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Abstract

In practice, there are several different methods of organizing data within a given

software to fulfil its function. The method known as the Entity-Component System

(ECS) is a software architecture where data components define entities. These com-

ponents are stored as organized lists which are operated upon by systems to inject the

system’s desired behavior. The standard of IEEE Distributed Interactive Simulation

defines a set of protocol data units (PDUs) that are exchanged between networked

simulations within a distributed system. The standard also defines specifics regard-

ing how each simulation sends, receive,s and processes the PDUs. The standard

supports military simulation application communication across a multitude of local

and distanced locations.

When leveraging a network to exchange PDUs, each simulation can represent a

common understanding of the world, at the desired level of detail, to allow hosted en-

tity interactions. DIS-compliant simulations are commonly written using an Object-

Oriented Programming paradigm, where data is contained within objects and state

is altered through exchanged method calls (or messaged) through a publicly defined

interface. This research investigates the viability of an ECS-compliant IEEE DIS

interoperability interface by creating and testing a prototype application that can

send, receive, and process Entity State PDUs as defined by the standard, allowing it

to interact with pre-existing simulation technologies.

A prototype, written in the Rust programming language, incorporates the nalgebra-

glm library (i.e., Crate) to provide general-purpose linear algebra features to perform

the mathematical operations associated with prediction (i.e., dead reckoning) and

convergence; the Serde library to serialize and deserialize PDUs; and the Handy ECS

iv



(hecs) library to provide a minimalist entity-component-system (ECS) capability. Our

prototype implements a simple cyclic scheduler loop to execute the ECS systems that

updates the components.

The results of this research are that creating an ECS-based DIS simulation node

is viable. It is also possible to implement the functionality of Dead Reckoning and

DIS requirements using the Rust programming language.
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AN ENTITY-COMPONENT SYSTEM BASED, IEEE DIS INTEROPERABILITY

INTERFACE

I. Introduction

1.1 Problem Background

The Distributed Interactive Simulation (DIS) is an IEEE standardized protocol

implemented and used to connect military simulations across multiple geographically

distanced locations. Applications for this space have traditionally used an Object-

Oriented C++ approach for design. However, this is not the only possible approach.

There has been no published research which explores the viability of using a Data-

Oriented Design for DIS simulation applications. Entity-Component Systems, a type

of Data-Oriented Design, is a common implementation for private sector gaming

applications, so we hypothesize that a similar approach could assist in improving the

data management and organization of our own simulation capabilities.

1.2 Research Objectives

• Create a data-oriented ECS environment capable of sending DIS-compliant

packets

• Implement Dead Reckoning Algorithms in Rust that function within the ECS

• Construct an ECS-based interface for DIS Interoperability that can exchange

EntityState packets

1



1.3 Background

The following sections are details regarding technologies and standards that went

into creating this research software prototype for an ECS-based DIS interface.

1.3.1 Rust

Part of the nuance of this research effort is achieved by using the Rust program-

ming language. Rust is originally a language created by Mozilla for use in their

browser Firefox, specifically to operate multi-threaded shared data applications. It

caught the attention of C++ developers due to its advantages regarding efficiency,

memory management, and safety restrictions built into the compiler.

With regards to C++, Rust is a significantly younger language, having only been

utilized in published code since 2010 compared to the published release of C++ in

1985. However, Rust is built to be more intuitive than C++, noted for features such

as preventing unwanted behavior and producing more specific error messages when

issues arise when building and executing code. Rust is also quickly becoming more

prominent in the private sector gaming world due to these qualities, so pursuing

progress in our own simulation domains using the language is an opportunity to

acquire cutting-edge technology.

The key to Rust’s memory management is that the language does not allow for

bad pointers (such as dangling pointers) or null pointers. This means that issues

such as memory leaks are inherently prevented when coding with Rust, both during

development and at run time. Rust is also strict regarding data ownership, requiring

that any given piece of data can only be “owned” by one part of the software at a

time, and and attempt to alter the data after transferring ownership will result in

an error. Rust is still capable of taking these “unsafe” actions, but only if written

using the “Unsafe” portion of Rust. The language is essentially divided into one part

2



that is “Safe” and the other part that is “Unsafe”, and both can be used in the same

program. However, as we have no need to write Unsafe code for this research (and

really should be trying to avoid it in general), all of the software development for this

effort is written with Safe Rust, eliminating the worry regarding data issues. It is

this safety combined with the DIS goal of real-time (or near real-time) applications

that makes Rust a uniquely appropriate language to research for application into the

simulation environment.

1.3.2 Serde

A requirement for networked applications is the ability to exchange data over a

network. However, generally entities or objects within any given application cannot

be sent in the same form that they are stored in. Instead, they must be serialized, a

process which converts data within a program into a more network-compliant form.

Then, the receiving application must deserialize the new form back into the original

pieces (which reverses the Serialization process). This process may be accomplished

in multiple ways, but for this research we are leveraging the processes provided by

the Serde Crate (or package).

Serde can serialize and deserialize a wide range of data types. A defined type

in Rust, for example, would be able to be serialized as long as the type is prede-

fined with serialization tags. The prototype software can construct the PDU locally,

serialize it using Serde, then send it over the network using its network interfacing

system. Upon receiving a packet, Serde can also perform the reverse, deserializing the

packet back into the original PDU that was sent from the source node. By providing

this functionality, the software is able to communicate in the same manner as DIS

applications, which is one of the intended goals of the research development.

3



1.3.3 Distributed Interactive Simulation (DIS)

DIS has two meanings. IEEE DIS refers to the standards that are found in the

IEEE documentation for DIS. The other type would refer to the basics regarding a

distributed simulation.

Any type of distributed simulation has to have certain basic functionalities. The

first is that the simulation is able to be properly executed in near real-time (as little

lag time as possible between communications) over multiple distributed locations,

likely spanning hundreds of miles in-between at a minimum. Coders who engineer the

simulation software build it with this fact in mind, as certain potential functionalities

will either degrade or completely break down if not done over a Local Area Network

(LAN).

DIS also has a specific method of operation in the network space because the

system is designed to function without a central server. Instead, all DIS simulations

are made up of nodes which exchange data between one another in order to run

the simulation. This method of operation is part of what allows all players in a DIS

environment to have roughly equal latency as there’s no one player closer to the server

than the others. However, this approach incurs a performance cost.

Commonly, DIS works over a UDP connection which is considered an unreliable

protocol since messages are not intrinsically acknowledged by the intended receiver.

As a result, there is a chance that a packet may be dropped by the network and the

receiving node will not be aware of the information in the packet, potentially causing a

simulation action to not be properly recorded. This method is used due to versatility,

as one can have a UDP system with X total users, and they can all still receive the

packet. Otherwise, each node would have to establish a TCP connection with each

other node (TCP is a connection between 2 systems which requires acknowledgement

packets) to ensure the data was properly received on each individual line. This slower

4



method would unfortunately be detrimental to a key function of DIS, which is to

support real-time interactive simulations.

Each DIS system has certain standards that it follows to ensure each node can

properly communicate with others on the same simulation network. For our applica-

tion, we follow the IEEE standard.

1.3.4 IEEE DIS Standard

As stated previously, a DIS simulation must be standardized for each node that

joins, ensuring that all connected players have a properly functioning simulation ex-

perience. The IEEE DIS Standard is the standard which most directly applies to our

intended application for this research: Air Force simulation environments. The main

function of this documentation is to standardize PDU formatting. It does not defines

each type of PDU utilized in any given DIS standard, but it lays out the usage and

data contents that should be found in each PDU type. By documenting and standard-

izing these intricacies, the IEEE DIS Standard ensures that all software developed

for use in a standardized simulation will be sending and receiving data in the proper

form. As a result, all software applications can be developed asynchronously from

one another and still interact properly over the distributed environment.

1.4 Document Overview

This thesis is a compendium of four papers written during the research. Chapter

II contains the first paper which is the initial work to assemble a DIS-compliant PDU

and send it over the network. Chapter III contains the second paper and provides the

development of the framework for the full interface. Chapter IV contains the third

paper which introduces the design to fully implement DIS functionality. Chapter

V contains the fourth paper which provides implementation details of the proof-of-

5



concept research interface. Finally, Chapter VI presents the research conclusions and

future recommendations.
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II. Paper I: Using Serde to Serialize and Deserialize PDUs

The following paper, “Using Serde to Serialize and Deserialize PDUs,” was pub-

lished in Fall 2020 and presented at CSCI 2020.
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Using Serde to Serialize and Deserialize DIS PDUs

Noah W. Scott, Douglas D. Hodson, Richard Dill, and Michael R. Grimaila
Air Force Institute of Technology, WPAFB, OH, USA

email: noah.scott.meta@gmail.com, doug@sidechannel.net, richard.dill@afit.edu, michael.grimaila@afit.edu

Abstract— Serialization is the process of translating a data
structure into a format that can be stored and/or transmitted,
and then subsequently reconstructed at a later time to
create an identical clone of the original. The use of data
serialization assures data objects can be transmitted, stored,
and reliably reconstructed across differing computer archi-
tectures, even with different data type sizes or endianness,
with no additional effort.

Serializing the data in an architecture-independent format
prevents the problems of byte ordering, memory layout,
or representing data structures in different programming
languages. This is especially important in the context of
live, virtual, and constructive (LVC) simulation environments
where multiple geographically separated computers, each
with many independent threads, are connected and must
communicate with as little latency as possible to remain near
“real-time” like in terms of responsiveness.

