both authorized and malicious actors, in appropriate proportion. Mali-

cious traffic must be representative of modern cyber attacks and reflect unobserved

examples from the original distribution. A possible strategy is to train a generative

model from real cyber data collected in an adversarial environment or alternatively

collected in a realistic high fidelity simulation. Then the baseline data can be used to

train a generative model capable of creating new, realistic examples from the same

distribution as the baseline.

3

In particular, generative models should emphasize resilience against mode collapse

and should model macro level correlation between variables. If successful, the realistic

generated cyber data will be used as a starting point for creating adversarial exam-

ples. The enlarged, generated data sets are preferred over small real sets because it

demonstrates the feasibility of generative methods to overcome the lack of data in

novel cyber attacks. As new phenomena are discovered in cyber log data, they will

be reproduced to a greater quantity, facilitating creation of adversarial examples and

robust IDS. If the generative methods do not yield realistic data, then objective two

can be pursued using lager quantities of baseline data, which is expensive and labori-

ous to obtain. Two archival peer reviewed papers have been submitted and accepted

in support of contribution 1. Challenges and Opportunities for Generative Methods

in the Cyber Domain has been accepted to Proceedings of the 2021 Winter Simula-

tion Conference, and Generating Realistic Cyber Data for Training and Evaluating

Machine Learning Classifiers for Network Intrusion Detection Systems has been sub-

mitted to Expert Systems with Applications. Both of these works were authored by

Marc Chalé (primary author) with contributions by committee members in support

of dissertation research. The work supporting contribution 1 is presented in Chapter

III and Appendix C.

4

Contribution 2: Generate Adversarial Examples.

The second research objective is to produce adversarial examples capable of evad-

ing a modern IDS. The adversarial examples must be created using novel techniques,

including generative methods where applicable. The adversarial examples must go

beyond work such as [11] by enforcing immutable aspects of cyber data [12] and

enable an end-to-end attack. Solving this challenge may increase the effectiveness

of state-of-the-art cyber attacks against current IDS, but once these techniques are

identified, they can be addressed in robust IDS. Despite recent progress creating ad-

versarial attacks in the computer vision domain, adversarial attack generation in the

cyber domain is especially challenging [12]. In order for perturbed internet protocol

(IP) packets to facilitate an end-to-end cyber attack, the packets must maintain their

specialized data structures as well as their original function when executed. While

images can be perturbed with no restrictions and result in a valid image file, IP data

packets transmitted over the internet would be corrupted during perturbation, re-

sulting in an ineffective end-to-end attack. Although initial research on adversarial

attack in the cyber network domain [11] [13] [14] focused on perturbing feature vec-

tors of the cyber data, a more difficult task would be to perturb the actual payload

of a cyber packet while maintaining its original function [13] [15] [12]. Alternatively,

an adversarial feature vector may be generated and then reverse engineered into a

functional IP data packet that evades the IDS. In working towards an end-to-end

black box attack, it is imperative that we demonstrate adversarial examples can be

constrained to the standards of the cyber domain. This goal is achieved in Con-

strained Optimization Based Adversarial Example Generation for Transfer Attacks

in Network Intrusion Detection Systems, a journal article submitted to Computers

& Industrial Engineering. This work was authored by Marc Chalé (primary author)

with contributions by committee members in support of dissertation research. The

5

work supporting contribution 2 is presented in Chapter IV and Appendix D.

Contribution 3: Demonstrate a Robust Intrusion Detection System.

Intrusion detection systems play a major role in protecting the confidentiality,

integrity, and availability of data on networked systems, however they have funda-

mental flaws. The detection rate of several popular rule based IDS against malware

is surprising low in practice. One study finds that Zeek detects only 52% of malware

attacks with its rule based alert system [16]. This lackluster performance may have

motivated the recent developments in machine learning intrusion detection systems.

While IDS capabilities have increased in recent years, adversaries also innovate their

methods. Further, the rate of reported breaches in the United States has been in-

creasing since 2005. The majority of IDS breaches are believed to be the result of

evasion attacks where the IP packets are modified to seem innocuous, but are in fact

harmful [17]. In modern times, evasion attacks such as [11] use heuristics to perturb

characteristics of IP packets and fool the IDS.

Therefore, the final research objective is to improve both the classification perfor-

mance and the robustness of machine learning based IDS such as [2] leveraging tech-

nologies such as GML and meta-learning. By classification performance, we specif-

ically point to the metrics recall (detection rate) and accuracy. Robustness is the

tendency for an algorithm to generalize well with examples drawn from a different

distribution than the examples used for training [18]; it is an increasingly important

characteristic of models in today’s cyber environment.

While contribution 2 exposes a security vulnerability for ML based IDS, con-

tribution 3 offers a solution. This research objective is achieved in MADFACTS:

Meta-learning Augmented Defense For Adversarial Cyber Techniques, a completed

full length article pending submission to publications such as Computers & Security,

6

Future Internet, or Optimization Letters. This work was authored by Marc Chalé (pri-

mary author) with contributions by committee members in support of dissertation

research. The work supporting contribution 3 is presented in Chapter IV.

Impact.

The research objectives outlined above have a synergistic impact on cyber defense

for the IoBT and national security at large. Contribution 1 seeks to resolve the long

standing lack of labelled high quality training data in the cyber domain. Contribu-

tion 2 provides a technical edge against cyber criminals and adversaries who wish to

develop novel adversarial attacks against the IoBT. The succes of contributions 1 and

two have enhanced work on contribution 3, where a robust IDS defeats adversarial

examples. These accomplishments fit into a greater vision of military strategy that

enables freedom of maneuver across all domains including cyber, space, land, air, and

sea. Strengthening the cyber security across the IoBT is imperative for commanders

to inflict desired impacts in modern cross domain warfare where command, control,

intelligence, and recognisance is the backbone of decision making and is increasingly

digitized. This research offers one promising path to improve robustness against the

constantly evolving threat of adversarial attack.

7

II. Dissertation Literature Review

2.1 Cybersecurity

In 1972, a panel of experts prepared a comprehensive report on cybersecurity

threats for the Air Force Systems Command. The consensus in the report was that a

secure computer network would require designing new systems with security controls

ingrained into the operating system. Adding security features onto existing systems

would not provide sufficient protection from malicious attacks. Further, users should

only be granted a level of freedom within the system commensurate with their cre-

dentials. The report presents cost estimates for securing systems and concludes that

the potential savings from defeated attacks would justify such costs. The report

served as a serious wake up call for military leaders in the new information age [19].

By 1980, [20] reports that the common reasons for an attacker to compromise cy-

ber assets are to access information, corrupt information, or degrade the system.

Flaws in system design become vulnerabilities for attack. Even true outsiders who

have no insider knowledge of a system can penetrate if if they are skilled and well

resourced. One such situation occurs when a wire tap into a private network is per-

formed. The report recommends increased logging and auditing of network activity.

Illegal users masquerading as legitimate users will behave differently than legitimate

users. Therefore by performing outlier analysis on logged parameters, it is possible

for a surveillance program to detect penetrations [20]. An online database of seminal

papers in cybersecurity is offered by [21].

Intrusion Detection Systems.

Intrusion detection systems (IDS) are ubiquitous in modern networks and have

been the subject of prominent research [22] [23] as well as a series of recent works

8

conducted by AFIT affiliated Scholars [24] [11] [25] [2]. The function of the IDS is

to monitor the records of traffic within a cyber network and detect the records of

malicious actors [26]. IDS that react to the threat are known as intrusion detection

and prevention systems [27]. Traditionally, anomaly based and signature based are

the broad categories of IDS. Anomalies are abnormalities in a the traffic data set

which are assumed to indicate malicious actors [22]. Alternatively, signature based

IDS leverage previous knowledge to determine if an example is malicious [22]. Open

source security monitor tools like Zeek and SGUIL use rule based signature approaches

[28].

[29] provides a broad survey of anomaly detection techniques including a discussion

oriented towards IDS. There are several categories of anomalies, each with their own

qualities. Point anomalies are defined by their large distance from all other points.

Contextual anomalies are noteworthy because of their context, or neighborhood where

the point occurs. The contextual anomally might appear normal if relocated, so it is

a quality like time or location that qualifies it as anomalous. Collective anomalies are

characterized by data points that relate to each other in an unusual way. For instance,

the actions buffer-overflow, ssh, ftp are routinely logged by a computer. However it

is unusual for them to occur in sequence many times; the repetition of that pattern

is anomolous and may indicate a remote attack. Although Chandola et al. [29]

catalogues many anomaly detection techniques, there are several considerations that

play a roll in IDS. The temporal nature of cyber data should be utilized for anomaly

detection. Many detectors struggle with imbalanced data sets and missing labels. As

a result, supervised, semi-supervised, and unsupervised methods can contribute to

anomaly detection for cyber data [29].

[22] demonstrates that machine learning has become a standard tool set for creat-

ing an IDS. [30] reports that the majority of recent IDS publications utilize machine

9

learning and that artificial neural networks are the most popular choice of machine

learning model. These are primarily signature based approaches. The meta-learning

approaches of [2] and [31] leverage the strengths of a variety of machine learning algo-

rithms for improved IDS. There are also strategies for using machine learning models

to perform anomally detection.

[32] offers a strategy to perform anomaly detection that leverages an undercom-

plete autoencoders, a type of generative machine learning (GML) discussed in Chap-

ter 2.2. A recent AFIT thesis [25] implements the autoencoder strategy for Network

IDS (NIDS) using data collected by sensors across the DoD Information Network.

Data examples that have high mean square error (MSE) when regenerated by the

autoencoder are believed to be anomalous because they do not lie in the distribution

generalized by the autoencoder. Therefore, MSE of test data points are used as out-

lier factor score. Butt suggests that if the outlier factor score of a test example could

also be generated by testing an example of Gaussian noise, the real test example is

an outlier. Non-outliers would have lower outlier factor scores. This threshold needs

deeper consideration since a relatively large number of test points meet this criteria.

The proper way to determine the threshold is to treat it as a varied hyperparameter

and use validation testing to select the threshold with best classification performance.

Butt’s model is never validated because labels were removed prior to experimentation

and never reintroduced. Butt used DOE to minimize the reconstruction error in data

examples. It is also unclear why it is beneficial to globally minimize MSE before

assessing outlier factor score on test data. It is always possible to reduce MSE on

a data set by adding capacity to the ANN, but this results in overfitting. The goal

of this experiment should be to fit a generalizable model and compare error between

examples, not minimize all error. Butt concludes by recommending future anomaly

based IDS experimentation with using sparse, overcomplete autoencoders [25].

10

Adversarial Attacks.

Well trained machine learning models can perform exceptionally well at classifi-

cation when tested on examples of a similar distribution from the training examples

[33]. These models however are often unable to perform when small, yet deliberate,

perturbations are induced induced into the data set. The perturbations are often im-

perceivable by a human analyst, though detrimental to the classifier model. Attackers

leverage this technology to inflict harm onto the users of the target model [34][35]. Ad-

versarial examples are believed to provide some insight onto the differences between

human and machine intelligence [3].

The field of adversarial machine learning (AML) stems from seminal research by

Szegedy et al. [36] that demonstrated small, yet deliberate, perturbations to training

data can consistently result in future misclassifications. There are four AML attack

types including evasion, extraction, poisoning, and inference. Evasion attacks, in

particular, reflect a malicious data packet that attempts to bypass an operational

classifier [18]. The general approach of evasion adversarial attacks is to perturb

malicious data examples in such a way that a classifier classifies them as normal [18].

In this way, hackers can achieve illegal access to systems, interfering with the proper

confidentiality, integrity, and availability of data in the system [28].

Early demonstrations of evasion adversarial attacks focus on the computer vision

domain[37]. Adversarial attacks in the computer vision domain are interesting be-

cause the adversary can slightly increase or decrease the intensity of any pixel slightly

without a human detecting the changes; there are no domain specific constraints to

the perturbations.

Adversarial attacks in the cyber domain are more challenging because perturba-

tions to internet protocol (IP) packets may degrade their functionality when deployed

in a cyber system. Real world adversarial attacks, therefore, become a constrained op-

11

timization problem [12] [38]. We consider the constraints of IP packets that maintain

the original packet function and allow the packet to flow through the cyber network

to the destination IP address, and client application.

Constraints to Perturbations in Cyber Domain.

One approach to creating adversarial examples of IP packets involves modifying

the features of packets that are extracted by IDS software or network security moni-

toring software. The adversarial examples would have the same fields as the real data

set, but some values would be fabricated [39]. [39, 33] use features generated by Zeek

HTTP logs. The features used by [33] are shown in Table 2. The field called Status

is the class label and the other fields are indicator variables. Notably, 9 of 11 indica-

tor fields are discrete. Only request body len and response body len are continuous in

this feature scheme. The hp field is an IP address and [40] shows several alternative

representations to the bit vector shown in Table 2. Continuous representations are

certainly possible. The other features used by [33] are categorical, and cannot be

represented in a continuous form. The fields of Zeek logs are customizable and can

be adapted for specific analysis applications.

12

Table 2. Data Fields and Feature Engineering Technique

Data Field Example Engineered Feature

connection open, close, none Label encoded

id orig h cc US Label encoded

id resp h cc US Label encoded

severity H, M, L Label encoded

method GET, POST Label encoded

request body len 10 minimax

response body len 10 minimax

hp 0000000000000000 16 bit vector

id orig h org external Label encoded

id resp h org internal Label encoded

host my.connection.edu Label encoded

status normal, bad Label encoded

There is a required structure that IP packets must adhere to in order to reach their

destination. The Internet Assigned Numbers Authority (IANA) published standards

[41] for communication over IP versions 4 and 6. The standards focus on packet

structures and header fields and do not discuss rules for packet payloads. IP addresses

are a fundamental field of cyber information packets. They are formatted as a dot

decimal number of four 8 bit integers. That is, each IP address contains four binary

octets and each octet represents a number between 0 and 255 (223.255.255.255).

Unsurprisingly, there are a quantity of reserved IP addresses that cannot be taken by

ordinary users.

Constraints on perturbations to cyber data is discussed by [12] [41] [42] [43]. The

issue is investigated experimentally by [42] who suggests that application specific

13

constraints can be applied to specific features being perturbed. [43] uses a gradient

descent approach called Feasible Evasion Attacks on Neural Networks in Constrained

Environments (FENCE). Since many cyber features are discrete, it is not possible

to perturb in any direction or any distance. The perturbation generation algorithm

uses model gradients to identify direction of optimal perturbation, but projects the

gradient in a feasible direction at each step. There is also the important issue of

maintaining inter-feature feasibility while pursuing feature perturbations, and this

is difficult to enforce [44]. The steps of FENCE are only accepted if they satisfied

predefined interdepency requirements of features. [43] provides a relationship between

number of packets, number of bytes, and connection duration as an exemplary family

of dependent features. FENCE attacks were effective in tests and adversarial training

improved robustness of ANNs under attack.

[35] report that modifying features alone would not be sufficient for a realizable

adversarial attack because there is no way to reconstruct the actual IP packet from

information in the features. In order for an end-to-end attack to succeed, perturba-

tion must result in a realizable IP packet to send through the cyber network. The

perturbed packet must arrive at the client application and perform the malicious

function. [44] describes a concept called power of adversarial attack. Training data,

feature set, detection model, oracle, and manipulation depth are the elements of

power. Attacks that possess all aspects of power are typically premised on unrealistic

assumptions. For example, it is almost impossible for an attacker to have read and

write privilege of NIDS training data. Therefore, poisoning attacks are extremely im-

practical. It is also unlikely that an attacker knows the exact features of a proprietary

NIDS model. If features are somehow inferred, it is possible to manipulate packets

to achieve some value in a particular feature. For instance, a NIDS may use net flow

data, and there may be a feature describing connection duration. Packets can be

14

sent at specified schedule to achieve the desired connection duration [43]. It is not

reasonable to assume that an attacker is powerful enough to make these perturbations

on the correct features, and achieve the desired result on the real detection model.

Raw traffic classification is an alternative to feature based NIDS. This type of

classifier bypasses the layer of obscurity imposed by feature engineering or feature se-

lection. [44] notes that adversarial attacks using feature data is inferior to adversarial

attacks using raw traffic data because it is not reasonable to assume the attacker has

knowledge of the features used by the target NIDS. Raw traffic NIDS produced by [45]

produces a classification decision from the binary data comprising an IP packet[45].

[45] reports that feature based NIDS are vulnerable to feature spoofing but raw traffic

NIDS are less vulnerable. Common features such as source IP address are found in

packet headers and can easily be modified with open sourced tools such as scapy. [46]

expands on the work of [45] but removes header information from training data and

uses only a binary payload to train deep learning NIDS. Raw traffic classification is

also highly reliable with experimental detection rate as high as 100% [45]. Raw packet

perturbation is quite intriguing because, if properly constrained, it would result in

a fully defined IP packet. [35] challenges the community to create an end-to-end

adversarial attack that yields functional attack traffic, fools classifiers, and maintains

malicious behavior. There is no evidence that this effect has been achieved yet in

either feature based or raw traffic NIDS.

Generating Adversarial Examples.

Equation 1-2 demonstrates that the overarching goal of an adversarial example is

to find the data vector that optimally misclassifies the example while constraining the

amount of change. [42] uses a gradient based approach which incrementally perturbs

the feature vectors of an example. Each perturbation step optimally increases the

15

loss function of the victim classifier as shown in Algorithm 1. If successful, the

perturbed example is misclassified at test time. They demonstrated this approach to

add malicious strings of text to PDF files, but they did not demonstrate removing text

or other possible attack vectors. The approach also requires that the loss function is

differential, which may not be applicable to changing categorical features.

x∗ = arg min
x

: ĝ(x) (1)

S.T.||x∗ − x||∞ ≤ ϵ (2)

Algorithm 1: Framework for a gradient based evasion attack [42]

Input: x0, initial attack point, t, step size λ, trade off parameter, ϵ, small
constant
Output: x∗, the final, perturbed example
Initialize m = 0
while F (xm))− F (xm−1)) < ϵ, do

m=m+1
set ∇F (xm−1) to a unit vector with direction
∇(g(xm−1)− λ∇p(xm−1|yc = −1))
xm ← xm−1 − t∇F (xm−1)
if d(xm,x0) > dmax

then
project xm into feasible region

return x∗

16

It is typically not possible for an attacker to know what ML classifier is being

used by an IDS [47], however, it has been shown that adversarial examples are largely

transferable between models [48] [11] [49] [36]. The phenomena of transferability lends

itself to virtual adversarial training where neither the true model nor full class labels

are available. In this case, perturbations are informed from querying a surrogate

model [50].

[26] provides evidence that GAN based adversarial attacks are feasible in the

cyber domain, supporting the conclusions of [11] that any unconstrained domain is

vulnerable. [26] also notes however that it is difficult to optimize GAN convergence

and that over-manipulation is counterproductive for evasion. There also appears to be

dependency on feature engineering that is not well understood [26]. Four strategies

of generating adversarial examples for evading IDS are compared in [11]. Monte

Carlo, Particle Swarm Optimization, Genetic Algorithm, and Generative Adversarial

Network (GAN) each demonstrate success against a variety of IDS. A black box

approach to generating adversarial cyber examples with GANs is demonstrated by

[47] to achieve almost perfect evasion. Several additional methods are outlined in

[18].

17

2.2 Generative Machine Learning

Generative machine learning (GML) is a rapidly advancing field of machine learn-

ing that seeks to model the joint statistical distribution of the data in a dataset

directly. GML methods heavily leverage Bayes theorem to provide a posterior dis-

tribution of the data that accounts for prior beliefs. GML stands in contrast to

discriminative machine learning (DML) which does not directly model the distribu-

tion of data, but nonetheless models the conditional relationship of class label given

predictor information. DML methods typically generate decision boundaries for class

labels using such techniques as support vector machine and logistic regression. Often,

DML models are well suited to perform classification tasks because relatively simple

models perform very well. GML algorithms, which are typically more complex, offer

the additional capabilities of using the joint distribution model to estimate missing

data, and fabricate entirely new data records [51]. Several emerging uses of generative

models that show potential for cyber security.

The explicit probability distribution created by GML is in many ways more infor-

mative that than the models from DML. Further, it is possible to test the correctness

of the generated distribution against real data [52]. Work by [53] proposes a paradigm

called generative adversarial networks (GANS) to learn the high dimensional proba-

bility distribution of the dataset and simultaneously generate new examples from the

same distribution. GANS will be explored in greater detail in Chapter 2.2.

Generative methods have also expanded reinforcement learning models in several

ways. First, Generative models that extract the distribution for time series data can

be used to explore future states of the system given the current state. A sequence

of decisions can be made based on querying a set of feasible actions and selecting

the steps that are likely to lead to a desirable state. As another application, [54]

has demonstrated agent can learn in a non-existing environment that is generated

18

from the probability distribution. Learning in such an environment offers an inex-

pensive methods of training but does not harm the agent should it enter a dangerous

state. Inverse reinforcement learning is an emerging technique that seeks to model

the reward policy of a human or real system [55].

Many of the most popular classification algorithms today are supervised learning

algorithms; they require training data with either no missing data or very little missing

data. Semi-supervised learning is a training strategy that can leverage unlabelled data

in addition to labelled data to better generalize the true distribution. Many generative

methods can either learn from examples with missing data or impute estimates of the

missing data to match the original probability distribution [52].

Since GML trains to the underlying probability distribution of a system, they can

model multi-modal data in a way that other machine learning techniques cannot. For

example, a probability distribution for a system may indicate multiple predictions

are reasonably correct. Since many algorithms in statistical learning fit a model by

minimizing a loss function, the resulting model will recommend the best guess of

the example’s class. DML models perform poorly for image processing because they

output the average of likely responses, even if the value is implausible. Generative

models, in contrast, learn the likelihood of each possible class, promoting a reasonable

prediction [52].

GML is useful in any situation that requires more data than is naturally available

[52]. For example, one may wish to increase the resolution of an image. A GML

model will generate one plausible output, rather than average all plausible outputs

into something unrealistic. A GANs model, for instance, has been used to generate

realistic art that was not specifically created by a human. Image-to-image translation

has been used to synthesise a photograph from a sketch and to produce a map from

an aerial photograph [56]

19

Generative Adversarial Network.

Generative adversarial nets (GANS) are a central area of research due their effi-

ciency in generating realistic data that is similar to the source data. Goodfellow et

al introduced GANS and demonstrated generation of fake but realistic images [53].

Research and applications of GANS have since increased, and Goodfellow [57] revisits

the topic with recent theoretical insight on the mechanisms allowing GANS to work.

The premise of the GAN is an adversarial game between two artificial neural networks.

The first network, called the generator, is initialized with random weights, and re-

ceives white noise vector as an input. The network transforms the vector and outputs

a modified synthetic vector. The other network, known as the discriminator, learns

to distinguish the synthetic output vectors from real data vectors. Early in the pro-

cess, the discriminator will recognize the random vectors produced by the generator.

Through a backpropagation feedback process, the generator adjust weights to create

more compelling, realistic output vectors. Simultaneously, the discriminator gains

experience to better distinguish real and fake vectors. After sufficient training, the

generator produces high quality synthetic data that consistently fools the generator,

and sometimes humans [53]. Convolutional neural networks are commonly used for

the generator and discriminator in GANs that produce images [52, 53]. GANs have

also be used for adversarial example generation of cyber features. In this case, dis-

criminators report realness and predicted class of the cyber feature vector [11]. This

algorithm carefully constrains immutable features to ensure realness of the resulting

cyber data [11].

Maximum Likelihood Estimation.

Although not every GML technique uses the maximum likelihood estimation to

build the model, maximum likelihood is fundamental to many important GML algo-

20

rithms [52]. The definition and required condition of a maximum likelihood estimation

is given by [58].

Definition: Let (θ) = f(x1, ..., xn; θ), θ ∈ Ω be the joint pdf of 1, ..., Xn. For a

given set of observations, (x1, ..., xn), a value θ̂ in Ω at which (θ) is a maximum

is called a maximum likelihood estimate (MLE) of θ. That is, θ̂ is a value θ

that satisfies f(x1), ..., xn; θ) = max
θ∈Ω

f(x1, ..., xn; θ) [58]. Equation 3 is the derivative

methods of solving maximum likelihood parameter. Equation 4 is the derivative of the

log likelihood function, which is often more computationally efficient than taking the

derivative of the raw likelihood function. Both strategies yield the same parameter

estimate [58].

d

dθ2
L(θ) = 0 (3)

d

dθ2
lnL(θ) = 0 (4)

Boltzmann Machine.

Bolztmann machines are a machine learning model that universally approximates

probability distributions of data. Training algorithms typically optimize the maxi-

mum likelihood function by changing the model’s weight parameters. The function

itself is intractable so the approximate gradient descent techniques of [3] Chapter 18

are used.

The binary Boltzmann machine is one fundamental variant. These models were

proposed by [59] and developed further in [60] [61]. Consider a binary random vector

of dimension d, x ∈ {0, 1}d. The probability of a specific outcome us defined by

the exponential of the negative energy function divided by the regularizing partition

term, Z, which ensures a cumulative distribution of 1 [3].

21

P (x) =
exp(−E(x))

Z
(5)

The energy function for any outcome is defined as

E(x) = −x⊤UX − b⊤x (6)

such that U is a weight matrix and of the parameters in the model and b is the

bias vector for the parameters [3].

In many systems, some random variables are unknown or unobservable. The

joint probability distribution, Equation 5, actually represents both visible and hidden

variables in the system. Although the hidden variables are not specifically known for

each data example, we may have information to characterize the joint probability of

their state. We therefore decompose the vector, x , into v the measurable variables,

and h, the latent variables. The energy functions can be decomposed as

E(v,h) = −v⊤Rv − v⊤Wh− h⊤Sh− b⊤v − v⊤h. (7)

where R,W,S,b and c are learned linear weights for the energy function. For

a given distribution, variables that are likely to be mutually related are linked with

a large weight, while variables not likely to be dependently activated will not have

a large weight. Equation 7 provides a more detailed model of visible variables than

Equation 5 because it incorporates interaction weights between hidden and visible

variables. To estimate the probability of a state of visible variables, we can sum the

marginal probabilities of the visible event, given all possible hidden states. Evidently,

such a Boltzmann is extremely useful to characterize distributions when some infor-

mation is missing. The method is flexible enough to model any binary distribution

with approximately linear dependencies between variables [3].

22

A restricted Boltzmann machine is an important variant in which weights connect

visible variables to hidden variables, but variables within any one layer are not con-

nected to each other. Figure 1 a is a depiction of a restricted Boltzmann machine.

The undirected bipartite graph has weighted connections between visible variables

and hidden variables; variables of the same type are not connected [3].

The equations defining the probability and the energy of the restricted Boltzmann

machine mirror the equations of the general Boltzmann machine. Joint probability

distribution is defined as

P (v = v, h = h) =
1

Z
exp(−E(v),h)), (8)

and the energy is given as

E(v ,h) = −b⊤v− c⊤h − v⊤Wh , (9)

and once again, the normalizing term Z is the sum of all energy states

Z =
∑
v

∑
h

exp{−E(v,h)} (10)

[3].

It is typically not tractable to calculate P (v) directly, however, the bipartite

structure of the weight graph allows us to calculate P (h|v) and P (v|h) according to

the steps shown in Equations 11-15.

P (h|v) = P (h , v)

P (v)
(11)

=
1

P (v)

1

Z
exp{b⊤v+ c⊤h + v⊤Wh} (12)

23

Figure 1. (a) The restricted Boltzmann machine model is visualized with bipartite
weighted graph where there are connections between hidden and visible variables. (b)
A deep belief network. (c) A deep Boltzmann machine. Figure credit: [3]

=
1

Z ′ exp{c
⊤h + v⊤Wh} (13)

=
1

Z ′ exp{
nh∑
j=1

cjhj +

nh∑
j=1

v⊤W :,jhj} (14)

=
1

Z ′

nh∏
j=1

exp{cjhj + v⊤W :,jhj} (15)

We train the latent variables of the Boltzmann machine using the maximum like-

lihood estimate of h |v using the visible parameters as the prior. Similarly, the Boltz-

mann machine also allows us to estimate h |v for unseen data sets where some visible

variables are missing [3].

24

Deep Belief Network.

Deep belief networks (DBN) were an early success in the field of deep learning.

They were the first deep architecture that were computationally tractable to opti-

mize at scale and they competed well with other popular kernel based optimization

algorithms. Although DBNs have waned in popularity, they warrant study for their

influence in the field of deep learning. The architecture of a DBN is illustrated in

Figure 1 (b). It is comprised of one layer of visible variables and several layers of

hidden variables. Variable nodes are fully connected to adjacent layers but are not

connected within layers. Arcs to the visible layer are directed while all other arcs are

undirected. Visible variables may belong to either the binary set or the real set of

numbers but the latent variables are generally restricted to the binary set. The DBN

will require one weight matrix W (k) for each of l hidden layers and one bias vector

for each of the l + 1 total layers. The joint distribution of a DBM is expressed

P (h (l),h (l−1)) ∝ exp{b(l)⊤h(l) + b(l−1)⊤h(l−1) + h(l−1)⊤W(l)h(l)}. (16)

Note that a deep belief network with one layer of hidden variables is a RBM.

Deep Boltzman Machine.

The Deep Boltzmann Machine is a generative machine learning model similar to

the preceding methods but with undirected edges and multiple hidden layers. This

results in a bipartite topology. The bipartite structure allows for powerful models

of a particular layers variables conditioned on the variables of a connected layer.

While variables within each layer are independent, the conditional relationship to

neighboring layers is very valuable. Deep Boltzmann machines traditionally employ

binary units, thought it has been extended to real valued units as well. Just like

the previous methods, the energy function is used to characterize the distribution [3].

25

The probability distribution for a deep Boltzmann machine with one visible layer v

and hidden layers h1h2 and h3, the probability distribution function takes the form

P (v ,h1,h2,h3) =
1

Z(θ)
exp

(
−E (v ,h1,h2,h3;θ)

)
(17)

and the energy function, with bias terms omitted, E is given by

E (v ,h1,h2,h3;θ) = −v⊤W (1)h(1)−h(1)⊤W (2)h(2)−h(2)⊤W (3)h(3) (18)

Training a deep Boltzmann machine is very efficient, requiring at least two updates

with Gibbs sampling, and sampling can be performed simultaneously and indepen-

dently for variables in adjacent layers. Unlike deep belief networks, however, deep

Boltzmann machines require sampling for variables on each layer. Deep Boltzmann

machines have gained favor over deep belief networks for their good performance

approximating the conditional posterior distributions [3].

Autoencoders.

Autoencoders are algorithms that learn to encode an input data set to a smaller

summary code, then process the encoded data such that the original set is recovered

with minimal error. The encoder function, h, is typically a single hidden layer artificial

neural network, where h = f(x). The decoder, r = g(h) is the complimentary network

responsible for transforming h back to its original form; it typically has a single hidden

layer as well. The models are typically trained with minibatch gradient descent and

back-propogation. A properly trained autoencoder learns g(f(x)) = x for all x in the

entire domain [3].

It is not inherently useful, however, to perform the summary and reconstruction

transformations on data. The primary advantage of an autoencoder is that we can

26

learn which data features are most important to describe the system. These are

the features passed through the encoding operation f(x). Features that do not vary

across input sets are not encoded but are learned by the generator transformation,

g(f(x)) [3].

The technique has also been used as a strategy for dimensional reduction. An

autoencoder that produces a code with smaller dimension than the input data is

called undercomplete and has a loss function of the form

L(x, g(f(x))) (19)

where the loss is measured as mean square error of the recreated data from the

generator [3]. In the case of a linear transformation, h, learns the same model as

principal component analysis (PCA), for the k most important components. Deep

authoencoders, however tend to exhibit less reconstructive error than PCA [62]. Non-

linear autoencoders have the advantage of additional capacity, however, they may risk

overfitting to the training data without learning the important features of the data.

Overcomplete autoencoders model the input data with a higher dimension than the

original form. Overcomplete autoencoders can be especially useful for feature extrac-

tion if they are properly regularized [3].

Figure 2 depicts the concept of manifold learning that applies to many autoen-

coders. Autoencoders, like other generative methods, seek to discover a low dimension

model of a system that provides the most possible information, assuming the point

lies on the manifold. By this, we consider a manifold to be a subset of highly likely

data points in the d-dimensional space. The model tends to behave well on data

points on the manifold, and behaves poorly for data offset from the manifold. We

characterize manifolds by the set of all tangent planes of points on the manifold. At

the bottom of Figure 2, is an example of a defining vector for the one dimensional

27

tangent plane. By travelling an infinitesimally small distance in this dimension, we

remain on the manifold, but travelling orthogonal to the vector would result in a

point off the manifold. The perpetually competing forces of an autoencoder include

learning an accurate representation h of x near the manifold that is recoverable using

a decoder, but also regularizing the representation unto a reasonably low dimension

subspace.

Sparse Autoencoders.

Sparse autoencoders include a penalty Ω(h) in the loss function to promote con-

vergence of transformations with many zeros and fewer non-zero weights. They are

used in practice to select features for other machine learning tasks. The resulting loss

function is if the form

L(x, g(f(x)) + Ω(h) (20)

where g(·) is the generator and the encoder is the transformation h = f(x).

Other regularization techniques such as weight decay have a Bayesian interpre-

tation such that the maximum likelihood estimator θ|x models the data. Sparse

autoencoders cannot be interpreted in this way because the regularizer term depends

on the input data itself and is not technically derived from the prior distribution [3].

The proper intuition of a sparse autoencoder is a framework for training a generator

with unseen latent variables. We should consider that the explicit joint distribution

of the data comprises of two parts; pmodel(x,h) = pmodel(h)pmodel(x|h) where x is

the set of visible variables and h is the set of latent variables. From this perspec-

tive, pmodel(h) is prior distribution, or belief knowledge of the latent variables prior

to seeing input data. This perspective breaks convention that the Bayesian belief is

p(θ), the training weights of the model. In practice, the log-likelihood function for

28

Figure 2. The blue function represents a one dimensional manifold, where the compo-
nent (dimension) corresponds to vertical translation of a baseline image. Note that the
manifold is represented in fewer dimensions than the original image. Figure credit: [3].

the model is

logpmodel(x) = log
∑
h

pmodel(h,x). (21)

Since the goal is to select a point estimate of highly likely array h, the model is

formed by maximizing

logpmodel(h,x) = logpmodel(h) + pmodel(x|h). (22)

The term logpmodel(h) drives the sparsity property. A Laplace prior may be used

to specify the regularization penalty value where the model is defined by

pmodel(hi) =
λ

2
e−λ|hi| (23)

and the absolute value penalty is calculated as

29

Ω(h) = λ
∑
i

|hi| (24)

Therefore, we expand the log likelihood model as

− logpmodel(h) =
∑
i

(λ|hi| − log
λ

2
) = ω(h) + const (25)

Note that the constant term does not depend on h, but only the hyperparameter

λ, so the term does not affect the maximum likelihood estimate [3].

Stochastic Autoencoders.

Some advanced autoencoders generate stochastic codes that follow some distri-

bution pencoder(h)|x. Since the encoding function, h, is hidden, the decoder training

is generalized over the distribution. The decoder follows a conditional distribution

pdecoder(x)|h.

Various functions such as Student’s T distribution, or a binomial may be used

as the prior in practice depending on whether the targets are real valued or binary.

The choice of objective function and activation function tend to depend on the form

of the prior. Stochastic autoencoders seek a more robust model and they have been

applied as denoising autoencoders [3].

Score Matching.

As an alternative to the maximum likelihood method, score matching can be used

to estimate the parameters that define distributions. We consider the score, the

gradient field of the log distribution, log pdata

∇x log p(x)

30

as a strategy for characterizing pdata.

As such, we must minimize the expectation of the squared difference between the

first derivative of the log density of the model wrt. input data and the first derivative

of the data’s log density wrt. the input data. This difference is given by

L(x;θ) =
1

2
∥∇xlog pmodel(x;θ)−∇xlog pdata(x)∥22

A new objective describes the system as a function of only latent variables θ.

J(θ) =
1

2
Epdata(x)L(x;θ)

The solution to the score matching system is the vector θ that minimizes J(·).

θ∗ = min
θ

J(θ)

[3]

Variational Autoencoders.

The variational autoencoder learns a model, known as the approximate inference,

to produce new samples of the learned distribution. First, a random variable, z is

drawn from pmodel(z). The sample is then transformed by the directed network g(z)

generating output x from the distribution pmodel(x|z).

During training, we take the following perspective of the model. The approximate

inference network q(z|x) is the encoder that generates z; and the decoder is the

distribution pmodel(x|z) from which the reconstructed output is drawn [3]. To properly

train the variational autoencoder, we seek to maximize the variational lower bound,

L(q), shown in Equation 26, for the sample x.

31

L(q) = Ezq(z|x)logpmodel(z,x) +H(q(z|x)) (26)

= Ez q(z|x)logpmodel(x|z)−DKL(q(z|x)||pmodel(z)) (27)

≤ logpmodel((x)). (28)

We note that in Equation 26 the two terms have tangiable meaning. First, we

have the log likelihood of the visible and hidden variables given by the approximate

posterior over all hidden variable. The following term is the entropy for the approxi-

mated posterior. When the entropy term is high, the variability of z is also high. In

the case that q is normal, the standard deviation, or noise, around z is large for any

vector that could have produced x . That is, there is uncertainty around z.

The subsequent equation, Equation 27, shows that the first term is the log likeli-

hood for the reconstructed vector; the second term encourages similarity between the

posterior and the prior distributions. The variational autoencoder is trained via back

propagation, maximizing L by changing the parameters of the autoencoder. The ex-

pectations in L are found through Monte Carlo methods. Although the formulation

for variational autoencoders is mathematically sound, researchers are still working

towards ideal results. Some have noted that the Gaussian noise throughout the la-

tent space lead to blurry images. MLE do not pinpoint precise values on outputs.

Further, a relatively small potion of z is impacted by the encoding transformation.

These deficiencies are not well understood and will likely be the focus of continued

research [3].

32

Denoising Autoencoder.

The denoising autoencoder is used to learn a function that removes errors from a

data set. Conventional autoencoders minimize a loss function in the form of

L(x, g(f(x))) (29)

where x is the training data, f is the encoder, g is the decoder, and the loss function

is mean squares or a comparable norm. The denoising autoencoder (DAE) minimizes

the loss L(x, g(f(·))) on x̃, a corrupted version of the data. G is therefore incentivized

to reverse, or invert, the operation that induced the noise. The properly trained

DAE returns data nearly identical to the original uncorrupted data set. For any

x̃, the vector g(f(x̃)) − x̃ translates the corrupted data point to the manifold of

uncorrupted data, and the function g(f(·))) characterizes a vector field to the manifold

of uncorrupted data.

Markov Chain Monte Carlo.

Markov Chain Monte Carlo (MCMC) sampling addresses several challenges within

the field of Bayesian analysis. Many methods are unable to accommodate high di-

Figure 3. The vector field produced by a DAE, shown in green, transforms corrupted
data back to the distribution manifold. Figure credit: [3].

33

mensional data, where in some cases the dimensionality is greater than the number

of records. The complexity of these models lend to exponentially increasing compu-

tational time. Another situation is intractable inference, where a conditional distri-

bution is estimated via an intensive summation over other variables marginal pdfs.

Lastly, intractable normalization constant is problematic for certain function classes

including logistic, where gradients are difficult to estimate. MCMC methods are

appealing in these cases [3].

As a method within the broader field of Bayesian data analysis, we follow three

high level steps of analysis. Firstly, the full probability model is defined in the form

consistent with prior knowledge, including all observable and latent variables in the

system. Second, we find the posterior distribution, that is the probability distribution

of the latent variables conditioned on observed values. Estimates on the posterior dis-

tribution provide our approximate joint distribution. Finally, we evaluate the model

according to fit, utility, and correctness of assumptions then assess any necessary re-

visions. Bayesian models can be improved by conditioning on known quantities. For

example, if we have information about the genome of the parents of our test sub-

jects, we can condition the probability of the child’s gene expression on the known

information of their parents [63].

The Bayesian model which conditions on observed data and incorporates prior be-

liefs is often more informative than the frequentist approach which calculates statistics

from data alone [63].

One of the primary appeals of the Bayesian modelling framework is the compatibil-

ity with multi-level, or hierarchical modelling. These models incorporate parameters

for phenomena at different levels in the system, each which plays a role in modelling

the joint distribution. These models provide useful predictions in complex systems

[63].

34

Markov Chain methods find model parameters θ that generate a posterior distri-

bution p(θ|y) that matches a target distribution. It works by drawing parameters θ

from a partially informative prior distribution, assessing the correctness of the draw,

and progressing towards a better vector θ. Markov chain convergence occurs when the

samples of θ exhibit a stationary distribution. The Markovian property implies that

the sampling sequence leads to the same region of the parameter space regardless of

initial point θ0. Therefore, multiple chains achieving the same stationary distributions

provide evidence that proper convergence has occurred.

Several sampling methods of MCMCmodelling have unique advantages. Metropolis-

Hasting [64] transitions across the parameter space according to a predefined sampling

distribution and probabilistically tests the candidate parameter against an acceptance

criteria before committing it to memory. The acceptance function promotes accep-

tance in high density regions of the joint distribution and discourages the algorithm

from getting stuck at a local minima. The algorithm satisfies the condition of de-

tailed balance [65] which theoretically guarantees the posterior distribution generated

by the algorithm converges to the target distribution in the data after a large number

of samples.

Gibbs sampling is an implementation of Metropolis-Hastings sampling such that

a specified subset of variables are conditioned on other subset of variables [65, 63].

This sampling technique may be beneficial to converge more efficiently and model

nuances of codependencies in the joint distribution.

No U-Turn Sampling (NUTS) is gradient based search and an extension of Hamil-

tonian Sampling [66]. Its advantage is that it eliminates several complications of

tuning the Hamiltoniam model and it automatically terminates without need to set

an exact number of draws. Although [67] advises efficient convergence using NUTS

[66] for models of continuous variables, it also notes that the algorithm will fail to

35

evaluate a gradient for datasets with discrete random variables [67]..

Metropolis-Hastings Sampling.

In some systems, the Bayesian probabilistic distribution of a variable follows a

either an unknown form, or a known form that cannot be integrated across all vari-

ables. Gibbs sampling is a popular method for estimating the posterior distribution,

however it does not address the issue of solving intractable integrals [68].

Consider a belief variable that follows a random distribution, and although the

distribution parameters are unknown, the form of the distribution can be assumed. By

searching for the parameters of the prior distribution, we can estimate the posterior

distribution. The Metropolis-Hastings sampling method is a strategy to search for

the maximum likelihood parameters for the prior distribution which in turn provides

an estimation of the posterior distribution [68].

There are three overarching phases in each iteration of the Metropolis Hastings

algorithm. First, a candidate parameter xcand is proposed for the prior distribution.

Next, the acceptance probability is calculated. Finally, the new parameter is either

accepted or rejected according to the calculated acceptance probability[68].

