
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2022

Analysis of Graph Layout Algorithms for Use in Command and Analysis of Graph Layout Algorithms for Use in Command and

Control Network Graphs Control Network Graphs

Matthew R. Stone

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Stone, Matthew R., "Analysis of Graph Layout Algorithms for Use in Command and Control Network
Graphs" (2022). Theses and Dissertations. 5546.
https://scholar.afit.edu/etd/5546

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F5546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5546?utm_source=scholar.afit.edu%2Fetd%2F5546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Analysis of Graph Layout Algorithms for Use in
Command and Control Network Graphs

THESIS

Matthew Stone, First Lieutenant, USAF

AFIT-ENG-MS022-S-039

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS022-S-039

Analysis of Graph Layout Algorithms for Use in Command and Control Network

Graphs

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Matthew Stone, B.S.E.E.

First Lieutenant, USAF

August 31, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS022-S-039

Analysis of Graph Layout Algorithms for Use in Command and Control Network

Graphs

THESIS

Matthew Stone, B.S.E.E.
First Lieutenant, USAF

Committee Membership:

Mark Reith, Ph.D
Chair

Lt Col Wayne Henry, Ph.D
Member

Maj Richard Dill, Ph.D
Member

AFIT-ENG-MS022-S-039

Abstract

This research is intended to determine which styles of layout algorithm are well

suited to Command and Control (C2) network graphs to replace current manual lay-

out methods. Manual methods are time intensive and an automated layout algorithm

should decrease the time spent creating network graphs. Simulations on realistic syn-

thetically generated graphs provide information to help infer which algorithms per-

form better than others on this problem. Data is generated using statistics drawn

from multiple real world C2 network graphs. The three algorithms tested against this

data are the Spectral algorithm, the Dot algorithm, and the Fruchterman-Reingold

algorithm. The results include a multiple objective statistics designed to inform on

the algorithms performance in both aesthetic characteristics defined in literature, as

well as some characteristics defined by the research sponsor. The results suggest that

the Dot algorithm performs better with respect to the sponsor defined characteristics,

whereas the Fruchterman-Reingold algorithm performs better on aesthetic character-

istics. Due to the immediate need for an improved layout method, the Dot algorithm

is recommended for use in C2 network graph applications as it best replicates the

current manual layout style.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . viii

I. Introduction . 1

1.1 Research Overview . 1
1.1.1 Research Objectives . 2
1.1.2 Hypotheses . 2

1.2 Document Overview . 2
1.2.1 Background and Literature Review . 3
1.2.2 Methodology . 3
1.2.3 Results . 3

II. Background and Literature Review . 5

2.1 Graph Domain . 5
2.1.1 Graph Representations . 6

2.2 Hierarchy Layouts . 9
2.2.1 Hierarchal Clustering . 9
2.2.2 Node Based Layouts . 11
2.2.3 Other Layouts . 12

2.3 Related Work . 15
2.3.1 Command and Control Visualization . 15
2.3.2 Existing C2 Hierarchy Visualization Tools 17

2.4 Evaluation Techniques . 18
2.5 Available Tools . 19
2.6 C2 Network Graphs . 19

III. Methodology . 22

3.1 Data Generation . 23
3.2 Data Evaluation . 25
3.3 Implementation of Layouts and Experiment . 28

IV. Results and Analysis . 30

4.1 Benchmark Generation Results . 30
4.2 Benchmark Test Results . 31

4.2.1 Simple Complexity Simulation Results . 32
4.2.2 Moderate Complexity Simulation Results . 32

v

Page

4.2.3 High Complexity Simulation Results . 37
4.3 Feature Analysis . 39

V. Conclusions . 41

5.1 Layout Recommendations . 41
5.2 Limitations . 42
5.3 Future Work . 43

Bibliography . 44

vi

List of Figures

Figure Page

1. Simple graph visualization styles . 6

2. Aesthetic Considerations when drawing a graph . 8

3. Basic tree layout of a hierarchy . 11

4. Edge bundling process example . 12

5. Sugiyama compound graph layout example . 14

6. Beck icicle diagram . 15

7. Rufiange tree matrix example . 15

8. Kang list view visualization tool . 17

9. An example C2 network graph with skip echelon and
adjacnet edges labeled, as well as the level for each node
defined. 21

10. Research Methodology, including background research,
Benchmark Data Generation, Evaluation System
Design, Implementation of layout algorithms, the
experiment, and final analysis . 23

11. IDEF0 design for experiment implementation. Input
signals are the desired number of graphs, and the
complexity, the output is a series of evaluation metrics
outlined in Section 3.2 . 29

12. Simple Complexity example graph visualized using
Gephi and the Dot layout algorithm. All edges
Coefficient of Variation: 1.846 . 33

13. Simple Complexity example graph visualized using
Gephi and the Spectral layout algorithm. All edges
Coefficient of Variation: 0.9734 . 33

14. Simple Complexity example graph visualized using
Gephi and the Fruchterman Reingold layout algorithm.
All edges Coefficient of Variation: 0.562 . 34

vii

List of Tables

Table Page

1. General Statistics of C2 Network Graphs from analysis
of 5 real world graphs . 31

2. Probabilities for number of children by node level from
analysis of 5 real world graphs . 31

3. Evaluation Results for Dot, Spectral,
Fruchterman-Reingold algorithms, and Microsoft Visio
handmade representations using 25 graphs with simple
complexity (approximately 45 nodes, 10 adjacent edges,
4 skip echelon edges) . 32

4. Aesthetic Evaluation Results for Dot, Spectral and
Fruchterman-Reingold Algorithms against 25 graphs
with moderate complexity (Approximately 100 nodes,
25 adjacent edges, 10 skip echelon edges) Performance
measured via coefficient of variation. Avg and Max
values included for understanding results within layout.
Red cells: Coefficient of variation above 1, yellow cells:
coefficient of variation above or equal to 0.7, green cells:
Coefficient of variation below 0.7 . 37

5. Sponsor’s C2 network graph characteristic evaluation
Results for Dot, Spectral and Fruchterman-Reingold
Algorithms against 25 graphs with moderate complexity
(Approximately 100 nodes, 25 adjacent edges, 10 skip
echelon edges). Red cells: undesirable performance,
values below 0.7 Yellow Cells: Moderate performance,
values above 0.7 less than 0.9, Green Cells: Desired
performance values above 0.9 . 37

6. Evaluation Results for Dot, Spectral and
Fruchterman-Reingold Algorithms against 25 graphs
with high complexity (Approximately 200 nodes, 50
adjacent edges, 20 skip echelon edges) . 39

viii

Analysis of Graph Layout Algorithms for Use in Command and Control Network

Graphs

I. Introduction

This chapter includes an overview of the research including objectives and hy-

pothesis as well as brief overviews of the contents of following chapters

1.1 Research Overview

Graphical visualizations of Command and Control (C2) network data are created

to disseminate and analyze intelligence on adversary systems. The current process

involves the manual creation of graphs using off-the-shelf software, thus limiting the

number of graphs produced and the amount of data expressed. The C2 network prob-

lem is challenging because of overlapping complex issues. Analysts have immediate

needs for a new visualization tool that can automate generation of graphs from exist-

ing data sources in a style suitable for existing customers, however any solution will

also need to account for future data scaling. Additionally, analysts desire the ability

to harness non-traditional analysis tools such as querying or AI/ML in the future.

This design study of available layout algorithms will address some of these problems.

As a part of this design study, an evaluation benchmark system was created for an

objective comparison of visualizations. The benchmark tool and the layout algorithm

that most fits the sponsor’s needs will be recommended for future C2 network graph

creation.