In this paper, we demonstrate the use of Serde, a Rust-
based systems programming language crate, to serialize and
deserialize IEEE standard Distribute Interactive Simulation
(DIS) Protocol Data Units (PDUs) to support DIS-based
network interoperability. The results show that Serde is an
efficient mechanism for serialization/deserialization when
using the inherently safe Rust programming language.

Keywords: Simulation Distributed DIS PDU Rust Serde bincode

1. Introduction
Data serialization is a fundamental capability that software

engineers must implement so that simulations of many
independent, and geographically distributed application can
share data objects over network interfaces. Applications use
data structures to define state and efficiently communicate
changes that need to be processed by other applications that
compose the distributed system.

In the domain of distributed interactive simulation, these
applications are often written in a systems-level program-
ming language, such as C or C++, which provide low-level,
high-control for how to organize and present data to support
network operations in addition to excellent execution perfor-
mance. These attributes are a result of the languages being
“closer” to the hardware level and require the programmer
to handle memory management, threads, garbage collection,
and other critical tasks that can place the safety and integrity
of the application at risk if not done properly. In contrast, the
Rust programming language provides a robust type system

and ownership model that guarantees memory-safety and
thread-safety, which alleviates that dynamic at compile-time.
Rust is fast, memory-efficient, and easily integrates with
other languages.

This research examines using the Rust system-level pro-
gramming language in the domain of distributed interactive
simulation. Since Rust compiles code that is guaranteed to be
“thread safe,” this supports our goal to eliminate data races
associated with shared data being updated and used between
multiple executing threads. This is especially important in
military-oriented flight simulators designed to operate in a
distributed networked environment that typically create and
execute multiple independent threads to service different
functional aspects of the application (e.g., model updates,
graphics, networking, data logging). A good introduction to
military-style distributed simulation can be found here [1].

One especially appealing aspect of the Rust programming
language is that it enables less experienced developers to
write complex multi-threaded code with some level of guar-
anteed correctness. Code written that might cause a data
race simply does not compile. This reason and motivation to
evaluate it is nearly identical to the reason Mozilla states as
a motivation for the creation of the language itself. In effect,
identifying thread-based errors at compile time improves
overall product quality.

2. Background
The next couple of sections provide an overview of the

technologies used to perform this work.

2.1 DIS & PDUs
Distributed Interactive Simulation (DIS) is an IEEE stan-

dard [2] for conducting real-time platform-level wargaming
across multiple host computers and is used worldwide, es-
pecially by military organizations but also by other agencies
such as those involved in space exploration and medicine [3].

To facilitate “interoperability” among individual network-
compatible applications (i.e., “simulations”), this standard
defines the data packets to be exchanged, so-called Protocol
Data Units (PDUs), and how to interpret them. This paper
does not delve into all of the details associated with the
standard, but focuses on one specific PDU, the Entity State
PDU. Entity State PDUs are nearly ubiquitous in the sense it
is understood by virtually all DIS-compliant simulations. For



a good introduction to DIS, see the Simulation Interoperabil-
ity Standards Organization [4] (SISO) published document
titled “DIS Plain and Simple. [5]”

2.2 Rust
The Rust [6] systems-level programming language is a

low-level, high-control language that, much like C and
C++, does not include a garbage collector. By leveraging
a rich type system in conjunction with a memory ownership
system, many classes of bugs can be caught and eliminated
at compile time. In other words, classes of problems that are
avoided by experienced C++ programmers through knowl-
edge and experience (and maybe documented in detailed
coding practices and standards), do not pass the compilation
stage of the Rust compiler.

The Rust compiler (by default) enforces code to be
compiled to obey rules associated with data mutation. When
programming in this way (i.e., “safe”), all data races that
might occur due to coding errors that would otherwise
plague a multi-threaded application are completely avoided,
as the code will be rejected by the compiler. The Rust
compiler cannot perform magic, it cannot detect logic errors
or deadlocks (threads waiting on each other), but it certainly
helps eliminate entire classes of problems.

Rust can be thought of as a combination of two pro-
gramming languages: “safe” Rust and “unsafe” Rust. Conve-
niently, these names mean exactly what they say: safe Rust
is safe. Unsafe Rust is, well, not. In fact, unsafe Rust lets
programmers do some really unsafe things. Safe Rust is the
true Rust programming language. If programmers code only
using safe Rust, you will never have to worry about type-
safety or memory-safety. You will never endure a dangling
pointer, a use-after-free, or any other kind of undefined
behavior [7]. For this effort, we only use “safe” Rust.

Since distributed interactive simulations inherently form a
set of real-time networked multi-threaded applications, the
Rust software engineering features are uniquely suited to this
domain. Although different than the initial motivations from
the author, Mozilla, parsing cascading style sheets, the use
case is essentially the same: the reliable creation of multi-
threaded applications that share data.

2.3 Serde
One functional aspect of creating these networked appli-

cations is the serialization and deserialization of DIS-based
PDUs to/from a network. “Serialization” is defined as the
process of turning some Rust-based structure into a data
format that can be restored later. “Deserialization” is defined
as the reverse of that process: taking data structured from
some format, and rebuilding it into a Rust-based structure.

A framework for how to translate data in one format to
another is exactly what the popular crate (Rust’s terminology

for a library or package), Serde, is designed to do. Specifi-
cally, Serde is a framework for serializing and deserializing
Rust data structures efficiently and generically [8].

The Serde ecosystem consists of data structures that know
how to serialize and deserialize themselves along with data
formats that know how to serialize and deserialize other
things. Serde provides the layer by which these two groups
interact with each other, allowing any supported data struc-
ture to be serialized and deserialized using any supported
data format.

2.4 bincode

bincode [9] complements the Serde framework by pro-
viding serialization to/from a binary data format - specif-
ically, it defines a compact encoder / decoder pair. For a
Rust structure that can be serialized or deserialized with
Serde, bincode encodes it to a vector of bytes (unsigned 8-
bit values) and decodes the vector of bytes back to the Rust
structure. It’s a perfect complement to Serde’s ecosystem
to support encoding Rust-based DIS PDU structures for
sending or receiving to a stream of bytes, that are then sent
or received from a network device.

2.5 KDIS

In order to test the Rust-based, Serde compliant serializer
and deserializer, we collected a network encoded PDU
using Wireshark [10] generated from a reliable source that
can produce well formed, DIS-compliant PDUs with the
definable fields that the IEEE DIS standard specifies. We
selected the popular open-source KDIS [11] package to
perform this function.

KDIS is a “a complete open source implementation of
DIS (Distributed Interactive Simulation) in C++. 1278.1 and
1278.1a are fully implemented including enumerations [11].”
The package also includes several example applications to
demonstrate its use.

3. Entity State PDU Header

DIS PDUs are assembled in two pieces, a header which
defines metadata-like information concerning the version of
the protocol, information associated with the “exercise” (i.e.,
the collection of simulations communicating), the type of
PDU being sent, among other things, followed by the PDU
itself. The main aspect of concern, the header, consists of 96
bits (12 bytes) of information. Figure 1 shows a Wireshark
captured PDU.



Fig. 1: Entity State PDU

As shown in Figure 2, the decoded header indicates this
PDU conforms to the IEEE 1278.1-1995 version of the
standard, and is for a Entity State PDU (PDU type 1). In later
versions, some of the 16 bits associated with the “padding”
field is used to define a “status” field. At this time, we are
only concerned about this version of the standard.

Fig. 2: Entity State PDU Header Details

For this research, we are also only concerned about
defining this header as a Rust data structure and writing
the code needed to serialize and deserialize it using Serde.
Defining every aspect of the entity state PDU can follow,
but, for this proof-of-concept, this is all that is needed.

4. Application Design
A Rust-based application was written that depends upon

the Serde and bincode crates. The proof-of-concept applica-
tion itself was about 50 lines long and defined the DIS PDU
header structure as shown in Figure 3.

Fig. 3: PDU Header Structure

The Rust attributes associated with the structure (identified
by “#” sign) indicate that Serde is to derive (i.e., generate)
implementations for the Serialize and Deserialize traits, Rust
is to derive an implementation to print the structure for
debugging, and lastly, Rust should represent (i.e., layout)
the data structure in memory as the “C” language would.

Because we are compiling and executing this application
on a little endian PC architecture, Rust’s built-in functions
to swap bytes were used for both the “time_stamp” and
“length” fields. All other bytes are single byte values and
do not need any adjustment.

5. Testing & Verification
A vector of bytes was defined to include what is shown

highlighted in Figure 2. This sequence of bytes is consid-
ered the encoded (or serialized) representation for the PDU
header structure.

let encoded: Vec<u8> = vec![0x05, 0x01, 0x01,
0x01, 0x83, 0x3b,
0x91, 0x8c, 0x00,
0x90, 0x00, 0x00];

bincode can serialize this sequence starting from a struct
instance, but for our purpose, we want the test to be more
direct (the sequence of bytes is the encoded data). bincode
is then used to deserialize this sequence to a PDU header
struct.

let mut decoded: PDUHeader
= bincode::deserialize(&encoded).unwrap();

Each field of the structure was then printed to the console
which revealed an identical match with what Wireshark
shows in the top window of Figure 2.

Opening a UDP socket and sending the data is trivial,
given that Rust’s standard library provides platform indepen-
dent support to do that. Chanda’s book [12] titled “Network
Programming with Rust” provides numerous examples of
how to do this.



