
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Geometric Generation Through the Merging of SYsML, and Geometric Generation Through the Merging of SYsML, and

Engineering Sketch Pad Engineering Sketch Pad

Alexander J. Miesle

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Systems Engineering Commons

Recommended Citation Recommended Citation
Miesle, Alexander J., "Geometric Generation Through the Merging of SYsML, and Engineering Sketch Pad"
(2022). Theses and Dissertations. 5415.
https://scholar.afit.edu/etd/5415

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Fetd%2F5415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5415?utm_source=scholar.afit.edu%2Fetd%2F5415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

GEOMETRIC GENERATION THROUGH MERGING OF SYSML AND
ENGINEERING SKETCH PAD

THESIS

Alexander J. Miesle, Captain, USAF

AFIT-ENV-MS-22-M-237

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-22-M-237

AUTOMATED GEOMETRIC GENERATION THROUGH SYSML AND
ENGINEERING SKETCH PAD

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Alexander J. Miesle, BS

Captain, USAF

March 2022

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-22-M-237

AUTOMATED GEOMETRIC GENERATION THROUGH SYSML AND
ENGINEERING SKETCH PAD

Alexander J. Miesle, BS

Captain, USAF

Committee Membership:

Dr. Thomas C. Ford
Chair

Dr. John M. Colombi
Member

Lt Col Jeremy R. Geiger
Member

iv

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

v

AFIT-ENV-MS-22-M-237

Abstract

The United Stated Department of Defense (DoD) and Air Force (USAF) have

placed increased emphasis on the utilization of modern systems engineering (SE)

practices within the current and future acquisitions lifecycle. This call is driven by the

current rate at which near-peer adversaries such as Russia and China are increasing their

defense system capabilities and catching up or surpassing the Unites States in certain

operational regions. To aid in the transition to a Digital Engineering and Digital Twin

dominated acquisitions process, this thesis presents a method with which SysML and

geometric tools can be linked within both new and existing models built through MBSE

practices. Specifically, this thesis focuses on the use of Cameo Systems Modeler and

Engineering Sketch Pad to explore the link between Systems Models and Geometric

Models. These tools, in conjunction with a well-developed pattern were exercised using a

simple, ground-up approach model and an existing model. The result of this thesis is a

stepping-stone to more complex geometric generation and a direct pipeline from SysML

to analysis tools which require either solid models or volume meshes (i.e., CFD, FEM,

RCS calculations).

vi

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr Thomas Ford,

for his guidance and support throughout the course of this thesis effort. His knowledge

and understanding guided this research tremendously. I would, also, like to thank my

fiancé, family, and friends who have helped me along my thesis and overall Air Force

journey. Without them, none of this was possible.

 Alexander J. Miesle

vii

Table of Contents

Abstract ..v

Table of Contents .. vii

List of Figures ..x

List of Tables .. xii

I. Introduction ...1

1.1 General Issue ..1

1.2 Problem Statement..2

1.3 Research Objectives/Questions/Hypotheses ..2

1.4 Methodology...3

1.5 Assumptions/Limitations ..3

II. Literature Review ..4

2.1 Introductory Literature ...4

2.4 Department of Defense Acquisitions..9

2.4.2 DoD Acquisitions Lifecycle ..11

2.5 SysML ..12

2.5.2 Merging of SysML and Geometric Design ...12

2.6 Engineering Sketch Pad ..13

2.6.1 What is Engineering Sketch Pad ...13

2.6.2 How is ESP Useful in Systems Engineering? ...15

2.6.3 Example of ESP Implementation ..17

III. Methodology ...18

3.1 Research Objective ...18

viii

3.1.1 Overview: Stovepiped Gap Between SysML and Geometric Modeling18

3.1.2 Tool Integration ...19

3.1.2.1 Externally Linked Tools ... 19

3.1.2.2 Internally Linked Tools .. 20

3.1.3 Chosen Method for Tool Integration ...21

3.2 Research Questions ..23

3.2.1 Research Question 1 ..24

3.2.1.1 CSV Export Method .. 24

3.2.1.2 XMI Method.. 26

3.2.1.3 Internal Integration in SysML .. 27

3.2.2 Research Question 2 ..28

3.2.3 Research Question 3 ..32

3.2.4 Research Question 4 ..34

IV. Analysis and Results ...35

4.1 Analysis and Results Overview ..35

4.2 Shapes Game Example ...35

4.3 Utilization of an Existing Model ..45

V. Conclusions and Recommendations ..52

5.1 Introduction of Research ..52

5.2 Summary of Research Gap, Research Questions and Answers52

5.2.1 Answer to Research Question 1 ..53

5.2.2 Answer to Research Question 2 ..53

5.2. 3 Answer to Research Question 3 ..54

ix

5.2.4 Answer to Research Question 4 ..54

5.3 Study Limitations ...54

5.4 Recommendations for Future Research..55

5.4.1 Improvement of Data Management and Routines ...56

5.4.2 Data Management and Information Feedback to SysML57

5.4.3 Improvement of ESP interface for advanced functions57

5.4.4 Analysis of Geometric Bodies ...58

5.5 Summary or Significance of Research ...59

Bibliography ..60

x

List of Figures

Figure 1: Freedom of Choice vs. Cost of Change and Knowledge (Tarkian, 2009) 2

Figure 2: Freedom of Choice vs. Cost of Change and Knowledge (Tarkian, 2009) 8

Figure 3: Department of Defense Acquisitions Lifecycle .. 11

Figure 4: Example ESP Script from bottle.csm Provided in ESP Package 14

Figure 5: ESP Data Path ... 16

Figure 6: ESP + SysML Data Path ... 16

Figure 7: Basic SysML to Geometric Tool Process.. 18

Figure 8: Association Context Example ... 22

Figure 9: Association Context Simulation Example ... 22

Figure 10: Simulation Context to Enable CSV Export Within Cameo 25

Figure 11: XMI File Format Example .. 26

Figure 12: Straight Line Association Between System and ESP Models 29

Figure 13: Parametric Diagram Example ... 30

Figure 14: Package Diagram of ESP Model Library .. 31

Figure 15: Basic Pattern for SysML to ESP Linking .. 33

Figure 16: BDD of Shapes Game "Systems" Model .. 36

Figure 17: Shapes Game ESP BDD .. 36

Figure 18: ESP Text as Constraint Expression ... 38

Figure 19: BDD of Shapes Game and ESP Integrated Model .. 39

Figure 20: Opaque Expressions for ESP Data Management .. 41

Figure 21: FileGenerator Activity ... 42

Figure 22: cubeESP Owned Behavior Activity Diagram ... 43

xi

Figure 23: Simulation Output of ShapesGameESP Context Block 44

Figure 24: ESP Output of ShapesGameESP ... 45

Figure 25: Rocket Model Physical Decomposition Showing Multiple Association Paths46

Figure 26: Rocket Model Nose Cone ESP Constraint Expression 48

Figure 27: RocketModelESP Owned Activity .. 49

Figure 28: ESP Output of Rocket Model .. 50

xii

List of Tables

Table 1: Systems Engineering Design Functions (Buede, 2016) 5

Table 2: Digital Engineering Goals (ODASD(SE), 2018) .. 10

Table 3: Opaque Behaviors for ESP Model Generation ... 40

Table 4: Rocket Model Variations .. 50

1

TITLE

I. Introduction

1.1 General Issue

The United States Department of Defense (DoD) and Air Force (USAF) have placed

increased emphasis on the utilization of modern systems engineering (SE) practices

within the current and future acquisitions lifecycle. This call is driven by the current rate

at which near-peer adversaries such as Russia and China are increasing their defense

system capabilities and catching up or surpassing the Unites States in certain operational

regions (Defense, 2018). One of the modern SE practices which has seen increased focus

is Digital Engineering, and more specifically the area of Model Based Systems

Engineering, wherein a “Digital Twin” of a system is created which can be utilized to

explore modifications, support testing, and track impact of changes on cost, schedule, and

performance (Roper, 2020).

This process starts as early as the initial analysis of alternatives for a system,

wherein multiple different system designs are compared against their ability to perform

the desired system mission. This period of the Acquisitions Lifecycle, often described as

“Conceptual Design,” provides freedom of choice and change at relatively cheap cost to

the overall system lifecycle, shown in Figure 1, and is arguably the most important step

in ensuring the right system is chosen to provide warfighters with their needed

capabilities (Tarkian, 2009). As the DoD and USAF strive to incorporate these modern

SE processes earlier and more often in the Acquisitions Lifecycle, emphasis must be

2

placed on increasing the methods available to systems engineers to analyze and convey

their system design and capabilities.