1

1.1.1 Research Objectives

The primary objective is improving the processes of creating C2 network visual-

izations with an appropriate automated layout algorithm. Additional objectives of

this research are to design an unclassified benchmark evaluation process for C2 Net-

work layout algorithms and perform an evaluation of available layout algorithms. The

creation of an evaluation tool and benchmark data will allow for completion of the

primary objective while also resulting in an efficient method for evaluating layouts in

the future.

1.1.2 Hypotheses

The first hypothesis asserts that automated layout algorithms will significantly

improve C2 Network creation speed while providing an acceptable approximation

of human generated structures. Creation speed is improved by automation because

manual methods can take an analyst hours to complete.

The second hypothesis is that the Dot algorithm will be more appropriate than

Spectral or Fruchterman-Reingold algorithms for the data and sponsor’s desires. The

reason for this is the dot algorithm prioritizes showing hierarchical relationships,

which are prevalent in C2 network data. Other algorithms tested focus on other data

characteristics that may not be as useful when visualizing C2 network data.

1.2 Document Overview

This document is organized as follows. Chapter II, Background, provides an

overview of relevant background information, including a description of C2 Network

Data, and a review of graph visualization research. Chapter III, Methodology, details

the process of developing a platform for generating benchmark graphs, creating an

evaluation system for resultant layouts, and the test of 3 different layout algorithms

2

using the evaluation system and data developed. Chapter IV, Results, presents the

evaluation results for the layout algorithms tested. Finally, Chapter V discusses the

conclusions drawn from the results.

1.2.1 Background and Literature Review

Chapter II contains a basic background of the graph domain before investigating

research on layout methods and characteristics. The C2 network data is hierarchical,

therefore, additional focus is placed on researching hierarchical graph layout methods.

Layout methods described include explicit node based layouts, matrix layouts, hybrid

layouts, among others. A review of evaluation methods in literature is included as

well. The chapter concludes with a background on the C2 network data that will be

used for this research.

1.2.2 Methodology

Chapter III is separated into three sections to include the creation of benchmark

data, the creation of the evaluation methodology, and the experimentation using

available layout algorithms. This chapter describes why synthetic data is necessary

to avoid classified information leakage, and how that synthetic data will be sufficiently

representative of the real data. Chapter III also includes a description on how the

metrics evaluate the layout algorithms chosen. Finally the experimentation section

shows how the layout algorithms are implemented and tested.

1.2.3 Results

Chapter IV includes the results from testing three layout algorithms against bench-

mark data of varying complexity. The results section describes the data for each

benchmark data complexity level, as well as interpretations of the data to understand

3

which algorithms are most well suited to the C2 network data problem.

4

II. Background and Literature Review

This chapter contains a basic analysis of the graph domain before investigating

research on layout methods and characteristics. Because the C2 network data is hier-

archical, additional focus is placed on researching hierarchical graph layout methods.

Layout methods described include explicit node based layouts, matrix layouts, hybrid

layouts, among others. Because this research involves creating evaluation method-

ology background of literature on evaluation of graph layouts is also included. The

chapter concludes with a background on the C2 network data that will be used for

this research.

2.1 Graph Domain

A graph is often defined as a set of nodes an edges written as:

G = {V,E} (1)

G consists of a finite set of V that is not empty and set E consisting of ordered or

unordered pairs in the form of (a,b) such that a element V and b element of V. The

elements of V are vertices or nodes, and the elements of E are called edges. This

interpretation of graphs represents data sets that include information on relation-

ships and connections between data within the set. A graph can be undirected or

directed, meaning the edges can be omni-directional relationships between a and b or

a relationship that has a distinct start a and end b.[1][2]

Graphs can represent a wide spectrum of data relationships. Nodes can be any

number of entities such as locations, people, or resources. Edges can show relation-

ships including distances, familial relationships, price, and much more. McCulloch et

al. defines a network graph as “a graph with a finite set of actors and the relation

5

or relations defined between them”. A social network is an example of a network

graph. In a social network the finite set of nodes can be a group of people and the

relationships can be whether or not they are friends on a social network site. [1]

2.1.1 Graph Representations

Visualizations of graph data take many forms. Two of the most simple ways of

visualizing graphs are shown in Figure 1. The link node diagram shows the directed

edges as arrows pointing between dots which represent nodes. The same information

is contained in the adjacency matrix A. An adjacency matrix is a n × n matrix

where n is the number of nodes in a graph, in a graph each matrix element signifies

the presence of an edge between vertices indexed at n A row is all the connections

starting from a specific node, and a column is all the connections ending in a specific

node. In Figure 1, the edges for the node labeled u are seen in the first row and first

column. It is important to note that in an undirected graph edges will be represented

twice because both nodes are start and endpoints. Additional methods to visually

show these relationships are described in Section 2.2.3.

One of the unique aspects of graphs is that nodes do not have a defined order,

Figure 1: A directed graph shown in a simple link node diagram(left) and an adjacency
matrix(right) node u corresponds to the first row and column in adjacency matrix A

6

meaning that the same nodes and edges seen in Figure 1 could be described in an

adjacency matrix where u is the fourth row and column, or a link node diagram where

u is in the same location as the top right node. The lack of defined ordering in graphs

presents a wide array of possibilities in visualization layouts.

A variety of layouts can draw explicit link and node graphs. Different layouts

are better suited to different domains. Potential layout style choices include radial

vs grid based layouts, freedom of node placement, the density of the graph, whether

the data is static or dynamic, and if the representation will be in three dimensions.[3]

Furthermore aesthetic considerations may be important for clarity and readability.

Some of these considerations are [3][4]:

• Minimal number of edge crossings: avoid letting edges intersect one another

• Minimal drawing area or efficient use of space: keep all nodes and edges within

a tight cluster

• Minimal number of bends: edges are linear

• Uniform and short edge lengths: edge lengths are consistent and not longer

than necessary

• Maximizing symmetry: distribution of nodes and edges follows a pattern

• Minimal overlapping nodes: nodes do not overlap one another

These considerations are not rules, often exhibiting trade-off relationships. For ex-

ample, observe two illustrations of the same graph with minimized edge crossings in

Figure 2a or minimized edge lengths and drawing area in Figure 2b. Both are ac-

ceptable drawing solutions and the choice made is dependent upon the needs of the

user and the complexity of data represented. In Figure 2b the two black nodes are

7

placed closer together which may be important because the nodes have similar mean-

ing and a very close relationship, whereas Figure 2a may be more useful to illustrate

the centrality of the node in the middle of the graph.

Figure 2: Two drawings of the same graph with different aesthetic considerations in
mind

8

2.2 Hierarchy Layouts

Hierarchies, trees, multi-layer graphs, or directed acyclic graphs all describe the

same style of drawing layout. In this style, nodes are oriented into levels defined by

the number of edges from the root node. In foundational research an acyclic graph

G of this style was written as:

G = {V, I, A} (2)

In this equation, the set of edges is divided into both I and A. The subset I represents

the inclusion edges or the edges between a nodes one level apart, and A represents

the adjacency edges that connect nodes that are not one level apart. [5]

Certain types of data are well suited to a hierarchy style. Directed acyclic graphs

where the edges represent a relationship of subordination are ideal for hierarchy styles

because they have definitive start and end points without cycles. An advantage of

hierarchy visualization is that additional information is often included in the layers

of the graph. A familiar example of hierarchies is a family tree, in which each layer

of the graph conveys generational information based on distance from the source or

root. Even within the bounds of a hierarchy, different styles of visualization exist,

the traditional link and node charts, matrix formats, a combination of styles, and

others.[6]

2.2.1 Hierarchal Clustering

Many processes and algorithms can form hierarchies from graph data using fea-

tures such as clusters, shortest path distances, and more. Hierarchal layout algorithms

determine the layers that nodes belong in, or simply minimize the edges crossings in

a layout. In this section, prominent algorithms are introduced to better understand

the current landscape of hierarchy layouts.

