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Abstract

Members of the armed forces greatly rely on having an effective and efficient

medical evacuation (MEDEVAC) process for evacuating casualties from the battlefield

to medical treatment facilities (MTF) during combat operations. This thesis examines

the MEDEVAC dispatching problem and seeks to determine an optimal policy for

dispatching a MEDEVAC unit, if any, when a 9-line MEDEVAC request arrives,

taking into account triage classification errors and the possibility of having blood

transfusion kits on board select MEDEVAC units. A discounted, infinite-horizon

continuous-time Markov decision process (MDP) model is formulated to examine such

a problem and compare generated dispatching policies to the myopic policy of sending

the closest available unit. We utilize an approximate dynamic programming (ADP)

technique that leverages a random forest value function approximation within an

approximate policy iteration algorithmic framework to develop high-quality policies

for both a small-scale problem instance and a large-scale problem instance that cannot

be solved to optimality. A representative planning scenario involving joint combat

operations in South Korea is developed and utilized to investigate the differences

between the various policies. Results from the analysis indicate that applying ADP

techniques can improve current practices by as much as 29% with regard to a life-

saving performance metric. This research is of particular interest to the military

medical community and can inform the procedures of future military MEDEVAC

operations.
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ANALYZING THE IMPACT OF BLOOD TRANSFUSION KITS AND TRIAGE

MISCLASSIFICATION ERRORS FOR MILITARY MEDICAL EVACUATION

DISPATCHING POLICIES VIA APPROXIMATE DYNAMIC PROGRAMMING

I. Introduction

1.1 Motivation and Background

Members of the armed forces greatly rely on having an effective and efficient

emergency medical service (EMS) system for evacuating combat casualties from the

battlefield to medical treatment facilities (MTFs). Unfortunately, the number of com-

bat casualties that occur in today’s wars is still high. For example, the United States

military has seen more than 20,000 service members wounded in combat throughout

operation Enduring Freedom and nearly 32,000 service members wounded during op-

eration Iraqi Freedom (DCAS, 2021). To further exacerbate this problem, the number

of dedicated military resources available to evacuate combat casualties is limited. As

such, it is vital for senior military leaders and medical planners to carefully manage

the use of dedicated evacuation assets to minimize the negative impacts resulting

from casualty events (e.g., loss of limb or life).

The United States (U.S.) Army has two options for evacuating combat casual-

ties: (1) casualty evacuation (CASEVAC) and (2) medical evacuation (MEDEVAC).

Although both options utilize a variety of platforms for evacuating casualties (e.g.,

ground and aerial vehicles), MEDEVAC platforms come equipped with medical pro-

fessionals on board to administer life-saving treatments to the casualty while en route

to the MTF whereas CASEVAC platforms do not come equipped with medical profes-
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sionals. Current Army Health System policy mandates the use of MEDEVAC assets

over CASEVAC except for when MEDEVAC assets are overwhelmed or when the

injury sustained is less severe (Department of the Army, 2019).

Both ground and aerial platforms are utilized for MEDEVAC, but the majority of

MEDEVAC missions utilize helicopters. Helicopters are able to fly in direct paths to

casualty collection points (CCPs), ultimately reducing the time between injury and

surgical intervention, which is vital to increasing the probability of survival (Eastridge

et al., 2012). The U.S. Army utilizes the HH-60M Black Hawk, which is capable of

providing medical support such as expeditious delivery of whole blood, biological, and

medical supplies to meet critical requirements; rapid movement of medical personnel

and accompanying equipment to meet the requirement for mass casualty situations,

reinforcement, or emergency situations; and movement of patients between hospitals,

aeromedical staging facilities, hospitals ships, casualty receiving and treatment ships,

seaports, and railheads (Department of the Army, 2019). Black Hawks are able to

transport groups of 11 fully-equipped soldiers at a time while cruising at a speed of

282 kilometers per hour (USAASC, 2021). Such capabilities, along with a launch time

of less than 7 minutes, enable HH-60M Black Hawk helicopters to evacuate casualties

to MTFs efficiently and provide adequate treatment simultaneously (Jenkins, 2017).

The U.S. Navy utilizes the MH-60R Seahawk helicopter to execute their sea control

missions, to include MEDEVAC operations (Hernandez et al., 2010). Although the

Seahawk is primarily used for anti-submarine warfare, it is still equipped with a

rescue hoist for lifting casualties to the helicopter and can carry up to 5 additional

passengers. With the ability to carry external fuel tanks for extended range, the

Seahawk is able to transport combat casualties to MTFs while maintaining a cruising

speed of 234 kilometers per hour (U.S. Naval Academy, 2021).

While traditional medical facilities are stationary, the U.S. Navy has the capability

2



to bring medical services wherever they deploy. The U.S. Naval Ship (USNS) MERCY

(T-AH 19) and the USNS COMFORT (T-AH 20) are both U.S. Navy hospital ships

that provide mobile, flexible, and responsive medical and surgical care (Department

of the Navy, 2019). The T-AHs are designed to be an afloat MTF, capable of housing

up to 1000 patients. Each of these ships have 12 fully-equipped operating rooms,

digital radiological services, a medical laboratory, a pharmacy, an optometry lab, a

CAT-scan, and two oxygen producing plants. A fully manned hospital ship consists of

approximately 1300 personnel and, when operating at that level, it is comparable to a

continental U.S. general hospital. Furthermore, a helicopter landing deck is available

on each ship with sufficient space for military helicopters to land (Military Sealift

Command, 2020).

The MEDEVAC system is complex and should be carefully designed and devel-

oped to maximize effectiveness and efficiency. Several important decisions include

the location of helicopters and CCPs as well as the evacuation dispatching policy,

which dictates which (if any) unit to task to service evacuation requests. Helicopters

should be strategically positioned in a manner that facilitates maximum coverage of

the CCPs but also minimizes the time to evacuate the casualties to an appropriate

MTF. The dispatching policy is integral for handling the varying levels of MEDEVAC

requests that enter a time-sensitive system and is the primary focus of this thesis. A

complex policy may take longer to implement and/or cause confusion, therefore simple

policies may be preferred, such as the currently practiced myopic policy, which entails

dispatching the closest-available MEDEVAC unit to service an incoming request, re-

gardless of the triage level (e.g., urgent, priority, and routine). Unfortunately, simple

policies are typically suboptimal, especially in high-intensity scenarios (i.e., when the

number of request entering the system in a short amount of time is high). Deter-

mining optimal and/or high quality dispatching policies for military MEDEVAC is

3



commonly referred to as the MEDEVAC dispatching problem.

The MEDEVAC dispatching problem has been thoroughly researched over the past

decade (e.g., Rettke et al. (2016); Robbins et al. (2020); Jenkins et al. (2020b); Jenkins

et al. (2021a); Dennie (2021)), but most authors assume the reported triage level is

accurate, which is not always true. Increased stress levels in a deployed environment

can affect the decision-making process, including the ability to properly triage a

casualty (Porcelli & Delgado, 2017). Graves et al. (2021) researched the MEDEVAC

dispatching problem while accounting for errors in the true classification of a casualty

and incorporating blood transfusion kits on board select MEDEVAC units. As such,

this thesis builds on their work, taking into account the probability the true triage

classification of a casualty may not be what was reported, as well as including blood

transfusion kits. The inclusion of blood transfusion kits on MEDEVAC units allows

for casualties to receive vital medical treatment prior to arriving at an MTF, thereby

giving them a higher probability of survival. This research also accounts for admission

control as in past works (e.g., Jenkins et al. (2018) and Robbins et al. (2020)). With

admission control, the dispatching authority has the freedom to choose if an incoming

request will be serviced or not based on the data provided from the MEDEVAC

request. If the decision is to service the request, the dispatching authority determines

which available asset to send, diverging from the common myopic policy of sending

the closest available unit.

A discounted, infinite-horizon Markov decision process (MDP) model is formu-

lated to determine how to dispatch MEDEVAC assets in response to service requests

with an objective of maximizing the expected total discounted reward generated by

the system. The system earns a reward when a MEDEVAC unit is dispatched to

service a MEDEVAC request based on the response time and triage level. A notional

scenario, based in South Korea, is developed to provide an appropriate context for
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comparing dispatching policies. Two problem instances (e.g., small and large) are

created from the scenario with the smaller problem being solved to optimality utiliz-

ing exact dynamic programming methods. Due to the cardinality of the state-space,

the policy for the larger scaled problem is determined by using approximate dynamic

programming (ADP) techniques and compared against the myopic policy.

1.2 Organization of the Thesis

The remainder of this thesis is structured as follows. Chapter II reviews the lit-

erature pertaining to the MEDEVAC dispatching problem. Chapter III details the

MEDEVAC dispatching problem as well as the MDP and ADP formulations devel-

oped to solve it. Chapter IV examines the efficacy of the MDP and ADP solution

approach on a synthetically generated notional scenario based on high-intensity com-

bat operations in South Korea. Chapter V summarizes key points from this thesis

and provides areas for future research.
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II. Literature Review

Research related to this thesis involves emergency medical services (EMS) in both

the civilian and military communities. As such, this literature review has two com-

ponents: (1) civilian EMS, and (2) military MEDEVAC.

2.1 Civilian EMS

EMS research consists of, but is not limited to, facility location (Baker et al.,

1989), dispatching policies for ambulances (Bandara et al., 2014), and fleet size for

EMS vehicles (Lim et al., 2011). Solving these problems are complicated by stochastic

elements that must be addressed (e.g., the location of a service request). Modeling

techniques used in this field of research include Markov decision process (MDP),

simulation, and mathematical programming (Jenkins et al., 2020c).

The myopic dispatching policy in most EMS and MEDEVAC systems simply

dispatches the closest available unit. This policy is easy to implement but does not

always render optimal results (Kuisma et al., 2004). When considering the various

factors that determine the amount of time it takes to travel from one location to

another (e.g., road congestion, traffic accidents, road maintenance), dispatching the

closest-available unit may lead to sub-optimal results (Mukhopadhyay et al., 2019).

