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Abstract 

 

 The majority of research on covert networks uses social network analysis (SNA) 

to determine critical members (leaders, technical experts, or key operatives) of the 

network to either kill or capture for the purpose of network destabilization.  This thesis 

takes the opposite approach and evaluates potential scenarios for inserting an agent into a 

covert network for information gathering purposes or future disruption operations.  An 

insertion scenario consists of one or more members of the network with whom an 

inserted agent targets for relationship development.  The agent leverages these 

relationships to gain the desired effect on the network.  Due to the substantial number of 

potential insertion scenarios in a large network, evaluating all possible scenarios can 

require hours of computational time.  This research proposes three screening heuristics 

that leverage SNA measures to reduce the solution space before applying a simple search 

heuristic.  Each heuristic is tested on networks of various sizes and types for accuracy and 

time and compares these results to a “brute force” all-scenarios model.  All presented 

heuristics reduce the computational time by 99%, with one heuristic averaging a 0.90 

accuracy across all test networks.   
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SCREENING HEURISTICS FOR THE EVALUATION OF COVERT NETWORK 

NODE INSERTION SCENARIOS 

 

I. Introduction 

 

1.1 Background 

The 2021 Interim National Security Strategic Guidance (INSSG) and The 

Department of Homeland Security Strategic Plan: Fiscal Years 2020-2024 identify the 

international and domestic threats to the United States (US).  These threats fall into three 

categories: near-peer competitors, regional actors, and non-state actors.  China and Russia 

are the near-peer competitors, aggressively asserting themselves on the world stage to 

gain global influence.  They are the primary focus of the national security strategy.   

Regional actors such as Iran and North Korea seek to disrupt regional stability, pursue 

nuclear capabilities, and threaten the US and its allies.  The final category  ̶  and the focus 

of this research  ̶  are the transnational non-state actors that seek the attack the US and 

undermine the American way of life, and they take the form of terrorist, violent 

extremist, and transnational criminal organizations [1], [2].   

 All three types of non-state actors operate in the shadows of society, continually 

evolving and leveraging technology to conceal their operations and members.  Terrorist 

and violent extremist organizations exploit the anonymity of the Internet to spread their 

ideology and propaganda worldwide, radicalizing new recruits to violence [2].  Criminal 

organizations have also leveraged the Internet to further their reach as they pursue 

criminal activities that “include trafficking and smuggling of humans, drugs, weapons, 
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and wildlife, as well as money laundering, corruption, cybercrime, fraud, and financial 

crimes” [2].  Due to their desire to remain hidden, terrorist, extremist, and criminal 

organizations are also referred to as either dark, clandestine, or covert organizations.           

 To counter the actions of these covert organizations, specifically terrorist and 

violent extremist, the INSSG directs a whole of government approach, utilizing the “full 

array of tools” to include law enforcement and intelligence capabilities, while ensuring 

information sharing among agencies [1].  For the Department of Homeland Security, 

actionable intelligence is the basis for their strategy to counter terrorist, extremist, and 

criminal organizations: 

Effective homeland security operations rely on timely and actionable 

intelligence to accurately assess and prevent threats against the United States. 

Accordingly, DHS works diligently to enhance intelligence collection, 

integration, analysis, and information sharing capabilities to ensure partners, 

stakeholders, and senior leaders receive actionable intelligence and information 

necessary to inform their decisions and operations [2]. 

One tool being utilized by the US government to perform analysis of and to 

counter covert organizations is social network analysis (SNA).  Like societies and other 

organizations, covert organizations consist of a network of people tied together by 

relationships, ideas, and goals.  SNA leverages the network structure and utilizes 

elements of graph theory to draw key insights about the organization [3].  

 Covert networks present unique challenges to analysts, as these networks do not 

follow certain norms seen in typical social networks.  The need for secrecy and survival 

affects how the network’s structure develops.  For example, the structure of terrorist 
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networks is usually cell-centric.  The greatest density of relationships is within the cells, 

with usually only one connection outside of the cell to other parts of the network.  The 

relationships or connections that do exist within the network are difficult to detect as the 

members are focused on hiding those connections.  Due to the emphasis placed on hiding 

the network, the lack of information about the network further challenges analysis of the 

network [4]. 

 Previous studies of covert networks focused on node deletion as a means of 

causing disruption in covert networks through the targeting, capturing, or killing of key 

members within the network [5].  The opposite approach of node deletion is node 

insertion.  Node insertion entails inserting an agent or sensor into a network with a goal 

of establishing relationships with members of the covert network and leveraging those 

relationships to gain the desired effect on the network.  A review of the literature 

highlights a considerable gap in research on the use of node insertion within the context 

of covert networks.  This gap in literature serves as the motivation for this study as 

situations might dictate the need for an agent or sensor to be inserted into a covert 

network for the purpose of future disruption or further intelligence gathering.     

1.2 Problem Statement 

With the current lack of research in the area of node insertion with respect to 

covert networks, there exists a need for effective and efficient methods to determine the 

most advantageous node insertion scenarios for a given covert network.  Within the 

context of this research, a node insertion scenario represents one, two, or three members 

of the network that an agent who is inserted into the network should target for 

relationship development and information gathering.   
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 The motivation for this research is the need to evaluate the extensive number of 

insertion scenarios that result from large covert networks with over 150 members.  For 

instance, a network consisting of 200 members results in 200 scenarios targeting one 

individual (one-target scenarios), 19,900 scenarios targeting two individuals (two-target 

scenarios), and 1,313,400 scenarios targeting three individuals (three-target scenarios).  

This results in 1,333,500 different scenarios to analyze to determine which scenarios are 

the most advantageous to pursue, and this analysis requires many hours of computational 

time.  As the network size grows and the number of possible targets per scenario 

increases, the number of possible insertion scenarios grow according to a power law. This 

in turn greatly increases the computational time required to evaluate all possible insertion 

scenarios.   

1.3 Research Objectives 

 The main objective of this research is to provide a method to reduce the 

computational time required to produce a list of the most advantageous insertion 

scenarios within a covert network, while maintaining an adequate overall level of 

accuracy.  To accomplish this objective, this study provides a screening heuristic that 

reduces the solution space by screening out unfavorable scenarios and then efficiently 

searches the reduced space for the most advantageous scenarios.  Three screening 

heuristics, differing in their respective screening criteria, are presented in this paper: 

neighbor-access screening, utility-score screening, and measure screening.   

 To accomplish the main objective, the study proposes a utility function to score 

each scenario and serves as the objective function that the heuristic seeks to maximize.  

The utility function consists of two subfunctions that quantify the benefit and risk 
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associated with each insertion scenario.  A weighted combination of common SNA 

measures is used to calculate the benefit and risk scores for a given scenario, and weights 

can be tuned depending on the operational context.  The overall utility score of the 

scenario is the weighted difference between the benefit and risk scores. 

 The goal of this research is to provide intelligence and law enforcement agencies 

with a method to quickly develop a list of the most advantageous node insertion scenarios 

within a large covert network.  The outputs of the screening heuristics are intended to be 

an initial step in the overall evaluation process of potential insertion scenarios and are not 

intended to replace decision making without further analysis of the scenarios.  The list of 

advantageous scenarios produced by the screening heuristic will require additional 

analysis by intelligence and infiltration subject matter experts (SMEs).  Using the 

proposed screening heuristics will reduce the number of scenarios requiring this 

additional analysis, saving time.  

1.4 Research Scope  

The focus of this study is to develop a screening heuristic to efficiently and 

accurately develop a list of advantageous insertion scenarios, given a specified covert 

network.  Insertion scenarios consist of one to three individuals within the network, with 

whom an inserted agent should seek to develop a relationship in order gain a desired 

effect.  This research does not evaluate the network’s response to the agent’s insertion or 

take into consideration any security measures of the covert network to seek out 

infiltrators.  The analysis of the actual process of and techniques used to insert an agent 

into a covert network are outside the scope of this study.  Classified information, to 
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include current classified techniques to infiltrate a covert network are not used for this 

research.     

1.5 Assumptions and Limitations 

 The assumptions used for this methodology include the following: 

1. Attributes of the network’s nodes and edges are not considered.  This includes 

geographical information of nodes.   The edges within the network are undirected 

and unweighted.   

2. Networks are known with 100% certainty.   All members and their respective 

connections are known and present within the network at the time of analysis.  

This is counter to the real world, where information on covert networks contains a 

level of uncertainty and existing members of a network will be unknown to the 

analyst.  

3. The networks used for this research are not modeled dynamically, and therefore 

represent the network at a given point in time.    

4. Due to the lack of access to large covert network datasets, theoretical graph 

generators will be used to generate the necessary networks for testing and 

analysis. 

5. Testing of the screening heuristic will be limited to networks consisting of 500 

nodes or less.  This is due to both time and access to computers with required 

processing power. 
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1.6 Thesis Organization 

This thesis contains four additional chapters.  Chapter II provides an overview of 

the supporting literature used during this research.  Key topics covered in Chapter II 

include an overview of the key SNA measures, screening heuristics, and an overview of 

current research applying SNA techniques to covert networks.  Chapter III develops the 

methodology for the research and discusses the development of both the utility function 

and screening heuristic.  The methodology is then applied to the September 11th Terrorist 

Network case study.  Chapter IV discusses the testing procedure, results, and analysis of 

the screening heuristic’s performance.  Chapter V provides a discussion of the 

conclusions gained from the research and provides areas for future research. 
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II. Literature Review 

 

2.1 Chapter Overview 

 This chapter provides an overview of current literature on the topics of covert 

networks and SNA.  The chapter starts with an overview of characteristics of covert 

networks and is followed by discussions of key SNA measures used to evaluate networks 

at both the node and network level.  The chapter concludes with a review of current 

research applying SNA techniques to the destabilization of covert networks.    

2.2 Covert Networks 

 According to The Mitchell Centre for Social Network Analysis covert networks 

“are social networks, which have one or many elements of secrecy about it” [6].  Covert 

networks form around a given activity, ideology, or purpose that is either illegal, 

dangerous, or otherwise deemed unacceptable by societal norms.  Examples of covert 

networks include protest movements, underground resistance movements, espionage 

groups, people that participate in certain sexual behaviors, extremist, terrorists, and 

criminal organizations [6].    

 For this research the term “covert networks” refers to terrorist, extremist, and 

criminal organizations, with the primary focus on terrorist organizations.  This is a 

common use and scope of the term throughout the literature reviewed. 

 2.2.1 Covert Network Structure 

 The consensus amongst researchers is that most terrorist organizations take on a 

hub-and-spoke or cellular structure [7].  Initially, this was not the case as the structures of 

these organizations were more hierarchical in nature.  Yet, mainly through the advent of 



 

9 

 

the Internet, these organizations gained a global reach resulting in distributed and 

decentralized operations forcing the organizations to adopt the hub-and-spoke structure 

commonly seen today [8]. 

 The hub-and-spoke or cellular structure of covert networks serves as a protection 

mechanism for the organization, limiting the effects of disruption and helping to maintain 

secrecy.  Communication and knowledge of operations between cells are limited, with 

only the cell leadership having operational connections outside of the cell.  Cell members 

only maintain limited intra-cell connections [7].  A few cell members do maintain what 

Tsvetovat et al. [9] refer to as “sleeper links.”  These links are non-operational 

connections to members of other cells, usually in the form of family ties or shared 

experiences like training, that can be activated as the need arise.  These “sleeper links” 

and other network characteristics help to maintain redundancies so that flow of 

information or resources is not disrupted if a critical node or cell is discovered and 

removed from the network [9], [7]. 

 Network hubs, the more connected members of the network, coordinate 

operations and facilitate information flow between cells as needed.  The hubs are usually 

not leaders within the network but help to reduce the distance that information is required 

to travel between leadership and cells.  Removing hubs from the network can cause major 

disruptions to the network [7], but Tsvetovat et al. [9] argue that activation of the “sleeper 

links” can help to mitigate the disruption. 

 Despite terrorist organizations sharing an overarching hub-and-spoke structure, 

individual organizational structures do differ in many ways.  This is highlighted by 

Carley [10] in her comparison of the structures of al Qaida and Hamas.  Both 
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organizations have an underlying cellular structure, but the organization and make up 

these cells differ between groups.  Table 1 highlights the key differences between these 

groups. 

 

Table 1. General Features of Terrorist Groups [10] 

 

  

 The al Qaida organization maintained an overarching hierarchy built around 

Usama bin Laden.  Below bin Laden was a council of his deputies that oversaw specific 

functions in the areas of religion, military, finance, and media.  Below bin Laden and his 

deputies were the dispersed and decentralized operational cells of the organization.  

These cells were multi-functional in the sense that members of the cells contained the 

various skill sets required for the cell to be operationally effective, independent of the rest 

of the organization.  These cells were free to plan, fund, and conduct small operations 

autonomously.  Larger operations, like the September 11th Attack, were conducted by 
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multiple cells through the coordination and funding provided by bin Laden and his 

deputies [10].        

 Hamas’s cellular structure is organized based on region and function.  Each 

region (West Bank, Egypt, etc.) contains functional cells or groups: internal security 

group, uprisings group, suicide bomber group, professional killer group and a support 

group [10].  The functional groups report to both a regional leader and an overarching 

functional leader at the Hamas headquarters.  The regional and overarching functional 

leaders report directly to the Hamas leader.  For operations, coordination between groups 

within a region is required to ensure the required skillsets are available.  In certain 

regions, the cells may remain dormant until activated for an operation [10]. 

 The United States military maintains a similar view on the structures of covert 

networks (referred to in doctrine as “threat networks”) as academia.  In Joint Publication 

3-25: Countering Threat Networks (JP 3-25), the compartmentalization of the network is 

critical to the network’s survival.  The goal of this compartmentalization is to reduce any 

single individual’s knowledge on the network’s operations or members.  This is to reduce 

risk to the network if an individual is detained [11].  Figure 1 depicts a notional network 

structure as presented in JP 3-25. 
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Figure 1. Depiction of a Notional Covert Network from Joint Publication 3-25 [11] 

      

2.3 Social Network Analysis (SNA) 

 SNA is “the analysis of systems of social relationships represented by networks” 

[12].  SNA is rooted in graph theory, which models graphs or networks as a system of 

points and lines.  Information about a network is gained through graph theory’s 

leveraging of information contained within the network’s structure and properties [12]. 

 In SNA, social networks and organizations are represented as a system of points, 

called nodes, and lines, called edges.  Members of a social network are represented by 

nodes and the connections between the members are represented by the edges.  The 

information about the network is normally contained within a square adjacency matrix, 
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where the rows and columns represent the individuals, and values in the matrix cells 

represent a connection [12].  Within the network, nodes can also represent collectives 

such as tribes, countries, or teams.  Characteristics about nodes are captured in the form 

of attributes and help to distinguish between the nodes [13].  By weighting edges, the 

strength of a relationship can be captured.  Directional edges can be used to represent 

information flow within the network [12].    

