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Abstract

A large barrier to practical quantum computation exists in the form of qubit

decoherence, which leads to high noise and error when implementing quantum al-

gorithms. A potential solution to this problem is the use of topologically-protected

Majorana-based qubits, as their nonlocal nature and unique non-abelian exchange

statistics render them virtually immune to decoherence while still allowing the state

to be easily manipulated. For such a qubit to be constructed, it is essential to know

the locations of the Majorana-hosting vortices in the system. This work presents

a solution for the formation locations of vortices in a 2x2 superconducting island

array, paving the way for the analysis of larger arrays that allow for the physical

exchange of particles. Additionally, a method for determining the vortex locations in

an irregularly-shaped Josephson junction is derived, allowing for accurate predictions

of Majorana fermion locations in manufactured systems where the junctions may not

be perfectly straight.
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I. Introduction

The field of quantum computing is currently plagued by decoherence, a quantum

system’s tendency to interact with the environment, which alters the state of the

system. Decoherence in a qubit results in noise when one attempts to run algorithms

on a quantum computer and is an issue that affects every qubit system to date. In

fact, it is such a problem that the largest number to be successfully factored by Shor’s

prime factorization algorithm is only 21 (1). While there are error correction methods

available, the decoherence time of the qubit must be 104 − 105 times higher than the

time it takes to perform a single gate operation for them to be successful (2). Because

of this, recent interest has arisen in Majorana-based qubits, which are very resistant

to decoherence. These qubits consist of highly nonlocal zero-energy excitations of the

ground state and provide topological protection for the system, which means local

perturbations do not affect the Hamiltonian eigenstates of the system. Since almost

all sources of decoherence are local perturbations, implementation of Majorana-based

qubits could allow for successful application of error correction techniques, or even

eliminate the need for them altogether.

While these topological qubits exhibit great potential, the theory behind them

must be fleshed out more if they are going to be successfully constructed and imple-

mented. Producing a system that can host Majorana fermions for use in quantum

computation is an ongoing area of research. Majorana fermions cannot exist in com-

mon s-wave superconductors, as it is necessary for the superconductor to exhibit

p-wave pairing in order to host them. However, it is known that a topological in-

sulator where superconductivity has been induced by a nearby superconductor can

exhibit the necessary material properties to host the Majorana fermions in vortex

cores located on its surface (3). What is not known, however, is where these vortex

cores will form for various system configurations. Knowledge of the vortex locations is
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essential to the construction of a qubit because the state of the system is manipulated

by moving the Majorana fermions around each other.

Vortices are known to exist in a Josephson junction, and as such, a promising

candidate for a Majorana-based qubit involves an array of superconducting islands

placed on a topological insulator. This array will create a series of Josephson junc-

tions, each containing a number of vortices. Application of a voltage between two

islands can move the vortices within the junction, and when applied to an array, can

allow for vortices to be moved around each other as needed for quantum gate imple-

mentation. Such movement of vortices would be analogous to automobiles driving

around a city block, with the street representing the Josephson junction, and would

provide a method of hands-free qubit manipulation. However, exact vortex locations

for this configuration are not well known and additionally, the manufacture of such

arrays can result in irregularly shaped Josephson junctions, posing a problem for

experimental implementation based off the existing literature.

This work seeks to provide insight to such systems and exists as a standalone

review, although an understanding of quantum mechanics and a basic knowledge of

second quantization are recommended. It begins with a brief review of the relevant

superconducting theory including the superconducting wavefunction and the idea of

quantized magnetic flux. This is followed by a basic explanation of what Majorana

fermions are and the exchange statistics that allow them to be used to form a qubit.

Next, the Josephson junction is introduced as well as the concept of vortices and

where they exist in a basic junction. These concepts are then expanded to include an

irregularly shaped junction, so that in laboratory implementations where the junc-

tions are not perfectly straight, researchers are able to more accurately predict the

formation locations of the vortices. Finally, a 2x2 array of superconducting islands

is presented and analyzed for vortex formation locations. While a 2x2 array is not

2



large enough to allow for particle exchange, it paves the way for larger arrays that

can do so, as the concepts presented can simply be expanded to include more islands

and thus more Josephson junctions.

3



II. Background

The purpose of this chapter is to develop a basic understanding of the super-

conducting theory required for this work in addition to an introduction to Majorana

states and their potential utilization in quantum computing. First, the basic concepts

of superconductivity are presented via a summary of London theory. Subsequently,

the concept of Majorana fermions and zero-enegy modes are introduced and related

to quantum computing. The chapter will then move to a derivation of the Joseph-

son junction and a treatment of a basic, straight-walled junction to predict vortex

locations.

2.1 London Theory

London theory is a treatment of superconductors created by Fritz and Heinz Lon-

don in 1935 (4). The equations it presents are derived from observed superconducting

phenomena, and although BCS theory is the most complete treatment of supercon-

ductors, London theory will suffice for the basic knowledge of superconducting theory

required for this work. Without going into full derivations, this section lays out the

relevant aspects of superconductors for this work. If a complete derivation of London

theory is desired, reference (5).

In the early 1900s, it was observed that some metals, when cooled past certain

critical temperatures near absolute zero, abrubtly exhibited zero electric resistance.

This led physicists at the time to assume the existance of some complex, electrically

charged bosonic field which falls into the ground state at the observed critical tem-

perature. For a homogeneous superconductor, meaning the bosonic number density

is constant, this field is given by

Ψ(r, t) =
√
nBe

iϕ(r,t), (1)
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where Ψ is the value of the bosonic field at position r and time t, nB is the bosonic

number density, and ϕ is the superconducting phase. The charge quantum q of the

bosonic field was found to be

q = 2e, (2)

where e is the charge of an electron. Therefore, the field is comprised of pairs of

electrons, called cooper pairs.

