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Abstract

Previous research investigating lightning warning radii about the Cape Canaveral

space launch facilities have focused on reducing these radii from either 5 nautical miles

(NM) to 4 NM or from 6 NM to 5 NM depending on the structures being protected.

Some of these findings have suggested the possibility of both a seasonal difference

(warm versus cold) and lightning detection events (cloud-to-ground lightning (CG)

or total lightning (TL)) impacting these radii and associated risk levels. Utilizing

the 2017-2020 data provided by the 45th Weather Squadron at Patrick Space Force

Base via the Mesoscale Eastern Range Lightning Information System (MERLIN), this

thesis investigates these seasonal and data collection impacts. Our findings indicate

that there is a substantial increased risk to warning radii’s when just utilizing CG

data in comparison to TL data. For the years studied, the mean risk for just using

CG data was 5.94% in comparison to just 0.015% for the TL data for the 5 NM radii

safety buffer. There were negligible seasonal differences between the warm season

(May through September months) in comparison to the cold season (the remaining

months) for using TL (0.015% versus 0.014%). In contrast, utilizing just CG data

resulted in mean risk for the warm season of 4.86% compared to 11.56% for the

cold season. Our recommendations are to utilize TL data where available. If using

just CG data, then the risk of a lightning event occurring outside of a warning radii

approximately doubles during the cold season in comparison to the warm season.
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COMPARISON OF LIGHTNING WARNING RADII DISTRIBUTIONS

I. Introduction

1.1 Motivation and Background

With private companies, such as SpaceX and Blue Origin, and the emergence

of the United States Space Force conducting space operations, it is important for

contractors to understand the amount of risk they would undergo conducting an

operation in extreme weather conditions, specifically lightning strikes, while reducing

the amount of potential loss for postponing or damaging a spacecraft. According

to the Federal Aviation Administration, calendar year 2020 witnessed 39 licensed

launches, the highest number of licensed launches recorded since 1989, with most of

the launches occurring within Florida (Commercial Space Data, 2021). Florida is often

referred to the ”lightning capital” of the North America given the high concentration

of thunderstorms (Darack, 2007). The total cost of delay in the United States was

roughly 15.4 billion dollars in 2007 alone (Ball et al., 2010), with 75% of flight system

delays being due to weather conditions (Rosenberger et al., 2002). However, weather

delays could be avoided if weather systems created more accurate depictions of where

pre-existing storms occur.

Sanderson (2019) analyzed the distribution of lightning strike distances outside of

a cluster of previous lightning strikes that can be seen as a storm. Within her analysis,

she evaluated the Lightning Detection and Ranging (LDAR) II data collected from

a previous system. The 45th Weather Squadron at Patrick Space Force Base collects

this type on data, and in 2016, the Mesoscale Eastern Range Lightning Information

1



System (MERLIN) was introduced due to the previous system being unsustainable

since the manufacturer stopped producing sensors for the maintenance (Roeder and

Saul, 2012). Although the system is currently in use, analysis needs to be conducted

to maximize operational gain while minimizing failures within the data set collected

by the MERLIN system. Considering that the 45th Weather Squadron provides

weather safety for 25,000 personnel and billions of dollars in resources (Roeder and

Saul, 2016), maximizing operational gain is important while also minimizing failures

within the MERLIN system.

Analysis on the data produced by the MERLIN system is needed since lightning

within 5 nautical miles of a base cancels operations in that area. Although 5 nautical

miles is the prevalent system to cancel operations, research to decrease the number has

been conducted in order to continue operations since cancelling such operations within

the military is extremely costly, while also protecting the airmen in the surrounding

area. Captain Sanderson, in her research, found that a reduction from 5 nautical

miles to 4 nautical miles incurred a risk of 0.277%, a number that seems to indicate

the reduction is safe for operations using the LDAR II system (Sanderson, 2019).

1.2 Problem Statement

In order to analyze the MERLIN system, cluster analysis on the storms is needed

in order to analyze where the storms are at any given time around the surrounding

areas. Once these clusters are present, analysis on the distance between the edge of

the storm and the new lightning strike will need to be conducted, while also gathering

the probability of how far a new strike will occur outside of the boundary of the storm.

