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Abstract 

In 2007, the Office of the Assistant Secretary of Defense for Sustainment pushed for the 

need to transition to a Condition Based Maintenance Plus (CBM+) initiative for weapon 

systems in the U.S. Department of Defense. The CBM+ initiative can help increase 

aircraft availability (AA) for the United States Air Force. There are many reasons where 

AA can be affected but one such issue is engine availability primarily due to oil issues. 

Within the CBM+ perspective, this study examines the risk of a jet engine failure due to 

an oil issue and attempts to predict an engine’s time until next failure using survival 

analysis. Predicted engine’s failure could be used to help pilots, maintainers, repair shops, 

and system program offices become better equipped to handle an oil issue before it 

occurs. The results of this study showed that as the engine’s sorties on wing gradually 

increased, the risk of failure increased. In addition, this study found that a Weibull model 

with accelerated failure time was the most suitable model to predict the remaining life of 

the engine before it failed due to an oil issue. Based on the results, this study developed a 

field ready estimation tool that could be used by practitioners for predicting engine 

failures.   
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PREDICTING TF33-PW-100A ENGINE FAILURES DUE TO OIL ISSUES 
USING SURVIAL ANALYSIS 

 
 

I. Introduction 

1.1 Background 

In 2007, the Office of the Assistant Secretary of Defense for Sustainment pushed 

for the need to transition from Condition Based Maintenance (CBM), which is a reactive 

maintenance approach, to Condition Based Maintenance Plus (CBM+), a preventative 

maintenance approach, to help increase aircraft availability (AA) for the United States 

Air Force (USAF). There are many reasons where AA can be affected but one such issue 

is engine availability. Without engines, powered aircraft cannot fly, directly hindering the 

mission. Mr. Rafael Garcia, former Director of the Propulsion Directorate at Tinker Air 

Force Base (AFB) once stated that aircrafts are simply dust covers for engines, noting the 

importance of engines for the USAF.  

Similar with how AA is affected by many factors, engine availability can also be 

affected by a variety of factors such as oil issues, parts availability, foreign object damage 

(FOD), blade damage, scheduled time change, compressor stall, etc. One such issue that 

will be investigated further is engine oil failures, particularly in the TF33-PW-100A 

engines. The TF33-PW-100A engine, which powers the E-3 Advanced Warning and 

Control Systems (AWACS), has been plagued with frequent failures that negatively 

impact the E-3 availability. According to data collected from the Comprehensive Engine 

Management System (CEMS) from fiscal year 2007 to 2019, failures due to oil and 

related issues are one of the top five reasons for an Unscheduled Engine Removal (UER). 
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UERs occur when there is an unexpected failure or damage to the engine internally or 

externally, and, thus, the engine must be removed from the aircraft to be analyzed further 

to correct the issue. Removing the engine unexpectedly impacts the mission of the E-3, 

especially in a deployed environment, as the aircraft is then grounded until another 

engine becomes available to replace the defective one. 

1.1.1 History of the TF33 Engine 

 The TF33 is one of the oldest engines in the United States Air Force (USAF) 

inventory and has been around for nearly 70 years with its design phase taking place 

during the 1950s with production and manufacturing taking place during the 1960s-1970s 

(NRC, 2007). Its Original Equipment Manufacturer (OEM) is Pratt and Whitney, and the 

TF33 engine has a total active inventory of roughly 1,000 units comprised of five 

variants. These engines service the B-52, KC-135, E-3 AWACS, and the E-8 Joint 

Surveillance and Target Attack Radar System (JSTARS). The five variants of the TF33 

are: TF33-3/103, TF33-5, TF33-9, TF33-100A, and the TF33-102C (Brown and Perry, 

2021). The TF33 helps support the mission of seven major commands: Air Force Global 

Strike Command (AFGSC), Air Education and Training Command (AETC), Air Force 

Reserve Command (AFRC), Air Mobility Command (AMC), Air National Guard (ANG), 

Pacific Air Force (PACAF), and Air Force Materiel Command (AFMC). The TF33 

engines have most of their repairs completed at Tinker Air Force Base (TAFB) in 

Oklahoma City, Oklahoma.  

1.1.2 Change in Maintenance Level Concept 

 Prior to 1992, the TF33 operated under a Three-Level Maintenance (3LM) 

concept: 
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- Organizational-Level Maintenance – light maintenance that does not require 

the engine to be completely removed from the aircraft 

- Jet Engine Intermediate Maintenance (JEIM) – maintenance that usually 

requires the engine to be removed from the aircraft requiring more 

maintenance than at the organizational level 

- Depot Level Maintenance – maintenance requiring major overhaul or 

complete rebuild of engine parts/components 

In the early 1990’s the USAF was undergoing a tremendous period of change at both 

depot and field organizations due to base closures, downsizing, and new maintenance 

concepts. These changes directly impacted how and where TF33 engine maintenance 

would be completed. In March 1992, the Secretary of the Air Force (SECAF) directed 

analysts to study the feasibility of transferring JEIM to the depot (Brown and Perry, 

2021). After October 1992, the TF33 maintenance concept shifted towards a Two-Level 

Maintenance (2LM) Concept: 

- Wing Retained Tasks (Organizational) – combination of previous 

Organizational-Level maintenance and light level JEIM work 

- Depot Level Maintenance – combination of extensive level JEIM work and 

major overhauls 

Ideally, the scope of work was designated in such a way where traditional engine repairs 

would be done at TAFB, which involved complete disassembly, clean/repair/replace 

components, and assemble engine from the reworked parts (Brown and Perry, 2021). 

Now, under the 2LM approach, there is the combination of existing depot level capability 

with intermediate level repairs formerly done by field units. Engines that cannot be 
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repaired on the aircraft wing are brought into the depot but are only disassembled to the 

point necessary to make needed repairs, and the work scope teams will perform an in-

depth inspection to determine the required maintenance (Brown and Perry, 2021).  

 The 2LM approach was supposed to combine extensive depot overhaul capability 

with intermediate level repair and save millions of dollars by 1995. The SECAF believed 

that “reducing maintenance staffing, equipment, and base level support without 

sacrificing force readiness” would save the USAF money, reduce repair turnaround time, 

and become an effective maintenance program (GAO, 1996). After The Honorable 

William J. Perry, the Secretary of Defense (SECDEF), and his team conducted an 

analysis on the impacts of 2LM in 1996, they concluded the 2LM implementation cost 

estimate had increased, and the expected net savings decreased from the 385 million 

dollars to 258 million dollars (GAO, 1996). In addition, repair turnaround time increased 

by at least eight days for three out of the four TF33 engine variants tested (GAO, 1996).  

Though many engine series reverted to the 3LM approach, the TF33 engine series 

maintained the 2LM approach, which has been the subject of debate on whether this has 

impacted the efficiency, reliability, and effectiveness of its performance (Brown and 

Perry, 2021).  

1.1.3 TF33-100A and the E-3 AWACS 

The TF33-100A as shown in Figure 1 services the E-3 AWACS aircraft with 162 

engines active to date (Brown and Perry, 2021). Of all the TF33 engine variants, the 

TF33-100A flies the longest mission such as eight and a half hours without refueling 

during peace time and longer during war time when refueled, which particularly 

attributes to the amount of wear and tear the engines receive in comparison to other 
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engine variants (Brown and Perry, 2021). There are four TF33-100A engines per aircraft, 

and each engine has a thrust of 20,500 pounds of thrust at sea level (PAO, 2015).  

 

Figure 1. TF33 Engine (Pratt & Whitney, 2020) 

E-3 AWACS as shown in Figure 2 provides surveillance in the sky for the USAF 

and its allies (NATO, 2021). The E-3 can “detect, track, identify and report potentially 

hostile aircraft operating at low altitudes, as well as provide fighter control of allied 

aircraft” (NATO, 2021). The E-3 carries a four-man flight crew in addition to 13-18 

specialists depending on the mission and can reach a max speed of 530 miles per hour 

(Boeing, 2021). The aircraft is most known for its dome attached towards the end of the 

aircraft that has radars (both passive and radar detection) to provide vital information of 

aircrafts and naval ships below it to identify friend or foe for the situational awareness of 

pilots protecting a specific air space (PAO, 2015).    
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Figure 2. E-3 AWACS Aircraft (AF Technology, 2021) 

1.1.4 Transitioning from Condition Based Maintenance (CBM) to CBM+  

 For most of the USAF’s existence, the USAF had been operating from a 

sustainment perspective of “flying to failure” rather than a “flying to forecast” mindset 

(Mayer, 2020). CBM is centered on the concept of performing maintenance only when 

there is evidence of a need (DoD, 2008). The CBM concept was essentially fixated on 

fixing only what was broken, a reactive rather than preventative maintenance approach. 

As the world, businesses, technologies, and our adversaries continue to advance, there 

becomes a growing need to sustain the warfighter even longer and even more efficient to 

uphold the many goals outlined in the National Defense Strategy (DoD, 2008). Thus, in 

2007, the Department of Defense implemented the CBM+ initiative that focuses on 

performing maintenance based on the evidence of need, of not only reactive but also 

proactive maintenance tasks, which is provided via Reliability Centered Maintenance 

(RCM) analysis along with other supporting processes and technology (DoD, 2008).  

RCM is a logical decision process in which the analysis tool identifies the most 

applicable and effective maintenance task or other logical action such as establishing new 
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inspection requirements through data analysis, field input, operational experience, or 

modifications (OUSD A&S, 2014). Data analysis would involve information such as 

predicted failure rates, failure modes and effects, equipment performance from similar 

weapon systems (if it is a new system), maintenance performance data, and materiel 

deficiency reporting (OUSD A&S, 2014). In its simplest term, RCM defines what must 

be done to a system to achieve the desired levels of safety, reliability, environmental 

soundness, and operational readiness at the best cost. RCM establishes the evidence of 

need for both reactive and proactive maintenance tasks for the CBM+ initiative to then 

apply and integrate the processes, technologies, and knowledge-based capabilities to 

improve the reliability and maintenance effectiveness of DoD systems and components 

(DoD Instruction 4151.22, 2020).  

CBM is still encompassed within the CBM+ initiative as there is always a need to 

perform reactive maintenance. Figure 3 shows that, at the CBM+ core, CBM and RCM 

are needed to identify and perform the reactive and preventative maintenance needed to 

support the warfighter mission. CBM+ built upon RCM and CBM to enhance safety, 

increase maintenance efficiency, and ensure environmental integrity to achieve the 

ultimate goals of increasing system availability and decreasing costs throughout the life 

cycle (OUSD A&S, 2014). 
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Figure 3. CBM+ Overview (OUSD A&S, 2014) 

1.2 Problem Statement 

Engines are constructed and established with designated/scheduled maintenance 

intervals and with the expectation that engines should remain operational until it is time 

to come in for scheduled maintenance, yet some will fail, even multiple times, before 

their scheduled maintenance interval due to oil issues. There is a growing need to prevent 

the number of UERs occurring as the push for AA continues, yet no studies have been 

done to predict engine failures due to oil issues or to identify factors that could contribute 

to oil issues and early failures. Addressing this gap allows for the opportunity to gain 

insights as to what factors help predict the remaining life of the engine before an oil issue 
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occurs to prevent as many in-flight emergencies as possible that would result in grounded 

aircrafts.   

