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Abstract

Pedestrian Dead Reckoning (PDR) navigation systems attepmting to estimate a

person’s position based on an inertial measurement unit (IMU), must incorporate

ways to account for the errors associated with IMUs, especially the drift errors. This

research investigated the use of an alternative magnetic field sensor to measure rela-

tive position and orientation between the feet, coupled with foot-mounted IMUs, to

capture pedestrian motion, and provide an algorithm and rationale for reducing the

error associated with usage of the IMUs alone.

A two-phase approach was used to carry out this contribution. Using commer-

cial grade IMUs, the pedestrian navigation system uses a Kalman filter with a Zero

Velocity Update (ZUPT) measurement to form the first phase, and baseline, of the

approach. The second phase investigated the inclusion of relative IMU measurements

from the alternating field magnetic sensor. The first measurement used the position

measurements of the magnetic sensors to create a foot-to-foot ranging measurement.

The second measurement used the orientation measurements of the magnetic sensors

to create a relative rotational measurement between the IMUs.

Results show substantial improvement of the body-worn IMU-based pedestrian

navigation by incorporating the foot-to-foot ranging measurements. Further, there is

improved accuracy of the baseline implementation with the use of the relative rotation

measurements from the magnetic sensor, but not as much compared to the ranging

measurements.
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Relative Magnetic Position and Rotation Sensor Assisted Dual-Foot Pedestrian

Dead Reckoning

I. Introduction

1.1 Motivation

Capturing human motion has many implications to the development of several

technologies and fields from animation to sports, medical, gaming, and much more.

Human motion capture seeks to harness our physical movement in a digital framework

to enhance our operation in these fields. In pedestrian navigation applications, human

bipedal movement can be used as a source of data for tracking our movement from one

place to another. Using this pedestrian motion, wearable technologies seek to not only

enhance our physical experiences, but also capitalize on these unique biometrics and

biomechanics. This two-way relationship of using body-worn technology to optimize

pedestrian navigation systems and using our bodies to enhance these systems’ ability

to estimate position is a fundamental characteristic of IMU-based pedestrian naviga-

tion. Wearable technologies in the context of human navigation have this benefit in

terms of capturing, and quantifying, useful aspects of our movement.

Many techniques have been introduced in this space to capitalize on our natural

gait patterns to inform these navigation systems of what the data is representing and

what it means for our positional tracking. Many Pedestrian Navigation System (PNS)

also have the benefit of being self-contained. In this aspect, these systems can capture

our movement without any interaction with devices, or signals, not on the body [1].

Dependent PNS applications may use technologies such as Global Navigation Satellite
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System (GNSS), Wireless Local Area Network (WLAN), and Bluetooth Low Energy

(BLE). These technologies can become obstructed by enviornmental objects, limiting

their applications. Unlike dependent PNS systems, self-contained applications virtu-

ally eliminate the possibility of interference. Pedestrian navigation makes wearable

sensors, especially IMUs, attractive for self-contained applications because they can

operate when other popular forms of navigation may be limited. Despite these useful

features, wearable sensors, as with any real sensor, has error. These error include

bias, scale factor and drift.

1.2 Research Problem and Justification

In the case of IMU-based PNS applications, the IMUs are affected by errors such

as drift. Drift error is an effect of the friction from the moving parts within the IMUs,

temperature, and the dielectric charging [2] [3]. These factors cause the output to

drift over time, eventually dominating IMU’s outputs. Higher quality IMUs, such

as those used in Avionics systems mitigate the drift effects by using high-precision

bearings and lubricants [2]. This grade of IMUs are usually larger, heavier, and more

expensive, but do limit drift accumulation to several hours [1].

Consideration must be given to the size, weight, power, and cost, or SWaP-

C of IMUs, when designing pedestrian navigation solutions with body-worn IMUs.

Consumer-grade IMUs such as those integrated into smartphones, are low-cost and

come in a small size. This grade of IMUs, has the trade-off of having poor perfor-

mance characteristics compared to higher quality IMUs. Despite this low-quality,

consumer-grade IMUs have become a standard for pedestrian tracking due to the

small size, relatively low cost, and wide usage.

Robust pedestrian navigation systems based on the IMU have been introduced

resolve the accumulating drift error of consumer-grade IMUs. One grouping of tech-
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niques that seek to reduce these errors focus on recognizing patterns in human mo-

tion. These patterns are aspects of the gait that can provide some form of pseudo-

measurement of information to update the estimates. Such patterns include zero-

velocity of the foot during a normal human gait and the quantified characteristics

of walking straight opposed to turning. These patterns can be captured with simple

threshold algorithms or using more robust machine learning frameworks.

Another way resolve the poor performance of low-cost IMUs is to include a com-

plementary sensor. This sensor fusion approach introduces a measurement that will

correct the system’s estimates by comparing the estimates with the alternative sen-

sor’s measurements. Such complementary measurements can come from cameras,

ranging sensors, and other IMUs placed at different positions on the user’s body. The

focus of this research is to augment a dual-foot PDR system with an alternating field

magnetic sensor. This novel complementary sensor will be used to correct position

and attitude estimates derived from commercial-grade IMUs.

This paper focuses on the use of a new type of sensor for pedestrian navigation: an

alternative magnetic field sensor that is capable of very precise location and attitude

measurement with respect to the magnetic source. This sensor is combined with an

IMU on each foot of the pedestrian to achieve improve navigation capabilities. By

1.3 Research Objectives

The purpose of this research it to investigate the effects of an AC electromagnetic

sensor augmenting a dual-foot PDR system. Particularly, the foot position and orien-

tation measurements from this electromagnetic sensor are used to derive foot-to-foot

range and a relative rotation measurements. These measurements are fused into an

IMU-based PDR system through an extended Kalman filter. This thesis intends to

investigate several design choices and techniques. One technique is the use of relative

3



rotation measurements to correct rotational errors that may result in IMU-based ap-

plications. The other technique is the foot-to-foot range measurement. Results from

using the G4 sensor as a complementary sensor to the consumer-grade IMU-based

PDR system will be analyzed.

1.4 Methodology Overview

To accomplish these objectives, a IMU-based PDR system is developed. Then

the accuracy of incorporating ranging measurements and relative orientations from

the G4 sensor is explored. A three-phase process is followed to develop the PDR

system. A dual-IMU PDR system, based on the error-state extended Kalman filter,

is developed around the ADIS61470 IMU. This relatively low-cost IMU is small and

lightweight enough to be mounted on the foot with negligible effect to the user’s

performance.

The baseline algorithm represents the first phase for the objectives. It includes

only the ZUPT measurement to correct for IMU errors. The second phase builds

upon the baseline by incorporating a ranging measurement. This technique has been

shown to improve accuracy using foot-mounted cameras or sonar sensors [4] [5]. The

third phase uses the magnetic sensor’s orientation readings to calculate a relative

rotation measurement to increase accuracy by correcting rotational errors.

