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Abstract 

The United States Air Force manages an inventory of 396 KC-135 Stratotanker 

aircraft. It is crucial to our national defense that the 64-year-old aircraft continue to 

provide aerial refueling, which enables our military to accomplish a core mission of 

global reach. With mission capability rates falling and total non-mission capability supply 

rates increasing, it is necessary to take a deeper look at recurrent failures of KC-135. This 

study applies non-parametric and semi-parametric survival models to a dataset retrieved 

from the Air Force’s Logistics, Installations, and Mission Support-Enterprise View 

(LIMS-EV) to look at time until the subsequent failure for the KC-135. Results of non-

parametric models show cumulative hazard rates against sorties or flight hours, which 

may help mission planners, maintainers, and logisticians prepare their tasks. In addition, 

semi-parametric models or Cox proportional hazards models with frailty confirm that 

airbases are not associated with recurrent failures.  
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EXAMINING FAILURES OF KC-135s USING SURVIVAL ANALYSIS 

I.  Introduction 

Background and Problem Statement 

In 1957, The KC-135 Stratotanker entered the United States Air Force (USAF) 

inventory and became operational. The 64-year-old aircraft continue to provide aerial 

refueling, enabling our military to accomplish a core mission of global reach. Air Mobility 

Command manages an inventory of 396 aircraft and relies on the Stratotanker to remain 

agile and resilient for at least the next 30 years (Air Mobility Command, 2018). In 2002, 

the Deputy Under Secretary of Defense for Logistics and Materiel Readiness charged the 

military to research and develop Condition Based Maintenance Plus (CBM+). CBM is "a 

set of maintenance processes and capabilities derived from a real-time assessment of 

weapon system conditions obtained from embedded sensors or external test and 

measurement using portable equipment" (Smith, 2003). "Plus" added on the end of CBM 

connotates the US military's strategy to integrate technology and processes and improve 

system effectiveness. 

Currently, the Air Force inherits a reactive approach to maintenance, and CBM 

implementation can shift the paradigm to a proactive approach. For example, in April 2018, 

a KC-135 was down for maintenance in Rota, Spain, from a failed hydraulic pump. Without 

predicting the failure and no spares readily available, the military lost five days of mission 

capability, waiting for the repairs. The same pump failed two dozen times in other aircraft 

over four years, costing the Air Force an estimated $6.6 million (Serbu, 2019). Instead of 

waiting for parts to fail to replace them, CBM+ presents a proactive solution to get ahead 
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of problems and create a sustainable force. The mission capability rate and total non-

mission capable supply rates are two lagging indicators the United States Air Force tracks 

to measure the health of the fleet. The mission capability rate is the percentage of possessed 

hours for an aircraft that is fully mission capable or partially mission capable. Therefore, a 

low rate indicates the unit is experiencing issues. The total non-mission capable supply 

(TNMCS) rates are the ratio or percent between aircraft possessed time and aircraft 

downtime due to supply (HQ ACC/A4M, 2018). From the fiscal year 2012 to the fiscal 

year 2019, the KC-135 mission capability rates declined, and the TNMCS rates for parts 

supportability worsened, as shown in Figure 1.  

 

Figure 1. Mission Capable and Total Non-Mission Capable Rates (LIMS-EV) 
 

 

FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19 FY20
MC Rates 80.7% 79.3% 76.1% 75.1% 74.3% 73.4% 73.1% 72.4% 74.1%
TNMCS Rate 6.8% 7.1% 8.6% 9.2% 9.6% 9.6% 10.8% 11.9% 11.4%
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Research Objectives/Questions 

This study aims to find a way to help decision-makers identify how often the KC-

135 will experience failures and prepare a proactive approach for maintaining the aircraft 

in the CBM+ perspective. This study collects historical flight data on the KC-135 and 

analyzes data using survival analysis. This study attempts to answer the following 

questions: 

1. Can survival analysis be used to predict KC-135 failures? 

2. Do aircraft failures vary based on location? 

This study argues that the Air Force needs to take an incremental approach to 

implement CBM+ into the logistics community due to the large infrastructure requirement. 

The incremental approach with survival analysis will enhance KC-135 availability and 

readiness and improve part supportability. 