1.3 Research Purpose 

The purpose of this research is to implement a survival model, namely the 

Weibull Accelerated Failure Time Model, to predict the remaining life of the engines 

before it fails due to another oil issue. If a reliable model can be established with 

significant variables to predict the remaining useful life of the engine, pilots, maintainers, 

engine shops, and engine System Program Offices (SPO) can be better equipped and 

prepared to handle an oil related engine repair, making something that has once been 

unpredictable predictable. 

1.4 Research Questions 

Research Question 1: What covariates are significant in predicting engine failures 

due to oil issues? 

Research Question 2: What is the engine’s survival time at given operating hours? 

1.5 Research Hypotheses 

Hypothesis 1: The Total Operating Hours will affect engine failures. 

Hypothesis 2: The Location of Engines will affect engine failures. 

Hypothesis 3: The Time on Wing will affect engine failures. 

Hypothesis 4: The Number of Sorties Flown will affect engine failures. 
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1.6 Methodology 

Survival analysis will be used since the measure of interest is time until failure. 

Rossello and Gonzalez-Del-Hoyo (2021) argue that survival analysis is appropriate when 

there is interest in measuring time until the occurrence of an event. A parametric survival 

function will predict an engine’s time until next failure, or survival time. Three types of 

survival methods will be employed: non-parametric, semi-parametric, and parametric. 

First, the Nelson estimate is a non-parametric approach, which will provide the 

cumulative hazard rate for recurrent events. The cumulative hazard rate is an estimate of 

the expected number of events for a unit that has been observed for a given amount of 

time (Therneau, 2021). Second, the Cox Proportional Hazards Model (PH Model) is a 

semi-parametric approach that allows evaluating hazards without having to choose an 

underlying probability distribution. It will also assess the frailty that determines if failures 

are independent of one another. Lastly, an accelerated failure time model with a Weibull 

probability distribution will be used for predicting survival time with significant 

covariates. Ahsan et al. (2019) analyzed different types of survival distributions and 

found the Weibull distribution was better than other probability distributions for 

predicting survival time. 

The data used in this research was provided by the CEMS office and Equipment 

Specialists (ES) working on the TF33 Integrated Product Team (IPT) located at Tinker 

AFB. After data refinement, there were a total of 226 observations from calendar years 

2007 through 2021. Of the 226 observations, there were 81 unique engine serial numbers. 

The difference between observations and unique engine serial numbers indicate there are 

engines with repeat failures and censored cases over the observation period.   
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1.7 Assumptions and Limitations 

This study assumes that time-to-failure data follow a specific probability 

distribution for a parametric or accelerated failure time model. Time-to-failure data will 

be fitted to various probability distributions before specifying the parametric model. The 

major limitation of this study is collecting data for 81 out of 162 engines due to the 

change of the old database for the engines to CEMS. However, because these 81 engines 

are all engines available during the observation period, we are sure that the data set on the 

engines is unbiased.   

1.8 Contributions 

This study is a novel application of survival analysis to military jet engines. The 

results of this study will help the USAF implement CBM+ efficiently and effectively for 

maintaining TF33 engines. In addition, the framework used by this study can be 

expanded to other engines and components, which are managed under CBM+ and other 

programs. Maintainers and mission planners will get direct benefits from this study while 

logisticians are able to improve the accuracy of demand forecasts. 

1.9 Thesis Overview 

Following Chapter I, Chapter II provides an overview of previous research done 

in survival analysis in the aerospace, automobile, and medical sectors. Gaps are identified 

to show the lack of research on engine failures using a parametric accelerated-failure time 

model. Chapter III goes in depth of the three types of survival analysis used by this study. 

Chapter IV discusses the results with three types of survival analysis. Lastly, Chapter V 
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concludes this study by discussing results on the research questions and hypotheses along 

with contributions, limitations, and future directions.  
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II. Literature Review 

2.1 Chapter Overview 

The purpose of this chapter is to review applications of survival analysis in the 

engineering and medical sectors. Majority of the studies relating to aircraft or engines 

used the Cox PH Model. Regarding aircrafts and/or engines, most survival analyses 

completed had the primary goal of finding covariates that were significant to use within 

the model. Survival models completed in the medical realm tended to focus on finding 

the most appropriate survival model to implement as there were a multitude of significant 

factors that had been identified to use within their models.  

2.2 Survival Analysis 

 Survival analysis is the study of survival time and the factors that influence 

survival time (Kim and Bae, 2020). Essentially researchers are concerned with how long 

it takes for an event of interest such as a failure to occur and how the time until failure 

can be most accurately predicted (Mills, 2011: 1). The event of interest in the medical 

sector is typically death. An example of survival analysis is understanding how a cancer 

patient’s age, gender, stage of cancer, previous remissions, and other explanatory 

variables impact their chances of survival as time continues. In the case of the TF33-

100A engine, the event of interest is engine failure caused by an oil issue. A unique 

feature of survival analysis on engines is that engines can have recurrent failures whereas 

human subjects, can’t have recurrent deaths. There are three main types of modeling 

techniques that can be used for survival analysis. First, non-parametric models can be 

used when there is no assumption on the probability distribution. Non-parametric models 
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are typically used in preliminary analysis and cannot incorporate multiple covariates 

(Mills, 2011: 11). Examples of non-parametric models are life table estimates, the 

Kaplan-Meier estimator, and the Nelson estimator. Second, semi-parametric models can 

be used when there is no assumption about the shape of the hazard function. Unlike non-

parametric models, researchers can use multiple covariates. Because these models are a 

part of the proportional hazard’s family, there are strong assumptions on proportional 

hazards that should be tested (Mills, 2011: 11-14). Examples of semi-parametric models 

are Cox PH Models, which are the most popular and piecewise constant exponential 

models. Third, parametric models can be used when assumptions are made about the 

baseline probability distributions and how covariates could affect the functions. Deciding 

the shape ahead of time determines what type of a parametric model the researcher will 

use (Mills, 2011, 14-15). Once the shape is assumed, the researcher can select a PH 

model or an accelerated failure time (AFT) model. Examples of probability distributions 

used for parametric models are Weibull, exponential, Gamma, and Gompertz.  

2.3 Relevant Research in the Aerospace Industry 

Zaretsky et al. (2004) applied Weibull based models to conduct a reliability and 

life analysis on the NASA (National Aeronautics and Space Administration) energy 

efficient engine. Their goal was to investigate individual component’s life distribution 

using various slopes for the Weibull and its subsequent effect on engine life prediction. 

Failure was determined on an engine if it met any of the six conditions: stress rupture, 

creep, yield, low-cycle fatigue, high-cycle fatigue or fracture mechanics. They assumed 

that each component’s cumulative life distribution was represented by a Weibull 
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distribution to determine a 95-99 percent confidence interval for the probability of 

survival of the entire engine in addition to the original equipment manufacturer’s life 

calculations. They identified a common error in life prediction that they saw in other 

aerospace and non-aerospace scenarios. They found a misassumption that the life 

prediction of a combination of the same components within the system was the same as 

the lowest lived component within the system. However, they concluded that the 

system’s life was lower than the lowest lived component within the system at a given 

reliability due to the probability of survival.  

Jardine et al. (1987) applied a Weibull proportional hazards model to aircraft and 

marine engine failure data to determine the suitability of the model with engine failure 

data. They showed that proportional hazard models were frequently used in the medical 

sector, but not that frequently in the engineering sector. Regarding aircraft engine failure 

data, they found that the Weibull proportional hazards model was a good fit and 

acknowledged the metal particle level in engine oil as well as the environment of the 

engine were factors that influence an engine’s failure time. They worked with the 

spectrometric oil analysis program (SOAP) analysts to collect data. According to their 

study, four metals: iron, chromium, copper, and magnesium were observed by SOAP 

analysts, and iron was determined to be of slight significance in the model. They found 

that flight hours since the last oil change was not significant and that there was not a 

higher level of metal particles soon after an oil change. Regarding marine gas turbine 

engine failure data, they analyzed six variables that could influence failures such as 

monthly starts and monthly hours, hours since last overhaul, ship identification codes 

where two covariates were used such as position in ship: 0 for port and 1 for starboard, 
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and number of previous overhauls. They found number of previous overhauls was the 

only covariate not significant in the model, and, like the aircraft engine data, a Weibull 

proportional hazards model fit the data well.  

Mukherjee et al. (2014) used predictive analysis of engine health for decision 

support in aircraft monitoring. They used data mining and time series graphs rather than a 

proportional hazards model or accelerated failure time model. They used four variables in 

their model based on how each associated parameter controlled the behavior of the 

engine. Among the four variables vibration, noise, carbon dioxide level, and temperature, 

the most significant variable was vibration. They predicted engine status using these four 

variables and provided preventative maintenance suggestions. In aircraft systems, they 

suggested using a piezoelectric accelerometer along with electronic processes technology 

for vibration analysis to store vibration data. They argued that the tools mentioned would 

help ground crew prevent excessive vibration without needing to run the engine on the 

ground. 

Ahsan et al. (2019) conducted a reliability and survival analysis of gas turbine 

engines via a bathtub-shaped failure rate distribution, which used a Weibull distribution. 

Their goal was to find a failure rate distribution that allowed analysts to account for 

varying operating conditions for marine, power generation, and propulsion to accurately 

define maintenance intervals for gas turbine engines in support of RCM. The Weibull 

distribution was used as it was more appropriate to define failures. Djeddi et al. (2016) 

and Hungund et al. (2014) also asserted a Weibull distribution was most appropriate to 

conduct reliability analysis based on failure rate data of turbine engines. They concluded 
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an increase in maintenance intervals resulted in a decline in mean time to failure. 

However, it would also result in preventative maintenance costs to rise.  

Rakers (2012) conducted a case study to understand the influence of sustainment 

contract types such as time and material contracts versus outcome-based contracts on 

engine reliability using ordinary least square (OLS) regression, Weibull, and Cox models. 

The difference between OLS regression and survival analysis was that OLS did not 

include engines without any unscheduled repairs whereas survival models added 

information about timing, which made it possible to account for censoring. In addition, 

survival models analyzed the time to an event and included time-varying covariates while 

OLS did not (Mills, 2011: 11). He found that outcome-based contracts in the defense aero 

engine aftermarket decreased product reliability compared to time and material contracts. 