When there is no specific information about the parameter setting x of the prior

distribution, it is best to draw candidate points from a symmetrical distribution

centered around the current point, x(i−1). This decision motivates exploration in all

directions of the current point. This model is called the Random Walk Metropolis

algorithm. Like all Markov chain systems, the choice of a future point depends only

on the present setting, and not any previous states. If there is, however, information

about the feasibility or likelihood of certain parameter values, a skewed distribution

such as the log-normal or beta distribution should be used for exploration [68].

In order to converge towards the maximum likelihood parameters of the prior

36

distribution, the acceptance function must motivate acceptance of values that produce

high probability of the full joint density function. This is measured by the ratio of

the joint densities at point x(i) and xcand, π((xcand)

π((x(i−1) . Simultaneously, the heuristic seeks

to explore non-local points with some probability. This exploration is motivated by

the ratio of the prior distributions q(x(i−1)|xcand)

q(xcand|x(i−1))
. The acceptance probability function

comprised of these two components satisfies a condition called detailed balance which

guarantees convergence towards the true posterior distribution [68, 63].

Algorithm 2: Pseudo-code of Metropolis-Hastings Algorithm [68]

Initialize x(0) q(x)
for i=1, 2..., do

Propose: xcand q(x(i)|x(i−1))
Acceptance Probability:

α(xcand|x()i−1 = min{1, q(x
(i−1)|xcand)π(xcand)

q(xcand|x(i−1))π(xi−1)
}

µ ∼ Uniform(µ; 0, 1)
if µ < α then

Accept the proposal: x(i) ←− Xcand

else
Reject the proposal: x(i) ←− X i−1

predict recall
record

Dirichlet Process.

Many data modelling tools use parametric statistics where the number of param-

eters is predetermined. Logistic regression may be an example. The trained model

is therefore restricted in capacity to fit the data. Alternatively, Bayesian nonpara-

metric statistics is a way to perform model selection among a form unrestricted in

complexity. Therefore, underfitting is not an issue. Overfitting, too, is addressed by

incorporating flexible prior beliefs of the posterior. Previous methods constrain the

prior to a parametric distribution; the non-parametric approach allows the prior to

follow any tractable distribution. The Dirichlet process (DP) is a popular model for

37

defining a prior who’s outputs are discrete distributions. The pattern modelled by

DP follows the assumption that each observation of model parameters, θi, fall into a

bin of previously observed theta, or fall into an unobserved category. The likelihood

of θi being in a previously observed bin is a weighted balance of already observed

data in the bin, and α, a pseudocount hyperparameter. The stick breaking example

and the Chinese restaurant example are common educational analogies. The most

popular applications of DP are Bayesian model validation, density estimation, and

clustering via mixture models [69].

2.3 Meta-Learning

Meta-learning is an approach to machine learning that improves the learning of a

base task as the base-learning algorithm gains experience. There are many strategies

and applications of meta-learning. Several have potential applications in NIDS [2].

A selection these meta-learning technologies are outlined within.

Transfer Learning.

[3] describes transfer learning as the phenomena in which patterns learned for an

initial task are beneficial for a future task. It is theorized that the when the two

tasks contain the same important factors, transfer learning may be beneficial. This

may be the case in computer vision where features such as a wheel, for example, may

be important for separate classifiers that detect cars or bicycles. Domain adaptation

is similar; it refers to an initial task that is learned in an initial setting, then the

same task is redeployed to a new setting. Transfer learning and domain adaptation

typically imply that the new task, or new domain process has a different distribution

than the initial [3].

It has also been shown that representation impacts the effectiveness of machine

38

learning tasks across domains. Analogously, a human asked to perform long division

with Roman numerals will convert the numbers to Arabic numerals for a more intu-

itive process. Many algorithms perform tasks in various time complexities depending

on the data format.

Representation may be key to why unsupervised learning often improves the per-

formance of machine learning algorithms. When effectively pre-trained, new tasks

can be learned with as few as one labelled example, an approach known as one-shot

learning [3]. [70] provides a method of learning representations for tasks by selecting

linear transformations of features. [71] provides a methodology of searching for trans-

fer functions between tasks and optimizing the transfer policy. [72] Uses meta-learning

to learn about various tasks, so new tasks can be learned with minimal training data.

[73] describes the theoretical nature of learned features by representation learning

systems. [54] provides some breakthrough applications of one shot learning in video

frame prediction.

Local Interpretable Model Agnostic Explanations.

Black box machine learning models are used routinely for decisions of high conse-

quence. In general, these models are assessed with classification performance metrics

such as accuracy or recall. Humans who use the models for important decisions may

be unwilling to blindly trust the model if the chance of incorrect classification is sub-

stantial, even if the model performs better than he human. Local Interpretable Model

Agnostic Explanations (LIME) is a framework to develop trust for a machine learning

decision that can be applied to any classifier. Trust, in this sense, encapsulates both

trust for a good decision and trust of the model itself. Both aspects of trust are

important for widespread adoption of machine learning beyond the research setting

[74].

39

A reasonable approach for finding trust in a decision is to understand the rationale

for the decision. To build trust of a model, multiple decisions are explored and mapped

in an interpretable way [74]. LIME explores the decisions in a local region and provides

an interpretable model of the decision space. The explanation may be qualitative in

nature, but must be meaningful to the human user, especially one who is not an

expert in machine learning. Further, the explanation should be accurate within a

specified region of interest. While the important features may vary throughout the

model, the decision explanation should be meaningful and faithful at any location in

any complex model.

Let g be a meta-model that explains a predictive model and let G be the class of

predictive model such as linear model or random forest. Noting that some explanative

models of a particular class may be more complex than others, a measure of the

complexity of g is the function Ω(g). The complexity is an indication of how well the

model can be explained to a human. The classification model is denoted f : Rd −→ R

and the probability of positive class is given by f(x). The distance between point

x and an exploratory point z is given by the function πx(z). Now, to measure the

unfaithfulness of predictive model f in the region of x, we use the function L(f, g, πx).

A model is very trustworthy if both unfaithfulness, L(f, g, πx), and complexity, Ω(g)

are low. The LIME explanation is given as

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (30)

The authors offer LIME as a strategy to improve interpretability of any machine

learning algorithm and support informed decision making. Their report suggests

future research brings LIME to new domains, optimizes the system for parallel pro-

cessing, and strategically picks the most relevant examples to explain [74].

40

2.4 Data Sets

KDD CUP 99.

The KDD CUP 99 data set is regarded as the reference data set for anomaly

detection analysis for IDS. The data was generated by Stolfo et al [9] in support of

a DARPA study to use machine learning for IDS [9]. The cyber network traffic data

was collected in the “tcdump” binary format. The training data set, which includes

five million connections, was recorded during a sevn week study. An additional two

million connections were recorded over two weeks and sequestered as test data. The

data sets include 41 categorical and continuous features as well as a label that denotes

normal or attack, and a label that specifies one of four attack types [9]. Denial of

service attacks occur when an attacker barrages the network with frequent requests

that surpass the victim’s computing resources. User to Root attacks are where the

attacker enters the system as a standard user but illegally gains a higher level of access.

Remote to Local is a class of attack where the attacker does not have full access to

a network but is still able to transmit data packets to manipulate a machine. The

probing attack is when a user collects information about the security measures in

order to manipulate vulnerabilities in the future [8].

According to [75], the KDD-CUP dataset was the best available large scale data

set of cyber traffic at publication time, but qualified that it had many serious flaws.

Of the 24 specific attack types present in the training data, only 14 are present in the

test data. Therefore it seems that the two data sets are not of the same distribution.

Although it is good practice to test a model on data from a different distribution, it

is concerning that there is such a large discrepancy in attacks represented [8].

The training data contains an unrealistically high proportion of malicious exam-

ples, which biases any derivative model with higher false negatives and false positives

when deployed [76]. An alarming 78% of training examples and 75% of test examples

41

are duplicated, further biasing any trained model [8].

There is also a concern that some examples are experimentally much more dif-

ficult to classify than others. Further, if examples in the test data set are rated

by difficulty to classify, we find that 86% of the training set and 98% of the test

set are extremely easy for standard algorithms to classify. This imbalance makes it

impossible to compare IDS for false positives and false negatives.

Additionally, [77] notes that the feature time to live follows as a different distri-

bution in the attack and normal examples. This difference may be indicative of a

recording error and may be easily exploited by classifiers.

NSL-KDD Data Set.

NSL-KDD is an updated version of the flawed KDD CUP 99 data set provided

by [8]. Their revisions include removal of redundant records, reducing the training

set by 78% and the test set by 75%. Additionally, the proportion examples that are

difficult to classify was increased in the training and test set. The increased difficulty

leads to more varied classification performance across different NIDS models. Despite

these improvements, the new NSL-KDD data set does not provide modernized attack

types since the 1999 predecessor. Further, the data set does not maintain temporal

integrity of the original network audit [8].

UNSW-NB15 Data Set.

A 2015 effort by [77] acknowledges that KDD CUP 99 and NSL-KDD fail to

represent the modern cyber threat environment. The critique specifically cites a lack

of representation of low footprint attacks. Unlike the prior two data sets which are

derivatives of collected cyber traffic, the UNSW-NB15 data set is a hybrid that also

includes traffic from a simulated network. The simulation was implemented on the

42

Perfect Storm IXIA and the resulting data contained 49 engineered features derived

from packet level data in the Pcap format [77]. The data set contains more than

175,000 training examples and more than 82,000 test examples. 25% of the data

reflects nine modern low footprint attacks; the rest reflects modern normal traffic

[11]. Despite these efforts, the UNSW-NB15 data set is aging and new attack types

must be addressed. Future data sets should specifically reflect the four emerging

strategies of adversarial attacks described by [18].

Recent Research.

The imbalance of traffic type in cyber data is a well known deficiency of KDD

CUP 99. The imbalanced data biases classifier algorithms with inflated false positives

and false negatives. This problem is addressed by [76], who uses GANs to generate

attack records and rectify the imbalance. They show that it is feasible to generate

realistic cyber data and that the augmented data sets improve the performance of

IDS classifiers. Unfortunately, the method is only demonstrated for the binary deci-

sion of attack verses normal and does not attempt multi-class classification. Despite

the benefit of augmenting the KDD CUP 99, we must note that cyber attack tech-

niques have evolved in the past 20 years and KDD CUP 99 may not be a realistic

representation of today’s cyber landscape [76].

Rossow et al offers four common pitfalls of experiments that study malware in-

cluding correct data sets, transparency, realism, and safety. Six guidelines apply to

correctness of a dataset:

• Control the balance of normal examples and malicious examples. Including nor-

mal examples helps measure false positive rate but may distort measurements

of false negative rate.

• Control the distribution of malware types. When specific varieties dominate

43

training or test data, the detector quality may suffer and results may be unin-

formative.

• Decide whether unseen malware types should be included in the test data or if

the test data should reflect the distribution of the training data.

• Ensure that malware does not interfere with accuracy of the monitoring module.

If applicable, reports should discuss precautions taken to ensure monitoring sys-

tems are not afflicted by the malware, and whether these efforts are successful.

• Discuss aspect of the experiment that contribute to unrealistic or biased results.

These aspects may include measurement issues, assumptions, and limitations

in the test.

• If malicious examples are blended into a data set with normal examples, ensure

that the combination reflects real world traffic [78].

From a holistic perspective, these recommendations seem to agree with the Chan-

dola’s principles of anomaly detection [29] discussed in 2.1.

Garcia et al addresses the issue of comparing the performance of botnet detectors

that have been introduced in previous works but tested in with incomparable methods.

Most IDS research employ proprietary data sets, in-house pre-processing, and poorly

documented procedures[79]. Garcia uses best practices provided by [78] and details

the steps taken to generate new data sets; the repository is hyperlinked to their

manuscript.

2.5 Distributionally Robust Optimization

Distributionally robust optimization (DRO) accounts for a deeper level of un-

certainty when the true distribution is not known. This larger problem seeks to

44

optimize parameters such that the worst case performance across all sub-problems is

a minimum. These sub-problems are differentiated by the probability distribution of

random variables in the objective function, where the distributions are similar, but

unique, and belong to the same ambiguity set [80]. Solutions to the DRO problem

tend to be more robust than previous optimization techniques [81]. Distinguished

DRO researcher Daniel Kuhn claims that DRO have the following benefits:

1. High fidelity models that account for estimation error

2. Performance is underestimated in the model, so real world trials do tend not to

disappoint

3. Most problems simplify to a convex, tractable model

4. Protection against out of sample data

5. Protection against low probability events

6. Regularization effect

7. Justifiable by elegant axiomatic theory

Consider an inventory problem where we wish to maximize profit for an unknown

demand. Previous methods have solved this problem for a known distribution, Φ(ξ)

as described in Equation 31.

− cy + r

∫ ∞

0

min(y, ξ)dΦ(ξ) (31)

One approach of constructing an ambiguity set, U , is to accept the two statistics

from the available demand data, namely the mean and the standard deviation [80].

Then the new optimization problem is a mini-max, given in Equation 32

45

inf
f

sup
Q∈U

Ex∼Q[ℓf (x)] (32)

where we denote the loss function under prediction f(x) as ℓf (x). The key to

effective DRO is to select an ambiguity U set such that the distributions in U diverge

only slightly from the original estimate, but that U is also large enough that it contains

the true distribution with probability 1−δ. U is often described as a ball whose radius

is selected according to risk threshold. Wasserstein distance is commonly used to

identify the ball for DRO in machine learning applications. This knowledge leads to

one approach of robustly training machine learning models that are hardened against

adversarial examples generated with Fast Gradient Sign Method [82].

Adversarial training with DRO has been theorized to prevent IDS evasion via

adversarial examples. It exhibits increased robustness against adversarial joint per-

turbations committed on the entire training set, as apposed to just point perturbation.

That is, protection is given for such adversarial examples that follow a joint distri-

bution within ϵ-ball≤ δ in reference to the true distribution of data. Unfortunately,

it is yet to be shown how to estimate the ϵ-ball that contains the worst case per-

turbed joint distribution [82]. The theoretical work in DRO Wasserstein training

for machine learning algorithms supports the empirical evidence that it provides a

regularizing affect against overfitting a distribution [83].

46

Table 1. Quick reference table of notable manuscripts that cover key topics

Machine Learning Computational
Bayesian
Statistics

Optimization Cybersecurity Policy

Source D
is
cr
im

in
a
ti
v
e
M

L

G
e
n
e
ra

ti
v
e
M

e
th

o
d
s

M
e
ta
-l
e
a
rn

in
g

M
C
M

C

R
o
b
u
st

O
p
ti
m
iz
a
ti
o
n

A
d
v
e
rs
a
ri
a
l
A
tt
a
ck

N
ID

S

C
y
b
e
r
D
a
ta

D
e
fe
n
se

Alhajjar 2020 ■ ■ ■ ■ ■
Anderson 1972 ■ ■
Anderson 1980 ■ ■
Applegate 2013 ■ ■
Axelsson 2020 ■ ■
Bejtlich 2013 ■ ■
Biggio 2013 ■ ■
Chale 2021 ■ ■ ■ ■

Chandola 2009 ■ ■ ■
Chernikova 2019 ■ ■

Cui 2014 ■ ■
Di Mattia 2019 ■
Fahlman 1983 ■

Finn 2017 ■ ■
Gao 2017 ■

Gelman 2013 ■
Goodfellow 2014 ■
Goodfellow 2017 ■

Hinton 2006 ■
Jebara 2012 ■ ■

Li 2020 ■ ■ ■ ■ ■
Liu 2018 ■ ■ ■

M. Tavallaee 2009 ■ ■
Maxwell 2019 ■ ■ ■
McHugh 1999 ■
Moustafa 2015 ■ ■

NDS 2018 ■
Rosenberg 2021 ■ ■ ■

Rui 2017 ■
Scarf 1958 ■
Staib 2017 ■ ■
Stolfo 2000 ■

Szegedy 2013 ■ ■
Woods 2020 ■

Xu 2019 ■

47

III. Generate Realistic Synthetic Cyber Data

This chapter has been published in Expert Systems with Applications Volume 207

[1]. It is included below with permission from the publisher according to their author

rights agreement.

3.1 Introduction

Cyberspace has characteristics that differ from the air, land, maritime, and space

domains. These characteristics affect how the military operates and defends cy-

berspace infrastructure, information, information systems, and data. Military forces

have integrated and synchronized cyberspace capabilities along with the authorities

to conduct effective cyberspace operations as part of an overall combined arms strat-

egy in support of multi-domain operations and joint all-domain command control.

Cyberspace operations provide the capability to process and manage operationally

relevant actions, allowing simultaneous and linked maneuver, in, through, and across

multiple domains and the information environment (IE), while engaging adversaries

and populations directly across time, space, and scale. The IE is the aggregate of

individuals, organizations, and systems that collect, process, disseminate, or act on

information [84]. To manage the complexity of the cyberspace domain, the military

has divided it into separate layers, to include physical, logical, and cyber-persona

[85]. Connections between the layers of cyberspace generate a portion of the IE that

is divided into three dimensions – physical, informational, and cognitive; each dimen-

sion is associated with a specific layer of cyberspace for which the latest artificial

intelligence (AI) and machine learning (ML) technology can be integrated.

Cyberspace operations, in conjunction with AI and ML enhanced cyberspace in-

frastructure, make it possible to connect sensors directly to shooters independent of

48

human control. Current military networks can best be described as sensor-to-human-

to-shooter with this construct used to keep a human decision-maker as the final arbiter

regarding the use of lethal force. Cyberspace infrastructure is network agnostic as it

supports all users. From intelligence to fire control to aviation to mission command,

all networks of purpose defined by the information to be exchanged can simultane-

ously coexist within the framework of cyberspace infrastructure. In a future with

more prevalent semi-independent and independent information-centric technologies

that leverage AI and ML, competitive advantage is gained since network connections

will be ad hoc and information exchange and interconnectivity will fluctuate at speeds

beyond human abilities to manage and control.

Increased digitalization, a proliferation of new sensors, new communication modes,

the internet-of-things and virtualization of social communication have contributed sig-

nificantly to formation of the military’s Internet of Battlefield Things (IoBT). These

AI and ML technologies serve as the pivot around which IoBT big data will be turned

into actionable insight and knowledge and, ultimately, an information advantage for

the military. As a component of the IoBT, intrusion detection systems (IDS), and

specifically IDS embedded inside a network (NIDS), must detect, evaluate, and re-

spond before a human operator may understand and react. These technologies enable

the collection of synchronized, real-time capabilities to discover, define, analyze, and

mitigate cyber threats and vulnerabilities without direct human intervention [86].

Quality data is needed to develop an ML-based NIDS that learns and manages net-

work topologies, identifies and manages trusted users, detects network anomalies,

identifies threats, and undertakes mitigation and response action. However, availabil-

ity of and access to labeled cyber data is extremely limited, highlighting the need to

leverage novel generative methods for deriving realistic cyber data for training and

evaluating ML-based NIDS.

49

3.2 Literature Review

In this section, a broader cybersecurity context is provided, to include issues and

progress in cyber data. Related works in data augmentation, data sampling, and

generative methods are discussed.

Cybersecurity.

The military considers cyberspace to be a domain of operations which is sus-

ceptible to military targeting much like other domains of operations [87]. Cyber

technologies permeate through today’s battlefield to facilitate competencies such as

command and control, communication, and navigation [86]. These technologies are

undergoing a transformation as the IoBT emerges as a paradigm of war fighting [88].

The IoBT is the connected system of cyber-physical sensors, computers, and actuators

used to carry out warfare [89]. This strategy is poised to shorten latency in intelli-

gence collection, decision making, and effect delivery by adding autonomy throughout

information pipelines. Smart devices increase human productivity and improve im-

plementation of the observe–orient–decide–act loop [89]; autonomous devices replace

humans from in the loop, instead allowing humans to supervise from on the loop or

observe from out of the loop [90]. The IoBT carries with it a new cyber exposure

that is only starting to be understood. Countless connected devices with sensors and

actuators are vulnerable targets when not properly secured and monitored [91].

Cybersecurity is a discipline associated with promoting “integrity, availability,

and confidentiality” of information on digital systems [89]. Data integrity ensures

that data is modified only by authorized users and system integrity ensures that sys-

tem functionality is unimpaired. Availability describes a system that is accessible to

authorized users upon request. Systems exhibit confidentiality when they correctly

deny illegal attempts to access private information [92]. Early worms sought to ex-

50

ploit computer resources across networks and the first virus was an academic exercise

that demonstrated intentional damage to infected computers. Later examples of mal-

ware were developed to criminally manipulate, steal, or destroy data and to degrade

systems [93].

Early surveys of cyber threats [19, 20] were sponsored by United States mili-

tary organizations and concluded that cyber systems were vulnerable to attack and

required preemptive security functionality such as auditing behavior, and enforcing

tiered privileges. The framework for automating intrusion detection is developed in

[94, 95]. [22] and [30] provide comprehensive reviews of intrusion detection technol-

ogy. The United States Air Force deployed the first known NIDS in 1988. Today,

NIDS are a primary component of the broader practices in network security monitor-

ing. NIDS may be signature based, meaning they seek to identify patterns associated

with known threats, or anomaly based meaning they detect abnormal behavior.

Issues and Progress in Cyber Data.

NIDS data is collected though combination of physical taps and specialized switches

installed in critical network locations. Additionally, data collection can occur within

host devices such as clients, servers, and workstations, however, these software based

strategies are less reliable in the long term. Cyber data collection applications include

Argus, Netsniff-ng, PRADS, Suricata, and Bro (recently re-branded as Zeek). The

specific data being recorded may be statistical meta features of cyber packet head-

ers or, in some cases, the entire packet headers and payloads. Zeek also belongs to

the class of applications called presentation tools which presents live and recorded

cyber data to operators and generates alerts. Best practice is for a human analyst to

interpret all alerts and oversee a response [28]. This review process produces mod-

ern, relevant cyber data which is labelled as either legitimate or malicious. High

51

quality labelled cyber data of this type is a scarce commodity in the cyber research

community [96].

There have been many attempts to generate cyber data sets for IDS research and

development. [8] and [75] provide constructive critiques of the ubiquitous KDD-CUP

cyber data set [97]. Notable issues of the data set include spurious repetitions and

biased ML training. Both KDD-CUP and the improved NSL-KDD data set [8] are

still used in modern NIDS research [98, 2]. Many other data sets are reviewed by

[30] and [99]. Each manuscript concludes that data sets become deprecated almost as

soon as they are published because cyber strategies are constantly adapting to IDS.

Further, many data sets lack the statistical information and realness required to train

a NIDS. In particular, modern malware oriented at the IoBT does not express its

malicious behavior until deployed in a realistic setting [99]. This implies that data

sets should be built by collecting data in a real life or a realistic simulated setting.

The most skilled hackers understand the behavior that triggers alerts from widely

distributed NIDS [92]. This implies that NIDS require regular updates.

According to [30], NIDS training data sets should be expandable over time and

easily accessible to the research community. Data should include realistic background

traffic. Larger training sets provide a degree of robustness against hackers attempting

to defeat NIDS. The study found approximately 11% of NIDS in their review were

trained with simulated data [30]. The task of feature selection for cyber data is

complicated by the broad range of data types utilized for IDS. [92] recounts Network

Security Monitor, the first IDS to use network flow data. This practice is continued

today with network security applications such as SNORT and Zeek [92].

[39] collect real, labelled cyber data and report the performance of NIDS ML

classifiers when they are trained on a variety of engineered features. The U.S. Army

Engineer Research and Development Center (ERDC) maintains the Cybersecurity En-

52

vironment for Detection, Analysis, and Reporting (CEDAR) database of network traf-

fic passing on the Defense Research and Engineering Network (DREN). [39] queried

CEDAR and selected a data set of 250,000 cyber alert records which have been la-

belled by analysts as either normal or malicious. 16 data fields from this set were

judged to be potentially important to train ML models for NIDS. Another study in-

troduced a novel technique called attribute ratio, which yielded better classification

accuracy than existing statistical approaches to feature engineering [100].

Data Augmentation.

In the image domain for computer vision, the lack of diverse training examples

may yield high variance machine learning models. That is, validation testing demon-

strates an undesirable dependency on the specific training examples used and the final

model. Models that suffer from high variance are unable to generalize well to unseen

test examples. Techniques such as dropout, batch normalization, transfer learning,

pre-training, meta-learning, and data augmentation have been shown to ameliorate

variance in models [101]. Data augmentation, in particular, provides additional data

examples with similar, but modified information compared to the baseline examples.

Typically, models perform better when they are provided additional high quality data

points from the target distribution. The augmented data sets allow machine learning

models to generalize patterns more effectively. Basic data augmentation techniques in

the image domain include kernel filters, geometric transformations, random erasing,

color space transformations, and image mixing. Additionally, deep learning augmen-

tation methods such as adversarial training, neural style transfer, and generative

adversarial network perturbations have been used for data augmentation [101]. Both

basic and deep methods for data augmentation have performed well in empirical

studies [101, 102].

53

Data Sampling.

Data is often procured with suboptimal class distributions for training machine

learning models [103]. Data oversampling methods are used to reduce model vari-

ance and they have been applied to a variety of domains. Oversampling is especially

useful in the case that minority class is not well represented in the training data

and in applications where misclassifying the minority classes (false positive & false

negative) are more damaging than misclassification of the common classes [101, 103].

[104] investigates oversampling the minority class, undersampling the majority class,

and a focused oversampling of minority class among points that lie near the deci-

sion boundary. While both undersampling and oversampling were demonstrated to

improve classification accuracy, there was no additional benefit for the focused over-

sampling method. Recognition is another approach sought to perform positive class

recognition on the majority class if the training set has a class imbalance. The recog-

nition approach is only useful, however, for the majority class; nothing is learned

on the minority classes [104]. Relevant background on single class recognition and

anomaly detection can be found in [30, 105, 32]. [103] demonstrate how Synthetic

Minority Over-sampling Technique (SMOTE), reference [106], and its contemporary

variants use k -nearest neighbors to generate synthetic labelled points that improve the

decision boundaries of ML classifiers. The synthetic examples generated by SMOTE

are convex combinations of training data and, therefore, cannot extrapolate beyond

the convex hull of neighboring points. SMOTE also does not enforce any conditional

relationship for categorical variables. [103] expand on these methods by incorporat-

ing a stack ensemble to learn the best combination of classifier-sampler pairing for

improved classification performance on highly imbalanced data sets. They find that

the stack ensemble does provide good classification on a clean, labelled data set but it

is yet to be shown why certain pairings perform well or how they will perform outside

54

the laboratory setting. [107] builds on the concepts of SMOTE oversampling but per-

forms the sampling within the latent space of an autoencoder. These sampled points

in the latent space are then filtered to return only those within a specified distance

to the decision boundary. Still within the latent space, the k -nearest neighbors to

the sampled points are returned. The neighbors are decoded to the X -space where

they are recorded as samples. Generative models go beyond sampling techniques to

model the entire joint distribution of data so realistic examples can be synthetically

generated from the complex distribution.

Generative Methods.

Although previous academic studies [2, 30, 11, 108, 8] have demonstrated the

great potential of using ML techniques for network intrusion detection, they typically

use low quality, outdated data. Adapting models from the laboratory to the real

world is especially challenging due to the lack of real world labelled training data

[96]. The conventional approach to machine learning is to train a model that models

a conditional relationship of class y given an input vector x, but it does not model

the overarching joint distribution of a population. These types of models are known

as discriminative models and have been utilized in the field of statistical learning

for decades. A model that does capture the joint distribution of training data is

necessary for synthetic data generation. These models are collectively known as

generative methods. A significant volume of recent work in generative modelling is in

the field of machine learning [51, 102], though other generative methods are rooted

computational Bayesian statistics [64, 63].

Generative models are appealing in order to achieve high classification perfor-

mance [51, 32] and further, to generate desperately needed training data for dis-

criminative models, particularly deep models that require large data sets [109]. The

55

computational Bayesian approaches of generative methods have been a concentrated

area of research since the early contributions of [110, 64]. Markov Chain Monte Carlo

(MCMC) generative methods explore the model’s parameter space θ for values that

maximize the correctness of the posterior distribution p(θ|y) with respect to a target

distribution. With each sampling of θ, the correctness of the current posterior is

assessed and the step is either accepted or rejected. This process is repeated until

a stopping criteria is satisfied [63, 68]. MCMC techniques possess the Markovian

property which states convergence to a stationary distribution is theoretically attain-

able regardless of the initialized values θ0. Gibbs Sampling is the most basic form

of MCMC while Metropolis-Hastings MCMC is a more advanced variant that uses

probabilistic acceptance of steps. This strategy of probabilistic acceptance provides

the Metropolis-Hastings algorithm the property of detailed balance [65]. With de-

tailed balance satisfied, the algorithm is guaranteed to obtain a posterior distribution

matching the target distribution in a finite number of steps. Research suggests the

Metropolis-Hastings algorithm is preferred for many systems because it is less likely

to get stuck in local minima [68].

[109] find that in practice, the Metropolis-Hastings algorithm is not computa-

tionally tractable due to the low chance of accepting each step when there are many

parameters θ, such as when modelling high dimensional cyber data. [109] suggest fur-

ther work in generative techniques for synthetic cyber data should focus on generative

machine learning. The Boltzmann Machine is a fundamental achievement in genera-

tive machine learning used to approximate the distribution of observed variables by

learning a model’s latent variables [61]. For discrete distributions, the Boltzmann

Machine is a universal approximator of data [102]. [111] drew inspiration from cog-

nitive science to improve the structure of the Boltzmann Machine. Denoted as the

Restricted Boltzmann Machine, this model is bipartite, with no connections between

56

nodes on the observed layer or between nodes in the latent layer. This new structure

captures complex relationships between variables and can be stacked for additional

capacity. The conditional distributions of variables can be derived and sampled from

the trained Restricted Boltzmann Machine. Variational autoencoders are a generative

deep learning technique that uses gradient methods to learn parameters [102, 112].

Parameters are trained by maximizing the variational lower bound of data in the

training set. New data examples can be generated from a trained variational autoen-

coder by drawing a random sample z from the distribution pmodel(z) and then passing

z through the layers of the autoencoder g. The generator produces output sample

x taken from pmodel(x; g(z)) = pmodel(x|z) [102]. Another deep generative method,

generative adversarial networks (GANS), provide a breakthrough for synthetic data

generation [53]. As the name suggests, the architecture is comprised of two neural

networks competing in an iterative game. A generator network, g, generates syn-

thetic data x = g(z;θ(g)), where θ(g) are the learned parameters of the generator.

The other network is discriminator, d, which learns to classify synthetic examples x

as real or synthetic via the operation d(x;θ(d)), where θ(d) are the learned parameters

of the discriminator. The competing networks are simultaneously trained via gradient

backpropagation. Initially, the generated examples are poor quality and the discrim-

inator easily detects synthetic examples. Through continued training, the generator

produces higher quality synthetic examples with likeness to the real data. Even as

the discriminator becomes a better critic of synthetic data, the well trained generator

can produce synthetic data that is indistinguishable from the real data. The fully

trained generator is then used to draw synthetic examples from the joint distribution

of the real data.

[109] proposed using generative methods to expand on the limited supply of high

quality cyber data. Markov Chain Monte Carlo generated realistic continuous features

57

but proved ineffective with high dimensional data sets [109]. The conditional tabu-

lar generative adversarial network (CTGAN) and tabular variational autoencoder

(TVAE) demonstrated capability to synthesize continuous data in [109]. CTGAN

and TVAE demonstrated capability to generate synthetic data of both continuous

and discrete high dimensional data in [4]; however, these studies used the obsolete

KDD-CUP and NSL-KDD data sets which are not suitable to train a modern NIDS.

Our manuscript explores whether high quality, synthetic, data generated from gener-

ative models can serve as a proxy for real data when training ML-based NIDS.

3.3 Methodology

The methodology applied in this research addresses three key issues that plague

current cyber data sets: data quality, data currency, and metric-based evaluation.

1) Data quality: The realness, relevancy, and recentness of baseline data used in

this approach can be guaranteed because it is obtained from actual cyber traffic on

the DREN. The baseline data contains large quantities of background data packets as

well as alert data. The Zeek NIDS in DREN uses specialized scripts and algorithms

to flag alerts and severity levels in potentially malicious traffic. A computer incident

response team (CIRT) adjudicates the alert packets as normal or bad. Although

the alert threshold is set conservatively low, it is impossible to make any conclusions

about false negatives (i.e., malicious packets that were not flagged for human review).

Therefore, the label assigned by the human analyst is considered truth. Synthetic

data generation seeks to provide additional data examples of the same statistical

distribution, and therefore same high quality as the real data.

2) Data currency: The cyber data queried from DREN can be updated and ex-

panded iteratively. The network’s CIRT provides continuous monitoring and new

queries can produce new cyber records as they become available. Additional data

58

fields can be incorporated into updated data sets as well, assuming they can be cap-

tured by Zeek. Synthetic data generation is used to increase the quantity of labelled

examples. This is especially important when zero day attacks have been detected,

but there are not enough examples to train and evaluate a ML classifier.

3) Metrics: The realness of synthetic NIDS training data can be assessed with

descriptive statistical metrics and by comparing the performance of standard classi-

fiers on the generated data to the real labelled data [109, 4]. These approaches are

prevalent in the literature and should become the expectation in related cybersecurity

research. The inverted Kolmogorov-Smirnov (KS) D statistic [113] and classification

recall [2] work especially well to convey an overall quality of synthetic data. The

inverted D statistic is provided by the Synthetic Data Vault package [113]. It is cal-

culated as the average of 1 minus the D statistic for each column in a pair of data

sets. As noted in Equation 33, the D statistic is calculated as the greatest observed

difference between two distributions across all x [114, 115]. The D statistic is limited

however in that it does not capture covariance in multivariate distributions.

d
(i)
N = max{|F (i)

0 (x)− S
(i)
N (x)|} (33)

In Equation 33, d(i) denotes the Kolmogorov-Smirnov D statistic specifically for

column i in the data set. F
(i)
0 (x) denotes the observed distribution of real baseline

data in column i. S
(i)
N (x) denotes the observed distribution of synthetic data in column

i. N is the number of synthetic observations in the sample. Critical values of d, with

N observations and significance α are given by [115].

Collect Baseline Cyber Data.

All DREN traffic is monitored with Zeek. Zeek reports low, medium, and high con-

fidence alerts for suspicious traffic detected by its community sourced scripts. Pack-

59

ets flagged with alerts are summarized with 73 features and stored on the CEDAR

database. These records are then audited by the CIRT who adjudicates them as

normal or malicious. The ERDC maintains these labelled feature vectors on CEDAR

and approved researchers can query the records using the High Performance Comput-

ing Architecture for Cyber Situational Awareness (HACSAW) API. ERDC prohibits

HACSAW data from being removed from the DREN network, therefore, all data

analysis must be performed on the DREN.

This research follows the data collection method of [39] in which HACSAW is

queried for real, labelled, logs of HTTP cyber traffic on the DREN. For the first

research question in this study, the 250,000 data examples from [39] were obtained

and reused. For the second research question, however, a greater number of examples

were required, so a new data set was queried and pre-processed.

Details on HTTP protocol and the contents of the Zeek HTTP logs are outlined

by the Zeek documentation [116]. This study also references the feature engineering

method by [39], which provides guidance on optimizing features for machine learning

with cyber data. Table 3 outlines which engineered features were derived from the

HTTP logs and used for this study.

Table 3. Data fields and feature engineering technique.

Data Field Example Technique
connection open, close, none Label encoded
id orig h cc US Label encoded
id resp h cc US Label encoded
severity H, M, L Label encoded
method GET, POST Label encoded
request body len 10 minimax
response body len 10 minimax
hp 0000000000000000 16 bit vector
id orig h org external Label encoded
id resp h org internal Label encoded
host my.connection.edu Label encoded
status normal, bad One hot encoded

60

Generate Synthetic Cyber Data.

Recent research demonstrates that generating synthetic, tabular data has unique

challenges that do not exist in other domains such as synthetic image generation

[4, 109]. Tabular data contains variates that are continuous, or discrete, and in some

cases a particular variate may contain both types of observations. Although image

pixels may follow a roughly Gaussian distribution, the joint distribution of data tables

do not follow any known distribution. Data tables tend to be multimodal, and existing

generative methods such as a GAN perform poorly in multimodal domains. Discrete

variates are typically one hot encoded, which is practical to model for univariate

data. It is unclear, however, how to model joint distributions with discrete and

continuous variates. Further, violations to one hot sparsity in the generated data

would be easily detectable with simple rules. Finally, the categorical variates may

predominately express major classes, and only express a few instances of the minor

classes. Generative models may fail to capture the non-zero probability of minor

modes despite converging to an optimal model [4].

Previous results from [109] indicated CTGAN, TVAE, and Markov-Chain Monte-

Carlo (MCMC) with Metropolis Hastings algorithm were potential choices for model-

ing the joint distribution of cyber data. Our follow up trials demonstrated that only

CTGAN and TVAE could be scaled for high dimensional data sets. Exploratory trials

of MCMC were implemented in pymc3 [117] using Python 3.8. We found that the

multivariate Gaussian mixture model (MVGMM) fit with the Metropolis-Hastings

MCMC algorithm in [109] could not be adapted for more than two continuous vari-

ables, regardless of posterior distribution and hyperparameter settings. Likewise, the

MVGMM fit with the No-U-Turn MCMC algorithm in pymc3 did not converge for

data sets greater that two continuous variables. Therefore, CTGAN and TVAE are

selected as models to synthetically generate cyber data, with details of these two

61

generative ML methods to follow.

Generative Adversarial Networks.

Generative adversarial networks (GANs) are a machine learning framework for

building generative models introduced by [53] and updated in [57] with recent insight.

GANs are built using an adversarial process. On one side, a multi-layer perceptron

generates data, initially with random weights, while on the other side, a discriminative

MLP detects whether or not the generated data matches the distribution of a target

set. Initially, the discriminator can easily distinguish generated data examples from

true examples, but the generator improves its model over time. Simultaneously,

the discriminator learns on its mistakes and improves its model. Eventually, the

generator produces examples that match the original distribution very well, and the

discriminator cannot detect a difference in the generated examples [53]. Most GANs

today are based on the deep conventional GAN architecture [52] and used for image

generation [53]. As alluded to in Section 3.3, creating a GAN for tabular data is a

more nuanced task.

A GAN capable of modelling tabular data has been constructed [4]. The model,

CTGAN, is designed to address the shortcomings of fitting traditional GANs to tabu-

lar data. The model addresses mode collapse of minor discrete classes by conditioning

the training on each discrete mode. A condition generator is used to sample discrete

classes and represent as a one-hot condition vector. The condition vector representa-

tion of discrete conditions is input to the CTGAN generator. This input motivates

the generator to learn relationships between the condition and a realistic synthetic

output for all discrete categories. CTGAN also detects modes within continuous vari-

ables and determines mode membership for each example using a Guassian variational

model. Mode specific normalization facilitates learning for data examples attributed

62

to minor modes. This information is also input to the generator. Collectively, these

features of GAN address the challenges of modelling tabular data [4].

CTGAN is represented visually in Figure 4. The network represents variables with

a special encoding structure to capture the conditional relationships of variables and

to prevent mode collapse. The row containing both discrete and continuous variables

is represented by rj. rj contains αij, a continuous value within a mode for variable i

and data example j; βij, a one hot vector indicating mode membership for variable i;

and dij a vector specifying the discrete levels active for variable i. Mask vectors m
(k)
i

are formed to encode the active discrete settings for all combinations of variables and

settings where m
(k)
i = 1 if setting k is active for variable i. The concatenation of all

mask vectors for a data example is known as the condition vector.

The input layer of the CTGAN generator includes the condition vector and a vec-

tor of Gaussian noise. Two hidden layers of 256 nodes are fully connected with batch

normalization, droput and leakyrelu activation functions. The output layers are also

fully connected. The continuous output are assigned with a tanh activation function

while the mode indicator vector and discrete values are assigned with a gumbelsoftmax

activation function. The discriminator is a MLP with two hidden layers, and leakyrelu

activation functions, that discerns whether the generated row vectors are drawn from

the same population as the sampled row vectors. The parameters in the generator

and discriminator are simultaneously trained with Wasserstein loss via the Adam

optimizer.

Autoencoders.

Autoencoders are a deep learning framework that learns a function that sum-

marizes input data in a low dimensional latent space and reproduces the data in the

original space with minimal error. This is done by constructing a neural network with

63

Figure 4. CTGAN includes a generator network that is input to a discriminator net-
work, as proposed by [4].

64

two sequence of layers. The first sequence of layers h = f(x) compresses the input to

the latent space, and another sequence of layers g(f(x)) = x generates realistic data

from the latent encoding [102].

Variational autoencoders are more advanced than standard autoencoders because

they are trained to maximize the variational lower bound, L(q), of training data [118].

This choice of loss function motivates the model to place high probability across many

values of the latent variables z that could feasibly reconstruct x [102].

During training, we take the following perspective of the model. The approximate

inference network q(z|x) is the encoder that generates z; and the decoder is the

distribution pmodel(x|z) from which the reconstructed output is drawn [102]. The

variational lower bound, L(q) for the sample x is maximized as shown in Equation

34.

L(q) = Ezq(z|x)logpmodel(z,x) +H(q(z|x)) (34)

TVAE is a variational autoencoder designed specifically to model and generate

tabular data. The autoencoder uses the same variable encoding as CTGAN to ad-

dress mode collapse and capture conditional relationships. TVAE encoder contains

two hidden layers with the relu activation function. An output layer contains tanh

activation functions for continuous variables, αij and softmax activation functions for

discrete variables, βij and dij.

The network produces one hot encoded values for discrete variables βij and dij in

rj. For αij, the continuous variables, the network captures the mean and standard de-

viation. A generator model with two hidden layers then uses the learned distribution

to generate normally distributed values for α, hence, fully defining rj.

65

Figure 5. TVAE is a tabular variational autoencoder with an encoding network and a
decoding/generator network, proposed by [4].

Machine Learning Classifiers.

Humans posses strong ability to interpret information and draw conclusions. In

particular, humans can learn patterns allowing them to classify things into groups.

Similarly, statistical models can be trained with large training sets to label unlabelled

data examples. These models are machine learning classifiers, meaning the algorithm

has learned the model from the data. A training data set includes vectors of obser-

vations (xn, yn) where xn are the indicators and yn is the label. An unlabelled data

set includes only the indicator variables xn′ , but a trained model can assign the label

yn′ . Unlike regression models, which estimate a continuous response y, classification

models assign a discrete class [119]. Most machine learning techniques require the

data is prepared with several steps of pre-processing. Feature engineering is one such

step [120]. In this research, we reference the successful engineered features for cyber

data presented by [39]. There is a growing list of machine learning methods that

perform classification. Several of the most pervasive methods have been selected for

this study.

66

Logistic Regression.