9

Several graph layout algorithms can determine hierarchical clusters or layers, ef-

fectively deciding which layer nodes belong in. In a directed graph without cyclical

adjacency edges determining hierarchical clusters can be simple process starting from

a source node and building edge by edge, layer by layer. However often graphs exhibit

cycles or are not conveniently directed graphs, these algorithms attempt to solve this

problem.

Sugiyama proposed a hierarchal layout algorithm that focuses on both determining

hierarchy from a data set and laying out the nodes in a way that shows that hierarchy.

In hierarchization steps, the algorithm assigns levels to nodes based on the inclusion

edges, when an adjacency edge prevents level assignment i.e. creates a cycle, the

direction of the edge is reversed for layer assignment steps. [5]

Eiglsperger improves the Sugiyama algorithms by accounting for adjacency edges

that span multiple layers by adding a ’dummy vertex’ to the layers in between, in the

final rendering these dummy vertices are turned into bent edges. In order to maintain

drawing conventions the number of dummy vertices is minimized. [7]

The Dynadag algorithm developed by North, applies a different methodology with

the same steps. Instead of reversing edges to determine level the algorithm applies a

cost for the drawing different types of adjacency edges. This algorithm attempts to

minimize this cost in it’s layering steps by forcing nodes to span multiple layers or

moving a node up or down layers to change a few adjacency edges into inclusion edges

and vice versa. Ultimately the final layering will be one that has the most inclusion

edges and least adjacency edges that increase the distance of edges, bends in edges,

or violate other drawing constraints. [8]

10

2.2.2 Node Based Layouts

A trivial hierarchical representation is a tree structure where the top layer is

commonly referred to as a root and the lower layers as leaves. It is possible to form

Most graph data sets into multiple trees, by picking a root node and separating the

rest of the nodes into layers based on the number of edges between them and the root.

An example of a basic edge and node tree is shown in Figure 3. In this hierarchy node

22 serves as the root and the other nodes below expand into leaves. This is a simple

tree layout without any of the adjacency edges discussed in Section 2.2.[5][6][9]

A node based layout has a set of algorithms that attempt to follow the drawing

constraints of minimizing edge crossings, edge lengths, and bends. We see similar

algorithms in Sugiyama, Eipsleberger and North. These algorithms first order the

nodes in a way that minimizes edge crossings and then will space the nodes in order

to keep edge lengths as short as possible. [5][7][8]

A tree graph is the simplest way to show a hierarchy with a small number of ad-

jacency edges. However as the number of adjacency edges increases the tree becomes

quite cluttered and difficult to visualize. [10]

Figure 3: A simple example of a tree graph without any adjacency edges

11

2.2.2.1 Bundling

A solution to cluttered hierarchies involves edge bundling. This method reduces

clutter by forcing the adjacency edges to bend and overlap where possible. The trade

off for violating the number of bends constraint is a potential increase in readability.

In Figure 4 we can see the process for bundling edges. In Figure 4(a) an example

edge is shown, in Figure 4(b) the path that the bundled spline will take is shown and

finally the spline is drawn in Figure 4(c). This spline will be followed similarly for

any adjacency edge that passes along any of the edges included in this spline. An

example of multiple bundled adjacency edges is shown in Figure 4(d) and (e); this

example demonstrates how edge bundling can reduce the clutter of adjacency edges

significantly.[10] [11]

2.2.3 Other Layouts

In addition to the simple trees described by explicit edges and nodes other meth-

ods can represent hierarchies. One method is depicting inclusion edges by simply

drawing one node within the other, another is through adjacency matrices, and other

approaches use hybrid techniques. The Sugiyama compound graph layout is a stan-

Figure 4: (a) An example adjacency edge to be bundled (b) The path of edges that the
bundle will follow (c) The bundled adjacency edge (d) An example set of adjacency
edges to be bundled (e) The resulting bundled splines

12

dard layout where inclusion edges show nodes within one another. The adjacency

edges are drawn between the nodes that they connect. An example of the Sugiyama

layout is shown in Figure 5. The rectangles represent a node and the larger rectangles

are the nodes at the top of the hierarchy, the smaller ones are lower in the hierarchy.

This method shows inclusion relationships effectively, but can sometimes make it dif-

ficult to compare nodes that are on the same layer, and can become very complex

with massive graph data sets. [5] [6]

Another layout style is called implicit edge representation or icicle diagrams. In

these maps an inclusion edge is not drawn but rather shown by the child nodes being

smaller and attached to their parent nodes. Figure 6 shows a complex icicle diagram

from Beck et al. The icicle layout has challenges visualizing adjacency edges and

often may require edge bundling or an interactive nested layering. [12] [13]

Adjacency matrices show a large amount of edge data in a concise area. In order

to employ adjacency matrices in a hierarchy a hybrid layout may be necessary. An

example of a matrix hybrid layout is the Tree Matrix developed by Rufiange et al[14].

shown in Figure 7. This layout style shows the inclusion edges in a nested compound

graph similar to the Sugiyama layout, while depicting many of the complex edge

connections in the adjacency matrix format. Matrix format may be an organized way

to view edges, but limits in how the hierarchy is interpreted in analysis.

Modern layout formats can employ elements from link and node diagrams, nested

compound graphs, icicle diagrams, and hybrid techniques. Most layout research is

quite domain and problem specific. Finding the correct layout style depends on the

user needs, the intent of the visualization, and the complexity of the graph data. [6]

13

Figure 5: A multilayer hierarchy drawn in the Sugiyama layout style

14

Figure 6: An example Icicle diagram

Figure 7: An example hybrid layout using adjacency matrices

2.3 Related Work

Related works include research on command and control (C2) and the analysis

of command and control systems with visualization. Related works on hierarchy

visualization in other domains include medicine, genetics, and machine learning.

2.3.1 Command and Control Visualization

Command and Control (C2) often expanded in military uses to include commu-

nications, computers, intelligence, surveillance and reconnaissance (C4ISR) is the

study of the systems that enable information flow and understanding between enti-

15

ties. These systems are often complex with many entities and interconnections[15].

Graphs are a method for visualizing complex C2 systems. Command and control

systems can include a simple home thermostat with user inputs and thermometer

sensors, to complex military supply chains and logistics.[15]

It is useful to create visualization of C2 systems to analyze the effectiveness,

determine weaknesses, or because they are quite large and complex. Gonzalez et al.

provides an example of C2 specific visualizations with a study on visualization of law

enforcement C2 paired with crime statistics. The Colombian police force segmented

into regional controls all with their own crime monitoring, creating a C2 domain that

is dynamic and geographically complex. The researched visualization tools allowed

for criminal fluctuations to be better analyzed by law enforcement.[16]

Another C2 visualization project is a social network visualization of all the people

involved in an emergency response in England. Similar to the previous study this

example intends to find ways to improve the current response of law enforcement and

other emergency services by analyzing the C2 flow from the local emergency controller

to individuals within fire and police departments. Similar to the previous study this

focuses primarily on the mathematical analysis of the graph data, however to best

understand these analyses graph visualizations show all the connections between the

different agents. [17] [18]

Most command and control studies are focused on the analysis of systems with

the intention of improving current information flow and effectiveness. However, a few

researchers analyze the value of command and control visualization for intelligence

applications. Kang et al. presents a study in which participants were pretending to

be a government intelligence analyst identifying a terrorist plot. All participants were

given a set of documents and some were also given access to a visualization tool that

allowed graphical representations of relationships in the documents. The participants

16

given the visualization tool generally outperformed the other participants even given

the fact that they were unfamiliar with the tool before the study. Notably in this

study the tool that most participants had success with was the “list view” shown

in Figure 8 which shows the data in a view similar to a matrix hybrid layout. This

shows the potential effectiveness of representing C2 data in graphical format.[19]

2.3.2 Existing C2 Hierarchy Visualization Tools

Much of the related work in the C2 field does not focus on hierarchy visualisation.