 Borgatti et al. [13] describes the three levels of social network analysis: dyad, 

node, and network.  At the dyad level of analysis, pairwise relationships between network 

members are the focus.  Node level analysis aggregates dyad measures to determine 

insights into the individual member, such as the member’s positioning or influence within 

the network.  The final level of analysis is the network level.  At this level, measures seek 

to describe the network as a whole, such as the density of relationships or the diameter of 

the network [13].  The following sections describe key measures at the network and node 

level, followed by a discussion of various network types. 

 2.3.1 Network Level Measures 

 The initial set of network measures consists of density, diameter, and average 

path length.  The density of a network is the percentage of possible connections present 

within a network.  If a network contains five nodes there are ten possible connections 

(𝑛(𝑛 − 1) 2⁄ ) within the network.  If there are five edges present, this results in a density 

of 0.5 [13].  The diameter of the network is greatest path distance between any two nodes 

in the network.  The average path length is similar to diameter but calculates the average 

of all shortest paths between all the nodes in the network [14]. 
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 The next network measure, the clustering coefficient, seeks to determine the level 

of clustering within a network.  Jackson [14] describes clustering as “the extent to which 

my friends are friends with one another.”  The clustering coefficient was introduced by 

Watts and Strogatz [15] in 1998 and is based on the transitivity of a set of three nodes.  A 

set of three nodes are considered transitive when all possible edges between the three 

nodes are present.  The clustering coefficient looks at all cases where two edges (ij and 

ik) originate from the same node i, and determines how often, on average, the edge jk 

exists.  The clustering coefficient is also calculated for individual nodes in a similar 

manner.  Clustering coefficients help in identifying communities within a network [13], 

[14], [15].  

 Modularity is a similar measure to the clustering coefficient, as it seeks to 

determine the level of communities within a network.  Newman and Garvin define 

modularity as measuring “the fraction of the edges in the network that connect vertices of 

the same type (i.e., within-community edges) minus the expected value of the same 

quantity in a network with the same community divisions but random connections 

between the vertices” [16].  The modularity value ranges from -0.5 to 1.  If the number of 

within-community edges is less than the random edges, modularity will be negative.  If 

modularity is close to one, the network has a strong community structure.  Networks with 

a modularity greater than 0.6 have a clear community structure [16], [17], [18]. 

 The final network level measure is degree assortativity, which measures the 

correlation between the degree of a node and the average degree of its neighbors.  If this 

correlation is positive and the assortativity coefficient is close to one, the network is 

assortative, meaning nodes of high degree tend to be connected to other nodes of high 
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degree.   A disassortative network has a negative correlation, meaning nodes of high 

degree are connected to many nodes of low degree.  Assortativity can also be calculated 

for various node attributes, which is useful in the study of homophily [18], [19].            

 2.3.2 Node Level Measures 

Borgatti et al. [13] define centrality as “a class of theoretical constructs that 

characterize a node’s position within the network structure,” and centrality analysis as 

“the process of scoring each node in the network according to its structural importance.”  

The driving idea behind centrality measures is that key members of a network are 

centrally located within the network, and centrality measures allow analyst to identify 

these key members.  Jackson [14] notes that there are four categories of centrality 

measures, based on their underlying statistical theory: degree, closeness, betweenness, 

and neighbors’ characteristics. 

 The “simplest and perhaps the most intuitively obvious” form of centrality is 

degree centrality, which is based on the node’s degree, or the number of edges that 

connect with the node [20].  The underlying idea is that the more connections an 

individual has, the more central they are positioned in the network, and the more 

individuals they can influence compared to an individual with a low degree.  Degree 

centrality is commonly used with undirected networks where any arc weights are ignored.  

Degree centrality can also be used with directed networks in the form of in-degree and 

out-degree centrality.  It is calculated by summing the row values within the adjacency 

matrix [21].  Degree centrality is commonly normalized by dividing by (𝑛 − 1) [14].  

 Jackson highlights a weakness of degree centrality by emphasizing that this form 

of centrality does not take into consideration the quality of the adjacent nodes.  For 
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example, an individual with a lower degree but whose links are with influential 

individuals are more central in the network than an individual that has a higher degree but 

whose adjacent nodes are uninfluential and positioned on the periphery of the network 

[14].    

 The next category of centrality measures is closeness centrality.  As the name 

implies, closeness centrality captures how close a node is to all other nodes in the 

network.  When discussing information flow across a network, individuals with a higher 

closeness centrality will receive information quicker as it spreads across the network 

[21].  The equation for the normalized closeness centrality is  

 
𝑐𝑖

𝑐 =
(𝑛 − 1)

∑ 𝑑(𝑖, 𝑗)𝑗∈𝑉:𝑗≠𝑖
 (2.1) 

 where d(i, j) is the shortest path distance from node i to node j [20]. 

 Jackson identifies a second form of closeness centrality called decay centrality,  

 𝑐𝑖
𝑑 = ∑ 𝛿𝑑(𝑖,𝑗)

𝑗∈𝑉:𝑗≠𝑖

 (2.2) 

that utilizes the decay parameter, δ, with a value of 0< δ<1.  As δ approaches zero, more 

weight is given to closer nodes [14]. 

 Betweenness centrality is the third category of centrality as described by Jackson.  

Freeman [20] introduced the concept of betweenness centrality in 1977 and describes it 

as a measure of how well an individual is positioned between others in the network 

allowing them to “facilitate, impede or bias the transmission of messages.”  The equation 

for the normalized form of betweenness centrality is 

 
𝑐𝑖

𝑏 = ∑
𝑃𝑖(𝑘𝑗)/𝑃(𝑘𝑗)

(𝑛 − 1)(𝑛 − 2)/2𝑘≠𝑗;𝑖∉{𝑘,𝑗}
 (2.3) 



 

17 

 

 

where 𝑃𝑖(𝑘𝑗) is the number of shortest paths between k and j that i falls, 𝑃(𝑘𝑗) is the total 

number of shortest paths between k and j, and n is the total number of nodes.  As a node’s 

betweenness approaches one, the more central the node is considered [14]. 

 Stephenson and Zelen [22] argued that betweenness centrality is narrow in its 

scope as information and communication does not travel only on shortest paths within a 

social network.  They proposed a calculation that determines the centrality of a node 

based on the total number of paths on which a given node is located.  They refer to this 

measure as information centrality [22].  When working with an unweighted graph the 

𝑛 × 𝑛 matrix 𝑩 = (𝑏𝑖𝑗) is derived from the following: 

 
𝑏𝑖𝑗 = {

0, nodes 𝑖 and 𝑗 are incident
1, otherwise

 
(2.4) 

 𝑏𝑖𝑖 = 1 + degree of node 𝑖 (2.5) 

The information centrality of node i (𝑐𝑖
𝐼) is 

 
𝑐𝑖

𝐼 = (
1

𝑘𝑖𝑖 + (𝑇 − 2𝑅)/𝑛
) (2.6) 

where 𝑲 = (𝑘𝑖𝑗) = 𝑩−1, 𝑇 = ∑ 𝑘𝑗𝑗
𝑛
𝑗=1 , and 𝑅 = ∑ 𝑘𝑖𝑗

𝑛
𝑗=1  [22].   

 The final category of centrality, as discussed by Jackson, consists of those 

measures that include the characteristics of a node’s neighbors within the calculation.  

These measures are based on the idea that one’s importance or influence within a network 

is not merely based on the quantity of connections or position within the network, but the 

quality of those connections [14].  

 Bonacich describes eigenvector centrality as “a measure of centrality in which a 

unit’s centrality is its summed connections to others, weighted by their centralities” [23].  
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Borgatti describes eigenvector centrality as a measure of popularity: nodes with high 

eigenvector centrality are connected to other nodes that are well connected.  Borgatti 

continues to describe how eigenvector centrality can be used to measure risk within a 

network, using the risk of disease transmission within a network as an example [13].  The 

equation for eigenvector centrality (𝑐𝑖
𝑒) in matrix notation is 

 𝑨�⃑� = 𝜆�⃑� (2.7) 

where A is the adjacency matrix of the graph, 𝜆 is the largest eigenvalue, and �⃑� is the 

vector of eigenvector centralities. 𝑐𝑖
𝑒 is the ith element of �⃑� [23].    

A similar centrality to eigenvector centrality was proposed by Leo Katz in 1953 

and used to calculate a node’s status or influence within a network. This has become 

known as Katz centrality. This centrality measures the number of nodes that are 

immediately connected to the node of interest. It then measures the number of nodes that 

connect to the node of interest through the immediate neighbors. These distant nodes are 

penalized by 𝛼𝑘, where k is the distance from the distant node to the node of interest, and 

𝛼 is an attenuation factor that is set less than 1 𝜆𝑚𝑎𝑥
⁄  [24], [25].  

In 2013 Qi et al. presented the Laplacian centrality measure that utilizes 

Laplacian energy to measure the “centrality of a vertex based on the idea that the 

importance of a vertex is related to the ability of the network to respond to the 

deactivation or removal of that vertex from the network” [26]. This centrality measure 

looks to capture the amount of Laplacian energy that the network loses when a node and 

its corresponding edges are removed from the network. The greater the energy lost after 

node removal, the greater the importance of the node in the network [26].  
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Laplacian centrality is calculated using the Laplacian matrix of the network. The 

Laplacian matrix of network G is calculated by L(G) = D(G) – A(G), where D(G) is a 

diagonal matrix where 𝑑𝑖𝑖 is the degree of node i and A(G) is the adjacency matrix of 

network G. Utilizing the eigenvalues (𝜆𝑖) of the Laplacian matrix, the Laplacian energy 

for G (𝐸𝐿(𝐺)) is calculated by  

 
𝐸𝐿(𝐺) = ∑ 𝜆𝑖

2

𝑛

𝑖=1

 (2.8) 

Node degree can also be used to calculate 𝐸(𝐺):  

 
𝐸𝐿(𝐺) = ∑(𝑑𝑖

2 + 𝑑𝑖)

𝑛

𝑖=1

 (2.9) 

where 𝑑𝑖 is the degree of node i. This results in the Laplacian centrality of node i as  

 𝑐𝑖
𝐿 = (𝛥𝐸)𝑖 = 𝐸𝐿(𝐺) − 𝐸𝐿(𝐻) (2.10) 

where H is the resulting network after node i is removed from network G [26]. The above 

equation can be further defined as  

 𝑐𝑖
𝐿 = (𝛥𝐸)𝑖 = 𝑑𝐺

2(𝑖) + 𝑑𝐺(𝑖) + 2 ∑ 𝑑𝐺(𝑗)

𝑗∈𝑁(𝑖)

 (2.11) 

where N(i) is the set of neighbors of node i [26]. 

  There are many more measures within SNA to determine the importance or status 

of nodes, including variations on the above.  Guzman et al. [27] researched the 

relationships between 24 common measures to determine if there is any statistical 

dependence between the measures.  Table 2 displays the four groups found by the study 

where measures in each group are highly correlated with each other [27].       
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Table 2. Groups of Highly Correlated Measures [27] 

 

 

 Table 3 shows the measures that were found to be uncorrelated with any of the 

other 24 measures. 

 

Table 3. Uncorrelated Network Measures [27] 

 

 

Borghatti et al. [28] researched the robustness of centrality measures in the 

presence of random error in network data.  The study used node addition, node deletion, 

edge addition, and edge deletion to replicate the error within the network, and their 

effects on degree, betweenness, closeness, and eigenvector centralities.  The results of the 

study show that accuracy of the measures declines “smoothly and predictably with the 

amount of error.”  The authors suggest that this relationship between accuracy and error 

will allow for the construction of confidence intervals for centrality measures.  Another 

Group 1 Group 2

Clustering coefficient Betweenness centrality

Soffer's clustering coefficient Stress centrality

Squares clustering coefficient Length-scaled betweenness

Linearly-scaled betweenness

k -betweenness

Random walk betweenness

Proximal source betweenness

Group 3 Group 4

Load centrality Degree Centrality

Proximal target betweenness Pagerank

Measure

Closeness centrality

Eigenvector centrality

Communicability centrality

Simple diversity

General diversity

Communicabilitybetweenness

Current flow betweenness

Approx. current flow betweenness

Closeness vitality

Average neighbor degree
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key insight from the study is that measures of large dense networks are more robust for 

all error types except edge deletion [28].  This research is important to using SNA 

measures on covert networks, as their secretive nature makes it difficult to collect all 

information on the network.   

 2.3.3 Network Structures 

A small-world network is characterized by a high clustering coefficient, similar to 

a lattice graph, and a small average path length between nodes similar to a random graph.  

The common “six degrees of separation” concept is based on a small-world network [15].  

Watts and Strogatz [15] proposed a method of generating small-world networks.  The 

model initializes with a lattice graph of n nodes that are connected to their k nearest 

neighbors.  Then moving around the ring clockwise, each edge is selected.  With a 

probability of p, the edge is rewired to another node that is uniformly selected.  With a 

probability of (1-p) the edge is not rewired.  Figure 2 shows the random rewiring process 

where n=20 and k=4 [15]. 

 

 

Figure 2. Random Rewiring Procedure from a Regular Ring Lattice to a Random 

Network [15] 

 

Random graphs are graphs where edges between nodes are added to a network 

based on some probability.  One of the most famous models for generating a random 
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graph was introduced by Paul Erdős and Alfred Rényi in 1959.  Their model uses two 

parameters, n for the number of desired nodes in the network and p the probability that an 

edge is formed.  The model initializes by creating the n nodes.  Then the model iterates 

across every possible edge and adds it to the network with a probability of p.  Edge 

insertion is independent of the other edges in or out of the network [30].  Random graphs 

might seem simple, but they help to provide insight into properties of social networks 

[14].   

The third network structure is the scale-free network.  These networks have 

degree distributions that follow a power law distribution.   Due to the nature of this 

distribution and the size of its tails, highly connected hub-nodes have a high probability 

of occurring [29].  A modeling method for scale-free networks was presented by Barabási 

and Albert.  Unlike Erdős–Rényi and Watts-Strogatz network models, the Barabási–

Albert model does not start with all n nodes present.  The model starts with m nodes and 

at each iteration a new node is added with m edges that connect to nodes already present 

in the network via preferential attachment.  The probability, P, that a new node will 

connect to node i depends on the connectivity (ki) of node i, which results in 𝑃(𝑘𝑖) =

𝑘𝑖
∑ 𝑘𝑗𝑗

⁄  [29].     

The final network structures are the connected caveman graph and one its 

variations, the relaxed caveman graph.  The caveman graphs are used to study clustering.  

The connected caveman graph originates with l cliques consisting of k nodes.  One edge 

is rewired from each clique to connect all the cliques into a loop as depicted in Figure 3.   
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Figure 3. Connected Caveman Graph [31] 

The relaxed caveman graph initializes with the same l cliques and k nodes but 

incorporates a probability p that determines if each edge within the clique is rewired to 

outside the clique [32].  This network structure closely resembles the cellular network 

structure commonly seen in covert networks.   

