
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Analysis of Generalized Artificial Intelligence Potential through Analysis of Generalized Artificial Intelligence Potential through

Reinforcement and Deep Reinforcement Learning Approaches Reinforcement and Deep Reinforcement Learning Approaches

Jonathan Turner

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Other Operations Research, Systems

Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Turner, Jonathan, "Analysis of Generalized Artificial Intelligence Potential through Reinforcement and
Deep Reinforcement Learning Approaches" (2022). Theses and Dissertations. 5450.
https://scholar.afit.edu/etd/5450

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F5450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5450?utm_source=scholar.afit.edu%2Fetd%2F5450&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ANALYSIS OF GENERALIZED ARTIFICIAL
INTELLIGENCE POTENTIAL THROUGH

REINFORCEMENT AND DEEP
REINFORCEMENT LEARNING

APPROACHES

THESIS

Jonathan Turner, CAPTAIN, USAF

AFIT-ENS-MS-22-M-171

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-22-M-171

ANALYSIS OF GENERALIZED ARTIFICIAL INTELLIGENCE POTENTIAL

THROUGH REINFORCEMENT AND DEEP REINFORCEMENT LEARNING

APPROACHES

THESIS

Presented to the Faculty

Department of Operations Research

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Jonathan Turner, B.S.

CAPTAIN, USAF

March 26, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-22-M-171

ANALYSIS OF GENERALIZED ARTIFICIAL INTELLIGENCE POTENTIAL

THROUGH REINFORCEMENT AND DEEP REINFORCEMENT LEARNING

APPROACHES

THESIS

Jonathan Turner, B.S.
CAPTAIN, USAF

Committee Membership:

Lance Champagne, Ph.D
Chair

Bruce Cox, Ph.D
Reader

Trevir Bihl, Ph.D
Member

AFIT-ENS-MS-22-M-171

Abstract

Artificial Intelligence is the next competitive domain; the first nation to develop

human level artificial intelligence will have an impact similar to the development of

the atomic bomb. To maintain the security of the United States and her people,

the Department of Defense has funded research into the development of artificial in-

telligence and its applications. This research uses reinforcement learning and deep

reinforcement learning methods as proxies for current and future artificial intelligence

agents and to assess potential issues in development. Agent performance were com-

pared across two games and one excursion: Cargo Loading, Tower of Hanoi, and

Knapsack Problem, respectively. Deep reinforcement learning agents were observed

to handle a wider range of problems, but behave inferior to specialized reinforcement

learning algorithms.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . viii

I. Introduction . 1

1.1 Problem Statement and Research Questions . 1
1.1.1 Tower of Hanoi . 2
1.1.2 Cargo Loading . 3
1.1.3 Knapsack . 4

1.2 Motivation . 5
1.3 Background . 5
1.4 Methodology. 7
1.5 Assumptions and Limitations . 8
1.6 Organization of Thesis . 8

II. Background and Literature Review . 10

2.1 Overview of Machine Learning . 10
2.2 Overview of Artificial Neural Networks . 12
2.3 Overview of Reinforcement Learning and Deep

Reinforcement Learning . 16
2.4 Machine Learning and Artificial Intelligence . 20
2.5 Cognitive Architecture . 22
2.6 Recent Achievements in Artificial Intelligence . 24

III. Methodology . 26

3.1 Programming Platform . 26
3.2 Move Verification Logic . 27

3.2.1 General Rules for Internal Validity . 27
3.2.2 Internal Validity in Reinforcement Learning

Tower of Hanoi . 30
3.3 Reinforcement Learning . 31

3.3.1 Tower of Hanoi . 31
3.3.2 Cargo Loading . 33

3.4 Deep Reinforcement Learning Problem Modifications 36
3.4.1 Modifications for Tower of Hanoi . 36
3.4.2 Modifications for Cargo Loading . 36
3.4.3 Modifications for Knapsack . 37

3.5 Deep Reinforcement Agent Architecture and Training 38

v

Page

IV. Results and Analysis . 41

4.1 Cargo Loading Results . 41
4.2 Tower of Hanoi . 42
4.3 Deep Reinforcement Learning Tower of Hanoi: Analysis

of Neurons on Effectiveness . 47
4.4 Excursion: Deep Reinforcement Learning Knapsack 50

V. Conclusions . 52

5.1 Implications for Generalized Artificial Intelligence 52
5.2 Future Work . 53
5.3 Recommendations . 54

Appendix A. Code . 55

Bibliography . 102
Acronyms . 106

vi

List of Figures

Figure Page

1. Tower of Hanoi Game . 3

2. Cargo Loading Array . 4

3. Artificial Neural Network Neuron . 13

4. Deep Neural Network Representation . 15

5. Cargo Flipping Actions . 27

6. Storage Space Logic . 28

7. Cargo Weight Logic . 29

8. Occupancy and Loading Array Visualization . 30

9. Four Ring Tower of Hanoi State Visualizations . 32

10. Simple Cargo Loading Move Visualizations . 35

11. Depiction of Impossible Cargo Loading Game . 37

12. Deep Reinforcement Learning Cargo Loading: 3 items
in a 3x3x3 . 42

13. Tower of Hanoi with 2 Rings . 44

14. Tower of Hanoi with 3 Rings . 45

15. Tower of Hanoi with 6 Rings . 46

16. Deep Reinforcement Learning Cargo Loading: 3 rings,
first success . 47

17. One-Way Analysis of Episodes By Neurons . 49

18. Deep Reinforcement Learning Knapsack Problem
Reward Hidden Until Final Move . 51

vii

List of Tables

Table Page

1. Illustration of Reward Matrix for 2 Ring Tower of Hanoi
Game . 33

2. Model Architecture . 39

3. Reinforcement Learning Tower of Hanoi Results . 43

4. Episodes Until First Optimal Run . 48

5. Episodes Until First Optimal Run . 49

viii

ANALYSIS OF GENERALIZED ARTIFICIAL INTELLIGENCE POTENTIAL

THROUGH REINFORCEMENT AND DEEP REINFORCEMENT LEARNING

APPROACHES

I. Introduction

Artificial Intelligence (AI) is considered by many to be the next competitive do-

main; the first nation to develop truly autonomous AI will likely experience socio-

economic effects similar to the advent of nuclear energy [1]. In concurrence with this

belief, the United States’ Department of Defense (DoD), has made the development

of human-level AI a priority [2]. In alignment with this effort, this research aims

to assess potential issues with the generalization of AI programs through the use of

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) agents as

proxies. The remainder of this chapter includes the problem statement and research

questions, with details regarding the games used to benchmark progress, the moti-

vation of the problem, and background information surrounding reinforcement and

deep reinforcement learning, and an outline of the remainder of the thesis.

1.1 Problem Statement and Research Questions

The objective of this research is to develop a baseline for the development of strong

AI. As previously noted, strong AI agents do not currently exist despite ongoing

efforts [3]. Additionally, there exists debate whether it will ever be possible for AI

to achieve capabilities similar to human’s due to the absence of human functions

and biological functions [4]. While this may appear a superficial concern, research in

other domains has shown that the nature of the environment can have unexpected

1

impacts on the development of organisms [5], so it is reasonable to assume that there

may be some aspects of human nature that are not easily captured or measured

through artificial means. Therefore, this research intends to capture issues in the

generalization of problem solving capabilities of weak AI agents. Specifically, DRL

agents are used because they are arguably the most similar in capability to strong

AI while RL are used to baseline performance as a relatively weaker AI. To compare

progress, two similar but increasingly difficult problems are evaluated and compared

and one excursion is conducted: Tower of Hanoi (ToH), Cargo Loading (CL), and

Knapsack (KP) as the excursion. The agents’ performance in the various games will

be used to evaluate differences in their respective strengths and weaknesses as well

as potential costs in terms of time to train and develop each agent to accomplish

different games.

1.1.1 Tower of Hanoi

The standard ToH game consists of three pegs with rings of increasing size stacked

upon one peg, typically the left side peg. The objective of the game is to transfer all

rings from this side to the right side. Each ring moves by first removing it from its

current peg and then placing it unto the target peg. Larger rings are not permitted

to stack upon smaller rings and preference is given to completing the task in the least

number of moves. While the action space for the agent is very small relative to the

CL, the small space and weights of the objects creates its own unique challenges.

However, the ToH has a well-known pattern that once identified facilitates solving all

ToH problems, and the game can be solved optimally in 2N − 1 moves where N is

the number of rings. In other words, this game helps serve as a measure of pattern

recognition. Increasing difficult instances of this problem would include increasing the

number of rings. A visual representation of this problem can be found in Figure 1.

2

Figure 1: Visual representation of the Tower of Hanoi (ToH) game initial condition:

The rings must move from the left peg to the right in as few moves as possible. Larger

rings cannot be placed on smaller rings

1.1.2 Cargo Loading

CL involves the storage of three-dimensional objects into a three-dimensional

space. Each object has a unique weight and heavier objects cannot be placed upon

lighter objects. Furthermore, objects are not allowed to hang over other objects and

must be stacked “neatly”, (see Figure 2). For the purposes of this research, both

cargo items and storage areas are restricted to rectangular prisms. Testing for agents

in this problem set include expanding the dimensions of the storage space, expanding

the dimensions of the storage items, and changing the weights of the storage items.

This problem set is unique in the higher number of actions the agent is required to

evaluate and the potential for alternative optimal solutions. This problem set is also

inspired by previous research sponsored by Air Force Research Laboratory (AFRL)[6].

3

Figure 2: Dimensional representation of the cargo loading problem: The cargo loading

space is shown as rectangular prism. Items are stored one by one into the space

provided there is enough space for the object. Objects also have their own weights.

Larger and heavier objects cannot be placed upon smaller objects.

1.1.3 Knapsack

This problem is a well-known in integer programming: the agent has list of items

of differing values and a limited space to store them and attempts to maximize value

given a size constraint. The knapsack problem has generally seen the most success

using heuristics and evolutionary algorithms due to the computational complexity in-

herent to the problem. Increasing difficult of this problem would consist of increasing

the number of items for the agent to differentiate from when selecting the optimal

solution.

4

1.2 Motivation

While the creation of strong AI is considered a prized achievement, its only rel-

atively recently that computational power has reached a point where the pursuit of

human-level AI seems attainable. Since 1948, the concept of self-learning machinery

has been on the forefront of the scientific conscience [7]. As of 2022, modern AI al-

gorithms have already served to enhance accuracy and precision in the medical field

[8]. However, all of these programs have been examples of weak AI. These programs

are often limited to specific problems or require human input or assistance in order to

operate. Commonly used examples of weak AI include virtual assistants like Cortana

which can follow limited voice commands such as, “solve 3+3” but would not be able

to follow the voice command, “solve my math homework.”

A strong AI attempts to solve large varieties of problems with little to no human

input. As of 2022, strong AI programs do not exist. However, Of these weak AI

programs, arguably the closest to resembling strong AI is deep reinforcement learning.

Deep reinforcement learning algorithms are a form of unsupervised machine learning

algorithms, a form of computer program capable of adapting and learning from its

environement through trial and error. It is also a Neural Network (NN) abstraction

of RL and is a form of unsupervised Machine Learning (ML). Thus, to baseline AI

development research, we focus on solving a series of games with reinforcement and

DRL.

1.3 Background

To understand deep reinforcement learning, we first must discuss reinforcement

learning. Reinforcement learning is an unsupervised machine learning method where

the entire state-space of the problem is generated, and the agent must navigate to

a specific goal solution. In other words, without human input, the computer agent

5

attempts to map out all the possibilities of the problem and determine a policy with

regards to which actions need to occur to reach the goal from any state. An example

would be a draw-by-numbers picture where the final state is the completed picture,

the policy would be to connect all the numbers starting from one in sequential order

and each action would be the agent drawing a line connecting any two dots. In this

scenario, the agent would learn by taking a certain percentage of random actions to

explore the states and slowly identify the sequence of states that most reliably lead to

the end state. For the purpose of this research, this is done by the Bellman equation

which will be better explained in Chapter 2.

While powerful, there are two major weaknesses of the reinforcement learning

approach. First, as the learning process involves the use of the entire state space,

changes to the problem can change the state-space and require the agent to relearn

the entire problem, hampering generalizability. Referring to the draw by numbers,

an example would be inserting a random point inside the picture. The agent will

now have to identify how this point fits in relation to all other points in the problem.

For a simple 10-point draw-by-numbers group, the problem difficulty increases by a

factor of 10. Furthermore, even if the agent has learned to handle draw by numbers,

this does not mean the agent has learned to draw the same picture without numbers

or even a free drawing. The second major issue is related to the first. Because the

learning process requires the entire state-space, computer memory can quickly become

a limitation. Under the same assumptions for the draw-by-numbers, assuming the

agent always starts from the same spot there are 362,880 potential states, adding an

additional point increases the number of states to 3,628,800. Hence, there exists an

incentive to solve these problems without relying on the entire state space, the main

strength of deep reinforcement learning.

Deep reinforcement learning addresses reinforcement learning’s reliance on the

6

state-space mapping through deep neural networks. A neural network acts to collect

inputs which are processed through a layer of mathematical functions simulating

human brain functions called neurons to generate an output. Each neuron has its

own activation function and weight on the output. A deep neural network expands

this idea by stacking layers of neural networks upon one another with the outputs

of one layer serving as inputs to the following layer. Through the processes of feed-

forward and back-propagation during the training of the neural network, the weights

of the neural network are slowly updated, eventually increasing model accuracy. In

this case, the neural network is trained on the action-space as opposed to the state-

space. As the action-space consists only of what actions are possible, the size of

the space is generally much smaller than the state space. Through this method, the

deep reinforcement learning approximates the Bellman-equation, the mathematical

equations that create the policy that a standard reinforcement learning model follows.

In an ideal scenario, this would enable the DRL problem to solve more types of

problems than the reinforcement learning agent and be more computationally efficient.

1.4 Methodology

Python was used as the main platform for development of the models, agents

and training, however the common reinforcement learning package OpenAI was not

used due to incompatibilities with NengoSPA, a cognitive architecture that was con-

sidered more critical for future research. Code for the deep reinforcement learning

environment is provided in the appendices. Much, but not all, of the environments

used for training share a common internal logic for the placement of items and checks

for achievement of the goal state. Details on these environments and the differences

between them are found in Chapter III.

