
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Bayesian Convolutional Neural Network with Prediction Bayesian Convolutional Neural Network with Prediction

Smoothing and Adversarial Class Thresholds Smoothing and Adversarial Class Thresholds

Noah M. Miller

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Databases and Information Systems Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Miller, Noah M., "Bayesian Convolutional Neural Network with Prediction Smoothing and Adversarial Class
Thresholds" (2022). Theses and Dissertations. 5363.
https://scholar.afit.edu/etd/5363

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholar.afit.edu%2Fetd%2F5363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F5363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5363?utm_source=scholar.afit.edu%2Fetd%2F5363&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

BAYESIAN CONVOLUTIONAL NEURAL
NETWORK WITH PREDICTION

SMOOTHING AND ADVERSARIAL CLASS
THRESHOLDS

THESIS

Noah Miller, Second Lieutenant, USAF

AFIT-ENS-MS-22-M-154

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-22-M-154

BAYESIAN CONVOLUTIONAL NEURAL NETWORK WITH PREDICTION

SMOOTHING AND ADVERSARIAL CLASS THRESHOLDS

THESIS

Presented to the Faculty

Department of Operations Research

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Noah Miller, B.S.

Second Lieutenant, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-22-M-154

BAYESIAN CONVOLUTIONAL NEURAL NETWORK WITH PREDICTION

SMOOTHING AND ADVERSARIAL CLASS THRESHOLDS

THESIS

Noah Miller, B.S.
Second Lieutenant, USAF

Committee Membership:

Bruce Cox, Ph.D
Chair

Lance Champagne, Ph.D
Member

Trevor Bihl, Ph. D
Member

AFIT-ENS-MS-22-M-154

Abstract

Using convolutional neural networks (CNNs) for image classification for each frame

in a video is a very common technique. Unfortunately, CNNs are very brittle and

have a tendency to be over confident in their predictions. This can lead to what we

will refer to as “flickering,” which is when the predictions between frames jump back

and forth between classes. In this paper, new methods are proposed to combat these

shortcomings. This paper utilizes a Bayesian CNN which allows for a distribution of

outputs on each data point instead of just a point estimate. These distributions are

then smoothed over multiple frames to generate a final distribution and classification

which reduces flickering. Our technique is able to reduce flickering by 67%. We also

propose a second method to combat False Positive predictions of certain adversarial

classes, or classes that have some cost if predicted incorrectly. This is accomplished

by increasing the confidence threshold the adversarial class must meet in order to be

the final predicted class. This technique is able to reduce false positives by 5.43%,

while maintaining accuracy.

iv

To my incredible wife. I could not have done this without you.

v

Acknowledgements

I would like to thank my advisor, Dr. Cox, who supported me even in the midst

of numerous setbacks. I would also like to thank Dr. Champagne as well as Dr. Bihl

from AFRL for their support of thesis. Without the support of these individuals, as

well as others, this thesis would not have been possible.

Noah Miller

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . x

I. Introduction . 1

1.1 Problem Statement . 1
1.2 Background and Motivation . 1
1.3 Organization of Thesis . 2

II. Background and Literature Review . 3

2.1 Artificial Neural Networks . 3
2.2 Convolutional Neural Networks . 4
2.3 Object Detection using Convolutional Neural Networks 8
2.4 Bayesian Neural Networks . 13
2.5 Previous Work on Model Uncertainty . 16

III. Methodology . 19

3.1 Original Investigative Question . 19
3.1.1 Description of Data . 19
3.1.2 Model Overview . 20
3.1.3 Front End Model Architecture . 20
3.1.4 Back End Model Architecture . 24
3.1.5 Hyperparameter Tuning . 26
3.1.6 Model Evaluation . 28

3.2 Revised Investigative Question . 29
3.2.1 Description of Data . 29

3.3 Revised Investigative Question . 34
3.3.1 Front End Model Architecture . 34
3.3.2 Back End Model Architecture . 35
3.3.3 Hyperparameter tuning . 35
3.3.4 Model Evaluation . 36

vii

Page

IV. Results and Analysis . 37

4.1 Original Investigation Question Results . 37
4.2 Revised Investigation Question Results . 39

4.2.1 Model Training . 40
4.2.2 Prediction Smoothing . 40
4.2.3 Adversarial Threshold . 42
4.2.4 Effects of the Number of Predictions per Frame. 44

V. Conclusions . 46

5.1 Summary . 46
5.2 Future Work . 46

Appendix: Glossary . 48
Bibliography . 49

viii

List of Figures

Figure Page

1. An Example of a Perceptron . 4

2. Neocognitron Architecture [1] . 5

3. LeNet-5 Architecture [2] . 6

4. VGG16 Architecture [3] . 7

5. YOLOv1 Model [4] . 9

6. YOLOv3 Model [5] . 11

7. YOLOv3 Detector [5] . 12

8. Point Estimates Compared to Distributions on Weights
[6] . 15

9. YOLOv3-tiny Model [7] . 22

10. Bounding Box for YOLOv3 [8] . 23

11. Distance Between Frame n and Frame n− 1 . 25

12. An Example of a Precision Recall Curve for mAP 29

13. Durations for UCF101 Classes . 31

14. Number of Videos with Certain Durations for UCF101
Classes . 32

15. Examples of UCF101 Classes . 33

16. Training and Validation Loss During Final 100 Epochs 38

17. Predictions per Class for Standard Model . 41

18. Predictions per Class for Bayesian Model with Smoothing 42

19. The Effect of Number of Predictions per Frame on
Accuracy and Speed . 45

ix

List of Tables

Table Page

1. Affect of α Value on Frame Weight . 27

2. Affect of Hyperparameters on mAP . 37

3. Optimizer Testing . 40

4. Alpha Values . 40

5. Adversarial Threshold of 0.0 . 43

6. Adversarial Threshold of 0.6 . 43

7. Adversarial Threshold of 0.7 . 43

8. Adversarial Threshold of 0.8 . 44

9. Adversarial Threshold of 0.9 . 44

x

BAYESIAN CONVOLUTIONAL NEURAL NETWORK WITH PREDICTION

SMOOTHING AND ADVERSARIAL CLASS THRESHOLDS

I. Introduction

Object identification is a key element in successful Intelligence, Surveillance and

Reconnaissance (ISR) missions. This allows for identification of important targets in

an automated setting. This has the potential to increase accuracy of target identifica-

tion and to reduce man hours. Convolutional Neural Networks are a key component of

object identification in combination with other techniques to find the location of said

object in the image. Bayesian Neural Networks (BNNs) help quantify the uncertainty

that can often be found when utilizing neural networks.

1.1 Problem Statement

The goal of this research is to successfully blend Bayesian Neural Networks with a

one step object detection algorithm to more successfully classify images. An attempt

will be made to add a new technique that will track a given object from frame to frame

in an attempt to utilize information from prior frames to help with the prediction of

the current frame.

1.2 Background and Motivation

A prominent shortcoming of object detection and image classification models is

what is often referred to as “flickering” in the literature [9] [10] [11]. This phenomena

occurs when the object detection or image classification model correctly predicts on

1

an object a number of times, switches to a false prediction for a frame or two, and

then switches back to the correct classification. This can happen for a number of

reasons including occlusion, poor lighting, a weird camera angle or simply a failure

of the neural network. In some scenarios, this “flickering” may not be problematic,

but in any scenario in which automation occurs and would take some action, which it

can be assumed would have some cost, this amounts to wasted resources due to the

shortcomings of the model. This paper suggests a solution to this flickering problem

by creating not only point estimates for each frame, but distributions to help model

uncertainty and to not only use these distributions on the current frame, but to

carry them into future frames to help increase the accuracy by providing increased

information.