Once the new strike occurs, the strike will be added to the cluster by creating a new

elliptical cluster to include recent strikes. This should provide a Weibull distribution

with 4 nautical miles being the cutoff point. This analysis will be conducted on the
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different types of MERLIN data: the cloud-to-ground data, the lightning aloft data,

and the total lightning data that combined both the cloud-to-ground and lightning

aloft data set. The purpose is to see if cloud-to-ground data is sufficient to provide

accurate storm data or would the lightning aloft data set be needed in order to

minimize failures. The hypothesis is that the cloud-to-ground data alone is insufficient

and that lightning aloft data would need to be included in some way to minimize

potential failures.

1.3 Organization of the Thesis

The structure of this thesis has the following layout. Chapter II covers the lit-

erature review of storm patterns and previous studies conducted, with Chapter III

containing the methodology for this study, such as the types of analysis being used in

this report. Chapter IV presents the results and analysis, while Chapter V contains

the conclusion for this study as well as future research opportunities that should be

conducted.
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II. Literature Review

2.1 Overview

The use of lightning detection is important since it provides valuable information

with regards to the evaluation of lightning launch commit criteria (Roeder and Mc-

Namara, 2006). With that in mind, it is important to look at the different types of

lightning events and how lightning forms, as well as how lightning changes through-

out the seasons. It is also important to look at the current system and how it stores

the data collected. Previous algorithms are examined and goodness of fit tests are

explained within this Chapter.

2.2 Types of Lightning Events

There are different types of lightning events and can be broken down into two

different types of events: cloud-to-ground lightning events and lightning aloft events.

These two types of events make up the total lightning data set captured by the

MERLIN system (Roeder and Saul, 2016). The main difference between them is that

the cloud-to-ground lightning events contact the surface of the planet while lightning

aloft lightning events remain in the clouds. The difference can be seen in the lightning

area when lightning events begin to form.

2.2.1 How Lightning Forms

While there is still some debate around the creation of lightning events, recent

theories propose that an electric field is created within a thunderstorm, as well as

a separation of electric charges through electrification is present within the storm

(Saunders, 1993). When hot air moves upward as an updraft in the storm, it carries

with it water droplets with it to higher altitudes (35,000 to 70,000 feet), creating
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super-cooled water droplets. At the same time, cold downdrafts push hail and ice

from the higher portion of the cloud, and when these two items collide in the clouds, a

graupel forms. These graupels either continue downwards in the downdraft or remain

suspended in the cloud, usually around the center of the cloud.

As the upward moving super-cooled water droplets collide with the falling or

suspended graupels, an electron is exchanged from the water droplet to the graupel,

causing the water droplet to become positively charged while the negatively charged

graupel to continue falling or remain suspended. The water droplet moves towards

the top of the cloud, becoming ice or hail, along with other positively charged ice

droplets, while the center of the thunderstorm becomes negatively charged. Figure 1

will show the process and the charges of the thunderstorm.

Figure 1. The Electrification of a Storm (NOAA)

With the electric field in the cloud or storm being stronger than the electric field

between the surface and the base of the storm, the vast majority of lightning events

occur above the surface of the planet, with about 70 percent of all lightning events

remaining in the sky (Roeder and Rockledge, 2010). The other 30 percent of lightning

events occur as cloud-to-ground lightning strikes, where the transfer of electricity can
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be devastating for the humans, as well as equipment, on the surface. The leading

cause of deaths from storms in Florida from 1959 through 1999 were lightning strikes,

which accounted for 49% of storm deaths (Roeder et al., 2012).

2.2.2 Cloud-to-Ground Lightning

As the thunderstorm moves over the surface of the planet, a group of positively

charged particles start to accumulate along the surface and move in the same direction

of the thunderstorm. These charged particles begin to rise onto tall objects such as

metal poles, trees, and buildings. As the charged particles are moving upwards, a

negative charge is sent outwards known as a “stepped leader” from the thunderstorm

(US Department of Commerce, 2018a). The stepped leader moves out of the cloud

and tries to sense a positive charge within 50 meters from its leader. The leader

continues to surge for about 50 meters based on the air around the tip of the leading

strike, producing small flashes of light that it hard to see within special equipment

(weather.gov/safety). Figure 2 illustrates how the stepped leader appears coming

from a thunderstorm.