Methodology 

Currently, the Air Force relies heavily on eight and four-quarter moving average 

methods for forecasting spare part demands. Using data retrieved from the Air Force's 

Logistics, Installations, and Mission Support-Enterprise View (LIMS-EV) database, 

survival analysis is the selected method to analyze the data using the R program (R Core 

Team, 2021). Non-parametric and semi-parametric methods analysis of survival time. 
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Assumptions/Limitations 

Due to the complexity of analyzing large numbers of aircraft, the scope of this 

research is limited to the KC-135 Stratotanker at three Air Force Active-Duty Bases by 

excluding those in the Air Force Reserve. Condition-based maintenance consists of three 

main steps: data acquisition, data processing, and maintenance decision-making under the 

umbrella of diagnostics and prognostics (Jardine et al., 2005). This study will focus on the 

prognostics factor, which deals with fault predictions and estimating how soon or likely 

another fault will occur. The data utilized for this research was retrieved from the Air 

Force's Logistics, Installations, and Mission Support-Enterprise View (LIMS-EV) and 

included the available variables recorded in the system. Additionally, if a failure occurred 

when an aircraft flew more than one sortie a day, the time of failure is assigned to the last 

sortie on the day. The documented failures did not identify the reason for failure. An 

assumption for semi-parametric models employed in this study is that covariates follow 

proportional hazards.  

Implications 

This study attempts to predict failures of KC-135, which may help maintenance 

crew and mission planners take proactive action against the failures. Results of this study 

also can be used for enhancing the CBM+ program. 
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II.  Literature Review 

Chapter Overview 

The purpose of chapter II is to review the current Air Force forecasting methods 

and the accuracy of those techniques. This chapter discusses how the civilian sector 

applies condition-based maintenance into its operations. Additionally, this section 

analyzes literature on the status of CBM+ in the military. Lastly, this literature review 

includes applications of survival analysis studies across many career fields.  

Air Force Forecasting Methods 

Slay & Sherbrooke (1997) conducted a study dating back to the early 1990s and 

found that the Air Force's War and Mobilization Plan (WMP) had significant 

discrepancies in how demand for spare parts is forecasted. The study found the problem 

is rooted in the assumption that parts fail on a per-flying-hour basis, and therefore a two-

hour sortie requires twice as many parts as a sortie that flies one hour. The research 

conclusion found that a two-hour sortie only requires about ten percent more parts than a 

one-hour sortie and coined the method decelerated demand forecasting. The Air Force 

incorporated the method and prevented an overestimate of over a billion dollars in gross 

war reserve requirements. In another study, Sherbrooke (1997) examined if the demand 

for parts is more closely related to sorties flown or flying hours.  

The Air Force Materiel Command Manual 23-101 is the central guidance and 

instruction for forecasting and computing Secondary Items using the Secondary Item 

Requirements System (SIRS). In 2015, The Department of Defense (DOD) managed 

more than five million secondary inventory items valued at approximately $98 billion 
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(US Government Accountability 13 Office, 2015). Secondary Items are recoverable and 

consumable items (designated D200A) "installed in a higher assembly such as an aircraft, 

vehicle, piece of equipment, or another recoverable secondary item" (Air Force Materiel 

Command, 2011). SIRS uses historical failures, replacement, condemnation, and other 

reliability rates to compute and determine failure rates for a future program. The 

Equipment Specialist (ES) has five available forecasting methods in SIRS to compute 

future requirements. The five methods include eight quarter moving average (24 months), 

a four-quarter moving average (12 months), PREGLOG, exponential smoothing, and 

estimates. The eight-quarter and four-quarter moving average make up about 95 percent 

of the base-level forecast methods used (Air Force Materiel Command, 2011). In 2011, 

$9.2 billion worth of on-hand excess inventory was due to changes in requirements. In 

2013, The US Government Accountability Office (GAO) found ineffective and 

inefficient inventory management practices. The inaccuracy of forecasting for spare parts 

resulted in the mismatch of inventory levels and requirements. (US. Government 

Accountability 13 Office, 2013). However, with moderate progress to minimize waste, 

inventory management remained on the High-Risk List for several years (US 

Government Accountability 13 Office, 2015). 

CBM Analysis 

The military airframes’ programs differ from the civilian sector primarily due to 

the age of the fleet and the limited number and quality of sensors. Due to these 

differences, Air Mobility Command determined that about 80 percent of the CBM 

program will rely on Enhanced Reliability Center Maintenance (eRCM). The other 20 
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percent will rely on sensor data that meet a separate line of effort of CBM+ called 

Predictive Algorithm Development (PAD).  Rather than fronting the high dollars to input 

sensors on the older airframes, the focus shifts to building algorithms that sift through 

historical data to determine ideal times to replace or repair parts (Serbu, 2019). 

Reviewing the civilian sector provides a foundation of analysis on successfully 

implementing CBM+.  