The outputs of each phase is an estimated trajectory of the user’s walk. These

trajectories are generated using different combinations of measurements. All sensor

data is collected during several trials. Each data-set is input into an extended Kalman

filter algorithm to estimate each foot’s position, velocity, and attitude. During each

phase a new measurement is introduced into the Kalman filter. Each data-set is

collected outdoors with a GPS module attached to the sensor setup to collect latitude,

longitude, and altitude measurements of the user. These GPS readings will serve

4



as a ground truth to compare to the output of the pedestrian navigation system’s

estimated positions over time.

1.5 Document Overview

This document is organized as follows. Chapter II provides an overview of the core

concepts used in this research. Chapter III details the equipment, system configura-

tion, and technical derivations used to achieve the objective. Included is a breakdown

of the sensors and how they are configured for a PDR application. This chapter also

covers the design of the extended Kalman filter at the center of the system and the

measurements used to optimize its output. Chapter IV presents the results of the

trials conducted using the equipment and system configured in Chapter III. Finally,

Chapter V discusses the overall contribution of this work and the possible next steps.
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II. Background and Literature Review

A review of literature is necessary to layout a road-map of the concepts that

are integral to this report’s processes and results. Section 2.1 through section 2.7

will review the key concepts that form the IMU-based pedestrian navigation system.

section 2.8 and section 2.9 highlights the capabilities, and limitations of IMU-based

pedestrian navigation systems, and techniques to bypass these limitations.

2.1 Navigation

The purpose of navigation is to answer the fundamental questions: Where am I?

Where am I going? The answers to these questions contain two pieces of information:

position and velocity. Classically, ships and land-based vehicles traveled in two di-

mensions. As such, position measurement encompassed two axes. In the land-based

case a heading measurement used to determine direction. With the development of

aircraft, spacecraft, and underwater vehicles the orientation of a vehicle, aside from

its position and velocity becomes important information. This attitude information

represents the vehicle’s orientation in 3-dimensional space. For pedestrian navigation,

there is some nuance to these phenomena. Bipedal human movement, like a car on the

road, travels in two dimensions. However, a dual foot, IMU-based, pedestrian navi-

gation system will be answering those fundamental questions relative to the person’s

feet. As such, the foot’s movement and orientation are characterized in 3-dimensional

space. This culminates in a two-dimensional output of the user’s position.

2.2 Dead-Reckoning

The concept of dead reckoning is thought to be derived from the phrase ‘deduced

reckoning’ [6]. This concept involves finding a subject’s position using the previous
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position, the direction of travel (attitude) and the velocity. A dead reckoning system

can be characterised as an internal system. These internal systems can be either

passive or active [7]. Unlike systems centered around an external sensor, an internal

sensor application will generate all measurements needed to determine the subject’s

position without any external signals. An important aspect of the dead reckoning

technique is that any error incurred will be accrued to each subsequent measurement

and position estimation.

2.3 Inertial Navigation Systems

A basic inertial navigation system (INS) incorporates dead reckoning with an

inertial measurement unit (IMU). Many IMUs are micro-electromechanical systems

(MEMS) containing gyroscopes and accelerometers for each three-dimensional axis.

A gyroscope sensor measures angular rate, while the accelerometer measures specific

force. The specific force represent force acting on the accelerometer, except for grav-

itational force. The INS system processes the data from the IMU, performing dead

reckoning calculations to determine the position and attitude of the body.

2.4 Coordinate Frames

To describe the 3-dimensional position of a body a reference frame must be de-

fined. Any position, attitude, or movement is given relative to some reference frame.

A 3-dimensional coordinate frame with all axes being perpendicular to each other de-

scribes the configuration of any frame of reference in which a body is situated. That

body also has 3-dimensional axes to describe it. These axes originate from a point

determined for the object in question. This origin of the body’s reference frame is

usually set at the center the body, or the body’s center of mass. These 3 axes that

form the coordinate frame are usually referred to as the x, y, and z axes.
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2.4.1 Navigation Frame

The Navigation Frame is aligned to a specific point of the Earth. This frame’s

orientation is usually aligned with geographic North, East, and Down, for x, y, and

z axes respectively. Another common convention is East, North, and down for x, y,

and z axes respectively.

2.4.2 Body Frame

The Body Frame is aligned to the body being tracked. Its axes align are fixed

to the body. This frame is usually at the center of mass of the body. The angular

motions about these axes are referred to as the roll, pitch, and yaw for the x, y, and

z axes respectively.

Figure 1: Globe diagram for Earth-Centered Inertial frame and Navigation frame of
reference.
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Figure 2: Diagram for Navigation and body frame of reference.

2.5 Attitude Representations

Throughout this pedestrian navigation system, the attitude of the left and right

feet will be represented as Euler angles, quaternions, rotations vectors, and rotation

matrices. These attitude representations are all equivalent to each other. They

describe the attitude of a coordinate frame with respect to another frame. Most

often this will be a body frame’s orientation with respect to a navigation frame.

As summarized by P. Groves, the kinematic quantities used in this research, such

as attitude and acceleration, involve three coordinate frames [6]. He denotes these

frames as the object frame, α, the reference frame, β, and the resolving frame, γ.

The object frame can be a body frame, while the reference frame can be a navigation

frame.
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2.5.1 Euler Angles

The Euler Angles represent thee successive rotations about three axes. The roll,

pitch, and yaw, are the rotation about the x-axis, y-axis, and z-axis respectively.

These rotations describe the orientation of the object in it’s body frame with respect

to the local navigation frame. Although roll, pitch, and yaw are very common terms

for these rotations, other literature, such as [8], using different names. Table 1 shows

some common notations of the Euler angles.

e =

[
ψ θ ϕ

]T
(1)

Table 1: Euler Angle Notation

Name Axis of Rotation Symobl (Nav to Body)
Roll, Bank x ϕnb

Pitch, Elevation y θnb
Yaw, Azimuth, Heading z ψnb

2.5.2 Quaternions

The Quaternion representation is a 4-element vector representing a coordinate

frame transformation about a single vector. From eq. (1), the elements of the quater-

nion are functions of the vector’s orientation and its magnitude [6][9].

q =

[
q1 q2 q3 q4

]T
=

[
w x y z

]T
(2)

2.5.3 Direction Cosine Matrix

The direction cosine matrix (DCM), Cn
b , is a 3x3 matrix representation of a co-

ordinate transformation. The columns of the DCM represent the unit vectors of the

body frame with respect to a reference frame [10].
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Cz =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (3)

Cy =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

 (4)

Cx =


1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ

 (5)

Cb
n = CxCyCz (6)

Taking the product of (3), (4), and (17) yields the DCM representation of the

transformation from the navigation frame to the body frame as expressed in (18).

As Titterton, et al., [10] demonstrate, the inverse transformation from the body

frame to the navigation frame require taking the transpose of the matrices in equations

(3), (4), and (17).