Linear regression is a statistical model that captures the relationship between

indicator variables and a continuous response variable [121]. The linear regression

model takes the form of Equation 35 where x is a vector of predictor variables, β̂ is

the least squares estimator of the model parameters, and ŷ is the prediction of the

response variable.

ŷ = x′β̂ (35)

The model, however does not perform well for binary or categorical outputs. In

the binary case, a trained model may output a response anywhere between 0 and 1, or

well outside that range. These responses have no statistical interpretation, therefore,

linear regression is ill suited for the binary classification problem [119]. [122] argues

that the preferred form of regression for binary classification is given by Equation 36.

pr(Yi = 1) = eα+βiX/(1 + eα+βiX) (36)

with indicator variable x, parameters β0 and β1 [122]. The logistic regression formula,

Equation 36 yields a response between 0 and 1 for all input.

By annotating p(X) = pr(Y = 1|X) we solve for the odds function, Equation 37,

p(X)

1− P (X)
= eβ0+β1X (37)

which provides the ratio of the conditional probability pr(Y = 1|X) and its compli-

ment, given the estimated model.

The log-odds function, given in Equation 38

log

(
p(X)

1− P (X)

)
= β0 + β1X (38)

67

has a linear relationship to X. That is, changing the parameter X by a unit, affects

the log odds by β1. β0 and β1 are now conveniently estimated by the method

of maximum likelihood. Once the parameters are estimated, the logistic regression

model is given by the probability distribution p(X) shown in Equation 36 [119].

This research implements LogisticRegression in scikit-learn with the liblinear solver,

which is preferred for smaller data sets. All other parameters are set to default.

Notably, the scikit-learn function LogisticRegression uses L2 regularization with a

weight of 10 to remove less important features from the model.

Support Vector Machine.

The support vector machine was initially presented by [123] and expanded for

inseparable data sets in [124]. It works by using a kernel to project the training data

into a higher dimension. In the higher dimensional representation, the algorithm

searches for the hyperplane that optimally separates data points by class, and main-

tains a large margin between classes, and minimal violations. Equation 39 is the loss

function for support vector machines which is used to find w, the optimal separating

hyperplane. The first term, 1
2

∥∥w∥∥2
is inverse proportional to the separating region

between classes. The second term, C
(∑N

i=1 ξ
(i)
)

sums the magnitude of ξ(i), the

classification error for data examples x(i), which lie on the wrong side of the margin

boundary. C is a user defined hyperparameter to balance the importance of the two

terms. The constraints in equations 40 and 41 bind ξ to the distance of violation

to the margin region. y(i) is the true class label and w0 is the intercept term of the

separating hyperplane [124].

68

L = arg min
w

:
1

2

∥∥w∥∥2
+ C

(N∑
i=1

ξ(i)
)

(39)

S.T. ξ(i) ≥ 0 ∀i (40)

y(i)(w0 +w⊤x(i)) ≥ 1− ξ(i) ∀ i (41)

The NuSVC function in scikit-learn uses a dual formulation to exploit computa-

tional efficiencies. By default, this function uses the radial basis function kernel, nu

= 0.5, an adaptive formula for gamma, and a kernel cache of 200MB [125]. In this

study, nu is set to 0.2 and the cache is increased to 500MB.

Multi-layer Perceptron.

A multi-layer perceptron (MLP) is a mathematical model translating an input

vector to a response through one or more layers of intermediary functions. The

model was developed over several decades with major advancements by [126], [127],

and [128].

One layer of a fully connected MLP may perform the operation σ(w⊤x)+ b where

x is an input vector, w is a vector of learned weights, b is a learned bias parameter,

and σ is an activation function selected to improve training. The parameters of each

intermediary functions are learned though a training process called back-propagation.

Back propagation uses a gradient based optimizer to reduce the classification error,

typically cross entropy. Training via back propagation is performed for many iter-

ations until the model seizes to improve each iteration. MLPs are very versatile.

The architecture of the MLP is the choice of number of nodes in a layer, number

of hidden layers, and connectedness between layers [102]. These choices affect the

learning capacity of the model. The greater the number of layers in a MLP, the more

69

abstract the representation is, allowing the model more freedom to learn complicated

relationships. This additional capacity also risks generating an overfit model. The

Scikit-learn Python package includes a function called MLPClassifier. By default, the

MLPClassifier model contains 100 hidden layers, uses the relu activation function, the

adam optimizer, an L2 penalty term of α = 0.0001, a constant learning rate of 0.001,

and a maximum learning of 200 training iterations [125].

Random Forest.

Decision trees are the precursor to random forest classifiers. They are machine

learning models represented by a tree-like flow graph. A data example is input to a

trained decision tree at the root node. At the root node, some mathematical criteria

determines a subsequent node the example flows through. The process of obeying a

criteria to determine the path through the nodes continues until the example arrives

at a leaf node. The leaf node corresponds to an output, or decision. [129] and [130] are

regarded as two of the most significant contributions in the development of decision

trees. Both algorithms seek the optimal splitting criteria in each node and yield

an effective decision tree for classification [131]. There have been several significant

advancements from the primitive decision tree. Random Forest is one of the most

notable.

Ensemble methods leverage information learned in multiple models to classify

with better accuracy. A typical strategy involves a hierarchical model that outputs

the majority vote from each base classifier. The decision boundaries of ensembles may

better reflect the true model. Empirically, greater diversity of base models provides

better ensemble results. Random forest is an ensemble method that achieves diversity

by randomizing the attributes selected in the base level tree classifiers. Random

forests ensembles demonstrate among the best accuracy of the ensemble strategies for

70

decision trees and they often faster and more robust to outliers in training data [132].

This study uses the scikit-learn RandomForestClassifer function which, by default,

creates 100 estimators with the gini criterion. This study increases the number of

estimators to 300 and uses the entropy metric for learning branch points.

Calculate Metrics of Quality.

The KS inverted D statistic was calculated for each synthetic data set of 25,000.

This provided a measure of similarity of the joint distribution in the synthetically

generated cyber features to the baseline data set of 250,000 real examples. Random

forest (RF), support vector machine (SVM), multi-layer perceptron (MLP), and logis-

tic regression (LR) were used as the ML classifier algorithms. Each was implemented

in the scikit-learn python library with default settings except for modifications noted

in Section 3.3. First, each classifier algorithm was trained with the synthetic data sets

(generated from 1,000-25,000 real examples). Then, each instance of the trained clas-

sifiers was tested using the baseline set of 250,000 real examples. When the classifier

was trained with real examples, those examples used for training were removed from

the test set. Likewise, when the classifier was trained using synthetic data, any ex-

amples used to fit the generator were removed from the test set. Classification recall

was recorded, as this performance metric appropriately reports the NIDS classifier

ability to avoid false negatives.

Computational Experiments.

Computational experiments are conducted to investigate two aspects of using

synthetic data to train an ML-based NIDS. In both cases, real data is used to fit

generative models. Then, synthetic data is produced from the generative models.

Machine learning classifiers are trained with either real data, synthetic data, or a

71

combination of real and synthetic data. These classifiers are tested with real labelled

data.

Does quantity of real training data affect quality of synthetic data

set?.

This research problem leveraged the same set of 250,000 labelled real data exam-

ples collected in [39] and maintained the same engineered features. The two methods

used to generate synthetic data were CTGAN and TVAE. Each method was imple-

mented within the Synthetic Data Vault library available for Python 3.8. Instances of

the generative models were fit using random subsets of the truth data of sizes 1,000,

5,000, 10,000, 15,000, 20,000, and 25,000. These scenarios reflect a situation where

the number of real training examples is the primary constraint.

One-at-a-time parameter tuning did not demonstrate any obvious improvements

to the inverted KS D statistic, so default settings were adopted for CTGAN and TVAE

models. The training process was repeated for a second repetition with each afore-

mentioned model. 25,000 synthetic examples were then sampled from each trained

generator model. The random subset of real samples used to train the generators of

each trial were recorded in order to prevent biased ML classification at test time. That

is, baseline examples used to fit the generators were removed from the classification

test set.

The resulting data sets were used to train LR, MLP, RF, and SVM classifiers as

described in Section 3.3. Machine learning classifiers were trained using the 25,000

examples synthetically generated from the generative models, varying the number of

examples to fit the generative model as outlined above. Additionally, classifiers were

trained using 1,000, 5,000, 10,000, 15,000, 20,000, and 25,000 real examples.

Finally, classifiers were trained using training sets of 1,000, 5,000, 10,000, 15,000,

72

20,000, and 25,000 real examples, augmented with an equivalent number of synthetic

examples. The recall performance of each trained classifier is reported.

Does the ratio of real and synthetic data affect classification perfor-

mance?.

This experiment considers whether the classification performance of machine learn-

ing models is dependent on the proportion of data that is synthetic. For this exper-

iment, it was determined that the set used to fit the generators and the classifier

training sets should be much larger than in the previous experiment in Section 3.3.

By eliminating any practical constraint on available data, stronger conclusions can

be made about the research question.

A new set of real cyber data was queried from HACSAW using the method outlined

in Section 3.3. 250,000 real malicious examples and 250,000 real normal examples

were saved as csv files. 20% of each (malicious and normal) data set was sampled

and sequestered as a test set, totalling 100,000 examples. The remaining 400,000 real

examples were used to fit a CTGAN and TVAE generative model. These models were

used to generate an additional 400,000 synthetic data examples. Next LR, MLP, RF,

and SVM classifiers were trained with training sets ranging from 0% synthetic data

to 100% synthetic data. This was done by sampling the real and synthetic data sets,

without replacement, for each of the specified ratios shown in Table 4. The intent was

to train models from mixed data sets as large as 400,000 examples; however, it proved

computationally intractable to train a SVM classifier from very large sets. Therefore,

classification was performed and performance was reported for training sets of 25,000

and 100,000.

73

Table 4. Classification models are trained with data sets where the percent synthetic
data is varied.

Trial 1 2 3 4 5 6 7 8 9 10 11

Real (%) 100 95 90 85 80 75 70 65 60 55 50
Synthetic (%) 0 5 10 15 20 25 30 35 40 45 50

Trial 12 13 14 15 16 17 18 19 20 21 -

Real (%) 45 40 35 30 25 20 15 10 5 0 -
Synthetic (%) 55 60 65 70 75 80 85 90 95 100 -

3.4 Experimental Results and Discussion

Does quantity of real training data affect quality of synthetic data set?.

The classification recall for each ML model was tested with real labelled examples

and plotted in Figure 6a for CTGAN synthetic data, Figure 6b for TVAE synthetic

data, and Figure 6c for classification with real data features. Each plot contains

48 data points corresponding to four classifiers, six set sizes, and two repetitions.

These results are provided in Tables 19, 20 and 21 in the Appendix. The recall

of the classifiers trained on synthetic data is significantly inferior to the recall on

the models trained with real examples. The effect of increasing number of training

examples was investigated. The models trained with real examples demonstrate a

subtle improvement in recall as the sample size increases, while the models trained

on synthetic data appear to have a slight concave trend. A hypothesis test with

α = 0.05 did not conclude any significant linear trend as number of real training

examples to fit the generators is increased. It is possible that the magnitude of

by which number of training examples was varied was not large enough to yield a

detectable difference. When real examples were used to train classifiers, the number

of examples does demonstrate a significant effect on recall, with α = 0.05.

74

(a) ML models trained with CTGAN generated cyber data

(b) ML models trained with TVAE generated cyber data

(c) ML models trained with real cyber data

Figure 6. Classification recall of models trained with real or synthetic data.
75

The distributions of classification recall broken down by ML model and by data

source are presented as box plots in Figure 8. Mean classification recall for NIDS

classifiers trained with real data, TVAE and CTGAN were 0.829, 0.579, and 0.517,

respectively. According to Tukey’s all pairs HSD test, the mean recall for each training

data source (CTGAN, TVAE, real) was statistically different from each other, with

α = 0.05. Figure 7a provides a graphical representation of the test. This finding

somewhat contradicts the observation that CTGAN synthetic data provides a better

fit to real data than TVAE synthetic data. It is therefore evident that the inverted

KS D statistic is not a comprehensive metric for quality of synthetic data used to

train machine learning IDS.

Mean classification recall for RF, SVM, MLP, and LR were 0.665, 0.608, 0.672,

and 0.621, respectively, and Tukey’s all pairs HSD test indicated insufficient evidence

that treatment groups were different, with α = 0.05. It is possible that the data sets

used to fit generative models were too small to yield excellent classifiers with any of

the selected algorithms. Figure 7b provides a graphical representation of the test.

The best observed recall among models trained on CTGAN data, reference Table

19 and Figure 8, was 0.699 produced by an SVM model. Interestingly, the worst

observed recall, by far, was 0.308, also produced by an SVMmodel. The best observed

recall on a model trained with TVAE, reference Table 20, was 0.725, produced by a

MLP. Despite SVM producing the model with second best recall on the TVAE set,

the five worst performing models were all SVM. By reasonable standards, no model

trained on purely synthetic data demonstrated sufficient detection to be deployed as

a NIDS.

The best observed recall among models trained on real data, reference Table 21,

was 0.955, the result of a RF classifier. RF models produced excellent recall, almost

always above 0.9. Though slightly worse on average, MLP models also often exhibited

76

(a) Plot of recall of the real, TVAE, and CTGAN data on left,
and connected groups with Tukey’s HSD test of equivalent
means on right.

(b) Plot of recall by machine learning classifier on the left,
and connected groups with Tukey’s HSD test of equivalent
means on right.

(c) Plot of Kolmogorov-Smirnov inverted D statistic by gen-
erative model on left, and connected groups with Tukey’s
HSD test of equivalent means on right.

Figure 7. Significance of treatment groups on classification recall of models trained
with real or synthetic data.

77

recall better than 0.9. SVM produced the five worst performing models with recall

as low as 0.677.

Figure 9 presents the KS inverted D statistic as a function of training examples for

each generative method employed and these results are tabulated in Table 22. Larger

values of the inverted D statistic indicate likeness of paired variable’s between two

data sets (real and synthetic). The reported values are the average of the inverted D

across all variables in the cyber data sets. The number of real examples used to fit

TVAE and CTGAN generative models demonstrated a minor effect on data realness,

as measured by the KS inverted D statistic for a comparison between synthetic and

real data. Specifically, the real data benchmark included all records from the 250,000

baseline records except those used in fitting each particular generative model.

An effects test with the T distribution provides statistical evidence that increasing

the number of real examples to fit TVAE also increases the KS inverted D statistic,

where α = 0.05. The results were inconclusive when performing the same effects test

for the CTGAN results.

The mean inverted D statistic for data generated by CTGAN was 0.857, and it

was 0.689 for data generated by TVAE. Tukey’s all pairs HSD reports that there was a

statistical difference in mean inverted D between generative methods. Although [109]

previously reported an inverted D statistic for CTGAN, TVAE and Markov Chain

Monte Carlo generative methods of 0.890, 0.723, and 0.875, respectively, these reflect

a different cyber dataset containing only one discrete variable and two continuous

variables while only training the generators with 10,000 examples. Therefore, this

suggests it is significantly more difficult to achieve the same goodness of fit in gen-

erating synthetic cyber data when working with higher-dimensional data sets. The

HSD Tukey test is shown graphically in Figure 7a.

The evaluation of recall was extended to classification models trained by a mix-

78

Figure 8. Classification recall by ML algorithm and data set.

Figure 9. Similarity between real and synthetic data sets.

79

ture of half real and half generated data. This strategy depicted scenarios where

1,000, 5,000, 10,000, 15,000, 20,000, and 25,000 real examples were available. By in-

corporating an equal quantity of synthetic data, the models were trained with 2,000,

10,000, 20,000, 30,000, 40,000, and 50,000 total training examples. An effects test

was performed using the T distribution and α = 0.05. The test concluded that there

is no statistical evidence that the number of real examples to fit the generator was

important for the classification recall of machine learning models. This was true for

the half real, half synthetic mixed datasets derived from both CTGAN and TVAE.

Figure 10a presents the recall for models trained with equal quantities of real

examples and synthetic data generated from CTGAN and the results are tabulated

in Table 23 in the appendix. The nine best performing models were all RF, each

achieving a recall of at least 0.932, even when the number of real training examples

were as few as 5,000. The nine worst performing models were SVM.

Figure 10b presents the recall for models trained with equal quantities of real

examples and CTGAN synthetic examples. These results are tabulated in Table 24.

The top 10 performing models were all RF, each achieving a recall of at least 0.929.

No RF model had a recall below 0.896. Only one ML and one LR model demonstrated

recall surpassing 0.9. SVM was by far the worst performing classifier for data sets

combining equal proportions of real and TVAE generated data.

Tukey’s all pairs HSD test with α = 0.05 was used to test statistical difference

between the mean recall of classifiers trained with real data, CTGAN data, TVAE

data, real data augmented with CTGAN data, and real data augmented with TVAE

data. The test indicated no evidence that the classifiers trained with mixed data

sets performed differently than the models trained with real data. The classifiers

trained with only synthetic data had significantly worse recall. Table 5 presents the

connection table of mean recall for all groups under test and Figure 11 provides a

80

graphical representation of the test.

Does the ratio of real and synthetic data affect classification perfor-

mance?.

Classification recall is presented in Figure 12 for classifier models where the train-

ing data is a mixture of real and CTGAN generated data and the percent synthetic

is varied. Similarly, the recall for models trained with a mixture of real and TVAE

generated data is presented in Figure 13. The experiment was performed once with

training sets containing 25,000 examples, Figures 12a and ??, and again with training

sets containing 100,000 examples, Figures 13b and 13a. Each plot contains 84 data

points corresponding to four classifiers, crossed with 21 settings of percent synthetic.

The full results for these trials are presented in Tables 25-28 in the appendix.

An effects test with α = 0.05 determines that percent synthetic is an important

factor for estimating recall. Further analysis indicates that percent synthetic may also

have a quadratic effect, however the quadratic term is not conclusively significant on

all data sets, with α = 0.05, and the model adequacy checks suggest that residuals

may not be independent. The results indicate that varying the training set size

between 25,000 and 100,000 does not have a significant effect on recall. The mean

recall of models trained on 25,000 examples (Table 25 and Table 27) is 0.715 and

the mean recall of models trained on 100,000 examples (Table 26 and Table 28) is

Table 5. Connection table of recall by data source using Tukey HSD All Pairs test with
a confidence of 0.95.

Level Group Mean Recall

Real A 0.82887500
TVAE Mixed A 0.79562500
CTGAN Mixed A 0.76743750
TVAE B 0.57883333
CTGAN B 0.51697917

81

(a) ML models trained with CTGAN generated cyber data

(b) ML models trained with TVAE generated cyber data

Figure 10. Classification recall of models trained with a mixture of real and synthetic
data.

82

Figure 11. Plot of recall of the real, synthetic, and 50/50 synthetic and real data on
the left, and connected groups with Tukey’s HSD test of equivalent means on right.

0.730. When these two treatments are considered categorical, Tukey’s HSD test fails

to conclude the mean recall is different, with α = 0.05. The low influence of training

set size may be because the ML classifiers have a finite learning capacity.

Overall, classification recall is greatest with training sets containing no synthetic

data and the recall decreases slightly as the percent synthetic increases. Figures 12-13

show an inflection point around 85% synthetic, at which point the recall decreases

more rapidly. Following the standard practice of right sizing data sets in principal

component analysis, this inflection point indicates that 15% real examples should

be retained in training sets for machine learning based intrusion detection systems.

An effects test with α = 0.05 also determines that the machine learning classifier is

an important factor for estimating recall. For every set in this experiment (25,000

CTGAN, Table 25; 100,000 CTGAN, Table 26; 25,000 TVAE, Table 27; 100,000

TVAE, Table 28), RF performed the best, and SVM performed the worst. The best

observed recall in this experiment was 0.876 and the 20 best performing models were

all RF.

The recall observed in this experiment for RF trained with 25,000 real examples is

83

0.861 (observed in both Table 25 and Table 27). This is inferior to the recall of 0.955

observed in Section 3.3 (see Table 21) where the RF model was also trained on 25,000

real examples. The lower recall in this experiment may be due to the increased size

of the test set or random events during RF training.

The performance of RF had only decremented slightly upon offsetting 85% of the

data with synthetic data. The recall for the RF models trained on 85% synthetic

data were 0.820, 0.852, 0.821, and 0.853 with the 25,000 CTGAN, 100,000 CTGAN,

25,000 TVAE and 100,000 TVAE training sets, respectively.

Across the four sets, the mean recall for RF, SVM, MLP, and LR is 0.839, 0.535,

0.789, and 0.729, respectively. The standard deviation of recall for RF, SVM, MLP,

and LR is 0.069, 0.069, 0.076, and 0.138, respectively. Evidently, the spread of recall

for trials using the SVM classifier is much greater than for other classifiers.

Figure 12 and Figure 13 show that despite an overall trend of decreasing recall

with increasing synthetic data, the relationship between recall and percent synthetic

data is more nuanced for the SVM classifier. The SVM classifier used in this study

employs the radial basis function kernel, which struggles to converge with large, di-

verse training sets. SVM may also be the least compatible classifier with the feature

engineering scheme, shown in Table 3. This may be because SVM cannot perceive

a difference between numerically similar, but distinct, label encodings. It is unclear

why SVM classification improves slightly around 50% synthetic and again at 100%

synthetic data.

The results in this work show that some machine learning classifiers perform well

when trained on sets of partially synthetic training data. This finding may help

alleviate the lack of quality labeled cyber data for NIDS research. Deep learning

classifiers have higher capacity than the conventional ML methods used in this study.

Deep models excel with large, complex feature sets but they also demand a massive

84

quantity of training data. The discovery that synthetic data can be used to offset

real data lends itself to the possibility that deep methods can be applied with even

greater classification performance.

3.5 Conclusion

It is difficult to overstate the urgency of leveraging AI and ML technologies for

cybersecurity to help protect military networks from attack. If vulnerabilities are

not monitored, adversaries can suppress friendly systems from operating or poten-

tially execute kinetic effects. NIDS, in conjunction with continuous monitoring, is an

excellent way to detect, analyze, and react to threats.

As demonstrated in this work, the CTGAN and TVAE generative methods can

each generate synthetic cyber data reasonably well. However, ML models trained with

purely synthetic data resulted in underwhelming classification recall. These models

yielded an unacceptable rate of false negatives. Classifiers trained with half synthetic

data and half real data performed statistically equivalently to the classifiers trained

with only real data. Further, it is shown that there is a linear relationship between

percent synthetic data and classifier performance. NIDS classifiers performed well

when trained with at least 25,000 examples and 15% being real. The engineered

features used in this study did not use minimax scaling or one hot encoding for all

variables, and this choice may have led to decremented classification performance

with some algorithms.

Generative methods, including machine learning, evolutionary computation and

Bayesian approaches, are an area of ongoing growth. The fast rate of advancement

in this field is motivated by the broad applications of synthetic data. Synthetic cyber

data, in particular, promises to address three well-documented issues with NIDS

data in advanced cybersecurity research: lack of relevant records, expandability as

85

(a) ML models trained with 25,000 examples of real and CTGAN synthetic data

(b) ML models trained with 100,000 examples of real and CTGAN synthetic data

Figure 12. Classification recall of models trained with a mixture of real and synthetic
data.

86

(a) ML models trained with 25,000 examples of real and CTGAN synthetic data

(b) ML models trained with 100,000 examples of real and CTGAN synthetic data

Figure 13. Classification recall of models where percent TVAE synthetic data is varied.

87

new information arises, and statistically rigorous testing and evaluation. Despite

the efficacy of using synthetic data to train ML-based NIDS, as demonstrated in

this research, there are some drawbacks. [109] critique that the joint distribution

of synthetic cyber data produced by CTGAN and TVAE lacks likeness to the real

data from the multivariate perspective. Therefore, non-conventional metrics such as

Energy Statistics, proposed by [133], may provide insight unto the likeness of complex

synthetic data sets to the baseline distribution. There is also a theoretical limitation

on the utility of high quality synthetic data. Synthetic data from generative models

does not introduce additional predictive information the system, but does improve

statistical learning with the information already contained in real data. In the absence

of a complex physical model or simulation, this limitation will likely not be breached.

We look forward to exploring improvements to generative methods as it may be

applied to cyber data generation and evaluation, particularly for adversarial sample

generation. These advancements will enable research on vulnerabilities and failure

modes in AI-based NIDS. Future research should conduct cyber subject-matter-expert

analysis of ML classifier false positives to determine if the classifiers can actually

discover attacks that were mislabeled in the test set. These studies may expand

beyond real cyber data onto high fidelity simulated data from cyber test beds such

as LARIAT [134] and CyberVAN [135]. Future work will build upon the previous

work of [11, 108, 136, 137, 138] to investigate adversarial sample generation in the

constrained domain, as well as the use of meta-learning for improving the robustness

of AI-based NIDS. Further extensions will explore evolutionary machine learning by

developing cyber data generative methods through the open-world recognition context

to generate not-yet-seen, but realistic and functional cyber data that is dynamic to

potential future adversarial behavior.

88

IV. Generate Adversarial Examples

4.1 Introduction

Digital communications are integrated into all aspects of modern society to include

business, home life, and military operations. Cyberspace is the system of networks

and protocols that pass data across physical and virtual places. The rapid growth

of digital communication through cyberspace has created new opportunities for com-

merce, social experiences, and education. Cyberspace has also proven a catalyst for

the transformation society from industry 3.0, characterized by decentralized comput-

ing, to industry 4.0 where cyber-physical systems connect, humans, sensors actuators,

and machines in order to massively automate decision making and response times.

Ultimately, this trend towards automation will greatly reduce the requirement for a

human in the loop for tasks.

This Internet of Things is expected to drive massive economic growth and produc-

tivity in the 21st century. Analogously, the Internet of Battlefield Things is drasti-

cally transforming military operations to remove humans from dangerous roles and to

shorten the time between stimulus, detection, decision, and kinetic response. These

architectures include human-in-the-loop, human-on-the-loop, and human-out-of-the-

loop. Whether in the civil or military setting, the rate of advancement in cyber

communications has outpaced any form of ensured cybersecurity. Despite the grow-

ing body of knowledge in cybersecurity, we often discover cyber vulnerabilities after

systems are deployed. Attackers leverage their knowledge on cyber vulnerabilities

to compromise the cyber triad: confidentiality, integrity, and availability of systems

[92]. Security policies often account for a balance of system cost, utility, and security.

Proper implementation of a good policy will maximize prevention of attack success

and maximize attack detection[139]. This paper is concerned with network intrusion

89

detection systems (NIDS) in the presence of adversarial attacks.

Adversarial machine learning has taken on a spotlight in artificial intelligence (AI)

research as it highlights serious security vulnerabilities for AI models. Early work by

[36] discovered that deep neural networks, which classify normal images with great

accuracy, are easily fooled when images are strategically perturbed. Convolutional

neural networks are the most prevalent model architecture in adversarial machine

learning research. Numerous algorithms have been demonstrated to generate imper-

ceptible perturbations in images that cause a target model to misclassify the image.

Each of these algorithms exploits the following characteristic of image data: every

pixel across all channels of image data can take on any value. There are no disallowed

combinations of pixel values that result in invalid images. Perturbations can be made

incrementally across a continuous domain. The only constraint relevant to these al-

gorithms is the magnitude of permissible perturbation. This constraint is necessary

to prevent humans, or anomaly detectors, from recognizing the visual artifacts of

perturbations.

To the contrary, data in the cyber domain is strictly structured according to the

internet protocol (IP) suite [140]. Packets are constructed with real data and utilize

specific encoded commands to produce specific functional results. Small naive changes

to the payload or meta-data of a packet could drastically affect the impact of the

packet and in many cases could yield a corrupt or null packet. Even replacing a valid

command in a packet with a different valid command could yield a sequence of code

that fails to run. Therefore, any attempt at generating adversarial examples in the

cyber domain must account for the rigid structure of IP packets and domain specific

dependencies between coded elements. To date, research on adversarial machine

learning in the cyber domain bypasses this issue of domain constraints entirely. Most

previous efforts perturb packet flow features and not the actual packet payload. We

90

assert that this approach is not as useful as an approach that perturbs packet payloads

because a functional payload is necessary to implement the end-to-end cyber attack.

The NIDS of prior research learns from tangible features, or transformations of

tangible features, so it is possible to draw conclusions about the importance of certain

aspects of packet flow [11, 2, 138]. In practice, the packets used to implement these

attacks can be modified to have any value for certain header fields such as IP address,

port, and can be modified for other traits like payload length. For this reason, [45]

demonstrates malicious packet detection on raw payloads, stripped of their spoofable

headers. Deep learning methods such as convolutional neural networks inherently

learn patterns in malicious packet payloads and can detect more rapidly than an

experienced human analyst. It is not yet shown, however, if the machine learning

models are leveraging the same tangible patterns as human analysts use. The CIC-

IDS2017 (aka CICIDS) cyber data used in this study is publicly available and contains

a variety of attack types in various protocols [141]. Our work implemented attacks

using a variety of tools such as Slowloris, Metasploit, Hulk, and Patator. Based on

recent findings of [45], it is our belief that raw packet payload learning is superior for

feature learning for attack classification, and this holds true across a variety of attack

types and protocols.

Our research is the first known solution to the problem of constrained optimiza-

tion applied to raw packets to generate adversarial examples for NIDS [35]. Previous

studies demonstrate adversarial attacks on features of cyber data and often ignore

domain constraints. Perturbing features is not sufficient to engage in an end-to-end

attack. By perturbing actual packets and respecting domain constraints, we expose

a vulnerability of NIDS against an end-to-end adversarial attack. This manuscript

reframes the problem and provides a mathematical formulation for optimally per-

turbing raw payload packets without affecting the packet function. A biologically

91

inspired meta-heuristic, similar to genetic algorithm, is provided to solve the formu-

lated constrained optimization problem. This work utilizes a designed experiment

to find optimal combinations of hyperparameters for the meta-heuristic to generate

adversarial examples. Then, additional experiments are conducted to compare the

fool rate of adversarial examples when transferred to three machine learning classi-

fiers. Just as the discovery of adversarial examples in the image domain has led to

adversarial training as a robust defense, the vulnerabilities we uncover in this research

open the door to a new generation of robust NIDS for the cyber domain.

The remainder of this work is structured as follows. Section 4.2 provides a review

of relevant research. Section 4.3 defines the problem of constrained optimization

for adversarial example generation, provides the use case for NIDS, and gives the

formulation and experiment methodology. Results are presented and analyzed in

Section 4.4, and conclusions are provided in Section 4.5.

4.2 Literature Review

Cybersecurity.

Cyberspace, and the tools used to build cyberspace, were initially intended to

connect and empower people. However, the difference between a tool and a weapon

is often based on how it is used. Over time, malicious actors have learned to use

capabilities of cyberspace to steal confidential data, degrade the integrity of data

and make systems unavailable [92, 142, 139]. The threat of cyber attacks permeates

beyond the hardware and software of the cyber systems. If data becomes unavailable

or incorrect, humans may succumb to rash, uninformed decisions and autonomous

systems may become unstable. This leads to the possibility that cyber methods are

used for espionage, sabotage, and cyber-kinetic attacks by state and non-state actors

[86, 142]. The full impact of cyber attacks are still being researched, and it is apparent

92

that security for existing infrastructures will not be sufficient for future environments

[7].

As the military increased its reliance on cyber systems for managing and communi-

cating information, for example, it found that their platforms had security deficiencies

that could be exploited by outside attackers and insider threats. Cybersecurity was

now seen as a crucial component of national security. Recommendations, such as

introduction of tiered credential systems, aimed to deter attackers by increasing the

cost and difficulty of the attempt, and to minimize the impact if successful [19]. A

subsequent study expanded on the scope of known vulnerabilities and emphasized the

need to log users, events, and traffic to learn about proper and illegal network usage

[20].

Intrusion Detection System.

Intrusion Detection Systems (IDS) are a crucial component of cybersecurity be-

cause they alert and react to breaches in cyber policy automatically [30]. IDS may

be embedded in host machines (HIDS), or more commonly integrated into networks

(NIDS) with dedicated hardware and software applications [28]. [95] provides one of

the earliest contributions to a NIDS. Denning’s solution specified how to measure and

log statistics on network events, resources, and traffic. A variety of expert systems

and statistical methods were proposed to detect anomalies in the logs, indicative of

a cyber attack. Denning also recognized that well informed attackers could adapt

their attack to evade a NIDS either by slowly adapting their behavior until malicious

behavior no longer appeared anomalous, or by exploiting a known vulnerability in

the network security policy.

These systems may be designed to collect data and make detection decisions at

host systems or centrally within a network [22]. Although host level systems offer the

93

computer incident response team (CIRT) a high level of detail on specific machines,

this strategy does consume compute resources on the host and it does not provide

the CIRT with a holistic view of network behavior [28]. Host data is typically logged

by the operating system, user applications [22] or security applications [28]. The

preferred method of network data collection is through dedicated tap devices located

strategically throughout a network. The main limitation of this method is that wire-

less communication of networked devices could at times communicate directly, and

bypass the wired network. See [28] for guidance on tap placement in specific networks.

NIDS vary widely in their form. The detector is the most predominant area of

research. The two approaches for detecting malicious traffic are signature based and

anomaly based. Signature based detectors use previous knowledge to identify known

threats. The anomaly detection strategy detects packets that are out of distribution

from known packets. Signature based methods are more accurate and informative in

general; however, only anomaly detection provides protection from unseen zero-day

attacks.

Detector.

The detector is the component of the IDS that classifies network traffic as normal

or as an attack. Modern IDS use either signature recognition or anomaly detection or

both methods to identify potential attacks [92, 143, 144]. Signature based detectors

may utilize methods such as expert systems [95] or machine learning [2, 109, 39].

Anomaly detection may be statistical, knowledge based, or machine learning based

[144, 30]. A comprehensive survey on anomaly detection is given by [105] and provide

a reference of anomaly detection approaches. Although anomaly based detectors are

well suited to detect unseen “zero day” attacks, there is typically a higher risk of

false positive alerts overall [143]. Machine learning, and deep learning in particular,

94

provides high performance models for systems that are either too complex or too

dynamic to be modelled with traditional methods [120]. 97.25% of IDS manuscripts

reviewed by [30] incorporated machine learning techniques, and artificial neural net-

works were by far the most popular. [143] and [145] offer a review of machine learning

and data mining techniques used for intrusion detection.

Cyber Data.

NIDS can be trained and deployed on packet data or aggregated network flow data.

Most commonly, network flow data is used because the aggregated features provide

context to the model [30]. Network flow datasets typical represents a bidirectional

connection between nodes as defined by source and destination IP address, source and

destination port number, and protocol ID. Raw flow level features may include quan-

tity and rate of data transfer, length of connection, and protocol [45]. While denial of

service (DoS) and distributed DoS (DDoS) cyber attacks are detectable through pat-

terns in these features, many other attacks such as trojans, ransomware, and worms

only express themselves through the content of the packet payloads. Further, any

IDS that utilizes features of packet information or network flow are subordinate to

the correctness of such features [45]. Various evasion techniques exploit this assump-

tion by altering packet or network flow features [11, 138]. In fact, tools such as Scapy

allow packet headers and payloads to be altered to any feasible value [146]. Therefore,

the features used by NIDS, whether derived from individual packets or network flow

data, could be completely fraudulent. Recent work contends that there there is a

severe limitation on publicly available NIDS data for research [30, 109, 45]. Although

it is possible to log traffic in networks, it is difficult to accurately label the traffic as

normal or malicious and package the data in a standard form. [30] and [141] provide

analysis on a number of commonly cited and publicly available cyber data sets.

95

Recent studies by [46] investigated transfer learning among several cyber data sets

and machine learning architectures. The work found that models pre-trained with

the CICIDS data set, published by [141], were accurate and also generalize well for

use with other data sets. The CICIDS data set compiles raw packet capture (pcap)

data collected on a real network over the course of a week. Only benign traffic was

generated for the first day of collection; however on all other days, seven attack types

were conducted using publicly available cyber tools. These attacks were implemented

according to a pre-planned schedule so the resulting packet data could be accurately

labelled [141]. We are concerned with the attacks that are most prevalent in the

pcap data. Slowloris DoS attacks open many connections with a target server but

never complete the transaction, draining the server of resources. Infiltration attacks,

deployed via Metasploit, bypass security by embedding malware in downloaded files

such as pdf. The infiltration attack then uses this access as a backdoor to conduct

an IP sweep, portscan, and other exploitations using Nmap. Another DoS attack is

conducted using the Hulk tool. Patador is used to conduct a brute force network

attack on SSH credentials to gain illegal access [141]. [46] details a technique of

labelling and preprocessing the resulting pcap data for raw payload learning.

Preprocessing Data.

There is also the matter of data preprocessing and feature engineering that plays

a major role in the performance of machine learning classifiers. The particulars of

effective pre-processing tend to be domain specific and algorithm specific. Imputa-

tion, aggregation, augmentation, vectorization, normalization, and kernel methods

are other examples of preprocessing that, when performed properly, improve the per-

formance of machine learning models [120]. Dimensionality reduction techniques such

as principle component analysis may improve the tractability of running certain algo-

96

rithms on large datasets, but does so at the cost of losing some predictive information.

Raw features in the cyber domain are logged from time series data, packet head-

ers, packet payloads, or statistical metrics of network flow [147]. Literature discusses

three actions for feature learning with NIDS: construction, extraction, and selection.

Feature construction, or feature engineering, is the transformation of raw data into

new, more expressive features for input to machine learning models [148, 30]. Feature

engineering is extremely domain specific and relies on the judgement and experience

of the analyst performing the study [120]. Feature engineering should use well under-

stood relationships to present data in a form more amenable to learning. However,

deep learning models, particularly convolutional neural networks, have the capacity

to learn these relationships as well as more abstract relationships that are too com-

plicated for an analyst to encode. It is still beneficial to perform feature engineering

with deep models. It may reduce the amount of data and computational resources

required to yield a satisfactory model; however, deep models are robust enough to

adapt when that is not possible.

[149] studies the effectiveness of data representation techniques for nominal vari-

ables in the KDD Cup 1999 cyber data set. This study does not, however, use expert

knowledge, but rather rules of thumb for representation. Other works claim that

the literature overemphasizes feature selection criteria but does not properly pursue

expert feature engineering in the cyber domain [39]. When feature engineering is

used, it is based on legacy practices and anecdotal knowledge. In the study, [39] uses

domain specific knowledge to generate feature sets on 10 features from network flow

data collected from the U.S. Department of Defense Research and Engineering Net-

work [39]. [45] expresses concern that the choice of raw feature extractor software,

such as Zeek and Security Onion, provides an extra layer of obscurity to the IDS

detector since various extractors use proprietary logging and aggregation techniques.

97

Feature extraction is an algorithmic search for optimal feature transformations

with respect to a performance metric. Recent research involves feature extraction

with deep learning methods, though principal component analysis also may be con-

sidered feature extraction [148]. Notably, however, feature extraction through princi-

pal component analysis optimizes information retained, not a metric on classification

performance [119].

Feature selection is different than dimensionality reduction. Feature selection re-

moves the least informative features to promote efficient learning. Many machine

learning algorithms suffer from the curse of dimensional, and feature selection in-

creases tractability [119]. [100] notes that the NSL-KDD data sets of [8] contains

43 features, many of which are noisy or otherwise non-informative. They therefore

compare statistical metrics for feature selection. Unlike dimensionality reduction

techniques, the strategy of [100] is to select the most useful raw variables, not to ag-

gregate them. Models using natural variables may be more transparent to an analyst

than models using transformed variables. [150] proposes that the laborious task of

cyber feature selection should be algorithmically learned to remove human bias and

improve learning on the base task. They generated 16 expert and arbitrary features

from raw HTTP payloads. Their experiment shows that even abstract engineered

features may be useful for base learning. The automatic selection among features

yields good results while reducing analyst labor.

Despite the benefits of automating feature selection, [45] claims that proprietary

feature logging software such as Zeek and Security Onion add an extra layer of obfus-

cation to feature engineering and selection. In practice, the data format and availabil-

ity of features varies widely across factions of the cyber domain such as wifi, NIDS,

HIDS, virtual private networks, and IoT. [151] reports that cyber data sets typically

aggregate the information within raw packets into features of network flows. The re-

98

sulting features emphasize packet header information and not the content and effect

of the payload. [150] found that models trained on packet header data can detect only

a subset of attack types. Many modern attacks are best detected from application

protocol commands found in the packet payload.

[30] provides analysis on 85 manuscripts and 30 prominent data sets for NIDS

research. According to the study, 50.5% of IDS manuscripts reviewed utilized the

KDD-99 data set [30], which was recorded over 2 decades ago and has well documented

flaws [8]. Another 17.2% of studies employed the NSL-KDD dataset. Although NSL-

KDD corrects many statistical flaws of KDD-99, it is still derived from the outmoded

KDD-99 data logs. [30] cautions an overall lack of compatibility among cyber data

sets, and in particular an inability for modular sharing and expandable of data sets.

The community should emphasize a common format and feature set.

Performance Metrics.

The most costly event for a NIDS is a malicious packet that is not detected. The

malicious packet will enter the network and inflict harm undetected. In this case,

the NIDS falsely labels the malicious packet as belonging to the negative class (FN).

The proper classification of a malicious packet is a true positive prediction (TP).

The erroneous classification as malicious is a false positive label (FP). The correct

classification as negative is a true negative classification (TN) [109]. The accuracy

of a NIDS is shown in Equation 42, as quantity of true positive plus true negative

divided by the total classifications [131].

Accuracy =
TP + TN

TP + TN + FP + FN
(42)

Recall, also known as the true positive rate, is shown in Equation 43 [131].

99

Recall =
TP

TP + FN
(43)

These two metrics provide good representation of detector performance on both

malicious and non-malicious packets. There is additionally a need to quantify model

robustness under adversarial attack. One approach is to measure the minimum per-

turbation η of correctly classified example x such that f(x + η) ̸= f(x) despite each

each input’s true classification being the same. η is the minimal adversarial pertur-

bation if ∄ξ S.T. ∥ξ∥ < ∥η∥ for any adversarial perturbation ξ [152]. The robustness

of a model is therefore characterized by Equation 44, and detailed in Equation 45.

Whereas △adv(x; f) is the minimum distance required to change the model prediction

from correct to incorrect on one sample, ρadv(f) is the expectation of the minimum

distance cross the entire feature space. µ represents the probability metric in Rd [152].

ρadv(f) = Ex∼µ[△adv(x; f)] (44)

and

△adv(x; f) = min
η∈Rd
{∥η∥ | f(x+ η) ̸= f(x)} (45)

Further analysis of metrics on model robustness is provided by [138].

Machine learning algorithms learn model parameters by minimizing a loss function

which reflects how well the model performs its task. The most popular loss function

for machine learning classification is cross-entropy. Cross-entropy has emerged over

time as a derivative of early metrics in information theory. Self-information, expresses

how much information is learned by reporting the specific outcome x of a probabilistic

event following distribution P . Self information is defined in Equation 46.