2.4 Current Research of Covert Networks 

 Since the terrorist attacks on September 11, 2001, there has been an increased 

interest into the research of covert networks, specifically terrorist networks, and methods 

to counter them.  After the attacks, government intelligence and defense agencies lacked 

the skillset and abilities to properly analyze these networks.  They, along with academia, 

turned to SNA to fill this capability gap [27].  The following section discusses the 

challenges that researchers face when applying SNA to covert networks along with a 

review of current research focused on network disruption and intelligence gathering. 

 2.4.1 Data Challenges 

 In her review of current literature concerning terrorist networks, van der Hulst [7] 

discusses the challenges facing current researchers when trying to utilize SNA principles 

to study terrorist networks, and by extension covert networks.  She identifies two types of 
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researchers that are interested in the terrorist network problem set: operational analysts 

and scientific researchers.  The operational analysts are those individuals working for 

government intelligence agencies that have access to classified information on terrorist 

networks, but due to the classification, any research results they produce cannot be made 

publicly available.  The second group are members of academia who have the expertise 

to model network behaviors but lack access to classified information and datasets, forcing 

them to rely on open-source data or media reports.  These data sources are usually 

incomplete or wrong [7].       

 Diviak [33] expands on the above issues affecting the research of covert 

networks.  Due to inherent nature of covert networks and their members emphasis on 

secrecy and compartmentalization, collecting complete datasets on these networks is 

nearly impossible.  Most unclassified datasets available to researchers are developed after 

an attack has occurred, usually through the consolidation of information provided in news 

reports and unclassified government reports.  In many cases, these data sources are 

incomplete or conflicting [33]. 

 van der Hulst [7] discusses the effects of the above data challenges on the overall 

covert network research effort: “In the absence of actual network metrics, however, most 

of the work remains limited to the discussion of social networks as a paradigm, some 

theoretical arguments, or basic qualitative analysis.”  She continues by saying that many 

papers are “essentially descriptive (but limited) or outline the potential value of SNA to 

study clandestine networks,” resulting in few empirical studies or studies that test a 

proposed hypothesis [7].  Asal and Rethemeyer [34] describe the research field as being 

mainly “theory building with little empirical verification.”          
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 2.4.2 Network Disruption through Node Deletion 

Current research on the topic of disruption of covert networks centers around the 

removal of key nodes within the network.  Carley et al. [35] use SNA and multi-agent 

models to research how to destabilize covert networks.  The study highlights the 

difficulty of destabilizing large and distributed networks as well as those where the 

network members are connected on various dimensions.  In the study the authors model 

networks dynamically and use meta-matrix representation.  Both techniques enable the 

model to capture a network’s ability to adapt, learn, and change over time [35]. 

Carley et al. [36] continues this line of research through the development of 

DyNet, a tool that is used to simulate covert networks dynamically and uses a meta-

matrix modeling technique.  Using DyNet, the study was able to simulate the effects of 

various targeting and disruption strategies.  The outcome of the research revealed that if 

the individual removed from the network has a high cognitive load or task exclusivity this 

has a greater effect than removing someone who is considered central to the social 

network.  Both removal strategies are slightly better than random node removal.  In the 

optimal organization structure where tasks and cognitive load are evenly dispersed 

throughout the network, random removal increases in effectiveness. 

Tsvetovat et al. [9] also use multi-agent simulations to test network disruption 

strategies.  Their findings showed similar results to the above study, revealing that 

removing experts and other key members based on role creates more permanent damage 

to a cellular-structured network then the isolation of well-connected individuals.  The 

study also revealed that a cellular network has an emergent healing behavior that can 

negate the effects of node loss after some time [9].   
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Geffre et al. [37] developed a method to determine a quantitative value of 

criticality based on three measures: “(1) the members’ social connectedness across multi-

layered affiliations, (2) their involvement in operations, and (3) their emergence during 

periods and at locations of interest.”  This multi-layered approach is displayed in Figure 

4. 

 

 
Figure 4. Multi-Layered Approach used by Geffre et al. [37] to Determine an Actor's 

Critical Value 

 

 2.4.3 Network Disruption through Node Insertion 

 There currently is a lack of research into utilizing node insertion as a disruption 

technique.  One study conducted by Johnstone [38] utilizes a risk-based approach to 

determine locations within a covert network to insert an agent for the purpose of 

intelligence gathering or future disruption.  In the study, Johnstone calculates a utility 

score for each possible insertion scenario, where a scenario consists of one to four 

members of the network of interest that are “targets” with whom an inserted agent should 

develop a relationship.  The utility consists of weighted benefit and risk values.  Each of 

these values are calculated using degree, subject matter expert (SME) rating, closeness 

centrality, and Laplacian centrality.  The method shows promise for identifying potential 
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node insertion scenarios but becomes computationally expensive when utilized on large 

networks [38].    

2.5 Chapter Summary 

 This chapter provided an overview of the current literature with respect to covert 

networks and SNA.  The information gained through the literature review process will be 

applied in the next chapter with the development of the study’s methodology. 
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III. Methodology 

 

3.1 Chapter Overview 

This chapter details the research methodology and begins with a discussion of the 

notation used throughout this chapter.  Second, the method for insertion scenario scoring 

is explained.  This scoring method uses equations consisting of various SNA measures to 

calculate risk and benefit scores.  These scores are combined to create an overall utility 

score for each insertion scenario.  Next, the three screening heuristics are discussed to 

include the screening criteria used by each heuristic to reduce the solution space.  This is 

followed by the presentation of the search portion of the heuristics that operate on the 

reduced solution.  Finally, the methodology is applied to case study using the September 

11th Terrorist Network. 

3.2 Notation 

This paper uses the following terminology and notation throughout.  Social 

networks are referred to both as networks and graphs. Members of the social network 

will be referred to as nodes, targets, members, or individuals. Edges, connections, and 

relationships refer to the social links between members of the social network.  The node 

that is inserted into the network is either the agent or the sensor.    

Each social network or graph of interest is defined as 𝐺(𝑉, 𝐸), where V is the set 

of all nodes and E is the set of all edges.  Nodes are represented as vi, where i is the index 

of the node.  Edges are represented as ei,j, where i and j are the indices of the nodes that 

the edge connects.  The inserted node, or the agent, is represented as va.  The number of 

nodes in graph G is |𝑉| = 𝑛 resulting in V={v1, v2,…,vn} and E={e0, e0,1,…,ei,j}. 
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To represent a generic node insertion scenario, xs is the notation used, where s is 

the set of all targets within the scenario.  A more explicit representation of the insertion 

scenarios is also used where xi is used for a one-target scenario, xi,j for a two-target 

scenario, and xi,j,k for a three-target scenario, where i, j, and k are the indices of the nodes 

with whom the agent targets for relationship development (network edge formation).  

When the agent is inserted into the network, the network’s definition is modified to be 

𝐺𝑥𝑠
∗ (𝑉𝑥𝑠

∗ , 𝐸𝑥𝑠
∗ ).  

Throughout this chapter, a trivial social network is used to help explain the 

different aspects of the methodology (Figure 5).  This network consists of seven 

individuals and eleven edges, resulting in a network density of 0.52. 

 

 
Figure 5. Example Network 

 

3.3 Utility Function 

The purpose of the utility function is to provide a measure of both benefit and 

risk, as well as an overall score for each insertion scenario.  Though not the primary focus 

of this research, the utility function plays an important role, as it serves as the objective 

function for the heuristic.  The utility function utilized in this research is motivated, with 

exceptions, by the similar utility function used by Johnstone [38] and is discussed in 

Chapter II. 
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The utility function developed for this thesis consists of a weighted benefit score 

and a weighted risk score defined as 

 𝑈𝑥𝑠
= 𝑤𝐵𝐵𝑥𝑠

− 𝑤𝑅𝑅𝑥𝑠
 (3.1)                                                     

where 𝑈𝑥𝑠
, 𝐵𝑥𝑠

, and 𝑅𝑥𝑠
 are the utility, benefit, and risk scores, respectively, associated 

with node insertion scenario 𝑥𝑠.  The weights 𝑤𝐵 and 𝑤𝑅  are associated with benefit and 

risk, respectively, and sum to one.  Both benefit and risk are calculated using various 

SNA measures and are discussed in greater detail below.   

 3.3.1 Benefit Score 

For this research, we assume that the purpose of any node insertion is for 

intelligence gathering on the network.  Due to this assumption, two common SNA 

measures are utilized to calculate the benefit score for each node insertion scenario: 

eigenvector centrality and betweenness centrality.  As discussed in Chapter II, 

eigenvector centrality determines the centrality of individuals within a social network, not 

by the mere numbers of connections an individual has, but by the quality of those 

connections.  An individual with a high eigenvector centrality is central to the network 

because they are connected to other important individuals within the network.  The 

underlying principle of betweenness centrality is that individuals that are positioned on a 

higher number of shortest paths between network members have a greater access to 

information flowing through the network than those individuals positioned on fewer 

shortest paths.  Since the assumed goal is to collect information on the network, the 

inserted agent needs to develop relationships with individuals who have access to 

important members of the network and are better positioned to intercept information flow 

between members. 
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The formula for the benefit score is constructed as 

 𝐵𝑥𝑠
= 𝑤𝑒 ∑ 𝑐𝑖

𝑒

𝑖∈𝑆

+ 𝑤𝑏 ∑ 𝑐𝑖
𝑏

𝑖∈𝑆

 (3.2) 

where S is the set of targets in scenario 𝑥𝑠, 𝑐𝑖
𝑒 is the eigenvector centrality for target i, and 

𝑐𝑖
𝑏 is the betweenness centrality of target i.  These centrality measures are calculated 

using 𝐺𝑥𝑠
∗ (𝑉𝑥𝑠

∗ , 𝐸𝑥𝑠
∗ ).  𝑤𝑒 and 𝑤𝑏, where 𝑤𝑏 = 1 − 𝑤𝑒, are the respective weights for the 

two centralities.  The weights allow the analyst to emphasize one measure over the other 

within the benefit score.  Instances may arise where the agent’s access to important 

individuals within the network is more import than positioning to intercept information 

flow.  In this case, 𝑤𝑒 can be set higher than 𝑤𝑏. 

 3.3.2 Risk Score 

The risk calculation uses two SNA measures and a cost factor for each 

relationship the agent develops.  The first measure used to determine risk of the insertion 

scenario is closeness centrality (𝑐𝑎
𝑐).  As discussed in Chapter II, closeness centrality 

measures how close a member of the network is to all other members of the network by 

utilizing the shortest path distance from the node of interest to all other nodes in the 

network.  A member is more central within a network if the individual has a higher 

closeness centrality value.  For node insertion, executing an insertion scenario that results 

in the agent having a high closeness centrality could increase the likelihood of the agent 

being detected.   

The second SNA measure used to calculate risk is degree assortativity, a network 

level measure.  As discussed in Chapter II, degree assortativity (𝛾) is a measure of the 

distribution of the degrees of connected nodes.  Networks with a positive assortativity 

contain a large portion of high degree nodes connected to other nodes of high degree.  
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Within the context of node insertion, if the insertion scenario does not conform to the 

existing connection patterns within the network, there will be a larger change in degree 

assortativity, and the agent could be more susceptible to detection.  By using the change 

in degree assortativity (∆𝛾) from before and after agent insertion within the risk 

calculation, the change in the network’s status quo is captured.   

The final aspect of the risk calculation is a standard cost factor (𝛿), which 

represents the costs associated with establishing each relationship in the insertion 

scenario.  The value of the cost factor is established by the analyst in coordination with 

intelligence SMEs and ranges between zero and one.  The cost factor plays an important 

role within the utility function, where it is multiplied by the number of relationships the 

agent is to establish in the insertion scenario.  Without the cost factor, the utility function 

will not capture the risk associated with developing multiple relationships within the 

covert network.  As the number of relationships the agent pursues increases, the 

likelihood of the agent being detected is expected to increase.  The cost factor tries to 

capture this risk. 

The equation for the risk calculation is  

 𝑅𝑥 = 𝑤𝑐𝑐𝑎
𝑐  + 𝑤𝛾(|∆𝛾|)  +  𝑟𝑥𝑠

𝛿 (3.4) 

where 𝑐𝑎
𝑐 is the closeness centrality of the agent after insertion and 𝑟𝑥𝑠

 is the number of 

targeted relationships in the insertion scenario 𝑥𝑠 (𝑟𝑥𝑠
= |𝑆|).  The weights for closeness 

centrality and change in degree assortativity are 𝑤𝑐 and 𝑤𝛾, respectively, and sum to one.   

 3.3.3 Utility Function Applied to Example Network 

For the network example in Figure 5, there are sixty-three possible insertion 

scenarios when allowing the agent to create at most three relationships.  There are seven 
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scenarios where the agent develops a single relationship, twenty-one scenarios for two 

relationships, and thirty-five scenarios for three relationships.  For this example, only 

thirteen of the possible sixty-three scenarios are analyzed.  These thirteen scenarios were 

selected to ensure certain points are made during the following explanations. 

To calculate the utility score for each scenario, the initial step is calculating the 

degree assortativity for 𝐺(𝑉, 𝐸), and is only required to be calculated once per network, 

as this value will be the same across all possible scenarios.  For the example network, the 

initial degree assortativity is -0.196.   

The remaining calculations within the utility function require 𝐺𝑥𝑠
∗ (𝑉𝑥𝑠

∗ , 𝐸𝑥𝑠
∗ ), the 

updated network once the agent is inserted and relationships are created between the 

agent and the scenario’s targets.  The next step is to calculate the eigenvector and 

betweenness centrality for each target in the scenario, the closeness centrality for the 

agent, and the new degree assortativity.  Once the desired measures are known, the 

scenario’s benefit, risk, and utility scores can be calculated.  Once a scenario’s scores are 

calculated, the agent and its respective relationships are removed from the network, 

resetting back to 𝐺(𝑉, 𝐸).   

Calculating the eigenvector, betweenness, and closeness centralities for every 

possible 𝐺𝑥𝑠
∗ (𝑉𝑥𝑠

∗ , 𝐸𝑥𝑠
∗ ) becomes computationally expensive, especially for large, dense 

networks.  Yet, capturing the effect of the agent’s insertion on the network and targets 

could provide valuable information that can be utilized by the intelligence analysts in 

post-analysis.  For example, a major shift in the targets’ eigenvector centrality could 

highlight a possible scenario where the new relationships and the agent could be easily 
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detected.   This is outside the scope of this research but can serve as a topic for future 

research. 

Figure 6 shows the first insertion scenario, 𝑥0, where the agent, 𝑣𝑎, develops a 

relationship with the target, 𝑣0.  The dotted line represents the new relationship that the 

agent will pursue in the given scenario. 

 

 
Figure 6. Network Representation of Scenario 𝑥0 

 

Once the agent is inserted into the network and the corresponding relationships 

are developed, the centrality measures and change in degree assortativity of the network 

are calculated.  The new degree assortativity for 𝐺𝑥0
∗ (𝑉𝑥0

∗ , 𝐸𝑥0
∗ ) is -0.304, resulting in ∆𝛾 =

0.109.  The following equations show the calculations for associated risk, benefit, and 

utility scores for scenario 𝑥0 when using equal weights of 0.5 and a cost factor of 0.3. 