1.3 Organization of Thesis

Chapter 2 will discuss the rise of neural networks, the advent of convolutional

neural networks, object detection utilizing neural networks, and Bayesian neural net-

works. Chapter 3 will provide an overview of the methodology utilized to create the

proposed model. Chapter 4 will give insight to the results and provide analysis on

said results. Chapter 5 will provide a conclusion to the work, as well as suggesting

future work that could be done to expand upon the work done here.

2

II. Background and Literature Review

In this chapter, previous works addressing topics and techniques utilized in this

thesis are discussed. This includes the advent of the perceptron and artifical neu-

ral networks, convolutional neural networks, object detection and Bayesian neural

networks.

2.1 Artificial Neural Networks

The first neural networks were designed by McCulloch and Pitts in 1943 [12].

This paper introduced the first idea of neurons and addressed their connection to the

neurons in the brain. Much like neurons in the brain, these neurons would“fire” in

response to some “stimulus” where in this case the stimulus is whatever the input is.

These neurons however possessed no trainable weights and could only take binary in-

puts leading to binary outputs and in this way, their use was drastically limited. This

simple neural network failed to even represent simple, although non linear, problems

such as XOR and NOR. The next major improvement to the neural network was the

work of Rosenblatt in 1958 when he published his paper on the perceptron [13]. An

example of the perceptron can be seen in Figure 1. Rosenblatt’s improvements to

the work of McCullough and Pitts included two key factors. First was the ability to

handle non-binary inputs. This allowed whole new classes of data to be fed into neu-

ral networks greatly improving their use. The second improvement was the addition

of weights to the inputs. This allowed greater control of the output of the neural

network, also adding to their ability to accurately predict.

However single layer networks still failed to predict on nonlinear problems such as

the XOR problem. This problem was solved by the idea of hidden layers in conjunc-

tion with backpropagation. While there is some debate regarding who invented the

3

Figure 1: An Example of a Perceptron

idea, it was the 1986 paper written by Rumelhart, Hinton and Williams which popu-

larized it [14]. By adding hidden layers, neural networks were now able to accurately

predict on non linear problems as the neurons between layers could interact to model

more complex interactions between inputs. It was in this paper as well that back-

propagation was introduced which allowed the weights on neurons to be trained by

the model instead of having to be chosen manually which allowed for more accurate

predictions. These multilayered perceptrons were to first true examples of artificial

neural networks (ANNs).

2.2 Convolutional Neural Networks

One of the most obvious uses for neural networks is image classification. However,

this is challenging using normal ANN structures. It is not only the values of each

individual pixel that matters in image classification but also its location relative to

the other pixels in the image. This is where the convolutional neural network is

4

most effective. The first concept of the convolutional neural network was published

in 1980 by Fukushima who invented the neocognitron [1]. In this paper, Fukushima

introduces the idea of S cells and C cells. His idea is that a complex image could be

predicted accurately by first using simple cells, his S cells, to detect simple patterns

and then using complex cells, his C cells, after that to find the more complex patterns

which would be combined to accurately predict on an image. A visual representation

of the neocognitron can be seen in Figure 2.

Figure 2: Neocognitron Architecture [1]

The invention of the neocognitron lead to the development of a number of new

CNNs designed by LeCun which eventually culminated in LeNet-5, the architecture

of which can be seen in Figure 3 [2]. This paper was the first paper to actually use

the phrase “Convolutional Neural Network” and to use some of the other terminol-

ogy utilized today, such as convolutional layers and subsampling, although these had

both been roughly invented in the Fukushima paper. The big emphasis in the LeNet-5

paper was the ability for the model to train all of its filters using backpropagation.

This meant that the model itself was able to determine what the filters should look

like, leading to a more accurate, more efficient neural network. Since LeNet-5 there

5

has been an explosion of new CNN architectures which have lead to increasing per-

formance on different data sets. One example of the success of CNNs vs other deep

neural networks is in the ImageNet large scale visual recognition challenge (ILSVRC).

The first two years of the challenge did not have CNNs and the best error rate from

those two years was 25.8%. However in just the first year with CNNs, the error rate

dropped to only 16.4%. Since then, CNNs of increasing depth have continued to see

improvements with the 2017 (and final) winner recording an error rate of only 2.25%

[15].

Figure 3: LeNet-5 Architecture [2]

The model that will be utilized in the secondary investigation of this paper is a

version of the VGG16 model, created in 2014. This model also competed in the 2014

ILSVRC competition and had an error rate of 7.32% [16]. Although it received a

slightly worse accuracy when compared to GoogleNet, what is impressive about this

model is its simplicity. VGG16 simply has 16 convolution layers with maxpooling

layers every 2-3 layers. This is compared to GoogleNet which created an entire new

kind of layer called inception layers. The powerful simplicity of VGG16 makes it a

very usable model and it is very easy to do transfer learning with this model. The

architecture of VGG16 can be seen in figure 4 [17]. The input for this model is a

224 pixel by 224 pixel image in color, which is a 224 x 224 x 3 array, the 3 being

for the RGB color coding. The first layer of this model takes in the 224 x 224 pixel

6

image and passes it through 64 different filters twice. The image is then downsized in

a maxpooling layer to be 112 x 112 pixels and passed through two more layers each

with 128 filters. This is then downsized again in another maxpooling layer so that

the image is 56 x 56 and passed through three layers with 256 filters each. The image

is then downsized again in a maxpooling layer to 28 x 28 pixels and passed through

three layers with 512 filters each and then the same again after downsizing to 14 x

14 pixels. After this, the image is downsized one last time to 7 x 7 pixels and passed

through one layer with 512 filters. The output from this layer is then flattened and

then passed into a dense layer with 4096 neurons twice and then into the output layer

which has 1000 neurons, one for each of the output classes. These dense layers are

denoted with 1 x 1 x neurons in Figure 4.

Figure 4: VGG16 Architecture [3]

7

2.3 Object Detection using Convolutional Neural Networks

The convolutional neural networks discussed so far in this paper have all focused

on the section of computer vision known as image classification. That is, the model’s

goal is to output a classification for the image as a whole. This is not always useful

in real life however, as often images contain multiple salient objects. This is where

object detection becomes most useful. The goal of object detection is to identify both

what the salient objects are and where they are in the image. For example, given an

image of a busy city street, image classification would simply aim to predict that the

image is of a city street. Object detection however, would aim to put what is known

as a bounding box around each object of interest, for example, a person or a car, and

to predict specifically what is in that one bounding box. One of the first object de-

tection algorithms was invented by Paul Viola and Michael Jones and the goal of this

algorithm was to detect human faces in real time [18]. This paper introduces three

new techniques. The first of these, the authors call integral image. The idea behind

integral image is that image intensities are not used, but instead a series of features

which can be calculated in constant time and make prediction faster. The second is

to select a small number of features using AdaBoost. The number of features that

can be created by the first technique is far too many, when in reality, the authors

state that only a small set of critical features are needed. The third contribution of

this paper was detection cascades which the authors describe as “a method for com-

bining successively more complex classifiers in a cascade structure which dramatically

increases the speed of the detector by focusing attention on promising regions of the

image.” [18]

The next major improvement in object detection was the advent of the two stage

detector. The first of these was designed by Ross Girshick [19]. When they invented

the Regions with CNN method or as it is now known, R-CNN. The reason that this

8

model was called a two stage detector is because there are two steps in producing a

prediction. The first step is to generate a set of object proposals, which are regions

where the model believes an object of interest may be and then this image is resized

and then passed into a CNN model to extract features. The second step is that a

Support Vector Machine (SVM) classifiers are used to predict which object is in each

region. R-CNN showed a huge improvement over previous object detection models

in regards to accuracy, however it is incredibly slow due to some of its redundancies

and the need to have multiple steps.

There were a number of other two stage models that increased in speed and accu-

racy such as SPPNet, Fast R-CNN and Faster R-CNN, however the event that lead to

significantly faster recognition speeds was the advent of the one stage detector. The

first singe stage detector was the YOLO algorithm [4]. YOLO stands for You Only

Look Once as this algorithm does not predict bounding boxes and classes separately,

but rather at the same time. It does this by breaking the image up into a grid, where

each grid cell is responsible for predicting some number of bounding boxes in its cell.