Hierarchies have been used heavily in other fields because they provide an effective

way to show graphical data that has a parent/child relationship. Domains that have

already begun use of hierarchies are medicine, biology, and machine learning. [20][21]

Figure 8: The list view tool used in the study by Kang et al: determined to be one
of the most effective visualization tools from the study

17

2.4 Evaluation Techniques

Graph visualization researchers employ a variety of techniques when evaluating the

effectiveness of a layout. One common technique is through evaluation of the layout

via a usage study. Bourqui et al., Jing et al., and Zhang et al. utilise this method.

These studies evaluate their tool or algorithm against a use case to demonstrate that

the features they intended to employ work. These types of studies do not examine

the effectiveness of a layout.[11][21][9].

Other research includes user based evaluation techniques such as a survey or an

employment test. One example of a user based technique is Rufiange et al.’s test

providing users with the new layout and gathering data on the time it takes a user to

complete a set of tasks [14]. Other research that employed a user evaluation technique

includes Holten and Kang et al.[10][19].

Fewer studies focus on simulation based research. Huang et al. analysed their

PLANET algorithm by simulating against large datasets, and measuring execution

time, and a few aesthetic characteristics. [22] Methods such as this one allow for a

quick comparison of new techniques.

In 2019 Giovannangeli et al. proposed a new technique for evaluations. They cited

the difficulties in avoiding bias, and gathering a statistically relevant amount of data

from user studies as the reason for their techniques. Instead of having users evaluate

a layout or visualization, deep neural networks could do the task more quickly and

without bias. This research is the trend towards an objective repeatable visualization

evaluation. Their methods involve generating data of varying complexity and testing

the layout with their computer vision model to reproduce results from previous user

evaluation style studies.[23]

18

2.5 Available Tools

Several tools implement a variety algorithms for their graph visualizations. A few

open source tools include Neo4J, GraphViz and Gephi. These tools utilize specific

layout algorithms alongside options to query the data. Neo4J utilises a force directed

layout algorithm to visualise the user’s data query. GraphViz is well known for their

dot algorithm for directed acyclic graphs. Finally tools such as gephi can utilise

multiple different layout algorithms to visualize the data in a variety of node-based

styles.

2.6 C2 Network Graphs

C2 network graphs are created by the sponsor to visualize their C2 network data

and perform additional analysis, share findings with customers, and collaborate across

the DoD. These graph representations are created manually in Microsoft Visio taking

on average 8 hours to complete using upwards of 3 GB of memory. An analysis of the

classified data alongside discussions with the sponsor shows that a C2 network graph

is connected by three types of edges, parent to child edges similar to traditional tree

graphs, adjacent edges or edges connecting nodes within the same level, and skip-

echelon edges, connecting a node to another at least 2 levels below in the hierarchy.

The equation of a graph is modified here to include skip echelon edges (S) as a subset

of adjacent edges.

G = {V, I, A, S} (3)

Figure 2.6 shows an example C2 network graph created in Visio. This graph

shows a skip echelon edge from the source node to a node at Level 2, an adjacent

edge between a node in Level 1 to the adjacent node, and multiple parent to child

19

edges throughout.

20

Figure 9: An example C2 network graph with skip echelon and adjacnet edges labeled,
as well as the level for each node defined.

21

III. Methodology

This chapter describes the three major activities supporting this research to in-

clude synthetic data generation as described in Section 3.1, synthetic data evaluation

as described in Section 3.2 and layout implementation as described in Section 3.3.

The following sections elaborate on each of these respectfully.

The research methodology for this thesis is best illustrated in Figure 10. Figure

10 shows the beginning background research required, emphasized by the blue boxes,

the tools and methods developed for this research shown in the yellow shapes, and the

experimentation and analysis steps in the green and purple shapes. Partial sub-steps

are shown via branches off of the main path.

22

Figure 10: Research Methodology, including background research, Benchmark Data
Generation, Evaluation System Design, Implementation of layout algorithms, the
experiment, and final analysis

3.1 Data Generation

Synthetically generated data is necessary for two reasons: testing different bench-

mark features and protecting classified information. One key factor in creating the

benchmark data is ensuring that the generated data represents the sponsor’s data set.

Using measurements and features of the sponsor’s data will allow for a representative

generated data that is unclassified.

A set of five C2 Network diagrams of varying size will be analyzed to create a

baseline framework for data generation. Limitations of current visualization tools

ensure the measurements must be taken by hand. From these five diagrams, three

23

types of edges are measured with respect to the source node’s level in the hierarchy.

The three edge types are children, adjacent edges, and skip-echelon edges. A function

can generate a random representative graph which will be used as the baseline for

future data set generation.

The preliminary data forms the basis for creating a graph. The process in Al-

gorithm 1 describes how to use an m × n probability matrix to create a directed

graph. Section 4.1 depicts statistics measured by level for each node in the spon-

sor’s data. The probability matrix represents the likelihood of a node in each level

to have a certain number of children. In the matrix, m represents the level and n

is the possible number of children for each node in that level. Each node in a level

has a probability that it will have 0, 1, 2, 3, ...(n − 1), n children. By creating first

a number, u, of nodes and looping through each node assigning edges based on the

probability in the probability matrix, a graph will form. The number of edges is not

set because of the randomness in the graph, however if all u nodes are used there will

be at least v number of edges where u = v. The data generation algorithm should

have a complexity O(N) as each node is only looped through once, with a maximum

of 5 children.

Different graph complexities simulate different scenarios for analysis. A simple

Algorithm 1 Data Generation Algorithm

1: function Data Generation(Probability Matrix)
2: nodes[1 : u]
3: counter ← 0
4: for node in nodes do
5: level← shortest path length(node, nodes[1])
6: #ofChildren← random selection(Probability Matrix[Level, :])
7: children← range(counter + 1, counter +#ofchildren+ 1)
8: for child in children do
9: assign edge(node, child)
10: increment counter
11:

24

complexity will represent the average graph case as shown in Table 1. The moderate

complexity will simulate the maximum graph case as shown in Table 1. Finally, the

high complexity will simulate a use case with twice as many nodes, and edges as the

current maximum to demonstrate the scaling potential of the algorithms tested.

The methods in this section can create graphs with approximately u nodes, a ad-

jacency edges, and b skip-echelon source nodes. The graphs generated are based from

the probability matrices measured from the sponsor’s data. Measuring probability

from the sponsor’s data should cause the generated graphs to be representative of

real classified data.

3.2 Data Evaluation

To quantitatively measure the effectiveness of a layout against the generated data

calculations are necessary. Measurements will include euclidean distances between

children and parents, euclidean distance between adjacently connected nodes, eu-

clidean distance between skip-echelon connections, a validation check of each graph

that the longest node is a skip-echelon connection, a validation check for the source

node being identifiable, an r-coefficient for a line drawn through all nodes in the same

level, and a validation that the nodes are stratified correctly by level.