One important characteristic of superconductors is the ability to screen magnetic

fields, called the Meissner effect. This essentially states that a magnetic field B⃗ will

be screened to zero in the bulk of a superconductor, even if the field exists before the

metal is brought down past its critical temperature. This screening happens within

a characteristic distance λL from the surface of the superconductor. λL is given by

λL =

√
mB

nBµ0q2
, (3)

where mB = 2me is the mass of a cooper pair and µ0 is the chemical potential of the

boson field, and is called the London penetration depth.

Consider a magnetic flux Φ contained by a superconducting ring, as shown in

Figure 1. If a contour C is defined within the ring beyond the London penetration

depth, the magnetic field along C is zero via the Meissner effect. The second London

equation reads

∂

∂r
× (Λjs) = −B, (4)

where Λ = mB

nBq2
. This means that zero magnetic field results in zero supercurrent

along the contour. Subsequently, the first London equation,

∂ (Λjs)

∂t
= Eeff , (5)

5



Figure 1. Magnetic flux through a superconducting ring.

shows that, in this case, the effective electric field Eeff = E = 0 as well. The time

derivative of the flux through the contour, via the integral form of Faraday’s law, is

dΦ

dt
= −

∮
C

E · dl = 0. (6)

This means that the magnetic flux through the superconducting ring is trapped, even

if the applied field is varied in time.

The supercurrent density is related to the superconducting phase gradient and

vector potential A⃗ by the relation

Λjs =
ℏ
q

∂θ

∂r
−A. (7)

Since j⃗s = 0 along the contour,

A =
ℏ
q

∂θ

∂r
. (8)

Integrating along the contour and using Stokes’ theorem in conjunction with ∇×A⃗ =

6



B⃗ yields ∮
C

A · dl = Φ =
ℏ
q

∮
C

∂θ

∂r
. (9)

The integral of the phase gradient around the contour represents the total phase

change, and thus must be equal to an integer multiple n of 2π in order for the

wavefunction to be unique. Therefore, Equation 9 becomes

Φ =
ℏ
q
2πn. (10)

Equation 10 introduces the concept that flux through a superconducting ring is quan-

tized, with the fundamental flux quantum defined as

Φ0 =
h

2e
. (11)

The flux quantum is an important concept to understand, as it will determine the

number of Josephson vortices, and thus Majorana zero modes, contained in a Joseph-

son junction, which is discussed later. Additionally, it is related to Abrikosov vortices

by the fact that an Abrikosov vortex is a location where exactly one quantum of

magnetic flux punctures a superconducting region. This results in a circulation of

supercurrent around this location, analogous to a superconducting ring.

2.2 Majorana Fermions

Increasing qubit decoherence time persists as one of the most important problems

to be solved in the area of quantum computing. Majorana-based qubits are a promis-

ing solution to this problem, as their nonlocal nature causes them to be inherently

resistant to local perturbations, thus dramatically increasing their decoherence times

(6). The following description of Majorana zero modes is based on the paper by

7



Leijnse and Flensberg (7).

A Majorana fermion (MF) is an anyonic particle which is its own antiparticle,

meaning its creation operator is equal to its annihilation operator, γ† = γ. The qubit

potential for MFs comes from their non-abelian exchange statistics: particle exchange

is a nontrivial operation, and the state of a system can be altered via swapping, or

braiding, particles. Any normal fermion can be defined as a superposition of two

MFs, where one MF represents the real component of the fermion, and the other

MF represents the imaginary component. This is true even when the two MFs are

spatially separated, and this spatially separated case is what gives them applicability

to quantum computing in the form of manipulation of Majorana zero modes.

Kitaev Chain.

The most basic understanding of a Majorana zero mode in a p-wave superconduc-

tor comes from the example of the Kitaev 1D tight-binding chain. This consists of

a chain of N individual sites which can contain either 1 or 0 electrons with chemical

potential µ. Site i can only interact with its immediate neighbors, sites i−1 and i+1.

The hopping t denotes the energy required to move an electron from one occupied

site to an adjacent unoccupied site and is analogous to kinetic energy. The supercon-

ducting gap ∆ represents pairing energy from two adjacent occupied or unoccupied

sites. The Hamiltonian of the chain is given by

Hchain = −µ
N∑
i=1

ni −
N−1∑
i=1

(
tc†ici+1 +∆cici+1 + h.c.

)
, (12)

where c†i (ci) is the creation (annihilation) electron operator on site i, ni = c†ici is the

electron number operator, and h.c. denotes the hermetian conjugate.

Since each electron in the chain can be defined by two MFs, it is possible to rewrite

the electron creation and annihilation operators in terms of these Majorana opera-

8



tors, with γi,1 representing the real component and γi,2 representing the imaginary

component of the electron. The top portion of Figure 2 displays the chain and the

redefinition of electrons into MFs. Doing this transforms the operators according to

ci =
1

2
(γi,1 + iγi,2) , (13)

c†i =
1

2
(γi,1 − iγi,2) . (14)

Setting µ = 0 and ∆ = t for simplicity and plugging Equations 13 and 14 into

Equation 12, the Hamiltonian becomes

H = −it
N−1∑
i=1

γi,2γi+1,1. (15)

Because it is possible to define any fermion as a superposition of two MFs, a new

fermion operator c̃i can be defined by grouping together MFs of neighboring sites,

such that

c̃i =
1

2
(γi+1,1 + iγi,2) . (16)

This new grouping is shown in the bottom portion of Figure 2. Rewriting the Hamil-

tonian in terms of c̃i and c̃i
†, we obtain

H = 2t
N−1∑
i=1

c̃†i c̃i. (17)

Using these newly redefined fermions is really just a way to diagonalize Equa-

tion 12, and while it is helpful for organization of thought, the important physics

take place in Equation 15. Upon inspection, it is observed that the MF operators

γ1,1 and γN,2 are not included in the Hamiltonian, and are thus completely decoupled

from the energy of the system. A new operator c̃m can be defined from these two

9



Figure 2. (Top) The 1D tight binding chain with fermionic electron operators ci repre-
sented as a grouping of two MF operators. The MF representing the real component
of the electron is green and denoted by γi,1, while the MF representing the imaginary
component is red and given by γi,2. (Bottom) The same chain, but with new fermion
operators c̃i defined to contain MFs from neighboring site. This leaves an unpaired MF
on either end of the chain, which are grouped together to define the nonlocal fermion
operator c̃m.