Mukhopadhyay et al. (2019) approach this problem by utilizing real-time streaming

data to update their online incident model. The authors employ a Monte-Carlo Tree

Search in a Semi-Markov decision process (SMDP) framework to make the problem

computationally tractable and find high-quality solutions, which lead to significant

improvements in responder dispatching policies when compared to a myopic approach.

Another vital detail that can be overlooked is the capacity of an emergency room.

While minimizing the time it takes a patient to get from the point-of-injury to the
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hospital is important, getting them to surgical intervention is more critical. This

process may be delayed when an ambulance arrives to a hospital with an injured

patient only to wait because all emergency rooms are occupied, a problem known as

ambulance offload delay (AOD) (Almehdawe et al., 2013). This delay not only affects

the patient but also the availability of that ambulance to service other EMS requests.

Li et al. (2021) formulate a discrete time, infinite-horizon, discounted MDP model

to determine when to send certain patients to out-of-region emergency departments,

enduring a longer travel time not only to gain a shorter offload time but to avoid

over burdening the emergency department. Their results suggest that both the EMS

system and patients benefit from the policy determined by their model.

Triage classification is also an important detail to consider when making dis-

patching decisions. EMS dispatching decisions are made with an assumption that the

risk or injury severity (i.e., triage level) of the patient is known by the dispatcher.

The reported classification may be falsely reported, which may lead to a different

dispatching decision. McLay & Mayorga (2013) looked at developing an optimal dis-

patching policy for ambulances knowing that the information relayed to the dispatcher

is not always correct. They modeled this problem with an infinite-horizon, average

reward MDP to maximize the long-run average customer utility over the true cus-

tomer risk levels. Their results revealed that it is not always optimal to dispatch the

closest-available ambulance even for patients classified as high risk when considering

classification errors.

Performance measures evaluate the efficacy of a given system and as such need

to be established in a manner that directly assesses how well a system achieves its

goals. The objective of any EMS system is to ultimately save the lives of the patients

they are treating. EMS system performance is normally measured in terms of a

response time threshold (RTT), which indicates the proportion of calls serviced within
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a given timeframe (Dennie, 2021). Although RTTs are easy to obtain and understand,

Bandara et al. (2012) propose using a performance measure that more closely relates

to patient outcomes. The authors formulate a discounted, infinite-horizon MDP to

generate dispatching policies based on the severity of the call and evaluate them in

terms of the patient’s survivability instead of response times. The results show an

increase in the average survival probability of the patients for dispatching policies

that take into account the severity of incoming calls. Furthermore, results indicate

that more lives can be saved, while maintaining the same inventory of paramedic

units, by implementing the optimal dispatching policy.

One of the decisions that dispatching authorities face is deciding which ambulance

to dispatch to respond to an emergency call. Schmid (2012) examines this decision

as well as ambulance relocation, which consists of determining where to relocate an

ambulance after it has serviced a request. Although an ambulance will typically return

to its home base, Schmid (2012) relaxes this constraint to improve the performance

of the system and its capability to serve emergency requests. The author utilizes

approximate dynamic programming (ADP) techniques on real-world data to compute

high-quality solutions. By deviating from the norm of dispatching the closest-available

ambulance and relocating back to home-base, the ADP model renders an improvement

of 12.89% in the average response time over the myopic policy.

2.2 Military MEDEVAC

Bradley et al. (2017) note that military medical research has been conducted for

over a century. MEDEVAC research in particular has been heavily looked into over

the past decade (e.g., Malsby III et al. (2013), Keneally et al. (2016), Rettke et al.

(2016), Jenkins et al. (2018), Jenkins (2019), Jenkins et al. (2020a)). Although the

military community benefits from research conducted around civilian EMS response
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systems, there are differences unique to the armed forces that necessitate further

analysis (Wooten, 2021). For instance, injuries sustained from improvised explosive

devices (IEDs) have produced injury patterns never seen before (Bradley et al., 2017).

Other differences include determining MEDEVAC unit locations and MTF locations

as well as accounting for when a casualty is in a high threat area, thereby necessitating

an armed escort to accompany the MEDEVAC unit (Keneally et al., 2016).

Early works of MEDEVAC research leveraging an MDP framework include those

by Keneally et al. (2016) and Rettke et al. (2016). Keneally et al. (2016) solve their

instance of the MEDEVAC dispatching problem by using a relative value iteration

dynamic programming algorithm on combat scenario examples based in Afghanistan.

The authors use the steady-state system utility as a performance metric to compare

different dispatching policies. Their results indicate that an optimal policy yields a

higher steady-state utility by 0.01 when compared to a myopic policy and 0.09 when

compared to an intra-zone policy (i.e., MEDEVAC units are restricted to operate in

specific zones).

Jenkins et al. (2018) contribute to this area of research by incorporating admission

control and queuing, allowing the dispatching authority the flexibility to accept or

reject an incoming MEDEVAC request based on the current state of the system

(i.e., MEDEVAC unit availability and request status). This capability permits the

dispatching authority to reserve a MEDEVAC unit for when a higher precedence

request arrives. Utilizing an MDP framework, a discounted, infinite-horizon model

is formulated to solve this problem. The results from this research illustrate that

a myopic policy of sending the closest-available unit is not always optimal. Instead,

examining the entire state of the system, with admission control, proves to be optimal

when the flight speed of a helicopter is not at full potential due to various factors

(e.g., atmospheric, environmental, or mechanical issues) or when intra-zone policies
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are enforced.

Jenkins et al. (2021b) further advance the work surrounding MEDEVAC problems

by examining the MEDEVAC dispatching, preemption-rerouting, and redeployment

(DPR) problem. The authors include fuel constraints within their model, which

combined with the inclusion of DPR, yields a higher fidelity model and allows for im-

proved decision making. Another distinguishing component of Jenkins et al. (2021b)

from other MEDEVAC dispatching problems is the utilization of a support vector

regression value function approximation scheme within an approximate policy iter-

ation algorithmic framework. Results reveal that as the rate at which MEDEVAC

requests enter the system increases, the performance gap between the ADP policy and

the myopic policy (i.e., the currently practiced closest-available dispatching policy)

increases substantially.

Sequential resource-allocation decision-making for MEDEVAC systems involves

balancing when to dispatch a helicopter in response to a MEDEVAC request knowing

that future requests are highly probable. This uncertainty complicates the decision

of which action to take to maximize the reward of the system. As such, MDP-

models are common in this area of research (e.g., Jenkins et al. (2021a), Robbins

et al. (2020)). Jenkins et al. (2021a) state that although MDP models are well-

suited for such problems, high dimensionality and uncountable state space render

classical dynamic programming solution methods intractable. Instead, Jenkins et al.

(2021a) resort to ADP solution methods to generate high-quality dispatching policies

relative to the myopic dispatching policy. Utilizing an approximate policy iteration

algorithmic framework, the authors compare two distinct ADP solution methods.

The first algorithm uses least-squares temporal differences (LSTD) learning for policy

evaluation, whereas the second algorithm uses neural network (NN) learning.

In like manner, Robbins et al. (2020) implement an approximate policy iteration
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algorithm to solve their MEDEVAC problem instance; however, their algorithm uti-

lizes a multiple level aggregation scheme to approximate the post-decision state value

function. Their modeling technique adopts a discrete zone tessellation scheme (e.g.,

6-zone, 12-zone, and 34-zone) that conforms with the current practices in the U.S.

military rather than a continuous-time model such as Jenkins et al. (2018) and Rettke

et al. (2016). The results from the ADP model yields improvements as high as 12%

over the myopic policy in the 34-zone case.

Wooten (2021) explores the scenario of adding a standby unit to the MEDE-

VAC dispatching problem. This provides the flexibility to relocate the standby unit

as needed to staging areas with a higher influx of MEDEVAC requests, allowing

for faster response times. Wooten (2021) formulates a discounted, infinite-horizon

continuous-time MDP model and generates an optimal solution via policy iteration.

She also applies an ADP technique that leverages a least squares policy evaluation

value function approximation scheme within an approximate policy iteration algorith-

mic framework to solve a large problem instance representing an Iraq situation. Her

findings indicate that the ADP-generated dispatching policies outperform the myopic

policies in every case.

One of the objectives when considering optimal dispatching policies, in both civil-

ian and military EMS, has been minimizing the time between critical injury and

definitive care. As such, the Secretary of Defense in 2009 mandated that the United

States MEDEVAC system respond to critically injured combat casualties in 60 min-

utes or less (Kotwal et al., 2016). The study conducted by Kotwal et al. (2016)

reported that after the mandate, the median transport time was reduced by over

50%.

In continued efforts to reduce the time from when a battlefield casualty receives

medical treatment, military medical personnel have established standard operating
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procedures to administer blood transfusion by flight medics on-board MEDEVAC

helicopters while en route to an MTF, a practice which has been in place since 2010

(Bradley et al., 2017).

This research contributes to past military EMS research by further exploring the

MEDEVAC dispatching problem. Building on the work done by Graves et al. (2021),

this research examines similar problem features (i.e., admission control, triage mis-

classification errors, and on board blood transfusion kits). The previous author looked

at a small scale problem instance and consequently was able to solve her MDP model

to optimality. In contrast, this thesis continues those efforts by amplifying the state

space to the point where ADP solution techniques are essential due to the cardinality

of the state space. Specifically, the ADP framework used herein also utilizes a su-

pervised machine learning technique (i.e., random forest) to generate a policy when

the problem is computationally intractable. Furthermore, we explore a new scenario

that combines the assets and capabilities of the U.S. Navy and U.S. Army, allowing

for a more realistic representation of the joint environment in which the U.S. military

operates.
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III. Methodology

This chapter details the MEDEVAC process and the modeling techniques used to

address the MEDEVAC dispatching problem examined herein.

3.1 Problem Description

Dedicated Army rotary-wing medical aircraft (i.e., air ambulances) fall under the

mission command of the general support aviation battalion (GSAB). The GSAB

is charged with positioning air ambulances (e.g., HH-60M Black Hawk helicopters)

where they can best support timely and responsive evacuation (Department of the

Army, 2019). The aviation commander, within the GSAB, considers the collective risk

assessment of the mission and determines final execution or launch authority when-

ever a MEDEVAC request is submitted. For aerial MEDEVAC missions, the medical

approval authority is accomplished by verifying the details of the MEDEVAC request

with the policy contained in the medical rules of eligibility. If a MEDEVAC unit

is available to dispatch, the dispatching authority must then decide which unit (if

any) to dispatch. This sequential resource allocation decision-making of dispatching

MEDEVAC units in response to a casualty event within the military aerial MEDE-

VAC system is known as the MEDEVAC dispatching problem (Robbins et al., 2020).