Degradation modeling, such as continuous and discrete-state models, is one of the 

most common methods for predicting the remaining life of a product (Li et al., 2020). In 

one study, researchers apply Bayesian failure prognostics to an Airplane Condition 

Monitoring System dataset to have updated results with the evidence of new data. The 

study applies a dynamic linear model (DLM) and Bayesian inference formulas on five 

commercial aircraft Air Condition Systems (ACS) to describe the degradation process 

(Sun et al., 2020). The researchers extract data using the ACMS report to characterize the 

ACS's performance and track the system's overall health. The failure times were obtained 

based on pre-defined failure thresholds. The result of the study is a low error for failure 

time predictions of systems entering degradation warning stages of less than eight 

percent (Sun et al., 2020).  

Brigadier General Steven Bleymaier, AMC’s director of logistics, engineering, 

and force protection, uses Delta Airlines as the benchmark to endorse the promotion of 

the CBM+ program to the Air Force. Delta Airlines removed $500 million from their 

supply inventory by implementing condition-based maintenance. Delta is the first major 

U.S carrier to invest in the open-data platform with a 95 percent reliability success rate.



 

8 

From 2013 to 2017, Delta TechOps went from 169 to 324 cancel-free days. (Simmons, 

n.d.). Additionally, researchers applied a cost analysis on the Boeing 737-300 fuselage, 

comparing CBM to scheduled maintenance. They found that CBM provides better 

reliability and fewer maintenance trips because scheduled maintenance implements 

repairs that might threaten safety, while CBM only identifies components that grew to 

threaten safety (Dong, 2020). The challenge the Air Force faces is the increased 

complication of gathering accurate data on the health of the systems (Traskos, 2018). 

CBM+ Analysis 

A study conducted at Air Force Research Laboratory (AFRL) presented a strategy 

to develop and implement CBM+ technology under an Enterprise Predictive Analysis 

Environment (EPAE) concept. EPAE has two goals: to integrate and exploit data and 

allow for rapid standard verification and prototyping of different techniques. 

Implementation has three phases: the first phase tackles the challenge of data integration 

and appropriate infrastructure across various programs to support CBM+. The second 

phase aims to integrate engine domains into a standard data structure implemented in the 

Global Combat Support System-Data Service (GCSS). Lastly, the final phase focuses on 

the longevity of the EPAE program into production capability and integrating into the Air 

Force logistics programs (i.e., Commander Dashboards) for quick health assessments 

(Navarra et al., 2007). 

Logistics, Installation, and Mission Support-Enterprise View (LIMS-EV) is an 

extensive IT infrastructure to access data universally. The goal is for LIMS-EV to be the 

central logistics node and leverage necessary data across other IT systems to build CBM+ 



 

9 

predictive algorithms. AFRL identified raw data from sensors on the aircraft to provide 

the highest level of accuracy. Current Air Force CBM+ policy and guidance are sparse, 

but CBM+ is in the beginning phases for legacy systems, such as the KC-135, and 

reflected in the plans for the F-35 Joint Strike Fighter. (US Air Force, n.d.). 

 

Survival Analysis 

Survival Analysis typically focuses on studying the time until a failure. Survival 

Analysis is common in the medical field for analyzing patients’ mortality with 

progressive diseases such as cancer. However, survival analysis is in many other areas, 

such as machine failures and certain events in social sciences. 

In the last couple of years, COVID-19 has consumed our lives: scientists and 

analysts have attempted to understand and provide solutions to combat the virus rapidly. 

Narain et al. (2020) applied comparative survival analysis to determine what combination 

of care is associated with the lowest hospital mortality for patients with COVID-19 

cytokine storm. The study includes 3,098 patients, divided into six groups based on 

demographic variables, comorbidities, and baseline lab values. Using a Cox regression 

model and adjusting for covariates, a patient’s survival was compared between treatment 

groups to calculate survival rates. The study's conclusion found that corticosteroid and 

tocilizumab used in combination or corticosteroid used alone were associated with the 

lowest hospital mortality rates. 

Ebden et al. (2010) published a study that applied a survival analysis model on 

325 jet engines to estimate when the total engine risk falls below a 95 percent confidence 

interval. The study uses a mixed Weibull distribution to represent the combined density 
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function across failure times of individual components. The model incorporates the 

configuration of the engine, the life usage of the components, the time-to-failure of each 

component, and engine health as the independent variables (Ebden et al., 2010). The 

study's conclusion provides a method to minimize premature inspections by calculating 

the time after a hazard function that lies below a certain threshold and deems unsafe.  

Costa et al. (2020) conducted research using a Cox proportional-hazard model to 

analyze the best maintenance policy that saves the most money for Portuguese railway 

wheelsets. The study derives the survival probability given its diameter and determined 

that as tread diameter increases, so does the length of survival. The hazard function 

presents a range of probabilities that help decision-makers find an optimal point of 

renewal. The result of the study proposes that train operating companies could potentially 

decrease their long-run average cost by about one percent by implementing degradation 

and recovery modeling into their maintenance policies.  