100

I(x) = −logP (x) (46)

Entropy, as shown in Equation 47, is the expectation of information learned from

a new observation. It is a measure of uncertainty across the entirety of distribution

P [153, 154]. Intuitively, entropy estimates the lower bound on length of code to inform

the next observation. The base of the logarithm defines the units of information and

in machine learning it is conventional to use natural logarithm and information units

called nats. Alternatively, a base-2 system yields units of bits [102].

H(x) = Ex∼P

[
I(x)

]
= −Ex∼P

[
logP (x)

]
. (47)

Kullback-Leibler divergence, Equation 48, [153] extends the concept of information

to discriminate between a hypothesized distribution P and observed distribution Q

[102].

DKL(P ||Q) = Ex∼P

[
logP (x)− logQ(x)

]
. (48)

Cross-entropy, shown in Equation 50, is used to identify model parameters in clas-

sification problems by minimizing the difference of hypothesised distribution P and

known distribution Q. Although optimizing cross-entropy is equivalent to optimizing

Kullback-Leibler divergence, cross-entropy is preferred because P is not evaluated in

the formula [102]. Cross-entropy serves as the loss function for deep models in this

paper.

H(P,Q) = H(P) +DKL(Q||P) (49)

= −Ex∼P logQ(x) (50)

101

Adversarial Machine Learning.

While machine learning models should be robust enough to train and test well

in the presence of outliers, this objective becomes much more difficult in the cyber

domain. The cyber domain is inherently adversarial [11, 155, 138]. Cybersecurity sys-

tems are designed specifically to detect unauthorized activity. A motivated attacker,

however, will spend great resources to fool the model. An attempt to fool a security

system such as an IDS or spam detector at test time is known as an evasion attack

[156].

A naive evasion attack is not necessarily an adversarial attack. For example, an

exploratory attack may naively search a feasible variables space for blind spots where

a classifier does not perform correctly. These attacks partially learn the topography

of the decision space but are limited by the number of queries performed and do

not learn anything about unqueried regions. Efforts seeking to learn the geometry of

convex sets via random sampling are too difficult to be practical for evasion attacks

[157].

Even as the accuracy of machine learning models improves with normal train-

ing and test data, evasion attacks can actually succeed consistently [11]. Traditional

metrics of classifier performance only convey a partial picture of classifier success.

Classifiers must also be robust for out of distribution examples at test time [11, 155].

The statistical distribution of cyber data is non-stationary, meaning the observed be-

havior evolves over time and classifiers must adapt. Part of this changing distribution

is attributed to increasingly clever evasion techniques invented by attackers.

Methods that utilize a known, or approximately known, loss function of the clas-

sifier are considered adversarial machine learning. Although extraction, poisoning,

and inference are other forms of adversarial machine learning [11, 138], this paper is

a study at evasion attacks of the classifiers at test time. Extraction attacks seek to

102

learn the geometry of parameterization of surrogate models by querying target models

[158, 159]. Poisoning attacks corrupt classifier performance at test time by purposely

altering training data. The poisoning approach requires an attacker to have access to

the database of training examples, an assumption that is often not realistic [11].

In a simple unconstrained case, the adversary modifies data, restricted within

some closed ball, to evade the classifier. Early experiments demonstrated adversarial

attacks to evade differential classifiers at test time using gradient descent attacks

[155]. Gradient attacks, however, are not suitable for NIDS data which is highly

constrained with discrete variables and other feasibility requirements. Later results

proved it is possible to evade non-differentiable classifiers such as decision trees, K-

nearest neighbors on cyber data. Particle swarm optimization demonstrated evasion

rates of 99.99% on the UNSW-NB15 feature set [11]. In practice, true evasion rates

will vary based on resources, knowledge of the classifier, and feasibility constraints.

The literature provides some discussion as to why adversarial regions exist in var-

ious machine learning models. Initial theories relied on the belief that non-linearity

and non-convexity of high dimensional models, and in particular artificial neural

networks, led to the existence of mis-classified regions. Experimentally, [160] finds

adversarial examples also exist in other classes of machine learning models such as

logistic regression and neural networks with near linear tendencies. In fact, in the

unconstrained image domain, adversarial examples can be efficiently solved even if

the model has modest capacity and is properly fit [160]. This finding then begs the

question if machine learning models are learning the correct underlying patterns for

classification. This is especially concerning for points that are close in Euclidean dis-

tance to high probability points in training data, but are themselves not represented

in the training data [160]. Another theory explaining the existence of adversarial ex-

amples states that neural networks are highly non-linear in some regions but linear in

103

others. Therefore, the model may behave unnexpectedly for certain test points [152].

The theory of evolutionary stalling notes that an ideal model should behave smoothly

around any test point, however, during gradient descent training, the importance of

training examples is greatly reduced once a particular point is correctly classified

[161]. The model is incentivized to evolve in ways that do not change correct predic-

tions. Therefore, as true positive predictions are achieved, effective learning stalls in

the vicinity of the correctly classified training examples leaving decision boundaries

precariously close to high likelihood regions of the training data.

When adversarial examples are identified, these points can be transferred to dif-

ferent machine learning models and fool these models at inference time with a high

rate of success as well which implies a variety of algorithms will yield similar models.

[160] provides experimental evidence that the transferability of adversarial examples

is largely due to the near linearity of the models in the vicinity of training points. Ad-

versarial training, which augments the training set with correctly labelled adversarial

examples, is shown to improve resistance to adversarial attacks [108, 35, 160, 138]. It

is also theorized that generative methods can be used to create a rubbish class of train-

ing points to improve training of models for real classes [160]. Creating ensembles of

models is shown to increase robustness of models against adversarial attack, however,

these ensembles have been shown slightly less accurate against non-adversarial test

examples. Not all regularization techniques are effective defense against adversarial

attack [160]; however, [162] penalizes the squared norm of the Jacobian for model

parameters. This penalty promotes smoothness of the loss function and empirically

contributes to model robustness. It is therefore hypothesized that it is the nature of

the loss function and not the model architecture that drives the robustness of deep

neural networks.

104

4.3 Methodology

Problem Overview.

Adversarial examples are data examples that have been altered such that a ma-

chine learning model changes its prediction from the correct class to an incorrect class

[48]. In the image domain, color intensity of pixels can be perturbed without restric-

tion, and there are many techniques for adversarial example generation, including

projected gradient descent, Carlini & Wagner, and JSMA [35]. In other domains,

however, it is generally not possible to make small perturbations to data to motivate

misclassification. Naive perturbations to code will likely result in an example that

fails to perform the original function. A new formulation is necessary to generate

adversarial examples in constrained domains. This problem type can be referenced as

the The Constrained Adversarial Example Generation Problem, which is formulated

later.

Solutions to the constrained adversarial example generation problem are primarily

used for evasion attacks against credit card fraud detectors, spam detection, NIDS,

malware detection, and in constrained instances of image classification. Additional

applications arise as attackers seek to fool classifiers in any domain where specific,

known constraints bind the solution space. Alternatively, constrained perturbations

could be used for a poisoning attack to degrade a machine learning model at training

time. We motivate this problem class by highlighting the case of evading NIDS clas-

sifiers. NIDS classifiers are typically trained with features of cyber packets derived

from network security monitor such as Zeek [39]. Previous work by [11] and [138]

demonstrated that cyber feature data, such as NSL-KDD, can be perturbed to gen-

erate adversarial examples [35]. Unfortunately for the attacker, the feature data does

not contain enough information to reconstruct a complete cyber packet used dur-

ing a live attack. [45] demonstrates that 1-D convolutional neural networks (CNN)

105

can be trained with 98.82 accuracy on the raw payload of cyber packets. This deep

learning approach mitigates any necessity for feature engineering as the CNN model

intrinsically learns features from labelled raw data. Just as the classifiers of [45] are

trained directly from raw data, and not feature data, we seek to generate constrained

adversarial examples from raw cyber data.

Generating adversarial examples from raw packets in the cyber domain is a con-

strained optimization problem. Computer code can be partitioned into functional

units, where each unit performs a specific computational task. If the code used for

a specific unit is replaced with a different, yet functionally equivalent code, the over-

all code remains functionally equivalent, satisfying the feasibility requirement of the

problem. The solution is an entire set of code that fools the surrogate model, and

the decision is to select exactly one alternative for each functional position. Our ap-

proach is fully dependent on an assumption that certain IP protocols such as HTTP

are agnostic to capitalization of code. We leverage this assumption for perturbing

capitalization of characters in payloads of various attack types. This choice of equiv-

alent substitutions is a proof of concept for other choices. For example, an alternate

corpus could be generated to establish functionally equivalent substitutions of vari-

able names, commands, or entire lines of code. Unlike the approach in [43], there is no

need to check feasibility at each step of the proposed meta-heuristic. All substitutions

taken from the corpus are feasible. Further, the proposed method can be implemented

with gradient and non-gradient surrogate models. Because the new method does not

depend on gradient steps, it can be applied on systems with discrete and categorical

variables.

Lemma 1. An unlimited number of functionally equivalent substitutions of partitions

of code will produce a code that is functionally equivalent to the original.

106

The partitions of A can be repeatedly replaced with functionally equivalent par-

titions to yield a functionally equivalent code A′.

Define code A and B as functionally equivalent iff for every input x, including a null

input, A(x) = B(x).

Given, set A and set B are partitioned into units i...n

∀i ∈ 1, ...n, Ai = Bi.

Now, for any i replace Ai with Bi yielding A′
i which is functionally equivalent to Ai.

WLOG, given A, the partitions of A can be repeatedly replaced with functionally

equivalent partitions to yield a functionally equivalent A′.

The first challenge in solving this constrained adversarial example generation prob-

lem is to identify all known functionally equivalent units that yield the correct, equiv-

alent function for each position. The set of equivalent feasible alternatives for each

units i is denoted as the corpus Ci and the gene xij is the decision variable. Next,

there is the challenge of identifying a loss function to optimize. Projected gradient

descent [160] and its progeny algorithms use the training loss function of the classifier

to generate perturbations. In particular, these algorithms use gradient of a training

example with respect to constant model parameters. Each small step of this type

results in an increase of the loss value [138].

In the constrained problem, we also seek to increase the loss function by chang-

ing the units in the example. However, the gradient information cannot be used

for perturbations, as the small steps would yield an infeasible, nonfunctional solu-

tion. Therefore, substitutions must be made from the corpus until the loss ceases to

increase. Feasible solutions require that exactly one alternative is selected per func-

tional unit. The selection of each gene is a binary integer program. More specifically,

it is a boolean satisfiability problem, where the goal is to find a solution that fools the

surrogate classifier. The boolean satisfiability problem is an NP-hard problem and

107

is very difficult to solve [163, 164]. In our case, we do have the benefit of knowing

the model loss function but polynomial time discrete optimization techniques cannot

be used because the loss function is non-convex. The problem is further complicated

because a solution’s success in fooling the NIDS cannot be verified until test time.

This research investigates the fool rate of near-optimal adversarial examples gen-

erated from raw packets of four attack types. The most frequent attack in the training

data is DoS performed with Slowloris followed by infiltration attacks, DoS performed

with Hulk, and finally the SSH attack conducted in Patador. First, the packets are

split by attack type.

Figure 14 shows the primary steps of the methodology to create transferable ad-

versarial examples. The first step involves labeling, pre-processing and splitting. The

second step is to train a surrogate classifier as well as three NIDS classifiers. Next, a

full factorial design of experiments is performed to identify the packet characteristics

and meta-heuristic hyperparameters that maximize the cross-entropy loss of adver-

sarial examples on the surrogate model. The optimal settings for each attack type are

carried over to step four, where constrained adversarial examples are generated for

each attack type. The fifth step is transferring and testing the adversarial examples

on three NIDS and reporting the rate at which the examples fool the classifier.

Data Preprocessing.

Following the strategy of [45] and [46], the training and test data is derived from

pcap data on a network under cyber attack. Our research utilizes the CICIDS dataset

rather than the UNSW-NB15 dataset used by [45] because preliminary results by [46]

indicate the models trained from CICIDS are more generalizable than models trained

with UNSW-NB15. CICIDS packets from Monday through Friday are selected for

this research in order to support diversity of both attack and benign packets in the

108

Figure 14. The methodology requires data preprocessing, training a surrogate model
and three NIDS models, generating adversarial examples, and testing the adversarial
examples on the NIDS.

109

training and test sets. Only UDP and TCP packets were retained for analysis because

alternative communication protocols were either too scarce for supervised learning or

otherwise do not contain meaningful information in the payloads [46]. Data processing

for this experiment is greatly simplified by omitting feature engineering; however there

are several important steps taken to decompose raw packet capture data to structures

that can be input to machine learning models.

Although the pcap data was not labelled from the publishers [141], they provided

enough meta-data to do so post hoc. We repeated the labelling process detailed

by [46]. Timestamped and labeled hash files of network flow data were used in

conjunction with timestamped pcap files to assign the proper label to each pcap

file. The reduced database includes malicious and benign http, https, SSH, FTP and

email protocol packets but https were dropped due to a lack of attack examples. The

hexadecimal encoded payloads of these packets were converted from binary octets

to integer representation [0, 255]. Next, the size of the payloads were standardized

to 1,500 bytes by trimming large payloads or padding shorter payloads with zeros.

The resulting payloads were minimax normalized [0, 1] for efficient learning. This

produced 331,868 labelled pcap payloads. As depicted in Figure 15, 45% of these

payloads were randomly sampled without replacement to train a surrogate model

and 45% to train the NIDS models, respectively. 5% of the payloads were randomly

set aside to validate the surrogate model, and the remaining 5% allocated to validate

the NIDS models.

Train Models.

We consider a grey box adversarial threat scenario that assumes adversary knowl-

edge of pcap preprocessing but no knowledge of NIDS model architecture and no in-

put/output probing. For this reason, it is necessary to train a surrogate (aka proxy)

110

Figure 15. Distribution of CICIDS data used to train/test surrogate model and to
train/test the NIDS models.

model for constrained adversarial example generation, while also training NIDS mod-

els to evaluate the fooling rate of the adversarial examples. Training these models is

Step 2 of the methodology, shown in Figure 14. The three NIDS models include a

CNN, a fully-connected neural network (FNN), and an Adaboost model.

CNN Surrogate and NIDS.

We utilize a 1-dimensional CNN that captures positional relationships between

payload bytes. This is well suited for classifying raw packet data because of the ver-

bal and programming languages contained within. The architecture of the CNN is

shown in Figure 16, and the same architecture is used to produce the surrogate model

and the first NIDS model. Adam is among the most effective optimizers for training

deep learning models [165] and is flexible enough to use in various deep architectures.

We use the Adam optimizer in all deep learning models trained, including the sur-

rogate model used to generate adversarial examples and the NIDS models used to

111

test the utility of the adversarial examples. The loss function used for all models,

BinaryCrossEntropy, is shown in Equation 61.

FNN NIDS.

A FNN is presented for use as a NIDS model to test fool rate of the adversarial

examples. Although simpler than the 1-dimensional CNN, the FNN is a deep archi-

tecture that can take on great capacity to model complex non-linear relationships.

The architecture of the NIDS FNN is presented in Figure 17. Again, Adam is selected

as the optimizer and binary cross-entropy is the loss function.

Adaboost NIDS.

An Adaboost classifier model was defined with 100 base estimators. The base

estimators were designated as 1 node deep decision trees. The learning rate was 1

and the SAMME.R of [166] was employed for training.

Meta-heuristic.

We develop a meta-heuristic as an engine to generate near-optimal constrained

adversarial examples for raw packet NIDS models. The meta-heuristics goal is to per-

turb a malignant packet payload such that it remains a feasible packet payload which

maximizes the classification loss with respect to a trained model. A perturbed packet

with sufficiently large loss will fool the surrogate classifier with certainty, and has

a strong chance of fooling other classifiers. Meta-heuristic solutions are constrained

such that they must maintain the function of the original unperturbed packet. This

constraint is fundamental for an end-to-end adversarial attack. The packet must not

only bypass the IDS detector but its packet must perform its exact original purpose

in the target application. We denote this property as being functionally equivalent.

112

Figure 16. The architecture of the convolutional neural network selected for the sur-
rogate model and the first NIDS model.

113

Figure 17. The architecture of the fully-connected neural network used for the second
NIDS model

114

Gradient methods have previously been used to perturb data and create adver-

sarial examples in the unconstrained domain of computer vision. In the constrained

cyber domain, finding feasible solutions that maximize loss is a non-convex assign-

ment problem and cannot be solved with deterministic solvers. In the constrained

domain, it may be possible to obtain the gradient of L for example Xk; however, the

gradient of a deep model is highly non-convex and only reliable in very local regions.

Therefore, a step in the direction of the gradient would in general not be feasible. On

the other hand, a feasible step would likely not follow the local gradient. Fortunately,

there are non-gradient search heuristics.

The proposed meta-heuristic is inspired by the genetic algorithm but is applied

in a way that guarantees each step of the solution to feasible. A true genetic algo-

rithm performs crossovers on known feasible solutions or arbitrary feasible solutions.

Our approach, however, only implements functionally equivalent gene substitutions.

Hence there is no need for an additional feasibility check.

Lemma 1 justifies that an unlimited number of crossovers can be made across fea-

sible chromosomes and result in new, feasible, functionally equivalent chromosomes.

We also note that this problem does not fit into the traditional class of the “assign-

ment problem” as the assignment problem has a linear cost function written in the

form min
n∑

i,j=1

cijxij. Our problem has a nonlinear, non-convex cost function, taken

from the trained CNN loss.

Equivalent substitutions (genes) are initially placed into a corpus organized by

position (allele). A sample population of initial solutions (chromosomes) is created

via random draws of genes from each allele (i.e. random combinations of functionally

equivalent substitutions). This population is then used to seed the meta-heuristic.

We find effective convergence is achieved by generating a large initial population

and retaining only the best chromosomes in the initial solutions for the crossover

115

phase. Each generation the ’genetic-algorithm’ creates new ’child’ chromosomes via

crossover of selected ’parent’ chromosomes. Specifically, a crossover point in the

packet payload is drawn using a uniform distribution between 0 and the number

of alleles in the solution. Notably, the function used to draw the crossover point

does not consider 0-padding as variable alleles in the solution; most chromosomes

contained less than 1,500 alleles and will always have a crossover position less than

that number. The probability of selecting a chromosome as parent is defined by a

stepwise linear probability distribution function defined in Equation 63 and visualized

in Figure 18. This distribution assigns the greatest probability of selection to the most

fit chromosome (number 20 in the figure), and the lowest probability to the least fit

chromosome (number 1 in the figure).

p(χ = x) =
(n− x)∑

x={1,2,...n}
x

(51)

In addition to crossover driven evolution, child chromosomes are probabilistically

subjected to random mutations. Unlike a standard genetic algorithm, mutation steps

in this meta-heuristic are guaranteed to yield feasible solutions because each mutation

is a substitution with a functionally equivalent gene. Mutations of child chromosomes

promote exploration of the solution space and prevent premature convergence to

local minima. In some cases, mutations yielded best known solutions. The meta-

heuristic also has the advantage that it can be tuned for exploration or exploitation by

adaptively updating the chance of mutation. It is further possible to tune the percent

of genes mutated; in steps mutation does occur. The probability that mutation

occurs on a child chromosome is shown in Equation 64. At baseline, the probability

of mutation occurring is set at 5%; however it increases by 1% with each generation

that fails to produce improvement. Mutations are guaranteed after 95 consecutive

children fail to produce an improvement. This feature promotes exploration when

116

Figure 18. Chromosomes from the population are probabilistically chosen as parent
chromosomes for crossover according to a stepwise linear distribution.

exploitation is not effective.

P (mutate) = 0.05 + (0.01)(generations since improvement) (52)

What follows is the mathematical formulation of The Constrained Adversarial

Example Generation Problem.

Objective Function.

The objective function H(P,Q) is the cross-entropy of the model’s hypothesized

classification, distributed as P , and the true labels in the data, distributed as Q.

H(P,Q) = H(P) +DKL(Q||P) (53)

= −Ex∼P logQ(x) (54)

117

Sets.

We define the following variables {i, j, k} along with their corresponding sets as:

i ≡ allele i ∈ {1, 2, ...n},

j ≡ gene j ∈ {1, 2, ...m},

k ≡ test example k ∈ {1, 2, ...o}

Decision Variables.

x
(k)
ij =


= 1 if gene j is selected for allele i on example k

= 0 otherwise

(55)

Constraints.

∑
j∈J

xij = 1 ∀i ∈ I One gene selected per allele

xij ≤ qij ∀i, j Allowable genes are defined by

1’s in a sparse matrix Q

xij ∈ {0, 1} Assignments are binary

118

Q Sparse matrix of dimensionality n×m.
qij = 1 if allele i can be set to gene j

L(X|Θ) The loss function of a model with set
parameters Θ is provided for any problem
instance

Ci The set of feasible genes for each
allele is referred to as a corpus.
This information is used to generate Q

Data.

The corpus of feasible substitutions includes n lists, that is one list for each allele,

or functional unit.

C = {C1 C2... Cn} =


x1·1 x4·2 . . . x7·n

x2·1 x5·2 . . . x8·n

x3·1 x6·2 . . . x9·n

 (56)

Genes

Alleles

Q=



1 1 1 0 0 0 0 0 . . . 0

0 0 0 1 1 1 0 0 . . . 0

0 0 0 0 0 0 1 1 . . . 0

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 . . . 1


(57)

Optimize Meta-heuristic Settings.

Like many meta-heuristics, our perturbation engine has a number of tunable hy-

perparameters. While some of these hyperparameters appear to be robust across

many values; others are sensitive and must be studied. A designed experiment (Figure

19) was conducted to identify hyperparameter settings that maximize cross -entropy

119

between the class prediction and the true label. A secondary response of runtime

was logged but not optimized. Potentially important factors including payload size,

number of generations, initial population size, retained population size, and percent

mutation were studied to find optimal levels.

A full factorial experimental design, shown in Table 6, was constructed with these

five factors resulting in 32 design points. Each design point was tested four times in

order to increase the test’s expected power with respect to the noisy response. This

experimental design is performed independently for the four most frequent attack

types in the data. The payloads used in this experiment were drawn randomly with

replacement from the surrogate train set. Replacement was necessary because there

were in sufficient unique payloads in the surrogate model training set for the slowloris

attack type. The payload size was held constant for the test points of the SSH attack

type because the set only contained payloads of the larger size, over 600 bytes; there

were no SSH payloads in the surrogate training set with small payloads, fewer than

400 bytes.

First order regression models were constructed with a significance of 0.05. Inter-

actions were not considered because they had no tangible meaning for the system.

The models were revised iteratively until they included only significant factors and

Figure 19. A designed experiment is used to select meta-heuristic settings for creating
adversarial examples.

120

satisfied model adequacy tests. The regression models were then used to inform op-

timal meta-heuristic parameter settings under the assumption that payloads which

demonstrated high loss on the surrogate model are more likely to fool the four NIDS

models. All computational experiments were performed on an Intel Xeon Platinum

8260 and four cores.

Algorithm 3: Major tasks to generate adversarial examples

Input : Set X of labelled binary payload packets

Output: Set A of adversarial examples; summary statistics

X = EncodePayload (X)

split X −→

surrogate train Strain; Surrogate test Stest; NIDS train Ntrain; NIDS test Ntest;

TrainCNN(Strain)

for j ← to num(payloads) do

encoded packet ←GenerateTensor(payload)

corpus ←CreateCorpus(encoded payload)

random AEs←GeneratePopulation(encoded payload)

for k ← to num(Iterations) do

fitlist←EvalFitness(AEs)

AEs←ReducePopulaton(AEs) parents←SelectParents(AEs)

children←Crossover(parents)

AEs←AEs+children

end

end

Output: List of adversarial examples

Fool Rate of Adversarial Examples.

Optimal parameters for generating constrained adversarial examples with high

loss are obtained from the designed experiment. The parameters are assigned based

121

Table 6. A full factorial design of experiment is performed with 4 repetitions for each
attack type.

Point
Payload
Size

Generations Population
Initial
Population

Percent
Mutate

1 Small 1000 10 50 5
2 Small 1000 10 500 5
3 Small 1000 50 50 5
4 Small 1000 50 500 5
5 Large 1000 10 50 5
6 Large 1000 10 500 5
7 Large 1000 50 50 5
8 Large 1000 50 500 5
9 Small 1000 10 50 10
10 Small 1000 10 500 10
11 Small 1000 50 50 10
12 Small 1000 50 500 10
13 Large 1000 10 50 10
14 Large 1000 10 500 10
15 Large 1000 50 50 10
16 Large 1000 50 500 10
17 Small 5000 10 50 5
18 Small 5000 10 500 5
19 Small 5000 50 50 5
20 Small 5000 50 500 5
21 Large 5000 10 50 5
22 Large 5000 10 500 5
23 Large 5000 50 50 5
24 Large 5000 50 500 5
25 Small 5000 10 50 10
26 Small 5000 10 500 10
27 Small 5000 50 50 10
28 Small 5000 50 500 10
29 Large 5000 10 50 10
30 Large 5000 10 500 10
31 Large 5000 50 50 10
32 Large 5000 50 500 10

122

on the results of Section 4.3 for infiltration, slowloris, hulk, and SSH attacks. Then,

for each attack type, the meta-heuristic attempts to generate adversarial examples of

100 payloads randomly selected, with replacement. Each raw payload is first tested

against the surrogate model and each of the three NIDS models. The meta-heuristic

then generates 500 random perturbations of each raw packet or an initial population

of chromosomes where the perturbations are the result of functionally equivalent

substitutions taken from a corpus. In particular, the case of ASCII characters A-Z is

randomly exchanged.

These randomly generated chromosomes are also tested against the surrogate and

three NIDS models. The meta-heuristic then performs 5,000 generations of crossover

and mutations on each payload. The meta-heuristic maintains a population of the

50 most fit unique chromosomes. Upon termination, each member of this population

is tested against the surrogate model and each NIDS. If any one member of the

population fools a particular NIDS, that payload is considered successful against the

NIDS. This follows from a reasonable assumption that the attacker is capable of

sending hundreds of packets, sometimes redundant packets, over the duration of an

attack. Any single instance of the packet will perform its task when it penetrates

the target NIDS. Any redundant packets that do not penetrate the NIDS would not

reduce the efficacy of penetrating packets. We report the number of payloads for

which at least one perturbation fools the NIDS. Algorithm 1 details the major tasks

performed to generate the constrained adversarial examples.

4.4 Results and Discussion

Designed Experiment.

The designed experiment was performed to identify the optimal meta-heuristic set-

tings to maximize cross-entropy of four types of attack packets: infiltration, slowloris,

123

hulk, and SSH. While cross-entropy was the primary response, runtime to perturb

each payload was also logged. Unfortunately, however, it was not possible to control

for supercomputer resource availability. Therefore, analysis was not performed for

runtime. The overall classification accuracy and recall of the CNN surrogate model

on the surrogate test data is presented in Table 8. The accuracy and recall for the

CNN NIDS, FNN NIDS, and Adaboost NIDS model on the NIDS test data is pre-

sented in Table 9. Although the CNN NIDS appears to capture the distribution of its

respective test data better than the CNN surrogate, both CNN models are superior

to FNN and Adaboost models according to accuracy and recall. Cross-entropy on

the surrogate model was used as the response for this experiment.

Of the five potentially important factors affecting cross-entropy of perturbed pay-

loads, only number of generations was important for the infiltration and slowloris

attacks with α = 0.05. Payload size and number of generations were statistically

important for Hulk and SSH attacks attacks with α = 0.05. Although significant

factors were found for each attack type, the predictive capability of models varied.

R2 of the regression models ranged from 0.070 for SSH, to 0.83 for Hulk. The settings

that maximize cross-entropy of the resulting payloads with respect to the surrogate

model are provided in Table 7. It seems plausible that cross-entropy is maximized

with large payloads because larger payloads provide the meta-heuristic greater free-

dom to perturb the most influential characters in combinations.

Figure 20 demonstrates that best observed loss is monotonically increasing with

generations for every trial. In fact, the meta-heristic is designed to retain children

chromosomes only if the child is strictly better than the best known solution in the

meta-heuristic. This feature guarantees that any chromosome in the population is

unique from all other chromosomes in the population and the claim of uniqueness

has been validated experimentally. The incorporation of the uniqueness feature was

124

useful to maintain diversity in population and to escape local maxima. In particular,

Figure 20 shows that the parents chosen for each generation range in their fitness

from cross-entropy nearly zero to over 2.0. Children, shown in blue triangles, are

often much more fit than either of the parents, represented with green dots. The

best known solution is plotted with a blue line. The suprema and infima of threshold

cross-entropy to fool the surrogate are shown with a grey dotted line. Additional

trials, not part of the designed experiment, demonstrated that the meta-heuristic

continued to improve the best known solution well beyond 5,000 generations, with

probability greater than 0. Although better solutions are always desirable, the im-

provements generally diminished after 5,000 generations and it was unpractical to

dedicate additional runtime and memory for longer runs for the experimental design.

Resulting Fool Rates of Adversarial Examples.

Constrained adversarial examples were generated using optimal meta-heuristic

settings and tested against the surrogate model and three NIDS models. 100 payloads

were tested for each of four attack types, infiltration, slowloris, hulk, and SSH. Tables

10-13 are provided in order to convey the success of near optimal adversarial examples

against each of the NIDS models. The first column reports the percent of raw packets

that fool the surrogate and each NIDS, as well as the loss of the raw packet when

tested on the surrogate model. The second column reports the percent of packets

for which at least one random perturbation fooled the surrogate and each NIDS as

Table 7. Statistically significant factors for cross-entropy with significance of 0.05

Initial
Population

Payload
Size

Generations
Population

Size
% Alleles
Mutate

Inflitration NA 5000 Large NA
Slowloris NA 5000 Large NA
Hulk NA 5000 NA NA
SSH NA 5000 NA NA

125

Figure 20. The meta-heuristic maximizes the cross-entropy of an SSH payload by
performing crossovers and mutations of the best known solutions at each generation.
The suprema and infima of threshold cross-entropy to fool the surrogate are shown
with a grey dotted line.

Table 8. Test accuracy and recall is measured on the surrogate model using data
sequestered prior to training.

Test Accuracy Test Recall

CNN Surrogate 0.995 0.995

Table 9. Test accuracy and recall is measured on three NIDS models using data se-
questered prior to training.

Test Accuracy Test Recall

CNN NIDS 0.999 0.999
FNN NIDS 0.994 0.992
Adaboost NIDS 0.987 0.992

126

well as the average loss of randomly perturbed packets when tested on the surrogate

model. Similarly, the third column reports the percent of packets for which at least

one near-optimal perturbation fooled the surrogate and each NIDS, as well as the

average loss of near-optimally perturbed packets when tested on the surrogate model.

The fool rates are displayed in Figure 21. Within each attack type, the fool rate is

plotted for raw packets, randomly perturbed packets, and near-optimally perturbed

packets. This information is color coded by attack type. The initial hypothesis is that

for any set attack and model, the values would increase as we move right from raw,

to random, to near-optimal perturbations. The results convey that this hypothesis is

a the general trend, but not the rule.

Only one raw infiltration packet fooled the surrogate model, and that packet

also fooled the Adaboost NIDS. 6% of slowloris raw packets fooled the CNN sur-

rogate model; however, none of those specific packets fooled the CNN NIDS. 43%

of raw slowloris packets fooled the FNN classifier. All classifiers appeared accurate

against raw hulk and slowloris attacks, with no raw payloads fooling any classifier.

Raw slowloris packets demonstrated, by far, the greatest average loss when tested

on the surrogate model and raw slowloris packets were misclassified at the highest

rate against each classifier. This may be due to the great diversity of the ASCII

content in slowloris payloads. Although slowloris payloads are well represented in the

training data, the patterns could be more difficult to capture with the chosen model

architectures. Packets that fooled the surrogate model did not always fool the NIDS.

One raw slowloris packet which was misclassified by the CNN surrogate with a loss

of 4.94 surprisingly did not fool the NIDS of the same architecture.

Functionally equivalent random perturbations were generated for 100 payloads of

each attack type. Particularly, 500 randomly perturbed examples were generated to

populate the initial population for each payload, and each of these was tested against

127

the NIDS models. Figure 21 shows randomly perturbed packets fooled the surrogate

and NIDS models at a much higher rate than unperturbed packets. Slowloris packets

fooled classifier more than any other packet type. At least one of the 500 random

perturbations fooled the surrogate model for 61% of the 100 slowloris packets. 56%

of packets yielded at least one random solution that fooled the CNN NIDS and FNN

NIDS while 55% of slowloris packets yielded at least one random solution that fooled

the Adaboost NIDS. Fewer packets demonstrated fooling models with random per-

turbations for infiltration attacks and hulk attacks. Zero random perturbations of

SSH attacks fooled any NIDS. Only one randomly perturbed SSH packet fooled the

surrogate. The high classification accuracy on SSH packets may be because all SSH

payloads share nearly identical payloads. Classifiers may learn the class manifold

precisely and therefore detect perturbations at a high rate. The Adaboost NIDS was

the most robust model to random perturbations for all attack types.

Near optimal perturbations were generated for 100 payloads of each attack type.

The top 50 observed solutions, with respect to the surrogate model, were retained for

each payload and tested against the NIDS models. These fool rates are reported in Ta-

bles 10-13 and plotted in Figure 21. The best known near optimal perturbation fooled

the surrogate model with 81% of infiltration attacks, 100% of slowloris attacks, 100%

if hulk attacks, and 37% of SSH attacks. Near optimal examples transferred to NIDS

classifiers with varying degrees of success. Despite slowlowis and hulk perturbations

fooling the surrogate model in all instances, only 69% and 37% of payloads produced

any perturbation that fooled the NIDS of the same CNN architecture, respectively.

Fool rates against the FNN and Adaboost NIDS were lower across the board. Only

payloads of slowloris fooled all three NIDS with a high degree of success, with fool

rates against CNN, FNN, and Adaboost at 69%, 53%, and 52%. Concomitant to the

poor capability of randomly perturbed SSH payloads to fool NIDS, all near optimal

128

SSH payloads also failed to fool each NIDS. Many adversarial examples that appear

very fit to the meta-heuristic transfer well against target NIDS classifiers. Among

the optimally perturbed packets of slowloris, there is a 63% correlation between CNN

surrogate loss and the rate at which perturbations of that packet fooled the CNN

NIDS. The correlation between surrogate loss and rate to fool FNN is 77%, and the

correlation between surrogate loss and rate to fool Adaboost is 54%. There may also

be a connection between number of characters in the payload and the rate of fooling

each NIDS. The correlation is 0.59, 0.77, and 0.32 for the CNN, FNN, and Adboost

NIDS. Average payload lengths were similar across attack types. These findings con-

firm the results of the experimental design that perturbing larger payloads generates

stronger constrained adversarial examples than perturbing smaller payloads.

The initial hypothesis of this work was that near-optimally perturbed payloads

generated from a CNN surrogate would always fool any NIDS at a higher rate than

random perturbations. The empirical results are more nuanced. The advantage of

using the nearoptimal perturbations is best seen when the adversarial examples are

tested against a NIDS of common architecture. It is evident by comparing % packets

that fool the surrogate in Tables 10-13 that near-optimal perturbations are the clear

choice if the target NIDS is known (or highly expected) to be a CNN and the surro-

gate is also a CNN. Random perturbations are effective against some NIDS because

they are extremely inexpensive to generate and it is only necessary for one example

to fool the NIDS. We characterize the random perturbations as a brute force strategy

that provides value to the attacker and sometimes outperforms the near-optimal per-

turbations. In particular, we identify at least one randomly perturbed hulk payload

to fool the FNN NIDS for 12% of payloads, but the near-optimal perturbations of

hulk payloads are not observed to defeat the FNN NIDS. Among other classifiers and

attack types, the near-optimal payload fools at rates that are similar or much better

129

than random perturbations. Ocular inspection of the ASCII suggests that slowloris

payloads are too varied to be well learned by any classifier. The meta-heuristic, there-

fore, stands on weak footing to provide a generalized constrained adversarial example

that is “best” in all settings. Fool rates of near-optimal perturbations slightly under-

perform random perturbations for the highly varied slowloris attacks. On the other

extreme, there is no variance among the ASCII content of hulk payloads and minimal

variance for SSH. While the surrogate model learns the hulk and SSH attack patterns

with high confidence, so do the NIDS models. Near -optimal perturbation of hulk

attacks worked well against the CNN NIDS, but did not transfer with any success to

the FNN and Adaboost models. Despite some success against the surrogate, no SSH

packet fooled any NIDS.

What is responsible for the underwhelming transferability of fooling packets from

the CNN surrogate to other models? Firstly, the meta-heuristic always accepts per-

turbations that increase loss with respect to the surrogate. This is shown by the

monotonically increasing best known solution in Figure 20. It also follows that con-

strained adversarial examples which fool the CNN surrogate would often fool the CNN

NIDS because they share a common architecture and joint distribution of training

data. The CNN architecture is superior to the FNN and Adaboost models according

to all metrics. Reference Tables 8 and 9 for overall accuracy and recall of each model,

and Tables 10-13 for fool rates of raw payloads. Only the CNN captures semantic

and temporal information in the payloads. The joint distribution of attacks learned

by the CNN is possibly more nuanced than the other models. Perturbations gener-

ated with the CNN surrogate drive the example off the learned manifold, but not the

learned manifold of the FNN and Adaboost models. The particulars of this analysis

are difficult to understand because the surrogate and each NIDS are black box mod-

els and because raw packet detection is state of the art within the literature [45, 46].

130

This work represents the first known study of constrained perturbations of malicious

cyber packets. Extensive efforts in formal methods and controlled experimentation

could someday uncover the key to transferability of adversarial examples in the cyber

domain.

4.5 Conclusion

This work is the first to formulate and solve the constrained optimization prob-

lem to generate an end-to-end adversarial attack in the cyber domain, specifically

network intrusion detection. The solution leverages a biologically inspired meta-

heuristic that iteratively perturbs code within the payload of a cyber packet with

functionally equivalent code. This strategy drastically improves the fool rate of ma-

licious payloads compared to a brute force strategy and it guarantees the resulting

payload is functionally equivalent to the original. The positive results are an impor-

tant advancement in cybersecurity because previous research of adversarial machine

learning in the cyber domain does not operate with functional packets, but rather

aggregate features from network flow data. Adversarial examples generated from fea-

tures cannot be reverse engineered into an end-to-end attack but perturbed packets

can be. The results confirm prior beliefs that network intrusion detection systems are

vulnerable to adversarial attacks. Our novel formulation extends beyond the cyber

Table 10. Classification performance for infiltration raw packets, best performing ran-
domly perturbed packets, and best performing near-optimal packets against the surro-
gate and NIDS models.

Infiltration

Raw Random Near Optimal
% Packets Fool Surrogate 1% 4% 81%
Avg Loss Surrogate 3.88E-02 2.57E-01 3.73E+00
% Packets Fool CNN NIDS 0% 6% 11%
% Packets Fool FNN NIDS 0% 6% 2%
% Packets Fool Aaboost NIDS 1% 3% 3%

131

Table 11. Classification performance for slowloris raw packets, best performing ran-
domly perturbed packets, and best performing near-optimal packets against the surro-
gate and NIDS models.

Slowloris

Raw Random Near Optimal
% Packets Fool Surrogate 6% 61% 100%
Avg Loss Surrogate 3.03E-01 4.93E+00 1.44E+01
% Packets Fool CNN NIDS 5% 56% 69%
% Packets Fool FNN NIDS 43% 56% 53%
% Packets Fool Aaboost NIDS 12% 55% 52%

Table 12. Classification performance for hulk raw packets, best performing randomly
perturbed packets, and best performing near-optimal packets against the surrogate and
NIDS models.

Hulk

Raw Random Near Optimal
% Packets Fool Surrogate 0% 13% 100%
Avg Loss Surrogate 4.91E-06 3.77E-01 8.34E+00
% Packets Fool CNN NIDS 0% 12% 37%
% Packets Fool FNN NIDS 0% 12% 0%
% Packets Fool Aaboost NIDS 0% 0% 0%

Table 13. Classification performance for SSH raw packets, best performing randomly
perturbed packets, and best performing near-optimal packets against the surrogate and
NIDS models.

SSH

Raw Random Near Optimal
% Packets Fool Surrogate 0% 1% 37%
Avg Loss Surrogate 1.68E-06 3.11E-02 1.38E+00
% Packets Fool CNN NIDS 0% 0% 0%
% Packets Fool FNN NIDS 0% 0% 0%
% Packets Fool Aaboost NIDS 0% 0% 0%

132

Figure 21. Classification performance is presented for raw packets, best performing
randomly perturbed packets, and best performing near optimal packets against the
surrogate and NIDS models.

use case to spam blockers, malware protection, and banking fraud.

Analysis of the controlled experiment determined that the number of generations

and size of payload are important factors for generating strong constrained adversar-

ial examples. With optimal settings established, a second experiment reveals that

adversarial examples of slowloris packets transfer effectively when tested on a CNN,

FNN, and Adaboost NIDS. Transferability of adversarial examples was less effective

using payloads of infiltration and hulk attacks, and it was completely ineffective for

SSH attacks, where machine learning models detect all attacks with high confidence.

The performance of constrained adversarial examples generated by substituting

individual letters is promising, albeit imperfect. Many alternative classes of sub-

stitution are possible, however, assuming a corpus of equivalent units is available.

Rather than substituting individual letters, future research strategies could replace

entire commands, variable names, or more complex structures such as a line of code.

133

The meta-heuristic proposed herein will handle any choice although corpus genera-

tion will require domain expertise for advance cases. Further work must explore why

constrained adversarial examples of network packet payloads do not always transfer

well across every machine learning classifier type whereas unconstrained adversarial

examples in the image domain do transfer well.

Cyber criminals, state sponsored terror groups, and adversary nations utilize the

cyber domain to carry out crimes and as an extension of kinetic warfare to achieve

strategic objectives and promote their political agendas. Adversarial machine learning

attacks have been used to degrade computer vision systems in real world settings;

however, it is much more difficult to conduct an adversarial attack on cyber systems

because perturbations typically corrupt the payloads of cyber packets. This research

helps solve the problem of constrained optimization to generate adversarial examples

in the cyber domain and respects strict constraints ensuring the output payloads

function precisely the same as the unperturbed payloads.

This work exposes a previously unpublished vulnerability of AI-based NIDS; how-

ever, it also motivates work towards a solution. We propose that meta-learning strate-

gies that combine generative modeling with ensembling techniques may be fundamen-

tal to ensure that next generation NIDS are robust and resilient against conventional

cyber attacks and adversarial machine learning attacks. Future work will investigate

out-of-distribution (novelty) detection and generation for NIDS, as well as develop

methods for self-sustaining NIDS leveraging incremental and self-supervised machine

learning that evolve with adversarial behavior.

134

V. Demonstrate a Robust Intrusion Detection System

5.1 Introduction

The information age is loosely associated with the historical time period since the

invention of the transistor in 1947. The transistor is fundamental to practically all

advances in modern digital computing and communications. The explosion of research

in this regime has led to widespread adoption of digital systems within industry.