Cn
b = CT

z C
T
y C

T
x =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1



cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ



1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ

 (7)
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=


cosθcosψ −cosϕsinψ + sinϕsinθcosψ sinϕsinψ + cosϕsinθcosψ

cosθsinψ cosϕcosψ + sinϕsinθsinψ −sinϕcosψ + cosϕsinθsinψ

−sinθ sinψcosϕ cosψcosθ


2.6 IMU Kinematics

The ADIS16470 IMUs in this research are used to estimate a pedestrian’s position,

velocity, and orientation. Section 2.5 discusses the representation of orientation used

throughout this work. The primary quantities derived from the IMU are angular rate,

position, velocity, and acceleration.

2.6.1 Angular Rate

The angular rate quantity is output from the gyroscope sensor of the IMU. The

angular rate is the rate of rotation of the alpha-frame axes with respect to the beta-

frame axes, resolved about the gamma-frame axes [6]. In this case, the alpha-frame

represents the body-frame of the IMU, and the beta-frame represents the navigation-

frame. The ADIS16470 IMU also outputs a delta-angle measurement. This measure-

ment represents the angular displacement per sample update [11]. The angular rate is

obtained from this delta-angle quantity by dividing by the sampling rate, producing

a quantity in radians-per-second.

The position quantity is calculated, and estimated, at several points in this pedes-

trian dead reckoning approach. The position of a body refers to the placement of

the body’s origin of its coordinate frame with respect to the origin of a reference

frame. The position vector, the red line in Figure 3, has the x, y, and z displacement

components of the body-frame’s origin with respect to the navigation reference frame.

The velocity quantity represents the rate of change of the position of the origin
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Figure 3: Diagram of body-frame (foot) position with respect to a navigation-frame.
Illustrates position vector and components.

of the coordinate frame of the body with respect to the origin (position, and axes

(orientation) of the reference frame [6].

The acceleration of the body represents the force per unit mass applied to the

body from the perspective of the reference frame [6]. The ADIS16470 IMU outputs a

delta-velocity measurement that represents the change in linear velocity per sample

update [11]. This quantity is transformed to acceleration in m/s2 by dividing by the

sampling rate.

2.7 Kalman Filter

2.7.1 Linear Kalman Filter

At the heart of most pedestrian dead-reckoning systems is the Kalman Filter.

The Kalman filter, Figure 4, is an estimation algorithm that can output incremental
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navigation estimates such as position, velocity, and attitude. As the Kalman filter

runs, measurements are fed into the filter. These measurements contain information

used to correct the Kalman filter’s estimates. The construction of the Kalman filter is

based on the dynamics of the system being estimated. Both the Kalman filter’s pro-

cess and the measurements fed into it have addative white Gaussian noise associated

with them.

A Kalman filter is constructed based on the configurations of the system model

and its inputs to produce as accurate a set of estimates as the system’s given infor-

mation can produce [6]. From one step to the next, the Kalman filter keeps track

of how uncertain its estimates are, along with the correlations between the error in

the estimates and its parameters. With each iteration the Kalman Filter updates it’s

estimates stemming from initial estimates. Each estimate is optimized as a weighted

average of the past set of estimates, and the current estimates based on the usefulness

of the current iteration’s measurements and the measurement’s error statistics [12].

x0

P0

Initial State

x̂−
k = Ax̂k−1 +Buk−1

P−
k = APk−1A

⊤ +Q

Prediction/Propagate

k ← k+1

Kk = P−
k H

⊤(HP−
k H

⊤ +R)
−1

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
Pk = (I −KkH)P−

k

Measurement Update/ Innovation

Figure 4: Discrete Kalman Filter Algorithm

A linear system’s dynamics can be modeled with the set of first order differential

equations (8) [10][13]. The system’s associated measurements (9) can also be modeled

with the same conventions.
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Table 2: Linear system Dynamics

Name Description
x states of the system
u deterministic input vector
w system noise
z measurement vector
n measurement noise
A system matrix
B system input matrix
Q process noise covariance matrix
R measurement noise covariance matrix
H measurement matrix

xk = Axk−1 +Buk + wk−1 (8)

zk = Hxk + vk (9)

The process noise, w, and the measurement noise, v, are zero-mean, normally

distributed Gaussian vectors, with probability distributions of N (0, Q) and N (0, R)

respectively.

2.7.2 Extended Kalman Filter

An important assumption for the Kalman filter is that both the measurement

model and system model are linear systems. This linearity cannot be assumed for

real systems, particularly INS systems. The Extended Kalman Filter (EKF) is a

nonlinear extension of standard Kalman Filter. To account for the non-linearity, the

estimates are linearized around the current estimate by using the partial derivatives

of the state and measurement functions [14].

xk = f(xk−1, uk, 0) (10)
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zk = h(xk, 0) (11)

The system’s equations are linearized about (12) and (13). For real systems the

exact value of the process noise, wk, and the measurement noise, vk, are not known.

The state and measurement vectors can still be approximated without them [14].

xk ≈ x̃k + A(xk−1 − x̂k−1) +Wwk−1
(12)

zk =≈ z̃k +H(xk − x̃k) + Vvk (13)

x0

P0

Initial State

x̂−
k = f(xk−1, uk, 0)

P−
k = APk−1A

⊤ +WQk−1W
⊤

Prediction/Propagate

k ← k+1

Kk = P−
k H

⊤(HP−
k H

⊤ + V RkV
⊤)

−1

x̂k = x̂−
k +Kk

(
zk − h(x̂−k , 0)

)
Pk = (I −KkH)P−

k

Measurement Update/ Innovation

Figure 5: Extended Kalman Filter Algorithm

Note that the Jacobian matrices A, W, H, and V also change with each step, k.
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Table 3: Non-Linear system Dynamics

Name Description
xk state vector
z measurement vector
x̃k approximated state vector
z̃k approximated measurement vector

k previous state estimate
w process noise
v measurement noise
A Jacobian matrix of partial derivatives of f with respect to x
H Jacobian matrix of partial derivatives of h with respect to x
W Additive White Gaussian Noise
V Additive White Gaussian Noise

2.8 Zero Velocity Update

As the issues associated with pedestrian navigation are essentially the same issues

associated with dead reckoning, several techniques have been previously introduced to

help mitigate the effects of these errors. For pedestrian navigation, a specific group of

techniques have been introduced that utilize unique characteristics of the human gait

pattern to optimize these PDR systems. These techniques include the Zero Velocity

Update (ZUPT), the Zero Angular Rate Update (ZARU), and the Heuristic Drift

Reduction (HDR) [15][16]. The ZUPT technique uses a pseudo-measurement of a

zero velocity vector as a measurement into a Kalman filter to fix drift errors in the

IMU. This technique uses the assumption that a normal human gait pattern involves

a velocity of approximately zero during the stance phase of a stride [17]. Similarly,

the ZARU technique uses a pseudo-measurement of zero angular rate vector [18].