The boxes with a score over a certain threshold are then selected, however this often

still leaves a large number of boxes, so a technique call non-maximum suppression

(NMS) is utilized. NMS will get rid of boxes that have too much overlap with other

boxes to help ensure that one object isn’t being predicted on repeatedly.

Figure 5: YOLOv1 Model [4]

The model that is utilized in this paper is YOLOv3-tiny [8]. This is a condensed

9

version of the third edition of the YOLO model. This model, while less accurate

runs at a fraction of the time, which can be extremely important in object detection

models, where the goal is often to have real time predictions. YOLOv3 has two

main parts. First, a feature extractor. The job of the feature extractor is similar to

that of a normal CNN, attempting to find patterns in the given image. The second

part is a feature detector. The goal of the detector is to output the final images

with bounding boxes around the salient objects. The feature extractor for YOLOv3

is the Darknet-53 CNN. This model has many repeated residual blocks, which are

blocks of convolutional layers where the original input to the block is set aside and

concatenated with the output of the block at the end. These residual blocks were

first implemented by ResNet and were shown to greatly help with the effectiveness of

very deep neural networks such as Darknet-53 [20].

After the Darknet-53 backbone, another 53 convolutional layers are added onto

the model. Part of what makes YOLOv3 unique is its ability to make detections at

3 different scales. As can be seen in Figure 6, for the first 81 layers the model is

downsampled repeatedly until it has been downsized by a factor of 32. Here, the first

feature detector is utilized. The same is done as layer 94, except the model will be

upsampled by 2 so that the image is downsized by a factor of 16 from the original

image. This is done a third and final time at layer 106 where the image is upsampled

one more time to be only a factor of 8 smaller than the original image. At each of

these feature detectors, a detection kernel is applied, the shape of which is 1 x 1 x (B

x (5 + C)), where B is the umber of bounding boxes to be predicted for the given cell

and C is the possible number of classes. The 5 is in the formula for the 4 bounding

box attributes and the object confidence. An example of one of these kernels can be

seen in Figure 7

These kernels are then passed to the back end like the one described for YOLOv1,

10

F
ig
u
re

6:
Y
O
L
O
v
3
M
o
d
el

[5
]

11

Figure 7: YOLOv3 Detector [5]

where the boxes are first filtered by an object threshold, where their “objectness”

meet the given threshold and are then passed through the NMS threshold to ensure

there are not multiple boxes surrounding the same salient object. Then the object

with the highest class softmax score is chosen, given it meets the class threshold. This

is the final output for the given box.

12

2.4 Bayesian Neural Networks

Bayesian neural networks (BNNs) seek to overcome a pivotal shortcoming of tra-

ditional neural networks which is that they have no way to express their level of

uncertainty, often making them seem overly confident in predictions in which there

may actually be little confidence. They do this by implementing uncertainty onto the

weights themselves in the neural network, replacing typical point estimates with dis-

tributions which are randomly sampled from. The first paper to introduce a Bayesian

neural network was written in 1989 by Tishby [21]. The focus of Tishby’s paper was

to address the issue that often neural networks perform well on training data, but

perform poorly on test data that are not from the exact same distribution as the train-

ing data. This paper developed a method to measure the performance outside of the

training set, using only the training set by utilizing the average statistical prediction

error. This information was then used to develop an optimal network architecture.

The next paper to make a significant impact using BNNs was from Denker and Le-

Cun [22]. This paper proposed a method to take the output vector from a traditional

neural network and apply traditional statistics methods to it to transform it into a

meaningful output that reflects the level of certainty in the response.

For Bayesian neural networks, it is often useful to consider Variational Inference

(VI) when approaching the concept of backpropagation. Variational Inference is able

to transform backpropagation into an optimization problem for Bayesian neural net-

works utilizing, most frequently the Kullback-Liebler (KL) Divergance which mea-

sures the difference between the variational distribution and the true posterior. The

equation for KL-Divergence can be seen in Equation 1 where qθ(ω) is the density over

the set of parameters ω. This distribution is limited to a certain family of functions

which can be parameterized by θ. The true posterior is given by p(ω|D).

13

KL(qθ(ω)||p(ω|D)) =

∫
qθ(ω)log

qθ(ω)

p(ω|D)
dω (1)

The first paper to utilize variational inference for Bayesian neural networks was

written by Hinton and Van Camp who were attempting to use Bayesian neural net-

works to solve the problem of over fitting in traditional neural networks [23]. Unfor-

tunately, the authors were unable to adequately “capture the posterior correlations

between parameters,” as mentioned by Barber and Bishop’s 1998 paper [24]. Part

of this issue was the fact that they assumed the distribution of the model’s weights

were independent, when this is actually fairly uncommon in neural networks. Barber

and Bishop attempted to rectify this by using a full-covariance Gaussian distribution

to capture the covariances between the weights. By doing this, however, they found

that the the number of weights scales quadratically to the number of weight distri-

bution parameters, so more constraints need to be added to limit this explosion of

parameters. They do manage to find success doing this, however, their model was

extremely small at only four hidden layers.

After these first papers addressing VI, there was not widespread use of this method

for almost two decades, which was, according to Graves, “due to the difficulty of

deriving analytic solutions to the required integrals over the variational posteriors”

[25]. In his 2011 paper, Graves posits that the correct manner to tackle this problem

is to forgo looking into the true posterior and to instead analyze the variational

posterior as it is easier to utilize numerical methods on due to the fact that it is

easier to draw samples from. Graves finds a result that can be utilized on any log-loss

model, which he notes applies to most neural networks. The result is a stochastic

method for variational inference with a diagonal Gaussian posterior. After this revival

of the Bayesian neural network, one of the most promising lines of research was

started by Blundell, called “Bayes by Backprop” [6]. This algorithm shows how to

14

find unbiased estimates of the derivative of an expectation. It does this by using a

reparameterisation trick to find the expected lower bound of a given function. Using

this trick, Bayes by Backprop is able to minimize the KL divergence between the

approximate and true posterior. An example of the distributions on the weights can

be seen in Figure 8 from Blundell’s paper.

Figure 8: Point Estimates Compared to Distributions on Weights [6]

One of the first papers to implement Bayesian thinking into convolutional neural

networks was written by Gal and Ghahramani in 2016 [26]. They found that the pos-

terior they wished to utilize was intractable and therefore decided to utilize dropout

in the forward pass which can be an appropriate substitution for placing uncertainty

on weights. They find that this method shows a considerable improvement when com-

pared to traditional neural networks in regards to classification accuracy. Another

example of adding Bayesian thinking to neural networks can be seen in the paper by

Goan and Fookes written in 2020, where they implemented the Bayes by Backprop

algorithm to the kernels of a CNN, specifically LeNet-5 [27]. This was compared

to regular LeNet-5 and found to have only a marginal drop in accuracy, but with

the benefit of having uncertainty levels on predictions, which is the entire point of

applying Bayesian thinking to neural networks.

15

The final paper to mention regarding Bayesian neural networks is written by Wen,

et all. and it developed the method utilized in this paper, called Flipout [28]. The

authors state that weight perturbation algorithms, such as Bayes by Backprop suffer

from high variance of gradient estimates due to the fact that all of the mini batch

samples will have the same perturbation, which causes correlation between gradients.

The authors use Flipout as a method to be able to perturb these weights indepen-

dently within each mini batch. Flipout does this by multiplying a base perturbation

by a different rank-one sign matrix for each sample. This leads to decorrelated gradi-

ents that still have a marginal distribution that is the same as the distribution that

would have been calculated using weight perturbations. The second benefit of this

method is it means that mini batches can be more effectively utilized, meaning that

this method is significantly faster than similar techniques. This is in part because

Flipout can be expressed in terms of matrix multiplications, meaning it can be more

efficiently implemented by a graphics processing unit GPU.