Two types of agents were trained and challenged to complete the problem sets de-

7

scribed in Section 1.1: RL agents and DRL agents. These agents followed Q-Learning

and Deep Q-Learning respectively for better performance comparison. Explanations

for the history and purpose of Q-Learning and Deep Q-Learning are found in Chap-

ter II, while details for their specific implementation in this research are explained in

Chapter III.

1.5 Assumptions and Limitations

Considering the variety of problems to solve, hyper-parameter tuning is not ap-

plied to any model throughout the process and was considered outside the scope of

this research. This is to avoid biasing the model performance to any specific prob-

lem. As a result, model performance may fluctuate depending on the architecture

developed in practice. Furthermore, due to the amount of time required for a neural

network to train, weights from one model are used as a baseline for training more diffi-

cult versions of the same problem. Additionally, each of the Deep Q-Learning models

use the same environment so that an identical input structure can be maintained.

As discussed in Section 1.4, OpenAI Gym, a popular reinforcement and deep

reinforcement learning package is not used. This is to facilitate follow on research

with cognitive neural architectures, specifically NengoSPA, in future research. As

these languages currently lack inter-connectivity with OpenAI Gym, efforts have been

made to ensure the code developed is as reproducible in NengoSPA as possible.

1.6 Organization of Thesis

This document is organized as follows. Chapter II provides an overview of rel-

evant literature. Chapter III details the process of developing RL and DRL agents

and their environments, including the Artificial Neural Network (ANN) architecture.

Chapter IV presents the results of evaluating the various agents’ performance. Finally,

8

Chapter V discusses the conclusions drawn from the results.

9

II. Background and Literature Review

The intent of this chapter is to explain the history and current state of Artificial

Intelligence (AI) algorithms as well as to provide details surrounding the origin and

application of the techniques used. As Machine Learning (ML) is directly linked to the

development of artificial intelligence and pertinent to this research, a brief history of

ML will be reviewed in Section 2.1 . Because the application of an Artificial Neural

Network (ANN) with Reinforcement Learning (RL) methods serves as a focus for

much of this research, there will be further elaboration on each of these technique in

Section 2.2 and Section 2.3. Information surrounding Deep Reinforcement Learning

(DRL) will also be included in section 2.3. In section 2.4, the interconnection between

ML and AI will be expanded. Since future research is intended to leverage cognitive

architecture, an overview of this topic is provided in section 2.5. Finally, recent

relevant achievements in AI will be recounted in section 2.6

2.1 Overview of Machine Learning

Machine learning is an area of study focused on the design of programs capable of

taking raw data and determining patterns or creating predictions. The first modern

machine learning algorithm can be traced to Frank Rosenblatt in 1957, who created

a prototypal ANN he dubbed the “perceptron” [9]. From this first step, pioneers in

control theory, computer science and stochastic science all began developing their own

approaches to problem sets they faced. This convergence of statistical and computer

science efforts became what we call machine learning today and gave rise to many

statistical techniques we use today, such as ANNs and RLs.

While the range and utility of machine learning techniques has increased with

time, the key feature machine learning algorithms share is the capability to define

10

their own parameters from the data they process [10]. Machine learning algorithms

can be broadly divided into one of four learning categories, one of two learning meth-

ods, and one of two main purposes. Potential learning categories are supervised, un-

supervised, semi-supervised, and reinforcement learning. Learning methods include

batch learning and online learning. The purpose of a machine learning algorithm can

be described as data point comparison or pattern detection [10].

In supervised machine learning algorithms, the program is given a labelled re-

sponse for training, the process of tuning parameters to maximize prediction or clas-

sification accuracy. The program uses this defined response as a reference to calculate

its loss, or how much the predicted data differs from the true measurement. This loss

is propagated throughout the weights in a which enables the model or agent to con-

verge on a correct prediction or classification.

In unsupervised learning, algorithms lack a response feature and instead attempt

to minimize or maximize some other metric, such as the variance within a certain

number of groups. These algorithms are often used to analyze clusters or detect

similarities among data points. K-means clustering is an example of an unsuper-

vised machine learning method that attempts to identify groups within the data by

minimizing the variance within identified groups. As a brief aside, its important to

note that this requires the use of a hyper-parameter term to specify the number of

groups to identify, another common facet of ML. While ML programs can control how

they estimate the data, hyper-parameters serve to modify how the model updates the

parameters, such as specifying a learning rate to impact how strongly the model is

influenced by its losses.

Semi-supervised learning is a mixture of the two previous learning methods, where

some, but not all, data points in the training set are labelled. These points are used

as references for the unlabelled data during training and can be used for such tasks

11

as content and topic mapping in text analysis.

In reinforcement learning, an agent attempts to navigate an environment with its

own internal rules and logic and is rewarded and punished according to its ability to

accomplish its objective. The agent repeatedly takes actions that influence its envi-

ronment and observes the results. Through trial and error the agent learns how these

actions impact the environment and then develops a policy to maximize its reward

for problem completion. Reinforcement learning is expounded upon in Section 2.3.

As for the learning types, the main distinction is whether the agent or algorithm

requires the whole data set to begin training or if the agent works through the steady

assimilation of more data points. Batch learning refers to the former practice and is

very common for ANN. For the purpose of this research, mini-batching, the parti-

tioning of data for training in a batch-like method, will also considered as the same

category. The alternative method is on-line learning, where the algorithm learns and

gradually increments its predictions and inferences with data given to it over time.

Data point comparison can be when an algorithm classifies a data point based

on its most similar data point and pattern detection occurs when an algorithm at-

tempts to predict or classify data points using trends within the data. The K-Means

algorithm previously mentioned is an example of of data point comparison, whereas

regression methods and policy development in some reinforcement learning methods

can be considered a pattern detection. The focus point for most of this research con-

sists of the application of ANN a historically supervised learning method algorithm

with RL techniques.

2.2 Overview of Artificial Neural Networks

As the name implies, ANNs are a form of mathematical models designed to make

predictions using a process imitating how humans think, albeit simplified. At the most

12

fundamental level, the network is composed of singular units called called neurons.

Each unit is composed of a bias, an activation function and weights to apply to the

input vector, as shown in fig. 3. For early neural networks, the activation function

typically used was the threshold logic unit postulated by McCulloch and Pitts which

simply output a value of one if a certain level of stimulus was achieved or nothing

otherwise[11]. For simple neural networks, such as the original perceptron, the model

would simply receive an input, multiply these inputs by the weights, add a bias to

this value and if this value exceeds a certain threshold, the activation function would

output a value of 1.

Figure 3: Visual representation of a single neuron from an Artificial Neural Network,

figure courtesy of Pinjare 2013 [12]

.

Unfortunately, these models do not naturally provide the correct solution upon

initiation, in fact it must learn the problem by training on the data set. While

aspects of the training method have evolved over time, Algorithm 1 has served as a

foundation for much of this development. Let (v, t) be a vector mapping of training

inputs upon training outputs while y is a vector representing the true values of those

inputs and w be the vector representing weights on the neural network input layer.

13

The model trains by following the algorithm depicted in algorithm 1. As is implied

by the algorithm, many of these early ANN followed supervised learning methods.

Algorithm 1 Perceptron Training Rule Algorithm as depicted in Gurnery 2018 [13].

1: while y ̸= t do

2: d = (t− y)v

3: w′ = w + ad ▷ a represents the learning rate

4: w = w′

5: end while

As research into ANN progressed, it was discovered that stacking layers of neurons

upon one another creates better performance than simply adding more neurons to a

single layer, in a manner similar to the one depicted in Figure 4; the first working

model using this method was created by Ivahenko and Lapa in 1967 [14]. These more

modern ANNs consisted of layers of neurons working in tandem to model and predict

outputs. Layers between the output and input function were termed hidden layers

and a neural network with at least one hidden layer was classified as a Deep Neural

Network (DNN), also known as a Multilayer Perceptron (MLP) [13]. Because each

unit is its own function, the model is extremely flexible. In fact, ANN are known

universal approximaters, meaning provided sufficient neurons and time ANNs can

approximate any Borel measurable function [15]. Unfortunately, these MLPs were

limited by the computational resources of the time. While the operation of each

neuron is simple, the nature of the network meant that the weight matrix rapidly

grew unwieldy with increases in neurons and layers. In other words, despite the fact

the majority of the calculations were quite simple, the sheer quantity of calculations

rendered ANN impractical to use.

Ultimately, ANN research entered a few periods of dormancy termed “AI Winters”

and a new spring would not be seen until the development of better Graphics Pro-

14

Figure 4: Visual representation of deep neural network. Each circle represents an
individual neuron with arrows directing outputs to following layer

.

cessing Units (GPU) and parallel computing methods [9]. Since this new awakening,

nearly every facet of ANN has been incremented upon. More computationally effi-

cient activation functions capable of handling nonlinear data have been established,

such as the Leaky Rectified Linear Unit (LeakyReLU). The development of Stochastic

Gradient Descent (SGD) further enhanced the flexibility of ANN improving on the

original perceptron training rule to allow the model to learn convex nonlinear func-

tions computationally efficiently. Even the concept of learning rate was improved,

with optimizers such as AdaMax surfacing, decreasing the time required for ANNs to

train by modifying the learning rate during training to quickly converge towards the

optimal point.

As new techniques emerged to optimized and enhance neural networks, new struc-

15

tures of neural networks emerged as well. In the image classification problem set,

convolutional neural networks emerged, which used filtering layers on image data to

enhance classification. Other structures of neural networks emerged as well, such as

recurrent neural networks. However, one of the more recent structures developed were

DRL, which will be further explained in section 2.3.

2.3 Overview of Reinforcement Learning and Deep Reinforcement Learn-

ing

The origins of reinforcement learning are markedly more murky than the history

of ANN. What we know today as reinforcement learning is actually a merger of two

different concepts each with their own unique origins. The earlier concept was rooted

in psychology and animal learning. The other thread was known as optimal control

and originated in the 1950s. Optimal control was concerned with the optimization of

dynamical systems[16] and led to many of the mathematical methods informing mod-

ern reinforcement learning. These threads and a few other extemporaneous threads

merged in the 1980s creating the concept of reinforcement learning we have today.

The origin of optimal control is closely linked to Dr. Bellman’s work in 1957: the

Bellman Equation [17]. Let s be a current state in the problem, such that, V(s) is

the value of said state. Then R(s, a) will be the reward associated with taking an

action a at the current state. The state resulting from this action will be s′ and γ

will be the discount factor for this next step, or a sort of expectation for this state.

For a deterministic environment the Bellman equation takes the following form:

V (s) = max(R(s, a) + γV (s′)) (1)

While for a stochastic environment, the following equation holds true, but with

P (s, a, s′) representing the probability of transitioning to the next state, s′, following

16

action, a, in state s:

V (s) = max(R(s, a) + γ
∑
s′

P (s, a, s′)V (s′)) (2)

From these equations spawned the disciplines of dynamic programming and with

Ronald Howard’s policy iteration method[18], Markov Decision Processes. In this

manner, we can see there were mathematical attempts to quantify and model the

consequences of actions in both deterministic and stochastic environments. This

analytic bedrock is what helped with implementation of ideas developed in the second

thread.

The second discipline from which modern reinforcement learning got its start orig-

inates from the fields of psychology and animal learning. While some of these concepts

existed since the 1800s, the first clear codification of these concepts originated with

Edward Thorndike’s 1911 “Law of Effect”:

Of several responses made to the same situation, those which are accom-
panied or closely followed by satisfaction to the animal will, other things
being equal, be more firmly connected with the situation, so that, when it
recurs, they will be more likely to recur; those which are accompanied or
closely followed by discomfort to the animal will, other things being equal,
have their connection with that situation weakened, so that, when it re-
curs, they will less likely to occur. The greatest satisfaction or discomfort,
the greater the strengthening or weakening of the bond.[19]

In essence, the “Law of Effect” states that an animal will seek out circumstances

that have historically given it pleasure and avoid circumstances that have historically

given it pain. In 1948, Alan Turing discovered that machines could do something

similar [7]. Thus, the error of machines learning through trial and error had begun,

but it would not yet blossom until the 1980s. The reason for this period of dormancy

is largely unclear, but in retrospect there was much confusion between what exactly

17

RL was versus ML in general and with respect to ANN [16]. In any case, the efforts of

Harry Klopf in 1982 at least in some part revived the field by clarifying the distinction

between reinforcement and supervised learning [20].

Currently, reinforcement learning is a thriving discipline closely linked with ma-

chine learning with identifiable and distinct approaches. In summary, these ap-

proaches are value-based, policy-based and model-based [21]. One of the most popu-

lar methods used in this research is Q-Learning, a value-based method pioneered by

Watkins in 1989 [22]. Let q(s, a) be a function which returns the value of an action,

a, in state, s. Therefore, the approximation of this function is Q(st, at), where t

represents the number of steps Q has spent updating. Thus, Q(St, At) is the value

approximation of all state-actions after t steps, (St, At). Thus Q-Learning seeks to

maximize the reward R according to Algorithm 2.

Algorithm 2 Q-Learning Algorithm as shown in Sutton 2018

1: Set hyper-parameters: step size, a ∈ (0, 1] and small ϵ > 0

2: Initialize arbitrarily Q(s, a) ∀S,A

3: Set Q(finalstate,) = 0

4: while S is not final state do

5: Choose A from S from policy derived from Q

6: Take action A, observe R, S ′

7: Update Q : Q(S,A)← Q(S,A) + α[R + γmaxa Q(S ′, a)−Q(S,A)]

8: Set S = S ′

9: end while

This algorithm serves as the mechanism for training RL agents and is shown

to converge reliably even in stochastic cases. However, it is also computationally

intensive as the entire state space must be mapped and updated. For large state

spaces this process quickly become unwieldy. This is where the DRL method Deep

18

Q-Learning is beneficial.

As discussed in Section 2.2, ANNs are universal approximaters; a relatively less

computationally demanding neural network can be designed to approximate the Q

function making problems with large state-spaces solvable. This is done by training

the neural network on the state-action pair as inputs with the next state and reward

as the labelled training outputs. In this manner, the model is able to reduce its

exploration of the state-space to an exploration of the action space. Under this

method however, a few structural modifications are required to be made to the agent

and algorithm to facilitate the procedure.