6. Final Thoughts
Using Serde in conjunction with bincode’s binary imple-

mentations for the serialize and deserialize methods provides
a powerful, efficient means to stream DIS-based simulation
state to/from a network device. Although not discussed,
Rust’s built-in networking features also makes it easy to open
network sockets for sending or receiving data of interest.

Using Serde opens up other opportunities as well, such
as the easy serialization of the DIS PDU’s to/from JSON,
YAML, MessagePack, TOML, BSON, and many more.

7. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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Abstract— The Entity-Component-System (ECS) is an ar-
chitectural design pattern that separates data from computer
logic (i.e., behavior) - components define data, systems
define behavior. It is based the data oriented programming
paradigm and is increasingly being used by game engines
to improve execution efficiency. The Distributed Interactive
Simulation (DIS) protocol is an IEEE military-oriented stan-
dard for exchanging simulation data within a distributed
system to achieve real time execution performance to support
human and/or hardware interaction. This effort explores im-
plementing a interoperability interface using a Rust-based,
ECS-architected simulation to send DIS packets.

Keywords: ECS, DIS, Interoperability

1. Introduction
Training and readiness are essential in many fields, and

simulations are a cost-effective medium in which to improve
both of those aspects. For the military, the Distributed
Interactive Simulation (DIS) protocol is the standard by
which simulations can operate and function in real-time. This
allows for the operators and simulation engineers to subject
the trainees to a realistic training environment, which in turn
improve the training experience. This effort evaluates the
development of a simulation interoperability interface using
a Entity-Component-System (ECS) architecture pattern in
contrast to the more commonly used Object-Oriented-based
approaches.

1.1 DIS
Distributed Interactive Simulation (DIS) is an IEEE stan-

dard [1] for conducting real-time platform-level wargaming
across multiple host computers and is used worldwide, es-
pecially by military organizations but also by other agencies
such as those involved in space exploration and medicine [2].

To facilitate interoperability among individual network-
compatible applications (i.e., individual simulations), this
standard defines the data packets (Protocol Data Units
(PDUs)), and how to interpret them. This paper does not
delve into all of the details associated with the standard,
but focuses on one specific PDU, the Entity State PDU.
Entity State PDUs are nearly ubiquitous in the sense it is
understood by virtually all DIS-compliant simulations. For a
good introduction to DIS, see the Simulation Interoperability

Fig. 1: Basic structure of an ECS System

Standards Organization [3] (SISO) published document titled
“DIS Plain and Simple” [4].

1.2 ECS
ECS is an architectural pattern that organizes data and

logic very differently than the more traditional Object-
Oriented Programming (OOP) paradigm. Instead of defining
classes and creating objects which have public methods in
which to interact, we instead have entities which utilize
specific components to operate either by themselves or in
tandem with other entities within the system [5]. These
components are the data pieces in the code, and they operate
the functionality by “listening” to events when they happen.
For example, if a change needs to be applied to all entities
that can Walk, there is a list of each entity in the system
which has the Walk component that can be utilized. This is
how the system can communicate actions without having to
be tied down with the inner workings of individual objects.
ECS-based programming is thus designed to be more loosely
created, allowing for more components to be built up without
all of the hard-coded threads connecting objects together.



If another system is needed, that system can be added in
by telling program which components to look for in an
entity, then apply an action to each entity which has that
component. An example of a single system ECS layout can
be seen in Figure 1. Each time the game loop (the main
loop in the program which acts as our “steps”) iterates, it
will run through the systems in the program that should be
activated each loop. These systems are each built to perform
a specific recurring action on the world, and in this case our
single system is “Motion.” The Motion system will check
ONLY the entities in our system that have both a Position
and Velocity component. This prevents each system from
iterating their actions through every Entity by filtering them
out based on their Component criteria. After these Entities
are queried, the Motion system checks each Entity to see
if they have a non-zero Velocity component. If they do, the
Motion system will update the position of the Entity based
on their Velocity, simulating the aspect of motion within
our game. We can use this same strategy to add additional
systems to our game, such as a Wind system which blows
all move-able Entities in a random direction each round, or a
Collide system which would check for two entities entering
the same space on a loop, then apply an action based on
what those colliding entities are. This allows the system to
be flexible, adaptable, and easily expanded to fit the needs
of the user.

1.3 HECS
HECS, more specifically, is a Rust-based Handy ECS

crate (i.e., library) is designed to be a “high-performance,
minimalist entity-component-system (ECS) world” [6]. The
HECS crate revolves around the use of the World structure.
We can place and interact with the Entities in the World
in order to operate our simulation environment using the
ECS architecture. Each step, the program can operate our
given systems by passing the World object for our simulation
to each of the systems. This allows the system to query
the world for the entities it needs to interact with each
step. The key basic operations built into the World object
are ’spawn’ and ’despawn’ in addition to several methods
of querying and retrieving Entity objects from the World.
Each time an entity is spawned into our simulation world,
we spawn it with its set of components. These are the
permanent components of the entity for its entire life until
it despawns, whether that be at the end of the program or
the end of its life in the simulation. The query functions
found within the World object such as ’query’ and ’contains’
can be used by our systems to perform their actions on the
Entities they are set up to interact with. The basis for all
systems added into the HECS environment would be that
the system takes in a World by reference in addition to
any other needed external variables, such as a socket for a
network-based system designed to send packets. The systems
within our program that send packets must all be passed a

Fig. 2: A single system operation within HECS

socket, as we do not wish to open up a new network port
every time we wish to send a packet across the network.
Figure 2 shows our previous ECS design adapted into a
HECS environment. Instead of having the game program
store Entities in a list, we instead use the World within HECS
to store everything we need to operate the game world. Each
step in the Game Loop, our systems (in this example, the
Motion System) query the World for the Components that
they are looking for. Our Motion System queries for two
components: Position, which indicates that an Entity exists at
a specific physical location in the World, and Velocity, which
indicates that an Entity can move around within the World.
The World will then return all of the component pairs that
the system was asking for to the Motion System.The Motion
System will then read the Velocity value of each pair and
apply that Velocity to the Position, adding or subtracting
from each Position xyz value based on the Velocity xyz
values. HECS is a robust Rust-based asset for designing our
ECS system for DIS simulations, as detailed in the next
section.

1.4 Software Development
Using the HECS functionality, we have created a program

to show how we can bring the dynamic functionality of the
ECS-based system to the DIS operational world. We have
a functioning ECS system within Rust that is able to send
update packets out in a similar manner to the standard DIS
step functionality. Each type of PDU (such as Entity State)
has a system designed to create those packets from the Entity
information within the ECS. Figure ?? shows the structure of
our Entity State System. This system first queries the World
for the “Velocity” and “Position” components, resulting in
the World returning arrays for the components which contain
all of the component pairs that fit our query criteria. The
Entity State System iterates through the array, reading the
Velocity and Position values for each pair then creating



Fig. 3: Operation diagram of the Entity State System

an Entity State PDU with these values plus the necessary
identifiers for the "Entity". The result is a system which
creates and sends a specific type of packet to the network.
This individualizes the work units for each necessary packet
type, and can be adjusted based on the mission being
run. Our packets are recognizable through network analysis
software such as Wireshark, as seen in Figure 4 [7]. The
packet that we pick up here are recognizable due to their
packet header, which is assembled by our program according
to the IEEE standard [1]. Each part of the packet is a piece of
data that is all assembled by our Entity State Packet Sending
system. This system’s job is to track all of the Allied and
Enemy players in our World each step, then send an update
packet for each of them over the network by serializing the
data using Serde protocols [8]. The result is that we have a
single system which we can enable and disable to send all
the PDUs we need to keep track of moving entities within
a simulation. The example shows one of the Allied units,
identified due to the country affiliation of USA (225) [9].
Since this Entity has a magnitude to its Velocity component,
each step the simulation will use the Motion system to
move the Entity, then the Entity State Packet Send system to
broadcast a network packet with the updated Entity position.
A packet sent from this program can be read from any other
simulation program as a valid DIS packet, as it utilizes a
standard bincode procedure that can be deserialized on the
receiving system [10]. It is designed to be within the proper
specifications, so the data can be unmarshalled by a standard
C++ system in order to read it properly into that simulation
environment.

2. Conclusions
The work that are doing with this project is designed to

evaluate designing an ECS-based interoperability interface
to support distributed simulation communication. Using the

Fig. 4: Output packet sent from the program, recognized as
a proper EntityState PDU

HECS crate, we expect that more entities can be handled and
the design of interoperability interfaces might be simplified
over OOP approaches. This research will benefit the real-
time distributed simulation community by understanding the
pros and cons to leveraging ECS architecture over OOP-
based designs. Our current software development serves as
a proof-of-concept for our research with regards to this topic,
and is a starting point for further development. HECS is a
straightforward crate that provides all the essential function-
ality required to implement an ECS-based application.

3. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.

References
[1] “IEEE Standard for Distributed Interactive Simulation – Application

Protocols,” IEEE Std 1278.1-2012 (Revision of IEEE Std 1278.1-
1995), pp. 1–747, 2012.

[2] “Distributed Interactive Simulation,” 2020,
accessed 15-Oct-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation

[3] “Simulation Interoperability Standards Organization,” 2020, accessed
15-Oct-2020. [Online]. Available: https://www.sisostds.org/

[4] “Reference for guide: DIS plain and simple,” SISO-REF-020-DRAFT,
2007.