2.5 Previous Work on Model Uncertainty

There are a number of papers which have attempted to tackle various aspects

of uncertainty regarding the output of neural networks. The two novel methods

proposed in this paper stem from two different techniques, prediction smoothing and

class threshold variance. In Deep learning based surgical workflow recognition from

laparoscopic videos, Kurian, et. al. utilize a rolling average of the outputs to help

get rid of flickering for the outputs of a CNN predicting on videos of surgery [11].

Kurian, et. al. utilize a standard CNN, meaning that there is only one prediction

per frame throughout the video. These predictions are averaged over the previous 16

frames to give the final prediction. This thesis builds on the ideas presented in this

paper by implementing Bayesian layers so that the outputs from each frame being

16

averaged are distributions instead of point estimates. The authors do find success

utilizing their model, which is promising for the use of prediction smoothing.

In A comparison of the performance of 2D and 3D convolutional neural net-

works for Subsea Survey Video Classification by Stamoulakatos, et. al., the authors

show that utilizing a simple rolling average of CNN predictions can outperform a

3-Dimensional CNNs [29]. Utilizing a 3-Dimensional neural network or other similar

techniques such as a bi-directional long short-term model (LSTM) require an entire

video as an input. This means that the model is unable to be utilized in real time as

it needs all frames at once. It would seem intuitive that these methods would perform

better than a rolling average, however this paper shows the opposite. This paper gives

reason to believe that despite the simplicity of a rolling average on a standard neural

network, there is still reason to utilize them. Our research takes this one step further

to utilize a BNN to generate a weighted average of output distributions instead of

simply utilizing the averaging of point estimates.

Regarding varying class thresholds, A threshold-varying artificial neural network

approach for classification and its application to bankruptcy prediction problem by

Pendharkar discusses changing the class threshold in the context of binary classes

[30]. This paper looked at moving the threshold for which to classify an instance as

bankruptcy in order to increase accuracy. This thesis expands on this first and most

importantly by changing the model from a standard neural network to a BNN. In the

standard neural network, the output being compared to the threshold is that from a

softmax output which is a poor approximation for actual confidence. In the BNN,

the output is a distribution much more closely resembling the model’s actual level of

confidence on its prediction. Second, the model looks at changing class thresholds

not simply in a binary classification, but in the multi-class case. Third, this thesis

looks not simply at changing class thresholds for the sake of an increase in accuracy,

17

but also for the sake of avoiding certain adversarial classes.

In Training cost-sensitive neural networks with methods addressing the class im-

balance problem, Zhou, et. al. address the effect of threshold moving in training

cost-sensitive models [31]. This paper does this by moving the threshold for each

class so that the model is more likely to select less expensive options. The results of

this paper show that the authors struggled to show any significant improvement of

the baseline with their techniques. This paper again falls short in that it utilizes the

softmax output of a traditional neural network, which is not a satisfactory approxi-

mation for confidence. It is in large part due to this difference that we believe this

thesis has merit when compared to previous work studying similar problems.

18

III. Methodology

This chapter provides a description of the data utilized, a detailed explanation

of the front and back end architectures utilized, a summary of the hyperparameter

tuning and an overview of how the model is evaluated for both the original proposed

model and the secondary proposed model.

3.1 Original Investigative Question

This section discusses the original investigative question. Unfortunately, there was

some difficulty with the training of the front end YOLOv3-tiny model that caused

this model to not find the desired success. That being said, even though the front

end was unable to train adequately, we still feel that the proposed back end has merit

and is worthy of discussion.

3.1.1 Description of Data

The data utilized to train the original front end vanilla model is from the ImageNet

Large Scale Visual Recognition Challenge 2015 (ILSVRC2015). The full ILSVRC2015

training data set includes 3862 snippets, or videos, yielding 866,870 bounding boxes

for 1,122,397 frames. There are 30 total classes. For each class, there are between

56 and 458 snippets that include it with a median of 116. For each snippet there

are between 6 and 5,493 frames with a median of 180. For the validation data set

there are 555 snippets that yield 135,949 bounding boxes in 176,126 frames. There

are between 4 and 64 snippets per class with a median of 17 and between 11 and

2,898 frames per snippet with an average of 232. The videos have different sized

frames, however all were resized to be 416 by 416 pixels for the model. For the sake

of training, there were simply too many training and validation images to be practical

19

for the hardware utilized.

The videos were first split into training, validation and testing sets to ensure that

there was no data leakage between them. This is because from frame to frame, there

is not much change, so including frames from the same video in multiple sets would

likely indicate the model is performing better than it truly is. From the videos set

aside for the training set, 2,000 frames were taken randomly for each class from the

training set for training the model and 200 frames from each class randomly from

the validation set for validation of the model. It is safe to take randomly from these

videos now as the train test split has already occurred. This ensures that images

from more different videos are selected, instead of just taking all of the frames from

the first video, then the second video and so on. All classes had the same number of

frames for both the training and validation sets. The rest of the videos were left for

the test set.

3.1.2 Model Overview

For analysis of the original investigative question, two models are utilized. The

first is YOLOv3-tiny as mentioned in the background section of this paper. It is

exactly the same as the original. The second is a novel model developed in this

paper. For this model there is a distinct front end based on YOLOv3 and a distinct

back end that transfers information from frame to frame. Both the model front end

and back end are explained in the following sections.

3.1.3 Front End Model Architecture

The front end of the initial proposed model is exactly like the YOLOv3-tiny model

until the two final output layers. The model architecture of YOLOv3-tiny can be seen

in Figure 9. The model has 22 layers including the two output layers for the two

20

different sized grids, which for YOLOv3-tiny are 13 by 13 and 26 by 26. The model is

primarily repetitions of a 3x3 convolutional layer, a maxpooling layer, and then the

leaky ReLu activation function, with extra convolutional layers added before each

output for the two grid sizes. The number of filters for the convolutional layer in-

creases by a factor of 2 for each of the first 6 repetitions of this grouping of layers

starting at 16 filters. The difference is in the last layer before each of the two predic-

tions. The last two convolutional layers are Bayesian layers, meaning that instead of

their weights being a point estimate, they are distributions that are randomly drawn

for each prediction. This is done by utilizing the Convolution2DFlipout layer from

tensorflow’s probability package (tfp) which uses the same method from Wen, et al.

[28] as discussed in the background section. The route layers seen in Figure 9 are

the same as the residual blocks mentioned in subsection 2.3. These layers directly

pass information from the layer mentioned to the current layer. The YOLO layers

mentioned are the feature detectors mentioned in subsection 2.3. On each image, a

certain number of predictions are made to generate a distribution of predictions of the

classes. For the bounding boxes, the x and y coordinates are simply be averaged to

generate the final bounding box. This distribution of classes connected to the given

bounding box is what is passed to the back end of the model.

The reason for using YOLOv3-tiny instead of the full sized model is because it

trains and predicts significantly faster. While YOLOv3 can make predictions at 35

frames per second on 416x416 images, YOLOv3-tiny can make 220 predictions per

second [32]. This is 6.28 times more frames per second. A comparison of a number

of different models trained and tested on the COCO data set show that YOLOv3

tiny is the only model to attain more than 100 FPS, besides another tiny YOLO

model. This comparison includes models such as the SSD models, Retinanet and

R-FCN. It is especially crucial for the model to be fast given that for the Bayesian

21

Figure 9: YOLOv3-tiny Model [7]

version of this network, multiple predictions have to be made per frame to generate

the distribution. Unfortunately, this does come with a loss in accuracy dropping from

55.3 mAP for the full sized model to only 33.1 mAP for the tiny model [32], however

as the focus of this paper is on comparing a vanilla object detection model vs a BNN

object detection model, this trade off was determined to be acceptable.