Digitization of information systems and rapid advancements in digital communication

across networks has served as a major stimulus for growth of the world economy. This

period of economic transformation is known to economists as the third industrial

revolution. Cyber is a term describing the environment for communication between

computers across networks. Today, cyber technologies have permeated across all areas

of society including business, healthcare, government, and military.

The United States Department of Defense defines cyberspace as “a global do-

main within the information environment consisting of the interdependent networks

of information technology infrastructures and resident data, including the Inter-

net, telecommunications networks, computer systems, and embedded processors and

controllers”[167]. This perspective of cyberspace portends a reality where digital com-

munications are not only ancillary to warfighting across land, air, and sea, they are

indispensable[168].

The internet of battlefield things (IoBT) embodies the shift to connected warfight-

ing. It is a tactical model that connects sensors, computers, and humans to enhance

rapid battlefield decisions and actions. By integrating new technology, the IoBT

model accelerates the timeline of the OODA (observe, orient, decide, act) loop tactic.

In peacetime and in war, cyber systems operate in a contested information envi-

ronment. Cyber attacks take on many forms ranging from degradation of capabilities

135

to cyber-attacks with kinetic effects such as Stuxnet. The National Cyber Strategy of

the United States underscores the importance of cybersecurity as a matter of national

security. By bolstering the security of the United State’s networked infrastructure,

the strategy seeks to promote innovation and prosperity, deter aggression, and protect

the internet as an open and reliable place for commerce. Our research helps answer

this call to action.

The aim of this research is to provide a solution to the recently exposed vulnera-

bility of adversarial attacks against network intrusion detection systems. Adversarial

attacks are more difficult to conduct in the cyber domain than in the computer vision

domain. The predominant challenge is maintaining cyber packet functionality as it

is modified to bypass the detector. These attacks are therefore cutting edge and we

provide the first known defense against them.

Our research contributions are to 1) provide a flexible meta-learning framework

to combine imperfect base learners 2) demonstrate the trade-off between accuracy

and adversarial examples detection rate for various base learners 3) demonstrate that

an ensemble provides the most efficient trade-off of overall accuracy and adversarial

example detection rate 4) test the amount of adversarial training required for robust-

ness.

The proposed solution incorporates stacked ensembles and adversarial training,

two technologies that have been utilized to improve classification in the domain of

computer vision. We combine these technologies into an enhanced solution and use

it to solve the network intrusion detection problem.

5.2 Literature Review

A comprehensive review of literature is provided to highlight developments in

NIDS and the operations research methods used by cyber attackers and defenders.

136

References are provided for advanced readings. First, we define cyber and discuss

the emergence of cyberspace. Next, we introduce cyber attacks, cybersecurity, and

intrusion detection systems. Metrics are defined to assess intrusion detection perfor-

mance. The section concludes with a discussion on adversarial machine learning and

meta-learning.

Cyber.

The prefix cyber is believed to come from a Greek term “kybereo” meaning steer,

control, or govern, and was adopted by [169] to describe his work in computer au-

tomation and communication. The field of cybernetics is an interdisciplinary study of

devices with logic and control capabilities inspired by biological organisms and it was

formalized in a book entitled “Cybernetics by ”[169]. Cybercommunications emerged

as a derivative of cybernetics. This is a field concerned with digital communications

between connected nodes, analogous to the communications between organisms in a

population. Just as communities of humans are more productive than the sum of the

individuals, cyber systems are enabled to make better and more complex decisions as

digital communication becomes faster and more reliable [169]. Although there was

always some degree of biological inspiration behind the cybernetics movement, the

connotation changed over time to a discipline that studies the relationship between

input and output of information systems and their autonomous behavior in their en-

vironment. Eventually, cyber became a word in its own right.

In our modern context, cyber is the environment supported by the internet and

computer nodes. Other definitions emphasize the tangible infrastructure of digital

communication or use cyber to describe anything digital [170]. The adjective “cyber”

modifies a noun by indicating its association with the cyber domain, as in the phrase

cyber space. Alternatively, cyber can be appended to the beginning of a noun to

137

create a more specific compound word, as in cyberspace [170]. The word cyberspace

seems to add emphasis on the non-tangible environment associated with cyber. The

United States Department of Defense describes cyberspace as “a global domain within

the information environment consisting of the interdependent networks of information

technology infrastructures and resident data, including the Internet, telecommunica-

tions networks, computer systems, and embedded processors and controllers”[167].

Early computer networks allowed computers to pass limited data messages between

each other if the computers adhered to strict requirements, such as shared operat-

ing system. The Advanced Research Projects Agency Network (ARPANET) was

revolutionary in that it allowed compute nodes of various configurations to access a

common communication network regardless of each node’s hardware, operating sys-

tem, or location. The computers at each end node, called hosts, used a common

protocol to conduct their communication [171]. These protocols promote a secure

two-way connection between hosts. Further advancements in protocol standards are

given in efforts by [140] [41]. Even hosts adopting secure internet protocols proved to

be vulnerable to accidental bugs and deliberate cyber attacks.

Cybersecurity.

The first known virus was deployed to ARPANET in 1969 as an informal proof of

concept. The virus worked and it served as a wake-up call for the security vulnerabil-

ities inherent in networked communications. Viruses with various purposes, typically

malicious, emerged over the next several decades [172]. An industry handbook [173]

from National Institute of Standards and Technology states that computer security

is :

“the protection afforded to an automated information system in order to attain

the applicable objectives of preserving the integrity, availability, and confidentiality of

138

information system resources (includes hardware, software, firmware, information/-

data, and telecommunications).”

We refer the interested reader to [30] for a thorough review known network threats

and a discussion on NIDS approaches.

Since cyber technologies are highly integrated into all aspects of modern life, to-

day’s cyber threats can have a cyber-kinetic effect resulting in physical destruction

and loss of life [7]. Most cyber-physical systems connect to the internet without

any serious protection against potential exploitation. The United States Department

of Homeland Security has experimentally validated a theory that cyber attacks can

catastrophically disable a powerplant. Another study demonstrated that implantable

cardio defibrillators could be remotely hijacked to manipulate a patient’s heart func-

tion which would lead to death. Other credible vulnerabilities could lead to disabling

water utilities, misdirecting trains, and even disabling automobile brakes. [7]. The

Stuxnet cyber attack which degraded operations of a nuclear enrichment facility was

one of the first successful cyberkinetic attacks [172] [7]. Although most cyber-physical

devices in service are highly vulnerable with almost no security features, there are

ways to harden new systems as they come online. Devices can be designed to only

accept digitally signed instructions. Hardware can also be hardened to stay online

in event of an attack. Finally, network intrusion detection systems (NIDS) should

play a vital role in identifying malicious cyber packets before they are deployed to

the client application.

Intrusion Detection Systems.

A 1972 study commissioned by the United States Air Force identified flaws in cyber

infrastructure that allowed a dedicated attacker to penetrate and modify information

systems [19]. Security breaches can inflict severe damage to the organization’s ma-

139

teriel and information advantage. Redesigning the system was determined to greatly

reduce but not eliminate the chance of a defeat. Therefore, the study called for a

comprehensive effort to surveil, log, and audit activity in cyber networks [20]. The

crucial audit step of network surveillance was intended to detect unauthorized users,

especially those masquerading as credible users. Naturally, as the volume of cyber

traffic increased, the logs became prohibitively large for reliable inspection by hu-

man analysts. By 1985, technological advances in compute power and expert systems

software permitted the framework of intrusion detection systems [95]. Early NIDS

leveraged a variety of rule-based expert systems and classical statistics [94]. Intrusion

detection systems that operate on individual computers are known as host intrusion

detection systems (HIDS). In practice, it is more efficient to monitor cyber traffic

by tapping into the network at central locations. These are called network intrusion

detection systems (NIDS). This research focuses on NIDS because of their widespread

usage in enterprise networks, IoT and IoBT, however most methods in Section 5.3

could also be adapted for HIDS use.

There are two primary NIDS strategies. NIDS that model patterns and features

of malicious cyber packets are known as signature based NIDS [30], [35]. NIDS that

screen for out-of-distribution packets, or packets that don’t fit the statistical model

of normal, are denoted anomaly based NIDS. [105] provides a survey of anomaly

detection methods. [24] details the metrics used specifically for anomaly detection in

NIDS. Most NIDS research utilizes machine learning models and these are typically for

the signature-based approaches [35], [30]. There are, however, some exceptions where

machine learning technology is adapted for anomaly detection [32], [137]. IDS also

varies widely by type of training data. [30] critiques recent NIDS research efforts and

the data sets used to develop. Most NIDS use features derived from network flow data,

which summarizes an internet protocol (IP) connection. Examples of these features

140

are detailed in [108] [11]. Alternatively, IDS may derive features from individual

packets [174]. [28] provides guidance on collecting and logging traffic from physical

networks. [108], [39], and [31] investigate best practices in feature engineering.

Despite these advancements in feature engineering, [45] argues that most features

of net flow and packet data can be spoofed with open source software. Tools such

as Scapy allow users to manipulate any aspect of a packet, including IP header and

payload information. [175]. Therefore, [45] advocates that NIDS should ignore the

spoofable header information, and predict class based on the packet’s raw, unpro-

cessed payload. [45] and [31] demonstrate raw packet classification with accuracy as

high as 99.9%.

Some scholars have postulated that packet encryption can be used to better evade

NIDS. These claims are well founded because encryption obfuscates payload content

from detectors. Research shows that Shamir’s secret-sharing scheme [176] and ran-

domized network proxies can be incorporated into a NIDS strategy on encrypted net-

works to mitigate the complications of detecting encrypted packets. Results demon-

strate worst-case detection rates better than 99% on encrypted traffic [177].

Performance Metrics.

Our machine learning NIDS models are trained by iteratively adjusting parame-

ters to minimize a loss function. Loss functions, however, cannot be interpreted as

predictive power for classification problems. Therefore we calculate performance met-

rics on a test set. By convention, we define all correctly classified malicious packets

as a true positive. A correctly classified benign packet is true negative. Conversely,

an example that is misclassified as benign is a false negative. An example that is

misclassified as malicious is a false positive. By testing a large set of examples, we

can estimate the predictive power of the NIDS models.

141

Accuracy is a standard metric that reports the rate of correct classifications as a

percentage. Accuracy is defined in Equation 58 as number of true positives plus true

negatives divided by total examples in the test set.

Our study of NIDS is especially concerned with recall which is the true positive

rate for classifying malicious packets. Equation 59 defines recall as the number of

true positives divided by the quantity of true positives plus false negatives [131].

Accuracy =
TP + TN

TP + TN + FP + FN
(58)

Recall, also known as the true positive rate, is shown in Equation 59

Recall or Detection Rate =
TP

TP + FN
(59)

Some test sets in this study include adversarial examples rather than unperturbed

malicious examples. The detection rate of adversarial examples is calculated with

Equation 59, the same formula as recall, but using a test set of only adversarial ex-

amples. To avoid confusion, we differentiate nomenclature between the two. Recall

reports model performance for non-perturbed payloads and adversarial example de-

tection rate reports classification performance of perturbed payloads.

Adversarial Machine Learning.

An adversarial attack is a deliberate attempt to fool machine learning models and

inflict harm [155] [36]. One vector of adversarial attack is to alter a model’s training

data until the model performs poorly on unaltered test data. This is known as a

poisoning attack. The other attack vector is to modify, or perturb, test examples

such that they fool a classifier at test time. This is known as an evasion attack [155],

142

[174], [35], [31]. A survey of adversarial attack vectors is given by [178].

Deep models tend to be accurate in regions near training points but succumb

to blind spots in regions further from training points. Adversarial regions occur in

many subspaces of the model parameter space, meaning there are many directions

that can lead to an adversarial region [36]. Since attack generation algorithms tend to

be nonconvex, it is difficult to anticipate adversarial regions [178]. [179] reports that

adversarial examples designed to target specific models can also fool other models,

with varying evasion rates. Adding adversarial examples to training sets does harden

models against adversarial attacks and diversity of adversarial examples is especially

beneficial [155], [180]. [181] augments the training data of neural networks with a

latent barrier class to reduce adversarial regions and promote adversarial example

detection. Ensembling techniques also appear to increase robustness against adver-

sarial attacks [108].

The majority of research in adversarial machine learning is concentrated in the

domain of computer vision. Conducting adversarial attack in the domain of cyber

traffic is drastically more difficult due to the risk of corrupting packet protocol or

payload code during perturbation[35]. Notwisthstanding, the cyber domain is per-

petually contested due to its importance in business and warfare. [11] and [35] report

feature perturbation to attack feature-oriented NIDS, but the perturbed features have

not been reverse engineered into functional packets. [179] perturbs actual IP packets

capable of end-to-end attack. The unanswered question is whether the end-to-end

adversarial attack against a NIDS can be thwarted by using existing or novel hard-

ening techniques.

143

Meta-learning.

Meta-learning is machine learning task to learn about and autonomously opti-

mize the base learning process [2]. Meta-learning processes leverage experience of

prior learning to improve algorithm performance on future tasks. This strategy helps

automate model selection, feature engineering, or data selection, tasks that otherwise

become the burden of a fallible human analyst or inefficient grid search program [182].

Meta-features are a building block for meta-learning algorithms. The meta-

features are quantifiable indicators that inform the meta-model the conditions of

prior learning. In some cases, meta-features can be autonomously learned. An evalu-

ation metric is used to quantify the efficacy of prior learning. The evaluation metric

may be a model’s validation loss or a performance metric such as accuracy.

[182]. There are many use cases of meta-learning that have proved beneficial in

practice. Transfer learning is a method to leverage weights learned for one machine

learning task unto a different, but related task. Transfer learning often provides the

beneficiary model learned features, such as image edges, that are necessary for an

intended task. It can drastically reduce the amount of training data or training iter-

ations required to achieve a satisfactory model. Transfer learning that permits new

tasks to train with just a few new training examples is known as few-shot learning

[182], [183]. For example, a classification model may have learned weights that facili-

tate the detection of bicycle images. These weights can be leveraged to classify images

of Segways with only minimal additional training [183]. [46] demonstrates transfer

learner to reduce training required to detect network intrusions on edge devices.

Performance prediction is a broad class of meta-learning where the meta-learner

anticipates the fitness of a base learner before the base learner is deployed for the

specific task. [2] investigated the efficacy of meta-learning for algorithm selection of

NIDS. As the NIDS received new sets of cyber data, the meta-learner selected a base

144

algorithm that identified malicious packets with high true positive rate.

Ensemble machine learning is a meta-learning approach that combines the predic-

tive power of multiple models to make better predictions [184]. Stacked ensemble is a

framework where a meta-learner is trained to weight the predictions of base learners

to so that the weighted predictions fit the training set. [103] uses a stacked ensemble

strategy to improve model robustness against out-of-distribution examples of fraud

and [108] uses ensembling to increase robustness of feature based NIDS. Results indi-

cate a benefit to robustness in both cases, but for the NIDS application there appears

to be a slight trade-off between robustness and accuracy of models.

5.3 Methodology

This work addresses a recently exposed vulnerability of NIDS. Raw packet NIDS

achieve high performance by learning directly from the packet payload, not from

engineered features. Raw packet NIDS are also favored over feature oriented NIDS

because it is easy to spoof packet headers and their derivative features but it is more

difficult to perturb a packet’s actual payload. Despite these advantages, it is possible

to conduct adversarial attack against raw packet NIDS.

The defense against this attack requires a rudimentary understanding of the attack

vector. Section 5.3 outlines the meta-heuristic that generates functional adversarial

examples from raw packet payloads.

Along with the meta-heuristic, the attacker uses a surrogate model to mimic the

behavior of the target NIDS and generate adversarial examples.

Additional NIDS models are used to test the efficacy of adversarial attacks. Con-

struction of the surrogate NIDS model and the baseline NIDS models are provided

in Section 5.3. The strategy used to harden base models against adversarial attack is

given in Section 5.3. The base learners are improved using adversarial training and

145

meta-learning, which is outlined in Section 5.3.

Adversarial Example Generation.

Adversarial example generation is the technological key to conducting adversarial

attack. This process requires high quality labeled cyber data, similar to the data of

the target network. Figure 22 illustrates the four step process to generate and test

adversarial examples. Step one is to remove the packet payloads from the complete

packet and to assign truth labels to each payload. Details on data preparation are

presented in Section 5.3. Step two is to train surrogate and NIDS models from labeled

payloads. Figure 22 shows steps 2a and 2b as training the surrogate and NIDS models

respectively and these are detailed in section 5.3.

Step 3 is packet payload perturbation to fool the surrogate. The perturbation

process is formulated as a constrained maximization problem. The fitness function is

the cross-entropy of the payload with respect to the trained surrogate model. Cross

entropy is given in Equation 61 where H(P) denotes the hypothesized class distribu-

tion which is measured against the true class, distributed as Q. The heuristic performs

steps much like a genetic algorithm. In this heuristic, however, the packet payload is

viewed as a set of functional units of code. The initial population of 500 is generated

by randomly substituting units of code with functionally equivalent units taken from

an expertly procured corpus. By using the special corpus, the heuristic guarantees

the functional equivalence of the payloads in the initial population. Each version of

the payload in this initial population is evaluated by the surrogate. The 50 variants

with the highest cross-entropy are retained in the population for iteration 1. In each

iteration, the meta-heuristic probabilistically selects two parent payloads from the

population for crossover. Highly fit payloads are preferred for selection according

to the distribution in Equation 63. Crossover is performed at a randomly selected

146

functional unit drawn from a uniform distribution. Since all versions of the payload

have functionally equivalent code at any allele location, crossover always maintains

the functional equivalence of the child payload. The child payloads are evaluated by

the surrogate and are retained if better than the least fit payloads in the population.

The problem formulation is summarized within and complete detail is given in

[31].

Objective Function

H(P,Q) = H(P) +DKL(Q||P) (60)

= −Ex∼P logQ(x) (61)

Sets

Indicators {i, j, k} define the mechanics of the meta-heuristic:

i ≡ allele i ∈ {1, 2, ...n},

j ≡ gene j ∈ {1, 2, ...m},

k ≡ test example k ∈ {1, 2, ...o}

Decision Variables

x
(k)
ij =


= 1 if gene j is chosen i for payload k

= 0 otherwise

(62)

147

p(χ = x) =
(n− x)∑

x={1,2,...n}
x

(63)

The parent selection, crossover, and evaluation steps are repeated for 5,000 iterations.

If there is an improvement to the best-known solution at iteration i, the child of iter-

ation i+1 receives mutation with probability 0.05. Equation 64 shows the probability

of mutation increases by 0.01 after each iteration without improvement. After 95

iterations without improvement, mutation is certain. After 5,000 iterations, the most

fit payload in the population is reported as the near-optimal solution.

P (mutate) = 0.05 + (0.01)(generations since improvement) (64)

The fourth and final step is to evaluate the proposed payload against fully trained

NIDS to determine if it is indeed an adversarial example. True adversarial examples

are sequestered for later use. [179] provides greater detail on adversarial example

generation and analysis of adversarial example evasion performance.

Figure 22. Generation and test of adversarial examples is presented as a 4 step process

148

Data Preparation.

[174] provided a pipeline for extracting and labeling the payloads of IP packets

from pcap files. First, the pcap files are obtained from an existing data set or by using

a feature extraction tool such as bro. Then net flow data must be obtained. Finally,

a ground truth file must attribute a label to every net flow connection. Truth labels

are often provided with cyber data sets but can also be inferred from meta-data such

as source IP. Labels are then linked from truth data, to net flows, to pcap packets

using Source IP address, Destination IP, address, Source Port number, Destination

Port number, Protocol number, and time stamps. The dpkt Python tool is used to

extract payloads from TCP and UDP packets. Packets of other protocols are not

considered in this methodology because they lack the diversity for effective learn-

ing; packets are nearly all malicious or nearly all benign. Payloads are encoded as

ASCII text integers between 0 and 255, but then normalized as a float 0 to 1. Most of

these encoded feature vectors contain fewer than 1,500 characters, but feature vectors

with additional units are truncated to the 1,500 limit. Feature vectors smaller than

1,500 elements are padded with zeros. [46] provides additional details on generating

labelled, encoded, feature vectors from the Canadian Institute for Cybersecurity In-

trusion Detection System (CICIDS) 2017 cyber data set. This study leverages the

examples generated from CICIDS collection days of Monday though Friday and does

not apply an additional feature engineering. Adversarial examples were generated

from encoded slowlorris malicious packets. Table 14 shows the data sets used for

training, validation, and testing of weak learners and ensemble models. Examples

were rigorously randomized then sequestered to avoid conflation of training examples

in validation and test sets.

149

Table 14. Raw packet feature vectors are partitioned into training, validation, and test
sets. Data sets are augmented with adversarial examples. A hold-out set of adversarial
examples is reserved for testing detection rate.

Names of
Data Set Partitions

Number
Examples

Explanation

NIDS-Train-0 74,670
Nearly balanced set of unperturbed vectors
for training weak learners

NIDS-Train-1 74,671
Nearly balanced set of unperturbed vectors.
Weak learners generate predictions which
serve as meta-features for level 1 learning

NIDS-Val 8,296
Nearly balanced set of unperturbed vectors
for model validation and selection

NIDS-Test 8,297
Nearly balanced set of unperturbed vectors to
test weak learners and ensemble models

AE-Train-0 1,000
Adversarial examples generated from slowlorris
payloads. Used to create NIDS-Train-0-Augmented set.

AE-Train-1 500
Adversarial examples generated from slowlorris
payloads. Used to create NIDS-Train-1-Augmented set.

AE-Test 1,000
Adversarial examples generated from slowlorris
payloads for testing AE detection of weak and
ensemble models

NIDS-Train-0-Augmented 75,670
NIDS-Train-0 combined with AE-Train 0 for
training robust weak learners

NIDS-Train-1-Augmented 75,171
NIDS-Train-1 combined with AE-Train 1. Used by
weak learners to generate predictions which serve
as meta-features for level 1 learning

Base Models.

Base models are trained to perform the NIDS task of discriminating malicious IP

payloads from benign. Although powerful tools in their own right, the base learners

are also utilized as the weak learners in the stacked ensemble robust framework.

Base learners include a convolutional neural network (CNN), a fully connected neural

network (FNN), and an Adaboost classifier. The surrogate model used for adversarial

exampled generation is also a CNN of identical architecture but separately partitioned

training data. All models have an input vector of 1,500 ASCII characters that have

been numerically encoded. The CNN models have seven hidden layers including

convolutional, max pooling, convolutional, max pooling, flatten, dense, and dropout.

The FNN contains nine dense hidden layers. Both neural network architecture employ

relu activation in hidden layers while sigmoid is used for the output layer. Within the

150

Tensorflow API, the adam optimizer is selected with a loss function of binary-cross

entropy. Neural nets were programmed for 20 epochs and an early stop threshold

0.0005 nats with patience of 3 on the validation set. The Tensorflow dataset pipeline

was used to implement minibatching with 128 examples, which was more efficient

than a generator-based pipeline. Additional details of the neural nets are provided in

[31]. Adaboost models were trained from the same training set using the Scikit-learn

API. Models were trained with 50, 100, 150, and 200 1-layer decision trees. All other

parameters were set to default. The model instances with 200 trees were selected

based on validation accuracy.

Robust Framework.

Figure 23. The meta-learning framework is hardened against adversarial attack by
intelligently combining the predictive power of each base model. normally trained
classifiers are trained with normal cyber traffic. The adversarially trained classifiers
are trained from an augmented data set outlined in 5.3.

The primary contribution of this manuscript is an expandable framework for a

NIDS that is highly accurate against cyber traffic but also robust against adversarial

151

attack. The proposed framework includes weak learners of various categories that

are incorporated in a stacked ensemble. First, and most fundamentally, a variety of

weak learners are trained using the unperturbed NIDS-train-0 data set as outlined

in Section 5.3. Weak learners are denoted as level 0 of the ensemble. These models

are shown as the normally trained Classifier cluster in Figure 23. Next, models of

the same architecture are adversarially trained with the NIDS-train-augmented data

set. These comprise the Adversrially trained cluster of classifiers. This framework

encourages the use of additional clusters focused on either adversarial examples or

normal examples. Accuracy and recall of the level 0 models are reported with the

NIDS-test dataset. Adversarial example detection rate is reported with AE-test-0

data set. Level 1 of the ensemble uses features of the weak models as inputs to predict

true class. We propose training multiple level 1 meta-learners. This is demonstrated

within random forest, XGBoost, and logistic regression classifiers. Each level 1 classier

leverages the combined predictive power of the various weak learners. Level 1 models

should yield high accuracy when trained and tested with quality cyber data. Majority

vote is used as a level 2 meta-learner to resolve disagreements for final decision on

each test example.

5.4 Results and Discussion

Six base learning models were trained with the NIDS-Train-0 data set and model

selection was performed with NIDS-Val. The first three models include a CNN, a FNN

and an Adaboost classifier trained on the NIDS-Train-0-dataset. These models are

denoted as normally trained models in Table 15, which reports accuracy, recall, and

aversarial example detection rate. Additional instances of CNN, FNN and Adaboost

were trained with the NIDS-Train-0-Augmented data set. Models trained on the

augmented data set are referred to as adversarially trained models in Table 15.

152

Figure 24 demonstrates the early stop strategy for training the neural nets. Al-

though the number of epochs varied by model, all model instances demonstrated rapid

improvements to fit early on followed by asymptotic improvements to training loss,

validation loss, training accuracy, and validation accuracy.

Among the normally trained base models, the CNN provides the best accuracy

and the CNN is tied with the FNN for best recall against normal packets. Despite

slightly lower accuracy and recall, the Adaboost classifier demonstrates the best de-

tection rate against the adversarial examples. This finding is similar to the findings of

[31] which reports that CNN is most vulnerable to adversarial attacks generated from

a CNN surrogate. These results also confirm previous observations that Adaboost

has some natural robustness against that adversarial attack. It is also clear from

these metrics that adversarial training provides significant hardness against adversar-

ial evasion attacks, yielding a perfect detection rate in some cases. The CNN once

again reports the lowest detection rate, although the disadvantage compared to FNN

and Adaboost is small. While the CNN and FNN report slightly lower accuracy and

recall from adversarial training, the Adaboost model maintains or slightly improves

on these metrics. The accuracy reported in these models is slightly lower than the

accuracy of comparable models in [31], perhaps due to the decreased number of ex-

amples in each training set caused by splitting the training set into two partitions.

Three types of meta-models are used to create level 1 ensembles from the pre-

dictions of the 6 base models. The meta-learners are random forest, XGBoost, and

logistic regression. They are trained from predictions of the weak learners on the

NIDS-Train-1 data set as predictors, and the ground truth as the target. These

three meta-learners are then retrained using the base predictions from the NIDS-

Train-1-Augmented set. Although all the meta-learners incorporate both normally

trained and adversarially trained weak learners, it is only the meta-learners that are

153

themselves adversarially trained that learn to leverage the robust base models. The

detection rates of each level-1 meta-model are plotted in Figure 29a as a function

of the importance attributed to adversarially trained base models. The red points

in Figure 29a represent the adversarially trained meta-learners; green are normally

trained. It is clear from the figure, and confirmed by Table 16 that the adversar-

ially trained random forest and the adversarially trained logistic regression place

most of their importance on the three adversarially trained base classifiers. Further,

these two meta-learners yield perfect detection rates. Interestingly, the adversarially

trained XGBoost meta-learner places nearly all importance on the normally trained

base models but manages to report a near-perfect detection rate as well.

The connection between the training approach of the meta-learner and the result-

ing accuracy is less clear. Figure 29b and Table 15 report that the normally trained

logistic regression classifier is the most accurate level-1 meta-model. Although the

least accurate level-1 meta-model is the adversarially trained random forest classifier,

it still yields excellent accuracy. The training approach of level-1 meta-models has no

practical impact on classification accuracy.

A level-2 majority vote node combines the three meta-learners for the stack using

normally trained meta-learners and for the stack using adversarially trained meta-

learners. In both cases, the majority vote node produces excellent accuracy and

recall. Unsurprisingly, the majority vote predictions that leverage the fallible normally

trained ensembles do not fare well against adversarial examples. On the contrary, the

majority vote node on the adversarially trained stack detects 100% of adversarial

examples.

A motivated hacker can select from a variety of cyber-attacks that cause grave

damage to target networks. Fortunately, recent research reports that a well-trained

machine learning model can detect almost all such attacks [2]. Adversarial evasion

154

attacks pass the advantage back to the attacker by fooling these detection models

[31]. A persistent attacker with a low, but non-zero evasion rate can still complete

their attack after many evasion attempts. Cybersecurity analysts must therefore be

vigilant to protect against conventional cyber attacks and adversarial attacks. It is

difficult to argue the relative priority of detecting conventional and adversarial at-

tacks; this manuscript reports both. It is important, however, to understand the

tradeoff of these goals. We test and report accuracy and recall for unperturbed IP

payloads and we report detection rate on a set of adversarial examples. No model

in our test dominated all three metrics. Table 15 provides these metrics and their

respective rank for each model. The logistic regression meta-learner from the nor-

mally trained stack provides the best accuracy and recall while the logistic regression

model from the adversarially trained stack provides a perfect detection rate and is

a close second for both accuracy and recall. Figures 26-28 shows Pareto frontiers

for each pairwise plot of metrics. No model is Pareto efficient for all three frontiers,

however, the augmented logistic regression is Pareto optimal for two of the three.

Most decision-makers would value the high performance of the adversarially trained

logistic regression ensemble against both conventional cyber attacks and adversarial

attacks. The majority vote nodes never dominated performance compared to the level

0 and level 1 models in their respective stacks, however, they always outperformed the

worst performing level 0 and level 1 models in their stacks. The majority vote node

in the augmented stack was especially robust against adversarial examples with only

a minuscule drop in performance against normal traffic. The majority vote strategy

may therefore be a good choice for NIDS if the worst-case performance of lower-level

models is unknown. We also recognize there is variance in model performance due to

randomness in training. It is unproven that small differences in performance metrics

are true effects- they could be the result of random events.

155

An additional experiment was conducted to investigate the effect that number

of adversarial examples in the training set has on the hardness of the CNN against

adversarial attacks. Trials were performed by increasing adversarial examples by one

until there were 10, then by five examples for 10 through 50. Then the number was

increased by 25 for 50 though 200. The resulting detection rates are plotted in Figure

25. Trials with fewer than 50 adversarial examples demonstrated a wide variance in

detection rate but an overall upward trend. A logarithmic trendline is shown in Figure

25. The detection rate stabilized towards its limit value of 1.0 with just 150 adversarial

examples. The impact of augmentation on test accuracy was also investigated and

there is no evidence of a significant effect with α = 0.1. The CNN is the most

vulnerable to this specific adversarial attack among the models we investigate. It is

promising to see the excellent hardness against adversarial attack with only a small

number of adversarial examples. It seems that the patterns learned from conventional

training permit the model to easily adapt for adversarial detection with only a small

amount of adversarial training. [180] argues that diversity of adversarial examples in

training sets provides additional hardness for classifiers in the image domain. This

concept remains untested in the cyber domain and offers great opportunities for future

work. Also untested is the concept of few-shot learning where training is performed

incrementally on a previously trained model as new adversarial examples become

available. We expect these general areas of transfer learning may play a role in

improving NIDS hardness in the future.

156

(a) Validation accuracy improves during training (b) Early stop occurs as loss fails to improve

Figure 24. The artificial neural nets were trained using an early stop callback with a
patience of 3 and threshold of 0.0005 nats

157

Table 15. The classification performance is presented for 14 models. The first three
models are base models trained on normal data. The next three models are adversar-
ially trained from a training set augmented by adversarial examples. There are four
meta-models trained with features derived from normal data. Finally, there are four
meta-models trained with features derived from a data set augmented with adversarial
examples. Each model is ranked by its accuracy, recall, and adversarial example detec-
tion rate.

Metric: Accuracy Recall Detection Rate
Reference Set: NIDS-test NIDS-test AE-test

Normally Trained
Base
Models

1D-CNN 9 0.996 6 0.997 14 0.311

FNN 13 0.991 6 0.997 13 0.427
AdaBoost 12 0.992 12 0.992 9 0.802

Adversarially
Trained
Base
Models

1D-CNN 11 0.992 13 0.987 7 0.987

FNN 14 0.990 14 0.983 1 1.000
AdaBoost 10 0.992 11 0.994 1 1.000

Normally Trained
Meta-models

Random Forest 6 0.997 10.0 0.997 11 0.650

XGBoost 2 0.998 2 0.997 12 0.596
Logistic Regression 1 0.998 1 0.998 8 0.819
Majority Vote 2 0.998 5.0 0.997 10 0.697

Adversarially
Trained
Meta-models

Random Forest 7 0.997 6 0.997 1 1.000

XGBoost 5 0.997 6 0.997 6 0.999
Logistic Regression 2 0.998 2 0.997 1 1.000
Majority Vote 8 0.997 4 0.997 1 1.000

158

Table 16. Feature importance is reported for random forest and XGboost level-1 meta-
models. Regression coefficients are reported for the logistic regression level-1 meta-
models. The rows are the meta-models and the columns are the base models used
to generate predictive meta-features. The first three meta-models are trained with
features derived from predictions on normal traffic. The bottom three meta-models are
trained with features derived from a data set augmented with adversarial examples.

Feature Importance or Regression Coefficients

Meta-Model
Normally Trained

CNN
Normally Trained

FNN
Normally Trained

AdaBoost
Adv Trained

CNN
Adv Trained

FNN
Adv Trained
AdaBoost

% Adv
Trained
Models

Normal
Trained

Ensembles

Trained with
NIDS-Train-0

Random
Forest

0.282 0.090 0.219 0.249 0.021 0.139 41.0%

XGBoost 0.934 0.002 0.022 0.003 0.006 0.034 4.2%
Logistic
Regression

5.045 1.304 1.945 0.244 2.811 3.243 43.2%

Adversarially
Trained

Ensembles

Trained with
NIDS-Train-1

Random
Forest

0.102 0.002 0.090 0.348 0.181 0.277 80.6%

XGBoost 0.934 0.002 0.022 0.003 0.006 0.034 4.2%
Logistic
Regression

4.073 0.276 1.201 1.311 4.088 3.985 62.8%

159

Figure 25. Detection rate of adversarial examples is plotted as AE count during adver-
sarial training is increased

160

Figure 26. Pareto frontier of accuracy and detection rate

161

Figure 27. Pareto frontier of accuracy and recall

162

Figure 28. Pareto frontier of detection rate and recall

163

(a) The meta-models with the highest adversarial example detection rate tend to be
adversarially trained models who’s training features are derived from the augmented
data set

(b) The meta-models with the highest accuracy tend to be normally trained models
trained with features derived from the normal data set

Figure 29. Performance trends among meta-models that are normally trained and
adversarially trained

164

5.5 Conclusion

This work studies NIDS hardening techniques against an adversarial attack in

which slowlorris attack packets are perturbed to bypass the NIDS. Without harden-

ing, the target NIDS, a CNN, detects only 31.1% of adversarial examples at test time.

Other base models demonstrate better but imperfect detection rates. Adversarilly

trained models demonstrate nearly equivalent performance against normal (benign

and malicious) traffic, but drastically improved detection of adversarial examples.

Stacked ensembles combine the predictive power of normally trained and adversari-

ally trained models. The best ensemble models provide a Pareto efficient trade-off of

accuracy, recall, and adversarial example detection rate if the meta-features include

some examples derived from adversarial examples. That is, the meta-learner is it-

self adversarially trained. Combining the predictions of various meta-learners via a

majority vote node does not improve the quality of predictions, but hedges against

accidentally using a low performing base model or ensemble. We experimentally

determine that the full benefit of adversarial training is obtained by including just

150 adversarial examples in the training set. We believe that further experimenta-

tion will demonstrate few-shot learning to detect additional varieties of adversarial

attacks. The combination of meta-learning and adversarial training demonstrates

excellent NIDS performance. As attacks evolve, the meta-learning framework can

be expanded to incorporate additional weak models, including, but not limited to

Bayesian nets, elastic nets, and stochastic loss functions. These advancements will

support the confidentiality, integrity, and availability of the internet of things into the

information age.

165

VI. Conclusion

Cyber systems are integrated into practically all aspects of modern society and

have served as an economic stimulus as the world transitions to Industry 4.0. The

United States Department of Defense has repeatedly recognized that confidential-

ity, integrity, and availability of cyber assets are fundamental to national prosperity.

Many other groups have recognized the transformative power of cyber, leading to

cyber’s emergence as a contested environment. During peacetime, the Department of

Defense is charged with protecting American cyber assets from attack by antagonistic

nation states and non state players. Cyber has also transformed military operations.

The internet of battlefield things is a paradigm that connects sensors, humans, com-

puters, and actuators to accelerate battlefield command and control and ultimately

tactical advancements across land, sea, air, and space. Efforts to degrade the con-

nectivity of tactical cyber systems could results in confusion, degraded maneuver,

and loss of firepower. Cyber is also a domain of warfare in its own right. There are

reports of offensive cyber attacks downgrading critical military and civilian infrastruc-

ture around the world including water, transportation, and energy assets. Experts

believe that future wars will be largely fought in the cyber domain.

The research presented in this manuscript addresses the call to action in the United

States Cyber Strategy for using intelligent systems for defensive cyber strategies.

The study compiles and evaluates impactful findings on the topic of cybersecurity,

especially as it pertains to national defense. The first novel research contribution

is an evaluation of existing cyber data, collection of high quality cyber data, and

generation of synthetic cyber data. Machine learning network intrusion detection

systems (NIDS) are typically impaired by a lack of high quality, labelled cyber data

which is resource intensive to obtain. Experiments in this manuscript demonstrate

that 85% of real cyber data can be replaced with synthetic data without loss of

166

accuracy. The second contribution provided in this manuscript is to expose the first

known end-to-end adversarial attack in the cyber domain. While adversarial attacks

have been widely researched in the computer-vision domain, those strategies cannot

be applied to the cyber domain due to the special structure of an internet protocol

packet. The proposed meta-heuristic perturbs malicious packets to evade NIDS 61%

of the time, despite the NIDS reporting 99.9% accuracy on non-perturbed cyber

traffic. Crucially, the perturbations do not violate the functional integrity of the

packets, allowing them to carry out the attack. The final research contribution is to

protect NIDS against the newly proven adversarial threat. A framework is presented

that leverages technologies used to improve models, typically in the computer vision

domain. The framework uses meta-learning to combine the predictive qualities of

various models. In particular, some of the base models are trained with datasets

augmented with adversarial examples. The meta-learner itself is also trained with

a dataset augmented with adversarial examples. This configuration results in 100%

detection rate against the most effective adversarial evasion attack with no detriment

to overall accuracy.

Adversarial attack against cyber infrastructure is widely considered to be a press-

ing concern. The results within have demonstrated that effective models can be

constructed even in an operation data deficit. NIDS models are provably vulnerable

to adversarial evasion attack, but the meta-learning framework offers strong protec-

tion to the worst case adversarial attack. This work provides researchers and policy

makers with new knowledge to secure our cyber systems and promote prosperity.

167

Appendix A. Meta-learning to Streamline Algorithm
Selection for Cyber

This chapter has been published in WiseML ’20: Proceedings of the 2nd ACM

Workshop on Wireless Security and Machine Learning [2]. It is included below with

permission from the publisher according to their author rights agreement.

A.1 Introduction

People, organizations and communities rely on the Internet of Things (IoT) to

aid in almost any conceivable task that was previously performed manually. As

technology advances, components of IoT have progressed into the wireless domain

[185]. These emerging systems are susceptible to attack by malicious actors wishing

to degrade the system or steal proprietary information [186]. Intrusion detection

systems (IDS) are central to maintaining the security of modern computer networks

from malicious actors [39]. IDS have been successfully demonstrated in both the wired

and wireless domain of IoT [185]. The task assigned to an IDS is to classify network

traffic as malicious or normal. Numerous studies [185] have explored meta-models to

detect malicious behavior in computer networks. Maxwell et al. [39] further focused

on intelligent cybersecurity feature engineering for various meta-models.

Learning algorithms may be used to formulate a meta-model. Selection of the

best machine learning (ML) algorithm, including hyper-parameters, for a particu-

lar problem instance is a difficult and time-consuming task [187]. Cui et al. [188]

has confirmed conclusions of [189] and [190] that meta-models’ performance varies

among problem types and problem instances. Wolpert et al. [191] uses The Extended

Bayesian Formalism to show that given a set of learning algorithms and problems,

each algorithm will outperform the others for some (equally sized) subset of problems.

This phenomena has driven researchers to a trial-and-error strategy of identifying the

168

best meta-model for a given problem. The preferred meta-model is selected by com-

parison of model performance metrics such as accuracy [192]. Unfortunately, the

computational run time and human investment required to select a learning algo-

rithm by trial-and-error is generally prohibitive of finding the optimal choice.

This paper aims to advance the IDS body of knowledge by incorporating recent

work in algorithm selection. Accordingly, an algorithm selection framework is intro-

duced. The algorithm selection framework leverages a taxonomy of ML algorithms.

The framework narrows down the list of applicable algorithms based on problem

characterization. Two strategies are presented to select the most preferred algorithm:

rules-of-thumb and meta-learner. If successful, the algorithm selection framework

promotes high-performance results of the IDS and assuages the computational cost

of performing multiple ML algorithms.

This paper includes Related Works in Section 2. The Methodology is presented

in Section 3. Section 4 contains the Results and Section 5 is the Conclusion.

A.2 Related Works

Intrusion Detection.

As in any other domain, criminals and adversaries seek to inflict harm by exploit-

ing weaknesses in cybersecurity systems. The rate of system intrusion incidents is

increasing annually [193]. Landwehr et al. [194] provides a taxonomy of all known

flaws in computer systems. Special attention is provided to the category of flaws

that allow exploitation by malicious actors. Commonly, a malicious actor, or their

code, appears benign to a computer security system for a long enough time to exploit

information or degrade the attacked system. The Trojan horse is among the most

prevalent categories of a malicious attack on computer systems. It is characterized as

a code that appears to provide a useful service but instead steals information or de-

169

grades the targeted system. A Trojan horse containing self replicating code is known

as a virus. A trapdoor is a malicious attack in which an actor covertly modifies a

system in such a way that they are permitted undetected access. Finally, a time

bomb is an attack that accesses a system covertly and lies dormant until a detonation

time. Upon detonation, the time bomb will inflict damage to the system either by

disrupting service or destroying information.

Intrusion detection systems are a layer of network security that tracks activity

patterns in a computer system to detect malicious actors before they can inflict harm.

Debar et al. [186] describes efforts as early as 1981 and Sobirey [195] maintains a

repository of prominent IDS projects. According to Debar et al. [186], the success

of these systems has spawned a commercial market of IDS software including brands

such as Sysco Systems, Haystack Labs, Secure Networks, among others. Typically, the

IDS employs a detector module that monitors system status. The detector catalogues

patterns of both normal and malicious activity in a database. The detector also

monitors patterns in the current system configuration. Further, the detector provides

an audit of events occurring within the system. The detector leverages these data

channels to generate an alarm for suspicious activity and countermeasures if necessary.