When a service member sustains an injury in combat requiring the need for medical

evacuation, a 9-line MEDEVAC request is submitted. This request contains, but is not

limited to, the following information: location of the pickup site, triage classification

of each injured individual, special equipment required, and security of pickup site

(Wooten, 2021). It is the responsibility of the medical person at the scene to identify

the evacuation triage level of each casualty and conclude if a MEDEVAC request is

appropriate. If there is not a medical person at the scene, then this responsibility falls
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to the senior military member onsite (Jenkins, 2017). Table 1 provides a description of

the three different triage levels (i.e., urgent, priority, and routine). Since the preferred

method of evacuation for all casualty types is by air ambulance (Department of the

Army, 2019), this thesis considers all triage levels.

Table 1. Triage Levels for Evacuation (Department of the Army, 2019)

Triage Category Description

Priority I - Urgent Is assigned to emergency cases that should be evac-
uated as soon as possible and within a maximum
of one hour in order to save life, limb, or eyesight
and to prevent complications of serious illness and
to avoid permanent disability.

Priority II - Priority Is assigned to sick and wounded personnel requir-
ing prompt medical care. This precedence is used
when the individual should be evacuated within
four hours or if his medical condition could dete-
riorate to such a degree that he will become an
URGENT precedence, or whose requirements for
special treatment are not available locally, or who
will suffer unnecessary pain or disability.

Priority III - Routine Is assigned to sick and wounded personnel requiring
evacuation but whose condition is not expected to
deteriorate significantly. The sick and wounded in
this category should be evacuated within 24 hours

Figure 1 outlines the MEDEVAC mission timeline. The time at which the dis-

patching authority receives a MEDEVAC request is denoted as T1. If the MEDEVAC

request is accepted, a MEDEVAC unit is assigned, and it begins necessary prepara-

tions (e.g., preparing medical equipment and personnel) to depart the staging area,

which is indicated as T2. Once the unit has completed its preparations, it begins

traveling toward the designated pick-up site, known as the casualty collection point

(CCP), which is denoted as T3. This thesis assumes that CCPs are located in se-

cure regions; therefore, MEDEVAC units do not require extra accommodations for
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servicing the request (e.g., armed-escorts, rescue hoists).

Figure 1. MEDEVAC Mission Timeline

T4 indicates the time the MEDEVAC unit arrives at the CCP. The casualties

are loaded, and the MEDEVAC unit proceeds to depart the CCP, denoted as T5,

and begins traveling toward a medical treatment facility (MTF), which is selected

in a deterministic manner based on the location of the CCP. This thesis utilizes a

monotonically decreasing reward function based in part on response time; therefore,

the MEDEVAC unit travels to the closest MTF (in terms of response time). T6 marks

the MEDEVAC unit arriving at the MTF where the casualties are unloaded, and the

responsibility of medical care is transferred to the MTF medical staff. Following the

transfer of casualties, the unit returns to its original staging area for refueling and

re-equipping and is ready to be re-tasked for another request, denoted by T7 and T8,

respectively (Dennie, 2021).

The total response time for a MEDEVAC unit that is not equipped with a blood

transfusion kit (BTK) is defined as T7−T2, whereas the total response time for a unit

15



with a BTK on board is defined as T5−T2. Garrett (2013) reports that blood loss is the

primary cause of death for soldiers killed in action, accounting for approximately 85%

of them. A MEDEVAC unit equipped with a BTK is able to administer life-saving

medical treatment the moment the casualty is loaded onto the helicopter, thereby

having a faster response time. The total service time, regardless of the equipment on

board, is defined as T8−T2, which is also the total time the MEDEVAC unit’s status

is considered busy and not idle.

3.2 MDP Formulation

A discounted, infinite-horizon continuous-time MDP model is formulated to de-

termine which MEDEVAC unit, if any, to dispatch in response to a given 9-line

MEDEVAC request. The objective of the MDP model is to generate an optimal dis-

patching policy that maximizes the expected total discounted reward over an infinite

horizon.

The U.S. Army utilizes a three-category casualty triage rubric (i.e., urgent, pri-

ority, and routine) when submitting a 9-line MEDEVAC request (Department of the

Army, 2019). Prior works have excluded the routine triage level in their models (e.g.,

Rettke et al. (2016); Graves et al. (2021); Wooten (2021)). Although a routine triage

level evacuation is assigned to minimally injured casualties and typically results in

other forms of evacuation (i.e., CASEVAC), this thesis focuses on the possibility of

triage misclassifications; therefore, all three triage levels are considered.

The 9-line MEDEVAC requests are assumed to arrive according to a Poisson

process with parameter λ, denoted as PP (λ). A splitting technique is utilized to

model these arrivals, which are characterized by the location of the casualty event

(i.e., zone), its reported triage level (i.e., urgent, priority, or routine), and the true

triage level. Splitting is a technique used to generate two or more counting processes
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from a single Poisson process (Kulkarni, 2017). Let {N(t′) : t′ ≥ 0} denote the original

counting process PP (λ), which counts the number of 9-line requests that enter the

MEDEVAC system during a given time interval (0, t′]. The MEDEVAC requests are

split into multiple processes categorized by the zone z ∈ Z = {1, 2, . . . , |Z|}, the

reported triage level k ∈ K = {1, 2, . . . , |K|}, and the true triage level c ∈ K. Let

R = {(z, k, c) : (z, k, c) ∈ Z ×K×K} denote the set of request categories, for a total

of |R| = |Z||K|2 possible request categories. The original counting process is split

into |R| processes {Nzkc(t
′) : t′ ≥ 0},∀(z, k, c) ∈ R, where each request belongs to

one and only one of the categories. This generates the following result

N(t′) =
∑

(z,k,c)∈R

Nzkc(t
′).

All requests are split using a Bernoulli splitting mechanism given parameters

pz,k,c > 0,∀(z, k, c) ∈ R such that
∑

(z,k,c)∈R
pz,k,c = 1. The parameter pz,k,c indi-

cates the probability of seeing a request in zone z with a reported triage level k and

a true triage level c. The Bernoulli splitting mechanism yields counting processes

{Nzkc(t
′) : t′ ≥ 0},∀(z, k, c) ∈ R where each is a Poisson process with parameter

λpz,k,c, denoted as PP (λpz,k,c).

The decision epochs of this MDP model are the points in time that the aviation

commander needs to make a decision. Decision epochs occur whenever a MEDEVAC

request enters the system or a MEDEVAC unit completes servicing a request. The

set of decision epochs is denoted as T = {1, 2, . . . }.

The state of the MEDEVAC system at decision epoch t ∈ T is described by the

tuple St = (Mt, Rt). The first component, Mt, represents the MEDEVAC status tuple

and is defined as

Mt = (Mtm)m∈M,
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where M = {1, 2, . . . , |M|} represents the set of MEDEVAC units in the system.

The state variable Mtm ∈ {0} ∪Z provides the status of MEDEVAC unit m ∈M at

epoch t. When Mtm = 0, unit m is idle, meaning it is available to service a request

and when Mtm ∈ Z, unit m is busy servicing a zone z ∈ Z request.

The second component in the tuple St is Rt, which provides the details of a MEDE-

VAC request awaiting a decision from the aviation commander. More specifically, Rt

provides the zone from which the request originates from, the reported triage level,

and the true triage level and is denoted as

Rt = (Zt, Kt, Ct)Zt∈Z,Kt∈K,Ct∈K.

The components Zt, Kt, and Ct correspond to the request zone, reported triage level,

and true triage level respectively. Rt = (0, 0, 0) indicates there is no request pending

a decision in the system. When Rt 6= (0, 0, 0), a pending request is in the system.

Moreover, when Rt 6= (0, 0, 0) and Ct 6= Kt, a classification error has occurred, and

the dispatching authority has incorrect data about the triage level of the request.

The size of the state space can be calculated using the following equation

|S| = (1 + |Z|)|M|(1 + |Z||K|2). (1)

As more state variables are added (e.g., number of MEDEVAC units, zones, and triage

levels), the size of the state space grows exponentially. If the size of the state space

grows too large, then exact dynamic programming techniques become intractable,

a phenomenon known as the curse of dimensionality. In such problem instances,

approximate dynamic programming (ADP) techniques are required to gain insights,

which are explored in this thesis.

When a MEDEVAC request is submitted, the dispatching authority has to decide
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whether or not they will admit the request (i.e., admission control). If all MEDE-

VAC units are busy servicing requests, then the only option is to reject the request

(i.e., there is no queue). If there is at least one MEDEVAC unit available, then the

dispatching authority needs to decide if they will reject the request due to a belief

that a higher triage level request (e.g., urgent) will enter the system soon, or accept

the request and choose which unit to dispatch. Whereas a myopic policy dispatches

the closest available unit, an optimal policy may dispatch a different unit to reserve

closer units for future requests.

Let xrejectt ∈ {∆, 0, 1} denote the admission control decision at epoch t ∈ T , where

xrejectt = 0 denotes the decision to accept the request in the system. When xrejectt = 1,

the MEDEVAC request is rejected, either because all units are busy or to reserve the

unit(s) for future requests. When there is no request in the system at epoch t (i.e.,

Rt = (0, 0, 0)), the system transitions without any impact from the admission control

decision, denoted by xrejectt = ∆.

If the decision is made to accept a request (i.e., xrejectt = 0), the next decision is

to decide which unit to send. Let I(St) = {m : m ∈ M,Mtm = 0} represent the set

of idle MEDEVAC units at state St and let xdt = (xdtm)m∈I(St) represent the dispatch

decision variable tuple. If xdtm = 1, then MEDEVAC unit m ∈ I(St) is tasked and

dispatched to service the request Rt at epoch t, otherwise xdtm = 0.