Similarly, Chen et al. (2015) implemented a study to evaluate rehabilitation 

pavement design approaches by comparing four factors: mill and fill, overlay, heater 

scarification, and rubblization, which affect composite pavement performance. The study 

uses a parametric survival model to compare three pavement performance indicators to 

determine the best rehabilitation method. The analysis concluded that rubblization has a 

more significant impact on cracking development in composite pavement compared to 

the other three methods. Additionally, mill and fill treatment outperform the overlay 

method in terms of reflective crack mitigation. The findings in their research were 

beneficial to show which rehabilitation methods had the desired longevity for survival 

that could save time and money.  



 

11 

Gap in the Literature 

There is a bountiful amount of research using survival analysis. However, this 

research intends to fill the gap in the literature on applying survival analysis to recurrent 

failures for the Air Force's KC-135 Stratotanker. 

Summary 

The literature review supports the importance of this research on predicting 

failures on the KC-135. The government has identified the high risk of our current 

inventory management program and the need for a better process to get after lowering our 

costs. The medical field and civilian sector provided success stories on applying survival 

analysis to USAF maintenance programs. The military faces the challenges of finding a 

method to maintain a healthy fleet for an additional 30 years.  
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III.  Methodology 

Chapter Overview 

Chapter III will explain survival analysis to estimate the cumulative hazard rates 

using non-parametric models and hazard ratios for covariates using semi-parametric 

models or Cox proportional hazards model. Survival analysis is also applied to determine 

if the locations of the KC-135 have an impact on failure. The two types of survival 

analysis models applied in this research include a non-parametric Kaplan-Meier model 

and a semi-parametric Cox regression model with shared frailty. These models will be 

applied to the KC-135 Stratotanker at McConnell, MacDill, and Mildenhall Air Force 

Bases, to simulate the need for condition-based maintenance in the Air Force. The 

available maintenance data is from the Air Force Logistics, Installations, and Mission 

Support-Enterprise View (LIMS-EV) system. 

Data Source 

LIMS-EV is the Air Force Headquarters A4/7 Business Intelligence gateway to 

provide a single one-stop-shop for standardized data exploitation for reporting and 

analytics delivery. The mission is to provide quick access to current and historical 

enterprise information and view enterprise interoperability to meet the high operational 

tempo in today's military environment. Within LIMS-EV, an enhanced Fleet Asset Status 

(FAS) capability displays near real-time maintenance and supply data per aircraft tail 

number (Air Force Headquarters A4PA, 2019). Additionally, LIMS-EV provides the 

ability to track data based on a stock number, National Item Identification Number 

(NIINs), serial numbers, so on.  
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Survival Analysis 

Survival Analysis uses statistical models to examine the relationship of timing 

and the duration until the occurrence of an event. Additionally, it analyzes the conditional 

probability that an event occurs at a particular time, known as the hazard rate or 

dependent variable. Furthermore, survival analysis models can assess the relationship 

between specific characteristics and covariates or independent variables on the hazard 

rate. (Mills, 2011: 1-2). The advantage of survival analysis is its ability to apply the 

model to varying events such as medical, political, and, in the case of this research, 

aeronautical. Another advantage that distinguishes survival and event history models is 

that they take censoring into account. Right censored data, which is used in this research, 

“occurs when the event under study is not experienced by the last observation” (Mills, 

2011: 5). This research will apply the R program's statistical computations (R Core Team, 

2021).  

Kaplan-Meier Model 

The Kaplan-Meier (KM) model is a non-parametric model. The advantages of this 

model are its ability to analyze large datasets when event times are not precisely 

measured and provide useful visual plots of the cumulative survivor or hazard function 

(Mills, 2011: 62-63). The Kaplan-Meier estimator is expressed by:   

𝑆̂𝑆�𝑡𝑡𝑗𝑗� = 𝑆̂𝑆�𝑡𝑡𝑗𝑗−1� × Pr�𝑇𝑇 > 𝑡𝑡𝑗𝑗� 𝑇𝑇 ≥ 𝑡𝑡𝑗𝑗)  

1: Kaplan-Meier Estimator 
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Where: 

𝑆̂𝑆�𝑡𝑡𝑗𝑗� is the probability that the survival time for subject that is an airplane j 

is greater than t 

t   is the time when at least one event happened 

T   is the random variable of survival time (T ≥ 0) 