Because the neural network is constantly updating, stable predictions are a po-

tential issue. To solve this issue, upon initializing the agent, a primary and target

network are generated, the primary network updates in regular batches while the tar-

get network updates after a set number of moves. Because the target network is not

constantly updating it can create more stable predictions, and an additional benefit

is that the number of computations are reduced. To generate the batches used, as the

model progresses a record of states, actions, next states and the rewards associated

is recorded. As memory is not infinite, a limit is defined for the memory and upon

reaching the limit, the memory is wiped until new data points are gathered. To avoid

biasing the information fed into the model towards early or irrelevant data points, a

random sample from this memory of the specified batch size is taken. This is possible

because the state space for Q-Learning models is assumed Markovian, meaning the

current state provides sufficient information for the next state. However, as the agent

will naturally prefer to follow what it assumes is the best option each step, it is likely

to fail to discover better methods. As a result, a higher percentage of random actions

are considered in the early training period and decrease as training continues. This

method is called Epsilon Greedy Action Selection [23], shown in Algorithm 3.

19

Algorithm 3 Deep Reinforcement Learning General Algorithm

1: Initialize the starting state for environment.

2: Initialize Policy Neural Network

3: Clone Neural Network for use as Target Neural Network

4: while Optimal Output has not been reached do

5: for each time-step do

6: Choose between exploration or exploitation randomly

7: Execute Action

8: Observe Reward and Next State

9: Store experience in replay memory

10: Sample random batch from replay memory

11: Preprocess states from batch (normalization)

12: Pass batch of preprocessed states to policy network.

13: Calculate loss between output Q-values and target Q-values using target

network

14: Gradient descent updates weights in the policy network to minimize loss.

15: After x time steps, update Target Neural Network weights with the Policy

Neural Network.

16: end for

17: end while

2.4 Machine Learning and Artificial Intelligence

From the same fusion of ideas that birthed the concept of machine learning, an-

other idea began to arise: can humans make computers think? Where machine learn-

ing proved that humans could teach computers to learn, the issue is the specificity

of the learning. A Support Vector Machine (SVM) could potentially learn to classify

20

several businesses based on their probability of success, but the same SVM will strug-

gle to predict the probability an individual will default on their loan despite some

similarities in metrics. One of the first attempts to solve this issue of generality was

reported by Allen Newell and Herbert Simon in 1958, where the “General Problem

Solver” was created [24]. Incredibly, this first prototypical AI could solve multiple

different problems, however it had shortcomings in addressing large state spaces and

complex environments.

This attempt signaled a shift in history. John McCarthy developed the AI pro-

gramming language Lisp in 1958 and with his transfer to Stanford and subsequent

foundation of the AI Laboratory, AI development began in earnest [25]. Unfortu-

nately, in less than a decade AI programs began to run into serious roadblocks, such

as computational limitations at the time, the curse of dimensionality, and the black

box nature of many early algorithms. Thus, AI research slowed to a crawl and true

continuous and steady support of AI research did not resume until the late 1980s

with the rediscovery of backpropagation, a technique for training feedforward neural

networks, and advances in computer technology. In the early 2000s, the development

of big data and statistical techniques have reawakened a public interest in Artificial

General Intelligence (AGI)) and Human-level Artificial Intelligence (HLAI), which

will eventually be know as “strong AI”.

Of note, not all current AI systems are what humans would traditionally consider

as intelligent. For instance, the preprogrammed enemies in any number of video

games are AI but lack true cognition. From this discrepancy rose the terms weak and

strong AI, weak referring to the more limited machine learning algorithms and strong

AI referring to machine intelligence comparable to humans. In the words of Mark

Bishop “weak AI focuses on epistemic issues relating to engineering a simulation of

human intelligent behavior, whereas strong AI, in seeking to engineer a computational

21

system with all the causal power of a mind, focuses on the ontological” [26].

2.5 Cognitive Architecture

This research leverages the current advances in neural networks with developments

in cognitive architecture to lay the foundations of further development. As the concept

of artificial intelligence grew, so did the underlying science regarding cognition and

awareness. To put it succinctly, many people tried to model the mind only to find gaps

between programming behaviors and creating thoughts. However, what has emerged

from this struggle is the understanding that to some degree a cognitive creature

must be able to simultaneously reason and interact with its environment [27]. From

this understanding, the notion of cognitive architectures begun to develop. Cognitive

architectures serve as the framework to translate human-like awareness understanding

into machine functions and processes [28]. Broadly speaking, there exist three main

approaches towards developing a cognitive architecture: dynamical, connectionism

and the symbolic approach.

The dynamical hypothesis in cognitive science posits that cognitive agents ex-

ist as dynamic systems. A dynamical system is one in which at least one of the

following statements are true: the states are quantitative, states and time are inter-

dependent, or rate of change is dependent [29]. The dynamical hypothesis exists in

two parts. First, it claims that cognitive agents are dynamic systems with the pre-

viously described properties. Secondly, it proposes that the best way to understand

cognitive processes is through a dynamical approach. This approach emphasizes that

dynamical frameworks are used in many scientific applications and have been shown

to be empirically successful; cognition naturally changes with time, a core feature

of dynamical systems; cognitive agents will interact with a dynamical environment,

encouraging dynamical approaches; and lastly, just like natural cognitive systems,

22

dynamical systems tend toward a natural stability.

Connectionism is a very different approach to dynamical models. The general

premise of connectionism is that neural nodes can be modelled to capture specific

cognitive ideas, which can range from letters to abstract patterns and concepts. These

nodes are connected to other nodes by differing degrees and can be activated in the

presence of their relevant stimuli and by the activation of related nodes depending

on their relation to this node [30]. The quantity of nodes activated in accordance

with a stimulus can be aggregated to an appropriate function which in turn defines

a new state. Layers of these nodes can provide greater levels of abstraction, and

backpropagation enables policy updates on the connections between nodes through

each layer. Thus, a connectionist model focuses on relationships between cognitive

ideas.

The symbolic method is so far the most dominant method in the current stud-

ies. The symbolic methods can generally trace their lineage to the original General

Problem Solver developed by Newell and Simon in the late 1950’s. A relatively recent

symbolic cognitive model is ACT-R, developed by John Robert Anderson, Christian

Lebiere and Michael Matessa [31]. Symbolic approaches attempt to quantify entities

into computable numeric values that are used for computations and focuses on syntax

as opposed to connectionism which focuses on semantics.

Each of these three paradigms offers its own unique benefits and drawbacks. For

the purpose of this research, a holistic view incorporating each paradigm is adopted.

Specifically, we adopt the Semantic Pointer Architecture (SPA) framework as de-

scribed in Chris Eliasmith’s How to Build a Brain: A Neural Architecture for Bio-

logical Cognition [27]. SPA is an architecture that attempts to bring forth the best

attributes of existing cognitive architectures, while simultaneously rooting itself in bi-

ological and psychological understanding of cognition as much as possible. SPA uses

23

data compression on semantic pointers to enact operations similar to how ACT-R op-

erates but providing a better opportunity to glean insight by valuing representational

meaning more than syntax.

2.6 Recent Achievements in Artificial Intelligence

Notably, while cognitive insights have been a core interest in AI research, progress

along this domain have been scant. AGI is something that has not been created yet

and some experts doubt it will be seen until the 2040s at the earliest [32]. Despite

strong AI’s poor performance, weak AI has made dramatic progress [33]. As a re-

sult, practical measures of AI capability have been sought. One of the most common

benchmarks for AI progress is competition, both with humans and other AI engines

in games, preferably those with large state spaces. Because traditional computer

systems struggled with large state spaces and human performance can act as a rea-

sonable reference for capability, games make perfect sense for comparing AI utility

with humans in a practical and repeatable manner. One of the most promising of

these enterprises was Deepmind’s AlphaStar.

AlphaStar was a multi-agent reinforcement learning algorithm trained to play

Starcraft II at a level beyond 99.8% of the player base [34]. In the development of Al-

phaStar, potential key features were identified using a supervised learning algorithm.

These key features were then used to inform statistics for the reinforcement learning

algorithm. The significance of this methodology is Starcraft II is a real time strategy

game combining concepts such as economy management, strategic control of units,

navigation of terrain and intelligent response to an adversary in an environment with

imperfect knowledge. As such, Deepmind’s AlphaStar represents a major step for-

ward in practical use of weak AI systems. One key insight of Deepmind’s work was the

use of neural networks to act as key features in the development of hyper-parameters.

24

Deepmind used population-based training in an effort to efficiently explore high di-

mensional feature spaces [35]. This method involves using several parallel agents to

explore the feature space simultaneously while each agent simultaneously informs the

others of potential successful policies. In essence, by aggregating weak AI it has been

shown that a stronger AI can be developed. It remains to be seen whether or not this

is the only or best way for AI development ot progress.

25

III. Methodology

The purpose of this chapter is to describe the design of environments and the

neural networks used. The first half of this chapter will discuss the programs used,

environment development and other aspects not particular to any of the problems

solved. The logic used for move verification will be described, which is imperative

for both the Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL)

environments. Following this section, the model development and training for the

RL and DRL agents will be described. For the DRL, there will also be a discussion

regarding the development of the neural network. The second half of the chapter

will consist of specific details of how each agent was trained for the specific problems

presented. The DRL models were designed with a Deep Q-Learning approach for

better comparison to the Q-Learning reinforcement models.

3.1 Programming Platform

The Python programming language was used with multiple specialized libraries

throughout this work mainly for its compatibility with the TensorFlow and Keras.

Google Colab Pro Plus was used in lieu of dedicated Graphics Processing Units

(GPU)s. Furthermore, hyper-parameter optimization was not conducted on the DRL

agents to maintain the Artificial Neural Network (ANN)s internal structure and avoid

specializing the neural networks to any particular problem. However, the maximum

steps permitted in episode training were modified in testing of the DRL models.

Helpful libraries for the reinforcement learning development were itertools, pandas

and numpy.

26

3.2 Move Verification Logic

In order to establish the state space for the reinforcement models and in order

to verify action validity for the deep reinforcement models, an internal validity check

had to be conducted for each state and action respectively. For most of the agents,

this proces was the same, with the notable exception being the Tower of Hanoi rein-

forcement learning agent. For this reason, the following subsection will detail how the

logic works in the general case and the subsection after will explain how the Tower

of Hanoi (ToH) RL model works specifically.

3.2.1 General Rules for Internal Validity

To lay the foundation of the environment, two object classes were established: the

storage space and the cargo object. The simpler of the two classes was the cargo class.

which served as a representation for cargo in the Knapsack (KP) and Cargo Loading

(CL) problems and rings for the ToH. Upon initialization this class was given spatial

dimensions as well as a weight, an individual value and a boolean status of being

stored. In anticipation of working in three dimensional space, these objects also had

three methods associated with flipping the cargo along any of the three main axes,

so long as the object was not stored. These methods are shown in Figure 5.

Figure 5: Depiction of ways cargo can flip for visual clarification

27

The more complicated of the two classes was the storage space class. Similar to the

cargo class, the storage space also instances with dimensions, but it also receives a list

of cargo to store as a packing list. This class controls nearly all of the internal physics

and logic within the environment; the storage space records the initial parameters

of all of the cargo within the packing list in the case of removal, restarts and other

action requirements. Upon storing or moving an object within the storage space, the

storage space conducts a check on the coordinates given to determine if the cargo fits

in the bounds of the storage space if placed at the target location. Provided that the

cargo has sufficient space within the container, additional checks are made to prevent

cargo from existing in overlapping spaces, as illustrated in Figure 6.

Figure 6: Left: visual representation of storage logic check for cargo dimensions.

Prior to placement, the storage space (grey) verifies cargo (blue) dimensions do not

continue outside the space. Right: visual representation of cargo collision issues. Blue

and yellow each represent unique cargo items. The storage space checks to avoid the

green overlap for each item in the space.

To better simulate real life environments, cargo are only allowed to be placed on

28

the floor of the storage space or on top of another cargo with dimensions greater

than or equal to its self, i.e cargo could not float in the middle of the storage area.

Additionally, heavier cargo are not allowed to be placed on top of lighter cargo.

These rules are illustrated in Figure 7. This effectively reduced the three dimensional

coordinate space to two dimensions, helping to reduce the action space.

Figure 7: Each grey square represents a stored item while the blue rectangle represents

the floor of the cargo space if viewed along the yz plane. The blue arrows indicate

locations cargo 1 could potentially move. Please note that weight metrics are not

cumulative such that the weights of cargo 1 and cargo 2 are valid for cargo 3.

To represent and record changes in storage space in three dimensional space, two

arrays are generated and maintained: the occupational array, which recorded the

location of each cargo item in three dimensional space and the loading array which

recorded the weights at each location in the same space. These arrays served as

references for the previously mentioned checks and as some of outputs for the agent’s

observations, as will be discussed in further detail in section 3.5.

29

Figure 8: These arrays serve as a visual reference for how the occupancy and loading

arrays work. The depicted arrays are the same cross-section as in Figure 7

Between the reinforcement and deep reinforcement versions of the CL problem, the

main difference was the output for failed actions by the agent. In the RL version of the

problem, as will be discussed in section 3.5, the state space was elucidated in advance

and impossible states were given a penalty of negative infinity. Therefore, the agent

would be prevented from pursuing an illegal action. The state space development will

be discussed further in section 3.3. In the DRL case, however, depending on whether

the agent was exploring or exploiting the state-space, the agent would either receive

a penalty upon attempting an illegal action or would continue to randomly select

moves until a legal move was chosen, respectively.

3.2.2 Internal Validity in Reinforcement Learning Tower of Hanoi

The basis for the reinforcement learning methodology directly follows Kurt Peeks

[36] attempt to follow the Watkins and Dayan’s methodology [37] and will be discussed

further in section 3.3. The current state of the ToH is indicated by a tuple of length

N , where N represents the number of rings. In this tuple, the value of the ith entry

is an integer, j, which serves to indicate the position of the ring on one of the three

towers. This organization also means that the weight of the rings can be interpreted

as i as well. Moves are annotated as a tuple of length two, (a, b), which represents the

movement of the smallest ring from peg a to peg b. A helper function, z(a, b) is also

established to return the minimum index of the ring, i, on peg a and compare its size

30

to the minimum index, i, on peg b. Thus, when given a current state, the function

will receive a move as input, the helper function will verify the moves legality, and if

legal the state will transition.

min z(a, b) (3)

3.3 Reinforcement Learning

For each of the reinforcement models a similar method was conducted. First, a

transition diagram was created. In this diagram, the row would represent the current

state, i, and the column would represent the value of transitioning to the target state,

j. For each invalid state, the value of transitioning was recorded as negative infinity.