The decision variables at epoch t are denoted by the tuple xt = (xrejectt , xdt ). The

dispatch decision variables are bounded by the following constraint

∑
m∈I(St)

xdtm = I{xrejectt =0}. (2)

The indicator function I{xrejectt =0} takes the value of 1 when an incoming request is

admitted into the system. This constraint ensures that a single MEDEVAC unit is

tasked to service accepted MEDEVAC requests.
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The action space for a given state, St, at epoch t subject to Constraint 2 is

XSt =


(∆, {0}|I(St)|) if Rt = (0, 0, 0)

(1, {0}|I(St)|) if Rt 6= (0, 0, 0), I(St) = ∅

({0, 1}, {0, 1}|I(St)|) if Rt 6= (0, 0, 0), I(St) 6= ∅

.

The first case accounts for when there is no service request in the system; therefore,

the only action available is to transition with no changes. The second case indicates

that there is a request in the system, but the set of idle MEDEVAC units is empty,

meaning every unit is busy servicing other requests. The only action available in

this case is to reject the request. The final case represents when the system has a

MEDEVAC request and at least one MEDEVAC unit available. The available actions

are to reject the request and not dispatch a unit or accept the request and dispatch

one of the available units, subject to Constraint (2).

There are two events that cause the MEDEVAC system to transition: (1) a

MEDEVAC request is submitted and (2) a MEDEVAC unit completes service.

Let B(St) = {m : m ∈ M,Mtm 6= 0} denote the set of busy MEDEVAC units

(i.e., MEDEVAC units servicing a request) when the system is in state St at epoch t,

and let µmz denote the service rate of MEDEVAC unit m ∈M servicing a request in

zone z ∈ Z. When the MEDEVAC system is in state St and takes action xt at epoch

t, the system immediately transitions to a post-decision state, denoted as Sxt . The

time the system remains in the post-decision state prior to transitioning to the next

pre-decision state St+1 (i.e., sojourn time) is exponentially distributed with parameter

β(St, xt). The state-action sojourn time can be calculated as follows

β(St, xt) = λ+
∑

m∈B(St)

µm,Mtm +
∑

m∈I(St)

xdtmµm,Zt .
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If B(St) = ∅ and xdtm = 0 ∀m ∈ M, indicating that all MEDEVAC units are idle

and no units have been dispatched, then β(St, xt) represents the sojourn time for the

state-action pairs wherein the next decision epoch occurs upon the arrival of a new

MEDEVAC service request. Otherwise, B(St) 6= ∅ and/or a unit is tasked to service

an incoming request. In this case, β(St, xt) represents the sojourn time for the state-

action pairs wherein the next decision epoch occurs after any event (i.e., a MEDEVAC

request arrival or a MEDEVAC unit completing service). The probabilistic nature of

the process can be summarized in terms of an infinitesimal |S|× |S| generator matrix

as follows (Jenkins et al., 2018)

G(St+1|St, xt) =


−[1− p(Sxt |St, xt)]β(St, xt), if St+1 = Sxt

p(St+1|St, xt)β(St, xt), if St+1 6= Sxt

wherein

p(St+1|St, xt) =



λzkc
β(St,xt)

, if Rt+1 = (z, k, c), z ∈ Z, k ∈ K, c ∈ K

µmz
β(St,xt)

, if Rt+1 = (0, 0, 0),Mm,t+1 = 0,Mx
tm = z,m ∈M, z ∈ Z

0, otherwise

denotes the probability that the system transitions to state St+1 by taking action xt

given that it is currently in state St. The post-decision state variable Mx
tm ∈ {0} ∪Z

contains the information regarding MEDEVAC unit m ∈M when decision xt is made

at epoch t. Note that p(Sxt |St, xt) = 0, indicating that the system will not occupy

the same state, but rather will transition to a different state at the end of a sojourn

in state Sxt .

Leveraging the process of uniformization, the continuous-time MDP is transformed

into a discrete-time MDP. Puterman (2005) notes that as long as the infinitesimal
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generator is not altered when applying uniformization, the discrete-time MDP will

have the same probabilistic structure and allow for easier subsequent analysis. First,

a maximum rate of transition ν must be determined, satisfying

ν ≥ λ+
∑
m∈M

τm,

wherein

τm = max
z∈Z

µmz, ∀m ∈M.

Through uniformization, the system state is observed more frequently than in the

original system, allowing it to now have self-transitions. This transformation may

be viewed as inducing extra (i.e., “fictitious”) transitions from a state to itself. The

discrete-time MDP yields the following transition probabilities:

p̃(St+1|St, xt) =


1− [1−p(Sxt |St,xt)]β(St,xt)

ν
, if St+1 = Sxt

p(St+1|St,xt)β(St,xt)
ν

, if St+1 6= Sxt

0, otherwise

.

The MEDEVAC system earns a reward when the dispatching authority decides to

accept a 9-line MEDEVAC request and dispatches a MEDEVAC unit. The amount

of reward that the system earns is captured in the contribution function C(St, xt) and

varies based on the triage level of the request (i.e., k), the location (i.e., z), and the

specific MEDEVAC unit tasked (i.e., m). The contribution function is defined as

C(St, xt) = wkuk(rmz), (3)

where k is the triage level reported in the MEDEVAC request (i.e., k = kt) and rmz is
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the expected response time for the tasked MEDEVAC unit m ∈M (i.e., xdtm = 1) to

service a call originating in zone z ∈ Z (i.e., zt = z). The k-utility function uk(rmz)

is a monotonically decreasing function that renders a reward as a function of the

response time rmz and the reported triage level k. Therefore, for a fixed triage level

k, servicing a MEDEVAC request with a faster expected response time yields a higher

immediate reward. The weight parameter wk scales the immediate reward between

the different triage levels. Keeping all else equal, servicing an urgent request earns

a higher reward than servicing a priority request, which earns a higher reward than

servicing a routine request.

We employ the uniformization process once more to transform the continuous-time

contribution function into an equivalent, discrete-time contribution function, denoted

as

C̃(St, xt) = C(St, xt)
γ̃ + β(St, xt)

γ̃ + ν
,

where γ̃ > 0 represents the continuous-time discount rate. The discrete-time discount

rate is determined by setting γ = ν
ν+γ̃

.

The objective of the MDP formulation described is to maximize the expected

total discount reward that the MEDEVAC system earns over an infinite horizon. Let

Xπ(St) be a decision function that determines the action xt the system takes in state

St ∈ S according to policy π. Therefore, the objective is to determine the optimal

policy, π∗, from the class of policies, π ∈ Π, to maximize the expected total discounted

reward over an infinite horizon. The objective can be expressed as

max
π∈Π

Eπ
[
∞∑
t=1

γt−1C̃(St, X
π(St))

]
.
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The following optimality equation is used to solve for the optimal policy, π∗,

V (St) = max
xt∈XSt

(C̃(St, xt) + γE[V (St+1)|St, xt]). (4)

3.3 ADP Formulation

Although the previously described MDP model is appropriate for this problem,

solving Equation (4) to generate an optimal policy becomes computationally in-

tractable due to the large cardinality of the state space (i.e., |S|). Instead of solving

Equation 4 with exact dynamic programming methods, we employ approximation

techniques to overcome the curse of dimensionality that MEDEVAC scenarios tend

to possess. This thesis applies an ADP strategy that utilizes a random forest re-

gression value function approximation scheme around the post-decision state variable

within an approximate policy iteration (API) algorithmic framework to generate high-

quality solutions to the MEDEVAC dispatching problem.

We adopt a post-decision state convention because of its two-fold computational

improvement: (1) the reduction of the state space dimensionality and (2) the modifi-

cation of the optimality equation (i.e., Equation (4)), which removes the expectation

from within the maximum operator (Ruszczynski, 2010). The post-decision state can

be denoted as

Sxt = SM,x(St, xt),

which expresses the state of the MEDEVAC system immediately after the system

was in pre-decision state St and action xt was taken. From the post-decision state,

the system transitions to the next pre-decision state upon a sample realization of

exogenous information, expressed as

St+1 = SM,W (Sxt ,Wt+1). (5)
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Wt+1 represents the exogenous information, which is either the details of a MEDEVAC

request that has entered the system or a MEDEVAC unit that has finished servicing

a request.

The new state convention requires a modification to the optimality equation. Let

V x(Sxt ) = E[V (St+1)|St, xt]

= E[V (St+1)|Sxt ]

denote the value of being in post-decision state Sxt . This new equation can now be

incorporated into Equation (4) as follows:

V (St) = max
xt∈XSt

(C̃(St, xt) + γV x(Sxt )). (6)

Note that the value of being in post-decision Sxt−1 can be written as

V x(Sxt−1) = E[V (St)|Sxt−1]. (7)

Substituting Equation (6) into Equation (7) results in the optimality equation around

the post-decision state variable

V x(Sxt−1) = E
[

max
xt∈XSt

(C̃(St, xt) + γV x(Sxt ))|Sxt−1

]
. (8)

The key difference between the post-decision state optimality equation (i.e., Equation

(8)) and the pre-decision state optimality equation (i.e., Equation (4)) is the exchange

of the maximization and expectation operators. Ruszczynski (2010) explains that this

convention is statistically much easier to average the optimal value, which amounts

to simple mean estimation, than to estimate the entire expected value function as a

function of xt. Therefore, this exchange of operators yields computational advantages
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over the pre-decision state optimality equation.

Although implementing a post-decision state convention delivers computational

savings, the size and dimensionality of the state space still render Equation (8) in-

tractable for larger-scale problems. We proceed with our value function approxima-

tion approach to generate approximate solutions to Equation (8). Let V̄ x(Sxt ) denote

the approximate value of being in post-decision Sxt , where

V̄ x(Sxt−1) = E
[

max
xt∈XSt

(C̃(St, xt) + γV̄ x,n−1(Sxt ))|Sxt−1

]
, (9)

and V̄ x,n−1(Sxt ) is the approximate value of being in state Sxt from the (n-1)th iteration

from Algorithm (1), which is explained in detail later. Decisions are made using policy

X̄π(St) = argmax
xt∈XSt

(C̃(St, xt) + γV̄ x,n−1(Sxt )).