MFs according to

c̃m =
1

2
(γ1,1 + iγN,2) . (18)

This new operator represents a fermionic state which is highly nonlocal, and the

occupation of which has no impact on the energy of the system. This quasiparticle

gives the system a doubly degenerate ground state which is highly resistant to local

perturbations, and is referred to as a Majorana zero mode.

Unfortunately, not all superconductors have the ability to host Majorana zero

modes. In order for Majorana zero modes to exist, the superconductor must be

in a topologically nontrivial state, which is where the chemical potential satisfies

the relation |µ| < 2t. The Majorana zero modes form at the boundaries of these

topological regions, so if the Kitaev chain has sections where |µ| > 2t, more Majorana

fermions will appear at the points where the system switches from a topological to a

non-topological state.

The Hamiltonian in Equation 12 can be expanded to a continuous two-dimensional

10



case. The Hamiltonian for this continuous 2D p-wave superconductor is

Hpw
2D =

∫
d2r

[
Ψ†(r)

(
p2

2m
− µ

)
Ψ(r) + Ψ(r)|∆|eiϕ(px ± ipy)Ψ(r) + h.c.

]
, (19)

where p is momentum, m is the electron mass, and Ψ† is the real-space creation

operator. As the Majorana zero modes exist at the ends of the wire in the case of

the Kitaev chain, in two dimensions they form at similar boundary points, namely

at the cores of Abrikosov and Josephson vortices, as these represent places where

superconductivity is broken (8).

While actual superconductors with the correct material properties to satisfy the

topological non-triviality requirements are exceedingly rare, a class of materials known

as topological insulators (TIs) exhibit promise. Although not superconductors in

their own right, they can be induced into a superconducting state by placing an

actual superconductor on top of them, as shown in Figure 3. This happens due to

the wavefunction of the cooper pairs from the superconductor slightly penetrating the

topological insulator and coupling into its Hamiltonian. By adjusting the geometry of

Figure 3. Induced Layer of Superconductivity on a Topological Insulator. The two
superconductors (gray) placed onto a topological insulator (orange) induce a state of
superconductivity in the TI. Creating a vortex (blue) on the surface of this induced
layer produces a region with the right material properties to host a Majorana zero
mode.

the superconductors, the superconducting properties of the topological insulator can

11



be manipulated to force them into a topologically non-trivial state (9). Therefore,

boundary points to the induced superconducting region, i.e. vortex cores created on

the surface of the TI, will have the ability to host Majorana zero modes. It is the

goal of this work to predict where these vortices form so that they may be used to

help realize an error-resistant topological qubit.

Exchange Statistics.

The unique non-abelian exchange statistics of Majorana states provides the mech-

anisms with which they can be used to implement quantum gates. For a wavefunction

given by the tensor product of two identical particle states |ψ⟩ and |ϕ⟩, the exchange

operator P acting on the state results in the original wavefunction multiplied by +1

for bosons and -1 for fermions, such that

Pboson |ψ⟩ |ϕ⟩ = |ϕ⟩ |ψ⟩ = |ψ⟩ |ϕ⟩ , (20)

Pfermion |ψ⟩ |ϕ⟩ = − |ψ⟩ |ϕ⟩ . (21)

If the particles being exchanged are two-dimensional anyons that obey normal abelian

statistics, the wave function is transformed by an overall phase factor θ according to

Palbelian |ψ⟩ |ϕ⟩ = eiθ |ψ⟩ |ϕ⟩ . (22)

For non-abelian anyons, particle exchange will actually send the system into a dif-

ferent state instead of introducing a phase shift. This can be best understood by a

system of three particles, |ψ⟩ = |ψ1⟩ |ψ2⟩ |ψ3⟩. If particles 1 and 2 are exchanged,

the transformation is represented by |ψ′⟩ = U1,2 |ψ⟩, with Uα,β being a 3x3 unitary

matrix. Exchange of particles 2 and 3 is represented by |ψ′⟩ = U2,3 |ψ⟩, and if U1,2

does not commute with U2,3, the particles obey non-abelian statistics (10). For this

12



condition to be met, the system must have two degenerate states, which in the case

of this work, are the two degenerate ground states brought about by the existance,

or lack thereof, of a Majorana zero mode.

To make sense of how these exchange statistics operate, imagine two spatially

separated vortices on a plane, as shown in Figure 4. The superconducting phase

Figure 4. The exchange described by the braiding operator B12. As vortex 1 passes
behind vortex 2, it crosses its branch cut (dotted line), thus picking up a phase shift
of π.

winds by 2π around a vortex, but an imaginary line called a branch cut can be

defined that extends radially outward from each vortex in one direction, such that

the superconducting phase is constant except for at the branch cut, where it jumps

by 2π. The directions of the branch cuts are arbitrary, but it is simpler to have them

all facing the same direction. Whenever one vortex crosses another’s branch cut, it

receives a phase shift of 2π; however, since the MF operator contained in the vortex

is essentially half of a normal fermion, it receives a phase shift of π. Imagine now

that vortex 1 and vortex 2 are exchanged such that vortex 1 passes over the branch

cut of vortex 2 and acquires a phase shift of π, but vortex 2 does not. This exchange

is shown by the arrows in Figure 4, and results in the MF operator transformations

γ1 → −γ2, (23)

γ2 → +γ1. (24)

In this transformation, the subscripts on the operator refer to the positions of the

13



vortices relative to one another: γ1 becomes −γ2 because it now occupies the location

2 and acquired the phase shift of π from passing over vortex 2’s branch cut. This

particular transformation forms the basis for constructing quantum gates and is called

the braid operator B12 such that

γi → B12γiB12, (25)

where

B12 =
1√
2
(1 + γ1γ2) . (26)

It is important to note that in order to use the branch cut technique to describe

the exchange statistics, the vortices must be completely exchanged, that is, the final

location of vortex 2 must be the initial location of vortex 1, and vice versa.