[5] “Entity-Component-System (ECS),” 2020, ac-
cessed 02-Nov-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Entity_component_system

[6] “Handy ECS (HECS) website,” 2021, accessed 17-June-2021.
[Online]. Available: https://docs.rs/hecs/0.5.2/hecs/

[7] “Wireshark website,” 2020, accessed 15-Oct-2020. [Online].
Available: https://www.wireshark.org

[8] “Serde,” 2020, accessed 15-Oct-2020. [Online]. Available:
https://docs.serde.rs/serde



[9] “DIS data dictionary - PDU data,” 2021, accessed 17-June-2021. [On-
line]. Available: http://faculty.nps.edu/brutzman/vrtp/mil/navy/nps/
disEnumerations/JdbeHtmlFiles/pdu/d.htm

[10] “Bincode,” 2020, accessed 15-Oct-2020. [Online]. Available:
https://github.com/servo/bincode

Author Biographies
NOAH W. SCOTT is a 1st Lieutenant currently stationed
at Wright Patterson Air Force base. He is master’s student
at the Air Force Institute of Technology studying software
engineering concepts, primarily with regards to Simulations
and Game networking. His previous work was programming
within AFRL.
DOUGLAS D. HODSON is an Associate Professor of
Computer Engineering at the Air Force Institute of Technol-
ogy (AFIT), Wright-Patterson AFB, Ohio USA. He received
a B.S. in Physics from Wright State University in 1985, and
both an M.S. in Electro-Optics in 1987 and an M.B.A. in
1999 from the University of Dayton. He completed his Ph.D.
at the AFIT in 2009. His research interests include computer

engineering, software engineering, real-time distributed sim-
ulation, and quantum communications. He is also a DAGSI
scholar and a member of Tau Beta Pi.
MAJOR RICHARD DILL is an Assistant Professor of
Computer Science at the Air Force Institute of Technology
(AFIT), Wright-Patterson AFB, Ohio USA. He received a
B.S. in Computer Science from the University of Maryland
at College Park in 2004, and both an M.S. in Computer
Science in 2008 and a Ph.D. in 2018 from AFIT. Major Dill’s
research interests include computer security, algorithms, and
artificial intelligence.
MICHAEL R. GRIMAILA (BSEE 1993; MSEE 1995;
Ph.D. 1999, Texas AM University) is a professor and head
of the Department of Systems Engineering and Management
at the Air Force Institute of Technology, Wright-Patterson
Air Force Base in Ohio, USA. He is a member of Tau
Beta Pi, Eta Kappa Nu, and the Association for Computing
Machinery, as well as a Senior Member of the IEEE, and a
Fellow of the Information System Security Association. He
can be contacted via email at michael.grimaila@afit.edu.



IV. Paper III: Prediction and Convergence Calculations
using Rust-based NAlgebra-GLM

The following paper, “Prediction and Convergence Calculations using Rust-based

NAlgebra-GLM,” was submitted and accepted by the IEEE CPS; it was published in

December of 2021 and presented at CSCI 2021.

17



Prediction and Convergence Calculations using Rust-based
NAlgebra GLM

Noah W. Scott, Douglas D. Hodson, Richard Dill, and Michael R. Grimaila
Air Force Institute of Technology, WPAFB, OH, USA

emails: metaruler@gmail.com, doug@sidechannel.net, richard.dill@afit.edu,
michael.grimaila@afit.edu

Abstract— Prediction and convergence are techniques used
to reduce the network traffic between multiple distributed
simulation applications that individually maintain a repre-
sentation of a “world” that include moving entities. Predic-
tion (often using dead reckoning algorithms) is an approach
to estimate the position and orientation of “remote” entities
hosted and/or managed by other simulation applications exe-
cuting within the distributed system. Estimates are made (i.e.,
calculated) using previously received data, such as velocity
and acceleration. As new data is received, a convergence
algorithm is often used to update the “remote” entity’s
position and orientation within the represented world. The
term “convergence” is often times referred to as “blending”
or “smoothing” as its goal is to avoid visually obvious
disjointed “jumps” in movement as updates are received.

This work implements the dead reckoning estimation
algorithms defined in the IEEE standard for Distributed
Interactive Simulation (DIS) in software using the Rust
programming language and the NAlgebra GLM package
(i.e., crate/library). It also implements a simple convergence
algorithm to move entities to their correct locations and
orientations. This work is part of a larger design effort to
prototype a DIS-compatible interoperability network inter-
face, organized using an Entity-Component-System (ECS).

Keywords: Dead Reckoning DIS GLM Rust

1. Introduction
Simulations play a role in military training; distributed

simulations allow us to connect people from different ge-
ographic locations so that the training of forces for a
wide range of situations can take place without exposure
to the risks involved with certain scenarios. The IEEE
Distributed Interactive Simulation (DIS) standard [1] defines
a protocol for how distributed simulations should interpret
and exchange data to create a common understanding of
a “virtual world” in which entities managed (i.e., hosted
and updated) by individual simulation applications (i.e., the
nodes within the distributed system) can interact. It is noted
that the “virtual world” often consists of a static terrain
(including water) with many static and dynamic moving
entities. It is further noted that the term “virtual world”

is synonymous with the terms “synthetic environment” and
“synthetic battlespace.”

The DIS standard defines several dead reckoning algo-
rithms which are used to estimate (i.e., predict) “remotely”
hosted entity positions and orientations so as to reduce
the amount of data communicated across a network. This
effort implements those algorithms in the Rust programming
language using the NAlgebra GLM crate (i.e., library) as
well as so-called “convergence” algorithms to smooth out,
blend, or avoid disjointed “jumps” in continuous movement.
This research fits within a larger effort to design a so-
called “interoperability” interface within an existing Entity-
Component-System (ECS) implementation.

1.1 DIS
The IEEE Distributed Interactive Simulation (DIS) stan-

dard [1] defines an approach to executing a distributed
simulation using a network to exchange Protocol Data Units
(PDUs). PDUs defines specific data (i.e., information) about
the entities and their interactions. As an example, the entity
state PDU contains information about an entity’s position
and orientation; it is sent to other simulation applications
within the distributed system to inform them about their
existence and current state.

The standard draws a clear distinction on the simulation
applications role in how “locally” and “remotely” managed
entities should be handled; “local” entities are the ones the
simulation itself is managing (hosting and updating). State
changes about “locally” managed entities are sent to the
other distributed simulations using a network. When PDUs
about “remote” entities are received, the standard defines the
responsibilities of the simulation in terms of how data should
be interpreted and processed.

Consider the the case of a missile being fired from an
aircraft towards a target: The simulation managing the entity
responsible for “firing” at the target entity will send a
fire PDU containing the information necessary for other
networked simulations to process. Processing usually means
creating a representation of what was “fired” and present-
ing its dynamics to the user. At some point the launched
(i.e., “fired”) missile will detonate; when this happens the
responsible simulation for determining when this happens
will send a detonate PDU, and the receiving simulations



will process that information. In this case, the simulation
that hosts the target will determine the outcome using the
estimated position of the missile in conjunction with the
“exact” or most up to date information about the target.

1.2 Prediction (Dead Reckoning)
Since the sending of entity movement by issuing entity

state PDUs could consume a lot of network bandwidth,
the use of prediction (i.e., dead reckoning) algorithms are
employed so that “remote” entity positions and orientations
can be estimated (ideally without introducing much error).
Dead reckoning is a technique to estimate position and
orientation; much research into how to define a better dead
reckoning algorithm exists - but that is not the topic of
this paper. Our interest is in the implementation of them
using the Rust programming language as a set of linear
algebra operations. As stated, using this technique does
introduce error, but for the domain of distributed training,
it is considered to be worth the price to support autonomous
simulation execution which improves the responsiveness of
this “real-time geographically distributed simulation.”

The IEEE DIS standard (in Annex E) defines several
algorithms or methods to estimate a position and orientation
as shown in Figure 1; they are selected and used are based
upon requirements. For example, Algorithm 3 is used to
estimate the position of an object with low acceleration while
also accounting for orientation; algorithm 5 estimates the
position of a high speed object, while not concerned with
orientation. As an example, algorithm 5 might be suitable to
represent a missiles position.

Dead reckoning estimates are made for all entities within a
simulation application. It is used to estimate the position and
orientation for all “remote” entities, as well as to maintain
estimates for “locally” managed ones. When a “locally”
managed entity position and/or orientation differs enough
from its dead reckoned position and/or orientation, a new
entity state PDU is sent. The standard defines a default value
for this difference (error); it is set based upon requirements;
this bounds the error associated with using this technique.

Additionally, so-called “heartbeat” PDUs are sent at pre-
determined time intervals (about 5 secs) so that late joining
simulations will eventually become aware of the entities that
exist.

1.3 Convergence (Smoothing/Blending)
When dead reckoning is used; how to update the position

and orientation of a “remote” entity becomes an issue.
Simply moving it to the newly received correct position
could result in jerky movements that would be undesirable.
This is the reason for so-called convergence algorithms -
they more gracefully smooth or blend a dead reckoned (DR)
entity’s position and orientation to the correct position and
orientation. This could be done in one step if the error
threshold (defined for the dead reckoning algorithm) is small,

Field Model Formula Examples

1 STATIC N/A Static entities

2 DRM (FPW)
Constant velocity (or 
low acceleration) 
linear motion

3 DRM (RPW)
1) 

2)

Similar to DRM 2 but 
where orientation is 
required (e.g., visual 
simulation)

4 DRM (RVW)
1) 

2)

Similar to DRM 5 but 
where orientation is 
required (e.g., visual 
simulation)

5 DRM (FVW) 1) 

High speed (e.g., 
missile) or 
maneuvering at any 
speed

6 DRM (FPB) 1) 

Similar to DRM 2 but 
when body-centered 
calculation is 
preferred

7 DRM (RPB)
1) 

2)

Similar to DRM 3 but 
when body-centered 
calculation is 
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8 DRM (RVB)
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calculation is 
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calculation is 
preferred
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Fig. 1: Dead Reckoning Prediction Formulas [1]

but more likely, the position and orientation is corrected over
a short time period. Even though convergence algorithms are
important; they are relatively easy to implement. In many
cases, they simply move an entity in steps by using inter-
polated points between the estimated position and correct
position. Because they tend to be simple to implement, no
further discussion is presented.