The measurement is also detected and input into the Kalman filter during the same

stance phase as ZUPT. The HDR technique determines when a pedestrian is walking

a straight line and applies a heading error measurement into the Kalman filter to

reduce heading estimate errors. [16].
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2.9 Related Research

The purpose of a Pedestrian Navigation System (PNS) is to provide accurate

means of position tracking in GPS deprived environments. An important aspect of

these systems are the use of sensors to capture pedestrian motion. Two primary

means of capturing this motion involve vision-based sensors [19] and IMUs attached

to the pedestrian’s body [20][21][17]. There are some cases where both sensor types

paired together to acheive the PNS purpose [4]. These sensors act as the input source

for the Kalman filter at the heart of the PNS implementation.

2.9.1 Vision-Based PDR

In the robotics and navigation fields, the problem of localization is essential for

creating a robust system. Whether a robot, a vehicle, or a person, the knowledge of

that subject’s position and orientation [?]. Depending on the circumstances of the

system, the subject’s pose information can be relative to the world or local to a specific

boundary such as a certain room withing a building. For vision-based localization

systems the optical sensor can be such things as a camera. This sensor being fixed

to the subject, has its pose computed with reference to its surrounding environment.

Simultaneous Localization And Mapping (SLAM) systems compute the vision sensor’s

pose by detecting environment features, matching them with previously detected

features in past images, to build a map of the subject’s area and the subject’s pose

within it [19]. These vision-based solutions require ideal environment conditions, for

the optical sensors to provide useful information. They also use substantial computing

power.
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2.9.2 IMU-Based PDR Systems

Fischer, et al., have introduced a tutorial for basic IMU-based, pedestrian dead

reckoning system [21]. Their implementation forms the basis of the PDR system used

in this research. Key features used from their tutorial include the ZUPT detection

algorithm, usage of an error-state EKF, and handling orientation extrapolations as

rotation matrices. The work of Jimenez, et al., extends the PDR system further by

incorporating ZARU, and HDR techniques along with the ZUPT technique to achieve

improved system accuracy [15]. Foot-to-foot range measurement were introduced as

a valid measurement to reduce IMU associated errors in the PDR system [5]. While

many of these PDR contributions were achieved with a single foot’s motion being

captured, the range measurement requires IMUs on both feet. With two IMUs it is

necessary to extend the Kalman filter’s state vector with pose states for the left and

right foot. The dual PDR system also requires the usage of two ZUPT algorithms,

one for each foot. The camera and sonar sensor are two of the sensors that have been

shown to provide measurements that can calculate foot-to-foot range [5] [4].
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III. Methodology

Preamble

This chapter, will provide descriptions of the tools, structure, and parameters used

to carry out this research. Included will be description of the core measurements ,the

sensors that provide them, and the derivations of the their data to optimize the

Pedestrian Dead Reckoning (PDR) system. Portions of this section are sourced from

the following paper [22].

3.1 Development Framework

The objectives of this research were to introduce a novel device, the Polhemus

G4 sensor system, into the PDR field, use the G4 sensor’s position measurement to

incorporate ranging measurements into the PDR system, and introduce a new mea-

surement configuration called relative rotation measurement update. The accomplish

these objectives a three phase strategy was used.

1. Phase 1: Sensor Configuration and Data Collection

• Capture IMU, G4 sensor, and GPS data

2. Phase 2: Build PDR System

• Single-Foot PDR system

• IMU Mechanization

• Implement ZUPT Algorithm

• Dual-Foot PDR system

3. Phase 3: Incorporate Polhemus G4 Sensor System
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• Foot-to-Foot Range measurement

• Relative Rotation Measurement

3.2 Phase 1: Sensor Configuration and Data Collection

The sensors primarily used in this PDR system are two Analog Devices ADIS16470

IMUs Figure 6 and one Polhmeus G4 sensor kit shown in Figure 8. For each foot, an

IMU and a magnetic sensor is strapped to the user’s foot via a 3D printed case. The

case encloses the IMU with the magnetic sensor on top of the lid of the case, directly

above the ADIS16470 IMU. The case has a strap used to attach the sensors to a boot

used in the trials (see Figure 7). The cables from the foot-mounted sensors run up

the user’s leg directly to the PC, IMUs, or to the G4 transmitter.

Figure 6: ADIS16470 IMU

The ADIS16470 sensors output delta-velocity and delta-theta values at 100 Hz.

An Arduino Nano interfaces with the IMU. A Linux-based PC then interfaces to
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the Arduino with a set of custom drivers based on Lightweight Communications and

Marshalling (LCM).

Figure 7: IMU and G4 sensor strapped to boot

In addition to the magnetic sensor itself, the magnetic sensors also require a

“source” and a data transmitter/receiver pair [8]. The model used in this research

is a Polhemus G4 where the source is a small cube (mounted on the backpack in

Figure 9), the receiver is a USB dongle that passes the data onto a computer and

the transmitter is a small belt-mounted device that wirelessly communicates with

the receiver while feeding power to and getting data from the sensors through wired

connections (Figure 8).

The G4 system outputs position measurements relative to the source in Cartesian,

coordinates and sensor attitude measurements expressed as the Euler angles azimuth,

elevation, and roll. The origin of reference frame, of which each magnetic sensor’s

measurements are relative to, is the position of the source. The G4 system’s source

produces a magnetic field which the magnetic sensors are sensed within. The source’s

position is fixed to the user, as shown in fig. 9. The G4 system also includes a wireless

tracking unit, called the “hub”, that can connect up to three magnetic sensors, and
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Figure 8: Polhemus G4 Sensor, transmitter, and receiver

a USB module that pairs the hub to a host PC to transmit the measurements of the

magnetic sensors wirelessly.

The accuracy of the the magnetic sensor’s measurements are relative to the sen-

sor’s distance from the source. Each transmitter is capable of providing measurement

for up to three sensors simultaneously [8]. The source emits an electromagnetic field,

which is used to track the position and orientation of the small sensors. The output of

the magnetic sensors is a 100 Hz 3d position and orientation, relative to the magnetic

source.

To complete the system setup, the rig backpack also has a battery pack to power

the magnetic source and a GPS unit. The GPS unit is not used by the system to

estimates the user’s position, it is only used to provide truth data. As with the IMUs,

the G4 sesnors and GPS measurements are all read with custom drivers using the

LCM framework through a Linux-based PC.
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Figure 9: G4 source, battery pack, and GPS module and antenna on backpack rig

3.3 Phase 2: PDR System

Phase 2 of the methodology consists of building out the Kalman filter. This phase

started out with a single foot estimation then later expanded to dual foot system, as

shown in fig. 10. All system parameter expressed from here will have dimensions that

reflect the dual-foot implementation.