Unfortunately, braiding with just two MF particles is not sufficient to change the

state of the system in the number basis. After such an exchange, measuring the

fermionic number operator by bringing the two MFs together will result in the same

state the system was previously in. To be precise, the effects that the braid operator

has when acting on the number states are

B12 |0⟩ =
1√
2
(1 + i) |0⟩ , (27)

B12 |1⟩ =
1√
2
(1− i) |1⟩ . (28)

If four MFs are used, however, the non-abelian statistics can work to change the state.

For such a system, measurement of fermion 1 is comprised of combining MFs 1 and 2,

and measurement of fermion 2 by combining MFs 3 and 4. Operating with B12 and

B34 will only result in an overall phase factor like in the two MF case, but braiding
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MFs 2 and 3 will result in a superposition of the states |00⟩ and |11⟩ given by

B23 |00⟩ =
1√
2
(|00⟩+ i |11⟩) , (29)

B23 |11⟩ =
1√
2
(|11⟩ − i |00⟩) . (30)

Since this system of four MFs can be manipulated from one state to another by

braiding, it can be used to define a qubit with a computational basis set of
∣∣0̃〉 = |00⟩

and
∣∣1̃〉 = |11⟩.

With individual qubits comprised of only 4 MFs, the qubit is limited to rotations

of π/2 on the Bloch sphere and entanglement is impossible, so in order to imple-

ment the myriad of gates used in quantum computing, more complex qubits must

be defined. In 2007, Georgiev described how two overlapping four-MF qubits can be

braided to generate entanglement in the form of a CNOT gate (11). This overlapping

qubit concept is shown in Figure 5. Additionally, Hassler et al. discusses combin-

Figure 5. A concept of two overlapping MF qubits to generate entanglement. The
MFs encircled in white comprise each respective qubit. The state of qubit 1 is found
by measuring the fermion associated with γ1 and γ2, while γ5 and γ6 comprise the state
of qubit 2, as shown in yellow (11).

ing Majorana bound states with a flux qubit to explore more of the Hilbert space

while maintaining the topological protection provided by non-abelian anyons (12).

It is therefore possible, with innovative qubit designs, to surmount the restrictions

imposed by the braiding of four MFs alone.
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2.3 Josephson Junctions

Physical analogues for the ends of a Kitaev chain are exceedingly rare. Currently,

the best known system is comprised of the boundaries of a superconducting region

on the surface of a topological insulator, where superconductivity has been induced

by an actual superconductor (3). These boundaries are associated with points on

the topological insulator where the superconducting gap ∆ goes to zero, meaning

superconductivity is broken. This occurs at the cores of Abrikosov and Josephson

vortices, the latter of which is explained in this section.

In 1962, Brian David Josephson predicted the tunneling of supercurrent between

two superconductors separated by a small, insulated gap (13)(14). Since then, the

Josephson Junction has found many applications in the field of physics. The ability to

use them to construct superconducting quantum interference devices (SQUIDs) has

led to the many types of state-of-the-art transmon qubits that currently dominate

the world of quantum computing (15)(16). Josephson Junctions are critical to this

work because they harbor the potential to host and manipulate Majorana zero modes,

which can be used to define a qubit. Therefore, a basic understanding of the physics

behind Josephson Junctions is necessary.

In order to derive the fundamental current relationship across a Josephson junc-

tion, first consider two identical superconductors separated by a thin, insulating layer,

as shown in Figure 6 (15). The wavefunctions of cooper pairs for each superconductor

Figure 6. A Josephson junction, consisting of two identical superconductors S1 and S2

separated by a thin, insulating gap.
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are given by Equation 1, and are weakly coupled by coupling constant K due to their

spatial proximity. The system is governed by two Schrödinger equations,

iℏ
∂Ψ1

∂t
= E1Ψ1 +KΨ2, (31)

iℏ
∂Ψ2

∂t
= E2Ψ2 +KΨ1, (32)

where K is a constant representing the weak coupling between the superconductors

due to cooper pair tunneling, and E1,2 are the electric potentials of the respective

superconductors. If a voltage V is applied between the superconductors, and the zero

energy reference is defined to be directly between them, E1 and E2 become + qV
2

and

− qV
2
, respectively, where q = 2e is the charge of the cooper pairs. Plugging in the

respective wavefunctions, the Schrödinger equations become

− ℏ
√
n1
∂ϕ1

∂t
+

iℏ
2
√
n1

∂n1

∂t
=
qV

2

√
n1 +K

√
n2e

i(ϕ2−ϕ1), (33)

− ℏ
√
n2
∂ϕ2

∂t
+

iℏ
2
√
n2

∂n2

∂t
= −qV

2

√
n2 +K

√
n1e

i(ϕ1−ϕ2). (34)

Expanding the exponential according to Euler’s identity and separating real and

imaginary components yields the four equations

ℏ
2
√
n1

∂n1

∂t
= K

√
n2 sin (ϕ2 − ϕ1), (35)

ℏ
2
√
n2

∂n2

∂t
= K

√
n1 sin (ϕ1 − ϕ2), (36)

− ℏ
√
n1
∂ϕ1

∂t
=
qV

2

√
n1 +K

√
n2 cos (ϕ2 − ϕ1), (37)

− ℏ
√
n2
∂ϕ2

∂t
= −qV

2

√
n2 +K

√
n1 cos (ϕ1 − ϕ2). (38)
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From Equation 35 and Equation 36, it can be seen that ∂n1

∂t
= −∂n2

∂t
. By defining

the current I = Ωq ∂n
∂t
, where Ω is the superconductor volume, it is evident that this

means any current leaving S1 is equal to the current entering S2. Additionally, by

defining n1 = n2 = n, we can reduce Equation 35 to

Is = Ic sin (ϕ2 − ϕ1) = Ic sin∆ϕ, (39)

where Ic = 2KnqΩ/ℏ is the maximum amount of current that can tunnel through the

junction and is called the critical current. Equation 39 is known as the first Josephson

relation, and it shows that a phase difference between the two superconductors will

result in current across the junction. Importantly, when ∆ϕ = mπ withm = 0, 1, 2, ...,

current does not flow. Additionally, it is important to note that this current is not the

result of any applied voltage; it is solely due to a difference in the superconducting

phase between the two superconductors.