1.4 GLM
The OpenGL Mathematics (GLM) library facilitates

graphics-oriented calculations - it is specifically designed to
support the OpenGL graphics system. The GLM package
defines matrices and vectors and provides linear algebra
operations on them; it is implemented as a header only
C++ package. It provides enough features to implement the
DR algorithms presented. The Rust programming language
ecosystem provides several alternative packages that define
matrices and vectors and linear algebra on them.

1.5 NAlgebra
The estimation algorithms defined by the DIS standard can

be implemented in software as linear algebra calculations.
One such package to support this activity is NAlgebra; this
package defines vector and matrix types with associated
operations on them [2]. It expands on these types by adding
decompositions and transformation properties such as rota-
tion matrices and projections; many operations are available.

1.6 NAlgebra-GLM
NAlgebra is a comprehensive package, in fact it provides

more functionality than we or other graphics-oriented cal-



culations require. Because of that, a subset of it has been
extracted as NAlgebra-GLM.

Since computer graphic oriented calculations are a subset
of all possible linear algebra operations, this subset is
focused on typical “GLM” type of operations to support
that domain. In other words, the NAlgebra-GLM package
implements the features and capabilities that GLM provides
(for C++), but for the Rust programming ecosystem. As the
NAlgebra-GLM documentation states, this package exists
as a “straight-to-the-point, graphics programming-oriented
API” [3].

This package is particularly useful to support this research,
as we are only concerned about a few dimensions, such as
3x1 vectors and 3x3 matrices. We have implemented all the
dead reckoning algorithms using it. A code example for DR
algorithm 4 is shown below:

//--------------------------------------
//DR Alg. 4 - Returns the new position &
// orientation of the DR
// entity using Acceleration,
// Velocity, and Position
//--------------------------------------
fn dr_4(pos: Vec3, v: Vec3, a: Vec3,

dt: f32, o: Mat3, drm: Mat3)
-> (Vec3, Mat3)

{
let new_pos = pos + v*dt + 0.5

* a * dt * dt;

let new_o = drm * o;

return (new_pos, new_o);
}

1.7 Software Development
To test our implementation of DIS dead reckoning (predic-

tion) and and smoothing (convergence) algorithms, we cre-
ated a ECS-based system using the Helpful ECS (HECS) [4]
package. The flight dynamics model (FDM) used is a Rust
implementation of the model presented here [5] - which we
call the “Palmer” FDM. Using a HECS-based system from a
previous implementation, we are able to store the properties
the define the flight dynamics for a particular aircraft and
its current state (position, velocity, etc) as two components
of an entity (within an ECS). A previous implementation
of the DIS interoperability interface was able to create
and send DIS compliant DIS entity state PDUs without
meaningful data - now it it includes dead reckoned positions
and orientations.

To distinguish between “local” and “remote” entities, we
created a single component that only contains a Boolean
value to serve as an identifier; this is used to filter (i.e.,
query) for the entities of interest contained by the ECS.

Additional information is stored as a component that
indicates other aspects of interest, such as which dead
reckoning algorithm is used. Sending this information along
with the PDU ensure all simulations are in sync in terms of
how prediction estimates are to be calculated.

Our dead reckoning system is presented as follows:

fn system_dead_reckon_entities(world:
&mut World, dt: f32)
{
// Perform component checks for each
// DR entity in the system
for (_id, (_prop, mut state, d)) in
&mut world.query::<(&Properties,

&mut State,
&DeadReckonData
)>()

{
let mut vec_pos =

nalgebra_glm::vec3
(
state.q[1], state.q[3],
state.q[5]
);

let vec_v =
nalgebra_glm::vec3
(
state.q[0], state.q[2],
state.q[4]
);

let vec_a =
nalgebra_glm::vec3
(
state.fx, state.fy,
state.fz
);

let phi = state.q[0]
.atan2(state.q[2]);

// Angle conversions for
// orientation
let sin_psi =

state.bank.sin();
let cos_psi =

state.bank.cos();
let sin_theta =

state.alpha.sin();
let cos_theta =

state.alpha.cos();
let sin_phi =

phi.sin();
let cos_phi =



phi.cos();

let a11 = cos_theta * cos_phi;
let a12 = cos_theta * sin_phi;
let a13 = sin_theta * -1.0;
let a21 = (sin_psi * sin_theta

* cos_phi) -
(cos_psi * sin_phi);

let a22 = (sin_psi * sin_theta

* sin_phi) +
(cos_psi * cos_phi);

let a23 = sin_psi * cos_theta;
let a31 = (cos_psi * sin_theta

* cos_phi) +
(sin_psi * sin_phi);

let a32 = (cos_psi * sin_theta

* sin_phi) -
(sin_psi * cos_phi);

let a33 = cos_psi * cos_theta;

// Angular Velocities for
// orientation
let mut mat_o =

nalgebra_glm::mat3(a11, a12,
a13, a21, a22, a23, a31,
a32, a33);

let mut result =
(vec_pos, mat_o);

match d.algorithm
{
// Match based on required
// algorithm
...

4 => result = dead_reckon_4(
vec_pos, vec_v, vec_a,
dt, mat_o, drm),

...
_ => println!("No DR"),

}

vec_pos = result.0;
mat_o = result.1;

state.q[1] = vec_pos[0];
state.q[3] = vec_pos[1];
state.q[5] = vec_pos[2];

}
}

We used Wireshark [6] to capture and analyze the PDUs
sent; initial results show PDU generation with correct DR
information as expected. When the dynamics of our entity

using the “Palmer” FDM, we selected algorithm 4 to repre-
sent its position and orientation, as it seems to be the most
appropriate.

2. Conclusions
This effort’s purpose was to continue the development of

our Rust-based, ECS-based, DIS interoperability interface.
This step addresses the implementation and application of
both prediction through dead reckoning and convergence
through a simple interpolated stepping from estimate to true
value.

The algorithms were implemented using a linear algebra
approach using the Rust-based NAlgebra-GLM package.
Testing to ensure it works as intended was accomplished
using Wireshark to dissect DIS PDUs. The next step in
this research direction (a software engineering design effort
to implement a ECS-based, DIS-focused interoperability
interface) is to add systems to create “remote” entity rep-
resentations when received.

3. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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Abstract— An Entity-Component System (ECS) is a soft-
ware architecture where the components (i.e., data) define
the entities are stored as organized lists which are operated
upon by systems (i.e., behavior). The IEEE Distributed
Interactive Simulation is a standard that defines a set of
protocol data units (PDUs) that are exchanged networked
simulations within a distributed system. The standard also
defines the semantics for how each simulation is suppose
to send, receive and process the PDUs. The standard is
often used by military simulations to interconnect differently
developed software applications to each other, either at the
same or significantly different geographic locations.

When leveraging a network to exchange PDUs, each
simulation can represent a common understanding of the
world at the desired level of detail and allow hosted entity
interactions. Often, DIS compliant simulations are written in
an Object-Oriented Programming paradigm, where data is
encapsulated into objects and state is changed via exchanged
messages (i.e., method calls) through a publicly defined
interface. This research investigates an ECS-compliant IEEE
DIS interoperability interface by developing a prototype
application that can send, receive, and process Entity State
PDUs as defined by the standard.

The prototype is written in Rust programming language.
It depends upon the nalgebra-glm library (i.e., crate) to
provide general-purpose linear algebra features to perform
the mathematical operations associated with prediction (i.e.,
dead reckoning) and convergence. It also depends upon
Serde to perform the required serialization and deserializtion
of PDUs and finally, it depends upon the Handy ECS
(hecs) library to provide a minimalist entity-component-
system (ECS) capability. Our prototype implements a simple
cyclic scheduler to execute the ECS systems (i.e., behavior)
that update the components.

Keywords: ECS IEEE DIS Rust Distributed Simulation

1. Introduction
Simulation technology is prominent in many different

sectors of the world, but we are specifically focusing on
simulations with application to training pilots. Using simu-
lations, one can provide a wide range of possible situations
from the most simple of tasks to a full-scale flight training
scenario. A significant advantage to this approach is the cost
savings versus the possibilities that the simulations can bring

about for any given group in need of a specific proficiency. In
addition, when it comes to military environments a simulated
training world can alleviate the possible risks involved in a
live-fire exercise while still maintaining the possible threat
of a “real” battle.

This research concerns the creation of a prototype DIS
interoperability interface that can send, receive and pro-
cess Entity-State PDUs as defined by the IEEE standard.
The interface is organized as an Entity-Component System
(ECS). The software concerns the creation of entities that
are locally managed in addition to the creation and handling
of remote entities that are managed by other devices within
a distributed simulation. Previous publications pertaining to
this topic include the creation of IEEE DIS Entity State
Protocol Data Units (Entity State PDUs), i.e. binary packets
to send data structures [1], a Rust-based ECS designed
to send the packets [2], and finally the algorithms needed
to perform both prediction and convergence during the
simulation [3].