This served the purpose of dissuading the agent from every choosing illegal moves.

For every transitional state, the value was recorded as 0, indicating that the move

was legal, however. Lastly, the goal states were all recorded with a score of 100. A

discount factor of 0.8 was used for all models.

3.3.1 Tower of Hanoi

To initialize the problem, each possible state is created resulting in 3N possible

states withN rings, as visualized in Figure 9. Simultaneously, a general list of possible

moves is also generated (e.g. move ring from peg 1 to peg 2). With the general case of

rules established and moves established, the program iterates through each move and

state according to the internal validity rules that were described in Section 3.2. The

results of this process are recorded in a reward table, R. An example of this matrix

can be seen in Table 1. In this table, transitional states provide a reward of 0 and

the goal state provides a score of 100. With the reward matrix established and states

initialized, the model then proceeds to follow the Q-Learning algorithm as described

31

in Chapter III.

Figure 9: Enumeration of states for Tower of Hanoi game with four rings. The goal

state is in the bottom right. Note that all arcs are bidirectional. Image found on

Jaap’s Puzzle Page[38]

Using R as a foundation, the agent creates its Q Table, which records the expected

reward of choosing an action in each state: moving the smallest ring from peg 0 to

1, moving the smallest ring from peg 0 to 2, moving the smallest ring from peg 1 to

2 and etc. When the agent takes an action, the agent transitions from its current

state to the state corresponding to the action it chose. For each episode, the agent

begins in a random state and chooses a state to transition to randomly. Using the

maximum reward possible in the selected state and the value of transitioning to the

selected state, the agent updates its Q-Table according to the update equation shown

32

in step 7 of Algorithm 2. To determine a policy, the best moves for the agent from any

state, the agent iterates through each state following the actions with the maximum

expected return in the Q Table. As it follows these actions, the sequence of states it

moves through are recorded.

Table 1: Rewards Matrix for 2 Ring Tower of Hanoi

State(i,j) 0 1 2 3 4 5 6 7 8

State 0 - 0.000 0.000 - - - - - -

State 1 0.000 - 0.000 0.000 - - - - -

State 2 0.000 0.000 - - 0.000 - - - -

State 3 - 0.000 - - - 0.000 100.000 - -

State 4 - - 0.000 - - - - 0.000 0.000

State 5 - - - 0.000 - - 100.000 - -

State 6 - - - 0.000 - 0.000 - - -

State 7 - - - - 0.000 - - - 0.000

State 8 - - - - 0.000 - - 0.000 -

3.3.2 Cargo Loading

The development of the Q Table for the cargo loading problem followed the same

methodology as that for the Tower of Hanoi problem; the delineation of the two exists

in the establishment of the state space. As shown in Figure 10, the order of moves

has a unique effect on the state space. As a result, the state-space for the model

was iterated using brute force methods using the internal validity rules described in

section 3.2.1. The occupancy matrix from the environment was used as a reference

and all states with legal transitions to and from that matrix were updated as 0 in the

R. Finally, all states with N items, where N is the number of cargo to store, were

33

annotated with a positive value of 100. Notably, the state-space is impacted both

by the dimensions of the cargo and the dimensions of the storage space and many

alternative optimal solutions exist.

34

Figure 10: Depiction of possible states in the CL game. Note that this depiction

assumes each cargo is a cube with dimensions and weight of one and the storage area

is a cube with dimensions of 2. Transitions within the state space may or may not be

valid depending on the dimensions of the cargo items. Left: Enumeration of possible

moves in simple cargo loading game with two items and storage area with dimensions

2x2x2. Right: Visualization of select states to highlight properties of CL problem.

Note, that moves are not necessarily commutative (comparison of states 9 and 25)

although some are (comparison of state 11 potential moves)

35

3.4 Deep Reinforcement Learning Problem Modifications

Unlike the reinforcement learning model, the DRL agent was intended to approxi-

mate a generalized Artificial Intelligence (AI). Therefore, it was considered imperative

that the same architecture was maintained across problems. However, for training

and solving requirements, modifications had to be made for problem initialization,

goal attainment and training verification. The same neural network was intended to

train on as close to a similar environment as possible. These differences are annotated

in the following subsections while the model architecture and training methods are

documented in section 3.5.

3.4.1 Modifications for Tower of Hanoi

Tower of Hanoi starts with cargo in the environment state space. Therefore ad-

ditional initialization logic was created in order to sort the rings by weight and store

them in the appropriate location within the environment. The agent was not al-

lowed to store or remove objects. Instead, the agent interacted with the environment

through moving rings from one peg to another. The success of the game is declared

once all the rings are stored in appropriate x and y index for the storage array, where

x and y represent the length and width in the 2 dimensional plane. The reward given

upon success is penalized according to how many moves were made before achieving

the target result, with a game completed in zero moves receiving a score of 1000. For

clarity, in a game with two rings, the maximum possible score would be 997.

3.4.2 Modifications for Cargo Loading

In the cargo loading problem the environment begins absent of any items. The

agent must learn which cargo can be placed and what locations they can be placed.

This problem of the generalized neural network was the first to be developed and

36

planned and helped to serve as a first baseline of the neural networks effectiveness.

Similar to the ToH architecture, there exists a movement penalty in these games.

For the CL problem a maximum score was instead indicated by maximum reward

less the number of items to store. Thus, a perfect game for a storage problem of

two objects would be 998. Initially, this problem type permitted the agent to store,

remove and rotate objects according to the methods described previously, however

the action space was scoped to strictly consist of the ability to store and remove items

(i.e., no rotation). Additionally, some initial configurations were vetted to ensure the

problem was solvable. An example of an unsolvable problem for the agent under these

conditions can be seen in Figure 11.

Figure 11: Due to the agent’s inability to rotate items, the following cargo would

render the problem unsolvable. This is because one cargo would overhang the other

violating internal validity logic

3.4.3 Modifications for Knapsack

Unlike the other agents, the knapsack problem does not penalize moves. This

environment follows a similar logic to the cargo loading model. However, the weight,

length, and width dimensions of all cargo as well as the length and width of the

storage space are set to 1. In this manner, the height of the cargo serves to act as

what would traditionally be called the weight, and the height of the storage space

serves as the carrying capacity. The only variability in the problem is the value of

37

each specific cargo item and the storage space. Once the storage area fills such that

there is insufficient space for any other item, the agent would then be rewarded the

value of all items stored.

3.5 Deep Reinforcement Agent Architecture and Training

Initially, the model consisted of three convolutional neural networks which would

concatenate their outputs into a back-end model which would then process and out-

put a final observation. The front end models would process the parameter space,

occupational matrix and the loading space respectively, and their combined output

would result in an action space consisting of all possible actions. Ultimately, this

model proved to be too unwieldy and slow to train, and a simplified model was pur-

sued instead. This simplified model consists of 5 dense hidden layers with 200 neurons

each interspersed with normalization layers. The number of output neurons for this

model is variable and depends on the action space for the problem, as outlined in

section 3.4. Additionally, as the input of model depends on the size of the storage

space, the inputs for the first layer also depend on the size of the storage space, a

cube storage area of dimensions 3 results in an input tensor of [none, 3, 3, 3]. Table 2

is an example of the model for a 3x3x3 storage space cargo loading problem with 3

items. Adam was used as the optimizer as it has been shown to enhance convergence

in DRL models while the Huber function was used to calculate loss as it has been

shown to be less sensitive to outliers [39] [40].

38

Table 2: Architecture for Deep Reinforcement Learning Model

Layer(Type) Output Shape Number of Parameters

OCC INPUT(InputLayer) none, 3,3,3 0

OCC NORM 1(Batch Normalization) none, 3,3,3 12

OCC L1 (Dense) none, 3,3,3 800

OCC NORM 2(Batch Normalization) none, 3,3,3 800

OCC L2 (Dense) none, 3,3,3 40200

OCC NORM 3(Batch Normalization) none, 3,3,3 800

OCC L3 (Dense) none, 3,3,3 40200

OCC NORM 4(Batch Normalization) none, 3,3,3 800

OCC L4 (Dense) none, 3,3,3 40200

OCC NORM 5(Batch Normalization) none, 3,3,3 800

OCC L5 (Dense) none, 3,3,3 800

OCC Flatten (Dense) none, 1800 0

Output (Dense) none, 30 54030

For each of these problems the training cycle for the agent proceeds according to

the same subroutine. The actual process of training follows an adaptation of Algo-

rithm 2. First, the agent initializes with its own primary neural network and target

neural network and a memory length limit. This target neural network initializes as

a clone of the primary neural network. Throughout the training, the primary neural

network updates once a batch of 32 steps have been taken. While it proceeds through

these steps it uses the target network for predictions on future states. Every four

steps, the target network updates its weights to those of the primary neural network.

For each episode, the network chooses to explore or exploit its knowledge. During

39

the exploration operation, the model chooses a random action, if the action is invalid,

the model will choose another random action until a valid action is presented. This

addition is made to enhance convergence as the DRL model will still have a prob-

ability to choose an illegal move. However, if the model chooses to exploit its own

knowledge and chooses an invalid action, the model will receive a penalty. Otherwise,

the agent will complete the move and return the reward in the given state as well as

the occupational matrix of this state for training.

The agent would then proceed to attempt to solve the selected problem according

to Algorithm 3. In the case in which the algorithm reached a solution state or 10,000

steps were conducted without reaching the target state, the model would terminate

the current episode and proceed to the next. Because time was a major limitation

in training the deep reinforcement agents, multiple iterations could not be conducted

for analysis of average training time or verification of model accuracy. Instead, two

statistics were taken. The first was a record of the number of episodes it took the

model to reach the optimal answer. The second was a record of the number of runs

until the model could optimally complete the problem five times in the row. Five times

were chosen because in the event of random chance the model would accomplish this

task approximately 4% of the time.

40

IV. Results and Analysis

This chapter is explains the results of testing on the reinforcement and deep rein-

forcement learning methods on the problems tested. The first section delineates the

results of conventional reinforcement learning and analyzes why the agent failed or

succeeded in each case. The second phase discusses the deep reinforcement algorithm

and its results, as well as document challenges in its development. In general the

Reinforcement Learning (RL) models converged on results quicker than the Deep Re-

inforcement Learning (DRL) in terms of time when they did converge, however they

also required many more training episodes before convergence and were less capable of

solving a variety of problems. This is likely due to the fact the reinforcement learning

algorithm is recursive in nature. In more complicated state spaces the calculations

can become intractable.

4.1 Cargo Loading Results

In the case of the Cargo Loading (CL) problem, the reinforcement learning al-

gorithm completely failed to process the data in the base case: 2 1x1x1 cargo items

and a storage space of 3x3x3. While the exact cause of failure is uncertain, there are

two major factors that likely contributed. First, the cargo loading problem is one in

which many alternatively optimal solutions are possible. As a result, the algorithm

may struggle to identify a best action when no such case exists. Secondly, the pos-

sible moves in each part of the state space are extensive: from start there exist 8

alternatives to consider and each step can be similarly complicated.

The deep reinforcement learning agent performed surprisingly well in comparison

to the RL model. Notably, the deep reinforcement learning agent was able to solve the

base case in one episode consistently. Because the Reinforcement Learning method

41

failed, a useful baseline for comparison could not be established. For confirmation

of results, the agent’s performance in a higher difficulty problem was tested, and the

results are shown in Figure 12.

Figure 12: CL problem Deep Q-Learning results with 3 1x1x1 cubes in a 3x3x3 space

4.2 Tower of Hanoi

In the Tower of Hanoi (ToH) problem the reinforcement learning agent performed

remarkably well, usually processing within minutes and under 1000 episodes for prob-

lems with 3 rings or less. Comparatively, the neural networks performed worse than

the reinforcement learning method in the training time required but discovered the

optimal move order in a fewer number of episodes. Notably, while the 2 rings and

3 ring models converged in less than an hour for the DRL models, the remaining

models would take hours or even days. Much of this delay can be attributed to the

Greedy Epsilon Search algorithm. By initially focusing on exploration, the agent is

more likely to arrive at an optimal solution however it is less likely to do so quickly.

Table 3 summarizes the results of the RL agents, while the following plots show the

42

average number of moves for the RL agents in dark blue and the standard deviation

of the performance in light purple. Note, that due to the large number of episodes

in latter problems, a logarithmic scale is used for the x-axis. As mentioned in chap-

ter III, this methodology follows and confirms Kurt Peek’s results in the Tower of

Hanoi problem.

Table 3: Results for the Tower of Hanoi with a Reinforcement Learning Approach

Number of Rings Approximate Number of Episodes to Converge

2 300

3 900

4 6000

5 30000

6 Did Not Converge

Figure 13 shows the results of the reinforcement learning algorithm with two

discs truncated at 120 episodes for clarity. After every four episodes, 100 runs were

conducted from that episodes Q-Table and the number of moves required to complete

the problem was recorded for each run. From these runs, the mean and standard

deviation of the moves were taken for that particular episode. The reinforcement

learning method is shown to converge consistently upon the solution in accordance

with Watkins and Dayan’s analysis [37].

43

Figure 13: ToH problem with two rings. The purple region represents the standard

deviation of the agent’s runs while the blue line indicates the average of the agent’s

runs. While very good results are obtained at approximately 120 episodes, consis-

tently optimal results are not found until at least an additional 150 runs.

It is worth noting that in terms of episodes, the DRL agents seem to be slightly

more efficient. While both the reinforcement learning and the deep reinforcement

learning agents achieved good results in approximately 80 episodes, only the deep

reinforcement learning model was able to achieve the optimal result in under 70

episodes. This implies that the DRL agents may be more efficient with the information

obtained. It is interesting to note however, that in both the deep and standard

reinforcement learning methods, while the agent does steadily converge, there are

moments where the agent’s performance decreases temporarily. This is particularly

evident in the three ring Tower of Hanoi model, Figure 14.