Subtracting Equation 37 from Equation 38 yields the second Josephson relation,

∂

∂t
(ϕ2 − ϕ1) =

qV

ℏ
, (40)

which describes how an applied voltage will cause the phase difference across the gap

to evolve in time.

In the presence of a magnetic field, Equation 39 and Equation 40 must be altered

to be gauge invariant. This is done by replacing ∆ϕ with the gauge invariant phase

γ, which is given by the transformation

∆ϕ→ γ = ϕ2 − ϕ1 +
2π

Φ0

∫ 2

1

A⃗ · ds⃗, (41)

where the integration is taken across the insulating gap (17). This transforms the
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first and second Josephson relations to

I = Ic sin γ, (42)

∂

∂t
γ =

qV

ℏ
. (43)

Consider now a Josephson junction of finite length l and width d in the presence

of a uniform magnetic field oriented perpendicular to the plane, as shown in Figure 7.

The superconductors screen the magnetic field such that no field penetrates their

Figure 7. Top-down view of a Josephson junction of finite length and width in a uniform
Magnetic field oriented perpendicular to the plane.

bulk, allowing for only the field penetrating the insulating gap to be considered. If

γ(0) = γ0 at the base of the junction, it is possible to find γ an arbitrary distance y

farther up the junction by examination of the magnetic flux. The flux Φ within the

area contained by the box is related to the vector potential A⃗ by

Φ = Byd =

∮
A⃗ · ds⃗, (44)
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where the integral is taken along the outside of the box, leading to

Byd =

∫ 2

1

Axdx+

∫ 3

2

Aydy +

∫ 4

3

Axdx+

∫ 1

4

Aydy. (45)

Since the superconductors screen the field from their bulk, if the contours 2 → 3 and

4 → 1 are defined to be farther into the superconductors than the London penetration

λ, the vector potential is approximately equal to zero along their length. This allows

the second and fourth integrals in Equation 45 to vanish. If the gauge is subsequently

chosen to be Ax = −By and Ay = 0, the first integral also vanishes and Equation 45

becomes

Byd =

∫ 4

3

Axdx. (46)

The gauge invariant phases across the gaps are, from Equation 41,

γ(0) = ϕ2 − ϕ1 = γ0, (47)

γ(y) = γ0 +
2π

Φ0

∫ 4

3

Axdx = γ0 +
2π

Φ0

Byd. (48)

It is important to note here that ϕ2 − ϕ1 is defined deep within the respective super-

conductors, and is thus single-valued across the whole junction.

To obtain the supercurrent density flowing across the gap, Equation 48 can be

plugged into Equation 42, the first Josephson relation, to yield

js = jc sin

(
γ0 +

2π

Φ0

Byd

)
, (49)

where the total current Is has been replaced with the current density js. It is therefore

evident that, for a straight-walled Josephson junction in a uniform magnetic field, the

gauge invariant phase increases linearly along the junction, causing the supercurrent
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to oscillate sinusoidally, as shown in Figure 8.

Figure 8. Supercurrent density flowing across a straight-walled Josephson junction. γ0
was chosen to be zero and the magnetic field strength was chosen such that there is
exactly one flux quanta contained in the gap.

The locations along the gap where js goes to zero are known as Josephson vor-

tices. Importantly, these vortices have the ability to bind Majorana zero modes, so

knowledge of the vortex locations also constitutes knowledge of the locations of the

Majorana in the system (18). Because the gauge invariant phase can be manipulated

in time by an applied voltage according to Equation 43, the locations of these vor-

tices can be effectively controlled. This is useful for the manipulation of states via

exchange, as the vortices could potentially be moved around each other in a lattice

of Josephson junctions.
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III. Methodology and Results

3.1 Vortex Locations for Arbitrarily Shaped Junction

It may not be possible to always manufacture perfectly straight Josephson junc-

tions for any particular arrangement; therefore, it is important to be able to predict

where the Majorana-hosting Josephson vortices will form for an arbitrarily shaped

Josephson junction. Consider a junction like the one shown in Figure 9, where the

width of the junction is given by a function w(y). The magnetic field is still oriented

Figure 9. A Josephson junction of arbitrary shape. The distance between the super-
conductors at any distance y in the junction is given by w(y).

perpendicular to the plane, and the gauge invariant phase at any point in the junction

γ(y) is determined by the shape of the Josephson junction.

Since the magnetic field is screened to zero inside the superconductors, the flux

through the highlighted area is given by the integration of w(y) from the zero to y
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multiplied by the field strength, and is related to the vector potential by

Φ = B

∫ y

0

w(y)dy =

∮
A⃗ · ds⃗. (50)

Choosing the gauge Ax = −By and Ay = 0 as was done for the straight junction

allows for the integral along path 1 → 2 to be elimated, with the integrals along

paths 2 → 3 and 4 → 1 being eliminated if the contours are chosen to be farther

into the superconductors than the London penetration depth. Because of this, the

integration of the vector potential across the Josephson junction at any value y is

equal to the flux contained by the junction to that point. In other words,

∫ 4

3

A⃗ · ds⃗ = B

∫ y

0

w(y)dy. (51)

The integral across the junction in Equation 41 can then be replaced by the flux, so

that γ(y) is given by

γ(y) = ϕ2 − ϕ1 +
2π

Φ0

∫ y

0

w(y)dy. (52)

As with the straight junction, ϕ2 − ϕ1 is considered deep into the superconductors so

that it is single-valued throughout the junction. This consideration, along with the

choice of gauge, means ϕ2 − ϕ1 = γ(0) = γ0, which finalizes the expression for γ(y)

in an arbitrarily shaped junction to

γ(y) = γ0 +
2π

Φ0

∫ y

0

w(y)dy = γ0 + 2π
Φ

Φ0

. (53)

In most cases, the system will relax to the ground state in which no net supercur-

rent flows between the islands, meaning γ0 = 0. Locations in the junction where

|γ(y)− γ0| = nπ correspond to the location of a vortex.