We obtain an estimate for V̄ x(Sxt ) by utilizing a random forest algorithm. Random

forest is a supervised learning algorithm that builds an ensemble of decision trees and

merges them to get a more accurate and stable prediction. We can predict the value

of being in a post decision state using the following equation

˙̄V x(Sxt ) =
1

F

F∑
f=1

Gf (S
x
t ), (10)

where F is the number of decision trees in the forest. The function Gf denotes a

single decision tree and can be further expressed as

Gf (S
x
t ) =

H∑
η=1

cηI(Sxt ∈ Qη),

where I is an indicator function taking a value of 1 if Sxt is part of region Qη (0
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otherwise), cη denotes the mean response of region Qη, and H represents the total

number of regions. A decision tree splits samples into regions by selecting a feature

that maximizes the reduction in mean square error over all splitting candidates. The

mean response for region Qη is calculated as follows,

cη =
1

|Qη|
∑
j∈Qη

v̂nj I(Sxt,i ∈ Qη),

where v̂n is a vector containing the estimated values of being in post-decision states

that have been sampled in iteration n (see Algorithm 1).

Now we continue with the implementation of an API algorithmic strategy to

attain high-quality MEDEVAC dispatching policies. API is based on the structure

of exact policy iteration, wherein two sequences are alternated in repeating fashion,

as shown in Algorithm 1. Policy evaluation (i.e., the inner loop) is the first sequence,

which consists of evaluating a fixed policy via simulation and incrementally updating

the approximate value function parameters based upon observed results. The second

sequence in the API algorithm is policy improvement wherein the next iteration of the

inner loop uses the updated approximate value function from the previous iteration.

The random forest API (RF-API) algorithm begins by initializing V̄ x,0 to zero.

After initializing, the algorithm enters the policy improvement loop (i.e., Step 3)

wherein a pre-determined number of post-decision states (i.e., J) are sampled and

evaluated via iteration (i.e., Step 4). The post-decision states are selected by means

of Latin hypercube sampling (LHS), a sampling method that generates well-spaced,

uniform random samples for Monte Carlo procedures (Wooten, 2021). A post-decision

state is selected out of the sample in Step 5.

For the selected post-decision state, the set of feasible next pre-decision states is

calculated using the state transition function, St = SM,W (Sxt−1,Wt). For each pre-
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Algorithm 1 Random Forest Approximate Policy Iteration (RF-API) Algorithm

1: Initialize n = 0
2: Initialize V̄ x,0(·) to zero.
3: for n = 1 to N do (Policy Improvement Loop)
4: for j = 1 to J do (Policy Evaluation Loop)
5: Generate a random post-decision state, Sxt−1,j.
6: Determine the set of next pre-decision states S̄ ⊆ S using Equation (5).
7: For each pre-decision state St,i ∈ S̄, i = 1, 2, . . . , |S̄|, solve the approximate

optimality equation using Equation (11) and record the estimated value v̂j,i of
being in post-decision state Sxt−1,j, given the system transitions to pre-decision
state St,i.

8: Compute and record the estimated value v̂nj utilizing Equation (12).
9: end for

10: Compute ˙̄V x using Equation (10).
11: Update V̄ x,n using Equation (13).
12: end for
13: Return the approximate value function V̄ x,N(·).

decision state St,i ∈ S̄, i = 1, 2, . . . , |S̄| , we solve the following equation

v̂j,i = max
xt∈XSt

(
C̃(St,i, xt,i) + γV̄ x,n−1(Sxt,i)

)
, (11)

which represents the estimated value of transitioning from pre-decision St,i to post-

decision Sxt,i. Note that the approximate value function V̄ x,n−1 is from the previous

policy improvement iteration (i.e., n−1). This indicates that during the first iteration

(i.e., n = 1), V̄ x,1−1 = V̄ x,0 = 0. Therefore, decisions are made based on the action

that maximizes the contribution function during the first policy improvement loop,

which is equivalent to acting myopicly.

Advancing with Step 8, the value of being in a post-decision state Sxt−1,j is com-

puted using all |S̄| pre-decision state values generated in Step 7 and leveraging the

transition probability function p̃, which indicates the probability of transitioning from

a post-decision state, St−1,j, to a pre-decision state, St,i, ∀St,i ∈ S̄. Combining this
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information, we compute v̂nj as follows,

v̂nj =

|S̄|∑
i=1

p̃(St,i|Sxt−1,j)v̂j,i. (12)

After the conclusion of the policy evaluation loop, the policy improvement loop

continues by constructing a random forest model (i.e., ˙̄V x) utilizing the sampled post-

decision states Sxt−1,j, j = 1, 2, . . . , J , as the feature space and the estimated values

vnj , j = 1, 2, . . . , J , as the associated responses via Equation (10). We use a polynomial

step-size rule to smooth in the new estimate of the value function approximation (i.e.,

˙̄V x) with the previous estimate (i.e., V̄ x,n−1) in Step 11. The step-size rule is expressed

as

αn =
1

nκ
,

where κ ∈ [0, 1] and n is the policy improvement loop counter. Using the step-size

rule, the updated approximate value function is denoted as

V̄ x,n = (1− αn)V̄ x,n−1 + αn
˙̄V x. (13)

This iterative process is repeated N times at which point the algorithm returns the

final approximate value function in Step 14. The RF-API algorithm requires tuning

parameters to achieve quality results, which is further explored in Chapter IV.
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IV. Testing, Results, and Analysis

This chapter illustrates the applicability of the Markov decision process (MDP)

model by examining a theoretical scenario of interest to the military medical com-

munity and evaluating the policies generated by approximate dynamic programming

(ADP). The varying policies (i.e., myopic, optimal, and ADP) are compared when

the problem instance is tractable to gain insight on the approximation of the ADP

solution to the optimal policy. Furthermore, the representative scenario is scaled and

expanded such that it can no longer be solved to optimality, but is approximated using

the techniques described in Chapter III. All computational efforts were solved using

an Intel Xeon Silver 4114 CPU with 64 GB of RAM, while leveraging MATLAB’s

Parallel Computing Toolbox.

4.1 Representative Scenario

The origin of the hostile tension between the Democratic People’s Republic of

Korea (DPRK) (i.e., North Korea) and the Republic of Korea (ROK) (i.e., South

Korea) dates back to the Korean War, which began mid-way through the twentieth

century. The strongest of the attacks from the DPRK troops during the three year

conflict was aimed at capturing the city of Seoul in the South. This invasion from

the North led to other countries getting involved, including the United States (U.S.).

Although the conflict ended in an armistice and was never officially terminated, the

death toll on both sides was great. The U.S. lost over 35,000 military members in

combat with an additional 100,000 wounded (Millet, 2021).

Following the armistice, the demilitarized zone (DMZ) was established along the

38th parallel separating the DPRK from the ROK. The areas north and south of

the DMZ are heavily fortified with both sides maintaining large contingents of troops
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(Britannica, 2020). Over the years, U.S. and ROK armed forces have trained together

in exercises, such as the Combined Command Post Training (Maxwell, 2020), to

maintain necessary readiness for defending South Korea from an attack by the North

Korean military.

The theoretical planning scenario being explored in this thesis considers joint

combat operations in South Korea, with a heavy presence near the DMZ. The joint

aspect leverages assets from both the U.S. Army and Navy (i.e, HH-60M Black Hawk

and MH-60R Seahawk helicopters). This scenario assumes a MEDEVAC system with

four demand zones (i.e., zones from which 9-line MEDECAC requests originate), four

MEDEVAC unit staging areas (i.e., the locations in which the MEDEVAC units are

stationed), two medical treatment facilities (MTFs), and two hospital ships. The

location of coalition bases (i.e., larger military bases with space for both a helicopter

landing zone (HLZ) and MTF) and forward operating bases (i.e., smaller bases that

are only able to host a HLZ) are established at likely military tactical sites as shown

in Figure 2. The MEDEVAC units utilizing Black Hawks (i.e., MEDEVAC unit

-BH) are located in Zones 1 and 3 and the MEDEVAC unit utilizing a Seahawk

(i.e., MEDEVAC unit -SH) is located in Zone 2. Two MEDEVAC units are co-

located with an MTF (i.e., MEDEVAC units 1 and 2), thereby allowing them to

be equipped with blood transfusion kits. The hospital ships are stationed on the

eastern and western borders of the country, giving MEDEVAC units more options

when determining where to evacuate a casualty. Both the MTFs and hospital ships

are equipped with the necessary resources to treat any and all casualties, eliminating

the need to transfer casualties due to capacity limits. Therefore, only the proximity

of an MTF to a casualty collection point (CCP) is utilized to determine where a

MEDEVAC unit will evacuate casualties.

Using past MEDEVAC research as a frame of reference (i.e., Jenkins et al. (2018)
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Figure 2. MEDEVAC locations, zones, and CCCs

and Wooten (2021)), future 9-line MEDEVAC requests are modeled with a Monte

Carlo simulation via a Poisson cluster process. Casualty cluster centers (CCCs) are

strategically selected as areas that could face a large number of casualties given an

attack. This thesis utilizes the geographic coordinates of major and minor ROK

military bases as CCCs. The distribution of 9-line MEDEVAC request locations from

a given CCC is generated on a uniform distribution with respect to the distance of the

request to the CCC. The quantity and location of the chosen CCCs directly affect the

generated dispatching policy. Therefore, future use of this model must be modified

for its intended scenario to develop meaningful results.

Table 2 displays the proportion of requests that originate from each zone. The

capital, and most populated city, in South Korea (i.e., Seoul) accounts for the majority

of the nation’s population. Therefore, the zone Seoul belongs to in Figure 2 (i.e., Zone

1) has the highest proportion of MEDEVAC requests as we would expect a greater

volume of casualties in that area.
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Table 2. 9-Line MEDEVAC Requests Proportion by Zone

Zone Proportion

1 0.6157

2 0.1672

3 0.1840

4 0.0331

A key component of this thesis is accounting for MEDEVAC requests being re-

ported with an incorrect triage level. Whereas Graves et al. (2021) assumes service

request triage levels can only be overestimated (i.e., casualty is less severe than re-

ported), this thesis also assumes a service request can be underestimated (i.e., casualty

is more severe than reported). Empirical studies done on hospital emergency depart-

ment triage misclassifications have shown that patients are misclassified 9-15% of the

time, depending on nurse experience (Saghafian et al., 2014). Leveraging that data

and combining it with this high operations tempo scenario justifies the use of higher

misclassification rates. Table 3 outlines the triage misclassification rates used, where

each triage level (i.e., urgent, priority, and routine) is misclassified at a rate of 40%,

30%, and 0.2% respectively.