44

Figure 14: ToH problem Q-learning results with three rings. The purple region

represents the standard deviation of the agent’s runs while the blue line indicates the

average of the agent’s runs.

While not a serious concern in the context of these problems, in the grander

scheme of AI research, this indicates a broader issue. While human supervision can

discern optimal solutions from a set of alternatives, the agent itself must be able to

communicate its confidence in its solution. While strides have been made in this

regard, such as Bayesian Neural Networks, these methods also require more training

time to return results as well [41]. This points to another major issue with DRL

agents: they are time intensive.

While the RL agent was not able to provide results past 6 rings, the results it was

able to provide were relatively good quality and quick, Figure 15. In the DRL case,

the agent was unable to finish training for the four ring variation of the game. In

fact, even confidence intervals for the three ring Tower of Hanoi game could not be

obtained in the allotted time. This failure was only more pronounced in observing

45

the five run streak for the DRL agent; the agent was only able to accomplish the

most basic one ring Tower of Hanoi game. It is highly probable that the method of

conducting exploration in the Deep Q-Learning models contributes to this discrepancy

as well.

Figure 15: ToH problem Q-Learning results with 6 rings

Under the Epsilon Greedy Method of exploration, while the probability of explor-

ing as opposed to exploiting steadily decreases, it never reaches zero. Therefore, as

the number of moves required to complete the task increase, the likelihood of the

model completing the task successful per the completion criterion specified decreases.

While the RL agents also have random moves, the action space of the DRL is larger

to account for the more generalized approach, resulting in a higher likelihood for

non-beneficial actions to be selected. In short, this points to a need for artificial intel-

ligence agents to identify and scope their own actions within the environment. The

effects of the Epsilon Greedy Search algorithm can be seen in Figure 16. While the

agent quickly comes close to optimality, random actions inhibit success until epsilon

decays sufficiently. A more intelligent search algorithm could facilitate state-space

46

exploration.

Figure 16: CL problem Deep Q-Learning results with 3 rings and 200 neurons

4.3 Deep Reinforcement Learning Tower of Hanoi: Analysis of Neurons

on Effectiveness

An analysis of the effect the number of neurons has on problem solving was in-

conclusive. Because the models were not able to successfully achieve a five episode

optimal streak, first successful run performance was measured for the two ring ToH

problem. Three trials were conducted at neuron densities of 100, 200 and 500 per

layer. Assume a null hypothesis that number of neurons do not impact episode length.

47

Table 4: Table of observations for runs until first optimal performance in two ring

Tower of Hanoi game

Number of Neurons Number of Episodes

100 5

100 7

100 45

200 3

200 4

200 56

500 13

500 25

500 32

To test for differences in the means, a One-way Analysis of Variance (ANOVA)

test was conducted. A One-way ANOVA test is a statistical procedure to evaluate

the means of three or more factor levels against the same response. Under the null

hypothesis for the test, the means are equal for all factor levels. Under the alterna-

tive hypothesis, at least one factor level results in a different mean than the others.

Following this test, there was insufficient data to discern the effect of neuron density

on episode training time at the 95% confidence level, as shown in Table 5.

48

Table 5: Table of observations for runs until first optimal performance in two ring

Tower of Hanoi game

Source Sum of Squares Mean Square Error

Model 28.2 14.1

Error 3038.7 506.4

Total 3066.9 -

P-value 0.97 -

A visual representation of these points, their means and their variation are shown

in Figure 17. It should be noted that while the statistical test can positively identify

a difference, it cannot positively identify a lack of difference. With additional sample

points, it may be possible to identify a relationship between neurons and episode

length that cannot be discerned with limited data.

Figure 17: ANOVA of the effects of neuron density on episode length. No discernable

difference was detected with a p-value of 0.97.

Following these results, further testing was conducted to determine if additional

49

neurons would increase the agents ability to converge on the four ring Tower of Hanoi

solution. In this case the agent still failed to accomplish the task. This seems to

represent a symptom of the curse of dimensionality. As the state-space grows the

agent’s information requirements increase faster.

4.4 Excursion: Deep Reinforcement Learning Knapsack

The agents did not perform well on this problem set. While agents were able to

converge on the correct solution in simple two item problems, when more than two

items were required to be evaluated the agent did not converge quickly or accurately.

While this would seem to correlate with the Tower of Hanoi results, the root cause is

likely different. This agent does not gain reward information for each item stored, but

instead gains reward information once all possible items for that episode have been

stored. Furthermore, because the agent cannot observe the value of the cargo before

placing, it must decouple the final state reward with individual cargo placements. As

a result, the model is slow to observe and iterate on options. Furthermore, as the

agent cannot perceive the difference in the items ahead of time, what it has learned

cannot be readily transferred to other games. As a result, the utility of this method

is dubious as evolutionary algorithms have shown better results historically.

50

Figure 18: KP problem with Deep Q-Learning. Items had weight and value of (2,20),

(1,11), (1,8) with 2 weight units available. Under the premise the agent only receives

the reward at the end of operations, the agent failed to optimize the loadings in over

80,000 episodes

51

V. Conclusions

This research attempts to compare the performance of Deep Reinforcement Learn-

ing (DRL) with Reinforcement Learning (RL) methods as an avenue to assess poten-

tial obstacles to strong Artificial Intelligence (AI) development. In this assessment,

RL agents were used as a proxy for weak AI while DRL were used as a proxy for

strong AI. The agents were evaluated on their ability to accomplish two separate

tasks and one excursion: the Tower of Hanoi (ToH), the Cargo Loading (CL), and

the Knapsack (KP) as an excursion. Results indicate that the DRL agents were able

to perform a multiple problems, but were unable to perform as well as specialized

algorithms, although additional testing is required for confirmation

5.1 Implications for Generalized Artificial Intelligence

Lack of certainty regarding AI agents’ ability to solve problems is a chief issue in

non-supervised learning methods. While strides have been made in analyzing neural

networks and creating explainable AI, they are naturally black boxes. As a result, AI

can perform unexpectedly. Furthermore, simply increasing the power of AI is likely

not to result in improved results without improvements in data sampling as shown

in Deepmind’s AlphaZero [42]. The same research has also reinforced that ensemble

methods using tailored programs for pieces of a problem provide general results than

singular models. In particular, trial and error methods are likely to be less reliable

in higher dimensional spaces or as actions stretch into the infinite horizon.

Similarly, goal based learning methods seem unlikely to generate human-level ar-

tificial intelligence. This is because well-defined and measurable goals are inherently

limiting, and a human-level artificial intelligence would need to reassess and evaluate

its goals. It should be noted that attempts for humans to understand machine intelli-

52

gence may hinder its development as machine intelligence is divorced from biological

and social functions that inform human intelligence [4].

5.2 Future Work

Many aspects of this research can be improved for future work. Neural network

architecture was not optimized as a consequence of standardization requirements.

Alterations to neuron density and number of layers will likely change results. The

utility of convolutional layers is somewhat dubious due to the granularity of the data,

however its possible impacts cannot be dismissed. Additional testing with different

architecture may indicate better results for some or all models.

Testing on non-rectangular shapes for cargo loading would be of interest for as-

sessment of model strength and practical use. Additionally, the original scope of the

model would include using the parameters and loading arrays as observations for the

agent. While the inclusion of this data resulted in longer training times than this

research could permit, follow on research may be able to achieve better results. Code

supporting this functionality can be modified in the appendix. The use of cognitive

architecture to assess the learning and function of the model’s neurons will likely be

of note to future AI researchers.

Actor-critic models may also be adopted for better results. While these models

were outside the scope of this research, these methods attempt to navigate some of

the issues discussed in chapter IV, specifically issues regarding information quality.

Similarly, an approach similar to those of Bayesian Neural Networks could be inves-

tigated (i.e. the agent would investigate actions it has the least confidence regarding

as opposed to at random).

To further explore the range of problems the deep reinforcement model could

solve, tests could be conducted using transfer learning. For instance, the weights of

53

an agent trained on the ToH could be transferred to an agent for CL or a similar

problem. Analysis on the effectiveness of the new agent could be conducted.

5.3 Recommendations

As indicated from the results between the RL and DRL agents in the ToH game,

its reasonable to assume a general form of artificial intelligence will not outperform

specialized methods. Furthermore, AlphaZero’s success in combining search and deep

reinforcement learning methods seen to indicate a path for success [42]. Another

factor inhibiting generalized AI development may be an inability to properly model

an environment. As shown in Cohen’s work in 1996, a sterile environment can result

in an inability for living organisms to adapt to more generalized conditions, so it may

be reasonable to assume a similar obstacle for artificial intelligence [5]. Long term

operation of a robot with real world interactions and unspecified goals may prove more

fruitful than simulations in a virtual environment. If the goal is solely problem solving,

an Artificial Neural Network (ANN) classifier front-end with specialized problem-

tailored back-ends may prove more beneficial.

54

Appendix A. Code

!pip install pyyaml h5py # Required to save models in HDF5 format

import numpy as np

import itertools

import pandas as pd

import matplotlib.pyplot as plt

import keras

import tensorflow as tf

from numpy.core.multiarray import concatenate

from collections import deque

import random

from google.colab import drive

import matplotlib.pyplot as plt

drive.mount(’/content/drive’)

class Storage:

"""Creates a storage space for cargo loading Deep RL problem or

for Towers of Hanoi

Args:

length: Scalar

width: Scalar

height: Scalar

Return:

Object representing a box with dimensions according to arguments

"""

55

def __init__(self, length = 3, width = 3, height = 3,

packing_list = [], human_player= False):

self.__human_player = human_player

self.length = length

self.width = width

self.height = height

self.occupancy = np.zeros(shape=(self.height, self.length, self.width))

self.loadings = np.zeros(shape=(self.height, self.length, self.width))

self.packing_list = packing_list

self.stored_items = []

#self.__cross_reference = [None]*len(self.packing_list)

def __check_size(self,cargo, xcoord, ycoord, zcoord):

""" quick cursory check to see if the box can fit.

"""

if zcoord == None:

zcoord = 0

#print("length", cargo.length, xcoord,

self.length, "width", cargo.width, ycoord,

self.width, "height", cargo.height, zcoord, self.height)

if (cargo.length+xcoord > self.length)

or (cargo.width+ycoord > self.width) or

(cargo.height+zcoord > self.height):

56

return(False)

else:

return(True)

def __check_level_clear(self,cargo, xcoord,ycoord,

zcoord, SearchClear= True):

"""Checks a plane of the storage box to determine if it is empty

if SearchClear=True

and checks to make sure all points are

filled if SearchClear = False

"""

if zcoord == None:

zcoord = 0

free= True

if SearchClear is True:

for x in range(cargo.length):

for y in range(cargo.width):

#Check level clear comment 1

#print(x, y, xcoord, ycoord, zcoord)

if self.occupancy[zcoord][xcoord+x][ycoord+y]!=0:

free = False

return(free)

elif SearchClear is False:

for x in range(cargo.length):

57

for y in range(cargo.width):

if self.occupancy[zcoord][xcoord+x][ycoord+y] == 0:

free = False

return(free)

return(free)

def __find_free_level(self,cargo,xcoord,ycoord, zcoord):

find the first level of the block to stack

""" Finds the first free level in the storage space based on

the cargo’s side and returns this level if there is

a level with enough space and returns False

if there is not enough space. At the same time we

do not want floating boxes, so if there is not

something below each point of the cargo, we also return False.

Returns:

Outputs an intenger representing the first free level

if there is one available and False if otherwise

"""

if zcoord == None:

zcoord = 0

level = zcoord

free = False # we do not know if there is a free space yet,

58

change once a

floor is cleared successfully

while level < self.height and free is False: #repeat the

process until you either hit the top of the box or find a

clear floor

if self.__check_level_clear(cargo,xcoord,ycoord,

level, True) is True:

if level >0:

#if you find a clear floor and you are

above the first floor, you need to check if

something is underneath it so it does not float

if self.__check_level_clear(cargo,xcoord,ycoord,

level-1, False) is True:

free = True

return(level)

else:

if self.__human_player == True:

print("Cargo", cargo, " does not stack properly")

return(free)

else:

free = True

if level == None:

level = 0

return(level)

else:

59

level += 1

def __check_collision(self, cargo, xcoord, ycoord, zcoord):

"""Function to ensure that the cargo does not clip

into other packages

Returns:

Returns True if there is enough space for the object

in the given coordinates and False otherwise.

"""

if zcoord == None:

zcoord = 0

free = True

for z in range(cargo.height):

if self.__check_level_clear(cargo, xcoord,ycoord,

zcoord+z, True) != True:

free = False

return(free)

return (free)

def __check_weights(self, cargo, xcoord, ycoord, zcoord):

"""Function to make sure heavier cargo are not placed

onto lighter cargo

60

Returns:

False if the new cargo is heavier than everything below it.

"""

if zcoord == None:

zcoord = 0

cargo_weight = cargo.weight

cargo_length = cargo.length

cargo_width = cargo.width

for x in range(cargo_length):

for y in range(cargo_width):

if self.loadings[zcoord-1][xcoord+x][ycoord+y]

< cargo_weight:

return(False)

return(True)

def __check_cargo_fits(self,cargo,xcoord,ycoord):

"""Checks if the cargo fits

Returns:

False (Boolean) if cargo does not fit,

Tuple (Boolean, Scalar) True and a scalar representing

the first free level otherwise.