However, the influence of contract type on product reliability was smaller in the defense 

sector compared to the civil sector. He also found that outcome-based contracts did not 

help increase maintenance predictability compared to time and material contracts. In the 

OLS regression model, a contract type was significant for mean time between 

unscheduled events and inversion failure rate only. The regression model was able to 

measure a -10 to -18 percent change in engines that operated with outcome-based 

contracts compared to time and material contracts. This indicated there were more 

frequent unscheduled repairs. In the Weibull and Cox models, contract types, engine 

average flying hours per day, flying hours at the start of observation period, and customer 

fleet size were significant variables in both the Cox and Weibull models. He 

acknowledged the Cox model was sufficiently accurate though the accuracy was 

strengthened using the Weibull.  
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Thijssens and Verhagen (2020) conducted an extended Cox regression to time-on-

wing data of Boeing 737 repairable parts. They chose the Cox regression model and 

included time-dependent variables as predictors. They found four significant factors to 

predict time-on-wing duration of components: the natural environment at the hub airport, 

maintenance history of components, age of aircraft on which the component is installed, 

and different modification designs. They argued the reliability of the display and air data 

inertial reference units tended to be better at hubs with a hot desert climate with the 

assertion that low humidity areas could “positively affect” degradation. They confirmed 

the display unit component had an issue where five different modification designs failed 

to meet the proportional hazards assumption, thus, had to implement stratification to the 

variable to satisfy the assumption. This was an issue that was prevalent when trying to 

use the PH model. 

Verhagen and De Boer (2018) conducted a study regarding predictive 

maintenance for aircraft components using PH Models. They stressed the importance of 

preventative maintenance as opposed to reactive maintenance in reducing the number of 

unscheduled component failures and costs spent on unscheduled repairs. Longitudinal 

acceleration, mean ambient pressure, maximum roll rate, and commanded rudder force 

were significant variables to predict time until failures. When they compared the 

predicted failures to historical failures for all models, the time-independent PH Models 

had the better goodness-of-fit though the maximum likelihood estimation (MLE) value 

was better for the time-dependent PH Models. To achieve a reduction in failures, they 

adjusted scheduled maintenance intervals and used the predicted values of the covariates 

to assess the probability of failure over a specified time. In terms of weaknesses and 
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limitations to this study, they should have used a separate set of maintenance data to 

validate their reliability forecast to measure the usefulness of the models for failures 

predicted/prevented and costs saved.  

2.4 Relevant Research in the Automobile Industry  

 Wang et al. (2018) conducted reliability and survival analysis for automobile 

engines using conditional inference trees. They acknowledged the extensive use of the 

PH Models for reliability modeling. However, they argued that the lack of interpretability 

of PH Models hindered the ability to provide straightforward recommendations to car 

business owners. The conditional inference trees provided easily interpretable results to 

provide recommendations to fleet managers and their maintenance personnel. Six 

covariates were used in their survival model which were vehicle age in years, cumulative 

miles, average miles per year, job intensity between repair dates, and number of repairs. 

They found that vehicle age, number of repairs, cumulative miles, and job intensity were 

significant covariates impacting the reliability of automobile engines. They wanted to 

include drivers’ behavior, operational information, geographical information, and 

environmental information since they felt it would strengthen the model however that 

data was not readily available. 

2.5 Relevant Research in the Medical Sector 

Research implementing the Weibull Accelerated Failure Time Model in the 

aircraft industry is scarce however there have been studies regarding the model in the 

medical field. Moghimi-Dehkordi et al. (2008) conducted a study that showed the 

statistical comparison of survival models relating to stomach cancer patients. In addition 
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to Efron (1977), Oakes (1977), and Lawless (2005), they found that the Cox PH Model 

was the most popular survival analysis technique because it required less assumptions. 

They all agreed that while there were less assumptions needed for the model, it was often 

hard to satisfy the proportional hazards assumption where the hazard ratio was constant 

over time between two sets of covariates. Parametric models were more efficient to use, 

but it required more stringent assumptions for baseline probability distributions 

(Moghimi-Dehkordi et al., 2008). They determined if the assumptions to use a parametric 

model were met, then the analysis would be more powerful. They used the Akaike 

Information Criterion (AIC) as a measure of goodness of fit to compare amongst four 

models. The Weibull AFT model was the most favorable model for multivariate survival 

analysis. The Cox PH Model had the least favorable fit. They found that even though the 

Cox PH Model was the most common survival model to use in clinical research, 

parametric models such as those used in their study proved to be a better model of choice 

if all assumptions were met, which also agreed with the conclusion made by Zare et al. 

(2015). They determined parametric models had the advantage of measuring how the 

explanatory variables affected survival time which allowed for easier interpretation of the 

results rather than focusing on a conditional probability for the Cox PH Model.  

Swindell (2009) conducted a study on how accelerated failure time models 

provided a useful statistical framework for aging research. He collected data from 16 

survivorship experiments of mice and tried to find the effects of one or more genetic 

manipulations on a mouse’s lifespan. He noted that accelerated failure time models had 

an advantage of displaying a deceleration factor, which showed an increase in the 
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expected waiting time until failure (Mills, 2011: 117; Swindell, 2009). The deceleration 

factor characterized the multiplicative effect on survivorship well, which was a more 

meaningful measure than the hazard ratio. After comparing AIC results, he concluded 

that the model with a Weibull distribution was the best in almost every experiment for 

predicting time until failure. Swindell (2009) highlighted the importance of the 

deceleration factor. 

2.6 Summary 

This chapter reviewed studies using survival analysis in the engineering and 

medical sector. The Weibull accelerated failure time model was rarely used in the 

engineering area. There was also no research conducted on engine failures due to oil 

issues with a focus on survival analysis. Thus, there was inclusion of studies using other 

survival analysis methods on engines, human, and animal subjects. The Cox PH Model 

was a popular model on aircraft and engine analysis due to the model’s restrictive 

assumption on baseline probability distribution. However the studies in the medical field 

found that parametric models, for example, survival models with a Weibull probability 

distribution, were better than other survival models when they were compared with AICs. 

The next chapter discusses survival models used for engine failures due to oil issues.   
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III. Methodology 

3.1 Chapter Overview 

The purpose of this chapter is to describe the methodology that will be used to 

analyze engine failures due to oil issues. Survival analysis will be used because the 

measure of interest is time until failure. Non-parametric, semi-parametric, and parametric 

models will be used. The chapter concludes with a discussion on data collection and 

covariates used.  

3.2 Survival Models 

As briefly stated in Chapter Two, there are three types of survival analysis. Non-

parametric models make no assumptions on the shape of the hazard function nor how 

covariates affect the shape (Mills, 2011: 12). The most prominent non-parametric model 

is the KM estimator for single events, and Nelson estimator for recurrent events. Semi-

parametric models make no assumption on the shape of the hazard function, however, 

these models do make an assumption on how the covariates affect the shape and assume 

that there is a proportional hazard between covariates over time (Mills, 2011: 12). The 

Cox PH Model is the most well-known semi-parametric model although the piecewise 

constant exponential model can be used for similar problems. Parametric models assume 

a shape of the hazard function and how the covariates affect the shape. A parametric 

model is used for understanding effects of time on covariates and the nature of time 

dependence (Mills, 2011: 12). Parametric models can be used with AFT or PH. A 

parametric PH Model assumes that covariates have a multiplicative effect on the hazard 

function, whereas a parametric AFT model assumes the covariates have a linear effect on 
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the natural logarithm of the survival function (Mills, 2011: 116). There are differences in 

interpretation of the parameter estimates between PH and AFT models. PH Models are 

used for estimating hazards, whereas AFT models are used for predicting survival time 

(Mills, 2011: 129). This study attempts to predict survival time for engines that have 

failed due to oil issues. Accordingly, AFT models with Weibull, log-normal, and log-

logistic probability distributions will be tested. 

3.2.1 Non-Parametric Model   

 The Nelson estimator is a general starting point for conducting survival analysis 

for recurrent events as this non-parametric model can provide a visual representation of 

the cumulative hazard function (Therneau, 2021: 15; Nelson, 1969 and 1972). This study 

will use the Nelson estimator for analyzing recurrent engine failures. The Nelson 

estimator provides plots for cumulative hazard rates, which can be used for understanding 

failures. Disadvantages of the Nelson estimator include its inability to include continuous 

covariates and multiple categorical covariates (Mills, 2011: 12). The Nelson estimator 

serves the purpose of estimating the expected number of failures for an engine that has 

been observed for a given time. The formula of the Nelson cumulative hazard rate 

function is as follows: 

𝐴̂𝐴(𝑡𝑡) = ∑ 𝑑𝑑𝚥𝚥
𝑟𝑟𝚥𝚥𝑡𝑡𝚥𝚥≤𝑡𝑡

�      (1) 

In equation (1), the cumulative hazard function is denoted as Â(t), where dj represents the 

number of individuals (i.e., engines) that fail at time tj, and rj represents the number of 

individuals at risk just prior to time tj. The cumulative hazard function is based on the 
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notion that the estimator is an increasing right-continuous step function with increments 

dj/rj at the observed failure times (Nelson, 1969 and 1972). The cumulative hazard rates 

can be plotted using the Nelson curve that shows the cumulative hazard rates over time. 

3.2.2 Semi-Parametric Model 

 The Cox PH Model is one of the most well-known types of survival models due 

to six attractive features (Mills, 2011: 91). First, it is a semi-parametric model that 

doesn’t need to choose a baseline probability distribution. Second, this model also tends 

to be a popular choice because of its ability to fit data well. Third, although the Cox PH 

Model contains an unspecified baseline hazard function, this model can still generate 

parameter estimates that confirm the effects of multiple covariates. Fourth, this model 

ensures hazards are always non-negative due to the exponential component because the 

hazard function is between zero and infinity. Fifth, the data can include survival times of 

censored cases in the likelihood estimator, where there is information regarding an 

individual’s survival time, but the exact time is unknown. Sixth, the Cox PH Model can 

incorporate time-varying covariates, an important aspect in survival analysis. The 

equation for the Cox PH Model that incorporates time-varying covariates is as follows: 

ℎ𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡) 𝑒𝑒𝑒𝑒𝑒𝑒{𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2(𝑡𝑡) … + 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖}   (2) 

In the equation (2), the hazard, h, for an individual or engine i at time t is the product of 

the baseline hazard function that is unspecified, ℎ0(𝑡𝑡), and the exponential set of 

covariates, x. Covariates can be fixed, e.g., xi1 or time dependent, e.g., xi2(t). There is no 

constant, β0, as it is included in ℎ0(𝑡𝑡). From this equation, a hazard ratio is developed for 

each covariate. If the ratio is greater than one, the corresponding covariate will increase 
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the risk of the event. If the ratio is less than one, the covariate will decrease the risk of the 

event. If the ratio is one, the covariate will have no effect on the risk of event. This model 

is known as a proportional hazards model because the hazard for any individual of 

interest, i.e., engines, is proportionally fixed for the hazard of other individuals (Mills, 

2011: 88). Because the Cox PH Model assumes that the hazard ratio is constant and 

parallel over time between two covariates, the violation of the assumption should be 

tested after running the model (Moghimi-Dehkordi et al., 2008; Efron 1977; Oakes, 1977; 

Mills, 2011: 88). Cox PH Models with frailty are used for testing the independence of 

events. This study will include a PH Model with frailty to check the independence of 

engine failures. When running the Cox PH Model, this study will employ two types of 

time indicators such as flight hours and sorties flown.  For evaluating two time indicators, 

concordance, log likelihood, and AIC measures along with analysis of variance 

(ANOVA) will be used. 