An IDS is evaluated by its accuracy of attack detection (false positive), completeness

to detect all threats (false negatives) and performance to detect threats quickly.

NSL-KDD is a publicly available benchmark data set of network activity. NSL-

KDD improves on several flaws of the well-known KDD Cup ‘99 benchmark data set.

Most notably, NSL-KDD has rectified the 78% and 75% duplicate records in training

and test sets, respectively [193]. Four classes of attacks are recorded in the data

set. Denial of service attacks bombard a network with an overwhelming quantity

of data such that the computing resources are exhausted. As a result, the system

cannot fulfil any legitimate computing processes. User to Root attackers enter the

170

network disguised as a legitimate user but seek security vulnerabilities which grant

them elevated system privileges. A remote to user attack is performed by sending

data to a private network and identifying insecure access points for exploitation.

Probing is the attack technique by which the assailant studies an accessible system

for vulnerabilities which will be exploited at a later time [196].

Maxwell et al. [39] and Viegas [197] describe IDS tools that incorporate ML

models. Unfortunately, raw network traffic data is not a suitable input for building

accurate and efficient ML models. Instead, the data must be transformed as a set

of vectors representing the raw data. The process of constructing such vectors is

known as feature engineering, which is a non-trivial task that requires both domain

knowledge and mastery of ML to capture all available information in the model.

It is shown experimentally that varying the feature engineering strategy does affect

classification accuracy of the IDS but no single feature is known to be superior to

others.

Kasongo [185] explores IDS procedures catered for the wireless domain. The

UNSW-NB15 data set was selected to derive both the training and test data sets. A

wrapper-based feature extractor generated many feature vectors for comparison from

a full set of 42 features. The experiment was performed for both binary and multi-

class classification in which the type of attack was predicted. Candidate algorithms

included decision Trees, Random Forest, Näıve Bayes, K-Nearest Neighbor, Support

Vector Machines, and Feed-forward Artificial Neural Networks (FFANN). The optimal

feature set consisted of 26 columns. The FFANN reflected the best classification

accuracy on the full data set with 87.10% binary and 77.16% multi-class. Random

Forest, Decision Tree, and Support Vector Machine were close behind. When the

feature set and neural network hyper-parameters were optimized, the classification

accuracy of the FFANN improved to 99.66% and 99.77% for binary and multi-class

171

classification, respectively.

Algorithm Selection Problem.

Rice’s algorithm selection framework was presented in 1976 [198]. The framework

is performed by employing all algorithms under consideration on all problems in a

problem set. One or more performance metrics are chosen, and the performance of

each algorithm on each problem is reported. Upon completion of the process, the

preferred algorithm for each problem is taken as the one with the best performance

metrics [198]. Woods [5] presents a modern depiction of Rice’s framework as phase 1

in Figure 30.

The classic approach of learning algorithms is known as base learning. That is an

ML algorithm which builds a data-driven model for a specific application [192]. Meta-

learning, however, is an approach introduced by [199] which algorithms learn on the

learning process itself. A meta-learning algorithm extracts meta-features f(x) ∈ space

F from a problem x ∈ problem space P . The meta-model is trained to recommend

the best-known base learning algorithm a ∈ A to solve x. Works such as [200] and

[201] further contribute to the theory of meta-learning recommendation systems [192].

In 2014, Smith [202] proposes the concept of applying meta-learning to Rice’s

model. It was not until 2016, however, that [192] implemented the concept. Figure

Figure 30. The meta-learner version of Rice’s framework [5].

172

30 demonstrates that Cui et al. [192] trained a meta-learning model to correlate

problem features to algorithm performance and that the trained model could be used

to recommend the algorithm for unobserved problems within Rice’s framework. The

meta-learner correctly recommended the best algorithm in 91% of test problems.

Further, it demonstrated that time to perform algorithm selection could be reduced

from minutes to seconds compared to trial-and-error techniques [192]. Follow on

studies by [5] and [203] expanded on this work by exploring various meta-features

and meta-learner response metrics.

A.3 Methodology

The assigned task for an IDS is to classify network traffic records as normal or

malicious. This task is investigated from the broader perch of the algorithm selection

problem. Figure 31 shows that within the analysis process, three factors drive the

analytical approach and analytical technique selection. They are the input to the

algorithm selection framework.

Figure 31. The factors identified are superimposed with the stages of algorithm selec-
tion which they impact.

Characterizing the Problem.

The framework is a mechanism to characterize an analysis problem and to de-

termine the algorithms that best matches the problem characterization. The three

173

factors each drive analytical approach selection and analytical technique selection.

The factor assigned task pertains to the problem provided by a decision-maker. The

analyst must decipher the intent of the assignment from the lexicon of the decision-

maker into specific analytical terms, which are listed under the Task. This list of

terms, called considerations is shown in Figure 32 for each factor. The considerations

for the factor data describe the different formats analysts commonly receive data for

analysis problems. The data factor is important because it relates to the problem’s

compatibility with the mathematical mechanics of the analysis technique. Likewise,

the considerations for the resources factor help the analyst identify which algorithms

are compatible with the available resources. The analyst should refer to Figure 32 to

evaluate and record the considerations for each factor prior to beginning step 1.

Figure 32. The considerations are shown for each factor which drives analytical ap-
proach and analytical technique selection.

Step 1: Map Problem to Category and Approach.

Step 1 leverages information from the problem characterization to identify the

appropriate analytical approaches. Each consideration selected from the assigned task

factor maps to one or more categories of analysis. The categories of analysis describe

174

the general goal of the analysis problem [204]. Each category of analysis can be

implemented by certain analytical approaches. The analytical approach a technique

class referring to the specific type of response the techniques produce. Therefore,

the framework leverages a hierarchical taxonomy that groups techniques grouped by

both categories of analysis and analytical approaches. Figure 33 shows the mapping

from assigned task to category of analysis, and the mapping of category of analysis

to analytical approach.

Since the task of an IDS is to classify network users, the prescriptive and predictive

categories of analysis are selected.

Figure 33. The assigned task for an IDS is classify. Classify is one of 11 common
assigned tasks. It belongs to the predictive and prescriptive categories of analysis.

An excerpt of the proposed taxonomy is presented in Figure 34. The taxonomy is

built with an object-oriented structure to promote flexibility and expandability. As

an example, techniques are shown within the regression and classification analytical

approaches. The text predictive and descriptive appears at the bottom edge of the

regression panel to indicate that regression techniques produce results suitable for

175

either of these two categories of analysis. The requirements, or required considera-

tions, for each factor are presented with the technique. Compatible training styles

are listed to the right of the technique name. The object-oriented structure allows

new techniques to be easily added and new attributes to be included.

Figure 34. A portion of the proposed taxonomy is high-lighted to show its structure.

Step 2: Rank Techniques.

The framework identifies a subset of techniques that are compatible for the prob-

lem according to application. Next, the framework leverages the remaining three

factors data, resources and experience to discern aspects of technique compatibility

relating to the mechanics of the mathematical model. Step two predicts the utility

scores of each algorithm from these factors according to two strategies: rules of thumb

and meta-learning. They are presented in parallel below.

Rules-of-Thumb.

A logical decision tree is used to assign a preference rank among candidate algo-

rithms. The decision tree is built according to rules-of-thumb regarding features of

the data. The features pertaining to data also impact the compatibility of techniques

176

in respect to resources. Thus, it is justified to use the same decision tree, Figure 35,

to adjudicate the scores for both factors.

Figure 35. The decision tree represents the logical tests used to rank the recommen-
dations via the rules of thumb strategy

.

Meta-Learning.

A meta-learner is constructed in Python 3.7. All data sets are pre-processed

according to best practices for data mining. Base learning is performed on 14 bench-

mark data sets with 20 repetitions. For each repetition, the data sets were split into

training and test sets with an 80/20 ratio and with stratification. The KDDTest+

and KDDTrain+ sets were obtained having already been split into a master test set

and a training set. 12 meta-features of each data set were stored as predictor data

for the meta-learner; the mean observed recall was stored as the target. The meta-

learner was trained to model recall as a function of meta-features using a support

vector regression algorithm. The radial basis function kernel was selected. The reg-

ularization parameter was set at 1.0, and the kernel coefficient was auto-scaled as

a function of the number of features and predictor variance. All other parameters

followed Scikit-learn defaults [125]. Pseudo-code of the meta-learner is presented in

177

Algorithm 1.

Algorithm 4: Pseudo-code of Meta-learner

input : Repository of Datasets, Candidate Algorithms
output: Predicted Recall & Observed Recall of Test Dataset using Candidate

Algorithms

Pre-processing
for all Dataset in Repository do

for all column in Dataset do
if column is numerical then
miniMax(0,1)

PCA()

miniMax(0,1);
else column is categorical;
OneHot()

Feature Extraction
for all Dataset in Repository do

featureExtract()

Base Learning
for all Algorithm do

for all Dataset in Repository do
trainBaseLearner()

TestBaseLearner()

RecordRecall()

RankAlgorithms()

Meta Learning
for all Algorithm do

TrainMetaLearner()

PredictRecall()

RecordRecall()

RankAlgorithms()

The candidate algorithms are selected because they are members analytical ap-

proaches derived in step 1 of Section 3.2. Clearly, these are not the only algorithms

that fall into the applicable analytical approach. Rather, they represent a demon-

strative taxonomy. Note that the Scikit-learn default settings are selected on each

algorithm to show generality of the algorithm selection framework.

Training data sets are selected from easily accessible benchmark repositories. The

178

first five are selected to provide diversity of meta-features to the meta-learner and

improve the robustness of the model. The nine subsets of KDDTrain+ are selected to

provide statistical information consistent with the KDDTest+ data set. KDDTrain+

is split into subset to promote diversity of meta-features but also reduce the number

of records in the training set which is an order of magnitude greater than the number

of records in the test set. A uniform random number generator is used to determine

the number of rows allocated to each training set. Rows are not re-arranged during

the subset process.

1. Training Data

(a) Heart: Predict presence of heart disease from 13 predictor variables [205]

(b) Framingham: Predict presence of heart disease in the Framingham study

from 15 predictor variables [206]

(c) Spam: Predict if an email is spam based on six predictor variables [207]

(d) Loan: Predict whether a consumer purchases a loan from Thera Bank

based on 12 predictor variables [208]

(e) Cancer: Predict whether a patient has breast cancer from 30 predictor

variables collected in a fine needle aspirate procedure [209]

(f) Nine subsets of KDDTrain+: Predict whether a network activity record

is normal or malicious from four categorical and 39 numerical predictor

variables [210]

2. Test Data

(a) KDDTest+: Predict whether a network activity record is normal or mali-

cious from four categorical and 39 numerical predictor variables [210]

179

The choice of meta-features was adopted from [203]. The following meta-features

were used as predictor data by the meta-learner to model expected recall.

• Number of Rows

• Number of Columns

• Rows to Columns Ratio

• Number of Discrete Columns

• Maximum number of factors among discrete columns

• Minimum number of factors among discrete columns

• Average number of factors among discrete columns

• Number of continuous columns

• Gradient average

• Gradient minimum

• Gradient maximum

• Gradient standard deviation

A.4 Results

The algorithm selection framework is applied to the task of classifying network

traffic as malicious or normal. Problem characterization is performed in step 1 to

identify prescriptive and predictive as the categories of analysis. This leads to four

analytical approaches, namely regression, classification, multivariate, and reinforce-

ment. Five example algorithms which meet this criteria are taken from a notional

taxonomy.

180

In step 2, candidate algorithms are ranked in order of preference by each recom-

mendation strategy, rules-of-thumb and meta-learner. Both strategies yielded support

vector regression as the most highly recommended algorithm. According to the mean

observed recall, random forest was the best performing algorithm to detect malicious

activity from the KDDTest+ data set. The standard deviations of observed recall on

each algorithm were very low. The 90% Bonferroni confidence interval for support

vector machine (SVM) and support vector regression (SVR) overlapped, indicating

statistically identical recall performance. All other mean values were statistically

unique. Further, the Spearman’s coefficient of rank correlation was not statistically

significant, largely due to the small size of the rank scheme. Since neither recommen-

dation strategy succeeded in predicting the best performing algorithm, recall efficiency

is introduced. Recall efficiency, Equation 65, is the ratio of the recall observed by the

top recommended algorithm to best observed recall.

ER =
RbestRec

RbestObs

(65)

The recall efficiency for SVR, the top recommendation of both strategies, is 0.98.

Table 17 presents a summary of the results including observed mean recall, meta-

learner predicted recall, mean runtime, standard deviation of observed recall, observed

ranks, rule-of-thumb predicted ranks, and meta-learner predicted ranks. Figure 36

outlines the mean observed recall and the recall predicted by the meta-learner for

each algorithm.

It is difficult to ascertain whether either of the recommendation strategies em-

ployed in this study were successful. While the recall efficiency is very high, the rank

correlation was not conclusive. All base learners produced very high and very similar

recalls. It would therefore be difficult for any model to discern the true rank prefer-

ence. The meta-model employed the meta-features according to the precedent set by

181

Table 17. Results compare the recommendations of each strategy to observed algorithm
performance.

Observed
Mean Recall

Meta-Learner
Predicted Recall

Mean
Runtime (s)

SD of Observed
Recall

Observed
Ranks

Rules-of-Thumb
Predicted Ranks

Meta-Learner
Predicted Ranks

Decision Tree 0.975340865 0.891227551 0.188214 0.004141 2 4 5
Random Forest 0.982216595 0.935765698 1.593553 0.003063 1 3 3
Naive Bayes 0.863400857 0.952576618 0.007137 0.007961 5 2 2
SVM 0.959329957 0.925262066 8.602973 0.003163 4 5 4
SVR 0.962446436 0.96525973 7.647529 0.003088 3 1 1

Figure 36. The predicted recall and observed mean recall are compared for each algo-
rithm.

[203], however there were many more proposed by [192] that were not used. Further-

more, the meta-learner was trained by only 14 data sets, significantly less than used

in [5]. Providing more training sets, especially from the domain of network traffic,

would likely improve the predictive capability of the meta-learner.

As a whole, the framework is beneficial even when it does not recommend the true

best performer. The framework consistently filters techniques that are incompatible

with the problem characterization. Further, the framework identifies five viable op-

tions, each of which perform excellently.

182

A.5 Conclusion

Cyber attack detection from an IDS using any of the recommended algorithms

could reasonably be deemed successful. Neither of the two recommendation strate-

gies demonstrated perfect results. They did, however, show enough promise to mo-

tivate further investigations. Fundamentally, the meta-data and user input collected

by the framework does contain information capable of consistently predicting a good

analysis technique for a problem. Notably, there were algorithms from distinct an-

alytical approaches that performed well on the same task. The process of problem

characterization fits well into the framework but does require further refining. The

rule-of-thumb decision tree provided intelligible recommendation logic whereas the

meta-learner is a black box model. Future work should use the Gini criterion to

optimize the decision tree. Further, the meta-learner should be improved to include

more meta-features and training sets. There is a close connectedness in having a

useful taxonomy of algorithms and a successful algorithm selection. This relationship

is only beginning to be understood. Wireless IDS already provide good classification

performance, however, algorithm selection, hyper-parameter tuning and feature engi-

neering suffer from the time-costly trial-and-error practice. The algorithm selection

framework may be a step forward in reducing this cost.

183

Appendix B. Referenced AFIT Theses

The following AFIT theses were referenced in this manuscript.

Table 18. AFIT Theses referenced in this manuscript

Thesis Title Author Advisor

“Cyber data anomaly detection using

autoencoder neural networks”

M.S. thesis, Air Force Institute of Technology, 2018.

Spencer Butt Bradley Boehmke, PhD

“Meta Learning Recommendation System

for Classification”

M.S. Thesis, Air Force Institute of Technology, 2020

Clarence Williams Jeff Weir, PhD

“A Metamodel Recommendation

System Using Meta-Learning”

M.S. thesis, Air Force Institute of Technology, 2020.

Megan Woods Jeff Weir, PhD

184

Appendix C. Tabulated Performance of Models Trained
With Synthetic Data for Contribution 1

Table 19. Classification recall of machine learning models trained with CTGAN syn-
thetic data.

Classifier Real Examples Recall

RF 1,000 0.527
RF 5,000 0.501
RF 10,000 0.501
RF 15,000 0.500
RF 20,000 0.490
RF 25,000 0.499
RF 1,000 0.482
RF 5,000 0.516
RF 10,000 0.466
RF 15,000 0.498
RF 20,000 0.500
RF 25,000 0.500
SVM 1,000 0.500
SVM 5,000 0.538
SVM 10,000 0.619
SVM 15,000 0.699
SVM 20,000 0.661
SVM 25,000 0.476
SVM 1,000 0.308
SVM 5,000 0.509
SVM 10,000 0.528
SVM 15,000 0.658
SVM 20,000 0.446
SVM 25,000 0.682
MLP 1,000 0.668
MLP 5,000 0.489
MLP 10,000 0.500
MLP 15,000 0.498
MLP 20,000 0.528
MLP 25,000 0.488
MLP 1,000 0.442
MLP 5,000 0.480
MLP 10,000 0.595
MLP 15,000 0.489
MLP 20,000 0.507
MLP 25,000 0.500
LR 1,000 0.500
LR 5,000 0.500
LR 10,000 0.500
LR 15,000 0.501
LR 20,000 0.490
LR 25,000 0.500
LR 1,000 0.536
LR 5,000 0.500
LR 10,000 0.500
LR 15,000 0.500
LR 20,000 0.500
LR 25,000 0.500

185

Table 20. Classification recall of machine learning models trained with TVAE synthetic
data.

Classifier Real Examples Recall

RF 1,000 0.504
RF 5,000 0.589
RF 10,000 0.568
RF 15,000 0.536
RF 20,000 0.623
RF 25,000 0.602
RF 1,000 0.510
RF 5,000 0.600
RF 10,000 0.660
RF 15,000 0.550
RF 20,000 0.560
RF 25,000 0.590
SVM 1,000 0.453
SVM 5,000 0.661
SVM 10,000 0.529
SVM 15,000 0.510
SVM 20,000 0.669
SVM 25,000 0.462
SVM 1,000 0.420
SVM 5,000 0.700
SVM 10,000 0.570
SVM 15,000 0.460
SVM 20,000 0.570
SVM 25,000 0.460
MLP 1,000 0.581
MLP 5,000 0.588
MLP 10,000 0.655
MLP 15,000 0.508
MLP 20,000 0.725
MLP 25,000 0.660
MLP 1,000 0.510
MLP 5,000 0.620
MLP 10,000 0.680
MLP 15,000 0.500
MLP 20,000 0.640
MLP 25,000 0.570
LR 1,000 0.535
LR 5,000 0.650
LR 10,000 0.620
LR 15,000 0.521
LR 20,000 0.683
LR 25,000 0.642
LR 1,000 0.540
LR 5,000 0.600
LR 10,000 0.660
LR 15,000 0.560
LR 20,000 0.590
LR 25,000 0.590

186

Table 21. Classification recall of machine learning models trained with real data.

Classifier Examples Recall

RF 1000 0.903
RF 5000 0.727
RF 10000 0.943
RF 15000 0.950
RF 20000 0.952
RF 25000 0.955
RF 1000 0.898
RF 5000 0.933
RF 10000 0.943
RF 15000 0.948
RF 20000 0.952
RF 25000 0.955
SVM 1000 0.677
SVM 5000 0.744
SVM 10000 0.747
SVM 15000 0.703
SVM 20000 0.763
SVM 25000 0.759
SVM 1000 0.702
SVM 5000 0.713
SVM 10000 0.782
SVM 15000 0.683
SVM 20000 0.774
SVM 25000 0.759
MLP 1000 0.836
MLP 5000 0.897
MLP 10000 0.904
MLP 15000 0.914
MLP 20000 0.916
MLP 25000 0.919
MLP 1000 0.857
MLP 5000 0.878
MLP 10000 0.902
MLP 15000 0.907
MLP 20000 0.915
MLP 25000 0.924
LR 1000 0.754
LR 5000 0.764
LR 10000 0.764
LR 15000 0.763
LR 20000 0.765
LR 25000 0.764
LR 1000 0.757
LR 5000 0.764
LR 10000 0.766
LR 15000 0.763
LR 20000 0.764
LR 25000 0.764

187

Table 22. Inverted Kolmogorov Smirnov D-Statistic of data generated by TVAE and
CTGAN, varying the quantity of real data to fit the generators.

Data Source Real Examples KS-D

CTGAN 1,000 0.854
CTGAN 5,000 0.862
CTGAN 10,000 0.852
CTGAN 15,000 0.858
CTGAN 20,000 0.866
CTGAN 25,000 0.851
CTGAN 1,000 0.840
CTGAN 5,000 0.903
CTGAN 10,000 0.861
CTGAN 15,000 0.820
CTGAN 20,000 0.870
CTGAN 25,000 0.847
TVAE 1,000 0.650
TVAE 5,000 0.690
TVAE 10,000 0.700
TVAE 15,000 0.670
TVAE 20,000 0.700
TVAE 25,000 0.700
TVAE 1,000 0.640
TVAE 5,000 0.690
TVAE 10,000 0.700
TVAE 15,000 0.710
TVAE 20,000 0.700
TVAE 25,000 0.720

188

Table 23. Classification recall of machine learning models trained with half CTGAN
synthetic data and half real data.

Classifier Real Examples Recall

RF 1000 0.899
RF 5000 0.838
RF 10000 0.942
RF 15000 0.950
RF 20000 0.951
RF 25000 0.954
RF 1000 0.899
RF 5000 0.932
RF 10000 0.943
RF 15000 0.949
RF 20000 0.951
RF 25000 0.954
SVM 1000 0.671
SVM 5000 0.236
SVM 10000 0.758
SVM 15000 0.316
SVM 20000 0.626
SVM 25000 0.287
SVM 1000 0.759
SVM 5000 0.260
SVM 10000 0.698
SVM 15000 0.309
SVM 20000 0.626
SVM 25000 0.778
MLP 1000 0.822
MLP 5000 0.885
MLP 10000 0.895
MLP 15000 0.887
MLP 20000 0.883
MLP 25000 0.911
MLP 1000 0.819
MLP 5000 0.862
MLP 10000 0.871
MLP 15000 0.887
MLP 20000 0.883
MLP 25000 0.905
LR 1000 0.733
LR 5000 0.719
LR 10000 0.715
LR 15000 0.747
LR 20000 0.753
LR 25000 0.716
LR 1000 0.731
LR 5000 0.743
LR 10000 0.757
LR 15000 0.726
LR 20000 0.753
LR 25000 0.748

189

Table 24. Classification recall of machine learning models trained with half TVAE
synthetic data and half real data.

Classifier Real Examples Recall

RF 1000 0.896
RF 5000 0.929
RF 10000 0.941
RF 15000 0.947
RF 20000 0.950
RF 25000 0.953
RF 1000 0.900
RF 5000 0.932
RF 10000 0.943
RF 15000 0.947
RF 20000 0.951
RF 25000 0.954
SVM 1000 0.663
SVM 5000 0.617
SVM 10000 0.636
SVM 15000 0.672
SVM 20000 0.471
SVM 25000 0.597
SVM 1000 0.759
SVM 5000 0.260
SVM 10000 0.698
SVM 15000 0.781
SVM 20000 0.601
SVM 25000 0.778
MLP 1000 0.825
MLP 5000 0.871
MLP 10000 0.894
MLP 15000 0.906
MLP 20000 0.876
MLP 25000 0.894
MLP 1000 0.819
MLP 5000 0.862
MLP 10000 0.871
MLP 15000 0.893
MLP 20000 0.885
MLP 25000 0.905
LR 1000 0.724
LR 5000 0.745
LR 10000 0.740
LR 15000 0.739
LR 20000 0.753
LR 25000 0.755
LR 1000 0.731
LR 5000 0.743
LR 10000 0.757
LR 15000 0.726
LR 20000 0.752
LR 25000 0.748

190

Table 25. Classification performance of machine learning models trained with 25,000
examples of a mixture of real and CTGAN synthetic data.

% Synthetic Classifier Recall Precision F-1 % Synthetic Classifier Recall Precision F-1

0 RF 0.86128 0.862948 0.86111 50 MLP 0.73104 0.788088 0.717199
0 SVM 0.60048 0.607121 0.593908 50 LR 0.75888 0.768602 0.756614
0 MLP 0.82784 0.847363 0.825338 55 RF 0.85216 0.854406 0.851912
0 LR 0.7736 0.782306 0.771787 55 SVM 0.6768 0.676803 0.676795
5 RF 0.85952 0.861292 0.859336 55 MLP 0.8064 0.809449 0.805898
5 SVM 0.7208 0.721647 0.720505 55 LR 0.75328 0.76554 0.750324
5 MLP 0.81296 0.84265 0.808752 60 RF 0.84336 0.845898 0.843056
5 LR 0.77504 0.784431 0.773113 60 SVM 0.52832 0.531413 0.515095
10 RF 0.85936 0.861315 0.859158 60 MLP 0.80256 0.838077 0.797156
10 SVM 0.4176 0.41758 0.417532 60 LR 0.75328 0.762296 0.751077
10 MLP 0.81584 0.818133 0.815488 65 RF 0.84608 0.847542 0.845906
10 LR 0.7752 0.784699 0.773254 65 SVM 0.3552 0.355123 0.355129
15 RF 0.85888 0.860369 0.858724 65 MLP 0.81328 0.829121 0.810955
15 SVM 0.47456 0.467763 0.443362 65 LR 0.74224 0.749416 0.740309
15 MLP 0.81824 0.823286 0.8175 70 RF 0.84512 0.847428 0.844847
15 LR 0.77488 0.784299 0.772945 70 SVM 0.33408 0.331876 0.331814
20 RF 0.85792 0.859317 0.857772 70 MLP 0.75856 0.779069 0.754131
20 SVM 0.66 0.660168 0.659931 70 LR 0.73568 0.743354 0.733510
20 MLP 0.80784 0.843743 0.802612 75 RF 0.83808 0.839316 0.837921
20 LR 0.77184 0.780521 0.770007 75 SVM 0.35248 0.350074 0.349962
25 RF 0.85312 0.855023 0.85291 75 MLP 0.79744 0.824777 0.793012
25 SVM 0.72544 0.732993 0.723121 75 LR 0.7248 0.726841 0.724139
25 MLP 0.80976 0.829651 0.806789 80 RF 0.83664 0.839476 0.836280
25 LR 0.76992 0.779066 0.767963 80 SVM 0.43168 0.418719 0.407454
30 RF 0.8568 0.858879 0.85658 80 MLP 0.796 0.813252 0.793091
30 SVM 0.56704 0.579599 0.549896 80 LR 0.71584 0.717393 0.715293
30 MLP 0.80928 0.821634 0.807384 85 RF 0.82032 0.822274 0.820030
30 LR 0.77136 0.780861 0.769353 85 SVM 0.33184 0.330776 0.330735
35 RF 0.85664 0.857975 0.856496 85 MLP 0.78224 0.799548 0.778980
35 SVM 0.70832 0.720044 0.704274 85 LR 0.68208 0.683108 0.681675
35 MLP 0.8208 0.837681 0.818484 90 RF 0.8192 0.826797 0.818109
35 LR 0.76768 0.778346 0.765371 90 SVM 0.29808 0.271769 0.277097
40 RF 0.8472 0.848567 0.847039 90 MLP 0.7712 0.780189 0.769294
40 SVM 0.6464 0.649686 0.644337 90 LR 0.61408 0.62956 0.602521
40 MLP 0.79584 0.798304 0.795394 95 RF 0.79424 0.794937 0.794105
40 LR 0.76432 0.773371 0.762294 95 SVM 0.4032 0.391691 0.386545
45 RF 0.85472 0.857132 0.85446 95 MLP 0.65696 0.723911 0.629569
45 SVM 0.66128 0.663924 0.659823 95 LR 0.5208 0.584173 0.411661
45 MLP 0.79264 0.794205 0.792344 100 RF 0.49904 0.49952 0.333401
45 LR 0.76096 0.768794 0.759149 100 SVM 0.38544 0.284702 0.303624
50 RF 0.85232 0.854372 0.852093 100 MLP 0.49904 0.249041 0.332267
50 SVM 0.6464 0.646479 0.646333 100 LR 0.49904 0.249041 0.332267

191

Table 26. Classification performance of machine learning models trained with 100,000
examples of a mixture of real and CTGAN synthetic data.

% Synthetic Classifier Recall Precision F-1 % Synthetic Classifier Recall Precision F-1

0 RF 0.87622 0.877603 0.876107 50 MLP 0.82362 0.833719 0.822275
0 SVM 0.74972 0.750179 0.749605 50 LR 0.75606 0.768738 0.753149
0 MLP 0.83769 0.851893 0.836036 55 RF 0.86748 0.869031 0.867341
0 LR 0.77166 0.780512 0.769844 55 SVM 0.70201 0.715351 0.697322
5 RF 0.87592 0.877246 0.875811 55 MLP 0.79632 0.797094 0.796187
5 SVM 0.68593 0.686088 0.685863 55 LR 0.75231 0.763855 0.749571
5 MLP 0.83238 0.848432 0.830427 60 RF 0.86531 0.866984 0.865156
5 LR 0.77242 0.781517 0.770567 60 SVM 0.49758 0.497363 0.487017
10 RF 0.87511 0.876388 0.875004 60 MLP 0.82044 0.832144 0.818844
10 SVM 0.60302 0.60407 0.602016 60 LR 0.74982 0.760522 0.747224
10 MLP 0.83258 0.848945 0.830594 65 RF 0.8622 0.863822 0.862046
10 LR 0.77343 0.783161 0.771467 65 SVM 0.3535 0.347416 0.346991
15 RF 0.87474 0.875979 0.874637 65 MLP 0.80537 0.815249 0.803833
15 SVM 0.43666 0.434434 0.431839 65 LR 0.74361 0.753287 0.741138
15 MLP 0.8305 0.832302 0.83027 70 RF 0.86295 0.864619 0.862793
15 LR 0.77212 0.781755 0.770155 70 SVM 0.31978 0.315575 0.315880
20 RF 0.87384 0.875229 0.873723 70 MLP 0.81272 0.814728 0.812421
20 SVM 0.70685 0.711425 0.705256 70 LR 0.739 0.746586 0.736977
20 MLP 0.83298 0.847695 0.831194 75 RF 0.85967 0.861186 0.859523
20 LR 0.77163 0.78165 0.769581 75 SVM 0.33106 0.323257 0.323594
25 RF 0.87333 0.874788 0.873207 75 MLP 0.75282 0.781654 0.746328
25 SVM 0.49675 0.496366 0.483099 75 LR 0.72805 0.732165 0.726839
25 MLP 0.80812 0.814457 0.807148 80 RF 0.85684 0.858289 0.856695
25 LR 0.76935 0.779151 0.767307 80 SVM 0.33003 0.329746 0.329750
30 RF 0.8724 0.873676 0.872291 80 MLP 0.79727 0.80134 0.796583
30 SVM 0.50405 0.504629 0.488049 80 LR 0.71054 0.710822 0.710443
30 MLP 0.82805 0.833855 0.827299 85 RF 0.85241 0.85494 0.852147
30 LR 0.76734 0.776912 0.765312 85 SVM 0.31688 0.314417 0.314606
35 RF 0.87012 0.871466 0.870002 85 MLP 0.79315 0.793931 0.793013
35 SVM 0.44779 0.447444 0.44688 85 LR 0.67588 0.678076 0.674878
35 MLP 0.8205 0.823549 0.820076 90 RF 0.84733 0.849405 0.847103
35 LR 0.76476 0.775101 0.762528 90 SVM 0.3396 0.309026 0.312066
40 RF 0.86908 0.870513 0.868953 90 MLP 0.78571 0.787191 0.785433
40 SVM 0.71473 0.739203 0.707242 90 LR 0.60593 0.630847 0.586232
40 MLP 0.80572 0.808776 0.805238 95 RF 0.83079 0.835592 0.830183
40 LR 0.76278 0.773602 0.760411 95 SVM 0.32927 0.329267 0.329267
45 RF 0.86828 0.869703 0.868153 95 MLP 0.73751 0.750116 0.734160
45 SVM 0.70358 0.710824 0.701012 95 LR 0.53053 0.600623 0.431533
45 MLP 0.81941 0.834779 0.817313 100 RF 0.50062 0.553238 0.336735
45 LR 0.76107 0.771685 0.758713 100 SVM 0.5218 0.522069 0.520336
50 RF 0.86705 0.868682 0.866903 100 MLP 0.49962 0.301988 0.333253
50 SVM 0.6182 0.622815 0.61458 100 LR 0.5 0.25 0.333333

192

Table 27. Classification performance of machine learning models trained with 25,000
examples of a mixture of real and TVAE synthetic data.

% Synthetic Classifier Recall Precision F-1 % Synthetic Classifier Recall Precision F-1

0 RF 0.8608 0.862482 0.860627 50 MLP 0.81712 0.83306 0.814857
0 SVM 0.60048 0.607121 0.593908 50 LR 0.75488 0.758731 0.753922
0 MLP 0.82288 0.829764 0.82192 55 RF 0.85072 0.852338 0.850537
0 LR 0.7736 0.782306 0.771787 55 SVM 0.492 0.491904 0.487725
5 RF 0.85936 0.860836 0.859206 55 MLP 0.8056 0.807223 0.805325
5 SVM 0.72032 0.722429 0.719612 55 LR 0.7536 0.75739 0.752647
5 MLP 0.81696 0.840694 0.813657 60 RF 0.84576 0.847721 0.845529
5 LR 0.77344 0.782173 0.771619 60 SVM 0.46592 0.461924 0.450414
10 RF 0.85888 0.860399 0.858721 60 MLP 0.756 0.774111 0.751988
10 SVM 0.6104 0.617288 0.604347 60 LR 0.74672 0.748233 0.746304
10 MLP 0.7936 0.80106 0.792355 65 RF 0.84512 0.846105 0.845
10 LR 0.7728 0.780137 0.771253 65 SVM 0.33792 0.33554 0.335592
15 RF 0.85936 0.860501 0.859239 65 MLP 0.80496 0.805583 0.804849
15 SVM 0.6768 0.6789 0.675783 65 LR 0.73968 0.740765 0.739360
15 MLP 0.82672 0.835219 0.825581 70 RF 0.84208 0.843905 0.841857
15 LR 0.7744 0.782023 0.772815 70 SVM 0.36032 0.355999 0.355616
20 RF 0.85456 0.855711 0.854433 70 MLP 0.79424 0.806064 0.792182
20 SVM 0.42528 0.413693 0.404784 70 LR 0.74016 0.740519 0.740048
20 MLP 0.80768 0.844446 0.802331 75 RF 0.83744 0.838225 0.837336
20 LR 0.77136 0.778162 0.769905 75 SVM 0.44784 0.443121 0.436747
25 RF 0.85648 0.858453 0.85627 75 MLP 0.79072 0.790746 0.790712
25 SVM 0.56752 0.567601 0.56744 75 LR 0.72816 0.728179 0.728158
25 MLP 0.82064 0.835123 0.818636 80 RF 0.8312 0.833325 0.830914
25 LR 0.7688 0.77565 0.767305 80 SVM 0.45584 0.454276 0.450625
30 RF 0.85872 0.860376 0.858546 80 MLP 0.78432 0.787886 0.783618
30 SVM 0.48912 0.48806 0.473907 80 LR 0.72352 0.723704 0.723475
30 MLP 0.82432 0.836335 0.822697 85 RF 0.82096 0.822143 0.820782
30 LR 0.76736 0.77392 0.765909 85 SVM 0.32896 0.32528 0.325495
35 RF 0.85744 0.858654 0.85731 85 MLP 0.77872 0.778777 0.778704
35 SVM 0.6888 0.696627 0.685778 85 LR 0.71472 0.71695 0.714030
35 MLP 0.81264 0.83328 0.809636 90 RF 0.8168 0.821094 0.816159
35 LR 0.76528 0.77187 0.763798 90 SVM 0.58496 0.596478 0.571738
40 RF 0.848 0.848969 0.847885 90 MLP 0.76144 0.761799 0.761370
40 SVM 0.54944 0.55096 0.546444 90 LR 0.68288 0.693514 0.678592
40 MLP 0.7792 0.787409 0.777661 95 RF 0.7912 0.791668 0.791127
40 LR 0.76128 0.765575 0.760268 95 SVM 0.44768 0.447606 0.447550
45 RF 0.852 0.853913 0.851787 95 MLP 0.66896 0.705839 0.653682
45 SVM 0.57296 0.574488 0.570521 95 LR 0.6304 0.681694 0.602726
45 MLP 0.80912 0.818758 0.807625 100 RF 0.51584 0.721145 0.370566
45 LR 0.7568 0.76089 0.7558 100 SVM 0.6464 0.649265 0.644796
50 RF 0.85552 0.856864 0.855374 100 MLP 0.55968 0.71003 0.464502
50 SVM 0.54864 0.551933 0.540752 100 LR 0.5344 0.676049 0.418238

193

Table 28. Classification performance of machine learning models trained with 100,000
examples of a mixture of real and TVAE synthetic data.

% Synthetic Classifier Recall Precision F-1 % Synthetic Classifier Recall Precision F-1

0 RF 0.87591 0.877315 0.875794 50 MLP 0.8254 0.827653 0.825099
0 SVM 0.74972 0.750179 0.749605 50 LR 0.757 0.76242 0.755739
0 MLP 0.83173 0.832603 0.83162 55 RF 0.86753 0.868997 0.867398
0 LR 0.77166 0.780512 0.769844 55 SVM 0.65011 0.652111 0.648955
5 RF 0.87624 0.877588 0.876129 55 MLP 0.82245 0.834392 0.82085
5 SVM 0.6767 0.679434 0.675464 55 LR 0.75234 0.755808 0.751498
5 MLP 0.83796 0.838393 0.837908 60 RF 0.86583 0.867307 0.865695
5 LR 0.77168 0.78013 0.769945 60 SVM 0.3571 0.356919 0.356897
10 RF 0.87569 0.876921 0.875588 60 MLP 0.81962 0.819842 0.819589
10 SVM 0.72021 0.720278 0.720188 60 LR 0.74907 0.751466 0.748471
10 MLP 0.83608 0.843322 0.835211 65 RF 0.86276 0.864202 0.862624
10 LR 0.77087 0.778666 0.769256 65 SVM 0.63858 0.641806 0.636512
15 RF 0.8748 0.875917 0.874707 65 MLP 0.81363 0.816683 0.813180
15 SVM 0.67152 0.672277 0.671159 65 LR 0.74422 0.745579 0.743866
15 MLP 0.83806 0.842775 0.837501 70 RF 0.86186 0.86339 0.861714
15 LR 0.77122 0.778762 0.769662 70 SVM 0.60751 0.612717 0.602924
20 RF 0.87385 0.875101 0.873745 70 MLP 0.81486 0.829806 0.812738
20 SVM 0.684 0.684435 0.683814 70 LR 0.73863 0.739157 0.738486
20 MLP 0.83916 0.842129 0.83881 75 RF 0.85972 0.86103 0.859593
20 LR 0.77151 0.779099 0.769946 75 SVM 0.6834 0.685757 0.682393
25 RF 0.87315 0.874479 0.873037 75 MLP 0.81643 0.823988 0.815353
25 SVM 0.6459 0.646108 0.645774 75 LR 0.73059 0.730598 0.730588
25 MLP 0.82613 0.82613 0.82613 80 RF 0.85515 0.856177 0.855045
25 LR 0.77047 0.777684 0.76897 80 SVM 0.36897 0.368522 0.368432
30 RF 0.87252 0.873743 0.872416 80 MLP 0.80488 0.824369 0.801904
30 SVM 0.6509 0.65115 0.650756 80 LR 0.72086 0.721919 0.720527
30 MLP 0.82881 0.850089 0.826169 85 RF 0.85319 0.854954 0.853007
30 LR 0.76886 0.776213 0.767311 85 SVM 0.36626 0.365845 0.365769
35 RF 0.87002 0.871328 0.869905 85 MLP 0.77594 0.780054 0.775114
35 SVM 0.39139 0.390622 0.39032 85 LR 0.70517 0.709791 0.703537
35 MLP 0.83008 0.832795 0.829733 90 RF 0.84246 0.843811 0.842305
35 LR 0.76681 0.773516 0.765372 90 SVM 0.49334 0.492599 0.480334
40 RF 0.86943 0.870759 0.869313 90 MLP 0.76951 0.775411 0.768269
40 SVM 0.63677 0.641583 0.633656 90 LR 0.68507 0.70202 0.678323
40 MLP 0.82729 0.836042 0.826158 95 RF 0.82947 0.831371 0.829225
40 LR 0.76324 0.769293 0.761902 95 SVM 0.48383 0.481648 0.468017
45 RF 0.86826 0.869553 0.868145 95 MLP 0.71482 0.72963 0.710146
45 SVM 0.69244 0.702131 0.688709 95 LR 0.63285 0.691331 0.602474
45 MLP 0.82674 0.827924 0.826584 100 RF 0.51887 0.717038 0.376561
45 LR 0.7605 0.765972 0.759262 100 SVM 0.4821 0.480433 0.470826
50 RF 0.86697 0.868471 0.866834 100 MLP 0.52281 0.663836 0.391964
50 SVM 0.64127 0.641397 0.64119 100 LR 0.5241 0.67278 0.393658

194

Appendix D. Tabulated Performance of Adversarial
Examples Constructed for Contribution 2

195

Table 29. Detailed performance of infiltration adversarial examples tested against the
surrogate model and NIDS models.