2. Background
2.1 Distributed Interactive Simulation

A simulation can be built in two distinct ways from a
hardware perspective. The first way would be a simulation
which uses a single system to handle all operations and
interactions. Each player would connect their controls to the
system and operate from that single location. This would
be similar to a stand-alone aircraft crew operating a single
plane which did not encounter any external interactions. The
other (and more common) way of building simulations is by
connecting multiple systems together through either Local
Area Connection or a Networked Connection, i.e. a peer-
to-peer design approach. This effort focuses on Networked
(Distributed) Interactive Simulations that exchange data with
other peers. The simulations themselves are often executed
at different geographic locations and exchange the defined
PDUs using a network in order to maintain a mostly con-
sistent view of the world in which hosted entities interact.

Figure 1 shows the three views (or perspectives) of the
Distributed Interactive Simulation system. Within the top
level (Operational), the aircraft entities move within the
virtual world, and will take certain actions that affect either
a piece of the world environment or another entity. At the
System level, the player is able to see their own aircraft’s
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Fig. 1: Three Views of a Distributed Interactive Simulation

status such as altitude and bank angle, and can take actions
or reactions to the information they receive through the
network. This network data is translated into a more intuitive
form for the player (such as a lock-on signal or a missile
launch), but beneath the System level is where the software-
level data is handled. The data consistency view shows
that each system contains one of the two aircraft in the
simulation, labelled as a local entity. However, each system
must be aware of the other entities, so they store all non-
local entity data as remote entities. The individual connected
systems also handle inputs and outputs for only the local
entities in the Distributed Interactive Simulation environment
through the user controls (inputs), received simulation pack-
ets (inputs), and sending network packets (outputs). All of
the remote entities in a given system are instead extrapolated
using an equation of motion to predict the movement of
each entity. This method allows for the simulation to appear

smooth while also reducing total network usage, as less
update packets will be needed for each entity.

To explain DIS operation further, we can walk through an
example interaction between two different hosted entities.
Consider an aircraft launching a missile at a ground target
such as a bunker. Since this is a distributed system, each
simulation will control specific entities. Simulation A locally
manages the aircraft and the missile loaded onto the aircraft
as local entities, and Simulation B locally manages the
ground bunker as its local entity. As the aircraft flies in
range of the bunker, it fires the missile towards it, causing
Simulation A to send a packet to the network. This packet
tells all other simulations on the network that aircraft A has
launched missile A, and this triggers the creation of remote
missile entities within other simulations in which they will
update position as needed. While the missile is in flight,
simulation B detects that the missile has overlapped the



While the aircraft remains constant, no
update is needed for Dead Reckoning

However, Dead Reckoning
will continue to calculate even
if the real aircraft moves, thus
requiring an update to be sent

Fig. 2: An example of when update packets are needed

location of the bunker that it locally manages, which will
now trigger another packet to be sent. This packet contains
the location and results of the missile impact. Simulation
B uses this result to apply the damage to the bunker that
it locally manages, then sends an update packet containing
the updated information for the now-damaged bunker. The
packet allows all other simulations on the network to update
their remote versions of the building to reflect this missile
strike, keeping the distributed system mostly consistent.
Figure 3 is a graphical summary of this interaction.

Computer A controls Local data
for the aircraft and missile

Computer B controls Local data
for the ground structure

- Fire Packet sent from A when missile is fired
- B detects missile impact and evaluates damage
- Detonation packet with evaluation is sent
- The damage is then displayed on Computer A

Fig. 3: Example two simulation entity interaction within a
DIS-based system

2.2 Prediction And Convergence
If all updates within a given simulation required a packet

to be sent, the network on which the simulation ran would

Requirements for a DIS IEEE system

No central server/computer; each node has their own projection of
the world
Each node must control at least 1 simulation entity
Nodes must be able to communicate "truth data" for their local
entities over the network using PDUs
Changes to an entity are communicated from the node that controls
it locally
Event and remote entity perception is determined by the node
receiving the data
Dead Reckoning calculations are utilized to reduce network traffic
by predicting remote movement

Table 1: DIS IEEE Requirements

require an exponentially large bandwidth to accommodate
real-time requirements. In order to prevent such a situation,
Distributed Interactive Simulations rely on a process known
as Dead Reckoning to perform routine motion calculations
locally.

Dead Reckoning is performed on each remote entity until
a packet corresponding to that entity is received over the
network. At this point, the remote entities are likely “out
of sync” with the new “current” data received from the
machine holding the local data (an example is shown in
Figure 2). As a result, the new packet becomes the base
for Dead Reckoning, but a straight jump between the two
locations will likely result in non-realistic movement and
jumps within the simulation. To remedy this problem, we
have also implemented a Convergence technique. Each time
a remote entity must be updated, the program checks the
distance between the current Dead Reckoned position of the
entity and the “Real” position received over the network.
If the distance exceeds a realistic threshold of movement
between two simulation steps, the Convergence technique
will instead move the entity a maximum distance based on
the factors determined by the Dead Reckoning algorithm
(velocity, acceleration, and/or orientation) each step until that
data has converged to the proper location, from which it will
continue to extrapolate its position using its assigned Dead
Reckoning algorithm. By doing this, overall movements
within the simulation are smoothed out without needing
to shrink the synchronization threshold for sending update
packets.

2.3 DIS IEEE Standard
Standards are written in order to enforce a specific

network-based simulation design operation. We utilize the
Distributed Interactive Simulation standard (DIS), which
is intended to conduct real-time interactions over multiple
machines [4]. The standard has been used in an ever-
expanding collection of simulations from military exercises
to medical practice, and is the most applicable baseline for
our line of effort. This standard is used primarily within Air
Force based distributed simulation applications, which is a



major motivation behind building this software around flight
applications.

Field Model Formula Examples
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simulation)
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simulation)
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High speed (e.g., 
missile) or 
maneuvering at any 
speed

6 DRM (FPB) 1) 

Similar to DRM 2 but 
when body-centered 
calculation is 
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Fig. 4: IEEE Dead Reckoning Prediction Algorithms [4]

A major component of the IEEE Standard is sending
and receiving standard-compliant packets known as Protocol
Data Units (PDUs). These packets define network data for
simulation interaction, such as the data for a missile launch
or necessary information to simulate an aircraft at a given
time. For this software, we focused on the Entity State
PDU type. Entity State packets contain critical information
about any given object (or entity) within the simulation.
These PDUs are processed by the machines connected to the
simulation in order to determine not only the location of each
object in the simulation, but it also carries information re-
garding physical attributes such as velocity and acceleration
of that object. With this information, the simulation program
is able to communicate to the connected machines to update
remote data so that each player on these machines can see
simulated effects in real time, allowing the standard to fulfil
the goals of a Distributed Interactive Simulation listed in
Table 1.

Regarding Prediction techniques, Annex E of the IEEE
DIS Standard contains a table of 9 specific Algorithms
to be used when performing Dead Reckoning calculations
(as seen in Figure 4). Each Algorithm is used by certain
types of Entities to fulfil prediction requirements. If the
entity is a high-speed object, for example, it is likely that
Algorithm 5 will be associated with it, as it deals with those
types of entities where orientation is not as important as
tracking motion. This algorithm would not be as suitable
for an aircraft, however, as the orientation can be critical
in determining simulation factors and effects, as well as

Requirements for an EntityState system

Translate stored local World entity data into PDU format for sending
Translate received EntityState PDUs into local World entity data
Monitor whether received PDUs are updates to a previously received
entity OR a new one to be added
Apply movement calculations and user-controlled inputs to all locally
held entities

Table 2: EntityState System Requirements

displaying the graphic properly within the simulation view.
As such, Algorithm 3 would be a more likely candidate for
this type of Dead Reckoning. A more in-depth analysis and
implementation of these Algorithms can be found in our
previous work [3].

2.4 Serialization/Deserialization
To fulfil the standard of sending and receiving PDUs

within a DIS simulation, the software needs a method of
“Serializing” local data into properly formatted packets to
send over the network. For this effort, we’ve chosen to use
the Serde “Crate” (Rust’s version of an import package in
C++). Serde is “a framework for serializing and deserializing
Rust data structures efficiently and generically” [5]. The
process of “Serialization” is to take a collection of data
(in this case our assembled PDU packet) from Rust and
transform it into a network-ready form that can be sent over a
standard port. Once the recipient (or recipients) receive this
data, they can then use “Deserialization” to transform the
network data back into the data components from which it
was assembled, completing the proper transfer of simulation
data in accordance with the DIS standard.

The Serde Crate is capable of not only serializing and
deserializing itself, but is also able to operate upon a
wide range of other data types (including the ones used
specifically in this effort). Since Serde’s systems are already
built to handle all of our needed use-cases, it’s been included
as the software’s method of network packet interaction.