"""

61

if (cargo.length+xcoord > self.length) or (cargo.width+ycoord

> self.width) or (cargo.height > self.height):

return(False)

else:

free_level = self.__find_free_level(cargo,xcoord,ycoord, 0)

if free_level is False:

return(False)

elif self.__check_size(cargo, xcoord, ycoord,

free_level) == False:

return(False)

elif self.__check_collision(cargo, xcoord, ycoord,

free_level) is False:

return(False)

else:

return((True, free_level))

def __add_cargo_occupancy(self, cargo_to_add_index,

xcoord,ycoord, zcoord):

if zcoord == None:

zcoord = 0

cargo = self.packing_list[cargo_to_add_index]

for x in range(cargo.length):

for y in range(cargo.width):

for z in range(cargo.height):

self.occupancy[zcoord+z][xcoord+x][ycoord+y]=

cargo_to_add_index+1

62

def __add_cargo_loadings(self, cargo_to_add_index,

xcoord,ycoord, zcoord=0):

if zcoord == None:

zcoord = 0

cargo = self.packing_list[cargo_to_add_index]

cargo_weight = self.packing_list[cargo_to_add_index].weight

for x in range(cargo.length):

for y in range(cargo.width):

for z in range(cargo.height):

self.loadings[zcoord+z][xcoord+x][ycoord+y] = cargo_weight

def store(self, cargo_to_store_index, xcoord, ycoord):

cargo= self.packing_list[cargo_to_store_index]

if cargo.stored is True:

if self.__human_player == True:

return("Cargo", cargo_to_store_index, " already stored")

else:

return(None)

else:

placement = self.__check_cargo_fits(cargo,xcoord,ycoord)

if placement is False:

if self.__human_player == True:

return("Cargo", cargo_to_store_index, " Too Large ")

63

else:

return(None)

elif placement[1] == 0:

self.__add_cargo_occupancy(cargo_to_store_index,

xcoord, ycoord, placement[1])

self.__add_cargo_loadings(cargo_to_store_index,

xcoord, ycoord, placement[1])

self.stored_items.append((cargo_to_store_index,

xcoord, ycoord,placement[1]))

cargo.load()

else:

if self.__check_weights(cargo, xcoord, ycoord,

placement[1])is False:

if self.__human_player == True:

return("Cargo", cargo_to_store_index, " Too Heavy")

else:

return(None)

else:

self.__add_cargo_occupancy(cargo_to_store_index,

xcoord,ycoord, placement[1])

self.__add_cargo_loadings(cargo_to_store_index,

xcoord,ycoord, placement[1])

self.stored_items.append((cargo_to_store_index,

xcoord, ycoord,placement[1]))

cargo.load()

64

def remove_cargo(self, cargo_to_remove_index):

cargo = self.packing_list[cargo_to_remove_index]

if cargo.stored is False:

if self.__human_player == True:

return("Cargo", cargo_to_remove_index, " not in storage")

else:

return(None)

else:

for i in range(len(self.stored_items)):

if self.stored_items[i][0]==cargo_to_remove_index:

row_record = i

xcoord = self.stored_items[row_record][1]

ycoord = self.stored_items[row_record][2]

zcoord = self.stored_items[row_record][3]

if zcoord == self.height-1:

for x in range(cargo.length):

for y in range(cargo.width):

for z in range(cargo.height):

self.occupancy[zcoord+z][xcoord+x][ycoord+y] = 0

self.loadings[zcoord+z][xcoord+x][ycoord+y] = 0

cargo.unload()

del self.stored_items[row_record]

else:

65

if (cargo.height+zcoord < self.height):

if self.__check_level_clear(cargo, xcoord,ycoord,

zcoord+1, SearchClear=True) is False:

if self.__human_player == True:

return("Cargo", cargo_to_remove_index, "

is in the middle of a stack, clear

cargo on top before removal")

else:

return(None)

else:

for x in range(cargo.length):

for y in range(cargo.width):

for z in range(cargo.height):

self.occupancy[zcoord+z][xcoord+x]

[ycoord+y] = 0

self.loadings[zcoord+z][xcoord+x]

[ycoord+y] = 0

cargo.unload()

del self.stored_items[row_record]

else:

for x in range(cargo.length):

for y in range(cargo.width):

for z in range(cargo.height):

self.occupancy[zcoord+z][xcoord+x]

[ycoord+y] = 0

self.loadings[zcoord+z][xcoord+x]

66

[ycoord+y] = 0

cargo.unload()

del self.stored_items[row_record]

def move_cargo(self, cargo_to_move_index, xcoord, ycoord):

cargo = self.packing_list[cargo_to_move_index]

if cargo.stored is False:

if self.__human_player == True:

return("Cargo", cargo_to_move_index, " not in storage")

else:

return(None)

else:

for i in range(len(self.stored_items)):

if self.stored_items[i][0]==cargo_to_move_index:

row_record = i

x_loc = self.stored_items[row_record][1]

y_loc = self.stored_items[row_record][2]

z_loc = self.stored_items[row_record][3]

break

self.remove_cargo(cargo_to_move_index)

self.store(cargo_to_move_index, xcoord,ycoord)

if cargo.stored is False: self.store(cargo_to_move_index, x_loc,y_loc)

class Cargo:

67

def __init__(self,name = None, length = 2, width = 2,

height = 1, weight = 1, value= 0):

self.stored = False

self.length = length

self.width = width

self.height = height

self._name = name

self.weight = weight

self.value = value

@property

def name(self):

return self._name

@name.setter

def name(self, name):

self._name = name

def rotate_xy(self):

if self.stored == False:

tmp = self.length

self.length= self.width

self.width = tmp

tmp = None

def rotate_xz(self):

if self.stored == False:

68

tmp = self.length

self.length = self.height

self.height = tmp

tmp = None

def rotate_yz(self):

if self.stored == False:

tmp = self.width

self.width = self.height

self.height = tmp

tmp = None

def load(self):

self.stored = True

def unload(self):

self.stored = False

class Environment:

def __record_initial_cargo_orientations(self):

initial_cargo_orientations = []

Storage = self.Storage_Area

for i in range(len(Storage.packing_list)):

initial_cargo_orientations.append((Storage.packing_list[i].length,

Storage.packing_list[i].width, Storage.packing_list[i].height,

Storage.packing_list[i].stored))

69

return(initial_cargo_orientations)

def initialize_items(self):

packing_list = self.Storage_Area.packing_list

if self.ProblemType ==2:

items_to_initialize = len(packing_list)

initialized_items = 0

while (initialized_items < items_to_initialize):

max_weight = 0

max_weight_index = 0

for i in range(len(packing_list)):

if packing_list[i].stored == False and

packing_list[i].weight>=max_weight:

max_weight =packing_list[i].weight

max_weight_index = i

self.Storage_Area.store(max_weight_index,0,0)

initialized_items+=1

def update_environment(self):

packing_status = []

cargo_x = []

cargo_y = []

cargo_z = []

packing_weight = []

packing_value =[]

70

x = self.Storage_Area.length

y = self.Storage_Area.width

z = self.Storage_Area.height

for i in range(len(self.Storage_Area.packing_list)):

packing_status.append(self.Storage_Area.packing_list[i].stored)

cargo_x.append(self.Storage_Area.packing_list[i].length)

cargo_y.append(self.Storage_Area.packing_list[i].width)

cargo_z.append(self.Storage_Area.packing_list[i].height)

packing_weight.append(self.Storage_Area.packing_list[i].weight)

packing_value.append(self.Storage_Area.packing_list[i].value)

cargo_x = np.array(cargo_x, dtype = "object")

cargo_y = np.array(cargo_y, dtype = "object")

cargo_z = np.array(cargo_z, dtype = "object")

cargo_weight = np.array(packing_weight, dtype = "object")

cargo_value = np.array(packing_value, dtype = "object")

cargo_status = np.array(packing_status, dtype = "object")

storage_occ = np.array(self.Storage_Area.occupancy, dtype = "object")

storage_load = np.array(self.Storage_Area.loadings, dtype = "object")

self.PARAM_STATUS = np.stack([cargo_x,cargo_y,cargo_z,

cargo_weight, cargo_value, cargo_status])

self.PARAM_SHAPE = self.PARAM_STATUS.shape

71

self.ENVIRONMENT_STATUS = (self.PARAM_STATUS, storage_occ, storage_load)

self.ENVIRONMENT_SHAPE = (self.PARAM_SHAPE, storage_occ.shape,

storage_load.shape)

def __init__(self, Storage, ProblemType=1):

self.Storage_Area = Storage

self.ProblemType = ProblemType

1 is for CargoLoading, 2 is for ToH, 3 is for Knapsack

self.__initial_cargo_orientations =

self.__record_initial_cargo_orientations()

self.__select_item_len = len(self.Storage_Area.packing_list)

#noting the number ofitems is useful for various functions

self.game_over = False # once all cargo are loaded force game over.

self.move_penalty = 0

we want to penalize excess moves that do nothing,

#but not immediately in the training process

#self.completion_reward = 1000 # large reward for

#winning the game in the case of ToH and CargoLoading

self.moves = 0 # initial moves

self.score = 0 # the current score

self.penalties_received = 0

self.punishment = -100000

72

if self.ProblemType==2:

self.initialize_items()

self.update_environment()

self.__store_actions = []

self.__remove_actions = []

self.__rotate_xy = []

self.__rotate_xz = []

self.__rotate_yz = []

#we want to reecord all of the possible actions

for the action space for future reference by the agent

for i in range(len(self.Storage_Area.packing_list)):

self.__remove_actions.append(i)

self.__rotate_xy.append(i)

self.__rotate_xz.append(i)

self.__rotate_yz.append(i)

for x in range(self.Storage_Area.length):

for y in range(self.Storage_Area.width):

self.__store_actions.append((i,x,y))

self.__move_actions = self.__store_actions.copy()

if self.ProblemType==1: #CargoLoading Problem

self.ACTION_SPACE = self.__store_actions

+self.__remove_actions

73

#self.__rotate_xy+self.__rotate_xz+self.__rotate_yz

self.ACTION_LEN = len(self.ACTION_SPACE)

#len(self.__store_actions)

elif self.ProblemType==2: #Tower of Hanoi

self.ACTION_SPACE = self.__move_actions

self.ACTION_LEN = len(self.ACTION_SPACE)

else: #Knapsack Problem

self.ACTION_SPACE = self.__store_actions

self.ACTION_LEN = len(self.ACTION_SPACE)

def restart(self):

self.score = 1

self.moves = 0

self.penalties_received = 0

self.game_over = False

for i in range(len(self.Storage_Area.packing_list)):

self.Storage_Area.packing_list[i].length

= self.__initial_cargo_orientations[i][0]

self.Storage_Area.packing_list[i].width

= self.__initial_cargo_orientations[i][1]

self.Storage_Area.packing_list[i].height

= self.__initial_cargo_orientations[i][2]

self.Storage_Area.packing_list[i].stored

= self.__initial_cargo_orientations[i][3]

74

for i in range(self.Storage_Area.length):

for j in range(self.Storage_Area.width):

for k in range(self.Storage_Area.height):

self.Storage_Area.occupancy[k][i][j] = 0

self.Storage_Area.loadings[k][i][j] = 0

self.Storage_Area.stored_items = []

self.initialize_items()#call initializing function somewhere in here

self.update_environment()

def step(self, action_index, Exploit=True):

Exploit = Exploit

#because in training there is a nonzero chance that

#the agent attempts to make an impossible move,

#we keep this variable to categorize the

#nature of the move, exploitation or exploration

value_tracker = 0

initial_state = np.copy(self.ENVIRONMENT_STATUS[1])

self.moves +=1

Logic checking for games moves###

if self.ProblemType==1:

if action_index<len(self.__store_actions):

self.Storage_Area.store(self.ACTION_SPACE[action_index][0],

self.ACTION_SPACE[action_index][1],

75

self.ACTION_SPACE[action_index][2])

else:

self.Storage_Area.remove_cargo(self.ACTION_SPACE[action_index])

elif self.ProblemType==2:

self.Storage_Area.move_cargo(self.ACTION_SPACE[action_index][0],

self.ACTION_SPACE[action_index][1],

self.ACTION_SPACE[action_index][2])

elif self.ProblemType==3:

self.Storage_Area.store(self.ACTION_SPACE[action_index][0],

self.ACTION_SPACE[action_index][1],

self.ACTION_SPACE[action_index][2])

else:

return("Undefined problem type")

Logic to penalize or cancel out moves that do not

do anything for training purposes###

self.update_environment()

if np.array_equal(initial_state, self.ENVIRONMENT_STATUS[1]):

if Exploit == True:

self.penalties_received+=1

self.game_over = True

else:

self.moves-=1

return(False)

value_tracker = self.moves*self.move_penalty +

self.penalties_received*self.punishment

76

Coding to check for win conditions for the various games

if self.ProblemType==1: #cargo loading

total_stored = 0

for i in range(self.__select_item_len):

if self.Storage_Area.packing_list[i].stored == True:

total_stored += 1

if total_stored == self.__select_item_len:

value_tracker += self.completion_reward

self.game_over = True

self.score = value_tracker

return(self.ENVIRONMENT_STATUS, self.score, self.game_over)

elif self.ProblemType==2: #Tower of Hanoi

xgoal = self.Storage_Area.occupancy.shape[1]-1

ygoal = self.Storage_Area.occupancy.shape[2]-1

correct_location = 0

for i in range(self.__select_item_len):

if (self.Storage_Area.stored_items[i][1] == xgoal) and

(self.Storage_Area.stored_items[i][2] == ygoal):

correct_location += 1

if correct_location == self.__select_item_len:

value_tracker+=self.completion_reward

self.game_over = True

self.score = value_tracker

return(self.ENVIRONMENT_STATUS, self.score, self.game_over)

77

elif self.ProblemType==3:

value_tracker = 0

self.game_over = True

free_space = 0

for i in self.Storage_Area.occupancy:

if i == 0:

free_space+=1

for i in range(len(self.Storage_Area.packing_list)):

if self.Storage_Area.packing_list[i].stored ==False and

self.Storage_Area.packing_list[i].height<= free_space:

self.game_over = False

if self.game_over == True:

for i in range(len(self.Storage_Area.packing_list)):

if self.Storage_Area.packing_list[i].stored == True:

value_tracker+= self.Storage_Area.packing_list[i].value

self.score = value_tracker

return(self.ENVIRONMENT_STATUS, self.score, self.game_over)

Note that training code was modified from Keras documentation [?].

class DQNAgent:

def __init__(self,Environment):

self.env = Environment

#Main Model

78

self.model = self.create_model()

#Target Model

self.target_model = self.create_model()

self.target_model.set_weights(self.model.get_weights())

#Details for plotting performance

self.running_record =[]

def create_model(self):

Create Inputs for Parameters

env = self.env

Create Inputs for Occupancy and Weight Spatial Array

OCC_INPUT = keras.layers.Input(shape =

env.ENVIRONMENT_SHAPE[1],name = "OCC_INPUT") # the occupational array

OCC_NORM_1 = keras.layers.BatchNormalization(name = "OCC_NORM_1")