 Infiltration

 Raw Packet Random Perturbations Near Optimal Perturbations

Trial
Fool

Surrogate
Loss

Surrogate

Fool
CNN
NIDS

Fool
FNN
NIDS

Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate

Rate
Fool
CNN
NIDS

Rate
Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate
Rate Fool
CNN NIDS

Rate Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS

1 0 2.18E-05 0 0 0 0 2.19E-02 0 0 0 1 1.31E+00 0 0 0

2 0 2.23E-08 0 0 0 0 2.29E-03 0.002 0.002 0 1 3.55E+00 0.120 0 0

3 0 5.40E-10 0 0 0 0 4.89E-03 0 0 0 1 8.48E-01 0 0 0

4 0 1.69E-10 0 0 0 0 1.04E-04 0 0 0 1 1.90E+00 0 0 0

5 0 3.69E-11 0 0 0 0 2.82E-04 0 0 0 1 7.28E+00 0 0 0

6 0 5.15E-13 0 0 0 0 5.89E-06 0 0 0 1 1.79E+00 0 0 0

7 0 5.26E-09 0 0 0 0 1.33E-03 0 0 0 1 5.26E+00 0.020 0 0

8 0 6.94E-10 0 0 0 0 2.05E-04 0 0 0 1 2.43E+00 0 0 0

9 0 4.52E-11 0 0 0 0 5.84E-04 0 0 0 1 1.92E+00 0 0 0

10 0 4.69E-09 0 0 0 0 9.08E-04 0 0 0 1 3.16E+00 0 0 0

11 0 6.74E-14 0 0 0 0 8.35E-06 0 0 0 1 1.31E+00 0 0 0

12 0 7.21E-08 0 0 0 0 1.10E-02 0 0 0 1 1.21E+01 0 0 0

13 0 2.23E-08 0 0 0 0 3.06E-03 0.002 0.002 0 1 6.88E+00 0.220 0 0

14 0 2.09E-10 0 0 0 0 4.15E-04 0 0 0 1 3.82E+00 0 0 0

15 0 2.43E-09 0 0 0 0 6.66E-03 0.006 0.006 0 1 7.97E+00 0.220 0 0

16 0 2.13E-12 0 0 0 0 1.62E-05 0 0 0 0 5.53E-01 0 0 0

17 0 1.54E-11 0 0 0 0 2.50E-04 0 0 0 0 2.38E-01 0 0 0

18 0 2.74E-11 0 0 0 0 1.62E-04 0 0 0 1 1.61E+00 0 0 0

19 0 1.14E-10 0 0 0 0 1.01E-04 0 0 0 1 6.70E+00 0 0 0

20 0 5.26E-09 0 0 0 0 1.19E-03 0 0 0 1 5.31E+00 0 0 0

21 0 1.73E-17 0 0 0 0 5.53E-09 0 0 0 0 6.61E-03 0 0 0

22 0 3.20E-12 0 0 0 0 6.51E-06 0 0 0 1 1.98E+00 0.020 0 0

23 0 1.22E-09 0 0 0 0 4.56E-04 0 0 0 1 2.59E+00 0 0 0

24 0 5.51E-12 0 0 0 0 3.48E-05 0 0 0 1 5.42E+00 0 0 0

25 0 1.25E-09 0 0 0 0 4.32E-03 0 0 0 1 6.58E+00 0 0 0

26 0 4.52E-11 0 0 0 0 1.32E-04 0 0 0 0 3.87E-01 0 0 0

27 0 1.35E-09 0 0 0 0 1.52E-02 0 0 0 1 7.00E+00 0 0 0

28 0 2.22E-10 0 0 0 0 1.32E-03 0 0 0 1 4.57E+00 0 0 0

29 0 3.79E-07 0 0 0 0 4.06E-02 0 0 0 1 8.86E+00 0 0 0

30 0 1.36E-17 0 0 0 0 3.95E-09 0 0 0 0 2.23E-03 0 0 0

31 0 2.09E-10 0 0 0 0 3.30E-04 0 0 0 1 2.15E+00 0 0 0

32 0 2.85E-11 0 0 0 0 1.41E-04 0 0 0 1 1.13E+00 0 0 0

33 0 9.68E-15 0 0 0 0 1.19E-07 0 0 0 0 4.48E-03 0 0 0

34 0 6.13E-12 0 0 0 0 5.10E-06 0 0 0 0 4.31E-01 0 0 0

35 0 1.69E-10 0 0 0 0 6.30E-05 0 0 0 1 2.11E+00 0 0 0

36 0 9.68E-15 0 0 0 0 2.74E-07 0 0 0 0 2.41E-01 0 0 0

37 0 2.09E-10 0 0 0 0 3.28E-04 0 0 0 1 3.24E+00 0 0 0

38 0 3.62E-15 0 0 0 0 4.15E-08 0 0 0 0 3.83E-05 0 0 0

39 0 4.78E-11 0 0 0 0 2.08E-04 0 0 0 1 9.00E-01 0 0 0

40 0 2.97E-12 0 0 0 0 5.46E-06 0 0 0 0 3.22E-01 0 0 0

41 0 3.76E-07 0 0 0 0 3.50E-01 0 0 0 1 1.59E+01 0 0 0

42 0 3.69E-11 0 0 0 0 5.63E-05 0 0 0 1 1.63E+00 0 0 0

43 0 3.49E-13 0 0 0 0 2.67E-05 0 0 0 1 1.12E+00 0 0 0

44 0 6.13E-12 0 0 0 0 1.35E-05 0 0 0 0 5.50E-02 0 0 0

45 0 2.05E-07 0 0 0 0 4.04E-03 0 0 0 1 2.14E+00 0 0 0

46 0 2.22E-10 0 0 0 0 3.39E-04 0 0 0 0 2.83E-01 0 0 0

47 0 1.52E-05 0 0 0 0.026 5.21E+00 0.618 0.618 0.532 1 1.65E+01 0.860 0.480 0.600

48 0 3.51E-11 0 0 0 0 4.21E-05 0 0 0 1 2.60E+00 0 0 0

49 0 5.88E-12 0 0 0 0 1.16E-05 0 0 0 1 3.51E+00 0 0 0

50 0 1.88E-10 0 0 0 0 2.67E-04 0 0 0 1 2.79E+00 0 0 0

51 0 3.20E-12 0 0 0 0 2.58E-04 0 0 0 1 3.37E+00 0 0 0

52 0 6.13E-12 0 0 0 0 3.24E-05 0 0 0 1 1.03E+00 0 0 0

53 0 9.21E-12 0 0 0 0 1.31E-04 0 0 0 1 4.29E+00 0 0 0

54 0 2.12E-15 0 0 0 0 7.20E-08 0 0 0 0 8.84E-03 0 0 0

55 0 8.19E-09 0 0 0 0 1.33E-01 0 0 0 1 7.15E+00 0 0 0

56 0 1.13E-10 0 0 0 0 9.38E-05 0 0 0 1 3.30E+00 0 0 0

57 0 1.71E-11 0 0 0 0 9.14E-04 0 0 0 1 3.64E+00 0 0 0

58 0 3.48E-11 0 0 0 0 1.52E-04 0 0 0 0 6.77E-01 0 0 0

59 0 4.78E-11 0 0 0 0 1.28E-03 0 0 0 1 2.01E+00 0 0 0

60 0 1.36E-11 0 0 0 0 5.01E-05 0 0 0 0 4.45E-01 0 0 0

61 0 5.38E-09 0 0 0 0 3.93E-01 0 0 0 1 8.26E+00 0 0 0

62 0 5.51E-12 0 0 0 0 3.49E-04 0 0 0 1 3.18E+00 0 0 0

63 0 2.22E-10 0 0 0 0 8.03E-04 0 0 0 1 1.01E+00 0 0 0

64 0 2.04E-10 0 0 0 0 2.32E-04 0 0 0 1 2.13E+00 0 0 0

196

65 0 1.31E-06 0 0 0 0.004 3.03E+00 0 0 0 1 9.80E+00 0 0 0

66 0 1.52E-05 0 0 0 0.024 2.92E+00 0.624 0.624 0.596 1 1.15E+01 0.900 0.520 0.600

67 0 5.51E-12 0 0 0 0 2.05E-04 0 0 0 1 2.45E+00 0 0 0

68 0 3.84E-09 0 0 0 0 1.50E-03 0 0 0 1 4.31E+00 0 0 0

69 0 3.49E-13 0 0 0 0 2.97E-06 0 0 0 1 8.45E-01 0 0 0

70 0 4.04E-11 0 0 0 0 1.20E-03 0 0 0 1 4.17E+00 0 0 0

71 0 6.13E-12 0 0 0 0 7.97E-06 0 0 0 0 4.95E-01 0 0 0

72 0 2.23E-08 0 0 0 0 2.50E-02 0 0 0 1 7.75E+00 0.040 0 0

73 0 6.27E-14 0 0 0 0 3.58E-05 0 0 0 1 3.71E+00 0 0 0

74 0 1.74E-15 0 0 0 0 1.20E-05 0 0 0 0 4.74E-01 0 0 0

75 0 9.35E-12 0 0 0 0 1.57E-04 0 0 0 1 3.47E+00 0 0 0

76 0 1.25E-09 0 0 0 0 8.09E-04 0 0 0 1 4.32E+00 0 0 0

77 0 2.85E-11 0 0 0 0 2.07E-04 0 0 0 1 1.76E+00 0 0 0

78 0 2.09E-10 0 0 0 0 7.88E-04 0 0 0 1 3.32E+00 0 0 0

79 0 5.93E-14 0 0 0 0 4.05E-06 0 0 0 0 2.51E-01 0 0 0

80 0 2.22E-10 0 0 0 0 4.04E-04 0 0 0 1 2.95E+00 0 0 0

81 0 5.26E-09 0 0 0 0 5.84E-04 0 0 0 1 4.35E+00 0 0 0

82 0 1.93E-10 0 0 0 0 4.12E-04 0 0 0 1 3.72E+00 0 0 0

83 1 3.88E+00 0 0 1 0.322 1.28E+01 0.010 0.010 0.354 1 3.15E+01 0.380 0 0.540

84 0 2.04E-10 0 0 0 0 1.16E-04 0 0 0 1 4.44E+00 0 0 0

85 0 5.26E-09 0 0 0 0 4.18E-03 0 0 0 1 1.75E+00 0 0 0

86 0 3.81E-11 0 0 0 0 1.87E-04 0 0 0 1 8.52E-01 0 0 0

87 0 5.93E-14 0 0 0 0 4.23E-07 0 0 0 0 6.85E-02 0 0 0

88 0 2.23E-08 0 0 0 0 1.11E-02 0 0 0 1 5.71E+00 0 0 0

89 0 2.85E-11 0 0 0 0 4.18E-04 0 0 0 1 7.96E-01 0 0 0

90 0 2.22E-10 0 0 0 0 3.86E-04 0 0 0 1 2.91E+00 0 0 0

91 0 3.48E-11 0 0 0 0 1.57E-04 0 0 0 1 4.04E+00 0 0 0

92 0 3.76E-07 0 0 0 0 6.39E-01 0 0 0 1 9.35E+00 0 0 0

93 0 1.93E-10 0 0 0 0 1.42E-03 0 0 0 1 3.03E+00 0 0 0

94 0 1.93E-10 0 0 0 0 1.58E-03 0 0 0 1 3.11E+00 0 0 0

95 0 3.69E-11 0 0 0 0 3.77E-04 0 0 0 1 1.27E+00 0 0 0

96 0 8.40E-13 0 0 0 0 2.26E-04 0 0 0 1 6.75E+00 0 0 0

97 0 1.35E-09 0 0 0 0 9.00E-03 0 0 0 1 8.84E+00 0.080 0 0

98 0 5.40E-10 0 0 0 0 9.81E-04 0 0 0 1 2.21E+00 0 0 0

99 0 3.33E-10 0 0 0 0 3.28E-04 0 0 0 1 2.65E+00 0.020 0 0

100 0 1.69E-10 0 0 0 0 9.83E-05 0 0 0 1 2.86E+00 0 0 0

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss % Packets
Fool Model

%
Packets

Fool
Model

%
Packets

Fool
Model

 1% 3.88E-02 0 0 1% 4% 2.57E-01 6% 6% 3% 81% 3.72540116 11% 2% 3%

197

Table 30. Detailed performance of slowloris adversarial examples tested against the
surrogate model and NIDS models.

 Slowloris

 Raw Packet Random Perturbations Near Optimal Perturbations

Trial
Fool

Surrogate
Loss

Surrogate

Fool
CNN
NIDS

Fool
FNN
NIDS

Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate

Rate
Fool
CNN
NIDS

Rate
Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate
Rate Fool
CNN NIDS

Rate Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS

1 0 1.91E-03 0 1 0 0.670 1.30E+01 0.036 0.036 0.020 1 2.58E+01 0.300 1 0.240

2 0 6.90E-02 0 1 0 0.638 1.22E+01 0.190 0.190 0.276 1 2.49E+01 0.820 1 0.520

3 1 3.59E+00 0 0 1 0.336 9.42E+00 0 0 0.498 1 2.38E+01 0 0 0.820

4 0 1.29E-05 0 0 0 0 4.39E-01 0 0 0 1 9.52E+00 0 0 0

5 0 2.41E-01 0 1 0 0.468 1.00E+01 0.002 0.002 0.052 1 2.30E+01 0 0.680 0

6 0 1.91E-03 0 1 0 0.670 1.31E+01 0.064 0.064 0.036 1 2.83E+01 0.480 1 0.120

7 0 8.33E-06 0 0 0 0 2.72E-01 0 0 0 1 1.02E+01 0 0 0

8 0 5.16E-06 0 0 0 0 2.43E-01 0 0 0 1 7.70E+00 0 0 0

9 0 8.33E-06 0 0 0 0 3.47E-01 0 0 0 1 1.25E+01 0.300 0 0

10 0 3.42E-06 0 0 0 0 5.04E-02 0 0 0 1 7.85E+00 0 0 0

11 0 6.90E-02 0 1 0 0.630 1.58E+01 0.196 0.196 0.294 1 2.50E+01 0.760 1 0.400

12 0 6.90E-02 0 1 0 0.592 1.09E+01 0.228 0.228 0.3 1 2.63E+01 0.740 0.980 0.560

13 0 7.78E-05 0 1 0 0.028 4.99E+00 0.008 0.008 0.218 1 1.28E+01 0.040 0.960 0.320

14 0 5.92E-06 0 0 0 0.002 1.38E+00 0 0 0 1 8.48E+00 0 0 0

15 0 7.78E-05 0 1 0 0.020 4.19E+00 0.004 0.004 0.234 1 1.25E+01 0.140 0.980 0.320

16 0 4.82E-05 0 0 0 0.008 2.50E+00 0.172 0.172 0.178 1 1.44E+01 0.660 0.700 0.240

17 0 1.71E-06 0 0 0 0 1.26E-02 0 0 0 1 5.82E+00 0 0 0

18 0 1.85E-04 0 1 1 0.090 5.95E+00 0 0 1 1 1.98E+01 0.040 1 1

19 0 2.42E-06 0 0 0 0 4.76E-02 0 0 0 1 8.10E+00 0.140 0 0

20 0 5.17E-01 0 1 1 0.222 7.91E+00 0.002 0.002 0.938 1 1.71E+01 0.120 1 0.980

21 0 1.66E-06 0 0 0 0 1.86E-02 0 0 0 1 3.94E+00 0 0 0

22 0 3.58E-04 0 0 0 0.018 2.95E+00 0.020 0.020 0.160 1 1.09E+01 0.100 0.020 0.220

23 0 6.96E-02 0 0 1 0.358 1.07E+01 0.144 0.144 0.356 1 1.84E+01 0.600 0.200 0.460

24 0 2.21E-06 0 0 0 0 4.73E-02 0 0 0 1 6.07E+00 0 0 0

25 1 4.94E+00 0 1 0 0.334 1.07E+01 0.226 0.226 0.202 1 2.31E+01 0.760 1 0.320

26 0 2.21E-06 0 0 0 0 1.25E-02 0 0 0 1 7.16E+00 0 0 0

27 0 3.58E-04 0 0 0 0.002 9.37E-01 0.014 0.014 0.158 1 1.52E+01 0.180 0.020 0

28 0 1.58E-06 0 0 0 0 3.16E-02 0 0 0 1 3.65E+00 0.020 0 0

29 0 6.96E-02 0 0 1 0.384 8.58E+00 0.176 0.176 0.384 1 2.09E+01 0.600 0.080 0.520

30 0 4.57E-06 0 0 0 0 9.66E-02 0 0 0 1 9.04E+00 0.020 0 0

31 0 3.58E-04 0 0 0 0.016 4.09E+00 0.038 0.038 0.168 1 1.17E+01 0.240 0 0.260

32 0 1.29E-05 0 0 0 0.002 1.81E+00 0 0 0 1 1.03E+01 0.040 0 0

33 0 5.16E-06 0 0 0 0 2.11E-01 0 0 0 1 8.03E+00 0 0 0

34 0 2.65E-04 0 1 1 0.038 4.49E+00 0.138 0.138 0.686 1 1.47E+01 0.540 1 0.720

35 0 5.92E-06 0 0 0 0 1.29E-01 0 0 0 1 5.90E+00 0 0 0

36 0 2.42E-06 0 0 0 0 1.35E-01 0 0 0 1 7.63E+00 0 0 0

37 0 5.16E-06 0 0 0 0 1.01E-01 0 0 0 1 7.01E+00 0 0 0

38 0 6.00E-02 0 1 0 0.424 8.80E+00 0.002 0.002 0 1 2.15E+01 0.120 1 0

39 0 1.91E-03 0 1 0 0.704 1.76E+01 0.060 0.060 0.024 1 2.56E+01 0.460 1 0.120

40 0 2.42E-06 0 0 0 0 1.03E-01 0 0 0 1 7.58E+00 0 0 0

41 0 1.91E-03 0 1 0 0.636 1.51E+01 0.046 0.046 0.030 1 2.62E+01 0.340 1 0.040

42 0 1.85E-04 0 1 1 0.134 6.86E+00 0 0 1 1 1.76E+01 0.040 1 1

43 0 2.34E-06 0 0 0 0 2.04E-01 0 0 0 1 9.56E+00 0 0 0

44 1 4.94E+00 0 1 0 0.336 9.46E+00 0.232 0.232 0.180 1 2.22E+01 0.800 1 0.180

45 0 5.86E-06 0 0 0 0 3.56E-01 0 0 0 1 9.12E+00 0.020 0 0

46 0 2.21E-06 0 0 0 0 2.61E-02 0 0 0 1 9.32E+00 0.060 0 0

47 0 2.21E-06 0 0 0 0 2.90E-02 0 0 0 1 5.83E+00 0 0 0

48 0 1.04E-02 0 1 0 0.154 8.80E+00 0.350 0.350 0.096 1 1.76E+01 0.760 1 0.120

49 0 2.42E-06 0 0 0 0 4.71E-02 0 0 0 1 9.47E+00 0 0 0

50 0 3.58E-04 0 0 0 0.004 1.38E+00 0.024 0.024 0.146 1 1.20E+01 0.320 0 0.340

51 0 5.57E-02 1 1 1 0.352 1.05E+01 0.720 0.720 0.786 1 2.19E+01 0.980 1 0.900

52 0 1.04E-02 0 1 0 0.130 1.00E+01 0.352 0.352 0.106 1 1.84E+01 0.920 1 0.060

53 0 3.42E-06 0 0 0 0 3.86E-01 0.002 0.002 0 1 9.51E+00 0.060 0 0

54 0 2.65E-04 0 1 1 0.050 3.45E+00 0.112 0.112 0.686 1 1.53E+01 0.500 1 0.800

55 0 2.42E-06 0 0 0 0 2.25E-02 0 0 0 1 8.40E+00 0 0 0

56 0 1.23E-06 0 0 0 0 1.65E-02 0 0 0 1 8.95E+00 0.020 0 0

57 0 5.57E-02 1 1 1 0.380 8.90E+00 0.760 0.760 0.782 1 2.35E+01 1 1 0.920

58 0 1.74E-06 0 0 0 0 7.92E-02 0 0 0 1 9.38E+00 0 0 0

59 0 2.41E-01 0 1 0 0.464 1.10E+01 0.004 0.004 0.026 1 2.15E+01 0.440 0.980 0

60 0 1.71E-06 0 0 0 0 4.49E-01 0.002 0.002 0 1 4.68E+00 0 0 0

61 0 1.91E-03 0 1 0 0.640 1.59E+01 0.046 0.046 0.018 1 2.23E+01 0.160 1 0.080

62 0 2.08E-06 0 0 0 0 1.13E-02 0 0 0 1 8.68E+00 0.060 0 0

63 0 1.91E-03 0 1 0 0.722 1.55E+01 0.050 0.050 0.030 1 2.84E+01 0.580 1 0.400

64 0 2.69E-01 0 1 0 0.280 8.92E+00 0.028 0.028 0.032 1 2.02E+01 0.220 1 0.020

198

65 0 1.15E-01 1 1 0 0.710 1.52E+01 0.392 0.392 0.704 1 2.41E+01 0.960 0.900 0.820

66 0 1.66E-06 0 0 0 0 5.28E-02 0 0 0 1 8.49E+00 0.020 0 0

67 0 2.69E-01 0 1 0 0.236 8.97E+00 0.004 0.004 0.040 1 2.18E+01 0.300 1 0.040

68 0 2.34E-06 0 0 0 0 8.27E-02 0 0 0 1 8.35E+00 0 0 0

69 0 4.82E-05 0 0 0 0.012 4.40E+00 0.204 0.204 0.196 1 1.04E+01 0.700 0.660 0.380

70 0 1.61E-02 0 1 0 0.274 8.81E+00 0.054 0.054 0.574 1 2.02E+01 0.540 1 0.820

71 0 2.41E-01 0 1 0 0.482 1.47E+01 0.008 0.008 0.040 1 2.01E+01 0.140 0.860 0.060

72 0 1.15E-01 1 1 0 0.744 1.63E+01 0.396 0.396 0.672 1 2.40E+01 0.980 0.860 0.820

73 0 4.82E-05 0 0 0 0.010 1.71E+00 0.198 0.198 0.176 1 1.16E+01 0.740 0.600 0.280

74 0 1.29E-05 0 0 0 0.002 7.28E-01 0 0 0 1 1.25E+01 0.080 0 0

75 0 2.64E-04 0 1 0 0.020 1.93E+00 0.108 0.108 0.098 1 1.42E+01 0.560 1 0.340

76 0 2.64E-04 0 1 0 0.010 2.19E+00 0.106 0.106 0.120 1 1.23E+01 0.680 1 0.200

77 0 4.57E-06 0 0 0 0 5.05E-01 0 0 0 1 7.02E+00 0 0 0

78 0 2.42E-06 0 0 0 0 1.74E-02 0 0 0 1 6.75E+00 0 0 0

79 0 1.61E-02 0 1 0 0.240 8.12E+00 0.044 0.044 0.594 1 1.83E+01 0.400 1 0.860

80 0 7.94E-05 0 1 0 0.014 2.32E+00 0.008 0.008 0 1 1.25E+01 0.160 1 0

81 1 4.94E+00 0 1 0 0.302 7.63E+00 0.208 0.208 0.194 1 2.23E+01 0.680 1 0.300

82 0 1.91E-03 0 1 0 0.646 1.54E+01 0.058 0.058 0.018 1 2.71E+01 0.400 1 0.260

83 0 2.41E-01 0 1 0 0.446 1.12E+01 0.004 0.004 0.040 1 2.07E+01 0 0.960 0

84 0 4.82E-05 0 0 0 0.008 3.05E+00 0.234 0.234 0.204 1 1.15E+01 0.700 0.640 0.360

85 0 4.82E-05 0 0 0 0.010 1.51E+00 0.202 0.202 0.202 1 1.33E+01 0.760 0.620 0.340

86 0 3.58E-04 0 0 0 0.006 2.16E+00 0.030 0.030 0.170 1 1.36E+01 0.420 0 0.160

87 0 3.58E-04 0 0 0 0.016 3.95E+00 0.026 0.026 0.122 1 8.57E+00 0.200 0.020 0.120

88 0 8.33E-06 0 0 0 0.002 7.78E-01 0.002 0.002 0 1 1.22E+01 0.100 0 0

89 1 3.59E+00 0 0 1 0.348 1.09E+01 0 0 0.506 1 2.09E+01 0 0 0.740

90 0 2.17E-06 0 1 0 0 1.24E-01 0.020 0.020 0 1 9.23E+00 0.120 1 0

91 0 2.08E-06 0 0 0 0 1.09E-01 0 0 0 1 8.03E+00 0 0 0

92 1 4.94E+00 0 1 0 0.316 1.15E+01 0.230 0.230 0.176 1 2.51E+01 0.720 1 0.360

93 0 2.08E-06 0 0 0 0 6.99E-02 0 0 0 1 8.54E+00 0 0 0

94 0 1.66E-06 0 0 0 0 9.20E-02 0 0 0 1 4.12E+00 0 0 0

95 0 7.78E-05 0 1 0 0.018 2.52E+00 0.004 0.004 0.228 1 1.47E+01 0.320 0.980 0.180

96 0 2.41E-01 0 1 0 0.478 1.09E+01 0 0 0.028 1 2.13E+01 0.100 0.860 0.280

97 0 1.71E-06 0 0 0 0 1.01E-01 0 0 0 1 6.74E+00 0 0 0

98 0 2.21E-06 0 0 0 0 5.94E-03 0 0 0 1 8.15E+00 0 0 0

99 0 2.71E-01 1 1 1 0.402 1.34E+01 0.704 0.704 0.678 1 2.21E+01 1 1 1

100 0 5.49E-06 0 0 0 0 1.16E-01 0 0 0 1 9.79E+00 0.020 0 0

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss % Packets
Fool Model

%
Packets

Fool
Model

%
Packets

Fool
Model

 6% 3.03E-01 0.05 0.43 12% 61% 4.93E+00 56% 56% 55% 100% 14.4306161 69% 53% 52%

199

Table 31. Detailed performance of hulk adversarial examples tested against the surro-
gate model and NIDS models.

 Hulk

 Raw Packet Random Perturbations Near Optimal Perturbations

Trial
Fool

Surrogate
Loss

Surrogate

Fool
CNN
NIDS

Fool
FNN
NIDS

Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate

Rate
Fool
CNN
NIDS

Rate
Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS
Rate Fool
Surrogate

Best Obs
Loss

Surrogate
Rate Fool
CNN NIDS

Rate Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS

1 0 4.65E-06 0 0 0 0 0.22569913 0 0 0 1 6.87E+00 0.060 0 0

2 0 5.65E-06 0 0 0 0 0.34041515 0 0 0 1 1.11E+01 0.020 0 0

3 0 6.98E-06 0 0 0 0.004 3.43680763 0 0 0 1 1.01E+01 0.040 0 0

4 0 2.34E-06 0 0 0 0 0.078176 0 0 0 1 8.91E+00 0 0 0

5 0 6.71E-06 0 0 0 0 0.50846976 0 0 0 1 1.09E+01 0.040 0 0

6 0 5.26E-06 0 0 0 0 0.24862447 0 0 0 1 8.55E+00 0 0 0

7 0 1.25E-05 0 0 0 0 0.47634339 0 0 0 1 1.14E+01 0 0 0

8 0 2.46E-06 0 0 0 0 0.01227814 0 0 0 1 8.83E+00 0 0 0

9 0 7.34E-06 0 0 0 0 0.26315776 0 0 0 1 7.98E+00 0.020 0 0

10 0 3.41E-06 0 0 0 0 0.07128154 0 0 0 1 9.60E+00 0 0 0

11 0 3.29E-06 0 0 0 0.002 0.78402275 0 0 0 1 7.41E+00 0 0 0

12 0 1.56E-06 0 0 0 0 0.0462038 0 0 0 1 6.00E+00 0 0 0

13 0 1.95E-06 0 0 0 0 0.1242239 0.002 0.002 0 1 6.02E+00 0 0 0

14 0 3.49E-06 0 0 0 0 0.2483108 0 0 0 1 4.36E+00 0 0 0

15 0 2.01E-06 0 0 0 0.002 2.22076559 0 0 0 1 7.26E+00 0 0 0

16 0 6.82E-06 0 0 0 0 0.11436655 0 0 0 1 1.23E+01 0 0 0

17 0 5.46E-06 0 0 0 0 0.09230862 0 0 0 1 1.19E+01 0 0 0

18 0 3.56E-06 0 0 0 0 0.24921878 0 0 0 1 9.45E+00 0 0 0

19 0 1.25E-06 0 0 0 0 0.05747212 0 0 0 1 8.55E+00 0 0 0

20 0 5.84E-06 0 0 0 0.002 0.89910471 0 0 0 1 6.57E+00 0 0 0

21 0 1.36E-06 0 0 0 0 0.00731815 0 0 0 1 5.24E+00 0 0 0

22 0 5.71E-06 0 0 0 0 0.20557572 0 0 0 1 1.05E+01 0 0 0

23 0 4.72E-06 0 0 0 0 0.31241429 0.002 0.002 0 1 1.07E+01 0.020 0 0

24 0 4.66E-06 0 0 0 0.002 1.21047401 0 0 0 1 1.06E+01 0 0 0

25 0 2.88E-06 0 0 0 0 0.5140608 0 0 0 1 1.21E+01 0.040 0 0

26 0 1.87E-06 0 0 0 0 0.05437756 0 0 0 1 6.14E+00 0.000 0 0

27 0 2.88E-06 0 0 0 0 0.51302612 0 0 0 1 1.05E+01 0 0 0

28 0 4.76E-06 0 0 0 0 0.1736289 0 0 0 1 9.93E+00 0 0 0

29 0 3.73E-06 0 0 0 0 0.09984298 0 0 0 1 7.32E+00 0.020 0 0

30 0 4.65E-06 0 0 0 0 0.19377699 0.004 0.004 0 1 9.89E+00 0.160 0 0

31 0 8.83E-06 0 0 0 0 0.16572484 0 0 0 1 8.14E+00 0 0 0

32 0 1.62E-06 0 0 0 0 0.02611746 0 0 0 1 9.37E+00 0 0 0

33 0 6.20E-06 0 0 0 0.002 1.00848961 0 0 0 1 1.01E+01 0.040 0 0

34 0 3.64E-06 0 0 0 0 0.0723903 0 0 0 1 8.09E+00 0 0 0

35 0 1.07E-06 0 0 0 0 0.02234378 0 0 0 1 5.33E+00 0 0 0

36 0 1.83E-06 0 0 0 0.002 2.15884089 0 0 0 1 5.12E+00 0 0 0

37 0 2.13E-06 0 0 0 0 0.05282377 0 0 0 1 6.89E+00 0 0 0

38 0 2.42E-06 0 0 0 0 0.16941246 0 0 0 1 7.78E+00 0 0 0

39 0 3.26E-06 0 0 0 0 0.09278957 0 0 0 1 1.04E+01 0.040 0 0

40 0 1.21E-05 0 0 0 0 0.4437063 0 0 0 1 7.79E+00 0 0 0

41 0 6.81E-06 0 0 0 0 0.58851516 0 0 0 1 9.42E+00 0 0 0

42 0 6.92E-06 0 0 0 0 0.26744801 0 0 0 1 7.63E+00 0.020 0 0

43 0 1.07E-06 0 0 0 0 0.04822018 0 0 0 1 7.63E+00 0 0 0

44 0 1.46E-05 0 0 0 0.002 2.53316045 0 0 0 1 1.17E+01 0.040 0 0

45 0 5.75E-06 0 0 0 0 0.52664435 0 0 0 1 8.30E+00 0.020 0 0

46 0 1.90E-05 0 0 0 0 0.28408998 0 0 0 1 1.34E+01 0.100 0 0

47 0 4.95E-06 0 0 0 0 0.10006998 0 0 0 1 8.22E+00 0.060 0 0

48 0 9.19E-06 0 0 0 0 0.07676287 0.002 0.002 0 1 7.33E+00 0 0 0

49 0 3.32E-06 0 0 0 0 0.17553589 0 0 0 1 7.11E+00 0 0 0

50 0 2.64E-06 0 0 0 0 0.08336618 0.002 0.002 0 1 4.76E+00 0.040 0 0

51 0 6.21E-06 0 0 0 0 0.45666274 0 0 0 1 1.13E+01 0.060 0 0

52 0 4.37E-06 0 0 0 0 0.37189314 0.002 0.002 0 1 6.08E+00 0.020 0 0

53 0 3.29E-06 0 0 0 0 0.03646174 0 0 0 1 7.60E+00 0.040 0 0

54 0 3.87E-06 0 0 0 0 2.16E-02 0 0 0 1 7.89E+00 0.040 0 0

55 0 6.47E-06 0 0 0 0 1.70E-01 0 0 0 1 7.40E+00 0 0 0

56 0 2.58E-06 0 0 0 0 1.09E-02 0 0 0 1 8.71E+00 0 0 0

57 0 1.52E-05 0 0 0 0.002 8.04E-01 0 0 0 1 1.40E+01 0.140 0 0

58 0 4.11E-06 0 0 0 0 1.52E-01 0 0 0 1 8.60E+00 0 0 0

59 0 4.08E-06 0 0 0 0 2.87E-01 0 0 0 1 7.19E+00 0.040 0 0

60 0 2.01E-06 0 0 0 0 2.43E-01 0.002 0.002 0 1 6.90E+00 0.040 0 0

61 0 4.80E-06 0 0 0 0 3.16E-02 0 0 0 1 6.59E+00 0 0 0

62 0 6.20E-06 0 0 0 0 2.00E-01 0.002 0.002 0 1 8.81E+00 0.020 0 0

63 0 6.81E-06 0 0 0 0 1.18E-01 0 0 0 1 8.47E+00 0.200 0 0

64 0 2.07E-06 0 0 0 0 3.07E-01 0.002 0.002 0 1 1.29E+01 0.080 0 0

200

65 0 6.62E-06 0 0 0 0 3.20E-01 0 0 0 1 9.65E+00 0.100 0 0

66 0 2.74E-06 0 0 0 0 2.22E-01 0 0 0 1 1.11E+01 0 0 0

67 0 2.17E-06 0 0 0 0 7.51E-02 0 0 0 1 8.83E+00 0 0 0

68 0 1.47E-06 0 0 0 0 8.97E-02 0 0 0 1 4.38E+00 0 0 0

69 0 6.30E-06 0 0 0 0.002 1.38E+00 0 0 0 1 7.07E+00 0 0 0

70 0 2.74E-06 0 0 0 0 1.87E-01 0 0 0 1 5.72E+00 0 0 0

71 0 1.26E-06 0 0 0 0 8.68E-03 0 0 0 1 5.93E+00 0 0 0

72 0 2.96E-06 0 0 0 0 3.09E-02 0 0 0 1 7.93E+00 0.040 0 0

73 0 4.18E-06 0 0 0 0 2.73E-01 0 0 0 1 8.18E+00 0.000 0 0

74 0 1.47E-06 0 0 0 0 1.64E-02 0 0 0 1 5.87E+00 0.000 0 0

75 0 2.34E-06 0 0 0 0 3.24E-02 0 0 0 1 2.54E+00 0.000 0 0

76 0 1.44E-06 0 0 0 0 7.43E-02 0 0 0 1 6.36E+00 0.000 0 0

77 0 2.45E-06 0 0 0 0 4.77E-02 0 0 0 1 6.95E+00 0.000 0 0

78 0 6.71E-06 0 0 0 0.002 9.95E-01 0 0 0 1 8.42E+00 0.000 0 0

79 0 2.46E-06 0 0 0 0 2.74E-01 0 0 0 1 9.74E+00 0.000 0 0

80 0 6.84E-06 0 0 0 0 5.07E-02 0 0 0 1 8.99E+00 0.040 0 0

81 0 2.12E-05 0 0 0 0 2.74E-01 0 0 0 1 9.52E+00 0.000 0 0

82 0 5.52E-06 0 0 0 0 2.77E-01 0 0 0 1 6.33E+00 0.000 0 0

83 0 8.40E-06 0 0 0 0 2.50E-01 0 0 0 1 8.58E+00 0.000 0 0

84 0 4.11E-06 0 0 0 0 1.26E-01 0 0 0 1 1.02E+01 0.160 0 0

85 0 6.98E-06 0 0 0 0.002 2.71E+00 0 0 0 1 8.13E+00 0.000 0 0

86 0 5.36E-06 0 0 0 0 9.69E-02 0 0 0 1 8.34E+00 0.000 0 0

87 0 1.14E-06 0 0 0 0 6.28E-02 0 0 0 1 4.32E+00 0.000 0 0

88 0 1.24E-05 0 0 0 0.002 1.58E+00 0.004 0.004 0 1 1.08E+01 0.300 0 0

89 0 2.73E-06 0 0 0 0 1.00E-01 0.002 0.002 0 1 7.26E+00 0.020 0 0

90 0 4.10E-06 0 0 0 0 3.60E-02 0 0 0 1 6.50E+00 0.000 0 0

91 0 2.55E-06 0 0 0 0 1.21E-02 0 0 0 1 4.76E+00 0.000 0 0

92 0 6.01E-06 0 0 0 0 9.98E-02 0 0 0 1 9.69E+00 0.040 0 0

93 0 1.61E-06 0 0 0 0 1.04E-02 0 0 0 1 7.36E+00 0.000 0 0

94 0 1.68E-06 0 0 0 0 6.17E-02 0 0 0 1 7.67E+00 0.000 0 0

95 0 2.49E-06 0 0 0 0 6.29E-01 0 0 0 1 1.01E+01 0.040 0 0

96 0 3.51E-06 0 0 0 0 6.93E-02 0 0 0 1 4.82E+00 0.000 0 0

97 0 3.82E-06 0 0 0 0 6.77E-01 0.004 0.004 0 1 1.15E+01 0.060 0 0

98 0 1.60E-05 0 0 0 0 2.41E-01 0 0 0 1 8.09E+00 0.000 0 0

99 0 6.01E-06 0 0 0 0 2.64E-01 0 0 0 1 1.06E+01 0.000 0 0

100 0 2.26E-06 0 0 0 0 1.47E-01 0 0 0 1 7.78E+00 0.020 0 0

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss % Packets
Fool Model

%
Packets

Fool
Model

%
Packets

Fool
Model

 0% 4.91E-06 0 0 0% 13% 3.77E-01 12% 12% 0% 100% 8.33952444 37% 0% 0%

201

Table 32. Detailed performance of SSH adversarial examples tested against the surro-
gate model and NIDS models.