Kaplan-Meier estimates are beneficial for analyzing single events. However, this research 

has recurrent events and needs to estimate cumulative hazard rates using the Nelson 

estimate (Nelson, 1969; 1972). The cumulative hazard function estimates the expected 

number of failures for a given amount of time (Therneau, 2020). The hazard function 

focuses on experiencing the event, such as failures, while the survivor function focuses 

on not experiencing the event. The survival function is the exponential of the negative of 

the cumulative hazard function (Allignol et al., 2016), which is defined as follows:  

𝑆̂𝑆�𝑡𝑡𝑗𝑗� = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐻𝐻(𝑡𝑡)) = 𝑒𝑒𝑒𝑒𝑒𝑒 �� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡

0

�  

2: Survival Function 

Where: 

𝑆̂𝑆�𝑡𝑡𝑗𝑗� is the probability that the survival time for subject that is an airplane j 

is greater than t 

H(t)  is the cumulative hazard function 

Cox Regression Model with Shared Frailty 

The Cox proportional-hazard (PH) model is a multiple linear regression model to 

evaluate simultaneously the effect of several factors on survival and a predominant model 
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used in survival analysis. The advantage of the Cox PH model over the non-parametric 

model is the ability to include multiple covariates. It makes no assumptions about the 

shape of the hazard function (Mills, 2011:12). The Cox PH model is used in this research 

to identify a relationship with fixed covariates on the hazard function. Due to the 

limitations of available data, the scope of this research will focus on measuring the effect 

of the location of military bases. The Cox proportional-hazard model with fixed 

covariates is (Mills, 2011: 87): 

ℎ𝑗𝑗(𝑡𝑡) = ℎ0(𝑡𝑡) exp�𝛽𝛽1𝑥𝑥𝑖𝑖1 + ⋯ +  𝛽𝛽𝑘𝑘𝑥𝑥𝑗𝑗𝑗𝑗�  

3: Cox Proportional-Hazard 

Where:  

ℎ𝑗𝑗(𝑡𝑡) is the hazard for a subject that is an airplane j at time 𝑡𝑡; 

ℎ0(𝑡𝑡) is the hazard function for a subject whose covariates all have the 

value of zero; 

𝛽𝛽1𝑥𝑥𝑗𝑗1 is the calculated beta coefficient for the fixed covariate; 

𝛽𝛽𝑘𝑘 is the coefficient of the kth covariate 

 

 The shared frailty component analyzes when recurrent event times for 

clustered subjects repeat. A recurrent event is an observation of the same type of 

event in a single subject over the observation period, in this case, aircraft failures 

(Mills, 2011: 166). Shared frailty examines the two types of correlation: 

heterogeneity across subjects and event dependence. Heterogeneity across subjects 

means there may be reasons that are difficult or impossible to explain why the KC-
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135s might be more prone to experience an event, such as factors that influence the 

occurrence of an event. Event dependence means the occurrence of the first event 

makes other events more or less likely to happen (Mills, 2011: 167). The shared 

frailty model is (Mills, 2011: 168): 

�ℎ𝑗𝑗(𝑡𝑡)�(𝛽𝛽′𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖)� = ℎ0(𝑡𝑡)𝑣𝑣𝑖𝑖 exp(𝛽𝛽′𝑥𝑥𝑖𝑖𝑖𝑖)  

4: Shared Frailty Model 

Where:  

ℎ𝑗𝑗(𝑡𝑡) is the hazard for each subject that is an airplane j at time 𝑡𝑡; 

𝑥𝑥𝑖𝑖𝑖𝑖   is the covariate vector that is associated with 𝛽𝛽, i is a subgroup coded 

as “ID”; 

𝛽𝛽  corresponding vector of regression parameters; 

𝑣𝑣𝑖𝑖   is the shared frailty (random effects); 

ℎ0(𝑡𝑡) is the hazard function for a subject whose covariates all have the 

value of zero 

Statistical Programs 

This research uses R, a statistical program to analyze KC-135 data. The R 

program is a language that provides integrated software for data manipulation, statistical 

computing, and displaying graphics (R Core Team, 2019). The advantage of R is the 

access to extended packages that help make computations and analysis easier. The study 

utilized the survival package. The non-parametric models used the survfit (Surv) function 

to compute cumulative hazard rates for recurrent events within the survival package 

(Therneau, 2020). Additionally, within the survival package, the semi-parametric models 
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were obtained using the Cox proportional hazards regression fit (coxph) function to 

measure the effect of fixed covariates on the hazard function. 

Summary 

Survival analysis is common in the medical field, and a small amount of research 

uses this method on machines. Using the statistical program R, these models present 

different applications of survival analysis that will measure recurrent failures for KC-

135s in the United States Air Force.  
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IV.  Analysis and Results 

Chapter Overview 

Chapter IV will present the survival analysis results on KC-135 aircraft from 

Mildenhall, McConnell, and MacDill Air Force bases using the non-parametric and semi-

parametric models. The study analyzes data for three years, from October 2018 to 

September 2021. The results of the models will address the two proposed research 

questions.  