 

 𝐵𝑥0
=  0.5(0.393) + 0.5(0.111)  =  0.252 (3.5) 

 𝑅𝑥0
=  0.5(0.412) + 0.5(0.109)  +  1(0.3)  =  0.561  (3.6) 

 𝑈𝑥0
=  0.5(0.252)  −  0.5(0.561)  =  −0.155 (3.7) 
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Table 4 shows the benefit, risk, and utility scores for the selected insertion 

scenarios for the example network.  The top three scenarios based on 𝑈𝑥𝑠
, in order, are 

𝑥2,3, 𝑥2,3,4, and 𝑥3.   

 

Table 4. Example Network Scenario Scores, with Top 3 Scenarios Highlighted 

Scenario |∆𝜸| 
Benefit Score 

𝐵𝑥𝑠
 

Risk Score 

𝑅𝑥𝑠
 

Utility Score 

𝑈𝑥𝑠
 

Ranking 

(by 𝑈𝑥𝑠
) 

x0 0.109 0.252 0.561 -0.155 5 

x1 0.022 0.109 0.530 -0.211 13 

x2 0.243 0.265 0.616 -0.176 8 

x3 0.239 0.406 0.638 -0.116 3 

x4 0.275 0.328 0.671 -0.172 7 

x5 0.198 0.253 0.632 -0.190 11 

x6 0.109 0.222 0.573 -0.176 8 

x0,6 0.049 0.514 0.875 -0.181 10 

x2,3 0.014 0.783 0.840 -0.029 1 

x2,4 0.075 0.549 0.888 -0.170 6 

x3,4 0.276 0.768 1.007 -0.120 4 

x2,3,4 0.022 1.030 1.203 -0.087 2 

x2,3,6 0.029 0.790 1.206 -0.208 12 

 

An important aspect of the utility scores is that the score for a scenario consisting 

of multiple targets is not the sum of the individual utility scores for the individual targets.  

For example, scenario 𝑥0,6 has a utility score of -0.181 and consists of the targets 𝑣0 and 

𝑣6.  The utility score for scenario 𝑥0 (targeting 𝑣0) is -0.155 and for scenario 𝑥6 

(targeting 𝑣6) is -0.176.  The sum of these two scores is -0.331.  The consequence of this 

observation is that the utility score for each possible scenario must be calculated 

individually.   

One important observation is that high scoring individual targets, like 𝑣3 above, 

tend to be a target in high scoring multitarget scenarios.  Scenario 𝑥3, consisting of target 

𝑣3, is the highest scoring single-target scenario.  The three highest scoring multitarget 

scenarios are 𝑥2,3, 𝑥2,3,4, and 𝑥3,4, and all three targets contain the target 𝑣3.  This idea 
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that high scoring multitarget scenarios consist of high scoring single targets will be 

leveraged in the next section to develop a screening function. 

3.4 Screening Functions 

The challenge of determining the most advantageous insertion scenarios for a 

network is the mere number of possible scenarios.  Table 5 shows the number of possible 

insertion scenarios based on a network’s size and the number of targets.  The growth 

experienced by the number of possible insertion scenarios follows a power law 

distribution as network size and number of targets per scenario increases (Figure 7).  For 

this research, scenarios are limited to a maximum of three targets, but four-target 

scenarios are shown in Table 5 and Figure 7 to highlight how quickly the number of 

possible scenarios exceeds one billion.        

 

Table 5. Number of Insertion Scenarios per Network Size & Number of Targets 
Network 

Size 

Number of Insertion Scenarios Total Number 

of Scenarios One Target Two Targets Three Targets Four Targets 

25 25 300 2,300 12,650 15,275 

50 50 1,225 19,600 230,300 251,175 

100 100 4,950 161,700 3,921,225 4,087,975 

200 200 19,900 1,313,400 64,684,950 66,018,450 

400 400 79,800 10,586,800 1,050,739,900 1,061,406,900 

800 800 319,600 85,013,600 16,938,959,800 17,024,293,800 

 

 
Figure 7. Growth in the Number of Scenarios Follows a Power Law Distribution 
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To reduce the solution space, specifically for network sizes greater than 150 

nodes, this research developed three screening functions to reduce the total number of 

scenarios and therefore the solution space that a heuristic will search.  This research 

utilizes the following three screening functions: neighbor-access, one-target utility score, 

and SNA measure. 

 3.4.1 Neighbor-Access Screening 

  Neighbor-access is a concept developed during this research and is derived from 

the concept of dispersion, discussed in Chapter II.  Neighbor-access is the number of 

members within the network with a shortest path distance of 2 from the agent, post-

insertion.  These are the members of the network that are directly connected to the 

targets, and therefore, the agent would gain access to these members through the targets. 

For single-target scenarios, the neighbor-access score is equivalent to the degree of the 

target.   The example network will be used next to further explain the calculation of this 

score.   

In the example network displayed in Figure 8. insertion scenario 𝑥0 has a 

neighbor access score of three.  By establishing a relationship with 𝑣0 the agent will have 

access to 𝑣1, 𝑣5, and 𝑣6.  These three members all have a shortest path distance to the 

agent equal to 2.   

 

 
Figure 8. In Scenario 𝑥0, the Agent Gains Access to the Members Highlighted in Blue by 

Targeting 𝑣0 Resulting in a Neighbor-Access Score of 3 
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There is no correlation between the number of targets in an insertion scenario and 

the scenario’s neighbor-access score.  In Figure 9, the scenario consists of the agent 

developing relationships with 𝑣2 and 𝑣3.  Targeting 𝑣2 results in access to 𝑣3 and 𝑣4, and 

a relationship with 𝑣3 provides access to 𝑣2, 𝑣4, and  𝑣6.  Utilizing a shortest path 

distance of 2 ensures that redundant neighbors of targets, and the targets themselves, are 

not counted toward the neighbor access score.   Since 𝑣4 and 𝑣6 are the only members 

with a shortest path distance from the agent equal to 2, they are the only members 

counted in the neighbor-access score, resulting in a neighbor access score of 2.  This is 

one less than the above scenario where there is one target, but the neighbor-access score 

is three.   

 

 
Figure 9.  In Scenario 𝑥2,3, the Agent Gains Access to the Members Highlighted in Blue 

by Targeting 𝑣2 & 𝑣3 Resulting in a Neighbor-Access Score of 2 

 

In initial testing, it was observed that scenarios with high utility scores tend to 

have high neighbor-access scores, and therefore screening out scenarios with a low 

neighbor-access score is a promising screening method for this research.  This 

relationship between utility scores and neighbor-access scores is understandable: 

scenarios with higher neighbor-access scores have a higher number of connections which 

can increase the targets’ eigenvector and betweenness centralities, both of which are used 

to calculate the scenario’s benefit score. 
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The neighbor-access screening algorithm consists of three steps.  The first step is 

to calculate the neighbor-access score for all possible scenarios.  Then, within each 

scenario type (one-target, two-target, etc.), the scenarios are ordered by their neighbor-

access score, largest to smallest.  Finally, for each scenario type, the top 𝛽 scenarios are 

selected to be passed to the heuristic, where 𝛽 is a hyperparameter 𝛽 for this screening 

technique.  Figure 10 is the flowchart of the neighbor-access screening process. 

 

 
Figure 10. Flowchart of the Neighbor-Access Screening Process 

For this research the most targets per scenario analyzed is three.  Therefore, three 

values for 𝛽 are used: 𝛽1, 𝛽2, and 𝛽3.  These separate hyperparameters allow the analyst 

to select a different number of top scenarios from the one-target, two-target, and three-

target lists.  This allows for the same portion of scenario type to be analyzed by the 

search heuristic.  For example, analyzing a 50-node network using a single 𝛽 of 15 results 

in 15 one-target, 15 two-target, and 15 three-target scenarios being analyzed by the 

search heuristic.  This is 30%, 1%, and 0.076% of the possible one-target, two-target, and 

three-target scenarios, respectively.  Using three values for 𝛽 allows for an equal portion 

of each scenario type to be analyzed.  Furthermore, allowing three values for 𝛽 allows for 
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comparison with the other screening functions to ensure the same number of scenarios 

are available for the respective heuristic to evaluate.     

The output of the neighbor-access screening function consists of a list of scenarios 

for each scenario type.  These lists are then passed to a search heuristic for analysis of the 

solution space with respect to the utility function. 

 3.4.2 Utility Score Screening 

As discussed in Section 3.3, early testing showed that high scoring, multitarget 

scenarios tend to consist of targets that individually scored high as a one-target scenario.  

This research leverages this information to develop its second screening function called 

utility score screening.  

Utility score screening consists of three steps.  The first step is calculating the 

utility score for all single-target scenarios.  Then, the targets are ranked from largest to 

smallest based on their respective single-target utility scores.  Finally, the top 𝜇 targets 

are selected, where 𝜇 is the hyperparameter for this screening function and determines the 

number of top targets that are selected.  Figure 11 shows the flowchart for this process. 

 

 
Figure 11. Flowchart of Utility-Score Screening Process 
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The output of the utility score screening function is a ranked set of targets.  This 

set of targets is then passed to the search heuristic.  The search heuristic will be discussed 

in Section 3.5.  Table 6 shows the example network’s single-target scenarios ranked by 

utility score.  For utility score screening, if 𝜇 equals three, then the screening function 

will output the following set of targets: {𝑣3, 𝑣0, 𝑣4}.  By reducing the target list from 

seven to three, the number of possible multitarget scenarios reduces from fifty-six to four, 

reducing the solution space for the search heuristic.  Setting 𝜇 too low could result in a 

small target set that creates a reduced solution space and excludes many of the top-

scoring scenarios.  A 𝜇 too large can increase computation time without a guaranteed 

increase in benefit.   

 

Table 6. Utility Scores for Single-Target Scenarios in Example Network 

Scenario 
Utility Score 

𝑈𝑥𝑠
 

Rank 

(by 𝑈𝑥𝑠
) 

x3 -0.116 1 

x0 -0.155 2 

x4 -0.172 3 

x6 -0.176 4 

x2 -0.176 4 

x5 -0.190 6 

x1 -0.211 7 

 

 3.4.3 SNA Measure Screening   

SNA measure screening follows the same process and uses the same 

hyperparameter (𝜇) as utility score screening, except that a specified SNA measure is 

used to rank the individual targets instead of the utility score to rank scenarios.  For 

measure screening, the specified measure is calculated prior to node insertion.  This is 

different from the SNA measures used to calculate the utility score, because those 

measures are mostly calculated after agent insertion.  For this research, eigenvector 
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centrality is utilized as the screening measure, as initial tests showed it performed better 

than betweenness and closeness centralities.  Table 7 displays the example network’s 

individual targets ranked by their initial eigenvector centralities.  With a 𝜇 of three, the 

reduced target set would be {𝑣5, 𝑣4, 𝑣1}.  Like utility score screening, the reduced target 

set is passed to the search heuristic.  

 

Table 7. Initial Eigenvector Centralities of Targets in Example Network 

Target 

Eigenvector 

Centrality 

(𝑐𝑖
𝑒) 

Rank 

(by 𝑐𝑖
𝑒) 

v5 0.481 1 

v4 0.435 2 

v1 0.396 3 

v0 0.379 4 

v6 0.359 5 

v3 0.313 6 

v2 0.229 7 

 

3.5 Search Heuristic 

This study uses two similar heuristics to search the reduced solution space 

provided by the three screening functions.  Two heuristics are required since neighbor-

access screening outputs lists of pre-built scenarios, whereas utility-score and measure 

screenings pass a single list of targets, which requires the heuristic to build each scenario 

prior to evaluation.    

For utility screening and measure screening function, a construction heuristic is 

used.  Leveraging the observation that high-scoring, multitarget scenarios tend to be 

comprised of individually high-scoring targets, the construction heuristic builds insertion 

scenarios starting with the highest scoring target based upon the screening function.  The 
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heuristic moves about the solution space by iterating through the ordered set provided by 

the screening function, creating and evaluating one scenario per iteration. 

The heuristic performs two runs per target list.  The first run builds and evaluates 

the two-target scenarios, and the second run builds and evaluates the three-target 

scenarios.  For the measure screening function, there is a third run that evaluates the 

single-target scenarios contained within the target set provided by the screening function.  

This step is not required for the utility-score screening target set as they are already 

evaluated by the screening function. 

Performing the measure-screening function with 𝜇 = 5 on the example network 

provides the heuristic with the following target set: {𝑣5, 𝑣4, 𝑣1, 𝑣0}.  The first run of the 

heuristic will build and evaluate the following two-target scenarios: (𝑣5, 𝑣4), (𝑣5, 𝑣1), 

(𝑣5, 𝑣0), (𝑣4, 𝑣1), (𝑣4, 𝑣1), and (𝑣1, 𝑣0).  For the second run, the heuristic will build and 

evaluate the following three-target scenarios: (𝑣5, 𝑣4, 𝑣1), (𝑣5, 𝑣4, 𝑣0), and (𝑣4, 𝑣1, 𝑣0).  

When applying the heuristic to the three lists provided by the neighbor-access 

screening function, the heuristic loses its “construction” characteristic, as the scenarios 

are previously constructed within the neighbor-access screening function.  The heuristic 

still performs a search of the solution space, iterating down the two- and three-target 

scenario lists from highest neighbor-access score to the lowest.  During each iteration, the 

heuristic calculates the utility score for the scenario and compares it to the current best 

utility score found so far.                             

Both forms of the heuristic utilize two hyperparameters.  The first, q, controls the 

maximum number of iterations the heuristic will perform.  The second, t, serves as the 

stagnation criteria that will halt the heuristic if a better solution is not found within t 
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iterations.  Due to there being different numbers of possible two- and three-target 

solutions, the analyst can input a different value for q and t for the two-target run and the 

three-target run.  If the same value of q is used for both runs, a smaller portion of the 

possible three-target scenarios are evaluated when compared to the portion of two-target 

scenarios evaluated.  Allowing two values for q and t allows the analyst to prevent the 

above from occurring.  The maximum number of iterations used for the two-target 

scenario run of the heuristic should not exceed the number of possible two-target 

scenarios based on the inputted target set.  The same is true for the maximum number of 

iterations for the three-target scenario run.  When applying the heuristic to the neighbor-

access screening lists, the maximum number of iterations should not exceed the number 

of top two- and three-target scenarios kept by the neighbor-access screening function. 

3.6 Case Study 

In this section, the previously discussed methodology is applied to the September 

11th Terrorist Network depicted in Figure 12.  This network was developed from the 

information provided in The 9/11 Commission Report [39].  The undirected network 

consists of 69 individuals and 271 edges, resulting in a network density of 0.115.  The 

edges represent various forms of connection between members and are not weighted.  

The average degree within the network is 7.9, the maximum degree is 25, the minimum is 

one, and median degree is six.         
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Figure 12. Network Depiction of the Terrorists Involved in the September 11th Attacks, 

Colored by Member’s Role. 

 

With 69 members in the network, there are 54,809 possible insertion scenarios 

when evaluating one-, two-, and three-target scenarios.  Table 8 displays the 10 most 

advantageous scenarios (greatest utility score) when using an arbitrary cost of 0.2 and 

equal weights. 