3.2.3 Parametric AFT Models 

Because a parametric model assumes a specific baseline probability distribution 

and estimates survival time, it is different from non-parametric and semi-parametric 

models that have no assumption on the baseline probability distribution and estimate 

hazard ratios. Because the goal of this study is estimating survival time, AFT models will 

be used for analyzing engine failures due to oil issues. If a covariate has a coefficient of 

greater than one, its effect is positive on survival time. If a covariate has a coefficient of 

less than one, its effect is negative on survival time. AFT models will also generate scale. 

If the scale is below one, failures are increasing at a decelerating rate. If the scale is 
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above one, failures are increasing at an increasing rate. The equation for AFT models is 

as follows:  

ln 𝑡𝑡𝑗𝑗 =  𝒙𝒙𝑗𝑗𝜷𝜷 +  𝑧𝑧𝑗𝑗    (3) 

In Equation (3), survival time is expressed as the natural logarithm, ln tj, and contains a 

linear function, where a vector of covariates is denoted as xj, the vector regression 

coefficients are denoted as β, and the error that assumes a density function as zj. The 

distribution form of the density function determines the shape of the model. The different 

types of probability distributions that will be explored to fit survival time are Weibull, 

log-normal, and log-logistic distributions. The parametric model with a specified 

probability distribution is estimated by using a maximum likelihood estimation. Once the 

survival time has been fitted to a distribution, there will be an assessment of the overall 

goodness-of-fit for models with different probability distributions using the AIC to 

determine which distribution best fits the data. For different types of time indicators, 

models will be also evaluated using AIC. 

The validity of models will be assessed using log-likelihood results. If a log-

likelihood result of a full model is smaller than that of the null model, the full model is 

better than the null model. 

3.3 Data Collection 

The data for this study was provided by the CEMS office at Tinker AFB. CEMS 

is a USAF database system that pulls raw data from the Integrated Maintenance Data 

System (IMDS) that is inputted by maintainers once a flight is completed (Stephens, 
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2020). The data set included 81 unique TF33-PW-100A engines with 226 observations 

from quarter one of 2007 through quarter three of 2021, which was pulled on 6 December 

2021. 

3.4 Covariates  

There are four covariates in the models for determining the effects of the 

covariates on engine failures due to oil issues. Because the E-3 AWACS orbit the sky to 

provide services as a mobile air traffic control tower, there could be numerous factors 

contributing to engine failures due to oil issues. Since oil leaks can occur throughout 

different compartments of the engine, these issues are not necessarily concentrated in one 

component. For example, oil could leak from a broken seal in the O-ring, a tailpipe, a 

gearbox tower shaft, a gearbox breather, a fan case, a carbon seal, a bearing unit, a fuel 

control mount pad, a power take off shaft, etc. Upon further inspection by the 

maintenance crew either at the depot or a deployed location, repairs are completed by 

replacing a part or resealing the area of concern. Other oil related issues include high or 

low oil consumption, high or low oil pressure, contaminated oil, 

dirty/contaminated/saturated oil due to foreign material, and adverse oil consumption 

trend. 

This study considers two types of time indicators and two covariates. Two time 

indicators are Time on Wing and Sorties on Wing. Two covariates are Total Operating 

Hours and Locations of Engines. Time on Wing (TOW) denotes the number of hours an 

engine has been on the aircraft before being removed due to an issue or scheduled 

overhaul. Sorties on Wing (SOW) denotes the number of sorties an engine has been on 
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the aircraft before being removed for repair or scheduled overhaul. Total Operating 

Hours denotes the total number of hours the engine has been in service for since 

production, which indicates the age of an engine. Location of Engines will be binary. If 

the engine is located in the 552nd Flying Squadron at Tinker AFB, Location of Engines 

takes one. If the engine is not located in the 552nd Flying Squadron at Tinker AFB, 

Location of Engine takes zero.      

3.5 Fitting Survival Time to Probability Distributions 

Survival time will be fitted to the three different probability distributions. TOW 

and SOW will be fitted to the probability distributions separately. Survival time will 

fitted to probability distributions using R and R packages (R Core Team, 2020).  

3.6 Summary 

This chapter described the methodology that is planned to be used for the analysis 

of engine failures due to oil issues. The non-parametric survival model was described, 

namely the Nelson estimate. The semi-parametric survival model included the Cox PH 

Model with frailty. The parametric section described the importance of using a 

probability distribution beforehand to fit the survival data and discussed the different 

models that could be used. The survival models with Weibull, log normal, and log 

logistic models will be compared to determine the best fit parametric model to predict 

failures. It was also discussed that an accelerated failure time model will be used to focus 

on comparing survival times of engine failures due to oil issues rather than comparing 

hazards. Lastly, it was discussed that the data was collected via CEMS and that the 

covariates to be analyzed were total time and location as the main covariates with TOW 
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and SOW being compared against one another as the survival time indicator. The next 

chapter focuses on the analysis and results from the non-parametric, semi-parametric, and 

parametric models.  
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IV. Results and Discussion 

4.1 Chapter Overview 

The purpose of this chapter is to discuss the results from the non-parametric, 

semi-parametric, and parametric models. Discussed first is the number of failures that 

occurred as well as summary statistics of the data, which will focus on the Total 

Operating Hours of the Engine or Total Time, TOW, and SOW. Second, a Nelson 

analysis is conducted to report the risk of an oil related failure using TOW and SOW.  

Third, a Cox PH Model with frailty is analyzed featuring the various covariates used to 

then report the model strength by interchanging TOW and SOW in addition to comparing 

the model strength when taking the natural logarithm of the Total Time covariate. Fourth, 

TOW and SOW are fitted as the survival time indicator and the results of which 

parametric model between Weibull, log normal, and log logistic is the best fitting model 

based on the AIC are discussed. Then, results of the chosen parametric model are 

discussed, again using TOW and SOW to show a full model comparison of using 

different survival times. Upon selecting the best fit model, Chapter Four concludes with a 

discussion of the predicted engine survival time based on the covariates used. 

4.2 Transitions and Summary Statistics 

The first subject analyzed is the number of oil related failures that occurred within 

the number of observations. There were 226 total observations, 81 of which were unique 

identifiers which indicates engine serial numbers with repeat failures. Table 1 shows how 

many engines transitioned from either no oil related failures to one oil related failure, no 

oil related failures to censored observations, one oil related failure to another oil related 
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failure, and one oil related failure to censored observations. A censored observation 

occurs when a failure is not reported either because a failure did not occur at all, or a 

failure did not occur within the period of observation (2007-2021).  

Table 1. Oil Transitions Table 

 1 Censored 
0 41 40 
1 21 37 

 
41 engines experienced an oil related failure after not having a reported oil related failure 

prior to the event. 40 engines experienced either no oil related failure or were censored 

observations during the period of observation. 21 engines experienced an oil related 

failure back-to-back. 37 engines experienced either no oil related failure or were censored 

observations during the period of observation after having a reported oil failure prior to 

the event.   

 In addition to a transitions table capturing non-events to events like Table 1, Table 

2 shows transitions to each state where it depicts how many oil related failures a unique 

engine experienced within the period of observation. The below table considers only 

engines that have failed due to an oil related issued.  

Table 2. Oil Transitions Table to Each State 

State 0 1 2 3 4 
1 40 24 14 2 1 

40 engines did not experience an oil related failure within the period of observation. 24 

engines experienced an oil related failure only one time within the period of observation. 

14 engines experienced an oil related failure twice within the period of observation. Two 

engines experienced an oil related failure three times within the period of observation. 
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Lastly, one engine experienced an oil related failure four times within the period of 

observation.   

 Next, the summary statistics were computed for the covariates and the below 

information was displayed in Table 3. The minimum total time captured for an engine 

was 12,326 hours whereas the maximum total time captured for an engine was 39,098 

hours with a median total time of 22,890 hours.  

TOW varied greatly between 2.4 hours and 7,322 hours. An engine can be pulled 

after a short duration on the wing if the aircrew notes an immediate problem in flight and 

grounds the plane for the engine to be inspected further. If the maintainers confirm a 

problem, that engine is subsequently pulled off the aircraft and the TOW duration is 

logged. It is important to note that TF33-PW-100A engines are typically pulled from the 

aircraft when the engine approaches 6,000 hours as this is the time indicator for an 

overhaul. However, if an engine is reported as not having any issues or surpasses 6,000 

hours during a flight mission, the aircrew and maintainers can submit paperwork to leave 

the engine on past the 6,000-hour threshold. Though the maximum time recorded within 

the observational period is 7,322 hours, the median TOW is 1,231.7 hours.  

Regarding total sorties flown, the minimum value was 2,559 total cycles with a 

maximum value of 13,290 total cycles and a median value of 5,546 total cycles. The 

SOW had a minimum of 2 cycles, maximum of 1,826 cycles and median of 335.5 cycles. 

When an aircraft takes off and lands, it is considered as one cycle. If an aircrew is 

performing “touch and go’s” which is when the aircraft lands briefly and immediately 

takes off without coming to a complete stop, that is considered one half of a cycle. One 

reason SOW can have a minimum value of 2 cycles is if the aircrew notices an issue upon 
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take off, during the flight, or on landing and provides the maintenance crew with their 

input which then leads to the maintenance crew evaluating the engine and removing the 

engine from the wing if an issue is spotted.  

Lastly, the natural logarithm of the total time was taken to see if subsequent 

models to be ran would have a stronger fit. By taking the natural logarithm of the total 

time, it limits the variability of the data, making numbers smaller, thus, making it easier 

to interpret and understand the regression coefficients within each model by magnifying 

those respective values. Taking the natural logarithm of the total time can also point out 

non-normal data if they are present in the model. When taking the natural logarithm of 

total time, the values are more compressed than the original total time inputs, with a 

minimum value of 9.42, maximum value of 10.57, and median value of 10.04. Table 3 

shows summary statistics of variables. 