To perform pedestrian dead reckoning, an extended Kalman filter (EKF) estima-

tion routine is utilized. At the core of algorithm is the mechanization of each IMU to

propagate position and attitude to the current IMU measurement. This mechaniza-

tion is discussed in the first subsection below, followed by the (error state) Kalman

filter implementation of that mechanization. The last 3 subsections describe differ-

ent measurements that are applied to improve the IMU-based mechanization: the

zero velocity update (ZUPT), and relative ranging estimate, and a relative rotation

measurement.
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Figure 10: PDR System Configuration

3.3.1 IMU Mechanization

This algorithm uses an error-state extended Kalman filter to account for orienta-

tion, position, and velocity errors. The error-state vectors representation is as follows:
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δx =



δϕr

δωbr

δpr

δvr

δbr

δϕl

δωbl

δpl

δvl

δbl


30×1

(14)

The subscripts l and r representing the state associated with the left or right foot

respectively. The states δϕ, δp, and δv, represent attitude, or orientation, position,

and velocity error, respectively. The states δωbr
and δbr are the gyroscope bias and

accelerometer bias estimates respectively. Each state has three axis components, x,

y, z, forming a 30 element state vector.

The accelerometer and gyroscope initial biases are calculated as the mean of the

initial 2000 samples. This occurs before the recorded data is filtered through the

Kalman filter. These samples represent the the initial stationary data recorded from

the IMUs in which the user remains still. The bias calculations are subtracted from

the gyroscope and accelerometer readings. Each foot’s orientation is then calculated

using the bias compensated angular rate readings within a skew symmetric matrix

shown in eq. (15).

Ωk =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


3×3

(15)
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This orientation calculation, eq. (16), represents an integration of the angular rate

data. To abate the difficulties of calculating the matrix exponential in orientation

calculation, the Padé approximation is used [23] [24].

CNav
IMUk

= CNav
IMUk−1

exp(Ωk∆t) = CNav
IMUk

2I3×3 + Ωk∆t

2I3×3 − Ωk∆t
(16)

= CNav
IMUk

(2I3×3 + Ωk∆t)(2I3×3 − Ωk∆t)
−1

where CNav
IMU is the rotation matrix of either the left or right foot’s IMU from the

IMU’s body frame to the navigation frame, post-multiplied by the matrix exponential

term since the matrix exponential term is with respect to the IMU’s frame of reference.

The acceleration data is transformed to the navigation frame then the gravity

components are subtracted from the accelerometer readings. As Fischer, et al. pro-

posed, the average of the previous and the current orientation calculations are taken

to account for the motion between measurements [21].

accNav
k =

1

2
(CNav

IMUk + CNav
IMUk−1)(acc

IMU
k ) (17)

After this transformation, the gravity term is subtracted from the acceleration

data within the integration calculation that yields the velocity estimate. The constant

sampling rate, with relatively small range, allows the use of the trapezoidal integration

scheme to obtain the velocity [10].

velk = velk−1 +
(acck − g) + (acck−1 − g)

2
dt (18)

Now the velocity estimate is integrated in the same manner to obtain the position

estimate.
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posk = posk−1 +
velk + velk−1

2
dt (19)

3.3.2 Error State Extended Kalman Filter

While the position estimate for each IMU is propagated as described in sec-

tion 3.3.1, an error-state Kalman filter is used to find the errors of that propagation, as

described in [5][15]. When using an error state EKF, essentially two state vectors are

propagated forward. The first state, known as the nominal state, is the full estimate

(position, velocity, attitude, sensor biases) based on each IMU. The nominal states

are extrapolated from the IMU mechanization equations from section 3.3.1. The sec-

ond state, the error state eq. (14), is calculated by the Kalman filter’s measurement

updates. This error state represents the improvements, or updates, for the nominal

states. During every time step, once calculated, the error states are subtracted from

the nominal states to improve the nominal estimates, then the error states are set

back to 0. This reset occurs because the nominal states already account for the past

errors.

The errors of the propagation are modeled using a linearized state model defined

as:

δXk = ΦδXk−1 +Wk−1 (20)

Where Φ is the state transition matrix of the form:
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Φkr,l =



I3×3 ∆t · CNav
IMUk−1

03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 ∆t · I3×3 03×3

−∆t · Sk 03×3 03×3 I3×3 ∆t · CNav
IMUk−1

03×3 03×3 03×3 03×3 I3×3


15×15

(21)

Φk =

 Φkr 015×15

015×15 Φkl


30×30

(22)

The Sk term, eq. (23), used in eq. (21) represents the skew symmetric matrix of

the bias corrected accelerometer terms in the navigation frame. The Sk matrix allows

the EKF to estimate the pitch and roll based on accelerometer values [15]

Sk =


0 −accNav

kz
accNav

ky

accNav
kz

0 −accNav
kx

−accNav
ky

accNav
kx

0


3×3

(23)

In the state model, Wk−1, eq. (24) and eq. (25), is the process noise with the

covariance matrix defined with the following diagonal elements:

Qkr,l = diag

([
σω σgb σp σv σab

])
15×15

(24)

Qk =

Qkr 09x9

09x9 Qkl


30×30

(25)

These elements are listed in table 4. The error covariance matrix for each step is

then propagated forward.
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Table 4: Process Noise Parameters

Parameter Notation Value
Attitude σω 0.016 rad/s
Velocity σv 0.030 m/s
Position σp 0.000 m
Gyroscope Bias σgb 0.002 rad/s
Accelerometer Bias σab 0.000 m/s2

P = ΦkPk−1Φ
T
k +Qk (26)

The state update equation takes the form:

δXk
= δXk−1

+Kk(mk −Hδxk−1
) (27)

To update position and velocity components of the nominal states, their corre-

sponding error-state vector portions are directly subtracted from their values.

pos+k = pos−k − posϵ,k (28)

vel+k = vel−k − velϵ,k (29)

Where the − and + superscripts represent the nominal state before and after cor-

rection by the error states, respectively. Once all nominal states have been corrected,

the error-state estimates are set to zero.

For the orientation, a skew-symmetric correction matrix of the orientation error

estimations is applied to the previous orientation matrix. The last updated orienta-

tion matrix is pre-multiplied by this correction calculation, as the correction matrix

is with respect to the navigation frame. The aforementioned Padé approximation is
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used here:

CNav+
IMUk

=
2I3x3 + Ωϵ,k

2I3x3 − Ωϵ,k

CNav−
IMUk

= (2I3×3 + Ωϵ,k)(2I3×3 − Ωϵ,k)
−1CNav−

IMUk
(30)

Ωϵ,k =


0 ωNav

ϵz ,k
−ωNav

ϵy ,k

−ωNav
ϵz ,k

0 ωNav
ϵx,k

ωNav
ϵy ,k

−ωNav
ϵx,k

0


3x3

(31)

3.3.3 Zero Velocity Update (ZUPT)

The first measurement update applied in our system is the commonly used ZUPT

update based on the still phase of human gait [5][4][25][15]. When walking, humans

always have one of their two feet “planted” on the ground while their other foot moves.