The following figures are computationally generated examples of how this expres-
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sion can be implemented to find vortex locations for various junction shapes. In each

of these figures, the superconducting islands were assumed to be approximately 600

nm long, with the Josephson junction being on the order of 100 nm wide. The mag-

netic field strength was set to 0.02 T, and the integration was performed trapezoidally

with a step size of approximately 1 nm. Additionally, γ0 was assumed to be zero at

the bottom of all the junctions. Figure 10 shows a junction which is straight on one

side and linearly sloping on the other. The junction in Figure 11 is linearly sloped on

one side, but follows the shape of a sine curve on the other side. Finally, Figure 12

displays a junction where each side consists of a random walk in order to simulate a

more jagged junction.

Figure 10. Vortex locations for a sloped junction. The plot on the left shows γ as a
function of y. The vertical lines indicate where γ has changed by π, and thus represents
the location of a vortex. The plot on the right shows a depiction of the junction, with
the blue line indicating the left side of the junction, the orange line indicating the
right side, and the asterisks representing vortex locations. Note how as the junction
narrows, the vortices become more spread out.

This technique can also be applied outside of computer simulations. For instance,

if an image of a manufactured Josephson junction is taken in a lab, and a file con-

taining values for the width across the junction is generated from it, this method can

be used to predict where vortices will form in the junction.
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Figure 11. Vortex locations for a junction with one side shaped sinusoidally and the
other sloped.

Figure 12. Vortex locations for a junction where each side consists of a random walk,
simulating a more jagged junction.

3.2 Vortex Locations in a 2x2 Array of Superconducting Islands

Consider now a 2x2 array of superconducting islands on a topological insulator,

as shown in Figure 13. This setup contains four junctions where Josephson vortices

can form and one intersection where Abrikosov vortices can form.

Since the location of γ0 for each junction is arbitrary, it can be defined to be along

the inside edge of each junction, so γ2, γ3, γ5, and γ8 represent γ0 for their respective

junctions. In accordance with the derivation for a single junction, γ0 is equal to the
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Figure 13. A series of Josephson junctions formed by a 2x2 array of superconducting
islands. The superconductors are represented by the gray areas and labeled A-D. The
exposed topological insulator is shown in orange.

overall phase difference between the islands, so

γ2 = ϕA − ϕD, (54)

γ3 = ϕB − ϕA, (55)

γ5 = ϕB − ϕC , (56)

γ8 = ϕC − ϕD. (57)

Note that γi has been defined to be positive upward and to the right. The sum

around the inner contour is related to the number of flux quanta f contained by the

intersection and the number of Abrikosov vortices n by (17)

∑
plaquette

γi = γ5 − γ3 − γ2 + γ8 = 2π(f − n), (58)

where the summation of γi is taken along the inside plaquette that outlines the in-
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tersection. This summation is taken in a circular sense, with positive defined as

counterclockwise, and hence γ3 and γ2 are subtracted instead of added. Note that a

positive value of n indicates a vortex, while a negative n indicates an antivortex.

To find the ground state of the system, it is necessary to find the minimum energy

contained by the array. The energy of a superconducting island array consisting of

point junctions is given by (17)

E = EJ

∑
array

(1− cos γi), (59)

where Ej is the single-junction energy.

While a good starting point, this expression does not adequately describe the array

shown in Figure 13, as the junctions are not point junctions and therefore cannot be

characterized by a single value of γ. Instead, the energy of the array will be given by

summing the integrals of all junctions. Equation 59 becomes

E = EJ

∑
array

∫
[1− cos(γi(y))] dy, (60)

where the integral is taken along each junction from the intersection outwards. If the

junctions are all said to be perfectly straight junctions of the same size, Equation 59

can be integrated to the form

E =
EJΦ0

2πBd

∑
array

(
2πBdw

Φ0

− sin

(
γ0,i +

2π

Φ0

Bdw

)
− sin(γ0,i)

)
, (61)

where B is the magnetic field strength, w is the width of one superconducting island,

and d is the separation between islands. If the junctions are not identical straight

junctions, numerical integration of Equation 53 can be used to compute the energy.

Minimization of Equation 61 with respect to γ0,i will yield the ground state of the
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system; however, γ0,i is constrained by Equation 58, as the number of Abrikosov

vortices must be an integer value.

The minimum energy will come when |γ0,i| is equal for all junctions, with γ0,i for

junctions AB and DA of opposite sign to junctions DC and CB. This allows for the

energy to be expressed in terms of a single variable γ0. Using this, Equation 61 and

Equation 58 become

E =
4EJΦ0

2πBd

[
2πBdw

Φ0

− sin

(
2π

Φ0

Bdw

)
cos(γ0)

]
, (62)

and

γ0 =
π

2
(f − n). (63)

These can now be combined to find E as a function of n. This yields

E =
4EJΦ0

2πBd

[
2πBdw

Φ0

− sin

(
2π

Φ0

Bdw

)
cos

(π
2
(f − n)

)]
. (64)

The simplest way of finding the value for n that generates the minimum energy is

to do so graphically. Figure 14 shows a plot of E/EJ for several values of n, ranging

from −10 to 10. This plot was for an array with islands 300 nm long, a separation of

50 nm, and a magnetic field of 0.1 T. The ground state of the array will correspond to

the minimum number of Abrikosov vortices or antivortices that minimize the energy

of the overall array. In the case illustrated, this is n = ±2, which corresponds to a

superposition of two vortices and two antivortices. It can be seen that the plot is

periodic with a period of 4, so the only case that will result in a superposition is the

case where |n| = 2. n = 0,±1 will be definitively in that state.