Figure 2. Stepped Leader Illustration (NOAA)
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2.2.3 Lightning Aloft

Lightning aloft lightning events occur when the lightning strike occurs inside of

the cloud itself or strikes a nearby cloud. Cloud-to-cloud lightning events occur when

a lightning strike contacts another cloud nearby. Intra-cloud lightning events occur

when a lightning strike occurs within the thunderstorm. Of the two types of lightning

aloft lightning events, intra-cloud lightning events occur most frequently. Intra-cloud

lightning events usually occur between the top of the anvil-shape of the thunderstorm

and the base of the cloud. Figure 3 illustrates the different types of lightning events.

Figure 3. Different Types of Lightning Events (NASA, n.d.)

2.3 Summer vs Winter Storms

It can be shown that different seasons yield different types of storms or have an

impact on the distribution of lightning storms. Lericos et al. (2002) defined warm

season days between 1 May and 30 September, with the cold season days between

1 October and 30 April. Although this is a rough estimate of when warm seasons
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and cold seasons are defined in Florida, it is a great starting point to do analysis

on the distributions of the distance between new lightning events and pre-existing

lightning storms. With regards to previous research, Tello (2021) and Sanderson

(2019) both observed lightning strikes between the months of May and September.

Holland (2021) examined lightning events throughout the full year, with the warm

season being between May and September, with the cold season being the months

from October through April. Gold et al. (2020) conducted studies on lightning events

and rain patterns, and considered the months of June through September to be the

warm season and the months of October through May to be the cold season. In

order to maintain consistency with previous research, the months of May through

September will be considered the warm season and the months from October to April

will be the cold season.

2.3.1 Seasonal Change

A set of requirements are needed to form a thunderstorm: moisture, atmospheric

stability, and an event to trigger motion in the atmosphere (Price, 2009). As stated

earlier, moisture is needed to produce precipitation, which is needed with conjunc-

tion with upward drafts to create electrification within the storm. During the warmer

seasons, the United States has enough moisture to create and develop thunderstorms,

given that the other requirements are also present. For atmospheric stability, upward

drafts are needed to push cooled water particles upwards to contact falling ice and

graupel to create electrification towards the center of the cloud. An unstable atmo-

sphere allows air close to the surface of the planet to become lighter and more buoyant,

allowing the air to rise quickly upwards. This is why warmer seasons typically see

more unstable atmospheres, and hence more lightning events. As for the triggering

motion event in the atmosphere, heating from the sun or cooling from water fronts
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or sea breezes can cause lightning events to occur.

2.4 Data Collection: MERLIN

With the introduction of the improved system, MERLIN provides more accurate

information with regards to cloud-to-ground data compared to the 4DLSS, with better

accuracy when it comes to stroke detection, flash detection, location accuracy and

peak current (Hill et al., 2016). With regards to the lightning aloft data accuracy, the

MERLIN system provides better accuracy for event detection and false detections,

along with a higher location accuracy. The increase in model accuracy provides

better tracking of storms and new lightning strikes, allowing analysts the ability to

conduct thorough studies on lightning strikes and the distances between new strikes.

The performance of MERLIN with regards to distances between strikes is not well

documented (Roeder and Saul, 2016).

2.4.1 Lightning Aloft Data

The MERLIN data set collects both lightning aloft data as well as cloud-to-ground

lightning events. The data is split by the day they occur as well as by lightning type:

CC for lightning aloft and CG for cloud-to-ground lightning events. Figure 4 shows

what the collected and finalized data appears using the MERLIN system for lightning

aloft collected by the 45th Weather Squadron at Patrick Space Force Base in Florida.

Figure 4. Unedited Lightning Aloft Data for May 13, 2018
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From Figure 4, the following data is collected: date, exact time, latitude, and

longitude respectively. The MERLIN data collects a large portion of the lightning

events within Florida, and therefore a sampling technique will be used to shrink the

number of observations to make the data more manageable. An algorithm is displayed

in Chapter III that explains the sampling method.

2.4.2 Cloud-to-Ground Data

For the cloud-to-ground lightning data collected using the MERLIN system, more

information is collected compared to the lightning aloft data. Figure 5 is an example

of one of the days collected for May 14, 2018.

Figure 5. Unedited Cloud-to-Ground Data for May 14, 2018

The first four columns are the same as lightning aloft data: date, exact time, lati-

tude, and longitude. The next column is the stroke kiloamperes with polarity, which

shows how much electrical current was produced and distributed for the lightning

strike. The sixth and seventh columns are the semi-major and semi-minor axis of

error ellipse measures using kilometers. The eighth column shows the error ellipse

angle of orientation that coincides with columns six and seven for the lightning event.
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The ninth column tracks the number of reporting sensors that tracked this lightning

event. The last column is mostly “G” to illustrate it is a cloud-to-ground lightning

event. Although a good amount of data is presented in the MERLIN data set, only

the first four columns will be used in this thesis.