Figure 1: Freedom of Choice vs. Cost of Change and Knowledge (Tarkian, 2009)

1.2 Problem Statement

There is a stove-piped gap between SysML based systems modeling and

parametrically defined geometric modeling of a system. Currently, there is little evidence

Conceptual Design within Systems Engineering tools which utilize Systems Modeling

Language (SysML) have a robust way of providing a geometric representation of a

system directly from the defined systems model. Often, the first-time geometric design is

completed is at the Detailed Design levels utilizing Computer Aided Design (CAD) tools

focused on manufacturing CAD (mCAD) as opposed to analysis CAD (aCAD).

1.3 Research Objectives/Questions

 The objective of this research is to eliminate the stove-piped gap between SysML

systems modeling and parametrically defined geometric modeling of a system by 1)

integrating an MBSE tool with a Geometric modeling tool and 2) defining a method for

3

integrating the system model for each. This objective can be reached by answering the

following questions:

1. What difficulties are present in integrating analysis-centric geometry

generation with commonly used SysML MBSE tools? Where does the current

SysML language fall short?

2. How does the SysML model need to change for a geometric interface to

be created within existing SysML MBSE model frameworks without

impacting system design?

3. What pattern should be followed to integrate the SysML model and the

geometric model? Can this be done in a decoupled fashion so as to eliminate

(or minimize) the changes to the original SysML model?

4. How can SysML and geometric modeling integration be demonstrated

using a simple example? Highlight the pattern, benefits, and challenges of the

approach.

1.4 Methodology

To ensure the methods developed in this effort do not become burdensome on

systems engineers and acquisitions professionals, this research will be focused on

designing a process or pattern within the bounds of SysML, which can be utilized in

addition to current SE practices to supplement current and future system modeling

efforts.

1.5 Assumptions/Limitations

• Use of Cameo Systems Modeler from No Magic as the SysML tool of choice

4

• Limited to SysML 1.6

• Use of Engineering Sketch Pad V1.20 from Massachusetts Institute of

Technology and Syracuse University

• Use of Python as the computer language of choice for any external interface

between SysML and ESP

• All data generated to be UNCLASSIFIED and Distribution A

II. Literature Review

2.1 Introductory Literature

To fully grasp the intention of this thesis, a baseline understanding of the topics to

be discussed and utilized must be provided. Three major topics have been identified as

necessary to ensure the reader understands the intent and guiding principles for the

implementation of the methods and results described in Chapters 3 and 4. These topics

are: Systems Engineering with a focus on SysML, Department of Defense Acquisitions

Lifecycle, and Conceptual Design.

2.2 What is Systems Engineering?

Systems Engineering is a process which aims to deliver a product (system) from

“lust to dust” or concept inception to product obsolescence (Buede, 2016). According to

an IEEE Journal Entry in 2000, Systems Engineering “involves conceptualization,

design, development, test, implementation, approval/certification and operation

(including human factors) of a system (IEEE, 2000).” Unlike discipline-based

engineering such as Mechanical, Electrical, Aerospace, Civil, etc., Systems Engineering

strives to understand the interconnectedness of these disciplines within a system, as well

as non-engineering disciplines such as Logistics, Operations and Maintenance, and

5

Airworthiness Assessments. The desire of this thesis is to enable more comprehensive

practices during the conceptualization phase of System Engineering through the addition

of geometric modeling within the Systems Modeling Language (SysML). To explore how

geometric design can be done using Systems Engineering, it is ideal to explore the

different functions of the design process shown in Table 1, as outlined by Dennis Buede

in The Engineering Design of Systems (Buede, 2016). While these functions look to be

logically aligned in a waterfall type of approach, they are, in practice, completed in a

parallel manner where each function has inputs and outputs which are dependent on other

functions in the design process (Buede, 2016).

Table 1: Systems Engineering Design Functions (Buede, 2016)

Function
0a: Define the problem to be solved

0b: Define and evaluate alternate concepts
for solving problem

1: Define the system level design problem
being solved

2: Develop the system functional
architecture

3: Develop the system physical architecture
4: Develop the system allocated architecture

5: Develop the interface architecture
6: Define the qualification system for the

system
Considering phase 0a and 0b, often referred to as Concept Initiation, geometric

designs can play a vital role in ensuring the concept elements which are being described

have validity. In Department of Defense (DoD) Acquisitions, the problem to be solved is

often condensed down into a capability requirement. There is danger here in that a

complex solution which looks to be the most efficient option to achieve the desired effect

may not be the right one. There is a global System of Systems problem that must be

6

considered at this stage to ensure the proposed concept is feasible within the domain of

operations which this system will exist (Gillespie, 2017). For example, when developing

an air-to-ground missile (AGM), if the system design does not include a geometric

model, there could be overlooked issues such as volumetric packaging or operationally

limiting factors such as vehicle footprint on a runway or in a hangar. This need for

validation through geometry is addressed specifically to Mechatronics in a paper by Aude

Warniez, wherein the need for reducing physical impacts of a multi-physical system is

critical (Warniez, 2017).

2.3 Conceptual Design

When moving out of Concept Initiation and into the 6 primary functions in the

design process, geometric design becomes much more involved. We are no longer only

looking externally, but internally at the system and how its components interact with each

other. The power of MBSE allows the individual geometries of each part to be defined.

As these geometries are defined, one can identify which components do not interface

with each other, and where a new component design must be selected. Performing this

task early and often is important to ensuring the system does not fail during integration.

In the interest of performing geometric design early, it is ideal to start at the

beginning of a system’s lifecycle. This phase, which includes the Concept Initiation as

described above, will be referred to as Conceptual Design. Currently, there are many

discussions about how to perform this Conceptual Design in an MBSE environment,

specifically called Model Based Conceptual Design (MBCD). The main concept behind

MBCD is to reduce the number of requirements on a system using a Goals-Needs

construct (Hummel, 2016). The idea is that requirements put too many constraints on

7

system design and restrict the freedom of the engineer to arrive at an innovative solution

in lieu of “checking the box” on the listed requirements. If one uses the method of

classifying needs, then goals can be used to satisfy that need. If the system design within

the MBSE tool does not achieve the needs of the customer, then it is not a valid solution.

From the perspective of Research and Development (R&D), this idea is extremely

valuable. Using a Goals-Needs mentality would be extremely useful in early tech

development, where the scope of the problems being approached is much wider and less

defined than a typical acquisitions program. This approach, paired with doing early

geometric design, would allow the systems engineer to create models early in the design

process. This would enable trade space analysis and Analysis of Alternatives (AoA)

against a baseline design, to determine the best possible option as early as possible. The

level of acceptance for these designs will be in question and requires careful attention to

how detailed the geometries and the overall system are modeled. A common saying in

modeling is that “all models are wrong; some are useful” – George E.P. Box. To best

convey the “level of wrongness,” the terms of abstraction and fidelity level must be

understood and properly tracked. Abstraction can be considered how far from reality a

system is represented, and fidelity level is the level of “exactness” of the model or

simulation relative to the real-world environment (Hunter, 2015). If each geometric

design does not reflect the same level of abstraction as the rest of the model, then the

accuracy of the model is brought into question. Therefore, while early geometric design

is important, if done incorrectly it can become more of a hindrance than a help in system

design.

8

As systems mature and move through their lifecycle, delays, changes,

modifications, and cost overruns begin to become apparent. As shown in Figure 2 below,

early in a design the cost to make changes and try different configurations is low, but as

the system becomes more concrete and detailed, the cost of those changes begins to climb

(Tarkian, 2009).

Figure 2: Freedom of Choice vs. Cost of Change and Knowledge (Tarkian, 2009)

Using MBSE early in the process to help define the system from Goals and Needs to the

Functional Architecture and the various potential Physical Architectures which could

exist is extremely beneficial. The more knowledge gained early in the design process

allows the systems engineer to make a more educated and capability driven decision on

what component should be selected for the system.