The number of Abrikosov vortices that define the ground state will evolve as the

magnetic field strength is increased. This is shown in Figure 15. Interestingly, as the

fractional flux quanta f through the intersection increases, the number of vortices
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Figure 14. Graphical determination of n, the number of Abrikosov vortices in the
intersection of the array. The ground state of the system corresponds to the minimum
amount of Abrikosov vortices or antivortices that minimize the total energy of the
array. The plot shows that n can be either 2 or -2 for this configuration.

alternates between ±2 and 0. However, at f = 0.5 this alternation switches to be

between −1 and 1, and then switches back at f = 1.5.

Once the ideal value for n has been found, γ0 is found using Equation 63. From

there, the value of γ(y) within each junction is completely predetermined by the

geometry of each junction. For the same straight-walled array described above with a

magnetic field of 0.29 T, Figure 16 shows the current distribution across each junction.

In this case, n = 0 and the current flows clockwise around the innermost loop. It

can be seen that the current density along each junction crosses zero four times,

corresponding to four Josephson vortices. Therefore, this configuration contains a

total of 16 Josephson vortices and zero Abrikosov vortices. A complete illustration of

this array is given in Figure 17.

Increasing the magnetic field strength will force the system into a state with
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Figure 15. n as a function of flux quanta f through the intersection of the array. Places
where n can be ±2 are plotted as both 2 and −2. Note that at half-integer values of f ,
n goes from switching between 0 and ±2 to switching between 1 and −1.

|n| = 1 Abrikosov vortex, as shown in Figure 18.

While it is certainly possible to continue to increase the field strength, once the

number of fractional flux quanta through the intersection starts to exceed 1, the

number of Josephson vortices starts to get unruly. For example, given f = 1.14,

each junction would contain 13 Josephson vortices, for a total of 52 in the entire

array. Expand this to a larger array, i.e. 3x3, 4x4, or larger, and the total number of

Josephson vortices quickly gets to be out of hand. Therefore, it is beneficial to keep

f below 1.

Using the concepts introduced here, it is possible to predict exactly where the

vortices will form in any 2x2 array of superconducting islands. Even if the junctions

are not perfectly straight, by presenting a solution for an arbitrarily-shaped junction,

the array can still be solved using Equation 53. The code used to generate Figure 14

through Figure 18 has been included in Appendix A. It should be straightforward to
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Figure 16. Current as a function of y in each junction. Note how the currents across
junctions AB and DA are in the opposite direction of those in junctions DC and BC.

apply the same method of energy minimization used here to a larger array for future

implementations, although an array with more than one intersection will be slightly

more complex, as the value of γ0 for one intersection will impact the value for its

conjugate.
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Figure 17. An illustration of an array with island width of 300 nm, separation of 50
nm, and magnetic field strength of 0.29 T, which corresponds to f= 0.35. Josephson
vortices are given in blue and there are no Abrikosov vortices present.

Figure 18. Island array with magnetic field strength of 0.43 T, corresponding to f= 0.52.
Six Josephson vortices (blue) are present along with one Abrikosov vortex (green).
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IV. Conclusions

Majorana-based qubits are promising theoretical candidates for error-free quan-

tum computation. Their topological protection and non-abelian exchange statistics

allow for easy state manipulation while minimizing decoherence due to local pertur-

bations from the environment. One potential manner to construct a Majorana-based

qubit exists in the form of a superconducting island array on top of a topological insu-

lator, where superconductivity in the insulator is induced by the surrounding islands.

In this setup, the Majorana fermions are hosted in Josephson and Abrikosov vor-

tices found in the gaps between islands and can be manipulated by applied voltages

between islands. However, little is currently known about such systems.

Practical implementation of Majorana-based qubits requires knowledge of where

the Majorana-hosting vortices will form. This work helps advance this knowledge in

two ways. First, a method for determining Josephson vortex locations was presented

for a Josephson junction of arbitrary shape. This will allow for more accurate vortex

location knowledge in a physical system after it has been constructed. Second, a 2x2

superconducting island array was analyzed for Abrikosov and Josephson vortex loca-

tions. This solution minimizes the energy of the array by relating the gauge invariant

phase for each junction at the center of the array with the magnetic flux through the

intersection and the number of Abrikosov vortices. Due to system constraints, the

variable that must be analyzed to minimize the energy is the number of Abrikosov

vortices. Once this number is found, the gauge invariant phase for each junction is

determined, with the locations of the Josephson vortices being predetermined by the

geometry of the junctions. These two advances are complementary and can be used

in conjunction with each other for physical arrays of irregularly-shaped islands.

Future work in this field could involve altering the arbitrarily-shaped junction

solution to include variation in the critical current density as the distance across the
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junction increases. This would involve a deeper understanding of the constant K that

couples the wavefunctions of the two superconductors together. Additionally, work

could be done to expand the array, first to a 3x2 array to investigate the effect of

adding another intersection, then to a larger array that will allow for actual exchange

of vortices. Finally, the dynamics of the array could be investigated for an applied

voltage between islands with the end goal of being able to move the vortices around

each other.
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Appendix A. MatLab Code for Array Analysis

1 clc

2 clear all

3 close all

4

5 d = 50e−9;%separation

6 w = 300e−9;%island length

7 B = .8*10e−2; %Magnetic field strength, in tesla

8

9 dy = 1e−9; %resolution of microscope in m

10 sep = d; %approximate separation of islands

11 ht = w; %approximate length of islands

12 num = round(ht/dy); %number of distance entries

13 y = transpose(linspace(0,ht,num)); %linearly spaced y values

14 chg = 1.602e−19; %electron charge

15 hbar = 1.05e−34; %h bar

16 flux = zeros(num,1);

17 phi0 = 6.626e−34/2/1.602e−19;

18 x = linspace(0,w,num);

19

20

21 f = dˆ2*B/phi0; %fractional flux through intersection

22 g = d*w*B/phi0; %fractional flux through junction

23

24 flux = linspace(0,w*d*B,num);

25

26 B mat = 10e−2*linspace(1,20,100);

27 f = dˆ2*B/phi0; %fractional flux through intersection

28 n opts = zeros(size(B mat));
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29 fmat = dˆ2*B mat/phi0;