Additionally, to compare the automated layouts to the current Microsoft Visio

layouts, the execution time and memory usage will be measured. Acknowledging that

all automated methods may have comparable execution times and memory usage, the

comparison will primarily be between automated methods and Visio methods.

Measuring the distance between children and parents is intended to test how well

the parent child relationships are shown. If a child is a great distance from its parent

when compared to other similar edges in the graph, the reader may not understand it

has the same relationship as other children. Similarly, measuring the distance between

25

two adjacent nodes could also inform how well a graph shows two nodes adjacent

relationship. Additionally, if a graph contains a significant number of long edges the

likelihood of edge crossings also may increase, which is a key aesthetic characteristic

identified from the literature in Section 2.1. Acknowledging that different layouts

may use different scales, it will be necessary to compare values using coefficient of

variation, σ/µ, or the standard deviation normalized by the mean. This research uses

coefficient of variation to compare values between layouts which use different scales

for node placements. The algorithm for computation of values in one graph is shown

in ?? which creates sets of edge distances from which max, averages, and coefficient

of variation is calculated. The complexity of this algorithm is O(N) as it is directly

related to the number of edges in all graphs tested.

Validating the hierarchy structure is also important to the sponsor. If a layout

has skip-echelon edges and chooses to place nodes at higher levels (further from

the source hierarchically) physically close to the source, then the graph would not

be representative of current by hand layout methods, and could have potential to

confuse a viewer. The following list of measures provides information on the hierarchy

structure of a layout. Validating that the maximum edge is a skip echelon edge,

Algorithm 2 Layout Distance Evaluation Algorithm

function DistanceEvaluation(Graph, Positions)

edgelist = Graph.edges ▷ edgelist is a set of (a,b) node pairs

for edge in edgelist do

if edge style = child

child list = append.distance.euclidean(position(a),position(b))

if edge style = adj

adj list = append.distance.euclidean(position(a),position(b))

if edge style = se

se list = append.distance.euclidean(position(a),position(b))

26

validating that the source is a maximum or central value, checking the regression

fit of each level, and validating the stratification of each nodes by distance from

the source, will provide enough information to infer whether or not the layout is

adequately representing the hierarchy structure.

Algorithm 3 Layout Hierarchy Evaluation Algorithm

function HierarchyEvaluation(Graph, Positions, child list, adj list, se list)

source = Graph.nodes where level = 0

if max(se list) ¿ max(child list) and max(se list) ¿ max(adj list)

max is se = true

if (Positions(source) = Positions(max(y)) or Positions(min(y)) or Posi-
tions(min(x)) or Positions(max(x)) or Positions(median(x,y))

source is max central = true

for level in Graph.nodedata.levels do

R2 = math.R2(linearregression(nodesinlevel)

for node in level do

source dist(node) = distance.euclidean(positions(node), positions(source))

level dist(level) = avg(source dist)

sorted levels = sort(Graph.nodedata.levels, level dist)
Stratification = % of sorted levels = level

27

3.3 Implementation of Layouts and Experiment

This research will evaluate three primary layout styles, a tree style, a force directed

style, and a radial style. The intent of testing these different layout algorithms is to

verify which style of algorithm is most appropriate for C2 network visualization. In

order to measure the metrics required for evaluation, the positional data for each

node needs to be created using each layout algorithm. The algorithms used are

implemented with Python using the networkx library. With a Python script, the

algorithms can all be implemented on synthetic data to generate a dictionary of

positions keyed by nodes.

The implementation script executes through the data generation, layout position-

ing, and data evaluation. The block diagram design for these processes is shown in

Figure 11. In the block diagram the input signals for the experiment will be com-

plexity and number of graphs. The complexity will inform the data generator how

many nodes, the number of adjacent edges, and number of skip echelon source nodes

as described in Section 3.1. The number of graphs input describes the size of the test

data set, or how many example graphs should be generated for layout and evaluation.

Once n graphs are created, each graph will be sent to three different layout algorithms

which return n dictionaries keyed by node with an (x, y) coordinate pair (the node’s

position) as the value. Using the dictionaries of node positions and the edge data

from the associated networks the data evaluation block will calculate the summary

performance metrics as described in Section 3.2.

28

Figure 11: IDEF0 design for experiment implementation. Input signals are the desired
number of graphs, and the complexity, the output is a series of evaluation metrics
outlined in Section 3.2

29

IV. Results and Analysis

Preamble

Chapter IV includes the results from testing three layout algorithms against three

levels of benchmark data. The results section describes the data for each level of

benchmark data, as well as interpretations of the data to understand which algorithms

are most well suited to the C2 network data problem.

4.1 Benchmark Generation Results

The benchmark generator is able to generate data for three different complexities.

To create the benchmark generator, statistics were measured from a set of five real

world graphs. Graphs were chosen in an attempt to sample a variety of C2 network

graphs from one of the smaller graphs to the largest graph. The format of the existing

graphs limits the number of graphs to sample because measurements are counted

manually. A preliminary analysis of the data is necessary because the sponsor’s data

is sensitive. Tables 1 and 2 show the results of the preliminary analysis. In Table

1 the mean and maximum numbers of nodes and edges for a graph are shown, this

information is a reference point for synthetically generated data. The Execution Time

is an estimate agreed upon by subject matter experts who have created dozens of C2

network graphs in Visio. Memory usage is the average memory usage by Microsoft

Visio with each of the 5 example graphs open. Execution time and memory usage

are comparison points for the automation results against the manual methods.

Table 2 contains the probability matrix used to generate synthetic data as de-

scribed in Section 3.1. Table 2 contains probabilities, rounded to the nearest .05

measured by counting the number of children of all nodes at each level. These prob-

abilities contribute to generation of synthetic C2 network data.

30

Table 1: General Statistics of C2 Network Graphs from analysis of 5 real world graphs
Mean Number of Nodes 45.20
Mean Number of Edges 57.60

Maximum Number of Nodes 87
Maximum Number of Edges 105

Mean Adjacent Edges 10.4
Mean Skip Echelon Edges 4.2
Maximum Adjacent Edges 23

Maximum Skip Echelon Edges 13
Execution Time 8 hours
Memory Usage 3234 KB

Table 2: Probabilities for number of children by node level from analysis of 5 real
world graphs

aaaaaaaaaaaa
Node Level

Number of
Children 0 1 2 3 4 5+

0 0 1 0 0 0 0
1 0 0.35 0.05 0.05 0.5 0.05
2 0 0 0.2 0.4 0.4 0
3 0.1 0.3 0.1 0.1 0.2 0.2
4 0.2 0.2 0.4 0 0.2 0
5 0.4 0.4 0.2 0 0 0
6 0.4 0.6 0 0 0 0
7 1 0 0 0 0 0

4.2 Benchmark Test Results

These results include three sets of 25 graphs each at simple, moderate, and high

complexities as described in Section 3.1. The evaluation results against the simple

graphs will primarily be used for comparison against hand-made Visio graphs for time

and memory constraints. The performance results for moderate and high complexities

compare algorithms to one another.

31

4.2.1 Simple Complexity Simulation Results

The execution time results for the three algorithms are in Table 3. The simple

graphs are intended to represent the average C2 network graph created in Visio by

the sponsor, so we compare the memory usage, and rendering time against analyst

estimates for the average time and the average memory usage of a Visio representation

of a C2 network. Table 3 shows that all of the automated algorithms are over 100,000x

faster than manual creation in Visio, and operate with significantly less memory

than the average Visio representation. While the automated layout algorithms all

outperform manual creation in Visio, it is worth noting that at the simplest complexity

the Spectral algorithm is 7.125x faster than the next fastest algorithm. The testing

environment was Google Colab, which provides 12 GB of RAM.