 

Table 8. Top 10 Scenarios for the 9/11 Network (Cost = 0.2, Equal Weights) 
Rank Scenario Targets 𝑩𝒙𝒔

 𝑹𝒙𝒔
 𝑼𝒙𝒔

 

1 x3 N. al Hazmi 0.234 0.390 -0.078 

2 x31 K.S. Mohammed 0.226 0.391 -0.083 

3 x3,31 N. al Hazmi; K.S. Mohammed 0.445 0.611 -0.083 

4 x3,31,50 N. al Hazmi; K.S. Mohammed; U. Bin Ladin 0.645 0.817 -0.086 

5 x31,50 K.S. Mohammed; U. Bin Ladin 0.425 0.597 -0.086 

6 x50 U. Bin Ladin 0.213 0.390 -0.088 

7 x3,50 N. al Hazmi; U. Bin Ladin 0.433 0.611 -0.089 

8 x14 M. Atta 0.203 0.385 -0.091 

9 x3,14 N. al Hazmi; M. Atta 0.423 0.610 -0.094 

10 x1,3 K. al Mihdhar; N. al Hazmi 0.411 0.602 -0.096 
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Table 9 displays the results of both utility screening and measure screening when 

applied to the 9/11 network for 𝜇=15.  The target lists created by both screening functions 

contain the same targets except for two: 𝑣4 and 𝑣46.  The rankings of the targets within 

the list are also different.  With a target list of size 15, there are 15 one-target, 105 two-

target, and 455 three-target scenarios, for a total of 575 possible scenarios to evaluate 

with the search heuristic.  

 

Table 9. Results from Utility Score and Measure Screenings on 9/11 Network (𝝁=15) 

Rank 

(𝝁=15) 

Utility-Score 

Screening 

Measure 

Screening 

Target Target 

1 v3 v31 

2 v31 v50 

3 v50 v14 

4 v14 v3 

5 v1 v36 

6 v2 v12 

7 v12 v1 

8 v36 v13 

9 v37 v25 

10 v5 v2 

11 v13 v5 

12 v25 v37 

13 v6 v15 

14 v46 v4 

15 v15 v6 

 

For the application of the heuristic to the target lists provided by the screening 

functions, the maximum number of iterations (q) allowed is 105 for two-target scenarios 

and 455 for three-target scenarios.  The stagnation criteria (t) is set at roughly 30% of the 

maximum allowed iterations, resulting in a stagnation criterion of 30 and 131 for two-

target and three-target scenarios, respectively.   

When running the heuristic on the utility screening target list, 31 iterations are 

performed for two-target scenarios and 132 for three-target scenarios before the heuristic 
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meets the stagnation criteria.  The average computational time for both the utility 

screening and the heuristic across 10 runs is 0.787 seconds.  Table 10 shows which 

iteration the heuristic discovered the highest scoring scenario per scenario type.  The 

early discovery of the highest scoring scenario highlights the observation that high 

scoring scenarios consist of individual targets that are scored highly by the screening 

criteria.  Using the utility screening target list, the first two-target and three-target 

scenarios evaluated by the heuristic are the highest scoring for their respective scenario 

type.   

 

Table 10. Iteration When Heuristic Evaluates the Highest Scoring Scenario 

Iteration 

Utility Screening Target List Measure Screening Target List 

Two-Target 

Scenarios 

Three-Target 

Scenarios 

Two-Target 

Scenarios 

Three-Target 

Scenarios 

1 x3,31 x3,31,50 x31,50 x31,50,14 

2   x31,14 x31,50,3 

3   x31,3  

   

Utilizing the measure screening target list, the heuristic does not evaluate the 

highest scoring scenarios until iteration 3 and 2 for two- and three-target scenarios, 

respectively.  This results in a total of 33 iterations for two-target scenarios and 133 

iterations for three-target scenarios until the stagnation criteria is met.  Across 10 runs, 

the processing time for the measure screening function and heuristic is 0.617 seconds.   

The shorter processing time of measure screening when compared to utility score 

screening is a result of the screening functions and not the construction heuristic.  Utility 

score screening requires the utility score, and all its required measures, to be calculated 

once for each node in the network.  Therefore, betweenness, eigenvector, and closeness 
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centralities are each calculated 69 times for the 9/11 instance.  Compare this to the one-

time calculation of eigenvector centrality required for measure screening.  

When applying neighbor-access screening to the 9/11 Network the following 

values for 𝛽 are used: 𝛽1 = 15, 𝛽2 = 105, 𝛽3 = 455.  These values align with the total 

number of one-, two-, and three-target scenarios that are possible from the utility-score 

and measure screening functions when 𝜇=15.  Table 11 shows the top ten scenarios for 

each scenario type based on the outputs of the neighbor-screening function.  The highest 

scoring two- and three-target scenarios are highlighted in grey.   

 

Table 11. Neighbor-Access Screening Output per Scenario Type (Top 10) 
Rank  

(By Neighbor-

Access Score) 

One-Target 

Scenarios 

Two-Target 

Scenarios 

Three-Target 

Scenarios 

1 x3 x1,14 x1,14,31 

2 x14 x1,31 x1,14,50 

3 x31 x3,14 x1,14,36 

4 x1 x1,13 x3,14,50 

5 x50 x1,50 x3,14,31 

6 x13 x3,31 x1,13,31 

7 x36 x3,50 x1,13,50 

8 x2 x14,50 x1,14,44 

9 x5 x1,12 x1,14,46 

10 x12 x1,25 x3,13,50 

 

The heuristic completes 36 iterations searching the two-target scenarios list and 

136 iterations on the three-target list before meeting the stagnation criteria.  The average 

processing time across the ten runs is 0.831 seconds.  Reviewing Table 11, it can be 

observed that the heuristic finds the highest scoring two-target scenario on the sixth 

iteration.  This scenario is also the global optima for all two-target scenarios.  For three-

target scenarios, the heuristic finds the highest scoring scenario on iteration five.  

Unfortunately, this is not the global optima for three-target scenarios.  Scenario 𝑥3,31,50 is 
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the global optima for three-target scenarios and the heuristic would have to conduct at 

least 401 iterations to discover this scenario based on its placement on the scenario list 

provided by the neighbor-access screening.      

Table 12 displays the accuracy of each of the screening functions and the search 

heuristic.  Accuracies are calculated by comparing the screening heuristics’ outputs with 

that of a “brute force” all-scenarios model that calculates the utility score for all possible 

scenarios.  Accuracy measurements are taken for the top 1, 5, 10, 25, and 50 scenarios 

when compared to those found by the all-scenarios model.  For example, if the screening 

heuristic finds 4 out of the 5 top scenarios, then its accuracy for Top 5 is 0.80.   

 

Table 12. Accuracy of Screening Functions for 9/11 Network 
Screening 

Function 

Accuracy CPU 

Time (s) Top 1 Top 5 Top 10 Top 25 Top 50 

Utility-Score 1.00 1.00 1.00 1.00 1.00 0.787 

SNA Measure 1.00 1.00 0.90 0.92 0.92 0.617 

Neighbor-Access 1.00 0.60 0.70 0.56 0.56 0.831 

 

Reviewing the results in Table 12 reveals that for this problem instance, utility-

screening is the most accurate.  Measure screening maintains an accuracy of 0.90 through 

the Top 50.  Neighbor-Access barely surpasses 0.50 for the Top 25 and 50.  Accuracy of 

neighbor-access can be improved by increasing the stagnation criteria and the maximum 

number of iterations for its heuristic. 

As discussed before, this research is not solely interested in finding the global 

optima, but instead interested in finding a specified number of top scoring insertion 

scenarios that can be provided to intelligence analyst for further analysis and decision.  

For example, the top three targets highlighted in this case study are Nawaf al Hazmi, 

Khalid Sheik Mohammed, and Usama Bin Laden.  All three of these individuals are key 
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members within the 9/11 network.  These targets would garner extensive intelligence 

information, but the risk to the insertion agent would be too great.  Understanding the 

structure of the network provides insight into why these individuals were selected as the 

highest scoring targets.  First, the diameter of the network is only five, meaning that the 

maximum number of edges between any two members within the network is five.  

Additionally, the average degree within the network is 7.9.  The degrees of the three 

individuals are all over 20.  These factors help to increase the target’s utility scores when 

compared to other members of the network.  To counter these effects, the weights within 

the utility function can be altered to emphasize different aspects in the hopes of obtaining 

different scenarios. 

3.7 Chapter Summary 

This chapter discussed the methodology used for this research.  It provided a 

discussion on the development of the scoring method for insertion scenarios utilizing risk 

and benefit scoring equations, which together form the overall utility score for each 

scenario.  Three screening functions, utility-score, measure, and neighbor-access, were 

developed to decrease the solution space prior to applying a search heuristic.  The chapter 

also discussed the operations of the search heuristics used for this research.  Finally, the 

methodology was applied to the September 11th Terrorist Network case study to illustrate 

this methodology in action.  
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IV.  Analysis and Results 

 

4.1 Chapter Overview 

 This chapter details the testing of the three screening heuristics and provides 

analyses of factors that affect heuristic performance.  The chapter starts with a discussion 

of the testing plan.  This is followed by evaluation of the effects that utility function 

parameters and heuristic hyperparameters have on heuristic performance.  This 

information then informs the settings used for the overall performance evaluation of each 

screening heuristic.  The chapter concludes with analysis of network characteristics that 

affect accuracy of the heuristics and an estimation of performance on larger networks. 

4.2 Testing Plan Overview 

 For this study, testing consisted of four stages.  The first two stages test the effects 

of the utility function parameters and the heuristic hyperparameters on the accuracy of 

the three screening heuristics.  The information gained during stage one and two 

influenced the values used for the parameters and hyperparameters in stage three.  Stage 

three testing evaluates the accuracy and computational time required for each heuristic.  

Stage four will evaluate network factors that affect heuristic accuracy. 

 For stage one and two of testing, eighteen benchmark networks were used, created 

using three network generators from Python’s NetworkX [40] module: Erdős–Rényi (ER), 

relaxed caveman (RC), and Barabási-Albert (BA).  Table 13 shows the benchmark 

networks used for this analysis and their respective characteristics.  For all graph types, n 

is the number of nodes in the network and seed is the seed number for replication.  For 

ER graphs, p is the probability that an edge is formed during generation, but for RC 
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graphs p is the probability that an edge is rewired to a node outside of its cluster.  

Additionally, for RC, k is the number of nodes per group and l is the number of groups.  

BA graph generation utilizes m the number of edges to connect from a new node to 

existing nodes.  

 

Table 13. Benchmark Network Information 
Network 

Index 

Network 

Generator 
n p k l m Seed 

1 BA 50 - - - 3 326 

2 BA 50 - - - 6 439 

3 BA 100 - - - 3 48 

4 BA 100 - - - 6 35 

5 BA 200 - - - 3 402 

6 BA 200 - - - 6 375 

7 RC 50 0.25 10 5 - 549 

8 RC 50 0.25 5 10 - 733 

9 RC 105 0.35 7 15 - 85 

10 RC 140 0.25 20 7 - 763 

11 RC 200 0.20 10 20 - 472 

12 RC 200 0.20 20 10 - 460 

13 ER 50 0.10 - - - 137 

14 ER 50 0.25 - - - 277 

15 ER 100 0.10 - - - 247 

16 ER 100 0.25 - - - 145 

17 ER 200 0.10 - - - 19 

18 ER 200 0.25 - - - 160 

 

 Stage three of testing utilizes 18 trials, each using the same network settings as 

the benchmark networks, with two exceptions.  First, each trial will consist of multiple 

runs, with each run consisting of a different randomly generated graph.  Second, the 

utility score parameters and heuristic hyperparameters values used during stage three will 

be informed by the results of previous stages.  Stage four will then use the outputs of 

stage three to determine what network factors affect the accuracy of each heuristic.  More 

details on each stage’s testing procedures are found in their respective sections. 
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4.3 Testing of Utility Score Parameters 

 Prior to evaluating the performance of the screening heuristics, the utility score’s 

cost factor and weights are evaluated to understand their effects on the ranking of 

scenarios.   

 4.3.1 Cost Factor 

 As discussed in Chapter III, the cost factor is used in the utility score function to 

model the risk associated with developing multiple relationships within a scenario.  

Without the cost factor, the algorithm is biased towards the scenarios with the most 

targets.  By simple deduction, it can be reasoned that a high cost factor can bias the 

algorithm towards one-target scenarios, and a low cost factor can bias the algorithm 

towards scenarios with the highest number of targets.  The purpose of this evaluation is to 

determine the range at which the cost factor limits bias by the algorithm and the top 

scoring scenarios are a mix of scenario types.  Removing the bias of the algorithm is 

important to ensure each scenario type is treated equally by the algorithm and to remove 

the advantages three-target scenarios have over two-target scenarios, and two-target 

scenarios over one-target scenarios, due to nature of the utility function without the cost 

factor.  

 To perform this evaluation, a bracketing technique was used to find the window 

of cost factor values that produced the least bias, or an even mix of one-, two-, or three-

target scenarios.  For each cost factor value used during bracketing, each scenario’s 

utility score was updated, and the scenarios were sorted from largest to smallest 

according to their utility score.  Then the number of each type of scenario in the top n 

was recorded.  This results in a range of cost factors where there are a mix of scenario 
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types in the top n scenarios.  The maximum cost factor value within this range results in a 

majority (greater than 95%) of one-target scenarios with one or two two-target scenarios.  

Cost factors greater than this value result in all one-target scenarios in the top n.  The 

minimum cost factor value results in a majority of three-target scenarios with one or two 

two-target scenarios present.  Values less than this range results in all three-target 

scenarios.  The prime cost factor value is where the least bias and the most balanced mix 

of one-, two-, and three-target scenario types occurs.  Table 14 shows the cost factor 

ranges (maximum, minimum, and prime) for the benchmark networks and the density, 

diameter, and average degree of each network.   

 

Table 14. Cost Factor Ranges for Benchmark Networks 
Network 

Index 

Cost Factors Range 

Length 

Network 

Density 

Network 

Diameter 

Average 

Degree Minimum  Prime Maximum  

1 0.090 0.240 0.390 0.300 0.12 4 5.64 

2 0.090 0.195 0.300 0.210 0.22 3 10.60 

3 0.120 0.245 0.370 0.250 0.06 4 5.82 

4 0.070 0.185 0.300 0.230 0.11 3 11.30 

5 0.090 0.250 0.350 0.260 0.03 5 5.90 

6 0.060 0.180 0.300 0.240 0.06 4 11.60 

7 0.090 0.155 0.230 0.140 0.18 4 9.00 

8 0.170 0.240 0.350 0.180 0.08 8 4.00 

9 0.070 0.135 0.210 0.140 0.07 6 6.00 

10 0.047 0.054 0.065 0.018 0.14 3 19.00 

11 0.050 0.080 0.120 0.070 0.05 6 9.00 

12 0.040 0.048 0.065 0.025 0.10 4 19.00 

13 0.110 0.185 0.280 0.170 0.10 5 4.72 

14 0.080 0.115 0.150 0.070 0.26 3 12.56 

15 0.060 0.080 0.120 0.060 0.10 4 10.10 

16 0.045 0.058 0.085 0.040 0.26 3 25.60 

17 0.045 0.057 0.070 0.025 0.10 3 20.00 

18 0.030 0.034 0.043 0.013 0.25 2 50.40 

   

 Figure 13 shows the effect of changing the cost factor on utility scores per 

scenario type in Benchmark Network 3, which was selected to represent the effects seen 

across all benchmark networks.  The red line indicates the utility score of the 100th 

ranked scenario.  At a cost factor of 0.12, the top 100 scenarios consist of 4 two-target 
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and 96 three-target scenarios.  As the cost factor increases, the mix of scenario types 

within the top 100 changes, with an increasing number of one-target scenarios entering 

the top 100 and three-target scenarios exiting.  At a cost factor of 0.37, the mix has 

switched to 96 one-target and 4 two-target scenarios.  As expected, as the cost factor 

increases, the utility scores of all scenarios decrease.  Similar results were seen in all 

benchmark graphs.   