Table 3. Summary Statistics of Variables 

 Total 
Time 
(hrs) 

Time on 
Wing (hrs) 

Total Sorties 
(cycles) 

Sorties on 
Wing (cycles) 

Natural Log 
Total Time 

Minimum 12,326 2.4 2,559 2.0 9.420 
1st Quartile 19,787 464.6 4,705 116.2 9.893 
Median 22,890 1,231.7 5,546 335.5 10.040 
Mean 24,363 1,868.5 6,632 454.4 10.069 
3rd Quartile 28,086 3,072.7 8,840 722.8 10.240 
Maximum 39,098 7,322.0 13,290 1,826.0 10.570 

 

4.3 Non-Parametric Analysis - Nelson Estimate 

A Nelson analysis was tried using the two different survival time indicators such 

as TOW and SOW. Two different survival time indicators were used to see how an 
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engine’s hazard changes with time in relation to how much TOW it has versus how many 

SOW it has. Four plots will be displayed, two under each survival time. Under TOW, a 

Nelson plot is computed to show how the risk of failure changes with time and a Nelson 

plot with the inclusion of the location covariate is used to show how the risk of failure 

differs at a given location. Under SOW, the same approach is taken where two plots are 

computed. Figure 6 will show how the risk of failure changes with number of sorties 

flown and the other plot will show how the risk of failure changes with number of sorties 

flown at different locations. 

4.3.1 Using Time on Wing as Survival Time 

 When using TOW as the survival time indicator in the Nelson model, two plots 

are computed. Figure 4 is a graphical depiction of an engine’s cumulative hazard rates 

with TOW as the survival time indicator along with the 95 percent confidence intervals. 

As the engine’s TOW gradually increases, cumulative hazard rates increase. Figure 5 is a 

graphical depiction of how an engine’s cumulative hazard rates change at a given 

location. As the engine’s TOW gradually increases, cumulative hazard rates for engines 

located at Tinker AFB within the 552nd Flying Squadron is higher than those of engines 

located at else. However, since the confidence intervals for location are mostly 

overlapping, it indicates no significant difference between locations.   
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Figure 4. Survival Plot Using TOW  
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Figure 5. Survival Plot Using TOW Based on Location 

 

4.3.2 Using Sorties on Wing as Survival Time 

 When using SOW as the survival time indicator in the Nelson model, two plots 

are computed. Figure 6 is a graphical depiction of an engine’s cumulative hazard rates 

with SOW as the survival time indicator along with the inclusion of the 95 percent 

confidence intervals. As the engine’s SOW gradually increases, cumulative hazard rates 

increase. Figure 7 is a graphical depiction of how an engine’s cumulative hazard rates 

change at a given location. As the engine’s SOW gradually increases, cumulative hazard 

rates for engines located at Tinker AFB in the 552nd Flying Squadron is higher than those 
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of engines located at else. However, since the confidence intervals for location are mostly 

overlapping, it indicates no significant difference between locations.  

 

Figure 6. Survival Plot Using SOW 
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Figure 7. Survival Plot Using SOW Based on Location 

 

4.4 Semi-Parametric Analysis – Cox PH Models with Frailty 

 A Cox PH Model with frailty analysis was completed to test various Cox PH 

Models strengths and show how a semi-parametric model differs between parametric 

models. The two survival time indicators, TOW and SOW were compared in addition to 

comparing the difference between using the total time covariate and natural logarithm of 

the total time covariate when both covariates were paired with the location covariate. 

Section 4.4.1 will address using TOW as the survival indicator while comparing the total 

time covariate to the natural logarithm covariate. Section 4.4.2 will address using SOW 
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as the survival indicator while comparing the total time covariate to the natural logarithm 

covariate. Section 4.4.3 will address overall model strength when comparing all four Cox 

PH Models. 

 

4.4.1 Using Time on Wing as Survival Time Indicator 

When using TOW as the survival time indicator and including the total time and 

location as the covariates, Cox PH Model 1 indicated the total time covariate was not 

significant at a 0.05 significance level. The location covariate was also not significant at a 

0.05 significance level, but it barely missed significance by 0.004. To interpret the 

covariates in a Cox PH Model, the exponentiated coefficients were examined. The 

exponentiated coefficients represent the multiplicative effects on the hazard, which is 

referred to as the hazard or risk ratio. If the hazard ratio is greater than one, the covariate 

being examined is associated with an increased hazard of having a failure. If the hazard 

ratio is less than one, the covariate being examined is associated with a decreased hazard 

of having a failure. If the hazard ratio is equal to one, there is no effect of the covariate on 

the hazard. Since the total time covariate’s exponentiated coefficient is 1.00, there is no 

association between the covariate and failure. With location having an exponentiated 

coefficient of 2.038, there is an increased hazard of having a failure for the engines 

located at Tinker AFB. The frailty measure in the model had a p-value of 0.340, which 

indicated that failures were independent. The concordance index for Cox PH Model 1 

was 0.677 indicating it was considered a significant model. Models must have a 

concordance of 0.55 or larger to be considered significant. The model also had an 

associated AIC of 553.415. Table 4 shows coefficient estimates for the covariates. 
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Table 4. Cox PH Model 1 using TOW and Total Time 

Covariate Beta 
Coefficient 

Exponentiated 
Coefficient 

Standard Error 
Coefficient p Value 

Total Time -0.00004222 1.00  0.00002374 0.075 
Location 0.7119 2.038 0.3619 0.054 

Frailty (ID) - - - 0.340 
Concordance: 0.677 (standard error = 0.045) 

AIC: 553.415 

When using TOW as the survival time indicator and including the natural 

logarithm of total time and location as the covariates, Cox PH Model 2 indicated the 

natural logarithm of the total time covariate was significant at a 0.05 significance level, 

while the location covariate was not significant at a 0.05 significance level. Again, 

Location barely missed significance by 0.002. Since the natural logarithm of total time 

covariate’s exponentiated coefficient is 0.2916, there is a decreased hazard of having a 

failure. With location having an exponentiated coefficient of 2.0541, there is an increased 

hazard of having a failure for the engines at Tinker AFB. The frailty of the model had a 

p-value of 0.330 which indicated that failures were independent. The concordance index 

of Cox PH Model 2 was 0.677 indicating it was considered a significant model. The 

model also had an AIC of 552.427. Table 5 shows coefficient estimates for the 

covariates.  

Table 5. Cox PH Model 2 using TOW and Natural Logarithm of Total Time 

Covariate Beta Coefficient Exponentiated 
Coefficient 

Standard Error 
Coefficient p Value 

Natural Logarithm 
of Total Time -1.2325 0.2916  0.6011 0.040 

Location 0.7198 2.0541 0.3703 0.052 
Frailty (ID) - - - 0.330 

Concordance: 0.677 (standard error = 0.044) 
AIC: 552.427 
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4.4.2 Using Sorties on Wing as Survival Time 

When using SOW as the survival time indicator and including the total time and 

location as the covariates, Cox PH Model 3 indicated the total time covariate was not 

significant at a 0.05 significance level, while the location covariate was significant at a 

0.05 significance level. Since the total time covariate’s exponentiated coefficient is 1.00, 

there is no effect of the covariate on hazards. With location having an exponentiated 

coefficient of 2.449, there is an increased hazard of having a failure. The frailty of the 

model had a p-value of 0.350, which indicated that failures are independent. The 

concordance of Cox PH Model 3 was 0.683 indicating it was considered a significant 

model. The model also had an associated AIC of 570.073. Table 6 presents coefficient 

estimates for the covariates.  

Table 6. Cox PH Model 3 using SOW and Total Time 

Covariate Beta 
Coefficient 

Exponentiated 
Coefficient 

Standard 
Error 

Coefficient 
p Value 

Total Time -0.00003903 1.000  0.00002342 0.096 
Location 0.89560 2.449 0.3689 0.015 

Frailty (ID) - - - 0.350 
Concordance: 0.683 (standard error = 0.044) 

AIC: 570.073 

When using SOW as the survival time indicator and including the natural 

logarithm of total time and location as the covariates, Cox PH Model 4 indicated the 

natural logarithm of the total time covariate was not significant at the 0.05 significance 

level, while the location covariate was significant at a 0.05 significance level. The natural 

logarithm of total time barely missed significance by 0.006. Since the natural logarithm 
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of total time covariate’s exponentiated coefficient is 0.3221, there is decreased hazard of 

having a failure. With location having an exponentiated coefficient of 2.4612, there is an 

increased hazard of having a failure. The frailty of the model had a p-value of 0.340, 

which indicated that failures are independent. The concordance index of Cox PH Model 4 

was 0.684 indicating it is considered a significant model. The model also had an 

associated AIC of 569.248. Table 7 shows coefficient estimates for the covariates.  

Table 7. Cox PH Model 4 using SOW and Natural Logarithm of Total Time 

Covariate Beta 
Coefficient 

Exponentiated 
Coefficient 

Standard Error 
Coefficient p Value 

Natural Logarithm of 
Total Time -1.1328 0.3221 0.5935 0.056 

Location 0.9007 2.4612 0.3696 0.015 
Frailty (ID) - - - 0.340 

Concordance: 0.684 (standard error = 0.044) 
AIC: 569.248 

 

4.4.3 Comparison of Cox PH Models 1 through 4 

 After running each Cox PH Model with frailty under the different time indicators 

and covariate scenarios, a comparison of each model’s concordance and AIC was 

completed to determine which Cox PH Model was the strongest amongst semi-parametric 

models. Table 8 summarizes each Cox PH Model concordance and associated AIC. In 

reference to concordance and AIC, a larger value in concordance signifies a stronger 

model. However, a smaller value in AIC signifies a stronger model. Based on the 

information calculated in the analysis, Cox PH Model 4 had the highest concordance at 

0.684, but the lowest AIC is associated to Cox PH Model 2 with a value of 552.427. 

When values compete with one another, the practitioner will determine which model to 
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move forward with. Therefore, if it is decided to use concordance as the deciding factor, 

Cox PH Model 4 with SOW as the time indicator and the natural logarithm of total time 

and location as the covariates is the strongest model. In the same token, if using Cox PH 

Model 2 as the semi-parametric model of choice, then at a 0.05 significance level, 

location is not a significant covariate whereas the natural logarithm of total time is. 

Though there were conflicting results regarding model strength, it was determined that oil 

failures were independent.  

Table 8. Comparison of Cox PH Models 

Cox PH Models Concordance AIC 
1 – TOW + TT + Location 0.677 553.415 
2 – TOW + NL TT + Location 0.677 552.427 
3 – SOW + TT + Location 0.683 570.073 
4 – SOW + NL TT + Location 0.684 569.248 

 

4.5 Parametric Model Analysis 

 An analysis was completed comparing various parametric accelerated failure time 

models. Section 4.5.1 will discuss the initial analysis where three probability models are 

used to assume the shape of the function. The three probability models used for 

comparison are the Weibull, log normal, and log logistic models. For this analysis, the 

two survival time indicators, TOW and SOW, were compared to determine which 

survival time indicator best fit each of the three models. Section 4.5.2 will compare the 

null model of the chosen parametric model to the chosen parametric model with 

covariates to determine if adding covariates strengthen the model. TOW will be used as 

the survival time indicator for the model including covariates total time and location for 
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one scenario and covariates natural logarithm of total time and location for the second 

scenario to show how the strength of the model changes by taking the natural logarithm 

of total time. Section 4.5.3 will also compare the null model of the chosen parametric 

model to the chosen parametric model with included covariates to determine if adding 

covariates strengthen the model, but the model will use SOW as the survival time 

indicator. In the same instance, covariates total time and location will be used in the third 

scenario and covariates natural logarithm of total time and location for the fourth scenario 

to show how the strength of the model changes by taking the natural logarithm of total 

time. Section 4.5.4 will address overall model strength when comparing all four 

parametric model scenarios. Lastly, section 4.5.5 will discuss the predicted engine 

survival time based on the parametric model scenario chosen. 