For example, in Fig.11, during the movement forward of the left foot, the right foot

is planted to the ground. When a foot is planted, it has a velocity of approximately

zero. A zero velocity state is detected when the foot acceleration falls within a simple

threshold, and when the angular velocity falls within a threshold. Once detected, a

“pseudo-measurement” of zero velocity is applied using a Kalman filter update.

The ZUPT update measurement matrix, H, is a 3 by 18 matrix with an identity

matrix representing error-state velocity for the right or left ZUPT detection:

Hr =

[
03×3 03×3 03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3

]
3×30

(32)

Hl =

[
03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 I3×3 03×3

]
3×30

(33)
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Figure 11: Walking, foot with zero velocity

Here the error measurement, mk, for the ZUPT update, consists of the difference

between the nominal velocity and the 0-vector pseudo-measurement:

mk = vk−1 − [0, 0, 0] (34)

With each measurement update, the error-state vector corrects the nominal state

then is set to zero. As such, for the new measurement calculating the error-state

vector equation simplifies to:

δxk
= δ−xk

+Kk(mk −Hδ−xk
) = Kk(mk) (35)

where δ−xk
is the error state before the update, K is the Kalman gain,

Kk = PkH
T (HPkH

T +R)−1 (36)

and R is the covariance matrix of the pseudo-measurement, a value determined by
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gain tuning with data from the system.

3.4 Phase 3: G4 Sensor Measurements

This phase contains the primary contributions of this work to the field of PNS

and PDR systems. The G4 sensor’s drift-free measurements are incorporated into the

PDR system, Figure 12. Because each time step of this filter is equal to the sensor

rate, 1/100 second, the position and orientation measurements are used to correct

the nominal states at every step, k. This is unlike the ZUPT pseudo-measurements

which are used only when a zero-velocity is detected.

3.4.1 Foot-to-foot Ranging

Another measurement used to refine the two IMU’s mechanization approximations

is the range between the two IMUs. For the foot-to-foot range measurement the

nominal state’s x, y, z position differences are used to calculate the overall range

(magnitude) of the difference between the IMUs. The same differences and magnitude

is calculated for the magnetic sensors. In Figure 13 the distance between the left foot

and right foot, based on either the IMU-based position estimates or the position

measurements from the G4 sensors, is illustrated.

To update the error state requires both the computation of the predicted range,

from the nominal and error states, and the measured range from the magnetic sensors.

The range will be constant across coordinate frames, so the IMU equations are:

diff IMU
x = poskxr − poskxl (37)

diff IMU
y = poskyr − poskyl (38)

diff IMU
z = poskzr − poskzl (39)
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Figure 12: PDR System with Magnetic Measurements

magIMU =
√

(diff IMU
x )2 + (diff IMU

y )2 + (diff IMU
z )2 (40)

where the pos□ terms are computed as shown in Equation (28) (but without neces-

sarily resetting the error states to 0.)

Similarly, for the range between magnetic sensors:

diffMagnetic
x = posMagnetic

kxr
− posMagnetic

kxl
(41)

diffMagnetic
y = posMagnetic

kyr
− posMagnetic

kyl
(42)
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Figure 13: Walking, foot-to-foot ranging measurement

diffMagnetic
z = posMagnetic

kzr
− posMagnetic

kzl
(43)

magMagnetic =

√
(diffMagnetic

x )2 + (diffMagnetic
y )2 + (diffMagnetic

z )2 (44)

The left and right measurement matrices are then formed using the calculations

from equations 37-44.

Hright =
1

magIMU

[
01×6 diff IMU

x diff IMU
y diff IMU

z 01×6

]
1×15

(45)

Hleft =
1

magIMU

[
01×6 −diff IMU

x −diff IMU
y −diff IMU

z 01×6

]
1×15

(46)
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Hrange =

[
Hright Hleft

]
1×30

(47)

The error measurement for the foot-to-foot range is formed as:

m = magIMU −magMagnetic (48)

which is multiplied by a K matrix to update the mean and covariance of the error

states.

3.4.2 Relative Rotation Measurement

The most novel measurement included in our system is the relative rotation be-

tween the IMUs. The idea, illustrated in Fig.14, is to take the rotation from one foot

to the other, based on the IMUs, and compare it to the rotation from the same foot

to the other based on the magnetic sensors’ attitude measurements.

Figure 14: Relative Rotation Diagram

As shown in Figure 14, there are several different coordinates frames that must
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be understood to perform the Kalman filter update using relative rotation. First,

the measurements of the magnetic sensors are given with respect to (w.r.t.) the

magnetic source. Therefore, there are actually two measurements, denoted as CMagr
Source

and CMagl
Source for the right and left magnetic sensor, respectively. These are combined

into a single relative rotation matrix as:

CMagr
Magl

= CMagr
Source

(
CMagl

Source

)⊤
(49)

Second, to generate a predicted measurement, the relative rotation between IMUs is

computed as:

CIMUr
IMUl

= CIMUr
Nav

(
CIMUl

Nav

)⊤
(50)

Note, however, that the IMU and Mag coordinate frames are not aligned with each

other based on how the sensors are mounted. To account for this, the rotations to

the Mag frame from the IMU frames must be added by using rotations from IMU to

Magnetic sensor coordinate frames eq. (51).

CIMU
Mag =


0 1 0

1 0 0

0 0 −1


3×3

(51)

To perform the actual measurement update, we express the relative rotation as a

3-element vector. To obtain this vector, the rotation matrix is expressed as a matrix

exponential of a skew symmetric matrix (S). These relationships are expressed as:

CNav
IMUl

= expm(SIMUl
) (52)

SIMUl
= logm(CNav

IMUl
) (53)
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where expm and logm are the matrix exponential and logarithm, respectively. Fur-

thermore, the skew-symmetric matrix can be transformed to a 3-vector (symbolized

by SS2v(S)) and back to a skew-symmetric matrix (represented as [v]×), with the

following relations:

S = [v]× =


0 v3 −v2

−v3 0 v1

v2 −v1 0


3×3

(54)

SS2v(S) =

[
v1 v2 v3

]
(55)

Using these relationships, the complete measurement from the magnetic sensors

is expressed as:

SS2v

(
logm

(
CMagr

Source

(
CMagl

Source

)⊤
))

(56)

The predicted measurement, using the rotations from IMU to a common nav frame

as defined in Equation (30) is:

z = SS2v

(
logm

(
CMagr

IMUr
CIMUr

Nav

(
CMagl

IMUl
CIMUl

Nav

)⊤
))

(57)

where z is a 3-vector representing the full predicted measurement.

This leads to both a measurement and predicted measurement that is a 3-vector.