The YOLOv3-tiny loss function is the same loss function utilized in the full sized

YOLOv3 model. The loss function can be seen in Equation 2. For training, the sum

of the squared error loss is utilized. lossxy is the loss due to the error in the prediction

of the location of the bounding box. losswh is the error in determining the size of

the bounding box. lossclass is the error in determining the class of the object in the

bounding box. lossconfidence is the loss due to the confidence score of the prediction.

22

loss =
1

n

n∑
i=1

lossxy +
1

n

n∑
i=1

losswh +
1

n

n∑
i=1

lossclass +
1

n

n∑
i=1

lossconfidence (2)

The output of this model is a prediction for the bounding box as well as an

objectness score. The format for the bounding box can be seen in Figure 10 and

the variables in this figure are as follows. tx and ty are the outputs from the model

corresponding to the location of the box with respect to the cell it is centered in. tw

and th are the outputs from the model corresponding to the size of the bounding box,

refering to width and height respectively. The last output from the model is to which

is the model’s output regarding the level of certainty regarding the existence of an

object in the bounding box. These are all transformed according to the formulas in

Figure 10 to be usable by the backend model.

Figure 10: Bounding Box for YOLOv3 [8]

23

3.1.4 Back End Model Architecture

For the control model, the regular YOLOv3-tiny is utilized without a back end.

The prediction on that image is simply the output from the model. However, for our

novel proposed model, we add a back end to incorporate the Bayesian aspects to the

model. As mentioned in the Front End section, the information passed to the back

end for each frame is the average bounding box for each predicted object in the frame

as well as the distribution of predicted classes for each bounding box. The prediction

for each bounding box can be seen in Equation 3

Yni
= α ∗ Yn−1i

+ (1− α) ∗Xni
(3)

Where Yni
is the final prediction for the current frame for box i, Xni

is the output

from the model for the current frame for box i, Yn−1i is the final prediction from the

previous frame for box i and α is a constant that determines how influential previous

frames are. This means that the current frame is not only taking the predictions form

the current frame to make the final prediction, but also the predictions from frames

before the previous frame as well. This is done under the assumption that an object

will not suddenly become another object during a video, so it is safe to continue using

the previous predictions to build an even stronger idea of what the true distribution

should look like for the given object. The tuning for α is discussed in the section

regarding back end hyperparameter training.

In order to get the distributions from the prior frame, each box from frame n− 1

must be connected to a box in frame n or must be intentionally ignored. This is

done by calculating the distance from the four corners of a bounding box in frame n

to the four corners of each bounding box in frame n − 1, summing them and then

repeating for each box in frame n. The bounding boxes in the current frame are

24

matched to those in the previous frame such that the sum of the squared differences

are minimized. This of course has the potential to incorrectly match boxes. The most

obvious scenario in which this may occur is if there is an object in the middle of the

image and an object on one side in one frame and in the next frame the object in the

middle is still there, however the object on the side has moved out of the frame and

a new object has moved into the frame on the other side. In this event, the backend

model may attempt to match the center box with the new object and the old object

to the center box. In order to prevent this, there is a constraint that the centroid of

the bounding boxes cannot be more than a certain percentage of pixels away from

the previous bounding box. This adds another assumption that objects do not move

too quickly, which for most data sets is likely true.

(bx + px, by + py)n

(bx + px, by)n(bx, by)n

(bx, by + py)n

(bx + px, by + py)n−1

(bx + px, by)n−1(bx, by)n−1

(bx, by + py)n−1

Figure 11: Distance Between Frame n and Frame n− 1

The equation for the distance between each possible pair of bounding boxes in

frames n and n− 1 then can be seen in Equation 4.

25

distance =
√

(bxn − bxn+1)
2 + (byn − byn+1)

2

+
√

((bxn + pxn)− (bxn+1 + pxn+1))
2 + (byn − byn+1)

2

+
√
(bxn − bxn+1)

2 + ((byn + pyn)− (byn+1 + pyn+1))
2

+
√
((bxn + pxn)− (bxn+1 + pxn+1))

2 + ((byn + pyn)− (byn+1 + pyn+1))
2

(4)

This is calculated for each possible pair and frames are matched to minimize the

sum of the differences. These are the final predictions for the given frame.

3.1.5 Hyperparameter Tuning

There are a number of hyperparameters to be tuned in both the front end and

the back end of this model. The hyperparameters are tuned for the front end first,

and then the resulting hyperparameters are what is utilized to train the model’s back

end.

In the front end of this model, the hyperparameters that are tuned include the

object threshold and the class threshold. The object threshold determines which

bounding boxes have a high enough objectness score to pass to the next step. The

objectness score is reflective of how confident the model is that there is an object in

the bounding box. The class threshold performs similarly but only allows through

boxes that have specifically predicted that any class in the bounding box is present

with above a certain threshold. The reason for this second threshold is that the model

may be confident that an object is present in the box, however the object may not

be one of the 30 possible classes. We do not want a bounding box in this location

as it is not possible for the model to accurately predict what is in the box since it is

not in the class list. This is tuned with the help of mean accuracy precision (mAP)

26

which is discussed in Section 3.6.

In the back end, the hyperparameter that is tuned is α, which is the weight given

to the final prediction of the previous frame. When tuning α, it is important to note

that it effects not only the weight given to the previous frame, but also how long

previous frames stay relevant for. As can be seen in Table 1, when α = 0.1, the

weight on the previous frame is already below 0.01, whereas when α = 0.4, even the

frame 3 frames ago still has a weight greater than 0.01, meaning frames stay relevant

for longer. The weight on a given frame n, wn, can be seen in Equation 5

wn =

1− α if n = 1

wn−1α if n > 1

(5)

Table 1: Affect of α Value on Frame Weight
Frame α = 0.25 α = 0.50 α = 0.75

n 0.7500 0.5000 0.2500
n− 1 0.1875 0.2500 0.1875
n− 2 0.0469 0.1250 0.1406
n− 3 0.0117 0.0625 0.1055
n− 4 0.0029 0.0313 0.0791
...

For the actual training of this model, the first important hyperparameter to men-

tion is the optimizer. The optimizer utilized for training this model originally was

stochastic gradient descent and as such, we use this optimizer as well with the same

hyperparameters utilized in original YOLOv3 paper. These are a learning rate of

0.001, a momentum of 0.9 and a decay of 0.0005. This paper also tests the Adam

optimizer, known for it’s speed in training with different learning rates including 0.1,

0.01, 0.001 and 0.0001. The number of epochs was somewhat constrained by time as

there are a large number of classes and samples for each class and was therefore set

at 100 epochs. This is because each epoch on it’s own takes nearly an hour to train.

27

The size of the mini batches was set to 128 as that was the largest number with a

power of 2 to fit on our GPU. Powers of 2 are common number to select for neural

network training as GPU and CPU memory normally stores memory in powers of

two. This is a common practice seen in nearly all neural network papers. Using the

largest possible batch size has two benefits. The first is speed. The larger the mini

batch size, the less mini batches needed, the faster the model can train. Second, there

is some evidence to show that larger batch sizes can have an increase in accuracy [33].

3.1.6 Model Evaluation

The model is primarily evaluated based on mAP. To calculate this, the first step

is to create a precision/recall curve based on utilizing an Intersection over Union

(IoU) of greater than 0.5 for every class. The IoU is a measure of the overlap of two

bounding boxes. In this case, they are the predicted bounding box and the truth

bounding box. This is done by matching predictions to the ground truths and sorting

them by confidence. Here, precision and recall can be calculated for each prediction

and ground truth combination. This curve is then altered slightly to be monotonically

non-increasing by setting the precision value at least as high for a given point as any

points with higher recall than it. For example, see Figure 12. The area under this

curve is then computed numerically. After this, a mAP is calculated by taking a

weighted average for each class based on how many times the given class occurred.