(OCC_INPUT)

OCC_L1 = keras.layers.Dense(200,activation = "relu",name = "OCC_L1")

(OCC_NORM_1)

OCC_NORM_2 = keras.layers.BatchNormalization(name = "OCC_NORM_2")

(OCC_L1)

OCC_L2 = keras.layers.Dense(200,activation = "relu",name = "OCC_L2")

(OCC_NORM_2)

OCC_NORM_3 = keras.layers.BatchNormalization(name = "OCC_NORM_3")

(OCC_L2)

79

OCC_L3 = keras.layers.Dense(200,activation = "relu",name = "OCC_L3")

(OCC_NORM_3)

OCC_NORM_4 = keras.layers.BatchNormalization(name = "OCC_NORM_4")

(OCC_L3)

OCC_L4 = keras.layers.Dense(200,activation = "relu",name = "OCC_L4")

(OCC_NORM_4)

OCC_NORM_5 = keras.layers.BatchNormalization(name = "OCC_NORM_5")

(OCC_L4)

OCC_L5 = keras.layers.Dense(200,activation = "relu",name = "OCC_L5")

(OCC_NORM_5)

OCC_NORM_5 = keras.layers.BatchNormalization(name = "OCC_NORM_5")

(OCC_L5)

OCC_L6 = keras.layers.Flatten(name = "OCC_FLATTEN")(OCC_L5)

OCC_L7 = keras.layers.Dense(env.ACTION_LEN, activation = "softmax")

(OCC_L6)# additional layer added after eliminating the loading section

OCC_MODEL = keras.Model(inputs = OCC_INPUT, outputs = OCC_L7)

return(OCC_MODEL)

def plot_results(self,block=True):

episodes = []

episode_reward = []

episode_moves = []

N= len(self.env.Storage_Area.packing_list)

for i in range(len(self.running_record)):

if self.running_record[i][3] == True:

80

episodes.append(self.running_record[i][0])

episode_reward.append(self.running_record[i][1])

episode_moves.append(self.running_record[i][2])

fig = plt.figure()

plt.loglog(episodes, episode_moves,label=’Episodic Performance’)

#plt.semilogx(episodes, upper_reward_std, ’b’, alpha=0.5)

#plt.semilogx(episodes, lower_reward_std, ’b’, alpha=0.5)

#plt.fill_between(episodes, lower_reward_std,

upper_reward_std, facecolor=’blue’, alpha=0.5)

if self.env.ProblemType ==1:

optimum_moves = N

plt.axhline(y=optimum_moves, color=’g’, label=’Optimum

(=%s Score)’ % optimum_moves)

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Number of moves in successful episodes’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning Cargo Loading with %s items’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

elif self.env.ProblemType ==2:

optimum_moves = 2**N - 1

plt.axhline(y=optimum_moves, color=’g’, label=’Optimum

81

(=%s moves)’ % optimum_moves)

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Running Average of Episode Score’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning the Towers of Hanoi game with %s rings’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

elif self.env.ProblemType ==3:

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Running Average of Episode Score’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning the Knapsack Problem with %s items’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

else:

return("Problem Type not defined")

return(plt)

def train(self, streak_crit=5, plot=False, seed= None,

model_name=None, gamma=0.99, learning_rate=0.00025, batch_size=32,

max_steps_per_episode=10_000, epsilon_random_frames=50_000,

epsilon_greedy_frames=1_000_000,max_memory_length=100_000,

82

update_after_actions=4, update_target_network=100_000,

solved_criterion=950):

N= len(self.env.Storage_Area.packing_list)

streak = 0

if self.env.ProblemType==1:

move_crit = N

elif self.env.ProblemType==2:

move_crit = 2**N-1

else:

move_crit = N

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

original lr=0.00025 clipnorm=1.0

plot = plot

Configuration paramaters for the whole setup

gamma = gamma # Discount factor for past rewards

epsilon = 1.0 # Epsilon greedy parameter

epsilon_min = 0.01 # Minimum epsilon greedy parameter (originally 0.1)

epsilon_max = 1.0 # Maximum epsilon greedy parameter

epsilon_interval = (

epsilon_max - epsilon_min

) # Rate at which to reduce chance of random action being taken

batch_size = batch_size # Size of batch taken from replay buffer

(originally 32)

max_steps_per_episode = max_steps_per_episode #originally 10_000

83

if seed != None:

random.seed(seed)

Experience replay buffers

action_history = []

occ_history = []

occ_next_history = []

action_next_history = []

rewards_history = []

done_history = []

episode_reward_history = []

episode_move_count_history = []

#Data for plotting performancegg

running_reward = 0

episode_count = 0

frame_count = 0

Number of frames to take random action and observe output

epsilon_random_frames = epsilon_random_frames

Number of frames for exploration (originally 1_000_000)

epsilon_greedy_frames = epsilon_greedy_frames

Maximum replay length

Note: The Deepmind paper suggests 1_000_000 however this

#causes memory issues (originally 100_000)

max_memory_length = max_memory_length

Train the model after 4 actions

84

update_after_actions = update_after_actions

How often to update the target network

update_target_network = update_target_network

Using huber loss for stability

loss_function = keras.losses.Huber()

while True: # Run until solved

self.env.restart()

#convert current states into tensor usable one. note that

#because our states

are 3 different inputs, the data needs to be split

occ = self.env.ENVIRONMENT_STATUS[1].astype(’float’)

occ = tf.convert_to_tensor(occ)

occ_state = tf.expand_dims(occ, 0)

episode_reward = 0

for timestep in range(1, max_steps_per_episode):

frame_count += 1

Use epsilon-greedy for exploration

if frame_count < epsilon_random_frames or epsilon

> np.random.rand(1)[0]:

Take random action

action = (np.random.choice(self.env.ACTION_LEN), False)

else:

Predict action Q-values from environment state,

#if the state is to small to run converts the stack

85

to a readable format

action_probs = self.model(occ_state , training=False)

Take best action

action = (tf.argmax(action_probs[0]).numpy(), True)

Decay probability of taking random action

epsilon -= epsilon_interval / epsilon_greedy_frames

epsilon = max(epsilon, epsilon_min)

#Attempt to eliminate the agent from trying to

#go to an impossible state

now if the agent chooses an impossible act it will

#be penalized, however

if the agent instead is forced into a random state

#it will reroll the

#actions until a valid one is chosen

step = self.env.step(action[0],action[1])

if step == False:

while step == False:

action = (np.random.choice(self.env.ACTION_LEN), False)

step = self.env.step(action[0],action[1])

action = action[0]

Apply the sampled action in our environment

state_next_raw = step[0]

reward = step[1]

86

game_over = step[2]

occ_next = state_next_raw[1].astype(’float’)

occ_next = tf.convert_to_tensor(occ_next)

occ_next = tf.expand_dims(occ_next,0)

episode_reward += reward

Save actions and states in replay buffer

action_history.append(action)

occ_history.append(occ_state)

action_next_history.append(action)

occ_next_history.append(occ_next)

done_history.append(game_over)

rewards_history.append(reward)

occ_state = occ_next

Updates target netwrok after a target number of actions once

the history reaches a certain size

if frame_count % update_after_actions == 0 and

len(done_history) > batch_size:

Get indices of samples for replay buffers

indices = np.random.choice(range(len(done_history)),

size=batch_size)

87

Using list comprehension to sample from replay buffer

occ_sample = [occ_history[i] for i in indices]

occ_sample = tf.stack(occ_sample)

occ_sample = tf.reshape(occ_sample, (batch_size,

occ_state.shape[1],

occ_state.shape[2], occ_state.shape[3]))

occ_next_sample = [occ_next_history[i] for i in indices]

occ_next_sample = tf.stack(occ_next_sample)

occ_next_sample = tf.reshape(occ_next_sample,(batch_size,

occ_next.shape[1], occ_next.shape[2], occ_next.shape[3]))

rewards_sample = [rewards_history[i] for i in indices]

action_sample = [action_history[i] for i in indices]

done_sample = tf.convert_to_tensor(

[float(done_history[i]) for i in indices]

)

Build the updated Q-values for the sampled future states

Use the target model for stability

future_rewards = self.target_model.predict(occ_next_sample)

Q value = reward + discount factor * expected future reward

updated_q_values = rewards_sample + gamma *

tf.reduce_max(future_rewards, axis=1)

If final frame set the last value to -1

updated_q_values = updated_q_values * (1 - done_sample)

88

- done_sample

Create a mask so we only calculate loss on the

#updated Q-values

masks = tf.one_hot(action_sample, self.env.ACTION_LEN)

with tf.GradientTape() as tape:

Train the model on the states and

#updated Q-values

q_values = self.model(occ_sample)

Apply the masks to the Q-values to get the Q-value

for action taken

q_action = tf.reduce_sum(tf.multiply(q_values,

masks), axis=1)

Calculate loss between new Q-value and old Q-value

loss = loss_function(updated_q_values, q_action)

Backpropagation

grads = tape.gradient(loss,

self.model.trainable_variables)

optimizer.apply_gradients(zip(grads,

self.model.trainable_variables))

if frame_count % update_target_network == 0:

update the the target network with new weights

89

self.target_model.set_weights(self.model.get_weights())

self.target_model.save_weights((model_name+

"_target_model.h5"),

overwrite=True, save_format="h5", options=None)

template = "running reward: {:.2f} at episode {},

frame count {}"

print(template.format(running_reward, episode_count,

frame_count))

Limit the state and reward history

if len(rewards_history) > max_memory_length:

del rewards_history[:1]

del occ_history[:1]

del occ_next_history[:1]

del action_history[:1]

del done_history[:1]

if game_over:

break

Update running reward to check condition for solving

episode_reward_history.append(episode_reward)

if len(episode_reward_history) > 100:

del episode_reward_history[:1]

running_reward = np.mean(episode_reward_history)

90

success = True if reward >= 1000 else False

self.running_record.append((episode_count, episode_reward,

timestep, success))

episode_count += 1

if episode_reward >= solved_criterion and move_crit>= timestep:

streak+=1

else: streak=0

if streak >= streak_crit:

Condition to consider the task solved

print("Solved at episode {}!".format(episode_count))

if plot==True:

self.plot_results()

break

Note that this code was modified from Kurt Peek’s original code [36].

def plot_results(agent_choice, block=True):

agent = agent_choice

episodes = []

episode_reward = []

episode_moves =[]

N= len(agent.env.Storage_Area.packing_list)

for i in range(len(agent.running_record)):

if agent.running_record[i][3] == True:

91

episodes.append(agent.running_record[i][0])

episode_reward.append(agent.running_record[i][1])

episode_moves.append(agent.running_record[i][2])

fig = plt.figure()

plt.plot(episodes, episode_moves,label=’Episodic Performance’)

#plt.semilogx(episodes, upper_reward_std, ’b’, alpha=0.5)

#plt.semilogx(episodes, lower_reward_std, ’b’, alpha=0.5)

#plt.fill_between(episodes, lower_reward_std, upper_reward_std,

facecolor=’blue’, alpha=0.5)

if agent.env.ProblemType ==1:

optimum_moves = N

plt.axhline(y=optimum_moves, color=’g’, label=’Optimum (=%s Score)’ %

optimum_moves)

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Number of moves in successful episodes’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning Cargo Loading with %s items’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

elif agent.env.ProblemType ==2:

optimum_moves = 2**N - 1

plt.axhline(y=optimum_moves, color=’g’, label=’Optimum

92

(=%s moves)’ % optimum_moves)

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Running Average of Episode Score’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning the Towers of Hanoi game

with %s rings’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

elif agent.env.ProblemType ==3:

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Running Average of Episode Score’)

plt.grid(’on’, which=’both’)

plt.title(’Deep Q-learning the Knapsack Problem

with %s items’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

else:

return("Problem Type not defined")

return(plt)

Code from Kurt Peek’s Tower of Hanoi project were used with some modifications

for other problem sets [36]

’’’ Reinforcement learning of the Towers of Hanoi game.

Reference: Watkins and Dayan, "Q-Learning",

93

Machine Learning, 8, 279-292 (1992).’’’

import numpy as np

import itertools

import pandas as pd

import matplotlib.pyplot as plt

def import_reward_matrix(sheet_name):

N is the number of discs

R =pd.read_excel("CL State_Space.xlsx", sheet_name = sheet_name,

index_col=0, header = 0)

R = R.values

for i in range(R.shape[0]):

for j in range(R.shape[1]):

if R[i][j] == -1000:

R[i][j]= -1000000

class TowersOfHanoi:

def __init__(self, state):

self.state = state

"State" is a tuple of length N,

#where N is the number of discs, and

#the elements are peg indices in [0,1,2]

self.discs = len(self.state)

def discs_on_peg(self, peg):

94

return [disc for disc in range(self.discs)

#if self.state[disc] == peg]

def move_allowed(self, move):

discs_from = self.discs_on_peg(move[0])

discs_to = self.discs_on_peg(move[1])

if discs_from:

return (min(discs_to) > min(discs_from)) if discs_to else True

else:

return False

def get_moved_state(self, move):

if self.move_allowed(move):

disc_to_move = min(self.discs_on_peg(move[0]))

moved_state = list(self.state)

moved_state[disc_to_move] = move[1]

return tuple(moved_state)

Generates the reward matrix for the Towers of Hanoi

#game as a Pandas DataFrame

def generate_reward_matrix(N): # N is the number of discs

states = list(itertools.product(list(range(3)), repeat=N))

moves = list(itertools.permutations(list(range(3)), 2))

R = pd.DataFrame(index=states, columns=states, data=-np.inf)

for state in states:

tower = TowersOfHanoi(state=state)

95

for move in moves:

if tower.move_allowed(move):

next_state = tower.get_moved_state(move)

R[state][next_state] = 0

final_state = tuple([2]*N)

Define final state as all discs being on the last peg

R[final_state] += 100

Add a reward for all moves leading to the final state

return R.values

def learn_Q(R, gamma=0.8, alpha=1.0, N_episodes=1000):

Q = np.zeros(R.shape)

states=list(range(R.shape[0]))

for n in range(N_episodes):

Q_previous = Q

state = np.random.choice(states)

Randomly select initial state

next_states = np.where(R[state,:] >= 0)[0]

Generate a list of possible next states

next_state = np.random.choice(next_states)