Table 3. Misclassification Rates φkc

Truth, c

Reported, k Urgent Priority Routine

Urgent 0.60 0.35 0.05

Priority 0.05 0.70 0.25

Routine 0.001 0.001 0.998

The arrival rate for MEDEVAC requests, λ, is estimated by military medical

planners based on how often they expect a request to enter the system. The baseline

MEDEVAC request arrival rate λ = 1
30

indicates one request every 30 minutes on
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average according to a Poisson process. Table 4 outlines the proportion of 9-line

MEDEVAC request arrivals that originate in zone z ∈ Z having a reported triage

level k ∈ K, and a true triage level c ∈ K.

Table 4. MEDEVAC Request Proportions by Zone and Triage Level

Zone, z

Request, Rt = (z, k, c) 1 2 3 4

(z,1,1) 0.2501 0.0652 0.0717 0.0130

(z,1,2) 0.1401 0.0380 0.0419 0.0075

(z,1,3) 0.0200 0.0054 0.0060 0.0011

(z,2,1) 0.0077 0.0021 0.0023 0.0004

(z,2,2) 0.1078 0.0293 0.0322 0.0058

(z,2,3) 0.0385 0.0104 0.0115 0.0021

(z,3,1) 0.0000 0.0000 0.0000 0.0000

(z,3,2) 0.0000 0.0000 0.0000 0.0000

(z,3,3) 0.0612 0.0167 0.0184 0.0033

Total 0.6157 0.1672 0.1840 0.0331

As depicted in Figure 1 in Chapter III, the accounted time for a MEDEVAC unit

equipped with a blood transfusion kit (BTK) to respond to a MEDEVAC request

includes the mission preparation time, travel time to the CCP, and time to load the

casualty onto the helicopter. Incorporating parameter settings from Bastian (2010)

and Wooten (2021), the mission preparation time is set to 15 minutes, load time is

set to 10 minutes, and unload time is set to five minutes. When the MEDEVAC

unit is not equipped with the BTK, the accounted response time also includes time

to travel to the MTF and time for unloading the casualty at the MTF in addition

to the previously mentioned events. The Monte Carlo simulation described earlier

generates casualties based on the CCCs and calculates the response time for each

MEDEVAC unit. These data points are averaged to get expected response times for
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each MEDEVAC unit m ∈M to respond to a MEDEVAC request originating in zone

z ∈ Z as shown in Table 5.

Table 5. Expected Response Times (minutes)

Zone, z

MEDEVAC unit, m 1 2 3 4

1 46.5000 58.9820 37.9980 62.2010

2 71.1390 82.0260 45.3790 69.1250

3 55.1840 65.1730 73.7650 116.2200

4 75.6830 53.2230 89.3210 116.9500

From the same simulation, the expected service times are generated in like manner,

as presented in Table 6. For MEDEVAC units equipped with a BTK, the total service

time is comprised of the response time, travel time to the MTF, time to unload the

casualty at the MTF, and time to travel back to the staging area. The total service

time for MEDEVAC units not equipped with a BTK consist of the response time and

the time to travel back to the staging area.

Table 6. Expected Service Times (minutes)

Zone, z

MEDEVAC unit, m 1 2 3 4

1 87.2100 112.1500 60.4730 116.8100

2 133.4500 158.1900 81.9150 148.2800

3 76.7550 94.6460 101.2100 140.7200

4 112.2000 57.2380 144.1100 150.4000

Whenever a MEDEVAC unit is dispatched to service a request, a reward is earned

based on the distance traveled (i.e, response time of dispatching MEDEVAC unit m)

and the request priority (i.e., triage level k). The weights for the different triage levels

from Equation (3), w1, w2, and w3, are set to 0.9009, 0.0901, and 0.009, respectively,
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so that urgent requests are prioritized first, followed by priority and routine requests.

The expected immediate rewards are displayed in Table 7.

Table 7. Expected Immediate Rewards

MEDEVAC, m

Zone, z Priority, k 1 2 3 4

1 1(Urgent) 0.8710 0.7328 0.8393 0.6900

2(Priority) 0.0796 0.0741 0.0777 0.0730

3(Routine) 0.0088 0.0087 0.0088 0.0087

2 1(Urgent) 0.8200 0.6213 0.7806 0.8479

2(Priority) 0.0768 0.0716 0.0754 0.0781

3(Routine) 0.0088 0.0087 0.0088 0.0088

3 1(Urgent) 0.8886 0.8740 0.7088 0.5315

2(Priority) 0.0815 0.0799 0.0735 0.0700

3(Routine) 0.0089 0.0088 0.0087 0.0087

4 1(Urgent) 0.8008 0.7501 0.1747 0.1664

2(Priority) 0.0761 0.0745 0.0639 0.0638

3(Routine) 0.0088 0.0087 0.0086 0.0086

4.2 Representative Scenario Results

The current practice (i.e., myopic policy) of the MEDEVAC system resorts to

sending the nearest available MEDEVAC unit in response to a 9-line MEDEVAC

request. This policy does not include admission control, therefore, it does not consider

the impact of sending a unit now has on future decisions nor does it consider key

information before making the decision (e.g., triage level of the casualty or the number

of units available). Although the myopic policy does not consider the triage level of

the casualty, that information is what determines the reward for the action. When

policies are generated, they are evaluated based on the true triage level of the casualty,
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not what was reported.

The initial state of the system S0 = (M0, R0) = ((0, 0, 0, 0), (0, 0, 0)) indicates

that all MEDEVAC units are idle and available and there is no MEDEVAC request

in the system. The value associated with being in the initial state is used when

making comparisons between policies. The parameter settings used in this scenario

are displayed in Table 8. The 4-zone problem instance is solved twice to optimality

via policy iteration. The first solution formulates a policy based on the reported

Table 8. 4-Zone problem instance parameter settings

Parameter Description Setting

λ 9-line MEDEVAC request arrival rate 1
30

|M| # of MEDEVAC units 4

|Z| # of zones 4

|K| # of triage levels 3

γ Continuous time discount rate 0.001

w1 Weight for urgent requests 0.9009

w2 Weight for priority requests 0.0901

w3 Weight for routine requests 0.009

casualty triage level (i.e., Optimalreported), whereas the second solution generates the

policy based on the true triage level (i.e., Optimaltruth) and then both are evaluated

on the true triage level. Both of these policies are compared to the myopic policy and

the results are shown in Table 9.

Table 9. 4 Zone Policy Comparison

Policy, π V π(S0) % Improvement over Myopic % Optimaltruth

Optimaltruth 2.91 13.30% -

Optimalreported 2.76 7.51% 94.92%

Myopic 2.57 - 88.38%
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The RF-API algorithm has several parameters that require tuning in order for it

to generate a high-quality approximate solution. The parameters for this algorithm

include the number of policy improvement loops (i.e., N), the number of policy eval-

uation loops (i.e., J), the power parameter within the polynomial step-size function

(i.e., κ), and the number of trees in the random forest (i.e., F ). Four factor levels

were chosen for each of these parameters based on the results from preliminary exper-

iments. More specifically, a 44 full factorial experimental design is constructed and

evaluated. Table 10 shows the different factor levels for the parameters and Table 11

displays the top 20 results from the experiment.

Table 10. Experimental Design Factor Levels

Algorithm Parameters Description Levels

N Policy Improvements {10, 15, 20, 25}
J Policy Evaluations {100, 200, 300, 400}
κ Step-size {0.01, 0.1, 0.2, 0.5 }
F Trees in Random Forest {75, 100, 125, 150 }

Using the best parameter settings found in the experiment (i.e., Run 1 in Table

11), we generate two polices for the MEDEVAC dispatching problem. The value of

being in the starting state and following policy ADPtruth is shown in Table 12 along

with the value of following policy ADPreported. Again, both policies are evaluated off

the truth data, but policy ADPtruth is constructed assuming truth knowledge whereas

policy ADPreported is constructed using the reported information.

The RF-API algorithm generates a policy using the parameters listed above in

14.67 seconds with the computing capabilities stated at the start of the chapter. The

ADPreported policy is 93.87% optimal, when compared to the Optimaltruth policy. Al-

though this policy can be improved, it still outperforms the myopic policy by 6.37%.