2.5 Clustering Method

Previous research in the study of creating a boundary around pre-existing storms

have differing opinions on the best way to model the boundary of the storm. Sander-

son (2019) fit the boundary of the storm by testing different ellipse fitting algorithms

for LDAR II data. Hinkley (2019) fit the boundary of pre-existing storms by creat-

ing a convex hull algorithm which takes the outer most points of a storm, identifies

them as vertices, and creates a boundary by fitting lines to each of the vertices. Tello

(2021) used the an algorithm called Clustering of Online Data Streams (CODAS),

an algorithm that cluster lightning events quickly based on the density of the data,

as well as shapes depending on the number of dimensions. Holland (2021) uses an

ellipse fitting algorithm to examine total lightning events from the MERLIN data set.

2.5.1 Ellipse Fitting Algorithm

Sanderson (2019) tested a few different ellipse fitting algorithms in her thesis and

reported the results of each of the differing types. The first type of ellipse fitting

algorithm hypothesized to work was the least squares best fit ellipse but was later

ruled out due to the method trying to minimize the distance of every lightning event

from the edge of the ellipse created. Instead, Sanderson decided the ellipse would

seek to draw an ellipse around a defined percentage of lightning events, and therefore

decided to investigate a principal component analysis ellipse fitting algorithm. After

initial research and trials, Sanderson tries to salvage the principal component analysis
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ellipse fitting algorithm by using a convex hull of the extreme points, therefore allow-

ing a select number of lightning events to establish the ellipse instead of the entire

data set. In the end, many of the source points were still beyond the boundary of

the ellipse, and therefore decided to use a different ellipse fitting algorithm, namely

the minimum volume enclosing ellipsoid. This algorithm was the method chosen in

her research, and this choice provided accurate representations of clusters of storms

useful in her thesis for calculating the distance between new lightning events and the

boundary of a pre-existing storm. Although an ellipse fitting algorithm is not used

in the analysis of this thesis, Sanderson’s work and histograms were influential in the

writing of this paper.

2.6 Goodness of Fit Tests

The use of goodness of fit tests is crucial in statistics due to the nature of ensuring

a certain distribution is correct for the data collected. Different distributions will be

examined in Chapter IV, and a number of statistical tests will be used in determining

the correct type of distribution is selected, namely the probability – probability (P-P)

plot, the quantile – quantile (Q-Q) plot, as well as examining how well the empirical

and theoretical distributions fit for the cumulative density function as well as the

probability density function.

With the large sample of data points being evaluated in this thesis, the goodness

of fit tests being examined may suffer from some lack of fit. Johnson and Wichern

in their textbook ”Applied Multivariate Statistical Analysis” state that ”very large

samples invariably produce statistically significant lack of fit. Yet the departure from

the specified distributions may be very small and technically unimportant to the

inferential conclusion” (Johnson and Wichern, 1992). This means that some of the

fits may not be the best; however, the features of the theoretical distributions are
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important.

2.6.1 P-P Plot

The P-P plot is used in determining how well the cumulative density functions

for the empirical and theoretical distributions coincide in an easy-to-understand way.

The plot consists of points and a straight line, where the points are the difference

between the distributions and the straight diagonal line is the theoretical distribution.

If the majority of the points lie on the diagonal line, then the distribution fits well in

terms of their cumulative density functions. If most of the points do not lie on the

diagonal line, then another distribution should be examined, or the data set should

be examined for outliers. Figure 6 illustrates this summary by giving two examples,

one P-P plot that shows the data fits the selected distribution correctly and one P-P

plot that shows the distribution used is incorrect and should be reexamined. Both

graphs were created using R and creating random numbers using distributions.

Figure 6. P-P Plot Examples

The left image shows the distribution selected fits the data correctly since the

points lie on the diagonal line. The image on the right illustrates an incorrect dis-
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tribution selected. Another similar plot to define model adequacy is called the Q-Q

plot.