 SSH

 Raw Packet Random Perturbations Near Optimal Perturbations

Trial

Fool
Surrogat

e

Loss
Surrogat

e
Fool CNN

NIDS
Fool FNN

NIDS

Fool
Adaboost

NIDS

Rate Fool
Surrogat

e

Best Obs
Loss

Surrogat
e

Rate Fool
CNN
NIDS

Rate Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS

Rate Fool
Surrogat

e

Best Obs
Loss

Surrogat
e

Rate Fool
CNN
NIDS

Rate Fool
FNN
NIDS

Rate Fool
Adaboost

NIDS

1 0 3.30E-10 0 0 0 0 2.88E-05 0 0 0 0 4.93E-02 0 0 0

2 0 4.12E-10 0 0 0 0 9.55E-06 0 0 0 0 4.42E-02 0 0 0

3 0 6.63E-10 0 0 0 0 4.13E-05 0 0 0 0 3.57E-01 0 0 0

4 0 1.46E-08 0 0 0 0 7.05E-04 0 0 0 0 2.73E-01 0 0 0

5 0 1.66E-09 0 0 0 0 4.71E-05 0 0 0 1 1.37E+00 0 0 0

6 0 4.04E-09 0 0 0 0 2.68E-04 0 0 0 1 1.04E+00 0 0 0

7 0 1.94E-09 0 0 0 0 6.61E-05 0 0 0 0 6.03E-02 0 0 0

8 0 1.47E-09 0 0 0 0 6.12E-06 0 0 0 0 7.06E-03 0 0 0

9 0 9.18E-09 0 0 0 0 7.19E-03 0 0 0 1 4.68E+00 0 0 0

10 0 3.43E-09 0 0 0 0 3.78E-05 0 0 0 0 4.79E-02 0 0 0

11 0 3.81E-10 0 0 0 0 2.71E-04 0 0 0 1 9.67E-01 0 0 0

12 0 9.46E-10 0 0 0 0 8.21E-06 0 0 0 0 3.35E-02 0 0 0

13 0 7.74E-10 0 0 0 0 6.99E-06 0 0 0 0 5.87E-03 0 0 0

14 0 1.83E-09 0 0 0 0 8.09E-05 0 0 0 0 1.76E-02 0 0 0

15 0 2.15E-10 0 0 0 0 1.38E-05 0 0 0 0 3.25E-01 0 0 0

16 0 9.00E-09 0 0 0 0 9.75E-02 0 0 0 1 6.50E+00 0 0 0

17 0 1.78E-07 0 0 0 0 1.69E-01 0 0 0 1 8.66E+00 0 0 0

18 0 9.04E-09 0 0 0 0 1.16E-03 0 0 0 1 2.73E+00 0 0 0

19 0 1.68E-09 0 0 0 0 9.17E-06 0 0 0 0 1.71E-02 0 0 0

20 0 2.85E-10 0 0 0 0 3.17E-06 0 0 0 0 2.68E-03 0 0 0

21 0 9.40E-10 0 0 0 0 6.05E-06 0 0 0 0 8.51E-03 0 0 0

22 0 6.21E-10 0 0 0 0 5.17E-06 0 0 0 0 9.54E-03 0 0 0

23 0 1.59E-10 0 0 0 0 1.96E-06 0 0 0 0 6.37E-03 0 0 0

24 0 1.63E-08 0 0 0 0 1.34E-02 0 0 0 1 4.51E+00 0 0 0

25 0 9.08E-09 0 0 0 0 8.03E-04 0 0 0 0 3.12E-01 0 0 0

26 0 4.37E-09 0 0 0 0 5.00E-05 0 0 0 0 3.79E-02 0 0 0

27 0 1.80E-09 0 0 0 0 7.72E-06 0 0 0 0 6.30E-03 0 0 0

28 0 3.65E-10 0 0 0 0 1.99E-04 0 0 0 0 6.01E-01 0 0 0

29 0 5.09E-10 0 0 0 0 4.84E-06 0 0 0 0 1.70E-03 0 0 0

30 0 3.96E-09 0 0 0 0 8.99E-04 0 0 0 1 3.41E+00 0 0 0

31 0 2.14E-10 0 0 0 0 2.74E-06 0 0 0 0 1.43E-03 0 0 0

32 0 1.78E-07 0 0 0 0 1.81E-01 0 0 0 1 6.23E+00 0 0 0

33 0 4.60E-09 0 0 0 0 2.30E-04 0 0 0 0 3.57E-01 0 0 0

34 0 1.09E-09 0 0 0 0 2.05E-05 0 0 0 0 6.95E-02 0 0 0

35 0 1.42E-09 0 0 0 0 5.48E-04 0 0 0 1 1.27E+00 0 0 0

36 0 1.69E-08 0 0 0 0 8.96E-03 0 0 0 1 6.73E+00 0 0 0

37 0 5.88E-10 0 0 0 0 3.47E-05 0 0 0 0 4.11E-03 0 0 0

38 0 2.57E-08 0 0 0 0 1.45E-02 0 0 0 1 3.75E+00 0 0 0

39 0 1.95E-09 0 0 0 0 5.84E-05 0 0 0 0 9.26E-02 0 0 0

40 0 3.38E-09 0 0 0 0 5.34E-04 0 0 0 0 2.81E-01 0 0 0

41 0 1.22E-09 0 0 0 0 4.99E-05 0 0 0 1 1.41E+00 0 0 0

42 0 4.60E-08 0 0 0 0 1.19E-03 0 0 0 1 1.40E+00 0 0 0

43 0 4.96E-10 0 0 0 0 1.42E-04 0 0 0 1 8.26E-01 0 0 0

44 0 2.53E-08 0 0 0 0 3.12E-02 0 0 0 1 5.40E+00 0 0 0

45 0 3.25E-09 0 0 0 0 4.95E-05 0 0 0 0 4.43E-03 0 0 0

46 0 3.55E-10 0 0 0 0 2.22E-06 0 0 0 0 1.04E-03 0 0 0

47 0 2.36E-10 0 0 0 0 6.72E-06 0 0 0 0 5.14E-04 0 0 0

48 0 6.21E-10 0 0 0 0 8.99E-06 0 0 0 0 2.50E-03 0 0 0

49 0 5.33E-09 0 0 0 0 4.50E-04 0 0 0 1 1.34E+00 0 0 0

50 0 1.02E-09 0 0 0 0 3.81E-05 0 0 0 0 5.10E-01 0 0 0

51 0 5.40E-10 0 0 0 0 1.28E-05 0 0 0 0 3.11E-03 0 0 0

52 0 1.43E-09 0 0 0 0 1.86E-04 0 0 0 0 3.05E-01 0 0 0

53 0 4.33E-09 0 0 0 0 7.69E-05 0 0 0 0 1.09E-02 0 0 0

54 0 5.00E-10 0 0 0 0 2.77E-06 0 0 0 0 9.01E-04 0 0 0

55 0 2.87E-09 0 0 0 0 2.09E-04 0 0 0 0 2.05E-01 0 0 0

56 0 1.50E-08 0 0 0 0 7.40E-04 0 0 0 0 3.35E-01 0 0 0

57 0 1.14E-09 0 0 0 0 1.52E-04 0 0 0 0 5.79E-01 0 0 0

58 0 2.53E-08 0 0 0 0 9.18E-02 0 0 0 1 6.07E+00 0 0 0

59 0 7.29E-08 0 0 0 0 1.47E-03 0 0 0 1 1.31E+00 0 0 0

60 0 2.33E-09 0 0 0 0 4.39E-05 0 0 0 0 2.49E-02 0 0 0

61 0 3.29E-10 0 0 0 0 1.32E-05 0 0 0 0 3.53E-03 0 0 0

62 0 4.10E-09 0 0 0 0 3.11E-04 0 0 0 1 7.07E-01 0 0 0

63 0 4.00E-08 0 0 0 0 2.10E-02 0 0 0 1 6.25E+00 0 0 0

64 0 1.01E-10 0 0 0 0 5.46E-07 0 0 0 0 1.07E-03 0 0 0

202

65 0 1.72E-09 0 0 0 0 3.47E-04 0 0 0 0 3.91E-01 0 0 0

66 0 6.34E-08 0 0 0 0 9.44E-03 0 0 0 1 4.48E+00 0 0 0

67 0 2.82E-09 0 0 0 0 2.34E-05 0 0 0 0 1.51E-02 0 0 0

68 0 5.40E-10 0 0 0 0 7.57E-06 0 0 0 0 1.15E-02 0 0 0

69 0 3.67E-07 0 0 0 0.008 2.05E+00 0 0 0 1 1.12E+01 0 0 0

70 0 2.35E-10 0 0 0 0 6.06E-06 0 0 0 0 1.95E-03 0 0 0

71 0 9.04E-09 0 0 0 0 1.18E-03 0 0 0 1 8.52E-01 0 0 0

72 0 8.19E-10 0 0 0 0 2.82E-04 0 0 0 1 1.62E+00 0 0 0

73 0 2.34E-09 0 0 0 0 4.07E-04 0 0 0 1 3.28E+00 0 0 0

74 0 1.74E-09 0 0 0 0 1.06E-03 0 0 0 0 4.73E-01 0 0 0

75 0 2.21E-09 0 0 0 0 1.49E-04 0 0 0 1 9.35E-01 0 0 0

76 0 8.48E-09 0 0 0 0 3.14E-04 0 0 0 0 5.19E-01 0 0 0

77 0 1.22E-10 0 0 0 0 4.38E-07 0 0 0 0 7.01E-05 0 0 0

78 0 1.38E-08 0 0 0 0 1.46E-03 0 0 0 1 2.52E+00 0 0 0

79 0 9.16E-09 0 0 0 0 3.76E-04 0 0 0 0 2.53E-01 0 0 0

80 0 1.58E-10 0 0 0 0 5.92E-06 0 0 0 0 1.90E-03 0 0 0

81 0 1.94E-09 0 0 0 0 4.00E-05 0 0 0 0 3.92E-02 0 0 0

82 0 3.24E-08 0 0 0 0 1.46E-01 0 0 0 1 4.34E+00 0 0 0

83 0 7.20E-11 0 0 0 0 1.02E-06 0 0 0 0 2.49E-04 0 0 0

84 0 1.69E-09 0 0 0 0 9.33E-05 0 0 0 0 3.77E-01 0 0 0

85 0 1.13E-09 0 0 0 0 5.73E-05 0 0 0 0 3.99E-02 0 0 0

86 0 2.08E-07 0 0 0 0 1.72E-01 0 0 0 1 6.84E+00 0 0 0

87 0 7.39E-09 0 0 0 0 4.74E-04 0 0 0 1 1.92E+00 0 0 0

88 0 6.42E-09 0 0 0 0 7.40E-04 0 0 0 0 6.08E-01 0 0 0

89 0 2.91E-09 0 0 0 0 1.13E-04 0 0 0 0 5.56E-01 0 0 0

90 0 9.18E-09 0 0 0 0 8.88E-03 0 0 0 1 3.00E+00 0 0 0

91 0 1.53E-10 0 0 0 0 2.52E-05 0 0 0 0 2.19E-01 0 0 0

92 0 1.02E-09 0 0 0 0 2.92E-05 0 0 0 0 2.22E-01 0 0 0

93 0 6.88E-09 0 0 0 0 3.07E-04 0 0 0 0 5.09E-01 0 0 0

94 0 6.05E-08 0 0 0 0 5.76E-02 0 0 0 1 1.96E+00 0 0 0

95 0 1.36E-09 0 0 0 0 1.86E-05 0 0 0 0 7.27E-03 0 0 0

96 0 5.54E-08 0 0 0 0 8.75E-03 0 0 0 1 5.45E+00 0 0 0

97 0 2.97E-08 0 0 0 0 2.23E-03 0 0 0 1 2.33E+00 0 0 0

98 0 3.80E-10 0 0 0 0 1.98E-06 0 0 0 0 1.30E-03 0 0 0

99 0 7.04E-10 0 0 0 0 8.02E-04 0 0 0 1 1.37E+00 0 0 0

100 0 6.36E-10 0 0 0 0 1.67E-05 0 0 0 0 1.08E-01 0 0 0

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

Avg Loss %
Packets

Fool
Model

%
Packets

Fool
Model

%
Packets

Fool
Model

 0% 1.68E-06 0 0 0% 1% 3.11E-02 0% 0% 0% 37% 1.38E+00 0% 0% 0%

203

Bibliography

1. Marc Chalé and Nathaniel D. Bastian, “Generating realistic cyber data for
training and evaluating machine learning classifiers for network intrusion detec-
tion systems,” Expert Systems with Applications, vol. 207, pp. 117936, 2022.

2. Marc Chalé, “Algorithm selection framework for cyber attack detection,” in
Proceedings 2nd ACM Workshop on Wireless Security and Machine Learning
(WiseML ’20), New York, NY, 2020, Association for Computing Machinery.

3. Yoshua Bengio, Ian Goodfellow, and Aaron Courville, Deep learning, vol. 1,
MIT press Massachusetts, USA:, 2017.

4. Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramacha-
neni, “Modeling tabular data using conditional gan,” 33rd Conference on Neual
Information Processing Systems, 2019.

5. Megan K. Woods, “A Metamodel Recommendation System Using Meta-
Learning,” M.S. thesis, Air Force Institute of Technology, 2020.

6. Department of Defense, Washington, DC, Summary of the 2018 National De-
fense Strategy of the United States of America, Jan 2018, Available at
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-
Strategy-Summary.pdf.

7. Scott D Applegate, “The dawn of kinetic cyber,” in 2013 5th international
conference on cyber conflict (CYCON 2013). IEEE, 2013, pp. 1–15.

8. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications, 2009, pp. 1–6.

9. S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis, and P. K. Chan, “Cost-
based modeling for fraud and intrusion detection: results from the jam project,”
in Proceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, 2000, vol. 2, pp. 130–144 vol.2.

10. Nour Moustafa and Jill Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 military
communications and information systems conference (MilCIS). IEEE, 2015, pp.
1–6.

11. Elie Alhajjar, Paul Maxwell, and Nathaniel D. Bastian, “Adversarial machine
learning in network intrusion detection systems,” 2020.

204

12. Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach, “Adversarial
machine learning attacks and defense methods in the cyber security domain,”
ACM Comput. Surv., vol. 54, no. 5, May 2021.

13. Joseph Clements, Yuzhe Yang, Ankur Sharma, Hongxin Hu, and Yingjie Lao,
“Rallying adversarial techniques against deep learning for network security,”
arXiv preprint arXiv:1903.11688, 2019.

14. Zilong Lin, Yong Shi, and Zhi Xue, “Idsgan: Generative adversarial networks
for attack generation against intrusion detection,” 2021.

15. Yuanzhang Li, Yaxiao Wang, Ye Wang, Lishan Ke, and Yu-an Tan, “A feature-
vector generative adversarial network for evading pdf malware classifiers,” In-
formation Sciences, vol. 523, pp. 38–48, 2020.

16. Mouna Boujrad, Saiida Lazaar, and Mohammed Hassine, “Performance assess-
ment of open source ids for improving iot architecture security implemented on
wbans,” in Proceedings of the 3rd International Conference on Networking, In-
formation Systems Security, New York, NY, USA, 2020, NISS2020, Association
for Computing Machinery.

17. Thomas H Ptacek and Timothy N Newsham, “Insertion, evasion, and denial of
service: Eluding network intrusion detection,” Tech. Rep., Secure Networks inc
Calgary Alberta, 1998.

18. Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung, “A
survey on security threats and defensive techniques of machine learning: A data
driven view,” IEEE access, vol. 6, pp. 12103–12117, 2018.

19. James P Anderson, “Computer security technology planning study—vol 1,”
1972.

20. James P Anderson, “Computer security threat monitoring and surveillance,”
1980.

21. “Early computer security papers: Seminal papers,” World Wide Web Page,
Available at
http://seclab.cs.ucdavis.edu/projects/history/seminal.html.

22. Stefan Axelsson, “Intrusion detection systems: A survey and taxonomy,” Tech.
Rep., Technical report, 2000.

23. Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi,
“A survey on gans for anomaly detection,” 2019.

24. David J Weller-Fahy, Brett J Borghetti, and Angela A Sodemann, “A survey of
distance and similarity measures used within network intrusion anomaly detec-
tion,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1.

205

25. Spencer Butt, “Cyber data anomaly detection using autoencoder neural net-
works,” M.S. thesis, Air Force Institute of Technology, 2018.

26. Rishi Shah, Jeff Gaston, Matthew Harvey, Michael McNamara, Osvaldo Ramos,
Yeonsang You, and Elie Alhajjar, “Evaluating evasion attack methods on binary
network traffic classifiers,” in Proceedings of the Conference on Information
Systems Applied Research ISSN, 2019, vol. 2167, p. 1508.

27. Karen Scarfone, Peter Mell, et al., “Guide to intrusion detection and prevention
systems (idps),” NIST special publication, vol. 800, no. 2007, pp. 94, 2007.

28. Richard Bejtlich, The practice of network security monitoring: understanding
incident detection and response, No Starch Press, 2013.

29. Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, July 2009.

30. H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis, R. Atkinson, and
X. Bellekens, “A taxonomy of network threats and the effect of current datasets
on intrusion detection systems,” IEEE Access, vol. 8, pp. 104650–104675, 2020.

31. Marc Chale, Bruce Cox, and Nathaniel Bastian, “Constrained optimization
based adversarial example generation for transfer attacks in network intrusion
detection systems,” Computers Industrial Engineering (under review), 2022.

32. Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al., “A novelty detection
approach to classification,” in IJCAI. Citeseer, 1995, vol. 1, pp. 518–523.

33. Marc Chalé, Nathaniel Bastian, and Bruce Cox, “Generating realistic cyber
data for training and evaluating machine learningclassifiers for network intrusion
detection systems,” unpublished, 2021.

34. Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Tygar,
Adversarial machine learning, Cambridge University Press, 2018.

35. Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach, “Adversarial
machine learning attacks and defense methods in the cyber security domain,”
ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–36, 2021.

36. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus, “Intriguing properties of neural net-
works,” arXiv preprint arXiv:1312.6199, 2013.

37. Naveed Akhtar and Ajmal Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” Ieee Access, vol. 6, pp. 14410–14430, 2018.

38. Alesia Chernikova and Alina Oprea, “Fence: Feasible evasion attacks on neural
networks in constrained environments,” 2020.

206

39. Paul Maxwell, Elie Alhajjar, and Nathaniel D Bastian, “Intelligent feature
engineering for cybersecurity,” in 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 2019, pp. 5005–5011.

40. Daiki Chiba, Kazuhiro Tobe, Tatsuya Mori, and Shigeki Goto, “Detecting ma-
licious websites by learning ip address features,” in 2012 IEEE/IPSJ 12th In-
ternational Symposium on Applications and the Internet, 2012, pp. 29–39.

41. S. Bradner and V. Paxson, “Rfc2780: Iana allocation guidelines for values in
the internet protocol and related headers,” 2000.

42. Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli, “Evasion attacks against ma-
chine learning at test time,” in Machine Learning and Knowledge Discovery
in Databases, Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip
Železný, Eds., Berlin, Heidelberg, 2013, pp. 387–402, Springer Berlin Heidel-
berg.

43. Alesia Chernikova and Alina Oprea, “Fence: Feasible evasion attacks on neural
networks in constrained environments,” arXiv preprint arXiv:1909.10480, 2019.

44. Giovanni Apruzzese, Mauro Andreolini, Luca Ferretti, Mirco Marchetti, and
Michele Colajanni, “Modeling realistic adversarial attacks against network in-
trusion detection systems,” Digital Threats, jun 2021, Accepted.

45. Michael J. De Lucia, Paul E. Maxwell, Nathaniel D. Bastian, Ananthram Swami,
Brian Jalaian, and Nandi Leslie, “Machine learning raw network traffic detec-
tion,” in Artificial Intelligence and Machine Learning for Multi-Domain Op-
erations Applications III, Tien Pham and Latasha Solomon, Eds. International
Society for Optics and Photonics, 2021, vol. 11746, pp. 185 – 194, SPIE.

46. David Bierbrauer, Michael DeLucia, Krishna Reddy, Paul Maxwell, and
Nathaniel Bastian, “Transfer learning for raw network traffic detection,” .

47. Weiwei Hu and Ying Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

48. Ian Goodfellow, “Adversarial examples and adversarial training,” Lecture Mate-
rial http://cs231n.stanford.edu/slides/2017/cs231n2017lecture16.pdf,May2017.

49. Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using adversarial sam-
ples,” arXiv preprint arXiv:1605.07277, 2016.

50. Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii,
“Distributional smoothing with virtual adversarial training,” stat, vol. 1050, pp.
29, 2016.

207

51. Tony Jebara, Machine learning: discriminative and generative, vol. 755,
Springer Science & Business Media, 2012.

52. Ian Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” 2017.

53. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adver-
sarial nets,” in Advances in neural information processing systems, 2014, pp.
2672–2680.

54. Chelsea Finn, Ian Goodfellow, and Sergey Levine, “Unsupervised learn-
ing for physical interaction through video prediction,” arXiv preprint
arXiv:1605.07157, 2016.

55. Chelsea Finn and Sergey Levine, “Deep visual foresight for planning robot
motion,” CoRR, vol. abs/1610.00696, 2016.

56. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–1134.

57. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adver-
sarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020.

58. LJ Bain and M Engelhardt, Introduction to probability and mathematical, 1992.

59. Scott E Fahlman, Geoffrey E Hinton, and Terrence J Sejnowski, “Massively
parallel architectures for al: Netl, thistle, and boltzmann machines,” in National
Conference on Artificial Intelligence, AAAI, 1983.

60. David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski, “A learning
algorithm for boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147–
169, 1985.

61. Geoffrey E Hinton, Terrence J Sejnowski, and David H Ackley, Boltzmann ma-
chines: Constraint satisfaction networks that learn, Carnegie-Mellon University,
Department of Computer Science Pittsburgh, PA, 1984.

62. Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

63. Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari,
and Donald B Rubin, Bayesian data analysis, CRC press, 2013.

64. W Keith Hastings, “Monte carlo sampling methods using markov chains and
their applications,” 1970.

208

65. Robert E Kass, Bradley P Carlin, Andrew Gelman, and Radford M Neal,
“Markov chain monte carlo in practice: a roundtable discussion,” The American
Statistician, vol. 52, no. 2, pp. 93–100, 1998.

66. Matthew D Hoffman and Andrew Gelman, “The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo.,” J. Mach. Learn. Res., vol.
15, no. 1, pp. 1593–1623, 2014.

67. John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck, “Probabilistic
programming in python using pymc3,” PeerJ Computer Science, vol. 2, pp. e55,
Apr. 2016.

68. Ilker Yildirim, “Bayesian inference: Metropolis-hastings sampling,” Dept. of
Brain and Cognitive Sciences, Univ. of Rochester, Rochester, NY, 2012.

69. Yee Whye Teh, “Dirichlet process.,” 2010.

70. Or Litany, Ari Morcos, Srinath Sridhar, Leonidas Guibas, and Judy Hoffman,
“Representation learning through latent canonicalizations,” 2020.

71. Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra
Malik, and Silvio Savarese, “Taskonomy: Disentangling task transfer learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2018.

72. Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” 2017.

73. Allan Zhou, Tom Knowles, and Chelsea Finn, “Meta-learning symmetries by
reparameterization,” 2020.

74. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “” why should i
trust you?”: Explaining the predictions of any classifier,” Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 1135–1144, 2016.

75. John McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory,” ACM Transactions on Information and System Security (TISSEC),
vol. 3, no. 4, pp. 262–294, 2000.

76. Tim Merino, Matt Stillwell, Mark Steele, Max Coplan, Jon Patton, Alexander
Stoyanov, and Lin Deng, “Expansion of cyber attack data from unbalanced
datasets using generative adversarial networks,” in International Conference on
Software Engineering Research, Management and Applications. Springer, 2019,
pp. 131–145.

209

77. Nour Moustafa and Jill Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 military
communications and information systems conference (MilCIS). IEEE, 2015, pp.
1–6.

78. Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen, “Prudent
practices for designing malware experiments: Status quo and outlook,” in 2012
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 65–79.

79. Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino, “An em-
pirical comparison of botnet detection methods,” computers & security, vol. 45,
pp. 100–123, 2014.

80. Herbert Scarf, “A min-max solution of an inventory problem,” Studies in the
mathematical theory of inventory and production, 1958.

81. Matthew Staib and Stefanie Jegelka, “Distributionally robust optimization and
generalization in kernel methods,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

82. M. Staib, “Distributionally robust deep learning as a generalization of adver-
sarial training,” 2017.

83. Rui Gao, Xi Chen, and Anton J Kleywegt, “Wasserstein distributionally robust
optimization and variation regularization,” arXiv preprint arXiv:1712.06050,
2017.

84. Carmine Cicalese, “Redefining information operations,” Tech. Rep., National
Defense University Fort McNair, 2013.

85. United States Department of the Army, “Cyberspace operations concept capa-
bility plan,” 2010.

86. Daniel Ventre, Artificial Intelligence, Cybersecurity and Cyber Defense, John
Wiley & Sons, 2020.

87. Laura Brent, “Nato’s role in cyberspace,” Feb. 2019.

88. Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo, “Ro-
bust malware detection for internet of (battlefield) things devices using deep
eigenspace learning,” IEEE Transactions on Sustainable Computing, vol. 4, no.
1, pp. 88–95, 2019.

89. Stephen Russell and Tarek Abdelzaher, “The internet of battlefield things:
the next generation of command, control, communications and intelligence (c3i)
decision-making,” inMILCOM 2018-2018 IEEE Military Communications Con-
ference (MILCOM). IEEE, 2018, pp. 737–742.

210

90. Paul Scharre, Army of none: Autonomous weapons and the future of war, WW
Norton & Company, 2018.

91. K. C. Miller, BM O’Halloran, A. G. Pollman, and M. K. Feeley, “Securing the
internet of battlefield things while maintaining value to the warfighter,” Journal
of Information Warfare, vol. 18, no. 2, pp. 74–84,II–III, 2019, Copyright -
Copyright Peregrine Technical Solutions 2019; Last updated - 2021-04-02.

92. William Stallings, Lawrie Brown, Michael D Bauer, and Arup Kumar Bhat-
tacharjee, Computer security: principles and practice, Pearson Education Up-
per Saddle River, NJ, USA, 2012.

93. Thomas M Chen and Jean-Marc Robert, “The evolution of viruses and worms,”
Statistical methods in computer security, vol. 1, pp. 1–16, 2004.

94. D.E. Denning, “An intrusion-detection model,” IEEE Transactions on Software
Engineering, vol. SE-13, no. 2, pp. 222–232, 1987.

95. Dorothy Denning and Peter G Neumann, Requirements and model for IDES-
a real-time intrusion-detection expert system, vol. 8, SRI International Menlo
Park, 1985.

96. Robin Sommer and Vern Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on Security
and Privacy, 2010, pp. 305–316.

97. S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis, and P. K. Chan, “Cost-
based modeling for fraud and intrusion detection: results from the jam project,”
in Proceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, 2000, vol. 2, pp. 130–144 vol.2.

98. Benedetto Marco Serinelli, Anastasija Collen, and Niels Alexander Nijdam,
“Training guidance with kdd cup 1999 and nsl-kdd data sets of anidinr:
Anomaly-based network intrusion detection system,” Procedia Computer Sci-
ence, vol. 175, pp. 560–565, 2020.

99. Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani,
“Toward developing a systematic approach to generate benchmark android mal-
ware datasets and classification,” in 2018 International Carnahan Conference
on Security Technology (ICCST). IEEE, 2018, pp. 1–7.

100. Hee Su Chae, Byung oh Jo, Sang Hyun Choi, and Twae kyung Park, “Feature
selection for intrusion detection using nsl-kdd,” Recent advances in computer
science, vol. 20132, pp. 184–187, 2013.

101. Connor Shorten and Taghi M Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

211

102. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT
Press, 2016, http://www.deeplearningbook.org.

103. Kathleen R Kerwin and Nathaniel D Bastian, “Stacked generalizations in im-
balanced fraud data sets using resampling methods,” The Journal of Defense
Modeling and Simulation, vol. 18, no. 3, pp. 175–192, 2021.

104. Nathalie Japkowicz, “The class imbalance problem: Significance and strategies,”
in Proc. of the Int’l Conf. on Artificial Intelligence. Citeseer, 2000, vol. 56.

105. Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, July 2009.

106. Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial in-
telligence research, vol. 16, pp. 321–357, 2002.

107. Swee Kiat Lim, Yi Loo, Ngoc-Trung Tran, Ngai-Man Cheung, Gemma Roig,
and Yuval Elovici, “Doping: Generative data augmentation for unsupervised
anomaly detection with gan,” in 2018 IEEE International Conference on Data
Mining (ICDM). IEEE, 2018, pp. 1122–1127.

108. Sean M Devine and Nathaniel D Bastian, “An adversarial training based ma-
chine learning approach to malware classification under adversarial conditions,”
Proceedings of the 54th Hawaii International Conference on System Sciences,
pp. 827–836, 2021.

109. Marc Chalé and Nathaniel Bastian, “Challenges and opportunities for generative
methods in cyber domain,” 2021.

110. Nicholas Metropolis, AriannaWRosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller, “Equation of state calculations by fast computing
machines,” The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

111. Paul Smolensky, “Information processing in dynamical systems: Foundations
of harmony theory,” Tech. Rep., Colorado Univ at Boulder Dept of Computer
Science, 1986.

112. Diederik P Kingma and Max Welling, “Stochastic gradient vb and the varia-
tional auto-encoder,” in Second International Conference on Learning Repre-
sentations, ICLR, 2014, vol. 19, p. 121.

113. Neha Patki, Roy Wedge, and Kalyan Veeramachaneni, “The synthetic data
vault,” in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2016, pp. 399–410.

212

http://www.deeplearningbook.org

114. Averill M. Law and W. David Kelton, Simulation modeling and analysis 4th
Edition., McGraw-Hill Series in Industrial Engineering and Management Sci-
ence. McGraw-Hill Book Co., New York, 2007.

115. Frank J Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal
of the American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

116. Jon Siwek, “Zeek::http,” 2021.

117. John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck, “Probabilistic
programming in python using pymc3,” PeerJ Computer Science, vol. 2, pp. e55,
2016.

118. Diederik P Kingma and Max Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

119. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An in-
troduction to statistical learning, vol. 112, Springer, 2013.

120. Francois Chollet, Deep learning with Python, Simon and Schuster, 2021.

121. Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining, Introduction
to Linear Regression Analysis, vol. 821, John Wiley & Sons, 2012.

122. David R Cox, “The regression analysis of binary sequences,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215–232,
1958.

123. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik, “A train-
ing algorithm for optimal margin classifiers,” in Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory, New York, NY, USA, 1992,
COLT ’92, p. 144–152, Association for Computing Machinery.

124. Corinna Cortes and Vladimir Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

125. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

126. F Rosenblatt, “A bibliography of perceptron literature,” SCIENTIFIC AND
TECHNICAL INFORMATION, p. 189, 1963.

127. Minsky Marvin and A Papert Seymour, “Perceptrons,” 1969.

213

128. David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, “Learning
Representations by Back-Propagating Errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

129. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1,
pp. 81–106, 1986.

130. Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, “Classifi-
cation and regression trees,” Group, vol. 37, no. 15, pp. 237–251, 1984.

131. Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining Concepts and Tech-
niques Third Edition, Morgan Kaufmann, Waltham, MA, 2012.

132. Jiawei Han, Micheline Kamber, and Jian Pei, “Data Mining. Concepts and
Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management
Systems),” Tech. Rep., 2011.

133. Gábor J Székely and Maria L Rizzo, “Energy statistics: A class of statistics
based on distances,” Journal of statistical planning and inference, vol. 143, no.
8, pp. 1249–1272, 2013.

134. Timothy M Braje, “Advanced tools for cyber ranges,” Tech. Rep., MIT Lincoln
Laboratory Lexington United States, 2016.

135. Ritu Chadha, Thomas Bowen, Cho-Yu J. Chiang, Yitzchak M. Gottlieb, Alex
Poylisher, Angello Sapello, Constantin Serban, Shridatt Sugrim, Gary Walther,
Lisa M. Marvel, E. Allison Newcomb, and Jonathan Santos, “Cybervan: A
cyber security virtual assured network testbed,” in MILCOM 2016 - 2016 IEEE
Military Communications Conference, 2016, pp. 1125–1130.

136. K Talty, J Stockdale, and N Bastian, “A sensitivity analysis of poisoning and
evasion attacks in network intrusion detection system machine learning models,”
in Proceedings of the 2021 IEEE Military Communications Conference. 2021, pp.
1017–1022, IEEE.

137. D Bierbrauer, A Chang, W. Kritzer, and N Bastian, “Cybersecurity anomaly
detection in adversarial environments,” in Proceedings of the AAAI Fall 2021
Symposium on AI in Government and Public Sector, 2021, pp. 1017–1022.

138. M Schneider, D Aspinall, and N Bastian, “Evaluating model robustness to
adversarial samples in network intrusion detection,” in Proceedings of the 2021
IEEE International Conference on Big Data, 2021, to appear.

139. Alessandro Annarelli, Fabio Nonino, and Giulia Palombi, “Understanding the
management of cyber resilient systems,” Computers Industrial Engineering,
vol. 149, pp. 106829, 2020.

214

140. V. Cerf and R. Kahn, “A protocol for packet network intercommunication,”
IEEE Transactions on Communications, vol. 22, no. 5, pp. 637–648, 1974.

141. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani, “Toward gener-
ating a new intrusion detection dataset and intrusion traffic characterization.,”
ICISSp, vol. 1, pp. 108–116, 2018.

142. Andrey Garnaev, Melike Baykal-Gursoy, and H. Vincent Poor, “How to deal
with an intelligent adversary,” Computers Industrial Engineering, vol. 90, pp.
352–360, 2015.

143. Anna L. Buczak and Erhan Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Communications
Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

144. Animesh Patcha and Jung-Min Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer networks,
vol. 51, no. 12, pp. 3448–3470, 2007.

145. Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita, “Net-
work anomaly detection: methods, systems and tools,” IEEE communications
surveys & tutorials, vol. 16, no. 1, pp. 303–336, 2013.

146. Bryan Burns, Dave Killion, Nicolas Beauchesne, Eric Moret, Julien Sobrier,
Michael Lynn, Eric Markham, Chris Iezzoni, Philippe Biondi, Jennifer Stisa
Granick, et al., Security power tools, ” O’Reilly Media, Inc.”, 2007.

147. Shahbaz Rezaei and Xin Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76–81, 2019.

148. Hiroshi Motoda and Huan Liu, “Feature selection, extraction and construction,”
Communication of IICM (Institute of Information and Computing Machinery,
Taiwan), vol. 5, no. 67-72, pp. 2, 2002.

149. E. Hernández-Pereira, J.A. Suárez-Romero, O. Fontenla-Romero, and
A. Alonso-Betanzos, “Conversion methods for symbolic features: A comparison
applied to an intrusion detection problem,” Expert Systems with Applications,
vol. 36, no. 7, pp. 10612–10617, 2009.

150. Marius Kloft, Ulf Brefeld, Patrick Düessel, Christian Gehl, and Pavel Laskov,
“Automatic feature selection for anomaly detection,” in Proceedings of the 1st
ACM workshop on Workshop on AISec, 2008, pp. 71–76.

151. Jonathan J. Davis, “Machine learning and feature engineering for computer
network security,” 2017.

215

152. Jonathan Peck, Joris Roels, Bart Goossens, and Yvan Saeys, “Lower bounds on
the robustness to adversarial perturbations,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

153. Solomon Kullback and Richard A Leibler, “On information and sufficiency,”
The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

154. Claude E Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

155. Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli, “Evasion attacks against ma-
chine learning at test time,” in Joint European conference on machine learning
and knowledge discovery in databases. Springer, 2013, pp. 387–402.

156. J.D. Tygar, “Adversarial machine learning,” IEEE Internet Computing, vol. 15,
no. 5, pp. 4–6, 2011.

157. Navin Goyal and Luis Rademacher, “Learning convex bodies is hard,” in Pro-
ceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009, pp.
303–308.

158. Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, and J. D. Tygar,
Near-Optimal Evasion of Classifiers, p. 199–238, Cambridge University Press,
2019.

159. Daniel Lowd and Christopher Meek, “Adversarial learning,” in Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining, 2005, pp. 641–647.

160. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

161. Andras Rozsa, Manuel Gunther, and Terrance E Boult, “Towards robust deep
neural networks with bang,” arXiv preprint arXiv:1612.00138, 2016.

162. Shixiang Gu and Luca Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” in Proceedings of the 3rd International Con-
ference on Learning Representations, 2015, Accepted as workshop contribution.

163. Richard M Karp, “Reducibility among combinatorial problems,” in Complexity
of computer computations, pp. 85–103. Springer, 1972.

164. Edward E Ogheneovo, “Revisiting cook-levin theorem using np-completeness
and circuit-sat,” International Journal of Advanced Engineering Research and
Science, vol. 7, no. 3, 2020.

216

165. Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimiza-
tion,” 2014.

166. Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou, “Multi-class adaboost,”
Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.

167. Vice Admiral Kevin Scott, “Cyberspace Operations (2018) ,” 2018.

168. Lin Zhu, Suryadipta Majumdar, and Chinwe Ekenna, “An invisible warfare
with the internet of battlefield things: a literature review,” Human behavior
and emerging technologies, vol. 3, no. 2, pp. 255–260, 2021.

169. Norbert Wiener, “Cybernetics (1948),” New York, 1961.

170. Riza Azmi et al., “Revisiting cyber definition,” in European Conference on Cyber
Warfare and Security. Academic Conferences International Limited, 2019, pp.
22–30.

171. C. Stephen Carr, Stephen D. Crocker, and Vinton G. Cerf, “Host-host communi-
cation protocol in the arpa network,” in Proceedings of the May 5-7, 1970, Spring
Joint Computer Conference, New York, NY, USA, 1970, AFIPS ’70 (Spring), p.
589–597, Association for Computing Machinery.

172. Gregory Benford, “Future tense: Catch me if you can,” Commun. ACM, vol.
54, no. 3, pp. 112–ff, mar 2011.

173. Barbara Guttman and E Roback, “An introduction to computer security: the
nist handbook,” 1995-10-02 1995.

174. Michael J De Lucia and Chase Cotton, “Adversarial machine learning for cyber
security,” Journal of Information Systems Applied Research, vol. 12, no. 1, pp.
26, 2019.

175. Philippe Biondi, “Scapy documentation (!),” vol, vol. 469, pp. 155–203, 2010.

176. Adi Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, nov 1979.

177. Vik Tor Goh, Jacob Zimmermann, and Mark Looi, “Towards intrusion detec-
tion for encrypted networks,” in 2009 International Conference on Availability,
Reliability and Security, 2009, pp. 540–545.

178. Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay, “Adversarial attacks and defences: A survey,” arXiv
preprint arXiv:1810.00069, 2018.

179. Marc Chalé, Bruce Cox, and Nathaniel Bastian, “Constrained optimization
based adversarial example generation for transfer attacks in network intrusion
detection systems,” .

217

180. Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel, “Ensemble adversarial training: Attacks and defenses,”
2017.

181. Armon Barton and III. Jatho, Edgar, “Defending against adversarial examples
in deep neural network classifiers,” 2021, Prepared for: NAVAIR.

182. Joaquin Vanschoren, “Meta-learning,” in Automated machine learning, pp. 35–
61. Springer, 2019.

183. Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on machine
learning. PMLR, 2017, pp. 1126–1135.

184. Anna L Buczak and Erhan Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Communications
surveys & tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

185. Sydney Mambwe Kasongo and Yanxia Sun, “A deep learning method with wrap-
per based feature extraction for wireless intrusion detection system,” Computers
& Security, vol. 92, pp. 101752, 2020.

186. Herve Debar, Marc Dacier, and Andreas Wespi, “Towards a taxonomy of
intrusion-detection systems,” Computer Networks, vol. 31, pp. 805–822, 1999.

187. Michael R. Smith, Logan Mitchell, Christophe G. Giraud-Carrier, and Tony R.
Martinez, “Recommending learning algorithms and their associated hyperpa-
rameters,” CoRR, vol. abs/1407.1890, 2014.

188. Can Cui, Teresa Wu, Mengqi Hu, Jeffery D Weir, and Xianghua Chu, “Accuracy
vs. Robustness: Bi-Criteria Optimized Ensemble of Metamodels,” in Proceedings
of the Winter Simulation Conference 2014. IEEE, 2014, pp. 616–627.

189. Timothy W Simpson, Jesse Peplinski, Patrick N Koch, and Janet K Allen, “On
the Use of Statistics in Design and the Implications for Deterministic Computer
Experiments,” Design Theory and Methodology, vol. 14, pp. 14–17, 1997.

190. G Gary Wang and Songqing Shan, “Review of Meta-Modeling Techniques in
Support of Engineering Design Optimization,” Journal of Mechanical design,
vol. 129, no. 4, pp. 370–380, 2007.

191. David H Wolpert, “The Supervised Learning No-Free-Lunch Theorems David,”
Soft Computing and Industry, , no. January 2001, 2001.

192. Can Cui, Mengqi Hu, Jeffrey D. Weir, and Teresa Wu, “A Recommendation
System for Meta-modeling: A Meta-learning Based Approach,” Expert Systems
With Applications, vol. 46, pp. 33–44, 2016.

218

193. S Revathi and A Malathi, “A detailed analysis on nsl-kdd dataset using various
machine learning techniques for intrusion detection,” International Journal of
Engineering Research & Technology (IJERT), vol. 2, no. 12, pp. 1848–1853,
2013.

194. Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi, “A tax-
onomy of computer program security flaws,” ACM Computing Surveys (CSUR),
vol. 26, no. 3, pp. 211–254, 1994.

195. Michael Sobirey, “Michael sobirey’s intrusion detection systems page,” 2000.

196. Swati Paliwal and Ravindra Gupta, “Denial-of-service, probing & remote to
user (r2l) attack detection using genetic algorithm,” International Journal of
Computer Applications, vol. 60, no. 19, pp. 57–62, 2012.

197. E. Viegas, A. O. Santin, A. França, R. Jasinski, V. A. Pedroni, and L. S. Oliveira,
“Towards an energy-efficient anomaly-based intrusion detection engine for em-
bedded systems,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 163–177,
2017.

198. John Rice, “The Algorithm Selection Problem - Abstract Models,” pp. 75–152,
1974.

199. Paul E Utgoff, “Shift of bias for inductive concept learning,” Machine learning:
An artificial intelligence approach, vol. 2, pp. 107–148, 1986.

200. Larry A Rendell, Raj Sheshu, and David K Tcheng, “Layered Concept-Learning
and Dynamically Variable Bias Management,” in IJCAI, 1987, pp. 308–314.

201. Pavel Brazdil, Joāo Gama, and Bob Henery, “Characterizing the Applicability of
Classification Algorithms Using Meta-Level Learning,” in European Conference
on Machine Learning. 1994, pp. 83–102, Springer.

202. Michael R. Smith, Logan Mitchell, Christophe Giraud-Carrier, and Tony Mar-
tinez, “Recommending learning algorithms and their associated hyperparame-
ters,” in CEUR Workshop Proceedings. 2014, vol. 1201, pp. 39–40, CEUR-WS.

203. Clarence O. Williams, “Meta Learning Recommendation System for Classifica-
tion,” M.S. thesis, Air Force Institute of Technology, 2020.

204. James J Cochran, INFORMS Analytics Body of Knowledge, John Wiley & Sons,
2018.

205. Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano,
“Heart data set,” 2018.

206. Aman Ajmera, “Framingham data set,” 2019.

219

207. Vincent Arel-Bundock, “Spam data set,” 2019.

208. Sunil Jacob, “Personal loan data set,” 2018.

209. William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian, “Breast cancer
data set,” 1995.

210. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” 2009.

220

Page 1 of 2 STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

PREVIOUS EDITION IS OBSOLETE.

REPORT DOCUMENTATION PAGE

1. REPORT DATE

15-09-2022

2. REPORT TYPE

Doctoral Dissertation

3. DATES COVERED

START DATE

Sept 2019

END DATE

Sept 2022

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way, Building 640

WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION

REPORT NUMBER

AFIT-ENS-MS-22-S-056

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally Left Blank
10. SPONSOR/MONITOR'S

ACRONYM(S)

11. SPONSOR/MONITOR'S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Cyberspace is the digital communications network that that supports the internet of battlefield things (IoBT), the model by which defense-centric sensors, computers, actuators and humans are digitally
connected. A secure IoBT infrastructure facilitates real time implementation of the observe, orient, decide, act (OODA) loop across distributed subsystems. Successful hacking efforts by cyber
criminals and strategic adversaries suggest that cyber systems such as the IoBT are not secure. Three lines of effort demonstrate a path towards a more robust IoBT. First, a baseline data set of
enterprise cyber network traffic was collected and modelled with generative methods allowing the generation of realistic, synthetic cyber data. Next adversarial examples of cyber packets were
algorithmically crafted to fool network intrusion detection systems while maintaining packet functionality. Finally, a framework is presented that uses meta-learning to combine the predictive power of
various weak models. This resulted in a meta-model that outperforms all baseline classifiers with respect to overall accuracy of packets, and adversarial example detection rate. The National Defense
Strategy underscores cybersecurity as an imperative to defend the homeland and maintain a military advantage in the information age. This research provides both academic perspective and applied
techniques to to further the cybersecurity posture of the Department of Defense into the information age.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

UU

18. NUMBER OF PAGES

238a. REPORT

U

b. ABSTRACT

U

C. THIS PAGE

U

19a. NAME OF RESPONSIBLE PERSON 19b. PHONE NUMBER (Include area code)

(937)255-6565, ext 4523
Jeffrey.Weir@afit.edu

Meta Learning Recommendation System for Classification

Chalé. Capt, U.S. Air Force

Generative Methods and Meta Learning for Cyber Security

Dr. Jeffery D. Weir, Ph.D., AFIT/ENS

	Generative Methods, Meta-learning, and Meta-heuristics for Robust Cyber Defense
	Recommended Citation

	Abstract
	Acknowledgements
	Preface
	List of Figures
	List of Tables
	Dissertation Introduction
	Motivation
	Research Contributions
	Contribution 1: Generate Realistic Synthetic Cyber Data
	Contribution 2: Generate Adversarial Examples
	Contribution 3: Demonstrate a Robust Intrusion Detection System
	Impact

	Dissertation Literature Review
	Cybersecurity
	Intrusion Detection Systems
	Adversarial Attacks

	Generative Machine Learning
	Generative Adversarial Network
	Boltzmann Machine
	Score Matching
	Denoising Autoencoder
	Dirichlet Process

	Meta-Learning
	Transfer Learning
	Local Interpretable Model Agnostic Explanations

	Data Sets
	KDD CUP 99
	NSL-KDD Data Set
	UNSW-NB15 Data Set
	Recent Research

	Distributionally Robust Optimization

	Generate Realistic Synthetic Cyber Data
	Introduction
	Literature Review
	Cybersecurity
	Issues and Progress in Cyber Data
	Data Augmentation
	Data Sampling
	Generative Methods

	Methodology
	Collect Baseline Cyber Data
	Generate Synthetic Cyber Data
	Machine Learning Classifiers
	Calculate Metrics of Quality
	Computational Experiments

	Experimental Results and Discussion
	Does quantity of real training data affect quality of synthetic data set?
	Does the ratio of real and synthetic data affect classification performance?

	Conclusion

	Generate Adversarial Examples
	Introduction
	Literature Review
	Cybersecurity
	Intrusion Detection System
	Adversarial Machine Learning

	Methodology
	Problem Overview
	Data Preprocessing
	Train Models
	Meta-heuristic
	Optimize Meta-heuristic Settings
	Fool Rate of Adversarial Examples

	Results and Discussion
	Designed Experiment
	Resulting Fool Rates of Adversarial Examples

	Conclusion

	Demonstrate a Robust Intrusion Detection System
	Introduction
	Literature Review
	Cyber
	Meta-learning

	Methodology
	Adversarial Example Generation
	Data Preparation
	Base Models
	Robust Framework

	Results and Discussion
	Conclusion

	Conclusion
	Meta-learning to Streamline Algorithm Selection for Cyber
	Introduction
	Related Works
	Intrusion Detection
	Algorithm Selection Problem

	Methodology
	Characterizing the Problem
	Step 1: Map Problem to Category and Approach
	Step 2: Rank Techniques

	Results
	Conclusion

	Referenced AFIT Theses
	Tabulated Performance of Models Trained With Synthetic Data for Contribution 1
	Tabulated Performance of Adversarial Examples Constructed for Contribution 2
	Bibliography