Figures 12, 13, and 14 show a representation of a simple complexity example

graph. In Figure 12, the characteristics of the dot layout are on display; the nodes

are oriented into horizontal levels, and connected like a tree. Figure 13 shows the

radial layout of the spectral algorithm. And Figure 14 shows the concise and efficient

force directed layout of the Fruchterman-Reingold Algorithm.

4.2.2 Moderate Complexity Simulation Results

The results shown in Table 4 outline the performance metrics for each algorithm.

In these tables the central column below each algorithm is most useful for comparing

the performance of different algorithms. The average and maximum values are useful

Table 3: Evaluation Results for Dot, Spectral, Fruchterman-Reingold algorithms, and
Microsoft Visio handmade representations using 25 graphs with simple complexity
(approximately 45 nodes, 10 adjacent edges, 4 skip echelon edges)
Parameter Dot Spectral F-R Visio

Execution Time 0.060 s 0.008 s 0.055 s 12800 s
Memory Usage 69.289 kilobytes 192.703 kilobytes 359.255 kilobytes 3234 kilobytes

32

Figure 12: Simple Complexity example graph visualized using Gephi and the Dot
layout algorithm. All edges Coefficient of Variation: 1.846

Figure 13: Simple Complexity example graph visualized using Gephi and the Spectral
layout algorithm. All edges Coefficient of Variation: 0.9734

when comparing values within one algorithm, but since the graphs are all created on

a different scale, the central column uses the normalized coefficient of variation or σ
µ
.

Using the coefficient of variation allows for a comparison of how consistent the edge

lengths are. A high coefficient of variation, for this research high references values

greater than one, means that the edge lengths are inconsistent and also likely means

that several edges are much longer than others which is an indicator of likely edge

33

Figure 14: Simple Complexity example graph visualized using Gephi and the
Fruchterman Reingold layout algorithm. All edges Coefficient of Variation: 0.562

crossings. For these results the tables are color coded to represent performance. At

a coefficient of variations above one edge and node crossings become more prevalent,

the space used for the graph increases, and edge length is inconsistent. For reference

compare Figures 12,13, and 14, in which the Dot diagram posts a coefficient of varia-

tion for all edges of 1.846, with a significant amount of edge and node crossings, and

the larges overall space used. The Fruchterman-Reingold algorithm layout has an

overall coefficient of variation of 0.562, with much fewer edges crossed, and an overall

more consistent edge length.

Table 4 shows that the Fruchterman-Reingold algorithm minimizes the variation

of all edge lengths. Edge crossings are less likely in the Fruchterman-Reingold algo-

34

rithm, because of the limited variation in edge length. We can also observe that there

is a large variation in length of child distances for the Dot and Spectral algorithm.

This indicates that more than a few children are a great distance from their parents,

an indicator that a parent child relationship may be difficult to infer based on the

length of edges. Also, the majority of the network is comprised of child edges thus

implying that the structure of the layout is highly variant. The data suggests that the

aesthetic characteristics of consistent edge lengths and minimal edge crossings are not

satisfied in the Dot and spectral algorithms. The maximum values are informative

as well. The Dot algorithm performance suggests that skip echelon edges are consis-

tently long from the low coefficient of variation and the high average value. We can

infer from this data that the skip echelon edges in the Dot layout are likely spanning

a large portion of the graph and crossing a significant amount of other edges. The

final distance measurement is spacing, which measures the node’s nearest neighbor,

whether an edge exists or not. Spacing is a useful measure to understand how concise

the graph is. The Dot algorithm has a significant coefficient of variation for spacing,

and that means it is not using the space efficiently. Overall the Fruchterman-Reingold

algorithm performs better in the aesthetic characteristics inferred from the distance

measurements. Fruchterman-Reingold’s algorithm efficiently spaces nodes for consis-

tent edge lengths resulting in graphs that match many of the aesthetic characteristics

from Section 2.1.1.

The results in Table 5 are intended to measure the layout’s fit to C2 network

graphs as defined by the sponsor. The first metric, “Max Edge Dist. is SE” is a

check to see if the maximum edge distance is a skip echelon edge. The definition of a

skip-echelon edge is that a connection from a superior node to another node that is

at least two levels below; therefore the length of a skip echelon edge should be longer

than the length of a child edge or adjacent edge. The dot algorithm performs better

35

because it prioritizes the child edges for layout purposes. Likewise the dot algorithm

performs well in the next metric, “Source is Maximum or Central” which verifies if

the source node is easily identified in the graph. The sponsor’s desire to identify

key nodes in the C2 network is often determined by the node’s distance from the

source; therefore an algorithm that presents an easily identifiable source on a (x, y)

minimum, maximum or in the center of all nodes will allow for the quickest analysis.

“Stratification” is a validation of all levels in each graph. Stratification checks how

accurately the levels are distanced from the source such that each subsequent level

is further from the source than the previous level. In the Dot algorithm, levels are

defined by distance from the source, in the spectral algorithm levels are less defined

by distance from the source, and in the Fruchterman-Reingold algorithm nodes in a

level are not defined by distance from the source. The final measurement in Table

4 is the R2 value for a regression drawn through all the nodes in a level. Similar

to stratification, this metric helps understand how well a layout stratifies the nodes

in a linear manner. Graphviz performs best in this metric because all nodes in the

same level share the same y-coordinate. While Spectral satisfies the Stratification

metric, it does not have a significant R2 value because the nodes are spaced around

the source not linearly. While the Fruchterman-Reingold algorithm satisfied many of

the aesthetic characteristics identified in literature, the Dot algorithm has the most

consistent performance for C2 network visualization styles. The spectral algorithm

has moderate performance in both C2 network visualization metrics and aesthetic

metrics. These results indicate the trade-off in aesthetic characteristics as defined by

literature, and the C2 network visualization characteristics defined by the sponsor.

36

Table 4: Aesthetic Evaluation Results for Dot, Spectral and Fruchterman-Reingold
Algorithms against 25 graphs with moderate complexity (Approximately 100 nodes,
25 adjacent edges, 10 skip echelon edges) Performance measured via coefficient of
variation. Avg and Max values included for understanding results within layout. Red
cells: Coefficient of variation above 1, yellow cells: coefficient of variation above or
equal to 0.7, green cells: Coefficient of variation below 0.7

Dot Spectral F-R
Distance Metrics Avg C Var Max Avg C Var Max Avg C Var Max

Child Dist. 199 1.22 1381.87 0.08 1.23 0.644 0.55 0.67 1.13
Adjacent Dist. 341 0.70 727.57 0.07 1.29 0.55 0.72 0.29 1.08

SE Dist. 818 0.47 1612.92 0.09 0.78 0.202 0.92 0.09 1.05
Spacing 103 1.85 1381.87 0.08 1.34 .644 0.64 0.3 1

Table 5: Sponsor’s C2 network graph characteristic evaluation Results for Dot, Spec-
tral and Fruchterman-Reingold Algorithms against 25 graphs with moderate com-
plexity (Approximately 100 nodes, 25 adjacent edges, 10 skip echelon edges). Red
cells: undesirable performance, values below 0.7 Yellow Cells: Moderate performance,
values above 0.7 less than 0.9, Green Cells: Desired performance values above 0.9

Dot Spectral F-R
Max Edge Dist. is SE 100% 12% 12%

Source is Maximum or Central 100% 24% 24%
Stratification 96% 72% 12%

Level R2 1 0.23 0.004

4.2.3 High Complexity Simulation Results

The final test against high complexity graphs demonstrates how well each algo-

rithm will scale against large numbers of nodes and complex edge connections. Recall

from Section 3.1 the definition of high complexity includes those graphs, with approx-

imately 200 nodes, 50 adjacent edges, and 20 skip echelon edges. High Complexity

graphs are intended to simulate graphs that are too large for manual Microsoft Visio

representations and provide an example for how the sponsor can utilise automated

layouts to expand their visualizations. For this simulation, the previous level of com-

plexity is a reference to understand how a change in complexity impacts the layout

performance.