28

Figure 12: An Example of a Precision Recall Curve for mAP

3.2 Revised Investigative Question

Due to the difficulties training the original two models, two new models were

examined. These revised models focus only on image classification, a simpler task

than object detection.

3.2.1 Description of Data

The data utilized for this model is from the UCF101 data set. This data set

is composed of 13,320 videos from 101 different action classes. These videos have

average durations as can be seen in Figure 13 and the distribution of video lengths

for the different classes can be seen in Figure 14.

The purpose of the UCF101 data set was to establish a data set that had videos

of realistic actions. As mentioned on the UCF101 website, most available action

recognition data sets are videos of staged actors performing actions, which is not a

29

realistic depiction of what an image classification model would expect to see when

deployed.

For this model, only 10 classes were selected: brushing teeth, drumming, horse

race, horse riding, ice dancing, jump rope, punch, rock climbing indoor, rowing, and

shaving beard. Examples of each of these classes can be seen in Figure 15.

As mentioned for the original investigative question model, this data was split in

such a manor to ensure that frames from a given video will only be in one given set

to ensure there is no data leakage. The videos were split into training, validation and

testing sets first and then frames were taken from those splits to make the final sets.

For this data set, for the given classes, all frames were utilized. This did cause some

imbalance in the number of frames per class, but it was not a large difference and as

will be seen in Chapter 4, this did not cause any issues with a large class skewing the

model predictions towards itself.

30

F
ig
u
re

13
:
D
u
ra
ti
on

s
fo
r
U
C
F
10
1
C
la
ss
es

31

F
ig
u
re

14
:
N
u
m
b
er

of
V
id
eo
s
w
it
h
C
er
ta
in

D
u
ra
ti
on

s
fo
r
U
C
F
10
1
C
la
ss
es

32

Figure 15: Examples of UCF101 Classes

33

3.3 Revised Investigative Question

For analysis of our revised investigative question, two models are utilized. The

first is VGG16 as mentioned in the background section of this paper. It is nearly

exactly the same as the original and deviations from the original are detailed in the

following subsection. The second is the novel Bayesian model that is developed in

this paper. For this model there is a distinct front end based on VGG16 but with

a Bayesian layer and a distinct back end that transfers information from frame to

frame that are explained in the following section.

3.3.1 Front End Model Architecture

The front end of this model is exactly the same as VGG16, except instead of

the fully connect layers having 4096, 4096 and 1000 neurons respectively, they now

have 512, 256, 128 and 10 neurons. This is due to the fact that the original VGG16

model was trained on the ImageNet data set which has 1000 classes, whereas this

model was trained on only 10 classes, meaning therefore less neurons are needed.

Including as many neurons as were seen in the original wold likely lead to overfitting.

The VGG16 model is made of up repetitions of convolutional layers with a ReLu

activation function with a kernel size of 3x3 and maxpooling layers which downsize

the image as it moves through the model. Each time the image is scaled down from a

maxpooling layer, the next set of convolutional layers have twice as many filters. The

model start by taking in a 224x224x3 image and downsizes it until what is passed

to the fully connected layers is a 7x7x512 array. This is then flattened and passed

into the fully connected layers. The final prediction layer is passed through a softmax

function for the final output. In our model, a dropout rate of 0.5 was added to these

layers to help prevent overfitting.

Similarly to the novel model from our original investigative question, the novel

34

model for the revised investigative question is initially exactly the same as the above

VGG16 model, but with a Flipout layer put in place of the last layer in order to

generate the output distributions required for the backend. The output of this model

is a a distribution of image classifications of one of the classes listed in the Data

Description section, one prediction for each time the model is predicted on.

3.3.2 Back End Model Architecture

The simple VGG16 baseline model has no back end as the output of that model

is simply the prediction. The secondary proposed model has a back end that is very

similar to the original proposed model’s back end. For the back end of this model,

each frame is predicted on some number of times. These predictions were then be

utilized in the same manor as seen in Equation 3. The difference is that instead

of each prediction being object specific, they are frame specific which gets rid of the

need for the distance function shown in Equation 4.

3.3.3 Hyperparameter tuning

There are a number of hyperparameters to be tuned in both the front end and

the back end of this model. The hyperparameters are tuned for the front end first,

and then the resulting best model is what is utilized to train the model’s back end.

For the front end, the only hyperparameter that is tuned is the optimizer uti-

lized. The optimizers that are analyzed are Adagrad, Adam, Adamax and NAdam.

These optimizers are selected primarily for their speed when training models. For the

backend, the hyperparameters that are tuned are α and the number of predictions

per frame. When analyzing α, the primary concern is accuracy. When analyzing

the number of predictions per frame, both accuracy and speed in frames per second

(FPS) are analyzed.

35

3.3.4 Model Evaluation

The model is evaluated based on the average accuracy for all of the frames. The

predicted answers are each compared to their corresponding truth label and are as-

signed a 1 if correct and a 0 if incorrect. These numbers are summed and then divided

by the total number of frames to determine the overall accuracy of the model. This

is the same for both the standard and the Bayesian model.

36

IV. Results and Analysis

In this chapter, the result of both the original and revised investigative questions

are discussed, including the results of the hyperparameter tuning primarily for the

revised investigative question.

4.1 Original Investigation Question Results

Unfortunately, the Yolov3-tiny model front end failed to successfully train, mean-

ing that the back end was unable to be adequately tested. The results showing the

mAPs for the different hyperparameter tunings for the base original model can be

seen in Table 2 below. The best hyperparameter setting was an object threshold

of 0.15 and a class threshold of 0.15. This setting still only managed a 2.73% mAP,

whereas the yolov3 model, as mentioned in Chapter III, should be seeing a mAP in

the low 30% range. Due to this poor performance, the backend model was unable to

be adequately tested. The backend developed assumes a sufficiently accurate frontend

with which to carry forward information. If the information from the previous frame

is rarely accurate, there is no point in carrying it forward.

Table 2: Affect of Hyperparameters on mAP
Object Threshold Class Threshold mAP

15
15 2.73%
25 0.49%
35 0.49%

35
15 0.46%
25 0.46%
35 0.45%

A number of attempts were made to make alterations to this model to achieve

better training accuracy, however none were successful. Different learning rates were

tested as mentioned in the previous chapter and even with the largest learning rate,

37

the model was still improving, implying that it had not hit a local minima, but it

was training so slowly that we simply did not have the computational power to make

training this model feasible. After training the model for the initial 100 epochs, we

trained it for 100 more and the results of this can be seen in Figure 16. Both the

training and validation losses still appear to be decreasing, but at such a slow rate

that reaching a low enough loss would have taken thousands of epochs more.

Figure 16: Training and Validation Loss During Final 100 Epochs

After seeing that the model with all 30 classes was not going to train with the

computational power we had, we attempted to solve this problem by limiting the

number of classes. It is inherently harder to train a neural network with a large

number of classes. Also, with the original large number of classes, not many frames

were utilized per class due to the limited space on our GPU. The number of classes

was reduced from 30 to 6. This is one-fifth of the size and as such, 5 times more

images were utilized for each class, meaning each class had 10,000 images. This

38

unfortunately had no impact on the accuracy of the model. The model continued to

fail to achieve any mAP over 3%, rendering itself useless for attempting to show the

benefits of the proposed back end. This model showed a nearly identical pattern in

training and validation loss as the model with all 101 classes where the model was

still learning, but at a rate that was too slow to continue with.

There are a few reasons this may have occurred. First, we simply did not have the

computational power to train this neural network. This is certainly a possibility. The

model was still appearing to train, although slowly even 200 epochs in. It is possible

that to get to an accurate model thousands of epochs of training may have needed

to occur. A second possibility rests on the specific anchor boxes utilized. For this

paper, the pre-trained anchor boxes for YOLOv3-tiny were utilized. This was done

with the knowledge that all of the given classes in the ILSVRC video data set are

also in COCO, on which YOLOv3-tiny was originally trained, or have an object for

which we would expect a very similar anchor box due to the shapes of the classes. For

example, there is no antelope in the COCO data set, while there is in the ILSVRC

data set, but COCO does have other animals which would be bounded by similarly

proportioned boxes such as a horse or a zebra. This assumption may have lead to

poor training, although given the reasoning mentioned above, this seems unlikely.