2.6.2 Q-Q Plot

The Q-Q plot is used to show how well the quantiles of the data compare to the

theoretical distribution created. Both the P-P plot and the Q-Q plot seek to illustrate

how well the data and the distributions fit by having similar types of graphs, since

the Q-Q plot also has a straight diagonal line and a set of points that should lie

on the diagonal line. If the majority of points line on the line, then the selected

distribution fits well. If the majority of points do not lie on the line, then another

distribution should be examined. Figure 7 shows two examples of Q-Q plots, with

the one example fitting the selected distribution well and one example showing an

ill-fitting distribution.

Figure 7. Q-Q Plot Examples

As shown in the left figure, the vast majority of the points lie on the diagonal

line, and therefore using the theoretical distribution would accurately explain the

histogram. Meanwhile, the graph on the right shows that most of the points do not
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lie on the diagonal line, and therefore using the theoretical distribution would not

accurately describe the histogram being tested.

2.6.3 Empirical vs. Theoretical Density

The empirical vs theoretical density graph displays the histogram created by the

data as well as the theoretical distribution being evaluated. This goodness of fit

test is helpful for gauging what type of distribution would best fit the shape of the

histogram. One drawback is that some distributions look similar, and therefore this

goodness of fit test should be used in tandem with other goodness of fit tests, such as

the P-P plot as well as the Q-Q plot. Figure 8 gives an example of two empirical vs

theoretical density graphs. One graph shows a histogram that is normally distributed

along with a theoretical distribution that is also normally distributed, while the other

graph shows a uniform histogram that is trying to be explained using an exponential

distribution.

The top plot in Figure 8 shows an ill-fitting theoretical exponential distribution to

a uniform histogram while the bottom plot shows a well-fitting theoretical distribution

to the normally distributed histogram. The purpose of this graph is to give insight

on the underlying histogram and distribution while visualizing what the proposed

theoretical distribution would look like on the histogram.

2.6.4 Empirical vs. Theoretical CDF

This last plot looks at the cumulative density function using the theoretical dis-

tribution and applying it to the cumulative density function of the histogram created

by the data. This graph, in conjunction with the other three plots adds another

layer of understanding how well the cumulative density functions align. This is a

helpful plot considering that using the cumulative density function will be helpful in
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Figure 8. Empirical vs. Theoretical Density Examples
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examining how many lightning events occur between certain distances. The goal is

for the red line and the points to align. Figure 9 shows two plots for the empirical

vs theoretical plots for the cumulative density functions, with one of the plots fitting

the distribution well while the other plot does not fit the distribution well.

Figure 9. Empirical vs. Theoretical Cumulative Density Function Examples

2.7 Summary

Lightning aloft lightning events stay suspended in the air and do not contact the

surface of the planet while cloud-to-ground lightning events make contact with the

ground, usually through tall structures or objects. Lightning events are not the same

throughout the year, certain events and environments can cause changes to lightning

events, such as temperature, wind, and atmospheric instability. On average, these

changes usually occur over different seasons on the eastern coast of Florida, with the

warmer season, between May and September, having more frequent thunderstorms
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while the colder season having less frequent lightning events.

With the inclusion of lightning aloft events, goodness of fit tests are utilized to

gain an understanding of how far new lightning events occur beyond the border of

pre-existing storms, as well as to see if this inclusion to the total lightning data

set would provide a more accurate representation of the whereabouts of pre-existing

storms in the model compared to relying solely on cloud-to-ground lightning events.

Although the program utilized in this research relies heavily on the convex hull, more

information about the program and how the new algorithm is written is explained

within Chapter III, along with a detailed explanation of the investigation conducted.

18



III. Modeling and Solution Methodology

3.1 Overview

In this chapter an algorithm is established to create a boundary for lightning

events. With the new algorithm, a histogram is created for distances from the new

lightning event to the boundary of pre-existing storms. The purpose of the histogram

is to see if including lightning aloft into the data set will have more lightning events

closer to 0 rather than 5 nautical miles compared to only using cloud-to-ground

lightning events. Once the histograms are established, goodness of fit tests will be

conducted to see which types of distributions fit the data better. An investigation

will then be used to test the safety of certain warning radii for using total lightning

or solely cloud-to-ground lightning events.

3.2 Data

The MERLIN system collects two different types of data: cloud-to-ground light-

ning events and lightning aloft events. Cloud-to-ground, as the name implies, tracks

lightning events where a lightning strike makes contact with the Earth. