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Abstract

Each year, the Air Force Personnel Center determines the career fields in which

newly commissioned officers will serve during their time in the Air Force. The ca-

reer fields are assigned while considering five priorities dictated by Headquarters Air

Force, Manpower and Personnel: target number of cadets, education requirements,

average cadet percentile, cadet source of commissioning, and cadet preference. A

mixed-integer linear program with elasticized constraints is developed to generate

cadet assignments according to these priorities. Each elasticized constraint carries an

associated reward and penalty, which is used to dictate the importance of the con-

straint within the model. A subsequent analysis is conducted on historical data to

display the interaction of the constraints and the impact of the rewards and penalties

on the model results. The new formulation can generate a feasible set of assignments

using the elasticized constraints in instances where the cadet and career field data

would cause infeasibility in the original assignments model. Moreover, such a solution

can be identified within minutes, utilizing a leading commercial solver. It also pro-

vides users and decision makers with the ability to identify trade-offs between goals

and prioritize each constraint.
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AIR FORCE SPECIALTY CODE ASSIGNMENT OPTIMIZATION

I. Introduction

The Air Force Personnel Center (AFPC) annually decides the career field assign-

ments of soon-to-commission cadets from both the United States Air Force Academy

(USAFA) and the Air Force Reserve Officer Training Corps (ROTC) programs. The

matches are assigned while considering the desired target number of cadets for each

career field, the balance of cadet merit and source of commissioning across large career

fields, degree requirements for each career field, and cadet preference.

Cadets at USAFA and in Air Force ROTC programs complete educational require-

ments for a bachelor’s degree concurrently with commissioning requirements. When

cadets reach their second-to-last year in their programs, they submit a list of prefer-

ences for career fields to be assigned to upon commissioning. These preferences, along

with factors such as cadet merit and degree, are considered by AFPC in assigning

cadets to career fields.

The career field assignment each cadet receives is designated by an Air Force Spe-

cialty Code (AFSC). These alphanumeric codes have six components – a numeric

character to indicate career group, a numeric character to indicate career field, an al-

pha character to indicate functional area, a numeric character to indicate qualification

level, an alpha prefix to indicate a skill, special qualification, or system designator

not restricted to any single AFSC, and an alpha suffix to indicate positions associated

with specific equipment or functions within a single specialty [1]. For example, the

AFSC 11B3A indicates Operations, Pilot, Bomber Pilot, qualified, B-1. The first

three components - career group, career field, and functional area - are most often

1



referenced. Thus, the AFSC for a bomber pilot would commonly be referenced as

11B.

Cadets reference the Air Force Officer Classification Directory (AFOCD) to learn

about each AFSC and determine their preferences. This document provides a sum-

mary of each AFSC, also detailing the duties, responsibilities, and specialty quali-

fications associated with each career field. The document includes a table for each

AFSC indicating which undergraduate degrees are mandatory, desirable, or permit-

ted for entering the career field and associated target percentages for each degree

tier [2]. Mandatory degrees are most preferred, then desired, and then permitted.

Not all AFSCs have all three tiers of degree requirements. Some AFSCs permit any

degree, and some AFSCs only permit specific degrees. The degree requirements for

each AFSC are determined by career field managers and described in the AFOCD.

Cadets have the option to apply for rated (flying) or non-rated (non-flying) career

fields. Cadets who wish to serve in a rated career field must apply to do so and are

selected via the Undergraduate Flying Training Selection Board [1]. Cadets who wish

to apply to non-rated career fields, and those who are not selected for rated positions,

submit their job preferences to AFPC, which matches the cadets to assignments. The

focus of this research is the assignment of cadets to non-rated career fields.

AFPC is tasked with assigning the non-rated cadets to career fields. They must

balance four priorities in the assignments: meeting education requirements, balancing

the distribution of cadet quality within AFSCs, balancing the source of commission-

ing within AFSCs, and accounting for cadet preference. AFPC uses the cadet’s

degree, class rank, commissioning source, and AFSC preferences to determine their

assignment. These priorities are dictated by Headquarters Air Force, Manpower and

Personnel (HAF/A1). The degree to which they are prioritized has an effect on the

resulting assignments of cadets to AFSCs. The requirements for assignments vary

2



from year to year. Priorities may shift to reflect these changes, or new priorities may

be considered. Thus, the method for assignments must be flexible and easily adapted

to new requirements.

AFPC currently assigns cadets to non-rated AFSCs using an integer program. An

integer program is an optimization model in which the variables are discrete [3]. For

AFPC’s cadet-career field matching problem, all discrete variables are restricted to

having a value of 0 or 1, so the model is a binary integer program [4]. The integer

program maximizes the utility of cadet-AFSC assignments while being constrained

by education and manning requirements for each career field. The objective of this

research is to improve the matching process for cadet-career field assignments. The

current process presents difficulty in finding a feasible solution that is also desirable,

which often leads to manual adjustments after a solution is found.

A simplified version of the original integer program, which is presented in Ap-

pendix A, includes constraints adapted from the priorities from HAF/A1 and con-

straints from AFOCD requirements. The constraints are:

• Each cadet can only be assigned to one job.

• The number of cadets assigned to a career field must equal, or be greater than,

the target for that career field.

• Each career field may only be overclassified by a set amount.

• The number of cadets with mandatory degrees must meet or exceed the require-

ment for each AFSC.

• There must be a balance of USAFA and ROTC cadets across large career fields.

• There must be a balance of cadet merit in terms of percentile across large career

fields.

3



The objective of AFPC’s integer program is to maximize the utility of assigning

cadets to career fields. The utility function, also presented in Appendix A, assigns a

score to each cadet-AFSC match. Degree requirements are listed in the AFOCD and

are used to determine the educational eligibility of each cadet for each AFSC. The

objective function assigns higher scores to cadets who prefer AFSCs and meet their

degree requirements. Lower scores are given to matches where a cadet does not prefer

an AFSC, even if they meet degree requirements. If a cadet does not meet the degree

requirements for an AFSC, the match is given a large negative score to prevent the

integer program from making the match. Matching cadets to AFSCs for which they

are ineligible is avoided.

While in most years the integer program provides a desirable and mathematically

optimal set of matches, some years it results in an infeasible solution when constraints

cannot be met. For example, there may be cases where the mandatory education

constraint cannot be met because there are not enough cadets with mandatory degrees

for the chemistry, physics, or engineering AFSCs. Additionally, the integer program

may achieve a mathematically optimal solution which is not considered “desirable” to

AFPC or to the specific career field managers. Some AFSCs are not often selected as

preferences. When matches are made, assigning cadets to AFSCs they do not prefer

results in a lower individual utility score than desired. This lowers the overall utility

score achieved and results in an undesirable solution.

The objective of this research is to develop a new mathematical programming for-

mulation which assigns cadets to AFSCs while balancing the priorities from AFPC.

Elastic variables are included in the new formulation to address the concerns of the

original model. One set of these variables allows for the matches to violate selected

constraints but penalizes the objective function value for deviations. The other re-

wards the objective function value when constraints are exceeded and incentivizes

4



being further above or below a constraint’s limit, depending on the type of constraint.

The use of the elastic variables ensures feasibility of the cadet-AFSC problem even

when constraints cannot be met and increases the potential for a more “desirable”

solution to the integer program. They allow flexibility in the constraints and a tool for

prioritization of model objectives to achieve a desirable solution for AFPC. A sensi-

tivity analysis is conducted on the penalties and rewards of the variables to determine

the correct weights for achieving the stated goals.

The remainder of this thesis is structured as follows. Chapter II provides a liter-

ature review which further introduces the career field matching problem, along with

the assignment problem and associated solution methods. Chapter III details the

methodology for the construction of a new formulation, and highlights further anal-

ysis conducted with the new formulation. Chapter IV presents the results of the

analysis of the relative efficacy of the new and old formulations. Chapter V provides

a conclusion for the thesis and highlights the research impact and potential future

research.
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II. Literature Review

The task of assigning cadets to their future career fields is a large one, and it is

important to develop a solution method that adequately represents the goals of AFPC

and HAF/A1 while considering cadet preferences. As such, it is crucial to understand

the problem at its core and to identify a variety of solution methods which can be

implemented to determine the best possible assignments.

The cadet-AFSC problem is an assignment problem, more specifically, a matching

problem. The goal of the problem is to match cadets to AFSCs while adhering to the

requirements of the career field managers and the preferences of the cadets.

2.1 The Assignment and Matching Problems

The generalized assignment problem is defined as follows [5]. Suppose the set I

indicates a set of agent indices, and the set J indicates a set of task indices. Let cij

be the cost incurred when assigning agent i ∈ I to task j ∈ J . Let rij be the required

resources for agent i to complete task j, and let bi be the amount of resource available

for agent i. If agent i is assigned to task j, the decision variable Xij is assigned a

value of 1, and a value of 0 otherwise. The problem is then formulated as:

min
∑
i∈I

∑
j∈J

cijXij (1a)

s.t.:
∑
j∈J

rijXij ≤ bi, ∀i ∈ I (1b)

∑
i∈I

Xij = 1, ∀j ∈ J (1c)

0 ≤ Xij ≤ 1, ∀i ∈ I, j ∈ J (1d)

6



The objective of the model is to minimize the cost incurred in assigning the agent-

task pairs. Constraint (1b) ensures that the task each agent is assigned to does not

require more resources than they have available. Constraint (1c) ensures each agent

is only assigned to one task and constraint (1d) defines the binary domain of the

decision variable, Xij.

In practice, the generalized assignment problem has been adapted to account

for dynamic formulations, as well as stochasticity and constraint violations [6], and

it is applicable in a variety of optimization scenarios. The matching problem is an

assignment problem which involves “assigning a set of agents to another set of agents;

based on the preferences of the agents, and some problem-specific constraints” [7], [8].

Research has been conducted regarding assignment problems and matching problems

in a number of environments, including education, medicine, and the military. The

next three sections provide background on the assignment problem through examples.

The remaining sections explore common formulation and solution methods for this

type of problem, and discuss their applicability to the cadet-AFSC problem.

2.1.1 Education Examples

Gale and Shapley [9] introduce the matching problem with a study of the college

admissions process and the stable marriage algorithm. The authors apply the sta-

ble marriage algorithm to a set of applicants and colleges. The procedure involves

students applying to their first choice college, and then the college submitting their

preferences of the applicants. If a student is rejected, they apply to their next choice,

and so on. The authors state that the process results in stable matches of students

with colleges. The stable marriage algorithm is detailed in Section 2.2.3.
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Krauss, Lee, and Newman [10] discuss the assignment of students to classes while

balancing recommendations and requests of teachers and parents. To complete the

assignments, a binary integer program is developed. This integer program assigns

students to four classes, while constraining social and educational requirements for

each student. The integer program designed by the authors does not include an ob-

jective function, and instead focuses on meeting the constraints of the model. After

a feasible solution is found by the integer program, the authors use a genetic algo-

rithm, detailed in Section 2.2.4, to improve upon the solution. The authors’ genetic

algorithm uses the feasible solution found by the integer program as a starting solu-

tion, and the algorithm generates candidate solutions which are scored by how well

they meet the desires of parents and teachers. The candidate solutions lose points if

constraints met by the integer program are violated. From these candidate solutions,

a “best” solution was implemented for the school.

Srinivas et al. [11] discuss the assignment of students from the Holy Family

Academy to teams and work-study positions. The authors use a goal programming

model to minimize deviations between decision maker goals and achieved results. Goal

programming models are explained in more detail in Section 2.2.5. The first model

developed is used to match students to teams. The model includes hard constraints

that may not be violated, such as assigning each student to exactly one work-study

team without violating the work assignment days, and soft constraints that align

to goals from which the solution may be permitted to deviate. The objective of

the model is to minimize the sum of weighted goal deviations. These goals include

balancing students’ team membership based on race, gender, and rating; minimizing

team assignments that may cause conflict; and maximizing team assignment requests.

The second model is used to assign students in teams to work-study positions. The

second model has the same objective as the first. The goals for the second model
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include balancing student potential across funding and non-funding organizations,

balancing race and gender across organizations with three or more available jobs, and

maximizing student and organization job requests.

2.1.2 Medical Examples

The Hospitals/Residents (HR) problem is an example of the matching problem

which focuses on the assignment of junior doctors to hospitals for their residency.

This problem, like the college admissions problem by Gale and Shapley, seeks a stable

pairing of junior doctors to hospitals. The problem was originally solved using a linear

programming formulation, as described by Gusfield and Irving [12] and Vande Vate

[13]. Integer programming formulations have also been created for the HR problem

[14] and the Hospitals/Residents with ties (HRT) problem [15]. The HRT problem is

an extension of the HR problem in which it is possible for a junior doctor to prefer two

or more hospitals equally. Constraint programming formulations, which are presented

in more detail in Section 2.2.1, have been developed for both the HR problem [16]

and the HRT problem [17]. Additional extensions of the HR problem exist, but for

the purposes of this research, only some are presented.

The Kidney Exchange Problem focuses on instances where a patient needing a

kidney transplant and their volunteer donor are medically incompatible. In this

problem, the objective is to take two mismatched pairs, in which the recipient of each

pair matches the donor of the other pair, and match them for a successful donation.

Carvalho et. al [18] explore three solution approaches for matching pairs of patients

and donors while limiting the emotional and material costs of swapping the donors.

The base model focuses on a directed graph of nodes and arcs, with arcs connecting

incompatible pairs. The objective function is to maximize the benefit of selecting a

chain, where each node, or incompatible pair, can only be involved in at most one
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exchange. The base model is first adapted to consider costs of planned transplants

that do not occur, and then adapted to allow for the use of alternative pairs if a

match were to fail. The authors present a network model for the assignments, which

is detailed in Section 2.2.2.

2.1.3 Military Examples

The assignment problem has been presented in all branches of the United States

military for service member assignments. These include both job assignments, like

the cadet-AFSC problem, and duty location assignments. While the basis of the

problem is similar across branches, the employed solution methods vary.

Shrimpton and Newman [19] discuss the assignment of United States Army officers

to career fields using a network-optimization model. The objective of the model is

to minimize the sum of utility scores while meeting flow balance constraints. These

constraints ensure that the number of officers designated to each career field meets

the required amount. Sets of nodes are used to designate officers and career fields. An

arc is present between an officer and career field node if the officer has listed the career

field as a preference. Each arc is weighted by a utility score, which takes both officer

preference and qualification for the job into consideration. The decision variable on

whether to use each arc is given value 1 if the match is made, and 0 otherwise.

Garrett et al. [20] discuss the United States Navy’s sailor assignment problem.

The objective of the problem is to maximize the “fitness” of sailor-job assignments,

while ensuring necessary constraints are met. Previously, the Navy used the stable

marriage algorithm to match sailors to jobs. In this case, the two sets are sailors

applying for jobs and the commanders in charge of the jobs. The match occurs when

a sailor has applied to a job for which they are qualified and interested in, and a

commander selects that sailor as a preferred candidate. The stable marriage algorithm

10



cannot take into account Permanent Change of Station (PCS) costs associated with

the matches, so a genetic algorithm is considered as a solution method. The algorithm

considers constraints that ensure sailors are not assigned to a job for which they are

not qualified. The goal is to produce matches which meet the desires of sailors and

commanders, while minimizing the costs of said matches.

Seipel [21] explores methods for matching United States Marine Corps sergeants

and newly commissioned officers to one of seventeen regions for the Regional, Culture,

and Language Familiarization Program. This program aims to educate Marines in

regards to the culture and language of the different regions. The first two methods

relate to those of this research. The first model used for matching is a simple integer

program. The objective of the model is to assign Marines based on their region

preference. This is done by minimizing the sum of the preference ranking across the

applicants, as a lower number indicates a higher preference. The model is constrained

by the number of Marines required in each region and that each Marine may only

be assigned to one region. The second model is a continuation of the first. In this

model, the language knowledge of each Marine is taken into account. This is done by

modeling the region’s preference for a Marine using binary variables: if a Marine is

preferred, the binary variable receives a value of 1. If a Marine speaks the language

of the specified region, the match is more likely to occur. This model determines

whether the Marine and the region are first choices for each other, i.e., if the Marine

speaks the specified language, and adjusts the objective function accordingly.

Hooper and Ostrin [22] examine the assignment PCS orders to United States

Marines. They use a binary integer program to assign the matches. The decision

variable indicates if a Marine will be assigned to a station. The objective of the

model is to minimize the total cost to send Marines to assignments. The key con-

straint is that each billet must be assigned to a Marine. The authors conduct analysis
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to determine the total cost of matching 15 Marines to assignments using the integer

program. This integer program takes the preference of each Marine into account by

creating a weighted parameter of duty preference using time in grade. The authors

discuss how the preference of each Marine can be tightened or loosened by the con-

straints in the model, resulting in higher or lower costs, respectively. The authors

note that prioritizing Marine preference could potentially lead to higher PCS costs.

Preference is an important factor to consider, but in this case, aligning to preferences

may be detrimental to the objective function value. This opposes the objective func-

tion for the AFPC’s formulation of the cadet-AFSC problem, in which aligning to

cadet preference may have a positive impact on the objective function value.

Kleeman and Lamont [23] discuss the airman assignment problem. The assign-

ment problem uses binary integer programming. The authors discuss the use of hard

and soft constraints within a constrained assignment problem. Hard constraints are

those which cannot be violated; soft constraints may be violated, but they incur an

associated penalty. The authors explore this idea in the airman assignment prob-

lem, which determines personnel assignments to duty stations. The problem has

the following three objectives: ensuring that Air Force needs are met, considering

individuals’ preferences, and minimizing the cost associated with the new location

assignments. The objective function considers how well the individual Airman meets

the requirements for the assignment, as well as their preferences for the assignment.

Armacost and Lowe [24] explore the process of assigning USAFA cadets to career

fields. Their methodology focuses on developing an optimization model that maxi-

mizes the value of cadet assignments, while meeting career field targets for the number

of cadets assigned. They address deviations from these targets using slack variables

which penalize the objective function value by a certain cost when the number of

assignments are over or under a target. The model contains binary variables that
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account for cadet AFSC assignments. The deviation costs are integer-valued. The

model can be mapped directly to a network flow problem. The authors’ use of slack

variables motivated the use of elastic variables to allow for constraint deviations in

the cadet-AFSC problem in this research, as described in Chapter III.

2.2 Modeling and Solution Methods

2.2.1 Constraint Programming

Constraint programming is a solution method for problems in which the objec-

tive is to satisfy all constraints. In this context, a constraint “can be viewed as a

requirement that states which combinations of values from the variable domains are

permitted” [25]. The problem to be solved is referred to as a constraint satisfaction

problem (CSP), which is solved using constraint solvers. Ultimately, the goal of a

CSP is to find a valid set of values given the constraints on the domains of these

values and their relations. If a problem is determined to be over-constrained and a

solution cannot be found, it may be necessary to use soft constraints. In [26], the

authors describe “weighted constraints,” which reflect the idea of the constraints and

elastic variables described in Chapter I, as a kind of soft constraint. In a constraint

problem with weighted constraints, an optimal solution is one in which all variable

assignments are made at a minimal cost.

Apt states that the problems that are best suited for constraint programming are

“usually those that can be naturally formulated in terms of requirements, general

properties, or laws, and for which domain specific methods lead to overly complex

formalizations” [25]. Constraint programming is used in certain optimization prob-

lems; however, for the cadet-AFSC matching problem, the generation and solving of

the CSP may be difficult and time-consuming when other methods may be applied

that have been shown to perform well in assignment problems.
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2.2.2 Network Optimization Model

The assignment problem can be modeled as a minimum-cost network flow problem

(MCNFP), which is a specific network optimization model [27]. A MCNFP begins

with a set of nodes and connecting arcs. The objective of the MCNFP is to minimize

the cost of sending units of flow between nodes, while respecting the lower and upper

bounds on flow within arcs. Network problems are totally unimodular, and thus

feasible integer solutions are obtained without enforcing variable integrality [28]. This

means the problem may be solved with its linear relaxation, and integer programming

solution methods need not be employed.

While a network model may be suitable for assignment problems, the constraints

of the cadet-AFSC assignment problem suggest it may be difficult to model the sub-

sets of cadets and AFSCs that may match. The constraint matrix of the cadet-AFSC

assignment problem is not totally unimodular, and thus solving via its linear relax-

ation does not guarantee an integer solution.

2.2.3 The Stable Marriage Algorithm

Gale and Shapley [9] provide an example of stable assignments within a marriage

problem. The basis of the marriage problem is to find a way of marrying all members

of a group of n men and n women. It is desired to find a stable set of marriages in

which no pair who are not married prefer each other to their actual partners.

While a useful method for assigning matches, the stable marriage algorithm would

not easily consider the constraints involved in the cadet-AFSC assignment problem.

The education requirements and desired source of commissioning balance for each

AFSC would be difficult to account for within the stable marriage algorithm, as each

AFSC has unique requirements. This added intricacy suggests the stable marriage

algorithm may not be the correct route for the cadet-AFSC assignment problem.
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2.2.4 Genetic Algorithm

Genetic algorithms are used in optimization for modeling and solving a problem

“using processes that mimic the process of natural evolution” [10]. Yang [29] explains

that the genetic algorithm consists of five steps: (1) encoding of the objective function;

(2) defining a selection criterion for individuals; (3) providing or creating individuals

to be evaluated; (4) completing the evolution cycle by evaluating individuals, creating

a new population by crossover and mutation of selected individuals, replacing the old

population and iterating again; and (5) determining the solution to the problem by

the results of the iterations. Yang also describes the advantages and disadvantages

of genetic algorithms. Benefits of using genetic algorithms include their ability to

handle complex problems and the ability of the algorithm to parallelize; or computing

multiple subproblems at the same time. A disadvantage to using genetic algorithms

is that they are sensitive to parameter values and the objective function, so the

algorithm may struggle to converge or provide meaningful results.

A potential use of genetic algorithms in the cadet-AFSC problem could reflect that

of Krauss, Lee and Newman [10]. The problem could be solved without an objective

function, and then the results could be inputs for a genetic algorithm to evaluate and

generate new solutions. A concern of using genetic algorithms is that the model is

complex and the algorithm may falter with any changes in the model from year to

year.

2.2.5 Goal Programming

Salunkhe et al. [30] discuss the need for goal programming in multi-objective

decision making processes, commenting that often, multi-criterion decision making

processes are not sufficient without mathematical programming to help optimize so-

lutions. Tamiz and Azmi [31] support the use of goal programming in multi-objective
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decision making because of its flexibility in constraints and focus on satisficing as

opposed to optimization of objectives. Goal programming provides the best solution

possible, given goals and their order of importance, and it is commonly used in situa-

tions where it may not be possible to achieve all desired goals. In cases where the user

is able to rank objectives in order of priority prior to solving the problem, preemptive

goal programming is used. Non-preemptive goal programming is used in cases where

the importance of each goal can vary, and is relayed through its assigned weight [32].

Rerkjirattikal et al. [33] apply goal programming to the Nurse Scheduling Problem

(NSP) with individual preference satisfaction. The authors’ model develops a pro-

posed nurse schedule while considering work restrictions and constraints. There are

three goals the model is designed to achieve: balance the number of shifts assigned to

nurses, account for nurse preference in shift, and account for nurse preference in days

off. The objective of the goal programming formulation is to minimize deviations

from the targets of each of the three goals. The deviations are normalized within the

objective function and thus considered equally.

Tamiz and Azmi [31] discuss the use of goal programming in stock portfolio selec-

tion. The authors focus on achieving goals for seven stock-related factors, including

risk, return, debt, earnings per share, price, operating cash flow ratio, and dividend

yield. Target and penalization values are set for each of the factors, and the focus of

the goal programming model is to minimize the normalized, weighted deviations from

each of the target values. This example differs from the NSP because the deviations

are weighted, whereas in the NSP example, the goals were viewed as equal.

2.3 Summary

The chosen solution method for the cadet-AFSC problem is rooted in goal pro-

gramming and considers the need for flexibility in the requirements of the problem.
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The elastic variables included in the new formulation carry associated weights in

the form of penalties and rewards in the objective function. By adjusting these

weights, different solutions may be achieved that focus on meeting different con-

straints. Through non-preemptive goal programming, analysis may be performed to

determine a best solution by adjusting goal importance. The resulting formulation,

detailed in Chapter III, is a mixed-integer linear programming problem.
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III. Methodology

For this research, AFPC provided their original integer programming formulation,

found in Appendix A, and their pre-processing and integer program code. AFPC’s

pre-processing code is replicated in Python 3 [34], and code is developed for both

a reformulation of AFPC’s model and a new model using the Pyomo optimization

package [35], [36]. Python is the chosen programming language because it is open

source and there are many resources available for support and troubleshooting. This

allows the code to be easily shared and updated as new personnel are tasked with

making the assignments for AFPC.

3.1 Original Model Reformulation

The original integer program and the code provided by AFPC are used to refor-

mulate the model. The reformulation, denoted model (N ), contains updated sets,

indices and parameters for improved readability and performance. This formulation

adopts the notation described in [37], such as the use of subscripts to denote indices

and superscripts to designate differences in similar variables. The reformulation is

provided below.

Sets and Indices

a ∈ A AFSCs, 1, ..., A

c ∈ C Cadets, 1, ..., C

Subsets

AF ⊆ A AFSCs with overclassification limits

AM ⊆ A AFSCs with mandatory education requirements

AD ⊆ A AFSCs with desired education requirements

AP ⊆ A AFSCs with permitted education requirements

18



AI ⊆ A AFSCs for which a cadet’s degree may make them ineligible

AU ⊆ A AFSCs with lower bound for USAFA cadets

AU ⊆ A AFSCs with upper bound for USAFA cadets

AR ⊆ A AFSCs with lower bound for cadet percentile

AR ⊆ A AFSCs with upper bound for cadet percentile

CU ⊆ C USAFA cadets

Indexed Sets

CM
a ∈ C Cadets that have degrees mandatory for AFSC a ∈ AM

CD
a ∈ C Cadets that have degrees desired for AFSC a ∈ AD

CP
a ∈ C Cadets that have degrees permitted for AFSC a ∈ AP

CI
a ∈ C Cadets that have ineligible degrees for AFSC a ∈ AI

CW
a ∈ C Cadets who have AFSC a ∈ A as a preference

Parameters Units

gca utility of assigning cadet c to AFSC a [fraction]

ta target for AFSC a [number]

fa factor by which AFSC a can be overclassified [fraction]

dM
a target accession rate for mandatory degrees for AFSC a [fraction]

ua, ua lower, upper limit for USAFA cadets [fraction]

rc ranking, using percentile, for cadet c [fraction]

ra, ra lower, upper limit for cadet percentile [fraction]

wca weight cadet c assigns to AFSC a [fraction]

Decision Variables Units

Xca 1 if cadet c is assigned to AFSC a, and 0 otherwise [-]
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Formulation (N )

maximize
∑
c∈C

∑
a∈A

gcaXca (2a)

subject to:
∑
a∈A

Xca = 1, ∀c ∈ C (2b)

∑
c∈C

Xca ≥ ta, ∀a ∈ A (2c)

∑
c∈C

Xca ≤ fata, ∀a ∈ AF (2d)

∑
c∈CMa

Xca ≥ dMa ta, ∀a ∈ AM (2e)

∑
c∈CU

Xca ≥ uata, ∀a ∈ AU (2f)

∑
c∈CU

Xca ≤ uata, ∀a ∈ AU (2g)

∑
c∈C

rcXca ≥ ra
∑
c∈C

Xca, ∀a ∈ AR (2h)

∑
c∈C

rcXca ≤ ra
∑
c∈C

Xca, ∀a ∈ AR (2i)

Xca ∈ {0, 1}, ∀c ∈ C, a ∈ A (2j)
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The utility function applied in the objective function in the integer program re-

formulation is as follows:

gca =



(10rcwca) + 250 if c ∈ CM
a ∩ CW

a

(10rcwca) + 150 if c ∈ CD
a ∩ CW

a

10rcwca if c ∈ CP
a ∩ CW

a

100rc if c ∈ CM
a \ CW

a

50rc if c ∈ CD
a \ CW

a

0 if c ∈ CP
a \ CW

a

−50000 if c ∈ CI
a

(3)

The formulation is evaluated over the sets of cadets (C) and AFSCs (A). These

sets are broken into subsets of cadets and AFSCs to evaluate certain constraints. The

subset CU is defined as the set of USAFA cadets. The subsetsAM,AD,AP andAI spec-

ify which AFSCs have mandatory, desired, permitted, and ineligibility constraints,

respectively. The subsets AU and AU designate AFSCs which have restrictions for the

assignment of USAFA cadets. The subsets AR and AR contain AFSCs which have

order of merit constraints. The subset AF designates the AFSCs which are limited in

how much they can exceed their target amount.

The indexed sets CM
a , CD

a , CP
a , and CI

a contain cadets who have degrees that are

mandatory, desired, permitted, and ineligible for AFSC a in the subsets AM,AD,AP

and AI, respectively. The indexed set CW
a contains cadets who submit AFSC a ∈ A

as a preference.

The objective function, denoted by (2a) and (3), scores the cadet-AFSC pairs in

regards to education requirements, cadet ranking, and cadet preference. Mandatory

education requirements achieve higher scores than desired education requirements,
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which achieve higher scores than permitted education requirements. As an example,

consider a cadet who is top rated in terms of percentile and has selected the Intelli-

gence (14N) career field as their top choice with a weight of 100. If the cadet majored

in mathematics, which is a mandatory degree for the 14N career field, the utility of

the match is:

(10 · rc · wca) + 250 = (10 · 1 · 100) + 250 = 1000 + 250 = 1250

However, if the cadet majored in psychology, which is a desired degree for the 14N

career field, the utility of the match is:

(10 · rc · wca) + 150 = (10 · 1 · 100) + 150 = 1000 + 150 = 1150

Since any degree is permitted for the 14N career field, if the cadet majored in anything

other than the mandatory or desired degrees, the utility of the match is:

10 · rc · wca = 10 · 1 · 100 = 1000

If the cadet did not select the 14N career field as a preference, but majored in

mathematics, a mandatory degree, the utility of the match is:

100 · rc = 100 · 1 = 100

However, if the cadet majored in psychology, a desired degree for the 14N career field,

the utility of the match is:

50 · rc = 50 · 1 = 50

If the cadet majored in any degree that is not considered mandatory or desired for the

14N career field, the utility of the match is 0. In cases where a cadet’s degree is not

mandatory, desired, or permitted for an AFSC, the utility of the match is -50,000 to

discourage the match. The scoring of the objective function suggests degree require-

ments and cadet preference are of high priority in assigning the matches. However,
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in the reformulation, only mandatory education requirements are considered in the

model constraints, while the remaining education requirements and cadet preferences

are addressed in the objective function.

Constraint (2b) permits each cadet to only be assigned to one AFSC. Con-

straint (2c) ensures that the targets for each AFSC are met and constraint (2d)

allows certain AFSCs to be overclassified by a certain factor. Constraint (2e) spec-

ifies the mandatory education constraints for the assignment of cadets to AFSCs.

Constraints (2f) and (2g) force a specified distribution of USAFA cadets within cer-

tain AFSCs. Constraints (2h) and (2i) balance cadet merit across certain AFSCs.

Constraint (2j) specifies that the decision variable is binary.

The balance of merit constraints (2h) and (2i) are updated from those in the

original formulation (5h) and (5i). The two sets of constraints state the the average

cadet merit must be greater than the lower bound and less than the upper bound

in certain career fields, respectively. The original set of constraints account for the

average merit of the assigned cadets by subtracting 0.5 from each cadet’s merit. The

updated constraints compare the average merit of all cadets assigned to the specified

AFSCs to a target value for average merit.

As an example, consider the Missilier (13N) career field. Suppose the 13N career

field has a desired lower bound for average percentile of 0.35 and a desired upper

bound of 0.65. Suppose there are five cadets being assigned to the 13N career field with

the following percentiles: 0.25, 0.4, 0.15, 0.8, and 0.95. A nonlinear interpretation of

the constraints would simply compare the average percentile of the assigned cadets

to the lower bound, 0.35, and the upper bound, 0.65 with the following:

0.35 ≤ 0.25+0.4+0.15+0.8+0.95
5

≤ 0.65

which simplifies to:

0.35 ≤ 0.51 ≤ 0.65
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Constraints (2h) and (2i) provide linear interpretations of the constraints described

above. Substituting the information into constraint (2h) yields

(0.25 · 1) + (0.4 · 1) + (0.15 · 1) + (0.8 · 1) + (0.95 · 1) ≥ 0.35 · (1 + 1 + 1 + 1 + 1)

which can be simplified to

2.55 ≥ 1.75

and thus the assigned cadets meet the lower bound for average percentile.

Substituting the information into constraint (2i) yields

(0.25 · 1) + (0.4 · 1) + (0.15 · 1) + (0.8 · 1) + (0.95 · 1) ≤ 0.65 · (1 + 1 + 1 + 1 + 1)

which can be simplified to

2.55 ≤ 3.25

and thus the assigned cadets meet the upper bound for average percentile. These

constraints achieve the goals of a desired lower and upper bound for average percentile

while maintaining the linearity of the constraint, and thus the overall formulation.

A notable update within this formulation includes the addition of subsets in place

of binary parameters. Many constraints within the provided code only apply to a

subset of cadets or AFSCs, as opposed to the sets and subsets in the formulation in

Appendix A. Adjustments are made to the formulation to account for differences in

the code. The subsets reduce the number of constraints. For example, instead of using

the full set of cadets C, the subset CU ⊆ C is included to indicate the set of USAFA

cadets as a subset of the set of all cadets. The addition of this subset eliminates the

evaluation of ROTC cadets for the lower and upper USAFA limit constraints (2f) and

(2g), and removes the binary parameter ui from the formulation.

Indexed sets are generated to reduce the number of constraints and to simplify the

objective function. Three indexed sets are introduced to indicate which cadets meet
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degree requirements for each AFSC. The set CM
a contains cadets who meet mandatory

degree requirements for each AFSC in the set of AFSCs with mandatory requirements.

Thus, for constraint (2e), only those cadets with mandatory degrees are evaluated,

as opposed to evaluating all cadets using the binary parameter mij as in constraint

(5e). Similar sets are generated for cadets who meet desired and permitted education

requirements for use in the objective function.

The indexed set CW
a contains cadets who have AFSC a as a preference. The

education and cadet preference sets are used in evaluating the objective function. The

union and set difference of the indexed sets for education and cadet preference simplify

the evaluation of the overall utility of assigning cadets to AFSCs. For example, if

cadet c prefers AFSC a and has a degree which is mandatory for AFSC a, then that

cadet would fall in both CM
a and CW

a . Since the cadet falls into the union of these sets,

CM
a ∩ CW

a , the first condition would be used to evaluate the utility of the cadet-AFSC

pair in the objective function. If cadet c does not prefer AFSC a, but has a mandatory

degree for AFSC a, then the cadet would fall in CM
a , but not CW

a . Since the cadet falls

into the set difference of these sets, CM
a \ CW

a , the fourth condition would be used to

evaluate the utility of the match in objective function (3).

3.2 New Model Formulation

While the reformulation reduces the size of the original model through the intro-

duction of new subsets and indexed sets, it does not address the issues of infeasibility

in the original model, or the desired and permitted education requirements outlined

in the AFOCD. The priority of desired and permitted degrees are referenced in the

objective function of model (N ), but this does not address the AFOCD requirements

for degree distribution within the AFSCs. A new model (N̂ ) presents a method for

countering these problems by using the elastic variables discussed in Chapter I. The
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new formulation includes constraints to account for the desired and permitted ed-

ucation requirements of the AFOCD. The objective function also accounts for the

weight each cadet assigns to their preferred AFSCs to attempt to assign cadets to

their top preferences. The reformulation of AFPC’s original model serves as the base

of the new formulation. The new formulation maintains a majority of the sets and

parameters of the reformulation, model (N ), and thus only new aspects of the model

are introduced here.

Sets and Indices

AD, AD ⊆ A AFSCs with a lower, upper bound for desired education

requirements, respectively

AP ⊆ A AFSCs with permitted education requirements

AŨ ⊆ A AFSCs which have a USAFA cadet assignment limit

AI
c ∈ A AFSCs that cadet c ∈ C is ineligible for

Parameters Units

µT, λT penalty, reward associated with the target constraint [fraction]

µF, λF penalty, reward associated with the overclassification con-

straint

[fraction]

µM, λM penalty, reward associated with the mandatory education

constraint

[fraction]

µD, λD penalty, reward associated with the lower target desired ed-

ucation constraint

[fraction]

µD, λD penalty, reward associated with the upper target desired

education constraint

[fraction]

µP, λP penalty, reward associated with the permitted education

constraint

[fraction]
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µU, λU penalty, reward associated with the USAFA lower limit con-

straint

[fraction]

µU, λU penalty, reward associated with the USAFA upper limit con-

straint

[fraction]

µR, λR penalty, reward associated with the percentile lower limit

constraint

[fraction]

µR, λR penalty, reward associated with the percentile upper limit

constraint

[fraction]

µW, λW penalty, reward associated with the cadet preference con-

straint

[fraction]

λS reward for assigning cadets in accordance with their prefer-

ence order

[fraction]

w target for meeting cadet preference [fraction]

ũ limit for USAFA cadets in AFSCs within AŨ [fraction]

M a sufficiently large number [-]

Elastic Variables Units

Y T
a , Z

T
a the amount by which the target constraint is not met, or is

exceeded, for AFSC a ∈ A

[cadets]

Y F
a , Z

F
a the amount by which the overclassification constraint is not

met, or is exceeded, for AFSC a ∈ AF

[cadets]

Y M
a , ZM

a the amount by which the mandatory education constraint

is not met, or is exceeded, for AFSC a ∈ AM

[cadets]

Y D
a , Z

D
a the amount by which the lower target desired education

constraint is not met, or is exceeded, for AFSC a ∈ AD

[cadets]

Y D
a , Z

D
a the amount by which the upper target desired education

constraint is not met, or is exceeded, for AFSC a ∈ AD

[cadets]
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Y P
a , Z

P
a the amount by which the permitted education constraint is

not met, or is exceeded for AFSC a ∈ AP

[cadets]

Y W
a , ZW

a the amount by which the cadet preference constraint is not

met, or is exceeded for AFSC a ∈ A

[cadets]

Y U,
a ZU

a the amount by which the USAFA lower limit is not met, or

exceeded for AFSC a ∈ AU

[cadets]

Y U
a , ZU

a the amount by which the the USAFA upper limit is not met,

or exceeded, for AFSC a ∈ AU

[cadets]

Y R
a , ZR

a the amount by which the percentile lower limit is not met,

or exceeded, for AFSC a ∈ AR

[fraction]

Y R
a , ZR

a the amount by which the percentile upper limit is not met,

or exceeded, for AFSC a ∈ AR

[fraction]

Auxiliary Variables Units

αT
a 1 if Y T

a is used, and 0 otherwise, for a ∈ A [-]

αF
a 1 if Y F

a is used, and 0 otherwise, for a ∈ AF [-]

αM
a 1 if Y M

a is used, and 0 otherwise, for a ∈ AM [-]

αD
a 1 if Y D

a is used, and 0 otherwise, for a ∈ AD [-]

αD
a 1 if Y D

a if used, and 0 otherwise, for a ∈ AD [-]

αP
a 1 if Y P

a is used, and 0 otherwise, for a ∈ AP [-]

αW
a 1 if Y W

a is used, and 0 otherwise, for a ∈ A [-]

αU
a 1 if Y U

a is used, and 0 otherwise, for a ∈ AU [-]

αU
a 1 if Y U

a is used, and 0 otherwise, for a ∈ AU [-]

αR
a 1 if Y R

a is used, and 0 otherwise, for a ∈ AR [-]

αR
a 1 if Y R

a is used, and 0 otherwise, for a ∈ AR [-]
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Formulation (N̂ )

maximize
∑
a∈A

(λTZT
a − µTY T

a )︸ ︷︷ ︸
AFSC Target Goal

+
∑
a∈AF

(λFZF
a − µFY F

a )︸ ︷︷ ︸
AFSC Overclassification Goal

+
∑
a∈AM

(λMZM
a − µMY M

a )︸ ︷︷ ︸
Mandatory Education Goals

+
∑
a∈AP

(λPZP
a − µPY P

a )︸ ︷︷ ︸
Permitted Education Goals

+
∑
a∈AD

(λDZD
a − µDY D

a ) +
∑
a∈AD

(λDZD
a − λDY D

a )

︸ ︷︷ ︸
Desired Education Goals

+
∑
a∈AU

(λU ZU
a − µU Y U

a ) +
∑
a∈AU

(λU ZU
a − µU Y U

a )

︸ ︷︷ ︸
Source of Commissioning Goals

+
∑
a∈AR

(λR ZR
a − µR Y R

a ) +
∑
a∈AR

(λR ZR
a − µR Y R

a )

︸ ︷︷ ︸
Cadet Ranking Goals

+
∑
a∈A

(λWZW
a − µW Y W

a )︸ ︷︷ ︸
Cadet Preference Goal

+λS
∑
a∈A

∑
c∈C

(wcaXca)︸ ︷︷ ︸
Cadet Preference Order

(4a)
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subject to:
∑

a∈A\AI
c

Xca = 1, ∀c ∈ C (4b)

∑
c∈C

Xca = ta − Y T
a + ZT

a , ∀a ∈ A (4c)

∑
c∈C

Xca = fata + Y F
a − ZF

a , ∀a ∈ AF (4d)

∑
c∈CMa

Xca = dM
a ta − Y M

a + ZM
a , ∀a ∈ AM (4e)

∑
c∈CDa

Xca = dD
a ta − Y D

a + ZD
a , ∀a ∈ AD (4f)

∑
c∈CDa

Xca = dD
a ta + Y D

a − ZD
a , ∀a ∈ AD (4g)

∑
c∈CPa

Xca = dP
a ta + Y P

a − ZP
a , ∀a ∈ AP (4h)

∑
c∈CWa

Xca = w
∑
c∈C

(Xca)− Y W
a + ZW

a , ∀a ∈ A (4i)

∑
c∈CU

Xca = uata − Y U
a + ZU

a , ∀a ∈ AU (4j)

∑
c∈CU

Xca = uata + Y U
a − ZU

a , ∀a ∈ AU (4k)

∑
c∈CU

∑
a∈AŨ

Xca ≤ ũ
∑
c∈C

∑
a∈AŨ

Xca (4l)

∑
c∈C

rcXca = ra
∑
c∈C

(Xca)− Y R
a + ZR

a , ∀a ∈ AR (4m)

∑
c∈C

rcXca = ra
∑
c∈C

(Xca) + Y R
a − ZR

a , ∀a ∈ AR (4n)
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Y T
a ≤MαT

a , ∀a ∈ A; ZT
a ≤M(1− αT

a ), ∀a ∈ A

Y F
a ≤MαF

a , ∀a ∈ AF; ZF
a ≤M(1− αF

a ), ∀a ∈ AF

Y M
a ≤MαM

a , ∀a ∈ AM; ZM
a ≤M(1− αM

a ), ∀a ∈ AM

Y D
a ≤MαD

a , ∀a ∈ AD; ZD
a ≤M(1− αD

a ), ∀a ∈ AD

Y D
a ≤MαD

a , ∀a ∈ AD; ZD
a ≤M(1− αD

a ), ∀a ∈ AD

Y P
a ≤MαP

a , ∀a ∈ AP; ZP
a ≤M(1− αP

a ), ∀a ∈ AP

Y W
a ≤MαW

a , ∀a ∈ A; ZW
a ≤M(1− αW

a ), ∀a ∈ A

Y U
a ≤MαU

a , ∀a ∈ AU; ZU
a ≤M(1− αU

a ), ∀a ∈ AU

Y U
a ≤MαU

a , ∀a ∈ AU; ZU
a ≤M(1− αU

a ), ∀a ∈ AU

Y R
a ≤MαR

a , ∀a ∈ AR; ZR
a ≤M(1− αR

a ), ∀a ∈ AR

Y R
a ≤MαR

a , ∀a ∈ AR; ZR
a ≤M(1− αR

a ), ∀a ∈ AR

(4o)

Xca ∈ {0, 1}, ∀c ∈ C, a ∈ A \ AI
c

αT
a , α

F
a , α

M
a ,α

D
a , α

D
a , α

P
a , α

W
a , α

U
a , α

U
a , α

R
a , α

R
a ,∈ {0, 1},

∀a ∈ A,AF,AM,AD,AD,AP,A,AU,AU,AR,AR

Y T
a , Y

F
a , Y

M
a ,Y D

a , Y
D
a , Y

P
a , Y

W
a , Y U

a , Y
U
a , Y

R
a , Y

R
a ∈ R+,

∀a ∈ A,AF,AM,AD,AD,AP,A,AU,AU,AR,AR

ZT
a , Z

F
a , Z

M
a ,Z

D
a , Z

D
a , Z

P
a , Z

W
a , Z

U
a , Z

U
a , Z

R
a , Z

R
a ∈ R+,

∀a ∈ A,AF, AM,AD,AD,AP,A,AU,AU,AR,AR

(4p)

3.2.1 Updates to Constraints

Constraint (4b) ensures each cadet is only assigned to one AFSC. The addition of

the indexed set AI
c, which contains AFSCs for which cadet c is ineligible, evaluates

this constraint only for those AFSCs each cadet meets the educational requirements.

Thus, no ineligible cadets may be assigned to AFSCs in this formulation.
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Constraints are added to reflect desired and permitted education requirements, as

well as cadet preference. There are two sets of desired educational constraints; one for

AFSCs that have a lower limit on cadets with desired degrees, and one with an up-

per limit. These requirements are reflected in constraints (4f) and (4g), respectively.

The permitted educational constraint specifies upper limits for cadets with permit-

ted degrees in certain AFSCs, and is displayed in constraint (4h). The constraint

for cadet preference ensures at least a percentage of cadets receive an AFSC match

that is in their preferences for each AFSC. This is shown in constraint (4i). Unlike

in model (N ), desired and permitted degree requirements and cadet preference are

considered as constraints to be met by the cadet-AFSC assignments, as prescribed by

the AFOCD. Constraint (4l) reflects a policy stating that only a certain percentage

of cadets assigned to a specified set of AFSCs are permitted to be USAFA graduates.

The target and overclassification constraints (4c) and (4d), mandatory education

constraint (4e), source of commissioning balance constraints (4j) and (4k), and the

order of merit balance constraints (4m) and (4n), are those of the reformulation (N ),

but contain elastic variables. Constraints (4p) define the domains of the variables.

3.2.2 Elastic Variables

As stated in Chapter I, elastic variables are included in a constraint to permit the

violation of constraints at a cost to the objective function, or to reward the objective

function when a constraint is exceeded. In the cadet-AFSC problem, these variables

are used in instances where there may not be enough cadets meeting conditions of

certain requirements. If a constraint cannot be met, the Y variables are used to

overcome infeasibility.

The Y variables are either added or subtracted from the right-hand side of the

constraint, based on the form of the constraint. For example, the mandatory ed-
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ucation constraint (4e) states that the total number of cadets assigned that meet

mandatory education requirements for an AFSC must be greater than or equal to

a target value. In cases where this constraint cannot be met, the number of cadets

assigned is less than the required value. The elastic variable, Y M
a is then subtracted

from the required value so the total number of cadets assigned is equal to the new

value. In the permitted education constraint (4h), the opposite occurs: the number

of cadets assigned is greater than the required value. In this case, the elastic variable

Y P
a is added to the required value. In both cases, the use of the elastic variable is

penalized in the objective function, which is described in detail in Section 3.2.4.

As an algebraic example, consider the mandatory education constraint (4e). As-

sume the Operations Research (15A) career field has a target of 20 cadets, and needs

65% of those cadets to have mandatory degrees. Assume, however, there are only 5

cadets available to be matched that have mandatory degrees for the 15A career field.

If all 5 cadets were matched, the constraint would be

5 = (0.65 · 20)− Y M
15A + ZM

15A

The value of ZM
15A would be zero, since 5 is less than the required 13 cadets. This

would then simplify to

Y M
15A = 13− 5

The elastic variable, Y M
15A, would then have to equal 8 to make up for the missing

cadets. This variable carries an associated penalty (µM) that would lower the objective

function value for violating the constraint.

If a constraint is exceeded, the Z elastic variables are used to reward the objective

function. The Z variable value is added to or subtracted from the constraint based

on its goal. The value is calculated differently for cases in which the goal is to be

greater than the required value and when it is to be less than the required value. For
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example, with the mandatory education constraint, the value of ZM
a is the difference of

the number of cadets assigned and the required number of cadets. For the permitted

education constraint, the value of ZP
a is the difference of the required value and the

number of cadets assigned. Each elastic Z variable has an associated reward in the

objective function. The values of the rewards are described further in Section 3.2.4.

As an algebraic example, consider the permitted education constraint (4h). As-

sume the Operations Research (15A) career field has a target of 20 cadets, and requires

less than 10% of those cadets have permitted degrees. Assume that only 1 cadet is

assigned with a permitted degree for the 15A AFSC. Then the constraint would be

1 = (0.10 · 20) + Y P
15A − ZP

15A

and since this constraint is met without the use of Y P
15A, this would simplify to

1 = 2− ZP
15A

Since the constraint is successfully met without the use of the elastic variable, it

would have a value of 0. The value of ZP
15A is equal to the difference between the left-

and right-hand sides of the constraint, and thus ZP
15A = 2 − 1 = 1. An associated

reward (λP) increases the objective function value for exceeding the desired difference

between the left- and right-hand sides of the constraint.

Constraints that are often difficult to meet and those of importance to decision

makers contain elastic variables in the updated formulation. These include the target

and overclassification constraints (4c) and (4d), the mandatory, desired and permitted

education constraints (4e)-(4h), the cadet preference constraint (4i), the source of

commissioning balance constraints (4j) and (4k), and the cadet merit constraints (4m)

and (4n).
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3.2.3 Auxiliary Variables

The values of the Y and Z variables directly influence the objective function. If

Y and Z are allowed to be greater than zero, the variables could be increased further

and further to generate an unbounded objective value. Auxiliary α variables are used

in constraints (4o) to restrict the value of the Y and Z elastic variables. These binary

variables are implemented to ensure that only one of the two variables may be greater

than zero.

As an algebraic example, consider the target constraint (4c). The constraint con-

tains two elastic variables, denoted Y T
a and ZT

a . Suppose the target for the 14N AFSC

is 100 cadets, and there are 50 cadets assigned to the AFSC. Then, the constraints

associated with AFSC targets are the following:

50 = 100− Y T
14N + ZT

14N

Y T
14N ≤M · αT

14N

ZT
14N ≤M · (1− αT

14N)

Since there are fewer cadets than are required to meet the target, the elastic

variable Y T
14N must be greater than zero. This forces αT

14N = 1, which subsequently

forces ZT
14N to be less than or equal to zero. Then the constraints simplify to the

following:

50 = 100− Y T
14N + ZT

14N

Y T
14N ≤M

ZT
14N ≤ 0

Since Y T
14N and ZT

14N are restricted to be non-negative, the value of ZT
14N must be

0, and the value of Y T
14N must be 50. If the constraint were met exactly, neither Y T

14N

nor ZT
14N would be used and would have value 0.
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As an additional example, consider the case where the target for the 13N AFSC

is 10 cadets, and there are 15 cadets assigned to the AFSC. Then, the constraints

associated with AFSC targets are the following:

15 = 10− Y T
13N + ZT

13N

Y T
13N ≤M · αT

13N

ZT
13N ≤M · (1− αT

13N)

Since there are more cadets than are required to meet the target, the elastic

variable Y T
13N is equal to zero. This forces αT

13N = 0. Then the constraints simplify to

the following:

15 = 10− Y T
13N + ZT

13N

Y T
13N ≤ 0

ZT
13N ≤M

Since Y T
13N and ZT

13N are restricted to be non-negative, the value of Y T
13N must be

0, and the value of ZT
13N must be 15 − 10 = 5. If the constraint were met exactly,

neither Y T
13N nor ZT

13N would be used and would have value 0.

3.2.4 Objective Function

The goals of AFPC and HAF/A1 have the potential to vary from year to year, and

thus the importance of each constraint can vary as well. A new objective function (4a)

is introduced to reflect the importance of each goal. This objective function consists

of the penalties and rewards from using the elastic variables, along with an additional

objective to assign cadets to their higher preferences. The values of the penalties and

rewards reflect the priority of each goal, as well as the relationships between goals.

Higher penalty and reward values indicate greater importance, while lower values

reflect lower importance. These values can be adjusted yearly to reflect shifting
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priorities and to achieve a desirable matching of cadets and AFSCs. The objective

function also considers the cadet’s order of AFSC preferences. A reward is introduced

to incentivize the objective function to assign cadets to their more preferred AFSCs

over their less preferred.

The values of the rewards and penalties play an important role in finding a de-

sirable solution for the cadet-AFSC problem. They must be considered carefully to

adequately reflect the goals of the problem for each year. The impact of the values is

explored in a sensitivity analysis, presented in Chapter IV.

3.3 Solution Methodology

The penalty and reward values of the objective function are updated iteratively to

determine the best possible weights which achieve the goals dictated by AFPC. The

penalties and rewards are assigned initial values, which ensure the elastic variables

have the same initial impact on the objective function value. Then, the values are

adjusted to account for constraint importance, assigning a higher penalty value to

those elastic variables associated with constraints that have a higher priority of being

satisfied. Once the run results have been analyzed, the weights are updated to reflect

the new balance of priority for the constraints. A “best” solution is determined in

terms of the model performance across all constraints.
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IV. Analysis and Results

As stated in Chapter III, the penalties and rewards assigned to each constraint

affect model performance and the resulting assignments. Thus, it is necessary to

evaluate various weighting schemes to determine the best possible performance given

a set of cadet and AFSC data. One year of data is evaluated using the reformulation

of AFPC’s model (N ) and the new model (N̂ ). Within the analysis and discussion,

the AFSCs are labeled as O1 – O44, and A1 – A44. The labels correspond to the size

of the AFSC target, with AFSC O1 having the largest original target value, and O44

having the smallest original target value. AFSC A1 has the largest target value out

of the adjusted data, and AFSC A44 has the smallest target of the adjusted data.

The adjustments made to the data are discussed further in Section 4.2. The resulting

assignments from the two models are compared and a “best” weighting method is

identified for a prioritization of the constraints and the given cadet and AFSC data.

All runs are completed using the Gurobi optimization solver [38] in Python with the

Pyomo package on a Lenovo Ideapad S340 with a 2.1GHz processor and 8GB of RAM.

The solver’s default relative gap terminaion criterion of 0.01% is used.

4.1 Reformulation Analysis

The reformulation of AFPC’s model (N ) is analyzed to determine its performance

against the new model (N̂ ). The target constraint is met for all AFSCs in the

reformulated model, but AFSCs O28, O37, O39, and O44 are greatly overclassified.

These AFSCs do not have overclassification limits, which explains why the number of

cadets assigned greatly exceeds the target. Figure 1 provides a visual representation

of these AFSC classifications.
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Figure 1. Target and overclassification results for model (N ) on the original dataset.
The black lines on each bar indicate the target value for that AFSC and the orange
lines indicate the overclassification limit for the AFSC. The target and overclassification
constraints are met for all AFSCs, but those AFSCs without overclassifcation limits
are overfilled.

Figures 2 and 3 present the percentile and source of commissioning balance results

for large AFSCs, respectively. Out of the 15 large AFSCs, 14 fall within desired range

for average cadet merit. AFSC O15 achieves an average merit of 0.68, which is 0.03

more than the desired lower bound, but is not a poor result, because a higher average

merit within an AFSC is better. For the source of commissioning distribution, 6 of

the 15 large AFSCs violate the desired bounds. This is because the cadet percentile

and source of commissioning balance constraints focus on a subset of AFSCs, not all

of which are large AFSCs. If the average cadet merit constraints are reformulated

to be evaluated over the large AFSCs, the model returns a feasible solution, but

the reformulation of the source of commissioning constraints results in an infeasible

model.
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Figure 2. Cadet percentile balance results for large AFSCs for model (N ) on the
original dataset. The dashed lines indicate the desired bounds for the average cadet
merit to fall within. For this solution, the desired upper bound for average cadet merit
is violated by AFSC O15, but the high merit value is still desirable.

Figure 3. Source of commissioning balance results for model (N ) on the original dataset.
The dashed lines indicate the desired bounds for the source of commissioning split to
fall within. Out of the 15 large AFSCs, 6 do not fall within the desired bounds for the
source of commissioning split.

For cadet preference, out of the 44 AFSCs, 36% are completely filled by cadets

who listed them as a preference and 4.5% are completely filled by cadets who do
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not have them as a preference. One of these two AFSCs, O34, does not have any

cadets with it as a preference. AFSC O34 is the only AFSC which no cadets list as a

preference. AFSC O40, is only preferred by 4 cadets, and the model does not assign

them to the AFSC. Three of the cadets are assigned to AFSCs for which they have

mandatory degrees, but they did not list as a preference. The fourth cadet is assigned

to their top preference, AFSC O1. The results of the cadet preference constraint are

presented in Figure 4.

Figure 4. Cadet preference results for model (N ) on the original dataset. Out of the
44 AFSCs, 2 are completely assigned to cadets non-voluntarily, while 16 are filled with
cadets that prefer them.

Model (N ) performs fairly well in all areas except the cadet preference and educa-

tion constraints. It assigns 125 cadets to AFSCs for which they are ineligible. These

AFSCs include many engineering career fields and physics. It is not reasonable to

assign ineligible cadets within these career fields due to the education required. A

cadet who does not have a background in engineering would struggle greatly in an

engineering-based career field. These assignments would cost the Air Force time and
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money to give the cadets the background needed to succeed. Though the model is

successful across the remaining constraints, the faulty assignments for 6.5% of the

total cadets is a performance concern. Within the model result, the ineligible cadets

are only assigned to AFSCs that only have mandatory degree requirements. This is

because the mandatory education constraint does not include those AFSCs that only

permit cadets with mandatory degrees. If ineligible cadets are not permitted to be

assigned, the model is infeasible. The model also does not consider the desired and

permitted education constraints of each of the AFSCs, except as part of the objective

function. This may lead to an imbalance of the preferred education background as

listed in the AFOCD. The resulting mandatory, desired and permitted degree distri-

bution for each AFSC is presented in Figure 5.

Figure 5. Education distribution results for model (N ) on the original dataset. The
ineligible assignments are undesirable.

As mentioned previously, the model does not contain constraints for the desired

and permitted education requirements. Out of the 18 AFSCs with a lower bound

42



for desired degrees, only 2 AFSCs meet the requirements. The requirements are met

for all AFSCs with an upper bound for desired degrees. The permitted education

requirements are only met by 11 of the 21 AFSCs with those requirements. The poor

performance for these requirements is understandable due to the absence of these

constraints.

4.2 New Formulation Analysis

As discussed in previous sections, elastic variables are important to the success of

the cadet-AFSC assignment model. The elastic Y variables allow for constraints to

be violated, but penalize the objective function for these violations. These variables

prevent the model from reaching an infeasible result. The elastic Z variables are

used to reward the model for exceeding constraint requirements and incentivize the

model to focus on particular constraints. The penalties and rewards are assigned to

restrict or permit the violation of each constraint and are easily adjusted to account

for changes in model objectives.

The penalty and reward values must be scaled to properly evaluate their impact on

the model’s assignments and the objective function. For both the penalty and reward

weights, the maximum achievable sum for the Y and Z variables are found. This is

done by changing the model objective function to maximize the sum of each of the sets

of elastic variables. For example, to find the maximum sum of the target Y variable,

the model is solved to maximize
∑
a∈A

Y T
a . This finds the maximum total deviation from

the AFSC target values the model may achieve. Similarly, the maximum sum for the

target Z variables is found by maximizing
∑
a∈A

ZT
a . This finds the maximum amount

the model can exceed the AFSC target values. Each of the elastic variable sets are

maximized in this manner. This is done to ensure that a variable set which can achieve

a large maximum value does not have a greater impact on the objective function than

43



a variable set with a smaller maximum value simply because more cadets and AFSCs

are present within the former constraint. This makes it so that the variable sets which

can achieve the largest values and those which can achieve the smallest values can

be considered equal in the objective function. The normalized penalties and rewards

are multiplied by the Y and Z variables in the objective function as starting weights,

and are displayed in Table 1.

Table 1. Normalized penalties and weights for each elasticized constraint

Constraint Penalty (µ) Reward (λ)
Target (4c) 0.057 0.007
Overclassification (4d) 0.046 0.008
Mandatory Education (4e) 0.123 0.009
Desired Education Lower (4f) 0.175 0.007
Desired Education Upper Bound (4g) 1 1
Permitted Education (4h) 0.046 0.062
Cadet Preference (4i) 0.091 0.014
Source of Commissioning Lower Bound (4j) 0.670 0.026
Source of Commissioning Upper Bound (4k) 0.173 0.081
Cadet Percentile Lower Bound (4m) 0.575 0.028
Cadet Percentile Upper Bound (4n) 0.747 0.033
Cadet Preference Order (4a) - 0.00007

The normalized penalties and rewards can be used to consider all of the elasticized

constraints equally. When this is done, the resulting solution for model (N̂ ) violates

the target values for 3 AFSCs, as shown in Figure 6. This run of the new model is

solved in about 50 seconds. The run requires more time since there are more trade-offs

when all constraints are considered equally.

Out of the 44 AFSCs, 9% are filled entirely by cadets who do not prefer the AFSC,

and 27% of the AFSCs are filled entirely by cadets who prefer them. The same two

AFSCs make up the completely non-voluntary assignments as in the reformulation

solution. The remaining AFSCs are filled by both cadets that prefer them and cadets

that do not. This result is displayed in Figure 7.
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Figure 6. Target and overclassification results for model (N̂ ) when all elasticized con-
straints are considered equally. The black lines on each bar indicate the target value
for that AFSC and the orange lines indicate the overclassification limit for that AFSC.
The targets for AFSCs O7, O13 and O19 are violated.

Figure 7. Cadet preference results for model (N̂ ) on the original dataset when all
elasticized constraints are considered equally. Out of the 44 AFSCs, 4 are completely
filled by cadets who do not prefer them, and 12 are completely filled by cadets who do
prefer them.
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The assignments result in all 15 large AFSCs falling within the desired bounds for

cadet percentile for large AFSCs, and 6 of the 15 large of AFSCs falling within the

desired bounds for the source of commissioning balance for large AFSCs, as shown in

Figures 8 and 9, respectively. AFSC O13 has a higher percentage of USAFA cadets

assigned to the AFSC than required, while the remaining violations are below the

desired range.

Figure 8. Cadet percentile balance results for model (N̂ ) when all elasticized constraints
are considered equally. The dashed lines indicate the desired bounds for the average
cadet merit to fall within. All large AFSCs meet the desired average cadet merit result.

The mandatory education constraint is met for 30 of the 36 AFSCs with manda-

tory education requirements. AFSC O7 only has mandatory constraints and does not

meet its target value or the mandatory education requirement by 57 cadets because

there are only 28 cadets available with the required degree for this AFSC. AFSC O19

does not meet its desired target value or the mandatory education requirement by

8 cadets. This is because there are only 70 cadets with mandatory degrees for both

AFSCs O19 and O11, but these AFSCs have a combined target of 74 cadets, all of
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Figure 9. Source of commissioning balance results for model (N̂ ) when all elasticized
constraints are considered equally. The dashed lines indicate the desired bounds for
the source of commissioning split to fall within. AFSC O14 is not assigned any USAFA
cadets, which is not a desirable result.

whom must have mandatory degrees. The remaining AFSCs only miss their require-

ments by a fractional amount. The desired education lower bound requirement is

violated by one cadet for five AFSCs. The desired education upper bound is met by

all three of the AFSCs with those requirements. The permitted education constraint

is met for 14 of the 21 AFSCs with permitted education requirements. Most of the

violations are by only a few cadets, but AFSC O8 violates the limit by 29 cadets. It

is not possible to meet all of the education requirements at the same time. This is

discussed further in Section 4.2.1. This weighting does achieve positive performance

with some constraints, such as the mandatory and desired education constraints, but

is not successful in other constraints, such as cadet preference, target, and overclas-

sification. It is not reasonable to consider each constraint equally when attempting

to find the best possible set of assignments – constraint importance must be factored
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into the weightings for the rewards and penalties of the elastic variables.

The solution in which all constraints are considered equally does not meet one

of the major constraints of the cadet-AFSC problem – the AFSC target constraint.

Thus, this solution cannot be considered reasonable for assigning cadets to AFSCs.

The following sections detail the process of developing the ideal penalty and reward

weights for the given cadet-AFSC data set. Greedy solution methods are implemented

to determine the best possible cadet assignments when focusing on particular sets of

constraints. The results of the greedy solutions, along with the priorities of HAF/A1

and AFPC, are utilized to generate penalty and reward weights to optimize the as-

signments while considering the restrictions of the dataset. The various weighting

schemes are compared and “best” solutions, provided the cadet and AFSC data, are

suggested.

4.2.1 Greedy Solutions

Greedy solution methods are explored to identify the best possible solutions when

focusing on particular constraints. These solutions are beneficial in determining the

relationships between constraints and to determine the quality of the cadet-AFSC

assignments. The majority of constraints within the model rely on the target value

of the AFSCs being evaluated. As such, the target constraint is included as part of

each of the greedy solutions. The constraints each greedy solution focuses on are as

follows:

(a) the target constraint, (4c)

(b) the target and overclassification constraints, (4c) and (4d)

(c) the target and mandatory education constraints, (4c) and (4e)

(d) the target and desired education constraints, (4c), (4f), and (4g)
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(e) the target and permitted education constraints, (4c) and (4h)

(f) the target and cadet preference constraints, (4c) and (4i)

(g) the target and source of commissioning constraints, (4c), (4j) and (4k)

(h) the target and cadet percentile constraints, (4c), (4m) and (4n)

Table 2 provides the penalty and reward values assigned to each of the constraints

for each greedy solution. These values are based on the normalization described in the

previous section so that the constraints within the greedy solutions may be considered

equally. Within the greedy solutions, the model focus is directed towards the model

penalties, and not rewards. This prevents the model incentivizing any solution which

may detract from the “best” possible performance of the greedy solutions.

Table 2. Penalty and reward scaling for greedy solutions. The bold values indicate the
rewards and penalties for the applicable constraints across each run.

Greedy Solution Focus
Penalty/ (a) (b) (c) (d) (e) (f) (g) (h)
Reward
µT 100 100 100 100 100 100 100 100
λT 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
µF 0.046 50 0.046 0.046 0.046 0.046 0.046 0.046
λF 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
µM 0.123 0.123 50 0.123 0.123 0.123 0.123 0.123
λM 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
µD 0.175 0.175 0.175 50 0.175 0.175 0.175 0.175
λD 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

µD 1 1 1 50 1 1 1 1

λD 1 1 1 1 1 1 1 1
µP 0.046 0.046 0.046 0.046 50 0.046 0.046 0.046
λP 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
µW 0.091 0.091 0.091 0.091 0.091 50 0.091 0.091
λW 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
µU 0.670 0.670 0.670 0.670 0.670 0.670 50 0.670
λU 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026

µU 0.173 0.173 0.173 0.173 0.173 0.173 50 0.173

λU 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081
µR 0.575 0.575 0.575 0.575 0.575 0.575 0.575 50
λR 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028

µR 0.747 0.747 0.747 0.747 0.747 0.747 0.747 50

λR 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
λS 7E-05 7E-05 7E-05 7E-05 7E-05 0.05 7E-05 7E-05
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Greedy solution (a) focuses the model on meeting the target constraint. This

goal is not achieved, however. The target constraint is not met for two AFSCs - O7

and O19, which can be seen in Figure 10. The target for AFSC O7 is missed by 57

cadets and the target for AFSC O19 is missed by 8 cadets. The two AFSCs have

mandatory education requirements, which suggests there may not be enough cadets

with mandatory degrees to meet the AFSC targets. The results of this greedy solution

show that it is not possible to meet the target constraints given the cadet and AFSC

data and this result is expected across the remaining runs. This is confirmed by

removing the elastic variables from the target constraint and achieving an infeasible

result. Since many of the remaining constraints rely on the target values of each

AFSC, the target values are adjusted in the data so this constraint is met for all

AFSCs. The remaining solutions are evaluated using the updated AFSC target data.

This allows for sets of weights to be developed which achieve the various goals of

AFPC. If the data was not adjusted, the results of all of the runs would be inadequate

in meeting the aforementioned priorities. The adjusted AFSC data is used, and the

AFSCs will be referenced as A1–A44, for the remainder of the analysis.

Greedy solution (b) focuses on the target and overclassification constraints. The

AFSC assignments are given in Figure 11. The overclassification constraint is not met

by three AFSCs in the solution. AFSCs A24, A30 and A33 violate their overclassifica-

tion limits by 47, 37, and 19 cadets, respectively. Additionally, AFSCs A27, A39 and

A44 are filled a large amount over their target values. However, these AFSCs do not

have overclassification limits. There are 235 more cadets than there are slots for as-

signments between the overclassification limits and targets. Regardless of the penalty

and reward weights, this results in either the AFSCs without overclassification con-

straints being largely overfilled or violations of the overclassification constraints for

the remaining AFSCs. It is unreasonable to accept model results which overfill any
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Figure 10. Target and overclassification results for greedy solution (a). The black lines
on each bar indicate the target value for that AFSC. Two AFSCs violate their desired
target values.

AFSC excessively. Alternative methods for accounting for AFSC overclassification

are explored later in the analysis.

Greedy solution (c) changes the model focus to the mandatory education con-

straint. Table 3 displays the results of the solution for the mandatory education

constraint. Two of the AFSCs, A16 and A34 violate their mandatory education re-

quirements by one cadet. When the mandatory education requirements are changed

from an elasticized constraint to a hard constraint, the model does find a feasible solu-

tion for the cadet-AFSC assignments. This shows that it is possible to meet all of the

mandatory education requirements, but that higher reward and penalty values may

need to be used. Too high of a reward or penalty value may detract from the model

performance across other constraints, so caution must be taken with weight assing-

ments. Greedy solution (d) focuses the model on the desired education constraints.

The desired education requirements are met by all AFSCs with the requirements.
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Figure 11. Target and overclassification results for greedy solution (b). The black
lines on each bar indicate the target value for that AFSC. The orange lines indicate
the overclassification limit for that AFSC. Three of the AFSCs with overclassification
limits violate said limits.

Thus, it is possible to meet all of the desired education requirements within future

solutions. Greedy solution (e) directs the model focus to the permitted education

constraint. The permitted education limits are violated by four AFSCs. As with

the mandatory education constraint, the model provides a feasible solution when the

permitted education constraint is modeled as a hard constraint. This shows that it is

possible to meet all of the permitted education requirements, but that higher reward

and penalty values may need to be used. For each of the education greedy solutions

the primary constraint is met, but one or both of the others is violated, showing that

it is not possible to meet all of the education requirements concurrently.

Greedy solution (f) focuses on achieving cadet preference within the assignments,

while still meeting the target goal for each AFSC. Specifically, the constraint forces

that each cadet be assigned to an AFSC on their preference list. Figure 12 displays
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Table 3. Mandatory education results for greedy solution (c). The “Total Available”
column indicates the number of cadets with mandatory degrees for each AFSC. The
“Minimum Required” column indicates the minimum number of cadets with manda-
tory degrees required to fill each AFSC according to the mandatory education con-
straint. The “Difference” column indicates the difference between the required number
of cadets and the number of cadets with mandatory degrees assigned by the model.
The red rows indicate that the mandatory education constraint was violated for that
AFSC. Bold rows indicate instances where the AFSC is assigned more than double the
minimum required cadets with mandatory degrees. AFSCs with a difference of zero
are omitted.

AFSC Total Available Minimum Required Assigned Difference
A1 1139 154 303 149
A3 671 10 79 69
A5 532 18 23 5
A15 68 23 34 11
A16 35 28 27 -1
A25 47 8 13 5
A33 122 5 6 1
A34 300 5 4 -1

the results of the solution in terms of cadet preference. Only 2 of the 44 AFSCs

are completely filled by cadets who do not prefer them, while 21 of the AFSCs are

completely filled by cadets who prefer them. The two AFSCs filled by cadets who

do not prefer them are assigned 9 cadets total. Overall, 83% of cadets received an

assignment that was in their top three preferences. If this constraint is changed to

a hard constraint, the model is infeasible, and thus it is not possible to meet this

constraint in further solutions.

Greedy solution (g) is concerned with the balance of USAFA and ROTC cadets

within large AFSCs. The results for the source of commissioning balance within large

AFSCs are presented in Figure 13. The desired source of commissioning balance is

not achieved for 4 of the 15 large AFSCs. When the source of commissioning balance

constraints are transformed from elasticized constraints to hard constraints, the model

is no longer feasible; so it is not possible to achieve this goal for the given set of data.

Greedy solution (h) seeks to balance the average cadet merit within large AFSCs.

Figure 14 displays the results for average cadet percentile within large AFSCs. For

the greedy greedy solution, the constraint is met for all 15 of the large AFSCs.
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Figure 12. Cadet preference results for greedy solution (f). Out of the 44 AFSCs, 2
are completely filled by cadets who do not prefer them and 21 are completely filled by
cadets who do.

Most of the greedy solutions require between 10 and 50 seconds to run. The

greedy solution for the source of commissioning distribution, (g) requires 245 seconds

to run, which is due to the inability to satisfy the constraints. The greedy solutions

generally require more time to run than the solutions in which all are within the

model focus. The greedy solutions provide decision makers with a reference for the

best possible outcomes for each of the different priorities by focusing on a subset of

constraints. This is important to developing a set of weights that meets the goals of

AFPC and HAF/A1. The desired source of commissioning bounds cannot be met

for large AFSCs given cadet and AFSC data, so this should be considered when

evaluating the final solutions. The overclassification constraints are also not met, but

should still be considered in the ideal weight formulation to spread out the assignment

of extra cadets across the AFSCs. The remaining constraints are able to be met with

their greedy solutions, but this does not mean they will be met when other constraints
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Figure 13. Cadet source of commissioning results for large AFSCs for greedy solution
run (g). Out of the 15 large AFSCs, 4 do not meet the desired source of commissioning
bounds when the model focus is on the target and source of commissioning constraints.

Figure 14. Cadet percentile results for large AFSCs for greedy solution run (h). For
this run, the desired cadet percentile bounds are achieved by all 15 large AFSCs.
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are considered. The interactions between constraints can cause the solution to worsen

in performance for individual constraints, but will provide a better overall solution

which prioritizes the goals of the model.

4.2.2 Additional Solutions

Additional solutions are developed to test the capability of the model to gen-

erate assignments that account for the prioritization of each of the goals. Table 4

contains the penalties and rewards assigned for two weighting scenarios: Run 1 and

Run 2. The priorities of the two runs are based on the previous model and infor-

mation from the AFOCD. The target and overclassification constraints must be met

to satisfy the manning requirements for each AFSC. The AFOCD [2] states, “When

distributing officer accessions across the education needs of all AFSs, [mandatory

degree] requirements are considered first until the pool of available accessions with

matching education has been exhausted. [Desired degree] accessions will then be con-

sidered, then [permitted], and so on”. Thus, the mandatory education constraints

are assigned a higher priority than the desired and permitted. The source of com-

missioning distribution and average cadet merit are prioritized towards the middle of

the group of constraints because they are requested by AFPC and were considered in

the original formulation, but are not dictated by policy. The desired and permitted

education and cadet preference constraints receive the lowest priority because they

are not included as constraints in the original model. These runs are two examples

of possible weighting scenarios; ultimately, the weights are selected by the decision

maker to achieve the desired prioritizations.

Run 1 attempts to reflect the importance of each goal as they are represented in

the original model of AFPC, shown in Appendix A. In this run, the target constraint

receives the highest penalty, followed by the overclassification and mandatory educa-
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tion constraints. The balance constraints for the source of commissioning and average

cadet merit within large AFSCs follow. The constraints for desired and permitted

education requirements, along with cadet preference, are given the lowest priority,

since they are only present in the model’s objective function, and are not constraints.

Rewards are not assigned within the first run, with the exception of the cadet pref-

erence order. The lack of rewards forces the model to focus on not violating the

elasticized constraints.

Run 2 tests a different weighting of priorities, where the mandatory education

and overclassification constraints are considered to be as important as the target

constraints. The source of commissioning distribution and average cadet percentile

balance constraints are prioritized next, and then the remaining constraints. The

run also tests the impact of the inclusion of rewards for the source of commissioning

and average cadet merit, desired and permitted education, and cadet preference con-

straints. Both Run 1 and Run 2 require less than 30 seconds to find a feasible set of

assignments. This is a similar result to the reformulated model (N ). Assigning larger

weights across each of the constraints allows the model to come to a solution in less

time.

The greedy solutions identified that the overclassification constraint will always be

violated within the solutions, which is expected due to a higher number of cadets than

available assignments. Additionally, those AFSCs without overclassification limits

will be assigned the majority of the extra cadets. To account for these problems,

two changes are made to the model inputs: the penalty for overclassification is scaled

based on the target size of each AFSC and overclassification limits are established

for those AFSCs that did not originally have them. These changes are made in an

attempt to spread out the assignment of the extra cadets across AFSCs, as this is a

more realistic solution than the model assigning all extra cadets to a few AFSCs.
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Table 4. Penalty and reward scaling for additional solutions.

Penalty, Reward Run 1 Run 2
µT, λT (100, 0) (100, 0)
µF, λF (75, 0) (100, 0)
µM, λM (75, 0) (100, 0)
µD, λD (25, 0) (25, 2.5)

µD, λD (25, 0) (25, 2.5)
µP, λP (25, 0) (25, 2.5)
µW, λW (25, 0) (25, 2.5)
µU, λU (50, 0) (50, 5)

µU, λU (50, 0) (50, 5)
µR, λR (50, 0) (50, 5)

µR, λR (50, 0) (50, 5)
λS 7E-05 7E-05

The results of Run 1 meet all target constraints, but violate the overclassification

limits for 5 of the 44 AFSCs. AFSC A1 is assigned 297 more cadets than allowed by

its overclassification maximum. The remaining violations are smaller in comparison.

Figure 15 displays the classifications of each AFSC. The overclassification of cadets

to AFSC A1 is an undesirable result and is influenced by the mandatory education

requirements for the AFSC and the high number of cadets who prefer the AFSC.

The overall assignments result in 51% of cadets receiving an AFSC that is in

their top three preferences. Figure 16 presents the results of Run 1 in terms of cadet

preference. Out of the 44 AFSCs, 4 are completely filled by cadets who do not prefer

them, and 8 are completely filled by cadets who do prefer them. Of the 4 AFSCs

assigned to cadets non-voluntarily, only one does not have any cadets which prefer

it. This is not a good result for cadet preference, as greedy solution (f) showed that

it is possible to meet the targets for each AFSC and assign a majority of cadets to

an AFSC which they prefer. The greedy solution resulted in 14 more AFSCs being

filled by cadets who prefer them, and has 32% more cadets assigned to one of their

top 3 preferences.
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Figure 15. Target and overclassification results for Run 1. The black lines on each bar
indicate the target value for that AFSC. The orange lines indicate the overclassification
limit for that AFSC. AFSC A1 is filled more than double its overclassification limit.

Figure 16. Cadet preference results for Run 1. Out of the 44 AFSCs, 4 are completely
filled by cadets who do not prefer them and 8 are completely filled by cadets who do.
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The average cadet merit for each large AFSC falls within the desired range for

Run 1. This is a positive result because it is as good as greedy solution (h). Figure 17

presents these results. Figure 18 presents the source of commissioning distribution for

large AFSCs. As expected, the desired bounds are not achieved by all AFSCs. This

performance is worse than that of greedy solution (g), however, because 2 AFSCs are

not assigned any USAFA cadets and a variety of cadet background is desired.

Figure 17. Cadet percentile results for large AFSCs for Run 1. The dashed lines
indicate the desired bounds for the average cadet percentile to fall within. For Run 1,
all large AFSCs achieved the desired result for average cadet percentile.

The mandatory education requirements of AFSCs A16 and A34 are violated, each

by one cadet. This aligns with what was seen in greedy solution (c), but it is known

from the greedy solution analysis that it is possible to meet all mandatory education

requirements. It may be possible to meet these requirements by assigning a higher

penalty or reward for the mandatory education constraints. The desired education

requirements are achieved for all of the corresponding AFSCs. This follows the result

from greedy solution (d). The permitted education requirements are violated for 4
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Figure 18. Cadet source of commissioning results for large AFSCs for Run 1. The
dashed lines indicate the desired range for the source of commissioning split to fall
within. For Run 1, 5 AFSCs do not achieve the desired source of commissioning
distribution, and 2 AFSCs have no USAFA assignments.

AFSCs. The largest violation comes from AFSC A7, which is assigned 43 more cadets

with permitted degrees than allowed by the education requirements. The remaining

violations are small in comparison.

While the results from Run 1 are successful in many of the constraints, the over-

classification of AFSCs is a major problem for the model. It is not mathematically

incorrect for the model to assign the cadets as it is, but the results are not practical

for the actual assignment of cadets. The extra cadets should be assigned across many

career fields as opposed to a few. AFPC could encourage the model to assign cadets to

those career fields willing to accept extra assignments by increasing the target reward,

or decreasing the overclassification penalty, for those career fields. Additionally, the

overclassification penalties may be raised for those career fields which do not wish to

accept additional assignments.

61



The individual overclassification penalties and rewards assigned to each AFSC for

Run 1 are adjusted to encourage the model to spread out the cadet-AFSC assign-

ments. The penalties are raised for AFSCs that are violating their overclassification

limits, such as A1, A6, A8, and A23, while the target rewards are raised for AFSCs

which are not meeting their limit, such as A3, A4, A5, A9, and A15. The target

rewards are scaled in the same way as the overclassification penalties. If the target

rewards and the overclassification penalties for the aforementioned AFSCs are raised

to 150, the classification result in Figure 19 is achieved. The assignments to AFSCs

A1, A6, A8 and A23 decrease, while the assignments to AFSCs A3, A4, A5, A9 and

A15 increase. The number of cadets assigned to AFSC A1 is still more than double

its overclassification limit, which is undesirable, but the decrease shows that adjust-

ing the individual penalties and rewards has a positive impact on the results of the

overclassification constraint. Another remedy to this may be to impose an overall

upper limit on assignments for each AFSC.

The resulting set of assignments has 52% of the total cadets assigned to an AFSC

which is in their top 3 choices, but only 7 of the 44 AFSCs completely filled by cadets

who prefer them. The average cadet merit balance is still achieved for all of the large

AFSCs, and the source of commissioning distribution improves for large AFSCs, with

only one of the AFSCs not having any USAFA cadet assignments. The performance

for the mandatory, desired and permitted education requirements remains the same

as before the individual penalties and rewards were introduced.

Run 2 also meets the required target goals, but has problems with overclassifi-

cation of AFSCs. In this instance, 6 of the 44 AFSCs are overclassified past their

upper limit for assignments, but 19 of the 44 AFSCs are assigned fewer cadets than

their overclassification limit. The largest violations of the overclassification constraint

come from AFSCs A1 and A14, with A1 having 186 more cadets assigned than its
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Figure 19. Target and overclassification results for Run 1 with individual overclassifica-
tion penalties and target rewards. The black lines on each bar indicate the target value
for that AFSC. The orange lines indicate the overclassification limit for that AFSC.
The spread of assignments are improved from Figure 15.

overclassification limit, and A14 having 132 more cadets than its overclassification

limit. This solution is an improvement from the first run because the overclassifica-

tions are better spread across AFSCs, but measures must still be taken to prevent

the large overclassifications seen in AFSCs A1 and A14.

Run 2 results in 48% of the cadets receiving an assignment in their top 3 choices

preferences, and 10 of the 44 AFSCs being completely filled by cadets who prefer

them. While not all cadets are getting a preference that is in their top 3, more

AFSCs are meeting the cadet preference goal in this run over Run 1. Figure 21

displays the preference distribution of the cadets across each AFSC.

As with Run 1, the average cadet merit constraints for large AFSCs are met with

Run 2’s penalty and reward weights. In this run, the desired source of commissioning

distribution is not met for 5 of the 15 large AFSCs, but only 1 AFSC has no USAFA
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Figure 20. Target and overclassification results for Run 2. The black lines on each bar
indicate the target value for that AFSC. The orange lines indicate the overclassification
limit for that AFSC. The targets are met for all AFSCs, but the overclassification limits
are violated for 6 AFSCs.

cadet assignments. This solution is an improvement from the first run, but the

result is still undesirable since a variety in cadet background is desired within the

large AFSCs. Figures 22 and 23 present the results of the balance constraints. The

education requirement results for Run 2 are equivalent to those of Run 1. Assigning

individual penalties and rewards to those AFSCs which are violating the constraints

may improve their performance, but may cause the cadet assignments to shift.

The results of Run 2 show that increasing the penalties of the overclassification

and mandatory education constraints while introducing rewards for all but the most

important constraints results in an improved solution from what was achieved in

Run 1. The overclassification of AFSCs still negatively impact the model results, as

it is not reasonable to assign almost double the number of requested cadets to an

AFSC. Increasing the overclassification penalties for AFSCs A1, A8, A14 and A23
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Figure 21. Cadet preference results for Run 2. Out of the 44 AFSCs, 4 are completely
filled by cadets who do not prefer them, and 10 are completely filled by cadets who do
prefer them.

and decreasing the respective penalties for those AFSCs which are not being filled

to their overclassification limit results in the classifications shown in Figure 24. The

classifications decrease for those AFSCs with increased penalties. However, it can

be seen that the assignments from the 4 AFSCs are just shifted to other AFSCs

with the penalty change. As more individual penalties are increased or decreased,

the assignments continue to shift from AFSC to AFSC until the model reaches a

solution which spreads the AFSC assignments enough to say the overclassifications

are reasonable. The decision for what assignments are considered reasonable would

come from AFPC, considering those career fields which are willing to accept the extra

assignments and which are not. It is also important to note that as the model is forced

to shift assignments via the penalty changes, the performance of other constraints may

decline. Additionally, forcing the model assignments by drastic changes in penalties

reduces the impact and functionality of model (N̂ ). If the penalties and rewards are
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Figure 22. Cadet percentile results for large AFSCs for Run 2. The dashed lines
indicate the desired bounds for the average cadet percentile to fall within. For Run 2,
all AFSCs meet the desired bounds for average cadet percentile.

adjusted too much, the user essentially determines the classification of each AFSC

for the model. The purpose of the model is to generate a set of assignments which

consider the prioritization of the goals dictated by AFPC and HAF/A1 when the

inputs for the model may generate an infeasible result, and excessive user input over

the rewards and penalties detracts from this purpose.
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Figure 23. Cadet source of commissioning results for large AFSCs for Run 2. The
dashed lines indicate the desired range for the source of commissioning split to fall
within. Out of the 15 large AFSCs, 5 do not meet the desired dstribution of USAFA
and ROTC cadets, and one does not have any USAFA assignments.

Figure 24. Target and overclassification results for Run 2 with individual overclassifi-
cation penalties. The black lines on each bar indicate the target value for that AFSC.
The orange lines indicate the overclassification limit for that AFSC. The extra cadets
are more spread out than in Figure 20, but there are still AFSCs filled largely past
their classification limits.
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4.3 Analytic Conclusions

The reformulation of AFPC’s model (N ) and the new model (N̂ ) were analyzed

to determine an ideal weighting scheme to achieve the goals from AFPC. Model (N )

achieves the goals of AFPC, but permits ineligible cadets to be assigned to AFSCs.

These assignments are detrimental to both the cadet and the career field, as the

training process for a cadet who does not have the required educational background

is tedious and costly. Though the model does not provide a desirable solution, its

weaknesses highlight areas of improvement for model (N̂ ). The greedy solutions

alone do not meet all of the goals of AFPC, but inform the user of the best possible

solutions for each of the elasticized constraints. The overall best model performance

is achieved when the model is focused on the target, overclassification, and mandatory

education constraints, given the cadet and AFSC data used for analysis. However, it

is necessary to receive further input from decision makers to determine which goals

are most important in selecting the optimal weighting scheme. The model attempts

to balance conflicting priorities, but decision makers must approach the assignments

process with a clear prioritization of goals, since it is not likely that all will be achieved.

Individual penalty and reward assignments grant the user control over the model’s

assignment of cadets to AFSCs and promote a more even spread of extra assignments.

However, this approach must be used with caution, as adjusting the rewards and

penalties too far leads to a result which is hand-picked by the user and decreases the

functionality of the model. Higher overclassification limits should be imposed where

possible to spread out cadet assignments to AFSCs.

The guidelines from HAF/A1 determine the model focus. These priorities shift

based on retention, officer performance, and other factors. The model rewards and

penalties can be updated to address the shifts. The analysis described in this chapter

may be performed each year to inform the model weights. The greedy solutions pro-
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vide a baseline for the performance of each constraint and additional runs determine

the necessary trade-offs to find the best weighting option for the year at hand. The

presented analysis results are unique to the given cadet and AFSC data, but the

techniques may be applied to each year of data to determine the best possible model

weightings.
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V. Conclusion and Recommendations

The cadet-AFSC problem is a multidimensional assignment problem that must

balance the priorities of HAF/A1 and AFPC with the background and preferences of

the cadets being assigned. A mixed integer-linear programming formulation, N̂ , was

developed as a tool for determining the optimal assignments while accounting for the

necessary trade-offs between priorities. The assignment process is not static, with

new goals taking precedence each year, and the design of the formulation is intended

to account for the dynamic nature of this problem.

5.1 Model Impact

The elastic constraints introduced in the new formulation allow certain priorities

to be violated while still generating a set of cadet-AFSC assignments. The model can

match cadets to AFSCs in instances where the problem would otherwise be infeasible.

This is of value to AFPC in the assignments process, as well as the penalties and

rewards associated with the elasticized constraints.

The penalties and rewards are adjusted to reflect the importance of each goal to

AFPC and HAF/A1. Penalties prevent the model from violating constraints while

rewards incentivize the model towards particular solutions. New data and priorities

are easily addressed through model modification. The end user of this model can

quickly evaluate a variety of solutions in which the weighting of priorities is shifted.

The model is quick to adapt to changing data and priorities and allows for a more

thorough analysis of the cadet-AFSC assignment solution space.
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5.2 Future Research and Recommendations

A potential area for improvement within the model is the assignment of individ-

ual rewards and penalties for all constraints. This allows the end user to tailor the

results of the model towards goals of specific AFSCs and easily achieve desired con-

straint performance. Additionally, the overclassification, average cadet merit, and

desired source of commissioning balance constraints may be applied to all AFSCs.

Combining this with the previous suggestion may improve model performance. A

nonlinear or piecewise model can be developed to adjust the values of the penalties

and rewards as certain constraints are met, to avoid exceeding the overclassification

limits of individual AFSCs.

A tiered solution approach may also benefit the cadet-AFSC assignment process

with the new model. In this approach, the model would be solved with the tar-

get, overclassification and mandatory education requirements as hard constraints. A

dummy AFSC would be included for extra cadets to be assigned to once the target

and overclassification requirements are met. Then, the results of the model, except

for the dummy variable assignments, are fixed so that the cadet-AFSC pairs are not

affected when the model is run again. After this is done, the model is run again, with

the hard constraints elasticized, so that the additional cadets may be assigned.

The cadet-AFSC problem may also be approached using other solution methods,

such as those described in Chapter II. The formulation developed through this re-

search may serve as an entry point for exploring other methods. The penalty and

rewards analysis may be used to develop a solution which is comparable to that of

other models.

The goals of AFPC and HAF/A1 must be clearly prioritized before generating the

cadet-AFSC assignments from the model. The greedy solutions may first be evaluated

to determine the best possible performance for each constraint and may inform the
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decision makers of what can be achieved before assigning the model weights. If the

importance of each goal is not expressed prior to generating the assignments, the

model weights may be adjusted in a way that finds an attractive solution for the

model that does not align with the desires of AFPC and HAF/A1. The goals shift

in priority from year to year and clear guidance is necessary to generate the best

possible assignments for the cadet-AFSC pairs.
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Appendix A. AFPC’s Original Integer Program Formulation

1.1 AFPC’s Original Formulation

Sets and Indices

i Cadets, I = 1, . . . , n

j AFSCs , J = 1, . . . ,m

g Large AFSCs, G ⊆ J

Parameters Units

mij 1 if cadet i is mandatory for AFSC j, 0 otherwise [-]

ui 1 if cadet i is a USAFA graduate, 0 otherwise [-]

pi percentile for cadet i [fraction]

cij utility gained by assigning cadet i to AFSC j [fraction]

tj target for AFSC j [fraction]

fj factor by which we can overclassify AFSC j [fraction]

dj mandatory target accession rate for AFSC j [fraction]

Decision Variables Units

Xij 1 if cadet i is assigned to AFSC j, and 0 otherwise [-]
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Formulation

maximize
∑
i∈I

∑
j∈J

cijXij (5a)

subject to:
∑
j∈J

Xij = 1, ∀i ∈ I (5b)

∑
i∈I

Xij ≥ tj, ∀j ∈ J (5c)

∑
i∈I

Xij ≤ fjtj, ∀j ∈ J (5d)

∑
i∈I

mijXij ≥ djtj, ∀j ∈ J (5e)

∑
i∈I

uiXij ≥ 0.2tj, ∀j ∈ G (5f)

∑
i∈I

uiXij ≤ 0.4tj, ∀j ∈ G (5g)

∑
i∈I

piXij ≥ 0.35tj, ∀j ∈ G (5h)

∑
i∈I

piXij ≤ 0.65tj, ∀j ∈ G (5i)

Xij ∈ {0, 1}, ∀i, j ∈ I,J (5j)

Constraint (5b) permits each cadet to only be assigned to one AFSC. Con-

straint (5c) ensures that the targets for each AFSC are met and constraint (5d)

allows certain AFSCs to be overclassified by a certain factor. Constraint (5e) spec-

ifies the mandatory education constraints for the assignment of cadets to AFSCs.

Constraints (5f) and (5g) force a specified distribution of USAFA cadets within cer-

tain AFSCs. Constraints (5h) and (5i) balance cadet merit across certain AFSCs.

Constraint (5j) specifies that the decision variable is binary.
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1.2 AFPC’s Original Objective Function

The utility function applied in the objective function in the integer program for-

mulation is as follows:

When AFSC j is a preference for cadet i:

cij =



(10pi · weight) + 250 if M

(10pi · weight) + 150 if D

10pi · weight if P

−50000 otherwise

(6)

When AFSC j is not a preference for cadet i:

cij =



100pi if M

50pi if D

0 if P

−50000 otherwise

(7)
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