 Conceptual modeling can be powerful if applied correctly. This means that the

model fidelity must not exceed the level of detail needed to solve the problem the model

was designed for. As models become more and more complex, there is a risk that the

compounding model uncertainties will eventually render the model useless. In practice,

this will be difficult to implement, as the desire to quickly field a system often requires

9

the use of COTS and historical information to quickly skip to detailed design phases. A

great analogy used by Thomas Lucas on model complexity is the following poem (Lucas,

2002):

For want of a nail the shoe was lost

For want of a shoe the horse was lost

For want of a horse the rider was lost

For want of a rider the message was lost

For want of a message the battle was lost

For want of a battle the kingdom was lost

And all for the want of a nail

Lucas follows this poem with a conversation on how it is impossible to truly model the

complexities of reality, and that the designer (or analyst in his paper) must know how to

apply the right level of fidelity (Lucas, 2002).

2.4 Department of Defense Acquisitions

2.4.1 Digital Engineering

 Acquisition of new materiel in the United States Department of Defense (DoD),

and more specifically in the US Air Force (USAF) is a complex process, currently

regulated through a series of required documentation and dictated events which describe

how to acquire new or upgraded technologies and equipment. This process is often

bogged down by specifics regarding these documents and processes, which are often

interpreted as detractors rather than productive actions surrounding the system design and

acquisition. Currently, the DoD is striving to create a shift in the way this acquisition is

10

performed through the implementation of a Digital Engineering Strategy. This strategy is

focused on “the challenge of balancing design, delivery, and sustainment of complex

systems with rapidly changing operational and threat environments” (ODASD(SE),

2018). The emphasis of this document is not on one specific way of performing Digital

Engineering, but rather to describe a shift from document-based processes to utilizing a

continuous model which exists throughout the system lifecycle and provides the

information required for decision making. The goal of managing systems in this way is to

foster rapid and responsive development environments which will aid in addressing the

ever-increasing complexity and rate of change in the military environment (ODASD(SE),

2018). The DoD Digital Engineering Strategy outlines five goals which are meant to aid

in the process of integrating model-based digital engineering into the current DoD

Acquisitions process, outlined in Table 1.

Table 2: Digital Engineering Goals (ODASD(SE), 2018)

Digital Engineering Goals
1. Formalize the development, integration, and use of the models to inform

enterprise and program decision making
2. Provide an enduring, authoritative source of truth

3. Incorporate technological innovation to improve the engineering practice
4. Establish a supporting infrastructure and environments to perform

activities, collaborate, and communicate across stakeholders
5. Transform the culture and workforce to adopt and support digital

engineering across the lifecycle

These 5 goals illustrate the desire of the DoD to pursue a Digital Engineering framework

which enables communication up and down the authoritative chain, between personnel

with varying levels of experience and expertise, and from system inception to system

end-life. While Systems Engineering is capable of describing an entire system through

11

SysML and other tools, it is often difficult for everyone who is interacting with the model

to arrive at the same physical description in their head. Similar to reading a book, people

often have different experiences in how they process the information being provided to

them. Enabling a geometric interface within SysML would drive towards a much easier

to understand system, where text-based definitions within a SysML tool are directly

attributed to a physical model for everyone to see and manipulate. This type of

interaction could significantly aid in Goals 4 and 5, which focus on the ability to

communicate and adapt to the adoption of Digital Engineering in the DoD.

2.4.2 DoD Acquisitions Lifecycle

 To aid in understanding the expected implementation of this research, a basic

understanding of the DoD Acquisitions Lifecycle must be developed. Figure 3 illustrates

the general lifecycle for physical materiel acquisition in the DoD (DAU, 2013).

Figure 3: Department of Defense Acquisitions Lifecycle

12

The intent of this thesis is to lay the groundwork for a process which can effectively be

implemented during the Pre-Milestone A phase up to Milestone B. Further development

will be needed for the specific methods approached here to be valid past TMRR.

2.5 SysML

2.5.1 What is SysML?

 Systems Modeling Language (SysML) is a modification of Unified Modeling

Language (UML) which is used for software design and engineering. SysML is a

language which consolidates numerous elements of definition (akin to classes in

programming) and elements of execution (akin to objects in programming) (OMG, 2022).

These elements enable a modeler to develop a complex system definition within a digital

framework where not only the system is described, but its external and internal

component interactions, capability analyses can be performed, and version control can be

implemented.

2.5.2 Merging of SysML and Geometric Design

 To address the problem statement of this thesis, the overall effort must strive to

truly merge the capabilities held within SysML and Engineering Sketch Pad (ESP). The

capabilities which should be held important are 1) Systems modeling capabilities held

within SysML and 2) The geometric description and analysis capabilities of ESP. These

capabilities when merged together can create a powerful end state, wherein system

description is owned and managed within a SysML. Through ESP more complex analysis

tools not traditionally accessible through SysML such as Cart3D and Fun3D

(computational fluid dynamics tools), Sentry (thermal analysis tool from SpaceWorks

13

Enterprises, Inc.), and Abaqus (structural analysis tool) can be accessed and utilized

(Haimes, 2013). Careful consideration must be done on the methods and processes used

to address this interaction between SysML and ESP. If done incorrectly, either the power

of SysML or ESP will be lost. One method previously explored is to create a Geometric

Profile, wherein specific geometries are defined through the use of stereotypes. These

stereotypes are a simplified representation of a physical component in the system, limited

to ~10 simple shapes. For example, a nose cone with complex geometric fairings would

realistically be simplified down to a basic cone (Warniez, 2017). Naturally, there will be

some losses associated with merging the two tools in a preliminary way. The focus of this

thesis will be to maintain as much access to SysML capabilities as possible, therefore,

some ESP functionality may be lost in the process.

2.6 Engineering Sketch Pad

2.6.1 What is Engineering Sketch Pad

 Engineering Sketch Pad (ESP) is a geometric modeling tool which focuses on

enabling interfaces between geometric modeling and analysis tools. This is accomplished

through the use of Open-Source Constructive Solid Modeler (OpenCSM) which provides

access to both a feature tree and design parameters simultaneously (Haimes, 2013). ESP

differentiates itself from most modern CAD programs (Catia, SolidWorks, UniGraphics,

etc.) using open-source software and the user interface through which the modeler

engages with the tool. Traditionally, CAD programs have “primitives” (i.e., circles,

squares, boxes, splines, etc.) which are used in conjunction with one another to generate a

geometric representation of a system. These are most often GUI-based interactions,

14

which are defined in the software and cannot be modified to meet a modeler’s specific

needs (Haimes, 2013). In ESP, the modeler designs through the use of a scripting

language specific to the OpenCSM framework. An example of the scripting language

layout can be seen in Figure 4.

Figure 4: Example ESP Script from bottle.csm Provided in ESP Package

15

This script-based interaction allows for common programs such as Python, C+, and Java

to interface directly with the inputs for the geometric designs. Specifically, a Python-

based interface named pyCAPS has been generated to enable access to many of the

capabilities of ESP from a user-focused lens, striving to bypass the need for compiling of

C-based code and utilizing the nature of Python as an “easy to learn, readable (compared

to low-level programming languages)” language (Durscher, 2019). While pyCAPS is

very useful, it is not capable of a quick interface with SysML, as it is a JavaScript based

environment. Along with the script-based implementation of geometric design, ESP

utilizes the visualization capabilities of modern web browsers to display the designed

object and its information in an easy format, but does not bypass the need for the data to

be available to the modeler. Through ESP, the modeler can 1) modify the implementation

of primitives in the model, 2) create new user defined primitives (UDPs) which are akin

to functions in traditional programming, and 3) interface with the tool through a text-

based file written in the OpenCSM syntax (Haimes, 2013).

2.6.2 How is ESP Useful in Systems Engineering?

The usefulness of ESP in Systems Engineering comes from the flexibility of the

tool to be interfaced with externally, which allows for the 3D conceptualization of the

System Design for Concept evaluation and analysis. ESP traditionally is designed to be

the geometric “data manager” for designs. A modeler generates a design, which can be

executed on through OpenCSM, and then the data relative to that design can be passed to

multiple different analysis tools simultaneously. So how do Systems Engineers take

advantage of this tool to improve their practices? Due to the ease of integration of ESP

16

relative to other geometric software programs, it can be postulated the not only can a path

from ESP to another tool be utilized, but also a path from another tool to ESP.

Essentially, instead of generating the feature tree directly in ESP, we now utilize SysML

as the owner of the system configuration and use the information stored there to generate

a valid OpenCSM file to be executed. This path is illustrated in Figure 5 and Figure 6.