 

 
Figure 13. The Effect of Cost Factor Values on Scenario Utility Scores in Benchmark 

Network 3 

  

Figure 14 shows the effects of a network’s density and average degree on the 

prime cost factor value.  In each graph, points are sized according to the number of nodes 

in the network.  The lines connecting points, connect points representing networks of the 

same size.  When comparing networks of the same type and size, increasing either 

network density or average degree results in a decreased prime cost factor value. 
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Figure 14. Effects of Network Density & Average Degree on Prime Cost Factor Value 

(Point Size Reflects Network Size). 

 

Figure 14 further reveals that cost factors for BA graphs are less affected by 

network size than ER and RC graphs.  Both ER and RC graphs have smaller cost factors 

values for larger networks.  This could be the result of BA graphs maintaining similar 

network structures despite size.   

After looking at the effects of different cost factors on the utility score, the 

screening heuristics were run using varying values of the cost factors to determine if there 

is any relationship between cost factor values and heuristic accuracy.  Utilizing the 

benchmark graphs, the screening heuristics were run five times each, using one of five 

cost factors.  The cost factors utilized were within the ranges presented in Table 14 for 

each respective network.  The maximum, minimum, and prime cost factors in the ranges 

were used, along with the two midpoints of the prime and extreme cost factors in the 

range. 

The results show that a high cost factor can have an effect on the accuracy of the 

heuristic, but it depends on the value of 𝜇 or 𝛽1 and the number of top scenarios being 

compared.  If a 100-node network is being evaluated by measure screening with a 𝜇 = 15 

and the top 50 scenarios are being compared to those of the all-scenarios model, the 
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greatest accuracy the heuristic can achieve is 0.3 (15 out of 50).  The accuracy could be 

lower depending on which one-target scenarios are kept by the screening mechanism.  

With a high cost factor, the top 100 scenarios found by the all-scenarios model will be all 

one-target scenarios.  With a 𝜇 = 15 the heuristic will only evaluate 15 one-target 

scenarios, resulting in the top 100 scenarios consisting of only 15 one-target scenarios 

and the remainder being either two- or three-target scenarios.  Therefore, when 

comparing the top 50 scenarios from the heuristic with those from the all-scenarios 

model, only 15 of the 50 scenarios will match.  The accuracy will increase as 𝜇 increases 

or the number of scenarios being compared decreases.    

For the utility-score screening heuristic, this is not the case.  Due to the nature of 

the screening function, the utility scores for all one-target scenarios are calculated during 

the screening step.  This is prior to creating a reduced target list that is passed to the 

heuristic.  The utility scores for the one-target scenarios not selected by the screening 

function are kept and ranked with all other scenarios evaluated by the heuristic.  

Therefore, with a network size greater than 50, if all scenarios in the top 50 are one-target 

scenarios, the utility-screening heuristic will have an accuracy of 1.0.    

In summary, for a given network instance, there is a range of cost factor values 

that provide a mix of one-, two-, and three-target scenarios.  Values greater than this 

range bias one-target scenarios, resulting in the top n scenarios being all one-target 

scenarios, while values less than this range favor three-target scenarios and result in the 

top n scenarios consisting of all three-target scenarios.  Both density and average degree 

all affect the prime cost factor value for a network.     
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 4.3.2 Weights 

 To evaluate the effect of the various weights within the utility function, a process 

similar to evaluating the cost factor effects is used.  Utilizing the benchmark networks, 

the utility scores were first calculated using all weights equal to 0.5.  Then each pair of 

weights (𝑤𝐵 & 𝑤𝑅 , 𝑤𝑒  & 𝑤𝑏, 𝑤𝑐 & 𝑤𝛾) were tested with values of 0.75 and 0.25, in both 

configurations.  For instance, 𝑤𝑒 was set to 0.75 and 𝑤𝑏 set to 0.25.  In the next iteration, 

the values were switched, so 𝑤𝑒 = 0.25 and 𝑤𝑏 = 0.75.  Then 𝑤𝑐 and 𝑤𝛾 were 

evaluated, followed by 𝑤𝐵 and 𝑤𝑅 .  During each evaluation, the mix of scenario types in 

the top n were calculated, in addition to the specific scenarios that were within the top 10.  

The following example discusses specifically Benchmark Network 9, but similar results 

were observed for all benchmark networks.     

Figure 15 displays the effect of changing a specific weight on the mix of scenario 

types within the top 100 scenarios for Benchmark Network 9.  The red data points 

represent the top 10 scenarios when all weights are equal to 0.5 and continue to represent 

the same scenarios throughout all other graphs.  This allows the reader to see how the top 

scenarios change with the weights.  The green horizontal line represents the utility score 

of the 100th ranked scenario given the specific weight modification noted in the 

individual graph’s title.   
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Figure 15. Changing the Weights within the Utility Function can also Bias the Algorithm, 

Similar to the Cost Factor 
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For two of the three sets of weights (𝑤𝐵 & 𝑤𝑅, 𝑤𝑒 & 𝑤𝑏) in Benchmark Network 

9, increasing the value of one of the weights above 0.5 biases the algorithm towards one-

target scenarios and by increasing the other weight value above 0.5, causes the algorithm 

to be biased toward three-target scenarios.  In the graphs above, when 𝑤𝑒 = 0.75 and 

𝑤𝑏 = 0.25, the top 100 scenarios consist of mainly three-target and a few two-target 

scenarios.  Conversely, when 𝑤𝑏 = 0.75 and 𝑤𝑒 = 0.25, one-target scenarios are 

favored.  The same occurs when evaluating 𝑤𝐵 and 𝑤𝑅.   

Changing the values 𝑤𝑐 and 𝑤𝛾 has less of an effect on the mix of scenario types 

within the top 100.  When weights are equal and the cost factor is 0.135, there are 37, 22, 

and 41 one-, two-, and three-target scenarios within the top 100, respectively.  When 

𝑤𝑐 = 0.75, the mix becomes 48, 22, and 30.  For 𝑤𝛾 = 0.75, the mix is 26, 22, and 52.  

Changing these two weights does slightly bias the algorithm to a certain scenario type, 

but not to the extent of the other weight sets, where the top 100 mix is either almost all 

one-target scenarios or almost all three-target scenarios.  Furthermore, when all other 

weights are set at 0.5 each, there is no value between zero and one where 𝑤𝑐, and 

conversely 𝑤𝛾, forces the scenarios in the top 100 to be either almost all one-target or 

almost all three-target scenarios like the other two sets of weights. 

When comparing the top 10 scenarios after each weight change, the top scenarios 

consisted of the same targets, with one exception.  When 𝑤𝑅 = 0.75, scenarios consisting 

of different targets entered the top 10.  This can be seen in Figure 15 by tracking the 

movement of the red data points.  Figure 16 displays zoomed in versions of certain 

graphs from Figure 15.  Please note that each graph in Figure 16 has a different vertical 

scale. 



 

61 

 

 
Figure 16. Increased Fidelity of Certain Graphs from Figure 9 to Highlight the Unique 

Effect when Risk Weight 𝑤𝑅 = 0.75 (Top Left)  

 

Like cost factor values, there is a range of values for each weight where a mix of 

scenario types exist.  For Benchmark Network 9, the range for 𝑤𝑒 is from 0.3 to 0.75.  

Values below or above this range will result in either all one-target scenarios or all three-

target scenarios, respectively.  Conversely, the range for 𝑤𝑏 is 0.7 to 0.25.  For 𝑤𝑐 and 

𝑤𝛾, there is no value between zero and one that causes the top 100 scenarios to be either 

all one-target or all three-target scenarios.  Network size does influence the length of the 

weight ranges.  Smaller networks tend to have a wider range of weight values where 

scenario type mixing occurs when compared to larger networks where the range is 

smaller.    

After reviewing the effects of both the weights and the cost factor on the mix of 

scenario types within the top n scenarios, it is recommended that the weights are 

established before the cost factor.  The analyst should first establish the weights to 
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emphasize specific measures within the utility function, then set the cost factor to tune 

the scenario type mix within the desired top range of scenarios.  

4.4 Hyperparameters 

The purpose of testing the hyperparameters is to determine a balance between 

processing time and accuracy of the heuristics.  It is proposed that increasing the values 

of all the hyperparameters would increase the accuracy of the screening heuristics.  

Keeping more targets after screening increases the likelihood that a top scenario is 

discovered by the heuristic.  Matched with an increased q (stagnation criteria) and t 

(maximum iterations), it is expected that the heuristic will have an increased accuracy.  

Yet, this increased accuracy would result in increased processing time since more 

iterations will be performed.  Therefore, this research tests the hyperparameters to find 

the respective values that provide a suitable balance between accuracy and processing 

time.  

 4.4.1 𝝁 and 𝜷 

The hyperparameters 𝜇 and 𝛽 determine the number of targets or scenarios that 

are passed from the screening function to the heuristic.  𝜇 is used by both utility-score 

and measure screening functions.  It determines the number of top targets, per the 

screening criteria, that are passed to the heuristic.  𝛽 is used by neighbor-access screening 

and consists of three values: 𝛽1, 𝛽2, and 𝛽3, which determine the number of top one-, 

two-, and three-target scenarios, respectively, that are passed to the heuristic. 

To test 𝜇 and 𝛽, multiple iterations of the heuristics were conducted at increasing 

values based on specified percentages of n, the total number of targets in a network.  For 

the benchmark networks, 𝜇 and 𝛽1 were varied between 15% and 50% of n in steps of 
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5%.  To ensure consistency between the three screening heuristics, 𝛽2 and 𝛽3 were set to 

the total number of two-target and three-target scenarios that can be created using 𝜇 

targets.  This will allow neighbor-access screening to produce the same number of two- 

and three-target scenarios as that of utility-score and measure screening.  This is 

important, as during the testing of 𝜇 and 𝛽, both q and t will be set equal to the maximum 

number of possible two- and three- target scenarios based on the values of 𝜇 and 𝛽.   

The outcomes from testing 𝜇 and 𝛽 serves two purposes.  One is to understand 

how changing their values affect the accuracy of the heuristics.  The second is to 

determine a value for 𝜇 and 𝛽 for follow-on testing of the stagnation criteria and final 

heuristic performance.  The percentage of n at which all three heuristics achieve a 0.90 

accuracy will be the selected values for 𝜇 and 𝛽 moving forward.     

Figure 17 shows the average accuracy of each heuristic across all benchmark 

networks when 𝜇 and 𝛽 are set to a given percentage of n.  As suspected, as 𝜇 and 𝛽 

increase in value, their respective screening heuristics increase in accuracy.  Neighbor-

access’ (NA) lower accuracy is due to its performance when dealing with networks 

generated by the RC technique.  This will be discussed later in the chapter.  Removing 

the performance on the RC networks, NA’s average accuracy increases from 0.71 to 0.90 

at 25% and 0.83 to 1.00 at 50%.      
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Figure 17. As 𝜇 and 𝛽 Increases, the Average Accuracy of the Heuristic Increases 

 As mentioned previously, the percentage of n at which all three heuristics achieve 

0.90 accuracy will be selected as the value for 𝜇 and 𝛽 for future testing.  Since NA 

screening does not achieve 0.90 within the selected range of percentages due to its 

performance with RC networks, the point where NA achieves 0.90 accuracy without the 

RC networks is used.  This results in 25% of n as the value of 𝜇 and 𝛽 in future testing. 

 4.4.2 Stagnation Criteria 

To test the stagnation criteria for the screening heuristics, a similar approach to 

the testing of 𝜇 and 𝛽 was used.  All three screening heuristics were run on all eighteen 

benchmark networks using the network’s prime cost factor, equal weights, and 𝜇 and 𝛽1 

equal to 25% of n.  𝛽2 and 𝛽3 were set to the total number of possible two-target and 

three-target scenarios based on the values of 𝜇 and 𝛽1.  For the stagnation criteria (q), the 

two-target search and three-target search stagnation criteria were both set at a percentage 

of the total number of possible two- and three-target scenarios based on 𝜇 and 𝛽 values.  

The percentages ranged from 10% to 60% in 5% increments, resulting in 11 runs per 

benchmark network.   

 Figure 18 shows the results of the stagnation criteria tests.  Again, both utility-

score and measure screening perform well, with both achieving a 0.90 average accuracy 
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at stagnation criteria equal to 15% of possible scenarios.  Again, NA performs poorly on 

the RC networks.  Removing these benchmark networks from the average accuracy 

calculation results in a 0.90 accuracy average for NA occurring at a stagnation criteria of 

50%. 

 

 
Figure 18. As t (Set as the Percentage of Possible Scenarios) Increases, there is Only a 

Slight Increase in Heuristic Accuracy. 

  

 Like 𝜇 and 𝛽, the goal with the stagnation criteria testing is to find the lowest 

percentage where all screening heuristics achieve an average accuracy of 0.90 across all 

benchmark networks.  Unfortunately, similar to 𝜇 and 𝛽 testing, this does not occur 

within the specified interval for testing, due in part to NA’s performance on RC 

benchmark networks.  To achieve the desired 0.90 accuracy, the RC networks were 

removed from the average calculation, resulting in a 0.90 average accuracy occurring at 

50%.  At a stagnation criteria of 50% of possible two- and three-target scenarios, there is 

still a large computational time requirement for larger graphs.  Reducing the desired 

average accuracy level from 0.90 to 0.85 allows for a further reduction of the stagnation 

criteria from 50% to 25%, which will be used for the performance testing of the screening 

heuristics.   
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4.5 Screening Heuristic Performance Testing 

 To test the performance of each screening heuristic, 18 trials were conducted on 

networks with similar parameters as the benchmark networks.  Table 15 contains the 

values for the network generation parameters and the heuristic hyperparameters for each 

trial.  The prime cost factor values from Table 14 were used for each respective graph, 

and all weights were equal to 0.5.  Trials were conducted on a Dell Inspiron 5515 Laptop 

with 16 GB of RAM and an AMD Ryzen 7 5700U (1.8GHz) processor.  The Python code 

is provided in Appendix A.   