Descriptive Statistics 

Before any analysis, the dataset pulled from LIMS-EV was sorted and formatted 

for survival analysis. Table 1 provides an overview of the descriptive statistics.  

Table 1. Survival Descriptive Statistics 
 

Location of the KC-135s  
 

MILD MCCON MACD TOTAL 
 

Number of KC-135 38 38 24 100  

0 (Censored) 2,167 3,787 1,723 7,677  

1 (Failures) 1,385 2,827 1,322 5,534 
 

Observations 3,552 6,614 3,045 13,211  

Failure Percentage 39% 42.7% 43.4% 41.9% 
 

 

The dataset includes 100 KC-135 Stratotankers with 38 from Mildenhall AFB, 

England (MILD), 38 from McConnell AFB, Kansas (MCCON), and 24 from MacDill 

AFB, Florida (MACD). The dataset is broken down by days with at least one sortie 

flown. There were 13,211 observations that included5,534 failures, or 41.9 percent of the 

total observations. KC-135 Stratotankers failed 39 percent of the total observations at 
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Mildenhall Air Force Base (AFB), 42.7 percent at McConnell AFB, and 43.3 percent at 

MacDill AFB. There are 7,677 censored observations.  

Table 2. Survival Descriptive Statistics: Hours Flown Between Failure 

 MILD MCCON MACD ALL 
Events 1,385 2,827 1,322 5,534 
Min. 0.500 0.200 0.300 0.200 
Mean 13.527 15.611 14.119 13.494 
Median 9.7 10.0 9.8 8.8 
Max. 134.3 139.3 100.1 134.3 
Std. Dev. 12.126 15.375 12.380 13.035 

 

 For this study, the location of the KC-135s is the only fixed-covariate in the 

recurrent events dataset. The time interval is the Hours Flown Between Failure (HFBF). 

Table 2 breaks down the statistics of hours flown between failures for each location. Of 

the three locations, McConnell AFB has the highest median of HFBF at 10, indicating the 

aircraft there are more reliable than Mildenhall and MacDill Air Force Bases. Overall, the 

median of hours flown between failure is 8.8.  

Table 3. Survival Descriptive Statistics: Sorties Flown Between Failure 

 MILD MCCON MACD ALL 
Events 1,385 2,827 1,322 5,534 
Min. 1 1 1 1 
Mean 2.78 3.03 2.70 2.68 
Median 2 2 2 2 
Max. 17 28 15 24 
Std. Dev. 2.18 2.78 2.06 2.31 

 

 Table 3 provides the descriptive statistics of the sorties flown between failure 

(SFBF) broken down by location. Each location of the KC-135s represents the fixed-

covariates, and the time indicator is the number of sorties flown until a failure. The 
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median values across all three bases are two sorties flown until a failure indicating the 

aircraft fail about the same regardless of location.  

Kaplan-Meier Model 

The non-parametric Kaplan-Meier model uses the survival (Surv) function in R. 

Hours Flown is the time indicator, separated by HStart and HStop. The event indicator is 

represented as one for Failure or zero otherwise. If an airplane does not fail at the end of 

the observation period, it is censored (Failure=0). The Kaplan-Meier estimates single 

events in survival analysis; therefore, recurrent events use the Nelson estimator to capture 

the cumulative hazard rate to understand and graphically represent failures of the KC-135 

(Nelson, 1969; 1972).   
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Figure 2. Cumulative Hazards Plot: Hours Flown 
 

Figure 2 represents the hours flown on the x-axis and the cumulative hazard rates 

or the cumulative occurrence of events, in this case, failures, for the aircraft on the y-axis. 

At 500 hours flown on the x-axis, the aircraft is estimated to experience approximately 40 

cumulative failures on the y-axis, which continue to increase over time.  
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Figure 3. Cumulative Hazards Plot: Sorties Flown 
 

Similarly, Figure 3 shows the cumulative sorties flown on the x-axis and the 

cumulative hazards on the y-axis. There is a positive relationship between the number of 

sorties and the cumulative hazard rates. As the number of sorties increases, so do the 

cumulative failures. At 100 sorties, the aircraft is likely to experience approximately 30 

failures, which continue to increase over time. 

 

Nelson Estimator by Location 

This section calculates the Nelson estimator to compare the relationship of the 

KC-135s at each location using hours as the time indicator. The hours flown and the 

number of sorties flown are the time indicators, separated by HStart and HStop or SStart 
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and SStop; the event indicator is Failure=1 and the locations (MILD=1, Else=0) and 

(MCCON=1, Else=0) and (MACD=1, Else=0) as the fixed covariates.  