2.5 ECS
ECS is “an architectural pattern that organizes data and

logic differently than the more traditional Object-Oriented
Programming (OOP) paradigm” [2]. This style of coding
defines the “objects” of the program as entities of data
which are operated on using built systems for each desired
functionality [6]. Entities within this system are essentially
multiple specific data types linked together to represent a
single unit within the World. For example, if one wanted to
store a simple Car within a given space, they could store an
Entity which contains Speed, Direction, and FuelRemaining
components. The program could then use those components
to identify that this Entity should be operated upon by a
UseFuel system each step that the Car is running. The reason
such a system would know to operate on the Car is because



the Car Entity has a Gas Remaining component which the
system would check for. To expand upon this example,
let’s assume that the user then adds a Truck and Airplane
vehicle to the space. Both of these Entities would also have a
FuelRemaining component, as they run on fuel. As a result,
the UseFuel system could also be applied to these new
Entities, as it is only dependent on any given Entity having a
FuelRemaining component to be operated upon. Each piece
of data is treated as a different “storage type”, which is
what allows for a query to check for the presence of these
types. Unlike objects, this data is decoupled from the other
pieces of data it’s associated with, allowing for the systems
to operate upon each storage type as needed without having
to pull the entire entity. This example shows one advantage
of the ECS system, as two different Entities within a game
space can utilize the same coded system during a simulation
to reduce the need for specific iterations of functions.

If one wanted to increase the complexity and variability of
the simulation, they could also add a FuelConsumption com-
ponent to each of the Entities, which identifies how much
fuel each Entity uses on each step. Then, the UseFuel system
could check for both components and use the FuelConsump-
tion component to decrement the FuelRemaining each time,
which means the three entities with those components could
have 3 different outcomes based on their own individual
data while still using a single system for operation. A new
system can be added for any operation required within the
program, such as a Steering system which checks for Entities
with Direction and SteeringWheelPosition components and
affects the Direction the vehicle is facing each step based
on the current Direction adjusted based on the Steering-
WheelPosition. The ECS system is a modular design which
can be adapted to any level of complexity required by the
programmer and user.

In order to illustrate these techniques, let’s use an example.
Let’s assume that, in a given simulation, there is an aircraft
travelling at a constant speed in a northward direction. This
aircraft also maintains constant altitude. As long as this
aircraft remains at this constant cruising speed and altitude,
the only update PDUs that will be sent are Heartbeat PDUs
at predetermined times, indicating that no significant changes
have occurred to warrant a Dead Reckoning image update.
Now, assume this plane begins to bank to the right at a given
time. Once the plane begins to bank, its flight direction will
obviously change. However, all of the systems calculating
this entity remotely will still be operating under the assump-
tion that the plane is flying straight north. Therefore, once
this plane breaches the threshold for divergence, it will send
an update packet to the network. This packet will indicate
that the plane is banking to the right at a given rotational
rate and is beginning to shift direction as a result. At this
point, all of the remote simulation machines will update
their images of this given aircraft to match this new data,
which will assume that the plane is now rotating to the right

At this point, an update packet is sent
for the aircraft. However, an immediate
snap between these two positions would
be unrealistic in a live space

Instead, the adjustment
is spread over multiple
steps with smaller moves

This results in the same goal
of synchronizing Dead Reckoning
while also preserving simulation realism

Fig. 5: An example of smoothing Convergence

at a constant rate. Once the plane reaches its intended bank
angle, it will then stop rotating, which will trigger another
threshold breach. This is because where the real plane has
stopped rotating, the remote images of the plane will still
extrapolate the rotation further until updated. As a result,
another update Entity State PDU is sent in order to reflect
this rotational halt to the remote systems. The plane now
stays in this rotational angel until it reaches the point where it
begins to rotate left to level out. During this time, no packets
asside from Heartbeats are needed as the speed, change in
direction, and bank angle have remained constant. However,
as the plane begins to rotate left, a new packet is sent to
once again update the network, which will stay constant until
leveling out and sending another. At this point, the aircraft
is flying directly East with a constant speed and altitude,
which warrants only Heartbeat packets.

If we disregard the regular Heartbeats, an aircraft turning
from North to East would only require 5 packets to fully
complete the maneuver, with the rest of the time being
extrapolated by Dead Reckoning: Fly North, rotate Right,
stop rotate, rotate Left, stop rotate. If not for this system,
a maneuver such as this would cost packets based on the
sending rate of the simulation, which would be significantly
higher cost to the network than the local calculations en-



forced within this system.

3. Software Design
As stated previously, this effort was built as an ECS inter-

face to be used in Distributed Simulation applications. All of
the data for each entity (in this case the aircraft) is contained
within 3 specific components: Properties, State, and either an
EntityInfo or DeadReckoningData storage component. The
Properties component contains all of the specific static data
for the aircraft such as wing span, engine power, and mass.
In contrast to Properties, the State component contains all of
the dynamic variables for the aircraft. The Time variable is
automatically updated as the simulation progresses, and the
positional array contains six floating-point variables which
will change depending on the inputs to Bank (roll), Alpha
(pitch), Throttle, and Flap Deflection. These four quantities
are affected by user inputs, and are controlled throughout
the simulation to allow the user to actually “fly” the aircraft
in the simulated space.

The third component will differ between Entities, depend-
ing on whether the Entity is a local or remote object. The
EntityInfo component contains a Boolean to indicate whether
the object is being locally controlled. The DeadReckonData
component instead contains variables used in the calcu-
lation and application of the program’s Dead Reckoning
and Smoothing functions. The first of these variables is
Algorithm, a numerical value that indicates which of the
algorithms found in Figure 4 are used when calculating
the Dead Reckoning position of the containing Entity. The
other two variables HeartbeatCounter and Syncing are used
to indicate whether the Entity needs to send a Heartbeat
packet and whether or not the containing Entity is currently
re-syncing to the proper position of its local data counter-
part. Each remote Entity is also linked with the local ID
of its represented Entity for synchronization and removal
purposes, which will be addressed in the next section.

The software can operate both as a Flight Sim and a Packet
Receiver. While running, the software will take user input to
fly the aircraft while sending packets in accordance with the
Distributed Interactive Simulation space. At the same time,
the software will receive and track EntityState packets that
are sent over the network, adding this EntityState data to
the local image as remote Entities or updating pre-existing
entities with new packet data. The simulation node functions
in accordance with the specifications detailed in Table 2.

While in Flight Sim mode, the software first creates the
aircraft Entity by using preset values for Properties, State,
and EntityInfo. This Entity is created within the World
construct, where it can be queried and updated as needed.
Another Entity is then created using the same Properties
and State, but will instead include a DeadReckonData and
EntityID component to identify it as a remote entity image.
This allows the local controller to see where the remote
systems project this local entity’s status and location using

Key Input Simulation Action

E Increase Throttle
D Decrease Throttle
Up Arrow Increase Alpha (Pitch)
Down Arrow Decrease Alpha (Pitch)
Left Arrow Rotate (Roll) Plane Left
Right Arrow Rotate (Roll) Plane Right
L Aim Wing Flaps Down
K Aim Wing Flaps Up
Q Exit Simulation

Table 3: Keybinds For Software Operation

the appropriate Dead Reckoning algorithm, which allows for
the system to know when a synchronization packet must
be sent. For networking, the software then binds to a pre-
selected UDP Socket to send packets over the network.
The final step in the setup is to add variables which will
track keyboard inputs that the user will press to control the
aircraft State variables. At this point, the Flight Sim enters
its standard Game Loop: check for keyboard input, update
aircraft position and velocity based on current variables,
perform Dead Reckoning calculations, then send packets if
needed. This loop will run until the user inputs the quit
command by pressing the Q key. All of these inputs can be
found listed in Table 3.

Each of the loop steps employ systems we have built to
perform the needed calculations. These systems are Flight
IO, Dead Reckon Entities, and Send Entity State. Each
system description is accompanied by a graphic flowchart
of their process.

Fig. 6: Operation diagram of the Flight IO System

Flight IO (Figure 6) handles the input and output of
the aircraft, taking in the current keyboard inputs and the
World and returning the current key press to be checked
against in the next loop. Within this function, the World
is queried for all local aircraft entities (we use only one
for our specific application), then applies the Equations Of



Movement to each aircraft to move them forward one “step”
in the simulation space based on their current variable values.
The State of this Entity is then printed to the screen to
reflect the changes that the user applied through their input
in addition to the movement calculation.

Fig. 7: Operation diagram of the Dead Reckon Entities
System

Dead Reckon Entities (Figure 7) occurs right after moving
the local entities, and by contrast queries the World for any
remote entities to apply their respective Dead Reckoning
Algorithm4 for the given step. First, the system calculates
several required values for the algorithm using the State and
Properties of the Entity, such as the Position Vector, Velocity
Vector, and Orientation Matrix. The function then checks
the DeadReckonData property of the Entity to select which
Algorithm will be used to calculate the Dead Reckoning
result. The results of this calculation are then stored back
to the Entity in order to update their information within the
simulated area and to any visuals that the simulation is linked
to. These steps occur for each remote entity present within
the World.

Send Entity State (Figure 8) is a system that handles
checking for Dead Reckoning synchronization and sending
packets if needed. The reason this sync is checked here is
that any mismatch exceeding a given threshold between local
and remote data for a given entity will require a packet
be sent to the network. This function is also responsible
for sending the Heartbeat packet when needed. To check
proper synchronization, the system first queries the World
for a local entity, then uses the Entity ID from this Entity
to retrieve the Dead Reckoning version of the Entity from
the World using a direct “get” function. The function then
runs through all of the positional data of both entities,
taking the difference between each one and checking that
difference against the set threshold. If this threshold is
exceeded by one or more parameters, the Desync flag is
set. After checking the positional difference, if Desync is

Fig. 8: Operation diagram of the Entity State System

not set then the function ends for that Entity. Otherwise, the
process of Convergence5 is initiated by setting the Syncing
flag within the DeadReckonData Component of the Entity,
which will indicate to the function over the next two steps
that the Entity is realigning with its local counterpart, or
“Converging” [3]. After the Dead Reckoning Data matches
the Local data once again, the Entity exits Syncing mode
and continues functioning as a standard Dead Reckoning
calculation until either a Heartbeat or Desync occurs. The
Heartbeat counter is reset whenever a packet is sent as
well, so any Convergence steps taken will also reset this
counter. A packet is only sent from this system when either
a Convergence is required or the Heartbeat counter reaches
the predetermined time interval.