 

Table 15. Trial Parameters  

Trial Network  n p k l m 𝝁 𝜷𝟏, 𝜷𝟐, 𝜷𝟑 q t Runs 

1 ER 50 0.10 - - - 13 (13, 78, 286) (20, 72) (78, 286) 100 

2 ER 50 0.25 - - - 13 (13, 78, 286) (20, 72) (78, 286) 100 

3 ER 100 0.10 - - - 25 (25, 300, 2300) (75, 575) (300, 2300) 100 

4 ER 100 0.25 - - - 25 (25, 300, 2300) (75, 575) (300, 2300) 100 

5 ER 200 0.10 - - - 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

6 ER 200 0.25 - - - 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

7 RC 50 0.25 10 5 - 13 (13, 78, 286) (20, 72) (78, 286) 100 

8 RC 50 0.25 5 10 - 13 (13, 78, 286) (20, 72) (78, 286) 100 

9 RC 105 0.35 7 15 - 27 (27, 351, 2925) (88, 732) (351, 2925) 100 

10 RC 140 0.25 20 7 - 35 (35, 595, 6545) (149, 1637) (595, 6545) 80 

11 RC 200 0.20 10 20 - 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

12 RC 200 0.20 20 10 - 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

13 BA 50 - - - 3 13 (13, 78, 286) (20, 72) (78, 286) 100 

14 BA 50 - - - 6 13 (13, 78, 286) (20, 72) (78, 286) 100 

15 BA 100 - - - 3 25 (25, 300, 2300) (75, 575) (300, 2300) 100 

16 BA 100 - - - 6 25 (25, 300, 2300) (75, 575) (300, 2300) 100 

17 BA 200 - - - 3 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

18 BA 200 - - - 6 50 (50, 1225, 19600) (307, 4900) (1225, 19600) 20 

 

 For each trial, multiple runs were conducted.  Each run consisted of a different 

randomly generated network based on the trial’s specific parameters in Table 15.  For 

each run the utility scores for all scenarios in the network were calculated using the 

“brute force” all-scenarios model.  The three screening heuristics were run on the 

network using the hyperparameters listed for the respective trial in Table 15.  Finally, the 
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heuristics’ top 1, 5, 10, and 25 results were compared to that of the all-scenario’s model.  

The running of the all-scenarios model was the major time driver for each run.  For 

instance, Trial 12 averaged 2.64 hours of processing time per run to execute each run’s 

all-scenarios model.   

 The initial goal for each trial was to conduct 100 runs.  Due to time constraints, 

this was not achievable for the larger networks.  For the 200-node network trials, only 20 

runs per trial were conducted.  For Trial 10, 80 runs were conducted.  For all but three 

trials (6, 11, and 12), based on an error criteria of 𝜀 = 0.05, the number of runs 

conducted per trial were sufficient to achieve a 95% confidence interval based on 

 

𝑅 ≥ (
𝑡𝛼 2,𝑅0−1⁄ 𝑆0

𝜀
)

2

 (4.1) 

where 𝑡𝛼 2,𝑅−1⁄  is the Student’s t-statistic, 𝛼 is the significance level (𝛼 = 0.05), 𝑅 is the 

number of initial replications, and 𝑆0 is the standard deviation of the runs [41].  For the 

three trials that did not meet the minimum required number of runs, only one heuristic in 

each trial required the additional runs.  For Trial 11 and Trial 6, NA required more than 

20 runs, and for Trial 12, measure screening (MS) required more than 20 runs.   

 The following sections discuss the results of the screening heuristics’ performance 

with respect to accuracy and computational time.  

 4.5.1 Accuracy Results 

 Accuracy of the heuristics were calculated by comparing the top 1, 5, 10, and 25 

scenarios as determined by the heuristic and comparing those to the actual top 1, 5, 10, 

and 25 scenarios as determined by the “brute force” all-scenarios model.  Accuracy is the 

number of scenarios that are present in both the heuristic’s top scenarios list and the all-
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scenarios model’s top scenario list.  This number is then divided by the top number of 

scenarios being compared (1, 5, 10, or 25) to give the heuristic’s accuracy.  For each trial, 

the runs’ accuracies were averaged, and the 95% confidence intervals (CI) were 

determined using a significance level of 0.05 and the Student’s t-test statistic.  Table 16 

displays the average accuracy for the top 25 and 95% CI for each screening heuristic 

during each trial.  Grey highlight indicates when a screening heuristic has a significantly 

higher average accuracy, based on the t-test, than the other two heuristics for that trial.    

 

Table 16. Average Accuracy with 95% CI per Trial and Screening Heuristic 

Considering Top 25 Scenarios (Grey Highlight Indicates Significantly More 

Accurate Heuristic During Trial)   

Trial n  
Average 

Density  

Neighbor-Access Accuracy 

(95% Confidence Interval) 

Utility-Score Accuracy 

(95% Confidence Interval) 

SNA Measure Accuracy 

(95% Confidence Interval) 

Lower 

Limit 
Mean 

Upper 

Limit 

Lower 

Limit 
Mean 

Upper 

Limit 

Lower 

Limit 
Mean 

Upper 

Limit 

1 50 0.101 0.495 0.522 0.549 0.958 0.969 0.980 0.835 0.861 0.888 

2 50 0.251 0.532 0.543 0.554 0.994 0.996 0.999 0.632 0.664 0.696 

3 100 0.100 0.573 0.616 0.658 0.992 0.996 1.000 0.995 0.997 1.000 

4 100 0.251 0.599 0.634 0.669 0.991 0.994 0.998 0.969 0.977 0.984 

5 200 0.100 0.948 0.966 0.984 - 1.000 - - 1.000 - 

6 200 0.250 0.745 0.828 0.911 - 1.000 - - 1.000 - 

7 50 0.183 0.365 0.378 0.392 0.998 0.999 1.000 0.491 0.504 0.518 

8 50 0.081 0.137 0.158 0.178 0.694 0.735 0.776 0.587 0.630 0.674 

9 105 0.057 0.464 0.507 0.550 0.999 1.000 1.000 0.938 0.951 0.963 

10 140 0.136 0.257 0.283 0.308 0.896 0.932 0.968 0.551 0.595 0.639 

11 200 0.045 0.335 0.432 0.529 0.990 0.996 1.000 0.948 0.974 1.000 

12 200 0.095 0.211 0.258 0.305 0.926 0.970 1.014 0.573 0.672 0.771 

13 50 0.115 0.881 0.898 0.915 0.921 0.938 0.955 0.918 0.934 0.951 

14 50 0.216 0.875 0.891 0.907 0.992 0.996 0.999 0.919 0.935 0.951 

15 100 0.059 0.988 0.992 0.996 0.997 0.998 1.000 0.998 0.999 1.000 

16 100 0.114 0.995 0.997 1.000 - 1.000 - - 1.000 - 

17 200 0.030 - 1.000 - - 1.000 - - 1.000 - 

18 200 0.058 - 1.000 - - 1.000 - - 1.000 - 

 

 For 50% of the trials, the utility-score heuristic (UT) has a significantly higher 

average accuracy than the other two heuristics.  For 15 of the 18 trials, NA had a 

significantly lower accuracy when compared to the other two heuristics.  For five trials 

(3, 5, 6, 11, and 13) there is not enough evidence to support that either UT or MS has a 
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higher accuracy.  The same is true for trials 16, 17, and 18, but for all three heuristics.  

These comparisons were made using hypothesis testing with the t-test statistic.      

 Table 17 shows the screening heuristics’ average accuracies for each network 

type for the top 1, 5, 10, and 25 scenarios.  These averages were calculated using all trials 

for each respective network type.  To compensate for the differing number of runs per 

trial, 20 runs were randomly selected from each trial for the calculation of the average 

and CI.  This ensured that each trial was equally represented in the calculations. 

    

Table 17. Utility-Score Screening is Consistently More Accurate Across Different 

Network Types (Highlight Indicates Significantly More Accurate Heuristic for 

Network Type) 

 
 

 

 Reviewing the accuracy results from the perspective of network type, emphasizes 

the UT’s consistency in accuracy across all network types.  For both ER and RC 

networks, the UT has a significantly higher average accuracy than the other two 

heuristics.  All three heuristics perform exceptionally well on BA networks with 

accuracies above 0.95. 

 Figure 19 consists of three boxplots, one for each network type.  The boxplot 

shows the dispersion of run accuracies per trial (T#) and screening heuristic when 

examining the top 25 scenarios.  Inconsistency is more prevalent in a trial when there is 

greater spread of accuracy values for the trial.  These graphs provide insight into the 

consistency of the three screening heuristics in terms of accuracy.  UT displays the 
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greatest consistency of the three heuristics across all network types and sizes.  UT does 

show some inconsistency with the size-50 ER and BA networks.  The greatest 

inconsistency displayed by UT is on Trial 8 and 10, both of which are RC networks of 

different size and parameters.   

 Both NA and MS, like UT, show the most consistency with BA networks, and 

like UT, do experience some inconsistency with smaller BA networks.  NA is 

inconsistent for all ER and RC trials.  MS is inconsistent for all RC trials and size-50 ER 

networks. 

 
Figure 19. Utility-Score Screening Heuristic Maintains the Greatest Consistency Across 

All Trials & Network Types 
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 4.5.2 Time Results 

 For each run, four processing times were collected, one for each screening 

heuristic and one for the “brute force” all-scenarios model.  Table 18 shows the 95% 

confidence interval for the average processing time for each trial.  Overall, a 99% 

reduction in processing time is achieved by the three heuristics when compared to the 

processing time for the all-scenarios model.   

 

Table 18. Screening Heuristics Decrease Processing Time by 99% when Compared 

to All-Scenarios Model 

T
r
ia

l 

All-Scenarios Model CPU Time NA CPU Time UT CPU Time MS CPU Time 

(seconds) (seconds) (seconds) (seconds) 

95% CI  

Lower 

Limit 

(LL) 

M
e
a

n
 95% CI 

Upper 

Limit 

(UL) 

LL 

M
e
a

n
 

UL LL 

M
e
a

n
 

UL LL 

M
e
a

n
 

UL 

1 13.02 13.24 13.46 0.17 0.18 0.19 0.10 0.10 0.10 0.08 0.08 0.08 

2 16.38 16.94 17.50 0.24 0.25 0.27 0.13 0.13 0.14 0.10 0.10 0.11 

3 272.28 276.41 280.54 2.29 2.40 2.51 1.25 1.28 1.30 1.13 1.15 1.17 

4 429.55 436.69 443.83 4.14 4.35 4.56 2.10 2.17 2.24 1.90 1.98 2.05 

5 9707.74 9852.08 9996.43 55.97 63.55 71.13 40.31 41.61 42.91 39.20 39.77 40.34 

6 16963.90 17536.44 18108.99 117.91 137.58 157.25 72.06 78.46 84.86 70.51 76.72 82.93 

7 14.30 14.43 14.55 0.21 0.22 0.22 0.12 0.12 0.13 0.10 0.10 0.11 

8 13.99 14.30 14.62 0.17 0.18 0.19 0.11 0.11 0.12 0.10 0.11 0.11 

9 306.11 309.85 313.59 2.72 2.83 2.94 1.53 1.57 1.61 1.41 1.46 1.51 

10 1726.29 1755.44 1784.59 14.22 14.98 15.75 10.68 11.73 12.79 8.05 8.54 9.04 

11 6558.89 6661.84 6764.79 37.60 40.59 43.58 27.75 30.05 32.35 26.92 28.68 30.45 

12 9225.80 9495.86 9765.92 58.54 69.35 80.15 54.83 63.33 71.83 45.98 50.80 55.63 

13 12.91 13.03 13.15 0.16 0.16 0.17 0.10 0.10 0.10 0.08 0.08 0.08 

14 17.22 17.53 17.84 0.22 0.23 0.23 0.13 0.13 0.14 0.11 0.11 0.11 

15 224.95 227.15 229.35 1.63 1.64 1.66 1.02 1.03 1.04 0.92 0.93 0.95 

16 285.46 289.31 293.16 2.04 2.07 2.10 1.30 1.31 1.33 1.17 1.19 1.21 

17 5111.81 5175.49 5239.16 26.02 26.44 26.86 20.55 20.94 21.32 20.07 20.57 21.08 

18 7516.34 7634.52 7752.71 37.75 38.69 39.64 30.63 31.25 31.86 29.73 30.25 30.77 

 

 The performance results show that UT provides the greatest consistency and 

average accuracy across all trials and network types, but there is no significant difference 

between UT’s and MS’s performance on the largest networks.  With respect to time, all 

heuristics reduce the required processing time by 99%. 
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 4.5.3 The Accuracy-Time Trade Space 

  Within the trade space of accuracy and time, more time does not necessarily 

increase accuracy.  This is the result of how the screening heuristics operate.  At a basic 

level, there are two reasons for reduced accuracy.  First, if a top scenario or one of its 

targets is screened out by the screening mechanism the accuracy will be decreased.  Any 

top ranked scenario that is screened out will never be evaluated by the heuristic and will 

never be included in the final list of scenarios, which reduces the accuracy.    Second, if a 

top ranked scenario is positioned near the end of the scenario or target list, it is likely that 

the search heuristic will halt prior to the scenario being evaluated.  If it is not evaluated 

by the heuristic then it is not included in the final ranked list of scenarios, again reducing 

accuracy.    

 To counter the above effects, two actions can be taken.  First, 𝜇 or  𝛽 can be 

increased allowing for more scenarios to be kept by the screening mechanisms.  This 

alone will not increase accuracy.  Increasing the stagnation criteria, the second action, 

will be required to ensure that the new scenarios in the scenario list are evaluated by the 

heuristic. Both of these actions will increase the processing time of the screening 

heuristics.  If, after the increases in the hyperparameters, top scenarios are still screened 

out by the screening mechanism the increased processing time will not result in increased 

accuracy.  Analyst judgement will be required to determine if the additional processing 

time is worth the resulting increase in accuracy.    

4.6 Analysis of Heuristic Performance  

 As stated in Chapter I, the purpose of this thesis is to provide a method to reduce 

the computational time required to produce a list of the most advantageous insertion 
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scenarios within a covert network, while maintaining an adequate overall level of 

accuracy.  In the above results section, the three screening heuristics presented drastically 

reduce the required computational time, but only one heuristic, UT, provides a consistent 

and adequate level of accuracy across varying network types.  The following analysis 

focuses on network characteristics that affect network accuracy.  Furthermore, the above 

time results will be used to estimate the expected computational time required to evaluate 

larger networks than those used within this research. 

 4.6.1 Network Characteristics and Heuristic Accuracy 

 Understanding the operations of the screening heuristics provides awareness of 

two fundamental reasons why a heuristic might miss a top scenario, and thus reduce its 

accuracy.  The first reason, which applies to UT and MS, is that a key target is screened 

out by the screening function, and therefore not included in the target list that is passed to 

the search heuristic.  Any scenario that includes that target will now be outside the 

solution space, will not be discovered by the heuristic, and will never be evaluated.  The 

same applies to NA, where if a scenario does not make the lists that are passed to the 

heuristic, the scenario will never be discovered and evaluated by the heuristic.  The 

second reason for a screening heuristic missing a top scenario is that the scenario is 

situated too far down the target or scenario list that the heuristic meets the stagnation 

criteria and halts before the scenario is up for evaluation.        