 

Figure 4. Cumulative Hazards Plot: Hours Flown per location 
 

Figure 4 shows three separate plots of the cumulative hours flown on the x-axis 

and the cumulative hazard function on the y-axis, for each base from left to right: 

Mildenhall AFB, McConnell AFB, MacDill AFB. The red line in each plot represents the 

location indicated in the title above the plot, and the black line represents the other two 

bases for easy comparison. Overall, the results indicate that failures of KC-135s are about 

the same at each location as the cumulative hours flown increase over time. 

Mildenhall AFB, ENG McConnell AFB, KS MacDill AFB, FL 
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Figure 5. Cumulative Hazards Plot: Sorties Flown per location 
 

Figure 5 shows three separate plots with the cumulative sorties flown on the x-

axis and the cumulative hazard function on the y-axis, for each base from left to right: 

Mildenhall AFB, McConnell AFB, MacDill AFB. The red line in each plot represents the 

location indicated in the title above the plot, and the black line represents the other two 

bases for easy comparison. Overall, the results indicate that failures of KC-135s are about 

the same at each location as the cumulative number of sorties flown increases over time. 

Cox Regression Model with Shared Frailty 

Subjects often experience the same type of event more than once, defined as a 

recurrent event. The frailty model is an unobserved random proportionality factor that 

modifies the hazard function and looks for correlations of event times with the event 

among similar groups (Mills, 2011: 164-165). Since some aircraft might be more ‘frail’ 

than others, they would be more likely to experience an event. Therefore, in this study, 

Mildenhall AFB, ENG McConnell AFB, KS MacDill AFB, FL Mildenhall AFB, ENG 
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the model aims to describe the excess risk by location and individual KC-135s, 

represented as Frailty(ID), experiencing recurrent events.  

Table 4. Frailty Using Hours Flown and Location 

 MILD Frailty (ID) MCCON Frailty (ID) MACD 
Frailty 
(ID) 

Coef. 0.009537  -0.08098  0.9173  
Se(Coef) 0.09477  0.08635  0.0932  
Exp(Coef) 1.01  0.9222  1.096  
Lower .95 0.8384  0.7786  0.9131  
Upper .95 1.216  1.092  1.316  
p-value 9.2e-01 3.5e-43 3.5e-01 7.4e-41 3.2e-01 4.0e-44 
DF 1 72.42 1 72.54 1 70.87 
Chisq 0.01 379.59 0.88 366.63 0.97 381.69 
Theta  0.1247  0.1257  0.1080 

  

Table 4 represents the output of the frailty model using hours flown and each 

location. The 'Coef.' row shows the beta coefficient estimates (β) for each location that is 

now conditional on frailty. The beta coefficient is the degree of change in the dependent 

variable for each additional change in the predictor variable. For example, Mildenhall has 

a beta coefficient of 0.009537; therefore, every one unit increase in hours flown at MILD 

will increase failure by 0.009537. The same interpretation follows for MCCON and 

MACD; however, since McConnell has a negative value, it is an inverse relationship. The 

next row, 'Se(Coef)', is the stand error of the coefficient and measures how precisely the 

model estimates the coefficient's unknown value. The smaller the standard error, the 

more precise the estimate. The 'Exp(Coef') is the exponentiated coefficient, representing 

the hazard's multiplicative effects. For MILD and MACD, values greater than one 

indicate that the covariate is associated with an increased risk of failure. MCCON's 

exponentiated coefficient is less than one, meaning the covariate has a decreased risk of 
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failure. An exponentiated coefficient of one indicates no association between covariate 

and hazard. Since all three locations have values very close to one, there is more caution 

in believing there is an associated hazard with the location. With an alpha = 0.05, all the 

p-values are above the alpha. Therefore we can conclude that we fail to reject the null 

hypothesis that all of the beta coefficients are zero and state that we cannot be 95 percent 

confident that the covariate affects the hazard. The 'Chisq' is the chi-square statistic and is 

another method that tests the significance of the entire model and supports our p-value 

conclusion. The variance of random effect, labeled Theta, is the estimated frailty 

variance. The variance of random effect is 0.1247 at MILD, 0.1257 at MCCON, and 

0.1080 at MACD. The p-values for all the Frailty(ID)'s are less than the alpha=0.05; 

therefore, we conclude a significant within-group correlation.  