Figure 5: ESP Data Path

Figure 6: ESP + SysML Data Path

The overall usefulness of this pathway comes from the ability of SysML to define a

system which can be executed and analyzed. Once the system design is developed in

SysML, information such as part-whole relationships and system instances can be

extracted and acted upon through ESP.

ESP Analysis
Tool

Data
Package

SysML
tool ESP Analysis

Tool
Data

Package

17

2.6.3 Example of ESP Implementation

 As an example of how ESP has been used in modeling efforts, we will explore a

paper by Justin Clough titled Automated Wing Internal Structure Placement Guided by

Finite Element Analysis. This paper explores an iterative process through which a model

is defined, analyzed, and modified to meet a set of requirements. The methods used in

this paper regarding structural design of a wing and analysis methods are outside the

scope of this thesis, but the overall process executed can be abstracted to develop a

methodology useful to systems engineering. Clough identifies a problem initiation point

wherein a geometry which can be manipulated is generated (Clough, 2019). This

geometry is then able to be analyzed through Finite Element processes and the

information fed back to inform the next iteration of the design. The geometry initiation

point in Clough’s research was performed directly in ESP and the analysis-based

decisions were managed with a Python script. Both of these actions could be directly

translated to a SysML tool and integrated with ESP, almost like a wrapper where ESP’s

capabilities are directly accessed by SysML. Not only was Clough able to prove through

this research that ESP is capable of receiving new information and acting on it but is able

to work in conjunction with non-geometric properties such as material type, density, and

strength as well as a pseudo-requirement of driving a design down towards minimum tip

deflection for an example wing (Clough, 2019). These two concepts in Clough’s work

can be traced to Value Properties of Blocks and Requirements in SysML, showing that

the use of ESP could fit within the current Systems Engineering and SysML framework

without requiring extensive changes to how SysML is utilized.

18

III. Methodology

3.1 Research Objective

3.1.1 Overview: Stovepiped Gap Between SysML and Geometric Modeling

For this thesis, it is paramount to identify the objective, the research questions,

and the overall method used to develop a pattern which enables passing of geometric data

between a SysML model and a parametrically defined geometric description of the

system. There is a stovepiped gap between SysML and Geometric Modeling, and in order

to eliminate this gap, we must integrate an MBSE tool with a geometric modeling tool

and define a method which can be replicated to integrate the System Model with the

Geometric Model. A basic description of this method is described in Figure 7.

Figure 7: Basic SysML to Geometric Tool Process

1. SysML
Model

Created

2. ESP Model
Library
Created

3. Create new
required ESP
components

4. Link
Models

together

19

The stovepiped gap which exists currently is an artifact of the use of individual tools on

the part of both the geometric modeler and the systems modeler, wherein these tools lack

a link which allows for passing of data easily between two differently defined

representations of the same system. This also leads to separate and asynchronous data

sources caused by a lack of a unifying model ownership, namely within SysML and

MBSE tools.

3.1.2 Tool Integration

3.1.2.1 Externally Linked Tools

To meet the first step of eliminating this stovepiped gap, the tool integration must

be achieved in a way which both system descriptions (System and Geometric) have

access and knowledge to the same information. The tool integration options investigated

and tested can be defined in two ways: First, externally linked tools; Second, internally

linked tools. These are defined respectively by A) the addition of a separate and external

method for passing and managing the data handled to define the geometric description of

the system or B) utilizing the power of either the geometric or MBSE tool to own the

management of the geometric data. For the externally linked tools method, the most

viable option is to utilize the data exporting capabilities that are native to Cameo Systems

Modeler, namely exporting value properties through a Comma Separated Value (CSV)

function using a Simulation Context or exporting the model in an XMI format which can

then be parsed through the use of a modern coding languages (i.e., Python, Java, C+) to

extract the required data. The data extracted from SysML is then processed utilizing a

script which must have prior knowledge of the model and access to the ESP environment.

20

These methods, while capable of producing a geometric model, do not meet the intent of

this thesis as they remove the power of SysML from the overall design process and

simply extract a current model state to explore the variables and build a geometric

description. In conjunction with removing SysML from the process, updates are not

automatic and if geometric modeling happens at a pace slower than the overall systems

modeling effort, there will be versioning issues and an inherent trail-behind of geometric

description relative to the current system description. This also removes the capability

that system provides with regards to Monte Carlo simulation and Trade Studies to rapidly

assess variations in the system model and provide insight into the overall System

capability.

3.1.2.2 Internally Linked Tools

Regarding internally linked tools, the data that is required and the pattern with

which this data is handled does not necessarily change. Rather the ownership of the data

management is moved to within a SysML tool or can utilize ESP functionality through

CAPS or pyCAPS. The DoD efforts of a Digital Engineering transformation lead the

focus of this portion of the research to naturally prioritize MBSE or SysML tools to be

the owner of data management and the source of truth over ESP. This method was found

to require one external process to be completed prior to modeling, wherein premade text

files, which can be updated by SysML through Opaque Behaviors, are placed in an

existing or known location on the computer which is executing the model. These external

efforts are meant to enable the power of SysML for future work regarding trade space

studies and potential API integration with other existing tools. This also eliminates

21

reliance on manual updates of external data packages, which inherently comes with the

externally linked tool methods described previously.

3.1.3 Chosen Method for Tool Integration

Because the desire of this thesis is to investigate how to merge systems modeling

practices with geometric modeling, the internally linked tools method was quickly

identified as the preferred solution over externally linking the two tools with a separate

process. This is due to the fact that any attempts to externally link SysML and ESP lead

to the loss of nearly all SysML capabilities. To achieve this, an ESP Model Library and a

Systems Model were included in a single project. The purpose of the ESP Model library

is to build Activities and Opaque Behaviors which are common to enabling the Cameo to

ESP interface. Also, common geometric shapes (such as spheres, cylinders, boxes, etc.)

can be stored in this Model Library for future use in the current or existing model. The

use of a Model Library allows for decoupling of the SysML Model from the ESP Model

being developed. This means the System Model can exists prior to the Geometric Model

and is relatively unchanged when the ESP Model Library is added. It was discovered this

process requires intelligent modeling of relationships between the System and ESP

models which allow the retention of ownership of System-related properties within the

Systems Model and Geometric-related properties to be owned and handled in the ESP

model. This relationship is achieved through an association which is bilateral in nature as

opposed to commonly used unilateral associations (i.e., Straight Line Association vs

Directed Association). The difference between these two associations can be seen in

Figure 8 and Figure 9.

22

Figure 8: Association Context Example

Figure 9: Association Context Simulation Example

Figure 8 shows a Block Definition Diagram containing a Context Block and two

Components A and B of which the Association Context is directly composed. Component

A and B are both Associated to an “ESP Block” through the two different Association

types mentioned. Figure 9 is the result of simulating the Association Context in Figure 8,

and shows how the Straight-Line Association creates a recursive relationship between

23

Component A and Component A ESP Block, where each is a reference property of the

other. Figure 9 also shows how the Directed Association creates an instance of

Component B which contains Component B ESP Block as a Reference Property but does

not have Component B as a Reference Property of Component B ESP Block.

The potential issues caused by the circular reference created with a straight-line

association were deemed to be negligible in terms of the research being performed for

this thesis but may pose complications if automation of larger systems in the future is not

done carefully. This also increases the manual processes required to fully simulate the

Geometric Model, where an “Add Value” step must be done during simulation to

properly update Reference Property values in the ESP model with existing values in the

System Model. It was identified that large systems with multiple components could

potentially make this a tedious task and mitigate the overall benefit of linking the two

tools, but it should be noted that the intention of this specific geometric integration is for

early concept design and analysis which inherently does not have a large order of

magnitude of components.

3.2 Research Questions

To address the research objective for this thesis, 4 Research Questions were

identified:

1. What difficulties are present in integrating analysis-centric geometry generation

with commonly used SysML MBSE tools? Where does current SysML language fall

short?

24

2. How does the SysML model need to change for a geometric interface to be

created within existing SysML MBSE model frameworks without impacting system

design?

3. What pattern should be followed to integrate the SysML model and the geometric

model? Can this be done in a decoupled fashion so as to eliminate (or minimize) the

changes to the original SysML model.

4. Demonstrate the SysML and geometric modeling integration using a simple

example. Highlight the pattern, benefits, and challenges of the approach.