 Despite understanding the above reasons for reduced accuracy, it is important to 

understand which network characteristics affect the accuracy of the heuristics.  The focus 

of the following analysis is to determine network factors that have the greatest effect on 

determining a heuristics’ accuracy.   
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 Upon inspection of the results, it can be noted that both network structure and size 

contribute to the accuracy of all three screening heuristics, as all three have a noticeable 

decrease in accuracy when evaluating RC networks and networks with 50 nodes.  In 

comparison, all three heuristics achieve high accuracy when evaluating BA networks.  

These insights suggest that certain key measures of network structure, such as degree 

distribution, modularity, and network size, can provide a better understanding of the 

factors that contribute to heuristic accuracy.  

 Figure 20 is the correlation matrix that explores the relationships between the 

accuracies of the three screening heuristics and key network measures.  This matrix was 

developed using information from all runs across all trials.   

 

 
Figure 20. There are Strong & Moderate Correlations (Positive & Negative) Between 

Network Characteristics & Heuristic Accuracy 

 

 The highest correlation observed between a heuristic’s accuracy and a network 

measure is a strong, positive correlation between NA accuracy and degree range, the 
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range between the maximum degree and minimum degree in the network.  Modularity 

and clustering coefficient have a negative, moderate correlation with one or more of the 

heuristic accuracies.  These results highlight that the structure of the network being 

analyzed is a key factor in determining the accuracy of the screening heuristic. 

 To explore the correlation between accuracy and degree range, graphs are 

presented in Figure 21 depicting the relationship between the two.  Both NA and MS are 

less accurate on networks when there is a smaller range between the maximum and 

minimum degree values.  Degree range has less of an effect on UT accuracies.   

   

 
Figure 21. Degree Range has a Strong Correlation with NA Accuracy & Moderate 

Correlation with MS Accuracy 

 

 The relationship between degree range and accuracy is logical as the screening 

criteria for both NA and MS heavily rely on node degree.  MS is less affected by degree 

range due to eigenvector centrality being a weighted sum of connections compared to the 

strict sum of connections in degree centrality.  Neighbor-access scores are a mere 

extension of the targets’ degrees.  

 Figure 22 shows the histograms of node degree and neighbor-access scores for 

two runs to highlight the effect of degree range on NA accuracy.  The left group of 

graphs is from Trial 8, Run 52 (RC, 𝑛 = 50, 𝑝 = 0.25, 𝑘 = 5, 𝑙 = 10) which has an 

accuracy of zero when evaluated by NA.  The right graphs are from Trial 14, Run 24 
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(BA, 𝑛 = 50, 𝑚 = 6) which has an accuracy of 1.00 when evaluated by NA.  The BA 

graph has a larger range of degree values, which results in a wider distribution of 

neighbor-access scores.  The opposite is seen with the RC graph: a smaller range of 

degree values and a narrower distribution of neighbor-access scores.   

 

 
Figure 22. A Smaller Range of Degree Values Results in a Smaller Range of Neighbor-

Access Scores, Resulting in Lower NA Accuracy 

 

 As discussed in Chapter III, NA screening calculates the scores for all scenarios in 

each scenario type (one-, two-, and three-target).  Then, within each scenario type, the 

scenarios are sorted from highest to lowest by neighbor-access score and the top 𝛽 

scenarios are selected.  With a narrow distribution of scores, the top 𝛽 scenarios could all 

have similar scores, providing little differentiation.  Furthermore, randomness is 

introduced depending on where the 𝛽 falls, separating the scenarios that are kept and 

those that are discarded.  For instance, after sorting scenarios by score, if the 25th through 

75th scenarios all have the same score and 𝛽 = 50, then half of those scenarios will be 

discarded, even though they meet the same criteria as those that are kept.  This results in 

scenario selection based on how the sorting function operates and not by scenario 
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characteristics, therefore increasing randomness in the screening process.  This is a 

weakness in NA that will need to be addressed in future research.  

 Network modularity and clustering coefficient were both moderately correlated 

with NA and MS accuracy.  Unlike degree range, these correlations are negative.  

Clustering or the presence of groups within a network can affect heuristic accuracy 

similarly to degree range.  Members of the clusters or groups tend to be highly connected 

to each other, which results in nodes with similar measures and characteristics.  This in 

turn makes it more difficult for the screening process to differentiate between the nodes, 

increasing the likelihood that a key target is excluded from the target list passed to the 

heuristic. 

 Like degree range, neither modularity nor clustering is the single factor that 

indicates a heuristics performance, but one of many.  This is evident when looking 

specifically at the ER trials (green) in the above graphs.  The ER networks have some of 

the lowest modularity and clustering coefficients of all runs, but NA and MS still struggle 

to accurately evaluate these networks.  Therefore, there are other factors that contribute to 

determining a heuristic’s accuracy. 

 The final correlated network characteristic is a network’s average shortest path 

length (ASPL), which has a moderate negative correlation with UT accuracy.  This 

correlation is due to UT having a higher average accuracy on BA networks, which have 

lower ASPLs when compared to ER and RC networks.   

 To further explore the relationships between degree range, modularity, clustering, 

and ASPL, linear regression was performed to determine which of the network 

characteristics are good predictors for accuracy.  Additional network measures were 
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included in this analysis: network type, density, and number of nodes.  Due to 

multicollinearity, only network density, modularity, and degree range were included in 

the final regression model.  When predicting NA, UT, and MS accuracy, all three were 

sufficient predictors resulting in an overall 𝑅2 of 0.91, 0.88, and 0.86 respectively. 

 The overarching insight gained from the relationship between heuristic accuracy 

and the specific network measures is that network type plays an important role in 

determining the accuracy of the heuristics.  As discussed in Chapter II, BA and RC 

networks have specific network characteristics.  BA networks are scale-free networks 

whose degree distribution follows a power law, resulting in a higher probability of highly 

connected hub-nodes and a wider degree range.  In addition, the ASPL of BA networks 

tend to be small because of the higher number of hub-nodes.  The modularity and 

clustering coefficients of BA networks are also lower.  RC networks on the other hand 

are characterized by their high modularity and clustering coefficient.  In addition, RC 

networks can have high ASPL.  ER network generation is more random than the other 

two types, and therefore ER networks can potentially take on characteristics of both BA 

and RC networks.  In Figure 21 there is a discernable difference between the BA and RC 

runs, and the respective accuracy of the heuristics when evaluating each network type. 

 Ultimately, certain network characteristics result in targets of similar measures 

and characteristics making it difficult for the screening mechanisms to differentiate 

between the individual targets.  The differences in the average accuracies of the three 

heuristics can be explained by the amount of information captured by their respective 

screening criteria.  As mentioned before, NA is a modification of the total degree of the 

targets within a scenario, resulting in the least amount of information captured about 
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those targets and scenario.  Measure screening, which uses eigenvector centrality, 

captures additional information since eigenvector centrality is a weighted degree of the 

targets, taking into consideration the quality of each connection.  Finally, UT screening 

captures the most information about a target or scenario as it has elements of eigenvector, 

betweenness, and closeness centralities.  This additional target information allows UT to 

differentiate between targets more easily during the screening process.   

 4.6.2 Estimating Performance on Larger Networks 

 Using the time results presented in Section 4.5.2, the expected computational time 

required for evaluation of larger networks were estimated.  These estimates are based on 

a 𝜇 and 𝛽 set to 25% of network size and stagnation criteria set to 25% of the possible 

scenarios per 𝜇 and 𝛽.  The processing times roughly follow a power law distribution.  

Figure 23 shows the expected time required to evaluate larger networks using the all-

scenarios model.  For a network of size 500, the estimated time is 135 hours.  The time 

increases to just under 3,000 hours when evaluating a 1,000-node network.   

 

 
Figure 23. For a 500-Node and 1,000-Node Network the All-Scenario’s Model Required 

Computational Time is 135 Hours and 2,985 Hours, Respectively 
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 Figure 24 shows the estimated times for the three heuristics.  All three heuristics 

are estimated to evaluate a 1,000-node network between 5.5 and 7.5 hours.     

 

 
Figure 24. All 3 Heuristics are Estimated to Evaluate a 1,000-Node Network in Less 

Than 8 Hours 

 

 These time estimates are for a Dell Inspiron 5515 Laptop with 16 GB of RAM 

and an AMD Ryzen 7 5700U (1.8GHz) processor.  Applying increased processing power 

and leveraging parallel processing can greatly reduce these time estimates.   

 Estimating the accuracy of the three heuristics is a little more difficult than 

estimating time.  There was an increase in accuracy seen with all three heuristics when 

evaluating the larger networks during testing, which could signal that all three heuristics 

will achieve a high level of accuracy on larger networks.  More testing is required to 

confirm this.  It is expected that NA will still perform poorly on larger RC networks, 

based on its performance during testing.  

4.7 Chapter Summary 

 This chapter evaluated the effects of changes to the utility function’s cost factor 

and weights on the ranking of insertion scenarios.  Then the hyperparameters were 
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evaluated to understand their effects on heuristic accuracy and processing time.  These 

findings were included into final performance testing of the three heuristics.  The results 

were followed by analysis of network characteristics and their effects on accuracy.  

Finally, heuristic performance on networks larger than those used during test was 

estimated. 

 Overall heuristic performance varied by heuristic and network types.  UT was the 

most consistent and achieved the highest average accuracy for two of the three network 

types.  MS achieved the fast average time for a majority of the trials.  All three heuristics 

showed that they performed better on the larger networks used during testing.  
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V. Conclusions and Recommendations 

 

5.1 Chapter Overview 

 This chapter discusses the conclusions and significance of the research and 

highlights future research topics within the realm of node insertion.   

5.2 Conclusions of Research 

 This research presented three screening heuristics to evaluate node insertion 

scenarios within a covert network.  The three screening heuristics each employed 

separate screening criteria  ̶  neighbor-access score, utility score, and SNA measure  ̶  to 

identify the most promising targets or scenarios to reduce the solution space prior to the 

application of a search heuristic.  The heuristics utilized a quantitative utility scoring 

method that consisted of a weighted benefit and risk score, each calculated using 

common SNA measures. 

 The three heuristics were tested on three types of randomly generated graphs, 

Erdős–Rényi, Relaxed Caveman, and Barabási-Albert.  All three heuristics were 

successful in reducing the computational time by 99% when compared to the “brute-

force” all-scenarios model.  Only the utility-score heuristic was able to maintain at least a 

0.90 average accuracy across all network types when comparing the top 25 scenarios.  

The neighbor-access heuristic was the least accurate and most inconsistent of the three 

heuristics, achieving an average accuracy of 0.342 ± 0.034 on RC networks, 0.692 ± 

0.010 on ER networks, and 0.970 ± 0.010 on BA networks.  The SNA measure heuristic 

performed well on both ER and BA networks, achieving an average accuracy of 0.916 ± 



 

83 

 

0.027 and 0.981 ± 0.009, respectively, but struggled with RC networks where it only 

achieved an average accuracy of 0.720 ± 0.040. 

 Multiple factors affect the performance of the three heuristics.  Characteristics of 

a network’s structure, specifically modularity, clustering, degree range, and average 

shortest path length, were shown to affect the accuracy of the heuristics by making it 

more difficult to differentiate between promising targets or scenarios during the screening 

step.  In addition, parameters within the utility function and the hyperparameters of the 

heuristics can also affect the performance of the heuristics and will require tuning to 

obtain the desired balance of accuracy and processing time.       

5.3 Significance of Research 

 This research provides intelligence and law enforcement officials with a 

computationally inexpensive method to identify advantageous node insertion scenarios 

within a given covert network.  This method is not intended to be the deciding factor in 

determining which insertion scenario to pursue but should be used in the initial steps of 

course of action development.  The identified advantageous scenarios will require further 

analysis by intelligence and law enforcement SMEs to ensure other critical information 

and network vulnerabilities are incorporated in the final analysis of the insertion 

scenarios.  The presented methods are developed to provide the intelligence and law 

enforcement analysts with a quick and quantitative method to down select the number of 

potential node insertion scenarios, reducing time requirements for follow-on analyses.   

5.4 Recommendations for Future Research 

 This thesis serves as an initial foundation for research of node insertion into 

covert networks for the purpose of disruption or information gathering.  There are many 
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directions that can be taken for future research into this subject area, and many include 

methods that were discussed in Chapter II for network disruption through node deletion.   

 Directly related to this research is operationalizing the heuristics into a tool that 

can be easily operated by an intelligence or a law enforcement analyst.  This would 

require the development of a graphical user interface that would allow the analyst to build 

a model of the covert network, establish parameters and hyperparameters, and then apply 

the heuristic evaluation method to output advantageous insertion scenarios.  

 This research is limited in its approach as it only utilizes static, undirected, 

unweighted networks in its development and analysis of the heuristics.  Important 

network aspects were not included in this analysis that may have dramatic effects on the 

selection of advantageous insertion scenarios.  These include geographical location of 

network members, strength and type of relationships between members, and attributes of 

each member.  Future research can build upon this study by incorporating these aspects 

into the network models, and then modifying the presented heuristics to accommodate for 

the additional information.    

 A similar approach to that used by Geffre et al. [37] and Carley et al. [35], models 

the network by utilizing a meta-matrix approach that captures the member, knowledge, 

resources, and task aspects of the network.  This approach determines where the 

cognitive load and expertise lie within a network.  This information can be leveraged for 

determining potential node insertion scenarios. 

 Future research can utilize a multi-layered networking method to incorporate 

additional information about the covert network into the network model.  This method 

splits the network into various layers to capture the different types of connections 
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between members.  These layers can include cyber, financial, social/familial, and 

operational.  Future research can study how to perform insertion into one layer in order to 

achieve a desired effect in another layer of the network.   

 A potential area of research could be the study of where to insert an agent when 

specifically targeting certain members of a network.  Having the agent develop direct 

relationships with these targets would be extremely risk.  Future research can study where 

in the network to insert the agent and then which existing relationships in the network the 

agent can leverage to gain access to the targets. 

 After selecting the most advantageous node insertion scenarios, dynamic 

modeling of the network and the use of game theory can be used to simulate each node 

insertion scenario, and the network’s response to the insertion.  This simulation can help 

to further evaluate the risks and benefits of each scenario as well as test potential 

insertion strategies. 

5.5 Summary 

 This research presents three screening heuristics to evaluate potential node 

insertion scenarios, with one, utility-score screening, being the highest performing and 

showing the most potential for evaluating larger networks than those used during this 

study.  Due to the lack of access to realistic data of covert networks and a method to 

evaluate if the utility function properly identifies the highest scored insertion scenario, 

the proposed methods of this research are only theoretical.  Future research can further 

develop various applications within the area of covert network node insertion, providing 

better methods for intelligence and law enforcement analyst to leverage when 

determining future agent insertion operations. 
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Appendix A. Python Code 
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