4.2 Revised Investigation Question Results

In this section, results for the revised investigation question will be discussed. The

VGG16 model trained significantly better than the original model. Comparisons be-

tween the vanilla and Bayesian augmented VGG16 show that the techniques proposed

for the original investigative question are solid theoretically.

39

4.2.1 Model Training

The first tuning was done by selecting the optimizer for training the neural net-

work. The following four optimizers were chosen for their ability to train both accu-

rately and quickly. The optimizers used were Adam, NAdam, Adamax and Adagrad.

As can be seen in Table 3, the Adamax optimizer performed best on both the stan-

dard model and the Bayesian model and therefore was utilized for both.

Table 3: Optimizer Testing
Standard Val Accuracy Bayesian Val Accuracy

Adam 98.65% 98.65%
NAdam 98.78% 98.02%
Adamax 98.82% 98.82%
Adagrad 96.79% 95.48%

4.2.2 Prediction Smoothing

After training the neural network, the next step in hyperparameter tuning was

to tune the value for α, which, as mentioned in Chapter III, is the weight given

to information from previous frames. As can be seen in Table 4, an α value of

0.75 performed the best of the tested values. The steady increase in accuracy when

increasing α shows the importance of previous information when predicting on the

current frame.

Table 4: Alpha Values
α value Accuracy
0.00 75.06%
0.25 75.10%
0.50 75.15%
0.75 75.17%

After tuning alpha and predicting on all test videos, the affect that the proposed

model had on flickering was tested. The amount of flickering is determined by counting

40

the number of times in a given video the prediction changes from one class to another.

The proposed model was able to successfully decrease the amount of flickering by

67.43%, which is a large improvement. On average, the standard model will change

classes every 1.85 seconds, whereas the Bayesian model will only change classes on

average every 5.68 seconds.

Accuracy on both the standard model and the Bayesian model with smoothing

can be seen in Figures 17 and 18. These figures show that both models performed

very similarly on all classes. This shows that the Bayesian model can still compete

with the accuracy of the standard model, while also giving a more robust look at how

certain the model is on any given prediction.

Figure 17: Predictions per Class for Standard Model

41

Figure 18: Predictions per Class for Bayesian Model with Smoothing

4.2.3 Adversarial Threshold

Because of this more accurate view of certainty, it becomes possible to test the

model against adversarial classes as discussed in III. Higher adversarial threshold

values make it harder for the adversarial class to be predicted, ensuring an increased

level of confidence for the given prediction with each increase in β, if the given class

is predicted. After selecting an adversarial class, in this case shaving, different adver-

sarial threshold levels are tested. These tables are shown as confusion matrices with

the brushing teeth class, as this was the pair of classes that the model struggled the

most to accurately classify. The first, shown below in Table 5, shows the baseline

where there is no threshold for the output to need to meet in order to predict the

42

adversarial class. In this instance, the False Positive rate is 76.60% and the True

Positive rate is 43.91%.

Table 5: Adversarial Threshold of 0.0
Truth

Brushing Shaving

P
re
d Brushing 12.29% 26.64%

Shaving 40.21% 20.86%

By raising the adversarial class threshold to 0.6, as can be seen in Table 6 below,

the False Positive rate is dropped to 75.70%, while the True Positive rate falls to

43.22%.

Table 6: Adversarial Threshold of 0.6
Truth

Brushing Shaving

P
re
d Brushing 12.79% 26.89%

Shaving 39.85% 20.47%

By raising the adversarial class threshold again to 0.7, as can be seen in Table

7, the False Positive rate is dropped to 74.54%, while the True Positive rate falls to

42.12%.

Table 7: Adversarial Threshold of 0.7
Truth

Brushing Shaving

P
re
d Brushing 13.45% 27.30%

Shaving 39.38% 19.87%

By raising the adversarial class threshold again to 0.8, as can be seen in Table

8, the False Positive rate is dropped to 73.09%, while the True Positive rate falls to

40.79%.

By raising the adversarial class threshold to the highest value tested here, 0.9, as

can be seen in Table 9, the False Positive rate is dropped to 71.18%, while the True

Positive rate falls to 39.10%.

43

Table 8: Adversarial Threshold of 0.8
Truth

Brushing Shaving

P
re
d Brushing 14.27% 27.82%

Shaving 38.76% 19.16%

Table 9: Adversarial Threshold of 0.9
Truth

Brushing Shaving

P
re
d Brushing 15.33% 28.49%

Shaving 37.88% 18.30%

By raising the adversarial class threshold level to 0.9 from 0, the False Positive

rate drops by 5.42%. As with any improvement in modeling, however, it does come

as a cost, with True Positives dropping by 4.80%. It is important for the end user of

this model to understand the tradeoffs associated with implementing the adversarial

back end. There are use cases like the ones mentioned in previous chapters in which

this could be incredibly beneficial, however there are also use cases in which the trade

off may not be worth it.

4.2.4 Effects of the Number of Predictions per Frame

Testing was also done to see the impact of the number of predictions per frame on

the accuracy and speed of the model. The results of this can be seen in Figure 19.

It can be seen here that when smoothing is utilized, the number of predictions per

frame does not greatly impact the accuracy of the model, however decreasing from

20 predictions per frame to 1 prediction per frame results in the ability to predict

on approximately 6 more frames per second. This is possible because the smoothing

allows the model to still create an accurate distribution of predictions, even with only

1 prediction per frame. Context will be important to the end user when determining

if a small decrease in accuracy is worth the additional prediction speed. While not

44

shown in Figure 19, the vanilla neural network with no smoothing predicted on 16.8

frames per second, meaning it is not significantly faster than utilizing the Bayesian

model with smoothing.

Figure 19: The Effect of Number of Predictions per Frame on Accuracy and Speed

Overall, the results shown in this chapter are extremely promising for the fu-

ture of utilizing output distributions from Bayesian neural networks in tandem with

smoothing functions instead of standard neural networks.

45

V. Conclusions

5.1 Summary

This thesis demonstrates that the passing forward of information from previous

frames does lead to a significant improvement in the reduction of flickering. By reduc-

ing flickering by nearly 70%, the back end of the proposed model does exactly what

it is intended to do and proves that prediction smoothing on the distribution outputs

from Bayesian neural networks is effective. This thesis also successfully demonstrates

that by using a Bayesian neural network, instead of a standard neural network, ad-

versarial class thresholds can be successfully implemented due to the distributional

outputs from the BNN.

5.2 Future Work

There a number of possible directions for future work to take. The first and

most obvious of these is to continue the work to make the original proposed model

work. While the training of the YOLOv3-tiny model was unsuccessful in this thesis,

it has shown to be successful in the past and therefore may simply need to be trained

for more epochs that computing power and time allowed on this thesis or it may

take more finely tuned hyperparameters than explored in this work. The success of

the secondary model show that the smoothing technique is effective and should be

attempted on an object detection model.

The next direction future work could take on this thesis is to attempt to have an

“anti-adversarial” class. That is, a class that should be predicted even if it is not the

most voted class if it meets some certain lower threshold. This would be useful for

use cases such as cancer detection, where False Negatives are extremely detrimental

and the user would likely be willing to have a larger number of False Positives to get

46

a higher True Positive rate.

A final direction future work could take is to add more Bayesian layers in the

BNN. The model did still see some over-fitting as would be expected for a standard

neural network, meaning that only adding variation to the final layer may have not

been enough to truly show the model’s level of certainty as would be preferred.