The difference between the truth and reported policies for both optimal and ADP

is the cost of misclassification. For the given misclassification rates defined in Ta-
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Table 11. RF-API Computational Experiment Results

Run N J κ F V(1) %-Optimaltruth
1 20 300 0.2 125 2.7295 93.87%

2 10 400 0.01 75 2.7290 93.85%

3 20 400 0.1 100 2.7277 93.81%

4 20 400 0.2 100 2.7277 93.81%

5 25 400 0.1 100 2.7275 93.80%

6 15 400 0.1 125 2.7272 93.79%

7 20 400 0.1 75 2.7271 93.79%

8 25 400 0.1 75 2.7267 93.77%

9 10 300 0.2 100 2.7267 93.77%

10 10 400 0.01 125 2.7266 93.77%

11 20 400 0.5 75 2.7262 93.75%

12 15 400 0.01 100 2.7261 93.75%

13 15 300 0.1 100 2.7260 93.75%

14 15 400 0.01 125 2.7260 93.75%

15 15 300 0.2 125 2.7257 93.74%

16 15 400 0.5 75 2.7256 93.73%

17 25 400 0.5 75 2.7255 93.73%

18 20 300 0.2 100 2.7253 93.72%

19 15 400 0.01 75 2.7253 93.72%

20 10 400 0.01 100 2.7250 93.71%

Table 12. 4 Zone Policy Comparison Pt. 2

Policy, π V π(S0) % Improvement over Myopic % Optimaltruth

Optimaltruth 2.91 13.30% -

Optimalreported 2.76 7.51% 94.92%

ADPtruth 2.86 11.35% 98.36%

ADPreported 2.73 6.37% 93.89%

Myopic 2.57 - 88.38%

ble 3, the results in Table 12 indicate that the cost of misclassification between the

Optimaltruth and Optimalreported is approximately 5% and the cost of misclassification

between the Optimaltruth and ADPreported is approximately 6%. These results high-

light the importance for proper triage categorization at the point-of-injury prior to

submitting a 9-line MEDEVAC request.
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4.2.1 Policy Comparison

Four scenarios are explored in further detail to highlight the differences and simi-

larities between the three policies. Table 13 indicates the state of the system for each

scenario along with the corresponding action from each policy. The first scenario has

Table 13. Policy Differences

Scenario St = (Mt, Rt) XπMyopic

(St) XπOptimalreported
(St) XπADPreported

(St)

1 ((0,0,0,0), (1,1,1)) Dispatch MEDEVAC 1 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3

2 ((1,0,4,0), (3,2,3)) Dispatch MEDEVAC 2 Reject request Dispatch MEDEVAC 4

3 ((0,4,1,0), (2,1,1)) Dispatch MEDEVAC 4 Dispatch MEDEVAC 4 Dispatch MEDEVAC 4

4 ((zt1,zt2,0,zt3), (4,kt, ct)) Dispatch MEDEVAC 3 Reject request Reject request

all MEDEVAC units available for service and a request originating from Zone 1 with a

reported and true triage level of 1 (i.e., urgent). The myopic policy seeks to maximize

the immediate reward, which in this case would be to dispatch MEDEVAC unit 1

according to Table 7. Both the Optimalreported and ADPreported policies differ from the

myopic by choosing to dispatch MEDEVAC unit 3. Although the immediate reward

for sending MEDEVAC unit 3 is 4% less than sending unit 1, this action allows the

system to reserve MEDEVAC unit 1 for later use.

The second scenario has MEDEVAC units 2 and 4 idle with MEDEVAC unit 1

servicing a request in Zone 1 and MEDEVAC unit 3 servicing a request in Zone 4.

The current request in the system includes a casualty with a reported triage level of

2 (i.e., priority), but a true triage level of 3 (i.e., routine) in Zone 3. Because there

are units available to dispatch, the myopic policy dispatches the nearest available

unit which is MEDEVAC unit 2. The reward for a servicing a priority triage level is

significantly less than an urgent request, as such, the action for the Optimalreported

policy is to reject the request despite having two available units. Interestingly, the

ADPreported policy differs from both the myopic and Optimalreported policies by tasking

MEDEVAC unit 4 to service the request. This indicates that although the ADPreported
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does not perform optimally, it still has enough information on the system to make

the decision to reserve MEDEVAC unit 2 for a more severe request that is closer to

its staging facility.

The state of the system in scenario 3 consists of MEDEVAC units 1 and 4 being

idle, MEDEVAC unit 2 servicing a request in Zone 4, and MEDEVAC unit 3 servicing

a request in Zone 1. The request in the system stems from Zone 2 and has a reported

and true triage level of 1 (i.e., urgent). Given that MEDEVAC unit 4 is located in

Zone 2, all three policies task unit 4 to service the request. This results reveals the

importance each policy attributes to urgent-level requests.

The final scenario has a single unit available to dispatch (i.e., MEDEVAC unit

3) with a MEDEVAC request coming from Zone 4. Both the Optimalreported and

ADPreported policies take the same action in this scenario, regardless of the MEDEVAC

request triage level or the location of the other MEDEVAC units, as long as they

are not idle. Both the Optimalreported and ADPreported policies choose to reject the

request and save the last MEDEVAC unit for a request that comes from one of the

other zones, whereas the myopic policy tasks the last available unit to service the

request. This can be explained by the fact that Zone 4 is the only zone without a

MEDEVAC unit within its boundaries, therefore units have to travel further distances

to service requests. Based on the baseline parameter settings, the Optimalreported and

ADPreported policies recognize that it is more beneficial to let requests be serviced by

outside agencies (i.e., CASEVAC) when the system is in this particular state rather

than tasking its last remaining MEDEVAC unit.

One of the advantages of leveraging a random forest technique is the ability to

cross-validate throughout the training process. The out of bag (OOB) mean square

error (MSE) and the training MSE are shown in Figure 3. As illustrated in Figure

3, the final random forest model that is utilized to generate the ADPreported policy
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is adequate and is neither over-fitted nor under-fitted given the small values in the

y-axis (i.e., less than 0.2 MSE) and the proximity of the training MSE to the OOB

MSE.

Figure 3. Out of Bag Error

As mentioned in Chapter III, the random forest algorithm takes in as inputs the

post-decision status of the MEDEVAC system (i.e., Sxt ). Recall that the status of the

MEDEVAC system is comprised of the MEDEVAC status tuple (i.e., Mx
t ) and the

request status tuple (i.e., Rx
t ). The request status tuple in a post-decision state is

always empty (i.e., Rx
t = (0, 0, 0)). Therefore, the model generated is ultimately based

on the status of the MEDEVAC units (i.e., Mx
t ). Figure 4 displays the importance

of the features (i.e., the MEDEVAC units) within the model. MEDEVAC unit 1

has the highest feature importance value. The map displayed in Figure 2 shows that

MEDEVAC unit 1 is located in Zone 3 just south of the border between Zones 1 and

3. Furthermore, that unit is also equipped with a BTK, reducing the total amount

of time it takes for that unit to respond to a request as it is able to begin life saving
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Figure 4. Feature Importance Plot
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treatment upon arrival. Recall that approximately 62% of all requests originate from

Zone 1 as noted in Table 2. Although MEDEVAC unit 3 is located in Zone 1, it is

not equipped with a BTK. Its longer response time is the cause for the lower feature

importance score. We see that having a BTK on-board does have an impact on the

model generated. Despite MEDEVAC 2 being located in the southwest region of Zone

3, it was considered almost as important as MEDEVAC unit 1 due to the BTK.

4.3 Excursion - Arrival Rate

We further examine the effect that the MEDEVAC request arrival rate (i.e., λ)

has on all three policies. Various values of λ are tested and the resulting policies are

compared. All problem instance parameter settings defined in Table 8 remain the

same with the exception of λ. Moreover, the best-tuned ADP algorithmic settings

from the baseline scenario (i.e., Run 1 in Table 10) are utilized. The value of the start-

ing state (i.e., St = ((0, 0, 0, 0), (0, 0, 0))) for each request arrival rate is displayed in

Table 14. As the arrival rate speeds up, the gap between the ADPreported policy and

Table 14. Arrival Rate Impact on ADP

V π(S0) ADPreported Performance

1
λ

Optimaltruth ADPreported Myopic % Improvement over Myopic % Optimaltruth

10 13.11 9.72 7.50 29.68% 74.13%

20 5.18 4.46 3.96 12.56% 86.18%

30 2.91 2.73 2.57 6.37% 93.89%

40 1.92 1.85 1.81 2.48% 96.19%

50 1.39 1.35 1.34 0.88% 97.42%

60 1.06 1.04 1.03 0.60% 98.42%

the myopic policy increases. With more requests entering the system, sub-optimal

actions (i.e., dispatching the nearest available MEDEVAC unit) get compounded and

produce inferior results. Moreover, the gap between the Optimaltruth and ADPreported
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policies increases as arrival rate increases. This indicates that changing the arrival

rate requires another experimental design to re-tune the parameters to achieve better

results with regard to the optimality gap. As the arrival rate slows down, the differ-

ence between the Optimaltruth, ADPreported, and myopic policies becomes negligible.

For example, when the arrival rate is λ = 1
60

, implementing an ADPreported policy

would only improve upon the myopic policy by 0.60% and it would be a more com-

plex policy. More notable improvements with the ADPreported and the Optimaltruth

policies exist as the MEDEVAC request arrival rate increases.

The change in the MEDEVAC request arrival rate also impacts which features

are important to the algorithm. Figure 5 illustrates the importance of each feature

(i.e., MEDEVAC unit status) based on the MEDEVAC request arrival rate. In every

Figure 5. Feature Importance Plot for all λ
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case, the top features were either the status of MEDEVAC unit-1 or unit-3. These

are the units closest to Zone 1, which is the zone that has the most requests. From

this insight, we see that our algorithm uses the location of the MEDEVAC units to

develop a high-quality policy.

4.4 Excursion - V22 Osprey

As mentioned in Chapter I, the Navy currently uses the MH-60R Seahawk he-

licopter to conduct their MEDEVAC operations. In 2021, the Navy successfully

conducted the inaugural landing of a V-22 Osprey aircraft on the deck of the U.S.

Naval Ship MERCY (Correll, 2021). This accomplishment allows for the possibility

of using the V-22 Osprey to evacuate patients to the hospital ships. The V-22 Osprey

combines the advantages of airplanes (i.e., faster speeds and increased payload capac-

ity) with the hovering ability of helicopters. With a cruising speed of 493 kilometers

per hour, the Osprey outperforms not only the Seahawk, but the Black Hawk as well

(Freudenrich, 2001). This aircraft can carry up to 24 passengers and is also equipped

with rescue hoists making it an ideal platform for medical rescue operations.

We now explore the scenario where the V-22 Osprey is used in our baseline prob-

lem, replacing the Naval aircraft. Figure 6 displays the map of the problem scenario

with a V-22 Osprey in Zone 2. The expected response times and service times for

MEDEVAC unit 4 are reduced due to the increased cruising speed. Tables 15 and 16

reflect the updated changes. All other parameters listed in Table 8 remain the same.