Upon exiting the Send Entity State System, the thread
is put to sleep for a set amount of time (in our case, we
calculate this time using the inverse of the Frame Rate
multiplied by 100 ms), then the next step begins at the start
of the loop. As stated previously, this loop will continue to
run until manually stopped by the user. All of these systems
and their application to the DIS Standard can be found in
Table 4.

4. Implementation
4.1 Rust

Rust is a programming language which functions as a
data-oriented language in contrast to Object-Oriented meth-
ods. Additionally, the Rust compiler will not allow for “bad”
coding practices when it comes to data ownership. For each
function, the programmer is required to specify whether
or not each piece of data is being passed by reference or
by value. This means the function either gets a pointer to
the “real object” (meaning any changes will reflect on the
object even after function completion), or the value is simply
copied to be used by the function. However, once an object’s



System Name Function Standard Application

FlightIO

Applies
Movement
to Locally
Controlled
Entities

Each node must control at
least 1 simulation entity

DeadReckoning

Use Dead
Reckoning
prediction to
reduce net
traffic

Dead Reckoning calculations
are utilized to reduce net-
work traffic by predicting re-
mote movement

EntityState

Handles
assembling
EntityState
packets

Changes to an entity are
communicated from the node
that controls it locally

Sender
Sends packets
to network
from queue

Nodes must be able to com-
municate "truth data" for
their local entities over the
network using PDUs

Receiver

Recieves
packets from
the network
and adds
them to the
local world

Event and remote entity per-
ception is determined by the
node receiving the data

Table 4: Software System Layout

ownership is passed out of a programming scope, such as
from Main to a sub-function, it will flag that object if the
programmer attempts to use it again to identify that it may
trigger a data dependency.

Another main reason why Rust is a prevalent alternative
is that it does not utilize a “Garbage Collector”. In C++ (as
well as many other programming languages), the Garbage
Collector is a piece of the language back-end which performs
inherent Memory Management. It will look for memory
that has been de-allocated by the program and return the
memory to the system automatically. The problem with such
a seemingly convenient construct is that it also requires
additional processing time on top of the program’s original
requirements. This means that if we have two copies of a
program and only one uses this technology, the one without
the Garbage Collector will run faster. The trade-off from
not having this is that the user is required to ensure their
own memory allocation structure in order to prevent memory
issues such as Memory Leaks, where the program allocates
memory but does not de-allocate it before the end of the
program execution. The Rust compiler alerts the programmer
of these things as well. Rust will not compile if there’s a
chance of memory allocation issues, and will prompt the user
to fix those issues before they can create the running program
file. The results are a stricter system which operates with a
lower average run time thanks to the absence of unneeded
automatic pieces.

4.2 Serde
Because Serde is able to serialize and deserialize data, we

have integrated it into the software as part of the Sender

and Receiver systems. The Sender system uses Serde to
transform assembled PDU packets into bincode (or Binary
Code), which is a string of binary that can be easily sent
over the network to the other simulation nodes. On the
receiving end, the Receiver system uses Serde to turn this
string of binary back into a PDU packet and perform its
other actions to check how it affects the world. It is due to
Serde’s versatility that we are able to turn a user-made struct
like the PDU packet into the built-in bincode type.

4.3 HECS
The Handy Entity-Component System (HECS) Library is

an implementation of the ECS standards discussed above to
the Rust environment. This crate is designed to be a simple-
to-understand package that comes with structures such as
World that can hold entity data. It also provides a Query
method that may be used to retrieve stored World data based
on the criteria required by any given System within the
code. Using HECS, our previous ECS example could be
implemented as shown in Listing 1.

Listing 1: A HECS Example for vehicles
//--------------------------------------
// An ECS system containing a Car, Truck,
// and Plane, implemented using HECS
//--------------------------------------
use hecs::*;
use components::*; //Our components file
// The Components file contains the types
// Speed, Direction, and FuelRemaining,
// which are all user-defined types
// containing a single numerical type.
// Each entity created within this World
// will contain all 3 of these components

fn main()
{

let mut world = World::new();

let car_speed = Speed::new(45);
let truck_speed = Speed::new(35);
let plane_speed = Speed::new(200);

let car_direct = Direction::new(0);
let truck_direct = Direction::new(90);
let plane_direct = Direction::new(180);

let car_fuel = FuelRemaining::new(25);
let truck_fuel = FuelRemaining::new(47);
let plane_fuel = FuelRemaining::new(60);

// Spawn Entities with given components
world.spawn((car_speed, car_direct,

car_fuel));
world.spawn((truck_speed, truck_direct,

truck_fuel));
world.spawn((plane_speed, plane_direct,

plane_fuel));
.
.



.
}

We utilize the HECS implementation in order to stream-
line the process of setting up the ECS environment in addi-
tion to the pre-built functionality that HECS provides. For
example, the EntityState system which sends update packets
for all local entities uses the Query function provides in
HECS to access only the entities in the world that are local to
the system. This filters out entities such as Dead Reckoning
Data and remote entities from other systems which are
calculated using the Dead Reckoning algorithms as opposed
to the local controls. Entities that must be removed (i.e.
a missile that has already detonated, a remote entity that
has been disconnected) are also able to be removed using
pre-built functions within the HECS system. Any future
systems built upon this effort can be integrated by following
the ECS common component structure, as any collection of
components can be added to the World to create an entity
within HECS. The systems and requirements they fulfil for
IEEE DIS can be found below:

4.4 Code Reference

Listing 2: Properties and State Components
fn gen_prop() -> Properties {

let prop = Properties {
wing_area: 16.2,
wing_span: 10.9,
tail_area: 2.0,
// slope of Cl-alpha curve
cl_slope0: 0.0889,
// intercept of Cl-alpha curve
cl0: 0.178,
// post-stall slope of Cl-alpha curve
cl_slope1: -0.1,
// post-stall intercept of
// Cl-alpha curve
cl1: 3.2,
// alpha when Cl=Clmax
alpha_cl_max: 16.0,
// parasite drag coefficient
cdp: 0.034,
// induced drag efficiency
// coefficient
eff: 0.77,
mass: 1114.0,
engine_power: 119310.0,
// revolutions per second
engine_rps: 40.0,
prop_diameter: 1.905,
// propeller efficiency coefficient
a: 1.83,
// propeller efficiency coefficient
b: -1.32,

};
return prop;

}

fn gen_state() -> State {
let state = State {

time: 0.0, // time
q: [0.0; 6], // ODE results
bank: 0.0, // roll angle
alpha: 4.0, // pitch angle
throttle: 0.0, // throttle percent
flap: 0.0, // flap deflection

};
return state;

}

Listing 3: Local and Remote Indicator Components
#[derive(Debug, Default)]
pub struct EntityInfo {

pub local: bool,
}

#[derive(Debug, Default)]
pub struct DeadReckonData {

pub algorithm: u8,
pub heartbeat_counter: u8,
pub syncing: bool,

}

5. Conclusions
The purpose of this effort was to create a basic DIS Inter-

operability Interface built as an Entity-Component System.
The resulting software is now able to process both its own
local entities as well as any number of received remote
entities using the appropriate techniques. An intentional
benefit to the ECS organization of this effort is that the
Systems and Components are operable individually or as a
collective, there are no hard-coded connections that require
dependencies from either direction.

A linear algebra approach was utilized to create the
effort’s algorithms using the Rust-based NAlgebra-GLM
package. These Dead Reckoning algorithms are essentially
dynamic models. The packet traffic over the network was
analyzed using Wireshark to ensure proper functionality by
analyzing the pieces of each PDU sent. The next step is
to add more packet types to the system, increasing the
diversity of effects that can be simulated. This action also
takes another step towards fleshing the system out into a fully
operable DIS system that could be used in live applications.

Future work on this effort would be to integrate the back-
bone of this system into a higher fidelity simulation network,
acting as another machine within the simulated environment.
By integrating a fully implemented ECS system into a pre-
existing exercise, it would display that this effort has led to
a fully functional system using ECS and Rust.

6. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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VI. Conclusions

Through researching this novel method of implementing DIS simulation technol-

ogy, we have explored how Data-Oriented Design can be used to design and operate

a node that complies with IEEE DIS requirements. This new approach differs from

the Object-Oriented methods by using the ECS style of organizing data into loosely

connected lists through which the Entities are formed. All systems created for the

software operates directly on lists of data, which eliminates the need to access spe-

cific object types and allows for additional systems to be added which query the

preexisting lists.

Designing simulation nodes using a data-oriented approach in Rust enforces safe

memory practice as well. The Rust compiler will not allow code that causes pointers

to unallocated data, nor will it permit possible data races. This makes systems and

programs less exploitable and less prone to error, an important trait for distributed

simulations especially with regards to military application. By showcasing and further

pursuing this research, simulation capabilities within the Air Force and the DoD will

continue to increase options for creating simulated training environments.

6.1 Future Work

• Add additional functions to handle each packet type (i.e. Electronic Warfare

signals, Fire/Detonation)

• Implement different types of nodes in a similar fashion, such as Surface Warfare
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