Table 5. Frailty Using Number of Sorties and Location 

 MILD 
Frailty 
(ID) MCCON Frailty (ID) MACD 

Frailty 
(ID) 

Coef. -0.0333  -0.0609  0.1108  
Se(Coef) 0.0873  0.0792  0.8763  
Exp(Coef) 0.9673  0.9409  1.117  
Lower .95 0.8151  0.8056  0.9409  
Upper .95 1.148  1.099  1.326  
p-value 7e-01 2e-37 4.4e-01 1.2e-36 2.1e-01 6.5e-37 
DF 1 70.82 1 71.35 1 1 
Chisq 0.15 343.52 0.59 340.09 1.6 339.5 
Theta  0.1039  0.1081  0.0986 

 

Table 5 represents the output of the frailty model using the number of sorties 

flown and each location. All the same interpretations apply for each row as Table 3. All 

three locations had p-values above the alpha=0.05; therefore, we can conclude that we 

fail to reject the null hypothesis that all beta coefficients are zero and state that we cannot 
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be 95 percent confident that the covariate has any effect on the hazard. The variance of 

random effect, labeled Theta, is the estimated frailty variance. The variance of random 

effect is 0.1039 at MILD, 0.1081 at MCCON, and 0.0986 at MACD. If the variance of 

random effect were zero, that indicates there is no evidence of frailty among the aircraft. 

The p-values for all the Frailty(ID)'s are less than the alpha=0.05. Theta's at all three 

locations is greater than zero; therefore, we conclude a significant within-group 

correlation, and frailty does exist.  

Results 

The analysis allows us to answer the investigative research questions. The first 

question asks if survival analysis can predict KC-135 failures. Using the Nelson model, 

Figures 2 and 3 show the overall cumulative failure rates increase as sorties and flight 

hours increase, and Figures 4 and 5 show the same result based on each location. These 

results can help mission planners, maintainers, and logisticians prepare their tasks. 

The second question explores if aircraft failures vary based on location. Tables 4 

and 5 outputs show, with an alpha = 0.05, all locations had p-values greater than 0.05. 

Therefore, we fail to reject the null hypothesis and conclude that we cannot be 95 percent 

confident that the location affects recurrent failures. Additionally, frailty was applied to 

each aircraft (ID) to determine differences among the aircraft in Tables 4 and 5. The 

variance of random effect is 0.1039 at MILD, 0.1081 at MCCON, and 0.0986 at MACD. 

The p-values for all the Frailty(ID)'s are less than the alpha=0.05. Theta's at all three 

locations is greater than zero; therefore, we conclude a significant within-group 
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correlation, and frailty does exist. This conclusion indicates that other factors may 

capture the cause of failures.  
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V.  Conclusions and Recommendations 

Chapter Overview and Summary 

This study applied survival analysis to recurrent events or failures of the United 

States Air Force KC-135 Stratotanker retrieved from the United States Air Force’s 

Logistics, Installations and Mission Support-Enterprise View (LIMS-EV). The data 

consists of hours flown, the number of sorties flown, failures from three active-duty 

bases: Mildenhall Air Force Base, England, McConnell Air Force Base, Kansas, and 

MacDill Air Force Base, Florida. This study examined the data set for three years from 

October 2018 to September 2021, which contained observations for 100 aircraft. Of the 

13,211 observations, there were 5,534 documented failures. Using non-parametric and 

semi-parametric models on the KC-135 dataset, this study provided the results to answer 

the established research questions. The study provided cumulative hazard rates using 

hours flown or the number of sorties flown as the time indicator, which would help 

maintainers, mission planners, and logisticians improve their tasks. Additionally, the 

location variable was not significant in Cox proportional hazards models, which showed 

no significant effect on aircraft failures. 

Contributions 

Contributions of this study are twofold: first, presenting a research framework for 

future studies for various airplanes, and second, presenting cumulative hazard rates that 

practitioners can use. This study presents an application for similar systems and 

components with minor changes. 



 

30 

Limitations 

There are three major limitations in this study. First, this study employs non-

parametric and semi-parametric models and, thus, fails to include fully parametric models 

that can predict survival time. Second, this study has only one covariate on location. Last, 

this study contains multiple types of recurrent events. 

Recommendations for Future Research 

 Since this research did not examine the exact reasons for failures, such as the 

exact component or parts, additional data can provide a more comprehensive analysis on 

predicting failures. Additionally, broadening the scope to other types of aircraft can be 

beneficial for comparison. Future studies that include additional independent variables 

benefit from examining other factors that may be causing the recurrent failures. For 

predicting survival time, parametric models are desirable. Lastly, some bases have 

implemented the initial phases of Condition-Based Maintenance and would be a great 

source for future research.  
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duration(s) until failure for the KC-135. Results of non-parametric models show cumulative failure rates increase as sorties 
or flight hours increase. In addition, semi-parametric models or Cox proportional hazards models with frailty confirm that 
locations or air bases are not associated with recurrent failures.
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