Randomly select next state from the

#list of possible next states

V = np.max(Q[next_state,:])

Maximum Q-value of the states accessible from the next state

Q[state, next_state] = (1-alpha)*Q[state, next_state] +

alpha*(R[state, next_state] + gamma*V) # Update Q-values

96

if np.max(Q) > 0:

Q /= np.max(Q) # Normalize Q to its maximum value

return Q

def get_policy(Q, R):

Q_allowed = pd.DataFrame(Q)[pd.DataFrame(R) >= 0].values

policy = []

for i in range(Q_allowed.shape[0]):

row = Q_allowed[i,:]

sorted_vals = np.sort(row)

sorted_vals = sorted_vals[~np.isnan(sorted_vals)][::-1]

sorted_args = row.argsort()[np.where(~np.isnan(sorted_vals))][::-1]

max_vals = [val for val in sorted_vals if val==sorted_vals[0]]

max_args = [sorted_args[i] for i,val in enumerate(sorted_vals)

if val==sorted_vals[0]]

policy.append(max_args)

return policy

def play(policy):

start_state = 0

end_state = len(policy)-1

state = start_state

moves = 0

while state != end_state:

state = np.random.choice(policy[state])

97

moves += 1

return moves

def play_average(policy, play_times=100):

moves = np.zeros(play_times)

for n in range(play_times):

moves[n] = play(policy)

return np.mean(moves), np.std(moves)

def Q_performance(R, episodes, play_times=100):

means = np.zeros(len(episodes))

stds = np.zeros(len(episodes))

for n, N_episodes in enumerate(episodes):

Q = learn_Q(R, N_episodes = N_episodes)

policy = get_policy(Q,R)

means[n], stds[n] = play_average(policy, play_times)

return means, stds

def Q_performance_average(R, episodes, learn_times = 100, play_times=100):

means_times = np.zeros((learn_times, len(episodes)))

stds_times = np.zeros((learn_times, len(episodes)))

for n in range(learn_times):

means_times[n,:], stds_times[n,:] = Q_performance(R,

episodes, play_times=play_times)

means_averaged = np.mean(means_times, axis = 0)

stds_averaged = np.mean(stds_times, axis = 0)

98

return means_averaged, stds_averaged

def plot_results(episodes, means_averaged, stds_averaged, N, block=False):

fig = plt.figure()

plt.semilogx(episodes, means_averaged,’b.-’,

label=’Average performance’)

plt.semilogx(episodes, means_averaged + stds_averaged,

’b’, alpha=0.5)

plt.semilogx(episodes, means_averaged - stds_averaged,

’b’, alpha=0.5)

plt.fill_between(episodes, means_averaged-stds_averaged,

means_averaged+stds_averaged, facecolor=’blue’, alpha=0.5)

optimum_moves = 2**N - 1

plt.axhline(y=optimum_moves, color=’g’, label=’Optimum (=%s moves)’

% optimum_moves)

plt.xlabel(’Number of training episodes’)

plt.ylabel(’Number of moves’)

plt.grid(’on’, which=’both’)

plt.title(’Q-learning the Towers of Hanoi game with %s discs’ % N)

handles, labels = plt.gca().get_legend_handles_labels()

plt.legend(handles, labels)

plt.show(block=block)

N = 2

Number of discs in the Towers of Hanoi game

99

R = generate_reward_matrix(N)

episodes = [0, 1, 10, 30, 60, 100, 300, 600, 1000, 3000]

means_averaged, stds_averaged = Q_performance_average(R, episodes,

learn_times=100, play_times=100)

plot_results(episodes, means_averaged, stds_averaged, N)

ToH2 = (means_averaged, stds_averaged)

N = 3

Number of discs in the Towers of Hanoi game

R = generate_reward_matrix(N)

means_averaged, stds_averaged = Q_performance_average(R, episodes,

learn_times=10, play_times=10)

plot_results(episodes, means_averaged, stds_averaged, N)

ToH3 = (means_averaged, stds_averaged)

N = 4

Number of discs in the Towers of Hanoi game

R = generate_reward_matrix(N)

episodes = [1, 10, 100, 200, 300, 1000, 2000, 3000,

6000, 10000, 30000, 60000]

means_averaged, stds_averaged = Q_performance_average(R, episodes,

learn_times=10, play_times=10)

plot_results(episodes, means_averaged, stds_averaged, N, block=True)

ToH4 = (means_averaged, stds_averaged)

100

N= 5

R = generate_reward_matrix(N)

means_averaged, stds_averaged = Q_performance_average(R, episodes,

learn_times=10, play_times=10)

plot_results(episodes, means_averaged, stds_averaged, N, block=True)

ToH5 = (means_averaged, stds_averaged)

N= 6

R = generate_reward_matrix(N)

means_averaged, stds_averaged = Q_performance_average(R, episodes,

learn_times=10, play_times=10)

plot_results(episodes, means_averaged, stds_averaged, N, block=True)

ToH6 = (means_averaged, stds_averaged)

101

Bibliography

1. Richard D. Clarke et al. U.S. Special Operations Command Commander Talks

Artificial Intelligence and Machine Learning With Hudson Institute Scholars. De-

cember 2021.

2. DoD data strategy. United States, Congress, Office of Prepublication and Security

Review, 2020.

3. Evgeny Bryndin. Development of artificial intelligence for industrial and social

robotization. International Journal of Intelligent Information Systems, 10(4):50–

59, 2021.

4. Adriana Braga and Robert K. Logan. The Emperor of Strong AI Has No Clothes:

Limits to Artificial Intelligence. Information, 8(4), 2017.

5. Joel E. Cohen and David Tilman. Biosphere 2 and Biodiversity–The Lessons So

Far. Science, 274(5290):1150–1151, 1996.

6. Robert Larry Nance. An Advanced Tabu Search Approach to Solving the Mixed

Payload Airlift Load Planning Problem, 2009.

7. Alan Mathison Turing. Intelligent Machinery, 1948.

8. Igor Kononenko. Machine learning for medical diagnosis: history, state of the art

and perspective. Artificial Intelligence in Medicine, 23(1):89–109, 2001.

9. Alexander L. Fradkov. Early history of machine learning. IFAC-PapersOnLine,

53(2):1385–1390, 2020. 21st IFAC World Congress.

10. Auréliens Géron. Hands-on machine learning with scikit-learn, keras, and tensor-

flow: Concepts, tools, and techniques to build intelligent systems. 2020.

102

11. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The Bulletin of Mathematical Biophysics, 5:115–133, 1943.

12. S L Pinjare and E Kumar. Implementation of Artificial Neural Network Archi-

tecture for Image Compression Using CSD Multiplier. 08 2013.

13. An Introduction to Neural Networks. Taylor & Francis, 2018.

14. A. G. Ivakhnenko and V. G Lapa. Cybernetics and Forecasting Techniques. Amer-

ican Elsevier Publishing Co., 1967.

15. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

16. R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Intro-

duction. Adaptive Computation and Machine Learning series. MIT Press, 2018.

17. Richard Bellman. A Markovian Decision Process. Journal of Mathematics and

Mechanics, 6(5):679–684, 1957.

18. Ronald Howard. Dynamic Programming and Markov Processes. 1960.

19. Edward L. Thorndike. Animal intelligence; experimen-

tal studies. New York, The Macmillan Company, 1911.

https://www.biodiversitylibrary.org/bibliography/55072.

20. A Harry Klopf. The Hedonistic Neuron: A Theory of Memory, Learning, and

Intelligence. Hemisphere Pub, 1982.

21. Haseeb Asif. What are the types of Reinforcement learning algorithms?

22. C.J.C.H Watkins. Learning from Delayed Rewards. PhD thesis, University of

Cambridge, England, 1989.

103

23. Vincent Mueller. Applying a Deep Q Network for OpenAI’s Car Racing Game.

2021.

24. Allen Newell and Herbet Simon. Report on a general problem-solving program.

1958.

25. Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern ap-

proach. 2010.

26. J.M Bishop. Artificial intelligence is stupid and causal reasoning will not fix it.

Frontiers in Psychology, pages 1—-18, 2021.

27. Chris Eliasmith. How to build a brain: a neural architecture for biological cog-

nition. 2015.

28. Antonio Lieto, Mehul Bhatt, Alessandro Oltramari, and David Vernon. The

role of cognitive architectures in general artificial intelligence. Cognitive Systems

Research, 48:1–3, 2018. Cognitive Architectures for Artificial Minds.

29. Tim van Gelder. The dynamical hypothesis in cognitive science. Behavioral and

Brain Sciences, 21(5):615–628, 1998.

30. Michael S. C. Thomas and James L. McClelland. Connectionist models of cogni-

tion. 2008.

31. John R. Anderson et al. Act-r: A theory of higher level cognition and its relation

to visual attention. Human-Computer Interaction, pages 439—-462, 1997.

32. Vincent Müller and N. Bostrom. Future progress in artificial intelligence: A

survey of expert opinion. In Fundamental Issues of Artificial Intelligence, volume

376. Springer, Cham, 01 2016.

104

33. Bin Liu. ”weak ai” is likely to never become ”strong ai”, so what is its greatest

value for us? 03 2021.

34. Oriol Vinyals et al. Grandmaster level in starcraft ii using multi-agent reinforce-

ment learning. Nature, 575(7782):350–354, 2019.

35. Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff

Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,

Chrisantha Fernando, and Koray Kavukcuoglu. Population based training of

neural networks. 2017.

36. Kurt Peek. Q-learning-hanoi. 2016.

37. Watkins and Dayan. Q-learning. 2016.

38. Jaap. Tower of Hanoi.

39. Chris Versloot. Using Huber loss with tensorflow 2 and keras, Mar 2021.

40. Francois Chollet et al. Keras: Deep Q-Learning for Atari Breakout, 2015.

41. Tom Charnock, Laurence Perreault-Levasseur, and François Lanusse. Bayesian

Neural Networks, chapter Chapter 18, pages 663–713.

42. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

and et al. Mastering the game of go without human knowledge. Nature,

550(7676):354–359, 2017.

105

Acronyms

AFRL Air Force Research Laboratory. 3

AGI Artificial General Intelligence. 21, 24

AI Artificial Intelligence. 1, 2, 5, 10, 21, 24, 36, 52, 53

ANN Artificial Neural Network. 8, 10, 12, 14, 15, 16, 18, 26, 54

CL Cargo Loading. 2, 3, 27, 30, 35, 37, 41, 42, 47, 52, 54

DNN Deep Neural Network. 14

DoD Department of Defense. 1

DRL Deep Reinforcement Learning. 1, 2, 5, 7, 8, 10, 16, 18, 26, 30, 36, 38, 40, 41,

42, 44, 45, 46, 52, 54

GPU Graphics Processing Units. 14, 26

HLAI Human-level Artificial Intelligence. 21

KP Knapsack. 2, 27, 51, 52

LeakyReLU Leaky Rectified Linear Unit. 15

ML Machine Learning. 5, 10, 11, 18

MLP Multilayer Perceptron. 14

NN Neural Network. 5

106

RL Reinforcement Learning. 1, 2, 5, 8, 10, 12, 18, 26, 27, 30, 41, 42, 43, 45, 46, 52,

54

SGD Stochastic Gradient Descent. 15

SPA Semantic Pointer Architecture. 23

SVM Support Vector Machine. 20, 21

ToH Tower of Hanoi. 2, 27, 30, 37, 42, 44, 45, 46, 47, 52, 54

107

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2020 Master’s Thesis Sept 2020 — Mar 2022

ANALYSIS OF GENERALIZED ARTIFICIAL INTELLIGENCE
POTENTIAL

THROUGH REINFORCEMENT AND DEEP REINFORCEMENT
LEARNING APPROACHES

Turner, Jonathan, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-22-M-171

Air Force Research Laboratory (AFRL)
Trevor Bihl, DAF, DR-III, PhD
2242 Avionics Circle
WPAFB OH 45433
trevor.bihl.2@afresearchlab.com

AFRL

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Artificial Intelligence is the next competitive domain; the first nation to develop human level artificial intelligence will
have an impact similar to the development of the atomic bomb. To maintain the security of the United States and her
people, the Department of Defense has funded research into the development of artificial intelligence and its applications.
This research uses reinforcement learning and deep reinforcement learning methods as proxies for current and future
artificial intelligence agents and to assess potential issues in development. Agent performance were compared across two
games and one excursion: Cargo Loading, Tower of Hanoi, and Knapsack Problem, respectively. Deep reinforcement
learning agents were observed to handle a wider range of problems, but behave inferior to specialized reinforcement
learning algorithms.

artificial neural network (ANN), artificial intelligence (AI), deep learning, reinforcement learning (RL), deep
reinforcement learning (DRL), Q-Learning, Deep Q-Learning, machine learning

U U U UU 117

Dr. Lance Champagne, AFIT/ENS

(937) 255-3636 x9999; Lance.Champagne@afit.edu

	Analysis of Generalized Artificial Intelligence Potential through Reinforcement and Deep Reinforcement Learning Approaches
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Research Questions
	Tower of Hanoi
	Cargo Loading
	Knapsack

	Motivation
	Background
	Methodology
	Assumptions and Limitations
	Organization of Thesis

	Background and Literature Review
	Overview of Machine Learning
	Overview of Artificial Neural Networks
	Overview of Reinforcement Learning and Deep Reinforcement Learning
	Machine Learning and Artificial Intelligence
	Cognitive Architecture
	Recent Achievements in Artificial Intelligence

	Methodology
	Programming Platform
	Move Verification Logic
	General Rules for Internal Validity
	Internal Validity in Reinforcement Learning Tower of Hanoi

	Reinforcement Learning
	Tower of Hanoi
	Cargo Loading

	Deep Reinforcement Learning Problem Modifications
	Modifications for Tower of Hanoi
	Modifications for Cargo Loading
	Modifications for Knapsack

	Deep Reinforcement Agent Architecture and Training

	Results and Analysis
	Cargo Loading Results
	Tower of Hanoi
	Deep Reinforcement Learning Tower of Hanoi: Analysis of Neurons on Effectiveness
	Excursion: Deep Reinforcement Learning Knapsack

	Conclusions
	Implications for Generalized Artificial Intelligence
	Future Work
	Recommendations

	Code
	Bibliography
	Acronyms