30

31 figure

32 for ii=1:length(B mat)

33 B = B mat(ii);

34 f = dˆ2*B/phi0;

35 ns = [−3:1:3];

36 E = 4*phi0/(2*pi*B*d)*(2*pi*B*d*w/phi0 − ...

sin(2*pi/phi0*B*d*w)*cos(pi/2*(f−ns)));

37 [M,I] = min(E);

38 indices = find(E==M,20);

39 %Ind = min(abs(indices−(length(ns)−1)/2)) + (length(ns)−1)/2

40 %[Min,Ind] = min(abs(ns(indices)));

41 Ref = (length(ns)−1)/2+1;

42 Diff = abs(indices − Ref);

43 [minVal, minInd] = min(Diff);

44 Ind = indices(minInd);

45 n opts(ii) = ns(Ind);

46 ns(Ind);

47 plot(ns,E)

48 xlabel('n')

49 ylabel('E/E J')

50 hold on

51 end

52 n opts 2 = find(n opts==−2);

53 n opts sup = n opts;

54 n opts sup(n opts 2) = 2;

55

56

57 figure

58 plot(fmat,n opts,'b')

59 xlabel('Flux quanta through intersection (f)')
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60 ylabel('n')

61 hold on

62 plot(fmat,n opts sup,'b')

63

64 reference num = 18;

65 gam0s = pi/2*(fmat−n opts);

66 flux = linspace(0,w*d*B mat(reference num),num);

67 gamBC = gam0s(reference num) + 2*chg/hbar*flux;

68 gamAB = −gam0s(reference num) − 2*chg/hbar*flux;

69 figure

70 plot(x/1e−9,sin(gamBC))

71 hold on

72 plot(x/1e−9,sin(gamAB))

73 xlabel('Position in junction (nm)')

74 ylabel('j/j c')

75 n = n opts(reference num)

76 legend('Junctions BC,DC','Juctions AB,DA')

77

78 gamDA = gamAB;

79 gamDC = gamBC;

80

81 [num vorticesAB 3 vort indexAB 3] = FindZeros(sin(gamAB));

82 [num vorticesBC 3 vort indexBC 3] = FindZeros(sin(gamBC));

83 [num vorticesDA 3 vort indexDA 3] = FindZeros(sin(gamDA));

84 [num vorticesDC 3 vort indexDC 3] = FindZeros(sin(gamDC));

85

86 vorticesAB = y(vort indexAB 3); %how far in nm into the junction the ...

vortices are located

87 vorticesDA = y(vort indexDA 3);

88 vorticesBC = y(vort indexBC 3);

89 vorticesDC = y(vort indexDC 3);

90
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91 vert junc x coord = w+d/2;

92 horz junc y coord = w+d/2;

93 vorticesAB y coord = vorticesAB + w+d;

94 vorticesDC y coord = w − vorticesDC;

95 vorticesDA x coord = w − vorticesDA;

96 vorticesBC x coord = vorticesDC + w+d;

97

98 vorticesAB coords = [zeros(length(vorticesAB),1)+vert junc x coord, ...

vorticesAB y coord];

99 vorticesDC coords = [zeros(length(vorticesDC),1)+vert junc x coord, ...

vorticesDC y coord];

100 vorticesDA coords = [vorticesDA x coord, ...

zeros(length(vorticesDA),1)+horz junc y coord];

101 vorticesBC coords = [vorticesBC x coord, ...

zeros(length(vorticesBC),1)+horz junc y coord];

102

103 figure

104 rectangle('position',[0 0 w w]/1e−9,'FaceColor','black')

105 hold on

106 rectangle('position',[w+d 0 w w]/1e−9,'FaceColor','black')

107 rectangle('position',[0 w+d w w]/1e−9,'FaceColor','black')

108 rectangle('position',[w+d w+d w w]/1e−9,'FaceColor','black')

109 axis image

110 plot(vorticesAB coords(:,1)/1e−9,vorticesAB coords(:,2)/1e−9,'bo')

111 plot(vorticesDC coords(:,1)/1e−9,vorticesDC coords(:,2)/1e−9,'bo')

112 plot(vorticesDA coords(:,1)/1e−9,vorticesDA coords(:,2)/1e−9,'bo')

113 plot(vorticesBC coords(:,1)/1e−9,vorticesBC coords(:,2)/1e−9,'bo')

114

115 if n == 1

116 plot((w+d/2)/1e−9,(w+d/2)/1e−9,'go')

117 elseif n == −1

118 plot((w+d/2)/1e−9,(w+d/2)/1e−9,'ro')
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119 elseif n == 2

120 plot((w+d/2−5)/1e−9,(w+d/2)/1e−9,'go')

121 plot((w+d/2+5)/1e−9,(w+d/2)/1e−9,'go')

122 elseif n == −2

123 plot((w+d/2−5)/1e−9,(w+d/2)/1e−9,'ro')

124 plot((w+d/2+5)/1e−9,(w+d/2)/1e−9,'ro')

125 end

126 xlabel('x (nm)')

127 ylabel('y (nm)')

128

129 tA = ...

text((w/2−d/2)/1e−9,(w/2+w/2+w/2+d)/1e−9,'A','Color','white','FontSize',30);

130 tB = ...

text((w/2+w+d/2)/1e−9,(w/2+w/2+w/2+d)/1e−9,'B','Color','white','FontSize',30);

131 tC = ...

text((w/2+w+d/2)/1e−9,(w/2)/1e−9,'C','Color','white','FontSize',30);

132 tB = text((w/2−d/2)/1e−9,(w/2)/1e−9,'D','Color','white','FontSize',30);

133

134 function [n,z indices] = FindZeros(array) %must be large array with ...

no noise

135 abs array = abs(array);

136 n = 0;

137 z indices = [];

138 for ii = 2:length(array)−1

139 if abs array(ii−1) > abs array(ii) && abs array(ii+1) > ...

abs array(ii)

140 n = n+1;

141 z indices = [z indices ii];

142 end

143 end

144 end

145 end
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