To find the derivative of the predicted measurement w.r.t. the error states, we use the

derivative of the SS2v(logm(C)) function as derived in [26]. Note that C is assumed

to be a proper direction cosine matrix (DCM – a matrix that is both orthonormal

and has determinant of +1). In this case the partial derivatives can be expressed as:
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SS2v(logm(C))1C =


a0 0 0

0 a0 −b

0 b a0

 (58)

SS2v(logm(C))2C =


a1 0 b

0 a1 0

−b 0 a1

 (59)

SS2v(logm(C))3C =


a2 −b 0

b a2 0

0 0 a2

 (60)

where

cos θ =
trace(C)− 1

2
(61)

k =
θ cos θ − sin θ

4 sin3 θ
(62)

a0 = k(C[3, 2]− C[2, 3]) (63)

a1 = k(C[1, 3]− C[3, 1]) (64)

a2 = k(C[2, 1]− C[1, 2]) (65)

b =
θ

2 sin θ
(66)

and C[i, j] represents entry at the ith row and jth column of C, where 1 represents

the first entry.

At this point, we have what is essentially a 3 × 9 partial derivative matrix that

relates how the measurement (z) will change given changes in the estimated C matrix.

If we have the derivatives for how C changes given a change in the error states, then

we can form our complete H matrix. Using a multiplicative, rather than additive,
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derivative allows us to find this derivative. First, recall from Equation (30) that the

internal matrix is:

CMagr
IMUr

CIMUr
Nav

(
CMagl

IMUl
CIMUl

Nav

)⊤
(67)

Note that this is a valid DCM matrix. To enable changes that still result in a valid

DCM, we will take small changes for the right-side IMU as:

CMagr
IMUr

expm([v]×) C
IMUr
Nav

(
CMagl

IMUl
CIMUl

Nav

)⊤
(68)

where v is the vector of changes to be applied. (The left-side IMU’s DCM is similar but

will not be described here.) For small v, this expm expression can be approximated

as I + [v]×. When the derivative is taken this reduces the expm([v]×) to just [v]×.

For each element in v, the change in the complete DCM can then be represented as:

CMagr
IMUr

SSj C
IMUr
Nav

(
CMagl

IMUl
CIMUl

Nav

)⊤
(69)

where j ∈ {1, 2, 3} and

SS1 =


0 0 0

0 0 1

0 −1 0

 (70)

SS2 =


0 0 −1

0 0 0

1 0 0

 (71)

SS3 =


0 1 0

−1 0 0

0 0 0

 (72)

Performing a sum of the element-wise multiplication between the 3 × 3 matrix
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for the respective z element and v element gives the partial derivatives necessary to

compute H.

In summary,

H =


z1v1 z1v2 z1v3

z2v1 z2v2 z2v3

z3v1 z3v2 z3v3

 (73)

where ∂zi
∂vj

is computed by:

1. Computing the current C matrix (Equation (67))

2. Computing A = SS2v(logm(C))iC using Equations (58)-(60).

3. Using Equation (69), compute matrix B

4. zivj =
∑3

k=1

∑3
l=1A[k, l] ·B[k, l]

When a delta rotation has been computed using H, that delta rotation is not

added into the error state, but rather because the H matrix computed above does

not assume additive error states, changes derived from the Kalman filter (∆r) must

change the state as follows [22]:

CIMUr
Nav

+ = expm([∆r]×)C
IMUr
Nav

− (74)
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IV. Results and Analysis

Preamble

To evaluate the effectiveness of each type of measurement, a series of data collec-

tion trials of various trajectories were performed. For each trial, the recorded IMU

and magnetic sensor data is fed through the algorithm to estimate the trajectory,

which is then plotted against the ground truth from GPS readings. For each data

run, the results are shown for

• Using the ZUPT update on each IMU individually

• Using the ZUPT and relative rotation updates

• Performing the ZUPT and range updates

• Using all three updates (ZUPT, range, and relative rotation

This breakdown is intended to illustrate the positive, or negative, contribution of the

foot-to-foot range and relative rotation measurements extrapolated from the magnetic

sensor’s position and orientation measurements.

All results were processed using the PDR system with the process noise and mea-

surement noise values of tables 4 and 5. Many of these values were derived from

parameter tuning.

Table 5: Measurement Noise Parameters

Name Notation Value
ZUPT Measurment Noise σv 0.010 m/s
Relative Rotation Measurment Noise σrot 0.400 rad/s
Range Measurement Noise σrange 0.380 m
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4.0.1 Trial 1

The first trial consisted of walk around a residential area. The data capture of

each trial begins with an initial period of no movement, with all sensors’ data being

captured. The stationary period lasts for approximately 20 seconds. The initial data

is used to initialize the accelerometer and gyroscope bias calculations as mentioned

in section 3.3.1.

The first trial’s output in fig. 15a show significant drift effects. While the right

foot’s estimated path seems to over-commit to turns and curves in the user’s trajec-

tory, these features are less effective on the left foot’s trajectory.

(a) ZUPT (b) ZUPT + Rel. Rotation

(c) ZUPT + Range (d) ZUPT + Range + Rotation

Figure 15: Results from trial 1 of pedestrian navigation algorithm with different measure-
ment updates

The addition of the relative rotation measurements to Trial 1 improved the esti-

mated trajectories significantly. Figure 15b shows the effects of coupling the left and
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right foot estimates by using the relative rotation technique.

From Figure 15c, the foot-to-foot range measurement tightly couples the left and

right estimates trajectories together. The inclusion of this technique also shows

greater improvement in accuracy compared to including only the relative rotation

measurement with the ZUPT technique. Figure 15d shows the addition of all three

measurements. The inclusion of the relative rotation has notable influence on the

estimation.

Table 6: Trial 1: ZUPT Error

Mean σ
rightx −24.789 219.444
righty −178.555 196.887
leftx −258.420 263.895
lefty 73.202 162.269

Table 7: Trial 1: ZUPT + Relative Rotation Error

Mean σ
rightx 135.455 92.079
righty −90.413 121.359
leftx 144.068 96.490
lefty −81.161 124.194

Table 8: Trial 1: ZUPT + Range Error

Mean σ
rightx 89.957 62.528
righty 37.143 50.628
leftx 90.008 62.613
lefty 37.121 50.574
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Table 9: Trial 1: ZUPT + Relative Rotation + Range Error

Mean σ
rightx 138.549 93.268
righty −64.439 92.031
leftx 138.568 93.317
lefty −64.501 92.100

4.0.2 Trial 2

The second trial used data captured from a walk around a public park. Figure 16a

shows the foot position estimations tracking well, especially in the left foot, until 150

meters down from the starting point.