Any positive changes to the MEDEVAC system result in a smaller gap between the

myopic policy and the ADPreported policy. In this case, the V-22 Osprey improves the

system by increasing the speed of the fourth MEDEVAC unit which reduces the time

it takes a casualty to be transported to an MTF. Table 17 displays the value of the

starting state for each of the policies. Again, both the Optimaltruth and ADPreported
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Figure 6. Excursion - MEDEVAC locations, zones, and CCCs

policies are generated on the reported triage classification but they are evaluated on

the truth. The Optimalreported policy outperforms the myopic policy by 5.8% while

the ADPreported policy outperforms the myopic by 4.73%. The ADPreported policy is

94.74% optimal, which promotes the efficacy of using random forest within the API

algorithm to approximate the optimal policy.
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Table 15. Expected Response Times (minutes) with V-22 Osprey

Zone, z

MEDEVAC unit, m 1 2 3 4

1 46.5000 58.9820 37.9980 62.2010

2 71.1390 82.0260 45.3790 69.1250

3 55.1840 65.1730 73.7650 116.2200

4 65.5050 46.2940 81.6380 92.7920

Table 16. Expected Service Times (minutes) with V-22 Osprey

Zone, z

MEDEVAC unit, m 1 2 3 4

1 87.2100 112.1500 60.4730 116.8100

2 133.4500 158.1900 81.9150 148.2800

3 76.7550 94.6460 101.2100 140.7200

4 82.8050 48.1950 107.5900 108.6400

Table 17. 4 Zone Policy Comparison with V-22 Osprey

Policy, π V π(S0) % Improvement over Myopic % Optimal

Optimaltruth 3.04 13.30% -

Optimalreported 2.91 5.80% 95.72%

ADPtruth 3.01 9.48% 99.01%

ADPreported 2.88 4.73% 94.74%

Myopic 2.75 - 90.46%
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4.5 Excursion - 20 Zone

This section expands the original 4-zone problem into 20 zones. In doing so, we

achieve greater fidelity in the response times and service times for all MEDEVAC

units. Recall that the response and service times are calculated by averaging the

results from a Monte Carlo simulation. By having a smaller geographic zone, the

averages become more representative of the true response and service time, as noted

in Tables 18 and 19.

Table 18. Expected Response Times (minutes) 20 Zone Scenario

MEDEVAC unit, m

Zone, z 1 2 3 4

1 49.755 74.174 50.824 78.262

2 53.217 78.406 59.499 73.453

3 59.498 84.046 61.434 51.155

4 64.991 88.354 61.368 34.832

5 43.629 67.392 47.313 74.990

6 46.067 71.094 53.345 72.062

7 53.170 76.609 63.053 54.860

8 63.161 84.049 71.491 47.351

9 33.783 57.624 50.213 72.748

10 33.546 58.311 54.378 70.316

11 44.896 65.190 73.384 71.923

12 66.168 82.022 95.485 75.604

13 36.656 43.398 71.745 91.933

14 34.230 47.830 68.284 78.972

15 48.496 60.747 88.764 85.798

16 70.084 80.729 115.630 98.309

17 40.205 36.449 77.812 93.597

18 43.181 38.103 82.296 93.036

19 48.647 48.904 95.734 98.936

20 74.623 77.365 140.920 128.640

The location of the MEDEVAC units, MTFs, Hospital Ships, and CCCs are un-

changed from the baseline problem as shown in Figure 7. The number of zones

directly impacts the size of the state space. Utilizing Equation (1) from Chapter III

we calculate the size of the state space to be 35,201,061. This problem suffers from

the curse of dimensionality and is computationally intractable. Therefore, we cannot
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Table 19. Expected Service Times (minutes) 20 Zone Scenario

MEDEVAC unit, m

Zone, z 1 2 3 4

1 86.742 130.79 67.299 121.37

2 107.3 153.82 83.079 94.358

3 115.38 162.79 91.361 52.225

4 112.46 158.69 91.296 35.901

5 74.342 117.73 63.787 118.09

6 87.87 133.76 73.479 104.78

7 110.8 157.11 92.971 55.974

8 116.47 160.23 101.42 48.42

9 52.101 98.298 69.315 113.88

10 47.357 97.348 76.246 109.37

11 83.219 127.98 98.127 97.687

12 133.61 172.33 125.41 76.673

13 53.714 85.567 93.613 131.05

14 48.459 87.389 90.252 117.95

15 76.993 114.57 110.73 124.78

16 148.87 182.38 145.56 99.378

17 73.927 60.649 116.91 148.41

18 82.936 58.927 126.02 152.13

19 87.918 91.524 128.51 147.9

20 154.8 181.26 168.09 142.81

Figure 7. Excursion - MEDEVAC locations, zones, and CCCs
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determine the optimal policy, but instead approximate a solution using the RF-API

algorithm.

Prior to re-tuning the ADP algorithmic parameter settings, we run the RF-API

algorithm for the 20-zone scenario using the best parameters from the 4-zone design

of experiment (i.e., displayed in Run 1 in Table 11). The ADPreported policy generated

using these settings achieves an 8.64% ± 0.09% improvement over the myopic policy

with 95% confidence. Although these results demonstrate a high-quality solution,

re-tuning the ADP algorithmic parameters may lead to an even better result. Due

to the nature of this problem (i.e., the choice of a dispatching policy can result in

more or less lives saved), it is necessary to re-tune the algorithmic parameter settings

to explore other ADP-generated policies that may yield better improvement over the

myopic policy.

To explore other policies, we design a 43 full factorial design computational ex-

periment for the 20-zone scenario problem, which is displayed in Table 20. These

Table 20. 20-Zone Experimental Design Factor Levels

Algorithm Parameters Description Levels

N Policy Improvements {3, 6, 9}
J Policy Evaluations {15,000, 20,000, 25,000}
κ Step-size {0.05, 0.10, 0.15}
F Trees in Random Forest {75, 100, 150}

specific factor levels were chosen after performing exploratory evaluations. Note that

the time to run one design point ranges from 8-12 minutes given our computational

resources.

We develop a simulation model and perform 50 replications of each parameter

setting combination identified in Table 20 to evaluate the ETDR for the ADPtruth,

ADPreported, and myopic policies. The best parameter settings associated with the

ADPreported policy from the experiment are N = 6, J = 20, 000, κ = 0.05, and
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F = 150. The results from this combination of parameter settings for the ADPtruth

and ADPreported policies with 95% confidence are displayed in Table 21.

Table 21. 20 Zone Policy Comparison

Policy, π % Improvement over Myopic

ADPtruth 18.09% ± 0.14%

ADPreported 12.95% ± 0.10%

The results from Table 21 show that the tuned ADPreported policy is able to achieve

nearly 13% improvement over the myopic policy. Furthermore, the results for the

ADPtruth policy show that if zero misclassifications exist then over 18% improvement

can be attained over the myopic policy. This highlights not only the importance

of tuning parameters to achieve meaningful results, but also the effectiveness of the

RF-API algorithm for the MEDEVAC dispatching problem. As noted in Section 4.3,

we would expect the percent improvement over the myopic policy to increase as the

intensity of combat operations escalates and MEDEVAC requests are submitted with

high frequency and less interarrival times.
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V. Conclusions and Recommendations

The purpose of this thesis is to examine a variation of the MEDEVAC dispatching

problem and develop a dispatching rule that can more efficiently and effectively utilize

MEDEVAC units to maximize battlefield casualty survivability rates. This research

directly builds upon the work previously done by Graves et al. (2021) by incorporating

similar problem features (i.e., triage misclassifaction errors and blood transfusion

kits). An infinite horizon, continuous time Markov decision process (MDP) model is

formulated to examine this problem. The dispatching policy is generated based on

the reported information pertaining to the MEDEVAC request (i.e., originating zone

and triage classification) while also considering the status of the MEDEVAC system

(i.e., the status of the individual units).

In small problem instances, optimal policies can be obtained using exact dynamic

programming techniques. As more realistic features are added to a problem, the state

space grows and the problem becomes computationally intractable, creating a need

to approximate a solution. This thesis adds to the MEDEVAC literature by utilizing

a random forest value function approximation within an approximate policy iteration

algorithm to produce high-quality solutions to the MEDEVAC dispatching problem.

We develop a notional scenario to demonstrate the applicability of our model and

solution methodology. Our scenario deviates from the norm of middle east operations

and instead looks at a scenario based out of South Korea, while also incorporating

a joint military environment. In this environment, we utilize Naval hospital ships as

MTFs, a feature that has not been explored in the MEDEVAC dispatching problem.

In the small-scale problem problem instance we utilize the ADP algorithm to

generate a dispatching policy and compare it to the optimal policy and the currently

practiced policy. The ADP policy is approximately 94% optimal and outperforms

the myopic policy by over 6%. This problem is then enlarged by expanding the
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number of zones from 4 to 20, thereby increasing our state space and subjecting

ourselves to the curse of dimensionality. Although, we cannot solve this scenario

to optimality, the small-scale demonstrates that the ADP solution can achieve high-

quality solutions that outperform a myopic approach when properly tuned. After

conducting a computational experiment to determine parameter settings, we generate

an ADP policy that outperforms the myopic policy by nearly 13%.

As part of a sensitivity analysis, the arrival rate of MEDEVAC requests is altered

to evaluate the effect it has on the differences between the optimal, ADP, and myopic

policies. When MEDEVAC requests enter the system more quickly, ceteris paribus,

the improvement that both the optimal and ADP polices offer over the myopic policy

increases. At the same time, the ADP policies also begin to diminish in terms of its

proximity to the optimal policy. This highlights the importance of properly tuning

the RF-API algorithm to achieve high-quality results. As the MEDEVAC request

arrival rate decreases, the difference between the optimal and ADP policies and the

myopic policy decrease as well.

5.1 Recommendations

This research is valuable to the military community and the leaders therein who

establish the dispatching policy for utilizing MEDEVAC assets. This work can assist

and influence the manner in which MEDEVAC units are dispatched to maximize the

survivability of battlefield casualties.

The analysis conducted in this thesis can be enhanced in future research. The

following two recommendations are extensions to this line of research. First, the

dispatching policies in this model were generated based on the reported triage clas-

sification. If the dispatching authority has a prior belief about the true classification

of the request, then an expectation can be taken, which would likely improve the
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policy. Second, the unique distinction between a hospital ship and a general hospital

is the fact that it is mobile. This problem could be mixed with a resource relocation

problem to determine when and where to move the hospital ship(s) to reduce the

time it takes MEDEVAC units to deliver a casualty to a MTF.
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