37

Table 6 demonstrates that the coefficient of variation varies slightly for all the

algorithms when more nodes and edges are added to the graphs. Notably, the Dot

algorithm continues to demonstrate poor performance on these characteristics and

all of the metrics are increasing, aside from spacing which is understandable given

that more nodes are on the graph and therefore a higher likelihood that nodes will

have neighbors closer. Meanwhile, the Spectral and Fruchterman-Reingold algorithms

show little change in coefficient of variation with additional nodes added. The vari-

ation of adjacent distances for the Spectral algorithm decreased significantly to fall

closer to the other edge variations for this algorithm. The Dot algorithm shows no in-

dication of worsening performance against C2 Network metrics, whereas the Spectral

algorithm performance has begun to decline.

The high complexity results observed in Table 6 may be an indicator of a point

where satisfying readability and aesthetic characteristics becomes more important.

A graph with over 200 nodes will depict individual C2 relationships well, especially

with the higher number of edge crossings, long edges, and inefficient space usage

included in the Dot algorithm. With enough nodes added, the Dot algorithm will

begin to deteriorate in readability, whereas the Fruchterman-Reingold and Spectral

algorithms do not deteriorate as much. The other layouts can show clusters on large

graphs in a way that GraphViz does not.

38

Table 6: Evaluation Results for Dot, Spectral and Fruchterman-Reingold Algorithms
against 25 graphs with high complexity (Approximately 200 nodes, 50 adjacent edges,
20 skip echelon edges)

Dot Spectral F-R
Distance Metrics Moderate High Moderate High Moderate High

Child Dist. 1.22 1.65 1.23 1.21 0.67 0.73
Adjacent Dist. .70 1.32 1.29 1.17 0.29 0.42

SE Dist. 0.47 0.68 0.78 0.91 0.09 0.31
Spacing 1.85 1.21 1.34 1.02 0.3 .25

Max Edge Dist. is SE 100% 100% 12% 20% 12% 4%
Source is Maximum or Central 100% 100% 24% 20% 24% 16%

Stratification 95% 100% 72% 51% 13% 4%

Level R2 1 1 0.23 0.17 0.004 0.005

4.3 Feature Analysis

Layout performance is an indicator for what type of algorithm to use, however

most graph visualization tools offer additional features that can improve overall read-

ability of a layout. Many tools implement querying capabilities, color coding, shape

variation, and other analytic measures to improve understanding of a graph. Features

such as variation of color and shape are employed in a few cases for the sponsor’s

graphs.

Querying allows the user to filter certain nodes or edges based on a criteria. In

this research the only node and edge data is the level and the edge style. Filtering

out edge styles is useful for visualization of C2 network data. For example, the

Dot algorithm performed poorly on aesthetic characteristics due to long skip echelon

edges, and high variation of other edge types. If the user queries only edges between

a parent and child on the Dot layout, the edge crossings and edge length variation

would be reduced dramatically. In addition to these benefits, a user could include C2

network information data to allow for more advanced queries, such as unit function

or physical location for example.

39

Varying the color or shape of nodes and edges can also provide a viewer with

more information. For example may connections are associated with an analyst’s

confidence level. In C2 network graphs the colors red, yellow, and green edges signify

low, medium, and high confidence. An analyst could use a visualization tool to color

all edges of a certain confidence level automatically.

Finally many tools offer basic social network analysis measurements to improve

understanding of a graph. Measurements such as centrality, clustering, and shortest

paths could allow analysts a new avenue to explore their data. Microsoft Visio does

not offer querying or social network analysis tools.

40

V. Conclusions

This chapter further discusses the results from chapter IV including a recommen-

dation for an automated layout algorithm. The chapter also include some of the

limitations of this research as well as some beneficial follow on work.

5.1 Layout Recommendations

The primary objective of this research was to identify an existing layout algorithm

that is most well suited to the C2 network data visualization task. This research

approached the problem by understanding of the data, needs of the sponsor, and the

potential solutions. The data is a C2 network often in hierarchical format with skip

echelon and adjacent edges. The sponsor’s goal when creating C2 network graphs is to

visualize the relationships between nodes in the hierarchy so analysts and customers

can understand which nodes have the most impact on the C2 hierarchy. The sponsor

emphasizes the need to show nodes that are connected to their direct subordinates

as well as nodes that are connected to supporting units, and nodes well below in the

hierarchy.

From the performance summarized in Section 4.2.1, the evidence supports that

an automated layout algorithm will improve the efficiency with which C2 network

visualizations are created. Section 4.2.2 allows us to compare which algorithm will

best fit the sponsor’s needs and the data representation. While GraphViz’s did not

perform the best in terms of aesthetic characteristics defined by the literature, it

certainly outperformed the others in the metrics that measured the sponsor’s needs

and hierarchy structure. For this reason, the dot algorithm is the recommended layout

algorithm to use for automation of future C2 network visualizations.

It is important to recognize the trade-off observed as layouts scaled in size. When

41

network graphs become larger other layouts may become more useful as visualization

tools. In our high level complexity, the dot algorithm performed much worse on the

readability and aesthetic metrics intended to measure edge crossings. This research

shows that the Spectral algorithm is better for large-scale visualizations, because it

does not significantly deteriorate in readability while still meeting the sponsor’s needs.

5.2 Limitations

An initial limitation of this research comes from the format of the data. Current

graph visualizations are created manually in Visio, which also ensures analysis of these

graphs is also manual. Manual analysis of large graphs takes a significant amount of

time, so only five real world graphs could be sampled for the creation of this data

generator. While the graphs selected were varying in size and complexity, bias may

have been introduced to the results because of the small sample size.

Another limitation is the number of algorithms tested. It was not feasible to test

all possible layout algorithms in this research. For that reason, this research focused

only on explicit link and node layouts, and implemented three algorithms of varying

style. While the algorithms chosen were selected after a review of available options

other algorithms may also perform well for use on C2 networks.

This research was also limited by the number of metrics tested. Solving the C2

network layout problem is potentially more complex than the eight metrics tested in

this research, but potential tests were limited by subject matter expert understanding

of C2 network graph characteristics. Potentially there are better ways to test visu-

alizations of C2 networks, however this research only focused on the characteristics

identified by literature and the sponsor. One example of an untested metric is count-

ing the specific number of edge crossings. This research uses edge length variation to

infer edge crossings because more aesthetic inferences can be made from this metric,

42

however inclusion of more explicit metrics could yield additional information

This research is also limited by sample size of graphs generated. Only 25 synthetic

graphs were generated for each level of complexity. Due to the nature in which the

graphs were generated, many graphs have similar compositions. Creating a system

that allows for more randomness in data generation and a larger sample size to test

from would improve the validity of future research.

5.3 Future Work

The results of this analysis open the door to future research on this topic:

• As more C2 network graphs are created with an automated layout, big data

analysis can further improve the understanding of C2 layout structure.