 

4.5.1 Fitting TOW and SOW as Survival Time 

As a reminder, parametric analysis involves choosing a probability distribution 

ahead of time. To ensure the best distribution is chosen for further survival analysis, three 

probability models were compared amongst each other. The three probability models 

used for the parametric model comparison were the Weibull, log normal, and log logistic 

models. For this analysis, the two survival time indicators, TOW and SOW, were 

compared to determine which survival time indicator best fit each of the three models. 

Only survival time data is considered without covariates to determine which model best 

fits the raw data without the influence of covariates. Table 9 shows the AIC for each 

model when using TOW as the survival time. When using TOW as the survival time, the 
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Weibull model has the lowest AIC at 3,852.973 and, therefore, is the strongest 

probability distribution to use for further analysis.  

Table 9. AIC Comparison using TOW 

 Probability Distribution Choice 
Weibull Log Normal Log Logistic 

AIC 3852.973 3936.298 3920.470 

Before proceeding, a comparison will be made between AICs using SOW as the time 

indicator. The results are included in Table 10. When using SOW as the survival time, the 

Weibull model has the lowest AIC at 3,220.356 and, therefore, is the strongest 

probability distribution to use for further analysis. This analysis and performance of the 

AIC affirms that survival data is best fitted with a Weibull model as indicated within the 

literature review of the medical sector.  

Table 10. AIC Comparison using SOW 

 Probability Distribution Choice 
Weibull Lognormal Log logistic 

AIC 3220.356 3293.883 3281.689 

When comparing the TOW AIC of the Weibull to the SOW AIC of the Weibull, the 

SOW AIC is lower than the TOW AIC by a value of 632.617. The lower AIC for SOW 

with the Weibull model is the stronger model to move forward with for analyzing 

survival time. 

 

4.5.2 Weibull Model Comparison using Time on Wing 

 With the Weibull model having the lowest AIC in both scenarios in section 4.5.1, 

that model was chosen as the probability distribution to conduct the remainder of the 

analysis. The next step is to compute the log-likelihood, which is an internal assessment 
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to determine if covariates contribute beneficially to the model or if the model is better 

without covariates. The log-likelihood is computed for the null model, which does not 

include covariates, and the model including covariates. Though the AIC for SOW with 

the Weibull model shows to be the best model to move forward with, this analysis will 

also include TOW comparisons for the purposes of showing how the values differ 

between the different covariates being used in addition to how model strength differs 

using the AIC, log-likelihood, and ANOVA. In Table 11, the log-likelihood is compared 

between the null model, scenario one, which includes covariates total time and location, 

and scenario two, which includes covariates natural logarithm of total time and location. 

A log-likelihood with a value closest to zero indicates a stronger model. Based on the 

below information, scenario two, using the natural logarithm of total time and location is 

the strongest model when using TOW as the survival time with a value of -605.1.  

Table 11. Weibull Model Comparison using TOW 

 Log-likelihood 
Null Model -609.1 
Scenario 1 – TT + Location -605.5 
Scenario 2 – NL TT + Location -605.1 

Due to the closeness of log-likelihood values between scenario one and scenario 

two, AIC and ANOVA are used for comparing two scenarios. Table 12 shows the results. 

The AIC for scenario two is slightly better as it is preferred. ANOVA was not applicable 

as the test noted the models were not significantly different from each other.  

Table 12. Comparison of Weibull Scenario 1 and 2 

Scenario AIC ANOVA 
Scenario 1 – TT + Location 1218.935 N/A 
Scenario 2 – NL TT + Location 1218.115 N/A 
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A practitioner may choose either model if they want to focus on AIC as the 

decision factor. The practitioner can also look at the statistical values of the coefficients 

to determine which scenario is best suited to move forward with. Table 13 presents 

coefficient estimates for scenarios one and two. To interpret the continuous covariate 

total time (0.0000362) in scenario one, we must exponentiate the coefficient and subtract 

one from it, then multiply the result by 100. When doing so, this means that when 

holding the covariate of location constant, each additional total time hour is associated 

with a 0.00362 percent increase in the expected time to failure. To interpret the 

categorical covariate of location (-0.720) in scenario one, since it has a negative sign, 

engines located at the 552nd Flying Squadron at Tinker AFB have a shorter survival time. 

The coefficient can be estimated by exponentiating -0.720 resulting in 0.4867. To 

interpret this result, engines located at the 552nd Flying Squadron at Tinker AFB are not 

effective in delaying failures as they decrease the survival time by a factor of 0.4867. 

Since the coefficient is less than one, engines located at the 552nd Flying Squadron tend 

to have shorter survival time than those located at else. The natural logarithm covariate 

does not provide a direct interpretation since it is not in its natural form. But, since the 

natural logarithm covariate takes the natural logarithm of each total time data point, we 

know that total time has a negative impact on survival time. In both scenarios, neither 

covariate is significant at the 0.05 significance level. However, in scenario two, both 

covariates are significant at the 0.10 significance level.  When the significance results are 

similar, the practitioner may choose the scenario that provides the best interpretability for 

the intended audience. 
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Table 13. Comparison of Weibull Scenario 1 and 2 Covariates 

Scenario Covariate Beta 
Coefficient 

Standard Error 
Coefficient z Score p Value 

1 
 

Total Time 0.0000362 0.0000230 1.58 0.115 
Location -0.720 0.376 -1.92 0.055 

2 
 

Natural Logarithm of 
Total Time 1.0534 0.5733 1.84 0.066 

Location -0.7225 0.3730 -1.94 0.053 

 

4.5.3 Weibull Model Comparison using Sorties on Wing 

In this section, the Weibull model is used again, and the log-likelihood is 

computed for the null model and the model including covariates. The model will use 

SOW as the time indicator. As shown in Table 14, the log-likelihood is compared 

between the null model, scenario three, which includes covariates total time and location, 

and scenario four, which includes covariates natural logarithm of total time and location. 

Again, a log-likelihood with a value closest to zero indicates a stronger model. Based on 

the below information, scenario four, using the natural logarithm of total time and 

location is the strongest model when using TOW as the survival time with a value of -

515.7.  

Table 14. Weibull Model Comparison using SOW 

 Log-likelihood 
Null Model -521.3 
Scenario 3 – TT + Location -516.1 
Scenario 4 – NL TT + Location -515.7 

Like the scenarios in section 4.5.2, due to the closeness of log-likelihood values 

between scenario three and scenario four, a comparison will be made using AIC and 

ANOVA. Table 15 shows results of comparison for scenarios three and four. The AIC for 
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scenario four is slightly better as it is preferred to have a lower value, and ANOVA is not 

applicable. 

Table 15. Comparison of Weibull Scenario 3 and 4 

Scenario AIC ANOVA 
Scenario 3 – TT + Location 1040.295 N/A 
Scenario 4 – NL TT + Location 1039.482 N/A 

As stated in section 4.5.2, due to the models not being statistically different, the 

practitioner can use their best judgement to move forward with a chosen model. A 

practitioner may choose either model if they want to focus on AIC as the decision factor. 

The practitioner can also look at the statistical values of the coefficients to determine 

which scenario is best suited to move forward with. Table 16 provides the statistical 

values from scenarios three and four. To interpret the continuous covariate total time 

(0.0000387) in scenario three, we must exponentiate the coefficient and subtract one from 

it, then multiply the result by 100. When doing so, this means that when holding the 

covariate of location constant, each additional total time hour is associated with a 

0.00387 percent increase in the expected time to failure. To interpret the categorical 

covariate of location (-0.912) in scenario three, since it has a negative sign, engines 

located at the 552nd Flying Squadron at Tinker AFB have a shorter time until failure. The 

coefficient can be estimated by exponentiating -0.912 resulting in 0.4017. To interpret 

this result, engines located at the 552nd Flying Squadron at Tinker AFB are not effective 

in delaying failures as they decrease the survival time by a factor of 0.4017. Since the 

coefficient is less than one, engines located at the 552nd Flying Squadron are harmful to 

survival. The natural logarithm covariate does not provide a direct interpretation since it 

is not in its natural form. But, since the natural logarithm covariate took the natural 
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logarithm of each total time data point, we know that total time is harmful to survival 

time based on the total time covariate. In both scenarios, neither have both covariates 

significant at the 0.05 significance level, but both scenarios have one covariate significant 

at the 0.05 significance level. In the case that the statistical values produce similar results, 

the practitioner may choose the scenario that provides the best interpretability for the 

intended audience. 

Table 16. Comparison of Weibull Scenario 3 and 4 Covariates 

Scenario Covariate Beta 
Coefficient 

Standard Error 
Coefficient z Score p Value 

3 
 

Total Time 0.0000387 0.0000230 1.68 0.093 
Location -0.912 0.379 -2.41 0.016 

4 
 

Natural Logarithm of 
Total Time 1.1093 0.5742 1.93 0.053 

Location -0.9116 0.3765 -2.42 0.015 
 

4.5.4 Weibull Model Comparison of Weibull Scenario 1 through 4 

This section addresses how scenario’s one through four differ with each of the 

model’s strength and characteristics compared in Table 17. Using SOW as the survival 

time gives a log-likelihood closer to zero and lowest AIC reading, with ANOVA being 

negligible for all scenarios, indicating that SOW is the stronger model of choice. Using 

SOW as the time indicator can be confirmed as the strongest choice from the analysis 

completed in section 4.5.1 when TOW and SOW were fitted to the three probability 

distributions to determine which survival time and probability distribution was the 

strongest, revealing that SOW and the Weibull model were the strongest pairing. 

Regarding which scenario between three and four is stronger is splitting hairs. However, 

scenario four edges out scenario three by -0.4 in the log-likelihood and 0.813 in the AIC 
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and both models not being statistically different from each other. Though scenario four 

narrowly edges out scenario three in model strength, for the purposes of audience 

interpretability, scenario three will be used to predict engine survival time in the 

following section. Of note, the scale was included below to show that in all scenarios, 

failures were increasing at an accelerating rate.  