(a) ZUPT (b) ZUPT + Rel. Rotation

(c) ZUPT + Range (d) ZUPT + Range + Rotation

Figure 16: Results from trial 2 of pedestrian navigation algorithm with different measure-
ment updates

In fig. 16b the relative rotation measurements show improvement to the estimated

trajectories. The combination of the foot-to-foot range measurement with the ZUPT
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Table 10: Trial 2: ZUPT Error

Mean σ
rightx −97.888 97.573
righty −6.678 39.840
leftx 58.027 82.284
lefty 103.501 89.732

Table 11: Trial 2: ZUPT + Relative Rotation Error

Mean σ
rightx 5.595 21.454
righty −11.508 7.090
leftx 24.621 23.873
lefty 2.018 4.141

Table 12: Trial 2: ZUPT + Range Error

Mean σ
rightx 0.131 19.852
righty 9.618 8.031
leftx 0.043 19.686
lefty 9.635 8.029

Table 13: Trial 2: ZUPT + Relative Rotation + Range Error

Mean σ
rightx −5.518 23.326
righty −5.519 7.132
leftx −5.595 23.273
lefty −5.484 7.143

technique in Figure 16c has greatly improved accuracy compared to all other mea-

surement combinations in trial 2. The output in Figure 16d also has improvement

but shows more offsetting drift errors.
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4.0.3 Trial 3

Trial 3 used data captured from a short walk around a house. This trajectory has

the shortest distance walked of all the trials, with less than 50 meters total.

(a) ZUPT (b) ZUPT + Rel. Rotation

(c) ZUPT + Range (d) ZUPT + Range + Rotation

Figure 17: Results from trial 3 of pedestrian navigation algorithm with different measure-
ment updates

In fig. 17b the addition of the relative rotation measurement shows a negative

effect to the estimated trajectories compared to including the ZUPT measurement

alone, fig. 17a.

As the results from section 4.0.1 and section 4.0.2 have shown, the foot-to-foot

range measurement with the ZUPT technique in Figure 17c greater accuracy than

the relative rotation. The output in Figure 17d has slightly better improvement on

accuracy especially on the turns.
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Table 14: Trial 3: ZUPT Error

Mean σ
rightx −0.957 1.831
righty −1.948 0.848
leftx −0.277 1.685
lefty −0.936 1.024

Table 15: Trial 3: ZUPT + Relative Rotation Error

Mean σ
rightx −0.164 3.190
righty −0.569 1.503
leftx 4.972 4.152
lefty 3.794 2.867

Table 16: Trial 3: ZUPT + Range Error

Mean σ
rightx −0.244 1.639
righty −0.757 0.529
leftx −0.312 1.694
lefty −0.770 0.569

Table 17: Trial 3: ZUPT + Relative Rotation + Range Error

Mean σ
rightx 2.221 2.839
righty 2.434 1.725
leftx 2.155 2.929
lefty 2.482 1.699

4.0.4 Trial 4

Trial 4 used data captured from a short walk around a city block.

In fig. 18b the addition of the relative rotation measurement negatively affects the

estimated trajectories of the ZUPT measurement alone, fig. 18a, as was also the case

in Section 4.0.3.

48



(a) ZUPT (b) ZUPT + Rel. Rotation

(c) ZUPT + Range (d) ZUPT + Range + Rotation

Figure 18: Results from trial 4 of pedestrian navigation algorithm with different measure-
ment updates

Staying with the results from each trial, the foot-to-foot range measurement with

the ZUPT technique in Figure 18c significantly improves the estimated trajectories

compared to the other measurement combinations.

Table 18: Trial 4: ZUPT Error

Mean σ
rightx 19.222 22.246
righty −11.523 7.746
leftx −18.817 23.034
lefty 5.275 6.439

Along with a plot of the estimated trajectories. Each iteration of post-process also

output a measurement of the average error and standard deviation of the estimates

compared to the ground truth. These metrics reflect the observations drawn from
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Table 19: Trial 4: ZUPT + Relative Rotation Error

Mean σ
rightx −18.451 21.641
righty −0.810 7.541
leftx −17.873 19.430
lefty 10.264 7.111

Table 20: Trial 4: ZUPT + Range Error

Mean σ
rightx 3.114 3.808
righty −2.762 3.696
leftx 3.116 3.778
lefty −2.803 3.778

Table 21: Trial 4: ZUPT + Relative Rotation + Range Error

Mean σ
rightx −9.701 15.059
righty −2.453 5.290
leftx −9.703 15.048
lefty −2.483 5.407

analyzing the plotted trajectories. The mean errors of the outputs generated using

the range measurements show significant decreases to the outputs generated without

the range measurements.

Trial 3 in section 4.0.3, with its shorter distance, shows less deviation than the

other trials of longer distance. However, as shown in table 14 and table 16, the

errors including the relative rotation measurement increases the error compared to

the output with only a ZUPT measurement.
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V. Conclusions

This thesis reported on the background, objective, methodology, and results of

the proposed PDR System. The use of a commercial-grade IMU incorporated with a

the Polhemus G4 sensor system, for developing a dual-foot PDR system, have shown

promising results. The relative rotation measurement technique shows it can provide

significant improvement to a PDR system’s ability to accurately estimate a user’s

trajectory. This new technique did not perform as well as the foot-to-foot range

measurement when both are applied with the ZUPT technique.

5.1 Future Work

In Section 3.4.2 we explained the concepts behind the relative rotation measure-

ment. Part of this was the use of a rotation matrix representing the rotation from

the IMU to the magnetic sensor on the same foot. While this value should remain

constant, as the sensors are mounted to the same case, a future work could involve

estimating the rotation along with the other states.

With the introduction of the foot-to-foot range measurement as a technique for

improving PDR system accuracy, state observability analysis was conducted to de-

termine the effectiveness of the process [25]. To continue this work, an observability

analysis will also be conducted for the relative rotation technique. The intent is that

this analysis can shed insight on how ineffective the measurements are in our results.

Another future work to explore is the concept of relative translation measurements.

This will also make use of the G4 sensor’s unique capabilities.

Add some heavy derivations, extra data and/or plots here.
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tracking using inertial sensors. Journal of Physical Agents, 3, 01 2009.

21. Carl Fischer, Poorna Talkad Sukumar, and Mike Hazas. Tutorial: Implementing

a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, 12(2):17–

27, 2013.

22. Jenario Johnson and Clark Taylor. Relative magnetic position and rotation sensor

assisted dual foot pedestrian dead reckoning. 01 2022.

23. M. Arioli, B. Codenotti, and C. Fassino. The padé method for computing the
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BLE Bluetooth Low Energy. 2

GNSS Global Navigation Satellite System. 1

HDR Heuristic Drift Reduction. 17

IMU inertial measurement unit. iv

LCM Lightweight Communications and Marshalling. 22

PDR Pedestrian Dead Reckoning. iv, 20

PNS Pedestrian Navigation System. 1, 18

SLAM Simultaneous Localization And Mapping. 18

WLAN Wireless Local Area Network. 2

ZARU Zero Angular Rate Update. 17

ZUPT Zero Velocity Update. iv, 17
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