• Testing a larger variety of layout algorithms. This research only tested al-

gorithms of different styles, however algorithms within the same style could

perform better than each other. Such as Elastic Tree, Pansy Tree, or Radial

Tree in Bunches. [24][25][26]

• Implementation of AI/ML in all phases of research, generating data, evaluating

the layout, and in analyzing the data. With the graph data in a format for

automation it will lend itself better to machine learning analysis.

• A case study of algorithm usage in the future can provide more information on

the performance of this benchmark test, as well as a better understanding on

how C2 network graphs are visualized in practice.

43

Bibliography

1. Ian A. McCulloh, Helen L. Armstrong, and Anthony N. Johnson. Social network

analysis with applications. European University Institute, 2013.

2. D. (Dieter) Jungnickel. Graphs, networks, and algorithms. Springer, 2005.

3. Hans-Jörg Schulz and Heidrun Schumann. Visualizing graphs-a generalized view,

2006.

4. Banafsheh Hajinasabrazlighi, Paul Davidsson, and Jan Persson. Visualization of

data from transportation simulation systems supervisors: Examiner, 2011.

5. Kozo Sugiyama and Kazuo Misue. Visualization of structural information: Au-

tomatic drawing of compound digraphs. IEEE Transactions on Systes, Man, and

Cybernetics, 21, 1991.

6. F. McGee, M. Ghoniem, G. Melançon, B. Otjacques, and B. Pinaud. The state of

the art in multilayer network visualization. Computer Graphics Forum, 38:125–

149, 9 2019.

7. Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. Lncs 3383 -

an efficient implementation of sugiyama’s algorithm for layered graph drawing,

2005.

8. Stephen C North and Gordon Woodhull. On-line hierarchical graph drawing,

2001.

9. Fangyan Zhang, Song Zhang, Christopher Lightsey, Sarah Harun, and Pak Chung

Wong. Bgs: A large-scale graph visualization tool. pages 3781–3789. Society for

Imaging Science and Technology, 2018.

44

10. Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in

hierarchical data, 2006.

11. Romain Bourqui, Dino Ienco, Arnaud Sallaberry, and Pascal Poncelet. Multilayer

graph edge bundling. pages 184–188, 2016.

12. Fabian Beck, Franz-Josef Wiszniewsky, Michael Burch, Stephan Diehl, and Daniel

Weiskopf. Asymmetric visual hierarchy comparison with nested icicle plots, 2014.

13. Willy Scheibel, Matthias Trapp, Daniel Limberger, and Jürgen Döllner. A taxon-

omy of treemap visualization techniques. volume 3, pages 273–280. SciTePress,

2020.

14. Sébastien Rufiange, Michael J Mcguffin, and Christopher P Fuhrman. Treematrix:

A hybrid visualization of compound graphs, 2011.

15. David S Alberts and Richard E Hayes. Understanding command and control.

2006.

16. Mayra Salcedo-Gonzalez, Julio Suarez-Paez, Manuel Esteve, Jon Ander Gómez,

and Carlos Enrique Palau. A novel method of spatiotemporal dynamic geo-

visualization of criminal data, applied to command and control centers for public

safety. ISPRS International Journal of Geo-Information, 9, 2020.

17. Robert J Houghton, Chris Baber, Richard Mcmaster, Neville A Stanton, Paul

Salmon, Rebecca Stewart, and Guy Walker. Command and control in emergency

services operations: A social network analysis, 2006.

18. Menelaos Bakopoulos, Sofia Tsekeridou, Eri Giannaka, Zheng-Hua Tan, and

Ramjee Prasad. Command control: Information merging, selective visualiza-

tion and decision support for emergency handling, 2011.

45

19. Youn Ah Kang, Carsten Gorg, and John Stasko. How can visual analytics assist

investigative analysis? design implications from an evaluation. IEEE TRANSAC-

TIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 60:234, 2011.

20. Jia Li, Helen Meng, Yu Rong, Wenbing Huang, Hong Cheng, and Junzhou Huang.

Semi-supervised graph classification: A hierarchical graph perspective. pages

972–982. Association for Computing Machinery, Inc, 5 2019.

21. Xia Jing, Matthew Emerson, David Masters, Matthew Brooks, Jacob Buskirk,

Nasseef Abukamail, Chang Liu, James J. Cimino, Jay Shubrook, Sonsoles De

Lacalle, Yuchun Zhou, and Vimla L. Patel. A visual interactive analytic tool for

filtering and summarizing large health data sets coded with hierarchical termi-

nologies (viads). BMC Medical Informatics and Decision Making, 19, 2 2019.

22. Ge Huang, Yong Li, Xu Tan, Yuejin Tan, and Xin Lu. Planet: A radial layout

algorithm for network visualization. Physica A: Statistical Mechanics and its

Applications, 539, 2 2020.

23. L. Giovannangeli, R. Bourqui, R. Giot, and D. Auber. Toward automatic com-

parison of visualization techniques: Application to graph visualization. 10 2019.

24. Yu Dong, Alex Fauth, Maolin Huang, Yi Chen, and Jie Liang. Pansytree: Merging

multiple hierarchies, 2020.

25. Armando Arce-Orozco, Luis Camacho-Valerio, and Steven Madrigal-Quesada.

Radial tree in bunches: Optimizing the use of space in the visualization of radial

trees. pages 369–374, 2017.

26. Xin Yuan Yan and Yi Fang Ma. Elastic Tree Layouts for Interactive Exploration

of Mentorship. 2021.

46

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Analysis of Graph Layout Algorithms for Use
in Command and Control Network Graphs

Stone, Matthew, 1st Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENG)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS022-S-039

NASIC/ACX
Building 858
WPAFB OH 45433-7765
COMM 937-522-4917
Email: kara.brenner@us.af.mil

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research is intended to determine which styles of layout algorithm are well suited to Command and Control (C2)
network graphs to replace current manual layout methods. Manual methods are time intensive and an automated layout
algorithm should decrease the time spent creating network graphs. Simulations on realistic synthetically generated graphs
provide information to help infer which algorithms perform better than others on this problem. Data is generated using
statistics drawn from multiple real world C2 network graphs. The three algorithms tested against this data are the
Spectral algorithm, the Dot algorithm, and the Fruchterman-Reingold algorithm. The results include a multiple objective
statistics designed to inform on the algorithms performance in both aesthetic characteristics defined in literature, as well
as some characteristics defined by the research sponsor. The results suggest that the Dot algorithm performs better with
respect to the sponsor defined characteristics, whereas the Fruchterman-Reingold algorithm performs better on aesthetic
characteristics.

GraphViz, Dot, Layout, C2, Hierarchy, Visualization, Graphs, Fruchterman-Reingold, Spectral, Command and Control

U U U UU 56

Dr. Mark Reith, AFIT/ENG

mark.reith@afit.edu

	Analysis of Graph Layout Algorithms for Use in Command and Control Network Graphs
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Overview
	Research Objectives
	Hypotheses

	Document Overview
	Background and Literature Review
	Methodology
	Results

	Background and Literature Review
	Graph Domain
	Graph Representations

	Hierarchy Layouts
	Hierarchal Clustering
	Node Based Layouts
	Other Layouts

	Related Work
	Command and Control Visualization
	Existing C2 Hierarchy Visualization Tools

	Evaluation Techniques
	Available Tools
	C2 Network Graphs

	Methodology
	Data Generation
	Data Evaluation
	Implementation of Layouts and Experiment

	Results and Analysis
	Benchmark Generation Results
	Benchmark Test Results
	Simple Complexity Simulation Results
	Moderate Complexity Simulation Results
	High Complexity Simulation Results

	Feature Analysis

	Conclusions
	Layout Recommendations
	Limitations
	Future Work

	Bibliography