Table 17. Comparison of Weibull Scenarios 1 through 4 

Scenario Log-
likelihood Scale AIC ANOVA 

Scenario 1 – TOW + TT + Location -605.5 1.02 1218.935 N/A 
Scenario 2 – TOW + NL TT + Location -605.1 1.02 1218.115 N/A 
Scenario 3 – SOW + TT + Location -516.1 1.03 1040.295 N/A 
Scenario 4 – SOW + NL TT + Location -515.7 1.03 1039.482 N/A 

 

4.5.5 Predicting Engine Survival Time      

 To predict engine survival time, an accelerated failure time model must be used. 

From the analysis in section 4.5.1, the Weibull accelerated failure time model will be 

used as that model has the lowest AIC. Scenario 3, using SOW as the time indicator with 

total time and location as the covariates will also be used due to the interpretability of the 

data. Because the models are not statistically different between scenario three and four, it 

is safe to run the analysis using scenario three.  

Table 18 provides an example of five engines and what their respective survival 

time is. The second row provides the coefficients from scenario three to include its 

intercept that is not represented but attached in Appendix C. The following rows beneath 

the second provide the raw data computed from CEMS that is attached in Appendix A. 

The Estimated Life Column predicts each engine’s survival time by taking the values of 
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the coefficients multiplied by corresponding observations. This generates a number that is 

equal to the natural logarithm of estimated life like the accelerated failure time equation 

provided in section 3.2.3. Therefore, to express the results in absolute terms, the 

estimated life is exponentiated and the resulting number of estimated life is expressed in 

terms of sorties. The SOW data are provided by CEMS and is attached in Appendix A. 

The Sorties until Next Failure takes the SOW data and subtracts it from Estimated Life of 

the engine to provide how much life is remaining for that specific engine before failure 

due to an oil issue. When looking Table 18, Engines 1, 2, 3, and 5 have a lower estimated 

survival time than Engine 4 that is not located at Tinker. The estimation of engine 

survival time in Table 18 provides an example of how this data can be used to help pilots, 

maintainers, engine shops, and engine SPOs become better equipped to handle an oil 

issue before it occurs. 

Table 18. Failure Time Estimate 

 Intercept Total 
Time 

Location 
(1 for 

Tinker; 
 0 for 
Else) 

Scale Estimated 
Life 

Sorties  
on Wing 

Sorties 
until  
Next 

Failure 

Coefficient 7.21 0.0000387  -0.912 1.03 N/A N/A N/A 
Engine 1 N/A 31,552.20 1 N/A 1,860.02 317.00 1,543.02 
Engine 2 N/A 37,486.90 1 N/A 2,356.44 1,299.00 1,057.44 
Engine 3 N/A 36,197.00 1 N/A 2,238.34 941.00 1,297.34 
Engine 4 N/A 36,911.40 0 N/A 5,891.85 288.00 5,603.85 
Engine 5 N/A 35,413.40 1 N/A 2,169.50 1,263.00 906.50 
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4.6 Summary 

Chapter four reported the analysis and results from the non-parametric, semi-

parametric, and parametric models. The number of oil events that occurred were 

discussed via a transitions table where it was shown 40 engines did not experience an oil 

related failure within the period of observation, 24 engines experienced an oil related 

failure only once within the period of observation, 14 engines experienced an oil related 

failure twice within the period of observation, two engines experienced an oil related 

failure three times within the period of observation, and one engine experienced an oil 

related failure four times within the period of observation. The summary statistics was 

also displayed where the covariates were officially introduced and discussed.  

Next, a Nelson estimate was conducted and showed that as an engine’s TOW or 

SOW gradually increases, cumulative hazard rates increase. In addition, location was not 

statistically significant due to the confidence intervals overlapping in each TOW and 

SOW plot. 

Four Cox PH Models with frailty were analyzed and compared to report the 

differing model strength when interchanging TOW and SOW as the time indicator and 

interchanging total time and the natural logarithm of total time as one of the covariates. 

The models produced conflicting results in which it then falls on the practitioner to 

decide which model is to be used. In every model, frailty was not significant which 

indicated failures were independent.   
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After conducting the semi-parametric analysis, a parametric analysis was 

performed where it was determined the Weibull accelerated failure time model using 

SOW as the survival time indicator resulted in the strongest parametric model to use 

based on AIC. Though SOW was the better survival time indicator, TOW was also 

included in the remainder of the analysis to compare the model strengths. It was 

determined the null Weibull model was not stronger than the Weibull model that included 

covariates. When the SOW and TOW models with the inclusion of covariates were 

compared, SOW models were in fact stronger than the TOW models. Though using the 

natural logarithm of total time showed to be a stronger covariate than the total time 

covariate for the Weibull model using SOW and location, it was decided to use the model 

that included the total time covariate. This decision was made due to the easier 

interpretability of results that came with using total time as one of the covariates. Because 

it was determined that the two models in question were not statistically different, either 

model would be appropriate to use. The final step in this analysis involved predicting 

engine survival time based on the model with SOW as the survival time indicator and 

total time and location as the covariates. An example of predicted engine survival time 

was provided for the first five engines in terms of sorties until the next oil related failure. 

The next chapter will provide a conclusion and recommendation.  
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V. Conclusion 

5.1 Chapter Overview 

The purpose of this chapter is to summarize the results and to address the research 

questions and hypotheses. The significance and limitation of this research are discussed. 

Finally, directions for future research will be discussed. 

 

5.2 Conclusion 

Three survival analysis approaches such as non-parametric, semi-parametric, and 

parametric models were attempted. The non-parametric model with the Nelson estimate 

showed cumulative hazard rates along with 95 percent confidence intervals. Regardless 

of whether TOW or SOW was used, it was determined that as the engine’s TOW and 

SOW increases, cumulative hazard rates increase. In these models, location was not 

significant.  

The Cox PH Model with frailty was implemented as the semi-parametric model of 

choice to provide an example of how the data would look should a researcher use a semi-

parametric model rather than a parametric model. The models used did not assume a 

probability distribution, and there was no intercept used, which was a distinguishing 

factor between semi-parametric and parametric models. It was determined that the Cox 

PH Model had conflicting results, with concordance being stronger when using SOW, but 

AIC being smaller when using TOW as the time indicator. In these situations, it is up to 

the practitioner to decide which factor will be used to choose the model to move forward 

with. In every scenario, the frailty test concluded that failures were independent.  
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In the parametric analysis, three accelerated failure time models were tested using 

two different survival time indicators. It was determined the Weibull model using SOW 

as the time indicator was the strongest model. Multiple Weibull models were tested using 

SOW and TOW as the time indicator to show how the results differed. Based on the 

results, using SOW as the survival time gave a log-likelihood closer to zero and lowest 

AIC reading with ANOVA being negligible for all scenarios, indicating that SOW was 

the stronger model of choice. It was decided to use location and total time as the 

covariates rather than using the natural logarithm of total time to replace the total time 

covariate due to the easier interpretability of computed results. The final stage of research 

analysis involved the prediction of engine survival time. The prediction of engine 

survival time was computed using SOW as the time indicator and total time and location 

as the covariates. An example of predicted engine survival time was provided for the first 

five engines in terms of sorties until next failure due to an oil related issue. 

      

5.3 Research Questions and Hypotheses 

There are two research questions for this study.  

Research Question 1: What covariates are significant in predicting engine failures 

due to oil issues? 

The significance level prior to engaging in the research was established at 0.05. 

Therefore, to be considered a significant covariate, the covariate’s associated p-value 

must be at or below 0.05. Based on the various models run and choosing to move forward 

with the Weibull accelerated failure time model using SOW as the time indicator with 

total time and location as the covariates, only the location covariate was considered a 
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# Cox PH Models with Frailty 
# Cox PH Frailty Model with Hours (TOW) and TT, Loc 
> frailty.hours<-coxph(Surv(TOW, Oil)~TotalTime + Loc_Tinker + 
frailty(ID), data=dat) 
> summary(frailty.hours) 
Call: 
coxph(formula = Surv(TOW, Oil) ~ TotalTime + Loc_Tinker + 
frailty(ID),  
    data = dat) 
  n= 226, number of events= 62  
            coef       se(coef)  se2       Chisq DF   p     
TotalTime   -4.222e-05 2.374e-05 2.284e-05 3.16  1.00 0.075 
Loc_Tinker   7.119e-01 3.695e-01 3.619e-01 3.71  1.00 0.054 
frailty(ID)                                7.97  7.03 0.340 
           exp(coef) exp(-coef) lower .95 upper .95 
TotalTime      1.000     1.0000    0.9999     1.000 
Loc_Tinker     2.038     0.4907    0.9879     4.204 
Iterations: 10 outer, 37 Newton-Raphson 
     Variance of random effect= 0.1308518   I-likelihood = -274.9  
Degrees of freedom for terms= 0.9 1.0 7.0  
Concordance= 0.677  (se = 0.045 ) 
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Likelihood ratio test= 22.28  on 8.91 df,   p=0.008 
> extractAIC(frailty.hours) 
[1]   8.914876 553.414598 
# TotalTime and Loc_Tinker are significant at alpha = 0.10. 
# Shared frailty is insignificant. 
 
# Cox PH Frailty Model with Hours (TOW) and Ln_TT, Loc 
> frailty.hours.2<-coxph(Surv(TOW, Oil)~Ln_TT + Loc_Tinker + 
frailty(ID), data=dat) 
> summary(frailty.hours.2) 
Call: 
coxph(formula = Surv(TOW, Oil) ~ Ln_TT + Loc_Tinker + 
frailty(ID),  
    data = dat) 
  n= 226, number of events= 62  
            coef    se(coef) se2    Chisq DF   p     
Ln_TT       -1.2325 0.6011   0.5760 4.20  1.00 0.040 
Loc_Tinker   0.7198 0.3703   0.3619 3.78  1.00 0.052 
frailty(ID)                         8.73  7.65 0.330 
           exp(coef) exp(-coef) lower .95 upper .95 
Ln_TT         0.2916     3.4296   0.08976    0.9472 
Loc_Tinker    2.0541     0.4868   0.99410    4.2442 
Iterations: 10 outer, 38 Newton-Raphson 
     Variance of random effect= 0.1437459   I-likelihood = -274.5  
Degrees of freedom for terms= 0.9 1.0 7.6  
Concordance= 0.677  (se = 0.044 ) 
Likelihood ratio test= 24.48  on 9.52 df,   p=0.005 
> extractAIC(frailty.hours.2) 
[1]   9.522726 552.426957 
# Ln_TT is significant at alpha = 0.05 
#Loc_Tinker is significant at alpha = 0.10. 
# Shared frailty is insignificant. 
 