47

Appendix: Glossary

ANN Artificial Neural Network. 4

BNN Bayesian Neural Networks. 1, 13, 17, 22, 46, 47

CNN Convolutional Neural Network. iv, 5, 6, 10, 16, 17, 1

CPU Central Processing Unit. 28

GPU Graphics Processing Unit. 16, 28, 38

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 6, 19, 39

IoU Intersection Over Union. 28

ISR Intelligence, Surveillance, and Reconnaissance. 1

KL Kullback-Liebler. 13

LSTM Long Short-Term Memory. 17

mAP Mean Accuracy Precision. 26, 28, 39

NMS Non Maximum Suppression. 9, 12

R-CNN Regions with Convolutional Neural Network. 8, 9

SVM Support Vector Machine. 9

tfp TensorFlow Probability. 21

VI Variational Inference. 13, 14

YOLO You Only Look Once. 9, 10, 19, 20, 21, 22, 24, 27, 39, 46

48

Bibliography

1. Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of

visual pattern recognition. Neural Networks, 1(2):119–130, 1988.

2. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

3. Rohit Thakur. Step by step vgg16 implementation in keras for beginners, Nov

2020.

4. Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

5. Ayoosh Kathuria. What’s new in yolo v3?, Apr 2018.

6. Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.

Weight uncertainty in neural networks. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 1613–1622. PMLR, 07–09 Jul 2015.

7. He, Chang-Wei Huang, Wei, Li, and Guo Anfu. Tf-yolo: An improved incremental

network for real-time object detection. Applied Sciences, 9:3225, 08 2019.

8. Pranav Adarsh, Pratibha Rathi, and Manoj Kumar. Yolo v3-tiny: Object detec-

tion and recognition using one stage improved model. In 2020 6th International

Conference on Advanced Computing and Communication Systems (ICACCS),

pages 687–694, 2020.

9. Kai Xu, Longyin Wen, Guorong Li, Honggang Qi, Liefeng Bo, and Qingming

Huang. Learning self-supervised space-time cnn for fast video style transfer.

IEEE Transactions on Image Processing, 30:2501–2512, 2021.

49

10. Rizwan Ali Shah, Odilbek Urmonov, and HyungWon Kim. Improving per-

formance of cnn based vehicle detection and tracking by median algorithm.

In 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-

Asia), pages 1–3, 2021.

11. Elizebeth Kurian, Jubilant J. Kizhakethottam, and Justin Mathew. Deep learn-

ing based surgical workflow recognition from laparoscopic videos. In 2020 5th

International Conference on Communication and Electronics Systems (ICCES),

pages 928–931, 2020.

12. Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

13. Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65 6:386–408, 1958.

14. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323:533–536, October 1986.

15. Large scale visual recognition challenge 2017 (ilsvrc2017).

16. O. Russakovsky, J. Deng, H. Su, and et al. Imagenet large scale visual recognition

challenge. Int J Comput Vis, April 2015.

17. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition, 2015.

18. P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-

ple features. In Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I,

2001.

50

19. Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-

ture hierarchies for accurate object detection and semantic segmentation. CoRR,

abs/1311.2524, 2013.

20. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition, 2015.

21. Tishby, Levin, and Solla. Consistent inference of probabilities in layered networks:

predictions and generalizations. In International 1989 Joint Conference on Neural

Networks, pages 403–409 vol.2, 1989.

22. John S. Denker and Yann LeCun. Transforming neural-net output levels to proba-

bility distributions. In Proceedings of the 3rd International Conference on Neural

Information Processing Systems, page 853–859. Morgan Kaufmann Publishers

Inc., 1990.

23. Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple

by minimizing the description length of the weights. In Proceedings of the Sixth

Annual Conference on Computational Learning Theory, page 5–13. Association

for Computing Machinery, 1993.

24. D. Barber and Christopher Bishop. Ensemble learning in bayesian neural net-

works. In Generalization in Neural Networks and Machine Learning, pages 215–

237, January 1998.

25. Alex Graves. Practical variational inference for neural networks. In Proceedings

of the 24th International Conference on Neural Information Processing Systems,

page 2348–2356. Curran Associates Inc., 2011.

26. Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with

bernoulli approximate variational inference. ArXiv, abs/1506.02158, 2015.

51

27. Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and

survey. Lecture Notes in Mathematics, page 45–87, 2020.

28. Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger B. Grosse. Flipout:

Efficient pseudo-independent weight perturbations on mini-batches. ArXiv,

abs/1803.04386, 2018.

29. Anastasios Stamoulakatos, Christos Tachtatzis, Javier Cardona, Xavier Bellekens,

Robert Atkinson, I. Andonovic, Md Hossain, Craig Michie, and Pavlos Lazaridis.

A comparison of the performance of 2d and 3d convolutional neural networks for

subsea survey video classification. 02 2022.

30. Parag Pendharkar. A threshold-varying artificial neural network approach for

classification and its application to bankruptcy prediction problem. Computers

Operations Research, 32:2561–2582, 10 2005.

31. Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with

methods addressing the class imbalance problem. IEEE Transactions on Knowl-

edge and Data Engineering, 18(1):63–77, 2006.

32. Joseph Redmon. Yolo: Real-time object detection. Available at https:

//pjreddie.com/darknet/yolo/.

33. Pavlo Radiuk. Impact of training set batch size on the performance of convolu-

tional neural networks for diverse datasets. Information Technology and Manage-

ment Science, 20:20–24, 12 2017.

52

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Bayesian Convolutional Neural Network with Prediction
Smoothing and Adversarial Class Thresholds

Miller, Noah, 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-22-M-154

Trevor Bihl, DAF, DR-III, PhD
Sensors Directorate
Air Force Research Laboratory
2242 Avionics Circle
Wright-Patterson AFB, OH 45431 Email: trevor.bihl.2@us.af.mil

AFRL

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Using convolutional neural networks (CNNs) for image classification for each frame in a video is a very common
technique. Unfortunately, CNNs are very brittle and have a tendency to be over confident in their predictions. This can
lead to what we will refer to as “flickering,” which is when the predictions between frames jump back and forth between
classes. In this paper, new methods are proposed to combat these shortcomings. This paper utilizes a Bayesian CNN
which allows for a distribution of outputs on each data point instead of just a point estimate. These distributions are
then smoothed over multiple frames to generate a final distribution and classification which reduces flickering. Our
technique is able to reduce flickering by 67%. We also propose a second method to combat False Positive predictions of
certain adversarial classes, or classes that have some cost if predicted incorrectly. This is accomplished by increasing the
confidence threshold the adversarial class must meet in order to be the final predicted class. This technique is able to
reduce false positives by 5.43%, while maintaining accuracy.

artificial neural network (ANN), convolutional neural network (CNN), Bayesian neural networks (BNN), image
classification, object detection, prediction smoothing, adversarial class thresholds

U U U UU 64

Dr. Cox, AFIT/ENS

(937) 255 3636 x4676; Bruce.Cox@afit.edu

	Bayesian Convolutional Neural Network with Prediction Smoothing and Adversarial Class Thresholds
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background and Motivation
	Organization of Thesis

	Background and Literature Review
	Artificial Neural Networks
	Convolutional Neural Networks
	Object Detection using Convolutional Neural Networks
	Bayesian Neural Networks
	Previous Work on Model Uncertainty

	Methodology
	Original Investigative Question
	Description of Data
	Model Overview
	Front End Model Architecture
	Back End Model Architecture
	Hyperparameter Tuning
	Model Evaluation

	Revised Investigative Question
	Description of Data

	Revised Investigative Question
	Front End Model Architecture
	Back End Model Architecture
	Hyperparameter tuning
	Model Evaluation

	Results and Analysis
	Original Investigation Question Results
	Revised Investigation Question Results
	Model Training
	Prediction Smoothing
	Adversarial Threshold
	Effects of the Number of Predictions per Frame

	Conclusions
	Summary
	Future Work

	Appendix: Glossary
	Bibliography