3.2.1 Research Question 1

The first research question focuses on identifying the difficulties with integrating

analysis centric geometry with common SysML tools used and strives to identify where

SysML may fall short in enabling geometric tools to easily interface with the data

available. The major difficulties identified were 1) data exporting typically removes the

capabilities inherent to SysML and 2) the model must be made in such a way that the data

can be pulled in a logical way.

3.2.1.1 CSV Export Method

The first option considered was the CSV export which comes native to Cameo

Systems Modeler.

25

Figure 10: Simulation Context to Enable CSV Export Within Cameo

The challenge with utilizing a CSV export method is that pre-existing knowledge of the

data structure is necessary to be able to intelligently design the data management of the

geometric model. As seen in Figure 10, this method requires each Value Property to be

identified prior to the simulation of the model. This method removes the dependence on

SysML as the owner of the truth model for the system which directly contradicts current

guidance being passed through the Department of Defense and the Air Force. This also

removes the inherent power gained through the utilization of Systems Modeling tools and

causes a loss of model data in exchange for the ease of value property access. While CSV

is a common data format used in many tools and data management techniques, it is

26

considered a non-ideal solution when truly attempting to integrate systems modeling

tools with a geometric modeling tool.

3.2.1.2 XMI Method

The second method explored was XMI file parsing, where an XMI formatted

version of the Systems Model is exported from the systems modeling tool and then

queried using a Python-based interface. This allows all model information to be retained

(i.e., classes, children, parents, etc.). This data, shown in Figure 11, is structured in such a

way to allow for easy access of value properties and other model definitions, as long as

the structure of the model is known prior to developing the Python interface methods.

Figure 11: XMI File Format Example

Essentially, unless a comprehensive method for parsing all potential data in the XMI file

is created, the modeler must know the relative location of all pertinent information prior

27

to creating the parsing script. A potential way around this is through the use of

stereotypes, where all ESP-related Blocks and data are typed in the same way. While

more comprehensive and less reliant on manual processes, this method removes the

capability inherent to systems modeling tools because the model itself is exported into a

static state and cannot be operated on any further within the tool. Again, this is a non-

ideal solution for integration and is essentially utilizing currently existing data in a

separate format to gain access to already existing values.

3.2.1.3 Internal Integration in SysML

The third and final method explored was the internal integration within a Systems

Modeling Tool. This enables the capabilities of SysML to be used for future research

within systems engineering disciplines, specifically Monte Carlo simulations, trade study

analysis, and API integration with separate analysis tools to gain a cohesive

understanding of the trade space within which the system will exist. This moves the

reliance of the data management over to the existing capabilities of SysML, which may

be lacking relative to the abilities of Python, Java, or C+ based practices which are

common in current industry endeavors. This also limits the amount of model structure

knowledge needed prior to the development of the method to be used, which leads to the

chosen approach being an internally linked model which meets the intent of the research

and enables future research to be done within a systems engineering scope and not simply

developing a Python script which intelligently sifts through extracted data in a common

format.

28

3.2.2 Research Question 2

The second research question focuses on how a systems model would need to

change for a geometric interface to be created and how can this be achieved without

impacting the system design so that this method can be applied to either a newly

developed system or a pre-existing system which does not have geometric description

defined. It should be noted none of the methods investigated truly change the systems

model, yet CSV and XMI do not allow for the geometric model to be easily and instantly

updated as new systems data becomes available. Conversely, the internal integration in

SysML requires an ESP Model Library to be developed within the model and a system

linkage to be created through the straight line association and parametric binding between

the System Model and the Geometric Model shown in Figure 12 and Figure 13.

29

Figure 12: Straight Line Association Between System and ESP Models

30

Figure 13: Parametric Diagram Example

Maintaining system design is critical to enabling this research, because requiring large

changes to already existing systems will inherently lead to a lack of adoption of the

technique and increased complexity in already complex systems which can cause difficult

to overcome challenges. With that mentality at the forefront of this research, the method

31

defined does not change the systems model but merely accesses the data which is already

available, and in some cases may require simple value property additions or changes but

does not impact the integrity of the systems model. This is achieved through the

utilization of a separate package which contains a model library of the ESP related

functionality required to geometrically define a system. This Package can be seen in

Figure 14, which shows the containment of Behaviors, Instances, and Structure for the

ESP Model Library.

Figure 14: Package Diagram of ESP Model Library

32

3.2.3 Research Question 3

The third research question identifies the pattern that is needed to integrate the

SysML tool with the Geometric tool. It also strives to address the need for a decoupling

of the System Model and the Geometric Model so that the original model or the new

model being developed maintains integrity with currently defined systems modeling

practices, namely architectural, physical, and functional decompositions. This pattern

consists of four major steps which all are performed within the Systems Modeling Tool,

Cameo Systems Modeler. Illustrated in Figure 15, the first step is to create a system

model of the system desired or to utilize an existing model of a system to be explored.

The second step is to create or import, if already existing, an ESP package which contains

opaque behaviors and activities which define the data management process within the

systems modeling tool for the geometric data. The third step is to create an ESP model

library of the system, which contains blocks which described the geometric definition of

system components, parametric diagrams which bind value properties within the ESP

model library and ESP model itself to required value properties in the system model, and

the activity diagrams which interface the ESP model library with the ESP package

imported in the previous step. The 4th and final step in creating this pattern is to link the

models together through a straight-line association.

33

This straight-line association ensures that both the ESP model and the system model have

knowledge of each other's existence but are only referenced to each other and do not have

the ability to change the definition of one another unless explicitly defined in a

parametric diagram. Another note, for this pattern to properly work, the Simulation

Profile provided within Cameo Systems Modeler was added as a Project Usage to the

model for access to the already developed functionality. Specifically, Text File

Read/Write Opaque Behaviors and Command Line Input behaviors which enable the data

to be passed from the System Model, through the ESP model, to a format on which ESP

can operate.

•New ESP components
for any components
not exisitng in the ESP
Model library

•Utilize Straight Line
Association

•Create applicable
Parametric Diagrams

•Contains Behaviors
for data management

•Contains existing
usable models of ESP
compontnes

•New model created
with MBSE best
practices.

•OR Existing Model
Used

1. SysML
Model

Created

2. ESP
Model
Library
Created

3. Create
new

required ESP
components

4. Link
Models

together

Figure 15: Basic Pattern for SysML to ESP Linking

34

3.2.4 Research Question 4

The 4th and final research question is to demonstrate the integration between the

system tool and the geometric modeling tool through a simple example. This simple

example is defined as Shapes Game, where three simple shapes, a cube, a sphere, and a

cylinder, are defined in a system model and then linked to an ESP model using the

pattern described in Research Question 3. A detailed discussion on how the pattern was

implemented through Shapes Game can be seen in Chapter Four of this thesis, but the

basic steps identified through the exercising of this simple model can be seen in the

following list:

1. Start a new SysML model

2. Create Basic “Shapes Game” model

3. Create Similar ESP model of “Shapes Game”

4. Apply necessary associations

5. Create required Opaque Behaviors

6. Create required activity diagrams for ESP blocks

7. Create required parametric diagrams for System to ESP data passing

8. Simulate Model

9. “Add Value” for reference properties

10. Store Instance of the ESP model

11. Simulate instance of ESP model to create required text files

12. Run .BAT file (internal or external) to visualize the model components

35

IV. Analysis and Results

4.1 Analysis and Results Overview

 This research implements an applied approach (Assef, 2021). This means that

rather than performing large quantities of calculations, the results are focused on a more

application-based approach. To test whether the process is legitimate, it must be applied

in a SysML environment, specifically Cameo Systems Modeler. This chapter focuses on

that application in two ways. First, a simple ground-up approach was completed to ensure

all steps in the process were validated and all functions performed as expected. This

approach can be seen through the Shapes Game Example. Second, the process was

applied to a preexisting systems model, namely a Rocket Model created in one of AFIT’s

Advanced Systems Modeling Courses. The two examples strive to show the process

working in a manner which is applicable in real-world situations, and aids to identify

failure points and areas for future research.

4.2 Shapes Game Example

To implement the process and methods described in Chapter 3, the first approach

was to create a simple example to ensure the desired effects of each SysML modeling

technique. The first step was to create a basic Shapes Game model consisting of three

components, a Sphere, a Cylinder, and a Cube. These components are related to the

Shapes Game Block through a Directed Composition, much like an aircraft is composed

of its individual components. Figure 16 shows this basic model.