# Cox PH Frailty Model with Sorties 
> frailty.sorties<-coxph(Surv(SOW, Oil)~TotalTime + Loc_Tinker + 
frailty(ID), data=dat) 
> summary(frailty.sorties) 
Call: 
coxph(formula = Surv(SOW, Oil) ~ TotalTime + Loc_Tinker + 
frailty(ID),  
    data = dat) 
  n= 226, number of events= 62  
            coef       se(coef)  se2       Chisq DF   p     
TotalTime   -3.903e-05 2.342e-05 2.257e-05 2.78  1.00 0.096 
Loc_Tinker   8.956e-01 3.689e-01 3.625e-01 5.89  1.00 0.015 
frailty(ID)                                7.64  6.81 0.350 
           exp(coef) exp(-coef) lower .95 upper .95 
TotalTime      1.000     1.0000    0.9999     1.000 
Loc_Tinker     2.449     0.4084    1.1882     5.046 
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Iterations: 10 outer, 35 Newton-Raphson 
     Variance of random effect= 0.1254098   I-likelihood = -283.2  
Degrees of freedom for terms= 0.9 1.0 6.8  
Concordance= 0.683  (se = 0.044 ) 
Likelihood ratio test= 23.88  on 8.7 df,   p=0.004 
> extractAIC(frailty.sorties) 
[1]   8.70296 570.07316 
# TotalTime is significant at alpha=0.10. 
# Loc_Tinker is significant at alpha=0.025. 
# Shared frailty is insignificant. 
 
# Cox PH Frailty Model with Sorties (SOW)and Ln_TT, Loc 
> frailty.sorties.4<-coxph(Surv(SOW, Oil)~Ln_TT + Loc_Tinker + 
frailty(ID), data=dat) 
> summary(frailty.sorties.4) 
Call: 
coxph(formula = Surv(SOW, Oil) ~ Ln_TT + Loc_Tinker + 
frailty(ID),  
    data = dat) 
  n= 226, number of events= 62  
            coef    se(coef) se2    Chisq DF   p     
Ln_TT       -1.1328 0.5935   0.5700 3.64  1.00 0.056 
Loc_Tinker   0.9007 0.3696   0.3627 5.94  1.00 0.015 
frailty(ID)                         8.20  7.28 0.340 
           exp(coef) exp(-coef) lower .95 upper .95 
Ln_TT         0.3221     3.1043    0.1007     1.031 
Loc_Tinker    2.4612     0.4063    1.1927     5.079 
Iterations: 10 outer, 35 Newton-Raphson 
     Variance of random effect= 0.1349812   I-likelihood = -282.8  
Degrees of freedom for terms= 0.9 1.0 7.3  
Concordance= 0.684  (se = 0.044 ) 
Likelihood ratio test= 25.62  on 9.16 df,   p=0.003 
> extractAIC(frailty.sorties.4) 
[1]   9.161475 569.248349 
# Ln_TT is significant at alpha=0.10. 
# Loc_Tinker is significant at alpha=0.025. 
# Shared frailty is insignificant. 
 
> # Parametric Models 
> Weibull<-survreg(Surv(TOW, Oil)~1, dist="weibull", data=dat) 
> summary(Weibull) 
Call: 
survreg(formula = Surv(TOW, Oil) ~ 1, data = dat, dist = 
"weibull") 
             Value Std. Error     z      p 
(Intercept) 8.8699     0.1657 53.52 <2e-16 
Log(scale)  0.0484     0.1054  0.46   0.65 
Scale= 1.05  
Weibull distribution 
Loglik(model)= -609.1   Loglik(intercept only)= -609.1 
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Number of Newton-Raphson Iterations: 7  
n= 226  
(Using TotalTime) 
> Weibull.1<-survreg(Surv(TOW, Oil)~TotalTime+Loc_Tinker, 
dist="weibull", data=dat) 
> summary(Weibull.1) 
Call: 
survreg(formula = Surv(TOW, Oil) ~ TotalTime + Loc_Tinker, data = 
dat,dist = "weibull") 
                Value Std. Error     z      p 
(Intercept)  8.54e+00   6.67e-01 12.79 <2e-16 
TotalTime    3.62e-05   2.30e-05  1.58  0.115 
Loc_Tinker  -7.20e-01   3.76e-01 -1.92  0.055 
Log(scale)   2.33e-02   1.05e-01  0.22  0.825 
Scale= 1.02  
Weibull distribution 
Loglik(model)= -605.5   Loglik(intercept only)= -609.1 
        Chisq= 7.31 on 2 degrees of freedom, p= 0.026  
Number of Newton-Raphson Iterations: 7  
n= 226  
> extractAIC(Weibull.1) 
[1]    4.000 1218.935 
(Using Ln_TT) 
> Weibull.2<-survreg(Surv(TOW, Oil)~Ln_TT+Loc_Tinker, 
dist="weibull", data=dat) 
> summary(Weibull.2) 
Call: 
survreg(formula = Surv(TOW, Oil) ~ Ln_TT + Loc_Tinker, data = 
dat,  
    dist = "weibull") 
              Value Std. Error     z     p 
(Intercept) -1.1948     5.7682 -0.21 0.836 
Ln_TT        1.0534     0.5733  1.84 0.066 
Loc_Tinker  -0.7225     0.3730 -1.94 0.053 
Log(scale)   0.0174     0.1053  0.16 0.869 
Scale= 1.02  
Weibull distribution 
Loglik(model)= -605.1   Loglik(intercept only)= -609.1 
        Chisq= 8.13 on 2 degrees of freedom, p= 0.017  
Number of Newton-Raphson Iterations: 7  
n= 226  
> extractAIC(Weibull.2) 
[1]    4.000 1218.115 
> #Fitting TOW as Survival Time  
> library(fitdistrplus) 
> dat<-read.csv("oil_any_failures_input_transformed.csv") 
> my_data<-dat$TOW 
> fit_w<-fitdist(my_data, "weibull") 
> fit_ln<-fitdist(my_data, "lnorm") #Lognormal distribution 
> fit_ll<-fitdist(my_data, "llogis") #Log-logistic distribution 
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> gofstat(list(fit_w, fit_ln, fit_ll), fitnames=c("Weibull", 
"lnorm", "llogis")) 
Goodness-of-fit statistics 
                                Weibull     lnorm    llogis 
Kolmogorov-Smirnov statistic 0.08964667 0.1399779 0.1239403 
Cramer-von Mises statistic   0.41204323 1.5690327 0.6759582 
Anderson-Darling statistic   3.34886716 9.8507817 6.6694766 
Goodness-of-fit criteria 
                                Weibull    lnorm   llogis 
Akaike's Information Criterion 3852.973 3936.298 3920.470 
Bayesian Information Criterion 3859.815 3943.139 3927.311 
 
> #Parametric Models 
> Weibull<-survreg(Surv(SOW, Oil)~1, dist="weibull", data=dat) 
> summary(Weibull) 
Call: 
survreg(formula = Surv(SOW, Oil) ~ 1, data = dat, dist = 
"weibull") 
            Value Std. Error     z      p 
(Intercept) 7.487      0.174 43.09 <2e-16 
Log(scale)  0.079      0.106  0.75   0.46 
Scale= 1.08  
Weibull distribution 
Loglik(model)= -521.3   Loglik(intercept only)= -521.3 
Number of Newton-Raphson Iterations: 7  
n= 226  
Using TotalTime 
> Weibull.3<-survreg(Surv(SOW, Oil)~TotalTime+Loc_Tinker, 
dist="weibull", data=dat) 
> summary(Weibull.3) 
Call: 
survreg(formula = Surv(SOW, Oil) ~ TotalTime + Loc_Tinker, data = 
dat, dist = "weibull") 
                Value Std. Error     z      p 
(Intercept)  7.21e+00   6.69e-01 10.77 <2e-16 
TotalTime    3.87e-05   2.30e-05  1.68  0.093 
Loc_Tinker  -9.12e-01   3.79e-01 -2.41  0.016 
Log(scale)   3.23e-02   1.06e-01  0.30  0.761 
Scale= 1.03  
Weibull distribution 
Loglik(model)= -516.1   Loglik(intercept only)= -521.3 
        Chisq= 10.27 on 2 degrees of freedom, p= 0.0059  
Number of Newton-Raphson Iterations: 9  
n= 226  
> extractAIC(Weibull.3) 
[1]    4.000 1040.295 
Using Ln_TT 
> Weibull.4<-survreg(Surv(SOW, Oil)~Ln_TT+Loc_Tinker, 
dist="weibull", data=dat) 
> summary(Weibull.4) 
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Call: 
survreg(formula = Surv(SOW, Oil) ~ Ln_TT + Loc_Tinker, data = 
dat, dist = "weibull") 
              Value Std. Error     z     p 
(Intercept) -3.0273     5.7773 -0.52 0.600 
Ln_TT        1.1093     0.5742  1.93 0.053 
Loc_Tinker  -0.9116     0.3765 -2.42 0.015 
Log(scale)   0.0259     0.1061  0.24 0.807 
Scale= 1.03  
Weibull distribution 
Loglik(model)= -515.7   Loglik(intercept only)= -521.3 
        Chisq= 11.09 on 2 degrees of freedom, p= 0.0039  
Number of Newton-Raphson Iterations: 10  
n= 226  
> extractAIC(Weibull.4) 
[1]    4.000 1039.482 
> #Fitting Sorites on Wing aka SOW as Survival Time 
> my_data<-dat$SOW 
> fit_w<-fitdist(my_data, "weibull") 
> fit_ln<-fitdist(my_data, "lnorm") #Lognormal distribution 
> fit_ll<-fitdist(my_data, "llogis") #Log-logistic distribution 
> gofstat(list(fit_w, fit_ln, fit_ll), fitnames=c("Weibull", 
"lnorm", "llogis")) 
Goodness-of-fit statistics 
                                Weibull     lnorm    llogis 
Kolmogorov-Smirnov statistic 0.06834037 0.1362658 0.1109283 
Cramer-von Mises statistic   0.28739228 1.2935339 0.5683531 
Anderson-Darling statistic   2.23109075 8.0190900 5.4675674 
Goodness-of-fit criteria 
                                Weibull    lnorm   llogis 
Akaike's Information Criterion 3220.356 3293.883 3281.689 
Bayesian Information Criterion 3227.198 3300.724 3288.530 
> anova(Weibull.3, Weibull.4) 
                   Terms Resid. Df    -2*LL Test Df  Deviance 
Pr(>Chi) 
1 TotalTime + Loc_Tinker       222 1032.295 NA        NA       NA 
2     Ln_TT + Loc_Tinker       222 1031.482=  0 0.8132791      NA 
> anova(Weibull.1, Weibull.2) 
                   Terms Resid. Df    -2*LL Test Df  Deviance 
Pr(>Chi) 
1 TotalTime + Loc_Tinker       222 1210.935 NA        NA       NA 
2     Ln_TT + Loc_Tinker       222 1210.115 =  0 0.8208234     NA 
>anova(CoxModel.3, CoxModel.4) 
Analysis of Deviance Table 
 Cox model: response is  Surv(SOW, Oil) 
 Model 1: ~ TotalTime + Loc_Tinker 
 Model 2: ~ Ln_TT + Loc_Tinker 
   loglik  Chisq Df P(>|Chi|)     
1 -283.34                         
2 -282.94 0.7851  0 < 2.2e-16 *** 
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