36

Figure 16: BDD of Shapes Game "Systems" Model

The next step is to create a similar model to Shapes Game, but within the ESP Model

Library. This model, shown in Figure 17, will be the touch point between Cameo and

ESP to enable the system and geometric information to be passed to a CSM file and then

executed through OpenCSM.

Figure 17: Shapes Game ESP BDD

Each Component in the ESP Model has unique values which must exist for the model to

properly execute. These required value properties are SearchString, Filename,

RunFilename, Name, and textComponent. SearchString is a Value Property which

defines what string combination should be found in the default text file and then replaced

37

with the ESP text which describes the ESP Component. Filename is the name of the CSM

file which is being created for the ESP Component in question, whereas RunFilename is

the name of the Windows Batch File which enables ESP to be executed automatically.

Name is the Value Property which describes the name of the individual component so

that name-based properties and filenames can be created. Finally, textComponent is a

value property which is described through a Constraint Expression in the ESP block. This

expression describes the CSM syntax which creates the component in question. An

example of this Constraint Expression is shown in Figure 18.

38

Figure 18: ESP Text as Constraint Expression

This method utilizes the ability of Constraint Expressions to access the Value Properties

of the owning Block and automatically modifies the script for the final ESP text when a

change is made. Currently, these Constraint Expressions are generated with “English” as

the language for the Body. Once each side of the model is created, the associations and

39

parametric diagrams must be made to properly declare how the information is owned,

managed, and handled. As discussed in Chapter 3, this is achieved through a Straight-

Line Association and Parametric Diagrams. The merging of these two models can be seen

in Figure 19.

Figure 19: BDD of Shapes Game and ESP Integrated Model

After the model associations are properly defined, the opaque expressions and activities

must be made to handle the information in the model. These expressions aid in handling

the data in the ESP Blocks and uses them to update the pre-existing files with the correct

information. The pre-made Opaque Behaviors which are used from the Simulation Profile

40

Package are TextFileReplace and CommandLineInput. The custom Opaque Behaviors

used are described in Table 1 and are detailed in Figure 20.

Table 3: Opaque Behaviors for ESP Model Generation

Opaque Behavior Name Description

batchFileUpdater

An opaque behavior designed to handle

the updates for text in the Windows Batch

File

concatenateText

An opaque behavior which combines the

text for each component into a single

CSM file for the model to be run in a

single CSM

newFilename

An opaque behavior which updates and

creates a unique CSM and Windows

Batch filename for each component

41

Figure 20: Opaque Expressions for ESP Data Management

The activities which are needed to execute these Opaque Expressions and Behaviors are

included in the ESP Model Library. The main activity at the core of these models is the

TextFileGenerator, which takes the inputs from the ESP Model Components and then

creates a text file which contains the ESP required text to describe the geometry of the

component. This Activity can be seen in Figure 21, which shows the inputs of

searchString, textESP, filename, runfileLocation, and blockName.

42

Figure 21: FileGenerator Activity

This Activity is used as the final activity for each of the Owned Behaviors of the ESP

Components. An example of this activity is shown in Figure 22, where the readSelf

Action is used to access the CubeESP object and create an Object Flow representing

CubeESP to each of the readStructuralFeature actions. The readStructuralFeature action

allows for the Value Properties of the individual ESP components to be accessed and then

passed to the FileGenerator Activity.

43

Figure 22: cubeESP Owned Behavior Activity Diagram

At this point in the process, the model has been fully developed and the relationship

between the System Model and the ESP Model has been defined. The next step is to

Simulate the Shapes Game ESP Block, which acts similar to an Analysis Context block,

and save that simulation as an instance. The first step in the Simulation is to Add Value to

each of the Reference Properties in the ESP Components, shown in Figure 23.

44

Figure 23: Simulation Output of ShapesGameESP Context Block

This is done by simply Right Clicking and then selecting the “Add Value” menu option.

Then an instance of Shapes Game ESP can be saved, and that instance can be simulated

to create the desired text files. An example of the final text files can be seen in Appendix

A. The final output of this process is the ESP Model, which is a geometric representation

of the Shapes Game System. This representation is very simple and lacks some

information which is useful in a larger system model such as component positioning (i.e.,

every component is built and stays at the Cartesian (0,0,0) position). Nonetheless, Figure

24 shows that the Shapes Game System can be seen in Geometric Form through the

proper management of Systems Data within SysML, the creation of a few custom Opaque

Expressions, and proper use of Association types.

45

Figure 24: ESP Output of ShapesGameESP

4.3 Utilization of an Existing Model

To further explore this process and to ensure the methods described in Chapter 3

and Chapter 4.1 hold true in an existing model, a Model which was created by a separate

user as part of AFIT’s SENG 660 Advanced Systems Modeling Class was collected and

used as a starting point for this next section. The first step was to select a Model which

contained enough Complexity to stress the process, without making the manual processes

more important than some of the exploratory findings regarding the System to Geometric

Interface. The model which was selected was a basic rocket model created by Captain

Patrick Assef (Assef, 2021). This model contains many different and irrelevant

components (as far as Geometric Description is concerned), so it is a good test for the

usefulness of the processes/pattern previously described. The overall process was exactly

the same as the process described for Shapes Game with two major differences. First, the

46

necessity for positioning of the individual components was now crucial, which led to

having multiple System blocks associated to the same ESP component. The primary

purpose of this association, shown in Figure 25, is to provide a way for each component

to have knowledge of the geometric properties of other system blocks. This also reduces

the need for duplication of Value Properties across multiple components (i.e., storing

information in one block at the System Level as opposed to multiple at the ESP level). In

practice, this allows for components which are either geometrically constrained or

dependent on other components to be generated without the need for repetitive value

creation.

Figure 25: Rocket Model Physical Decomposition Showing Multiple Association

Paths

The second difference between the Rocket Model and the Shapes Game model is that the

Behaviors and the basic ESP components were imported through the Model Library

Created in Shapes Game. This eliminated the need for a large portion of the work from

Shapes Game to be redone within the Rocket Model. This method still requires some

manual connecting of the System and Geometric Components as well as the pre-made

47

text files for the ESP and Windows Batch Files to be made. Another note, as stated

before, the Add Value process does get tedious as more components and more complex

relationships are developed. While this can become tiresome, it is believed that this

process enables more future work than it hurts, especially for systems early in their

lifecycle. Along with the major differences between the two implementations of the

process from Chapter 4, there were many components which contained significantly more

detail than the Shapes Game Model. For example, the Constraint Expressions used for

each of the ESP components is much more complex in the Rocket Model than it is in the

Shapes Game Model, shown in Figure 26. Compared to the Constraint Expression in

Figure 18, it can be seen the level of ESP usage is much higher to enable the more

complex shapes found in the Rocket Model.

48

Figure 26: Rocket Model Nose Cone ESP Constraint Expression

Along with the individual complexities of the Rocket Model Components, it was critical

to enable the entire Geometric Model to be displayed at once. To enable this, a separate

activity owned by the Rocket Model ESP block must be created. This activity can be seen

in Figure 27.

49

Figure 27: RocketModelESP Owned Activity

This activity is intended to extract the ESP text created by each individual component and

pass it to a final overall ESP file which can build all components together. This is

accomplished through the use of the concatenateText Opaque Behavior, which builds the

final ESP file iteratively for each component. There is concern that this would become a

manually intensive activity to build in more complex systems, and potential solutions to

this issue are presented in Chapter 5. The final product of the Rocket Model can be seen

in Figure 28.

50

Figure 28: ESP Output of Rocket Model

This image is a basic output which can be found from ESP for the Rocket Model. To

explore what is potentially possible, some variations from the rocket were created. This

was done through the creation of multiple RocketModelESP instances, stored within the

ESP Model Library. These variations are shown in Table 4.

Table 4: Rocket Model Variations

Rocket Variations Differences

Reduced to three Canards and a longer

overall Body Tube and Nose Cone

51

Increased to six fins and different values

for Canard and Fin description

Decreased nose length, increased fin

size and count, decreased Body Tube

length and inner diameter

Increased Nose Cone length, Fin size

and count, and Body Tube length

This table shows two basic shapes with minimal changes and then two extreme shapes

with major changes. This is intended to show if the capability of SysML to perform Trade

Studies and Monte Carlo analysis is utilized, the ESP Model should be able to handle the

variations with relative ease.

52

V. Conclusions and Recommendations

5.1 Introduction of Research

This thesis strives to address the stovepiped gap related to Geometric Generation and

Systems Modeling through MBSE tools. This gap is created through a lack of current

patterns and processes, as well as lack of proper tools knowledge, which causes discipline

engineers to create models in their own environments which are not fully based on a

single truth model. This research addressed the existence of this gap, the need for a

bridge between the two toolsets, and provided an approach to create that bridge which

also opens the door to many avenues of potential future research and development

regarding increasing the capabilities and effectiveness of our MBSE and Systems

Engineering processes. Each of the four Research Questions addressed throughout this

thesis contribute to the development of a process which 1) Is created in a decoupled

nature to maintain the integrity of the System Model, 2) Provides a way to interface

between a Geometric Model and a Systems Model without requiring changes to the

overall System Model, and 3) Is created in a way such that future research can build upon

the capabilities of BOTH SysML and ESP.

5.2 Summary of Research Gap, Research Questions and Answers

The research gap addressed here is one of model integration between the

disciplines of Systems Engineering and Geometric Modeling. Specifically, the

importance of removing the stovepiped gap generated by different “truth” models for a

system and how removing that gap addresses the drive towards a Digital Twin

environment. The elimination of this gap leads to more accurate models, models which

53

are directly derived from requirements and system descriptions, and potentially ties in the

ability for future integration of high-fidelity analysis tools. Performing the task of

removing this gap early in a system’s lifecycle is paramount to the system being able to

properly handle the current paradigm shift towards a Digital Engineering world. The

answers to each of the 4 research questions has been detailed in Chapters 3 and 4. A

summary can be found in the following sections.

 5.2.1 Answer to Research Question 1

 The first research question addresses the need to identify difficulties in integrating

SysML with analysis-centric geometry. The major areas of concern relative to this

integration are the need for the system data to be available to the geometric model and

model definition. This was addressed through exploration of multiple different data

management pathways (CSV, XMI, and Internal), and identified that the most logical

way to handle the data pathways was within the current capabilities of SysML.

 5.2.2 Answer to Research Question 2

 The second research question is related to the need for the integration to be

seamless between the geometric model and the system model. This question assumes that

either A) the model being developed is being owned and created through SysML or B)

the model in question already exists within a SysML framework. This need for minimal

change and coupling of the two models is paramount to enabling this process for a wide

spectrum of use cases. To address this need, the exploration of association types and use

of parametric diagrams was performed, and it was concluded that the use of a Straight-

54

Line Association enables access to System and Geometric Model information but reduces

the coupling of the two systems.

5.2.3 Answer to Research Question 3

 This research question is the core of this thesis. The development of a method for

integration, rather than a tool which links the systems, is paramount in understanding

how the System Model and ESP Model behave when linked. To enable this, a basic

pattern was developed which focuses on how the data in the system should flow and how

this can be done to reduce the overall change to the System Model. The final pattern used

is:

1. SysML Model Created

2. ESP Model Library Created

3. Create new required ESP components

4. Link Models together

5.2.4 Answer to Research Question 4

 The fourth and final research question is one of application. To ensure the pattern

and processes outlined in Chapter 3 hold true, they must be implemented in a System

Model. The two models used were Shapes Game and the Assef Rocket Model, and the

details of these implementations can be seen in Chapter 4.

5.3 Study Limitations

 There were a few limitations applied to this research. The primary limitation is

one of tool choice. The tools selected for this research were Cameo Systems Modeler

(now Catia Magic Systems of Systems Architect) and Engineering Sketch Pad. These

55

tools were selected for various reasons, primary of which was ease of access. Cameo is a

widely taught and widely used tool in the Department of Defense in regard to Systems

Engineering, and it bodes well for adoption of this research if this tool is utilized. ESP is

an open-source tool, which can be downloaded directly from a Massachusetts Institute of

Technology website. The other limitations for this research were ones of availability and

knowledge. SysML 2.0, while on the horizon, is not yet available, so it was assumed that

this research enables the capabilities found in SysML 1.6 only. Also, for any code-based

efforts, Python was the language of choice based on user knowledge and Python

capabilities. The final limitation placed on this research was distribution limitations. All

data generated and used here was generated under the assumption of UNCLASSIFIED

publicly available data. This enables the research to be utilized as widely as possible as a

trade for more specific DoD-related implementation.

5.4 Recommendations for Future Research

 As this research is assumed to be the first implementation of Geometric Design

directly merged with SysML, there are many areas which can be addressed in the near

future. The main areas which should be considered are listed here:

1) Improvement of Data Management and Routines within the current pattern

2) Data Management and Information Feedback to SysML

3) Improvement of ESP interface for advanced functions

4) Analysis of Geometric Bodies output through this process

56

5.4.1 Improvement of Data Management and Routines

This area of research should focus on a few main points within the current process

and attempt to improve them to enable future research. First, a majority of the Opaque

Expressions are extremely basic. This is partly the nature of the complexity of the

problem they attempt to solve, but also is an artifact of ensuring the researcher was able

to identify failure points within the model simulations. In theory, these Opaque

Expressions (namely batchFileUpdater and newFilename) could be consolidated into a

single expression which has the necessary inputs and outputs. Second, the current

implementation of this process utilizes “English” as the language for the CSM text. This

is due in major part to the shortcomings of the embedded compiling capabilities in

SysML tools. For example, there are many deprecated or unusable functions native to

Jython and JavaScript which struggle to run in the SysML environment. It is

recommended that a better way be developed to properly store the ESP script text within

the Constraint Expression to eliminate the need for constant newline (“\n”) instances.

Ideally, the basic ESP script without the actual Property Values written in could be

generated separately and then copied into the Constraint Expression for evaluation.

Currently, this process is tedious and can be cause for much headache in for more

complex geometries. The last area of research in this section would be to investigate a

better way to extract and handle the Value Properties of each ESP Block. Currently, the

easiest and most effective way found was to make use of the readSelf and

readStructuralFeature Actions. These actions, while extremely useful, become tedious to

handle at best, as a new readStructuralFeature is needed for each value to be assessed. It

would be ideal for a better method to be developed, specifically one which utilizes the

57

native dot notation for SysML hierarchies. The built-in Action Language Helper could

also solve the problem here but was bypassed due to it being a Cameo exclusive method.

5.4.2 Data Management and Information Feedback to SysML

Another area of future research is the development of a method to pass data generated

by the ESP Model back to the Systems Model. The first step to this would be to extract

and then pass back the values relative to a Component and the total system which are

generated by ESP. These include, but are not limited to: Volume, Geometric CG, Surface

Area, Maximum and Minimum Values, and the specific Value Properties (or Design

Parameters in ESP) used to build the model. This data passing can be achieved through

the use of either A) and script which reads through and extracts the data in an EGADS

file for the model or B) through the CAPS or pyCAPS interfaces which are utilized to

query the model for information and access the ESP built in APIs. After the desired

information is extracted from ESP, a method to pass data back to the SysML model must

be created. There are ways to pass data directly to SysML through CSV files, but they

were not explored in this thesis to the extent to be sure of its validity. The next step

would be to define the ESP model and Systems Model to properly handle the new data.

Ideally, all the data generated in ESP is stored in the ESP Model and then only necessary

information is passed to the Systems Model.

5.4.3 Improvement of ESP interface for advanced functions

One area of ESP which was not fully explained or explored were the more advanced

functions such as Booleans (i.e., Subtract, Union, Join, Combine), Grown bodies (i.e.,

Rule, Extrude, Blend), and some of the more complex Declarations (i.e., attribute, name,

58

outpmtr, dimension). These functions truly aid in increasing the capability of ESP to be a

more than formidable tool in a modeler’s arsenal. The challenge here is that the more

complex the design, the more each component requires information from the others. For

example, to blend a complex fuselage to a conical nose cone, one could utilize the Blend

or Rule functions. This requires certain properties of each body to be known, such as face

numbers, edge numbers, and edge quantity to be known and a specific order to be picked

so that surface normals are facing the correct way. For example, two wire bodies with

differing edge counts cannot be ruled together, and ESP will error out on this attempt.

Attempting to bridge this gap with significantly aid in the flexibility of the modeler to

create more complex shapes. It can be postulated that these methods can be handled

through specific activities within the ESP Model Library. For example, if two bodies are

to be ruled together, an activity which imports them both and then queries them in the

right order could be developed. This may take some interaction with the ESP

Development Team (MIT, Syracuse, and AFRL/RQV) to properly merge this gap.

5.4.4 Analysis of Geometric Bodies

The final future research area would be to analyze the Geometric bodies being

developed through this process. ESP comes packaged with several APIs (called Analysis

Interface Modules (AIMs) in CAPS) which interface with commonly used analysis tools.

Along with that, ESP is capable of exporting into many different grid formats which can

be used in a variety of analysis efforts. An exploration should be done on how to

automate which analysis should be done, how to properly handle the information needed,

and similar to Section 5.4.2, how to pass that information back to the Systems Model.

59

This research could be the most beneficial in the future in enabling a truly Digital

Twin/Digital Thread environment for physical systems being acquired by the DoD.

5.5 Summary or Significance of Research

This research is a major stepping-stone in realizing the DoD and USAF goal of a

Digital Twin/Digital Thread environment. The desire to eliminate the stovepipes within

which current design and engineering is done must be paired with an equal urge to

improve upon the capabilities already in existence. SysML is a powerful tool in a

Systems Engineer’s arsenal. Geometric design is a necessary step in providing a fully

realized systems model and aiding in the decision-making process for design choices.

The merging of these two disciplines opens the door for many possibilities in the world

of Digital Engineering. If adopted, this method could prove to be a catalyst for future

efforts in the areas of Digital Test and Evaluation, Digital Logistics Planning, and even

enables more comprehensive models for Campaign Modeling. Only the future can tell

how far this line of research may go, but it is the hope of this researcher that it is taken as

far as it can be. To quote one of the final lines from one of my personal favorite

television shows, Stargate SG-1, “Nothing Ventured, Nothing Gained.”

60

Bibliography

Assef, P. (2021). SENG 660 Rocket Model. Assef.

Buede, D. M. (2016). The Engineering Design of Systems: Models and Methods.
Hoboken, NJ: Wiley.

Clough, J. (2019). Automated Wing Internal Structure Placement Guided by Finite
Element Analysis. AIAA Aviation 2019 Forum (p. 13). AIAA.

Colombi, J., Miller, M. E., Schneider, M., McGrogan, J., Long, D. S., & Plaga, J. (2012).
Predictive mental workload modeling: implications for system design. Journal of
Systems Engineering, 15(4), 448-460.

DAU. (2013, Sept 16). Defense Acquisisiton Guidebook. DAU. Retrieved from Defanse
Acquisition University.

Defense, U. S. (2018). National Defense Strategy. Washington, DC: USDOD.

Durscher, R. (2019). pyCAPS: A Python Interface to the Computational Aircraft
Prototype Syntheses. San Diego, CA: AIAA.

Gillespie, S. (2017). System Of Systems Architecture Feasibility Analysis to Support
Tradespace Exploration. 12th System of Systems Engineering Conference (p. 6).
Waikoloa, HI: IEEE.

Haimes, R. (2013). The Engineering Sketch Pad: A Solid-Modeling, Feature-Based,
Web-Enabled System for Building Parametric Geometry.

Hummel, J. (2016). Model Based Conceptual Design (MBCD) Modeling Your Concepts.
MBSE Solutions.

Hunter, S. (2015). Validating Model-Based Design Simulation: The Impact of
Abstraction and Fidelity Levels. IEEE.

IEEE. (2000). What Is Systems Engineering. IEE Aerospace and Electroinic Systems
Magazine Jubilee Issue, 2.

Lucas, T. (2002). When is Model Complexity Too Much? Illustrating the Benefits of
Simple Models With Hughes' Salvo Equations. Naval Research Logistics.

61

ODASD(SE). (2018, June). Digital Engineering Strategy. Washington, D.C., United
States.

OMG. (2022, Feb). What is SysML? Retrieved from OMG Systems Modeling Language:
https://www.omgsysml.org/what-is-sysml.htm

Roper, W. (2020, Sept 15). Take the Red Pill: The New Digital Acquisition Reality.
Washington, DC, United States.

Tarkian, M. (2009). Design Reuse and Automation on High Level CAD Modeling for
Multidisciplinary Design and Optimization. Linkoping University.

University, D. A. (2020). Defense Acquisition Guidebook.

Ward, A. (2020, Dec 15). How Long Does it Take to Learn a New Language? Retrieved
from https://www.rypeapp.com/blog/how-long-does-it-take-to-learn-a-new-
language/

Warniez, a. (2017). SysML Geometrical profile development for physical. 14th
Mechatronics Forum International (p. 7). Karlstadt, Sweden: HAL Open Science.

62

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

18 -02-2022
2. REPORT TYPE

Master’s Thesis
August 2020 – March 2022

TITLE AND SUBTITLE

GEOMETRIC GENERATION THROUGH MERGING OF
SYSML AND ENGINEERING SKETCH PAD

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Miesle, Alexander J., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-22-M-237

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S
ACRONYM(S)

AFRL/RHIQ (example)
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT

The United Stated Department of Defense (DoD) and Air Force (USAF) have placed increased
emphasis on the utilization of modern systems engineering (SE) practices within the current and future
acquisitions lifecycle. This call is driven by the current rate at which near-peer adversaries such as
Russia and China are increasing their defense system capabilities and catching up or surpassing the
Unites States in certain operational regions. To aid in the transition to a Digital Engineering and Digital
Twin dominated acquisitions process, this thesis presents a method with which SysML and geometric
tools can be linked within both new and existing models built through MBSE practices. Specifically, this
thesis focuses on the use of Cameo Systems Modeler and Engineering Sketch Pad to explore the link
between Systems Models and Geometric Models. These tools, in conjunction with a well-developed
pattern were exercised using a simple, ground-up approach model and an existing model. The result of
this thesis is a stepping-stone to more complex geometric generation and a direct pipeline from SysML
to analysis tools which require either solid models or volume meshes (i.e., CFD, FEM, RCS
calculations).

15. SUBJECT TERMS
 SysML, MBSE, Geometry Modeling, Digital Engineering, Digital Twin
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

63

19a. NAME OF RESPONSIBLE PERSON
Ford, Thomas, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
thomas.ford@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

63

	Geometric Generation Through the Merging of SYsML, and Engineering Sketch Pad
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	1.1 General Issue
	1.2 Problem Statement
	1.3 Research Objectives/Questions
	1.4 Methodology
	1.5 Assumptions/Limitations

	II. Literature Review
	2.1 Introductory Literature
	2.4 Department of Defense Acquisitions
	2.4.2 DoD Acquisitions Lifecycle
	2.5 SysML
	2.5.2 Merging of SysML and Geometric Design
	2.6 Engineering Sketch Pad
	2.6.1 What is Engineering Sketch Pad
	2.6.2 How is ESP Useful in Systems Engineering?
	2.6.3 Example of ESP Implementation

	III. Methodology
	3.1 Research Objective
	3.1.1 Overview: Stovepiped Gap Between SysML and Geometric Modeling
	3.1.2 Tool Integration
	3.1.2.1 Externally Linked Tools
	3.1.2.2 Internally Linked Tools

	3.1.3 Chosen Method for Tool Integration
	3.2 Research Questions
	3.2.1 Research Question 1
	3.2.1.1 CSV Export Method
	3.2.1.2 XMI Method
	3.2.1.3 Internal Integration in SysML

	3.2.2 Research Question 2
	3.2.3 Research Question 3
	3.2.4 Research Question 4

	IV. Analysis and Results
	4.1 Analysis and Results Overview
	4.2 Shapes Game Example
	4.3 Utilization of an Existing Model

	V. Conclusions and Recommendations
	5.1 Introduction of Research
	5.2 Summary of Research Gap, Research Questions and Answers
	5.2.1 Answer to Research Question 1
	5.2.2 Answer to Research Question 2
	5.2. 3 Answer to Research Question 3
	5.2.4 Answer to Research Question 4
	5.3 Study Limitations
	5.4 Recommendations for Future Research
	5.4.1 Improvement of Data Management and Routines
	5.4.2 Data Management and Information Feedback to SysML
	5.4.3 Improvement of ESP interface for advanced functions
	5.4.4 Analysis of Geometric Bodies
	5.5 Summary or Significance of Research

	Bibliography

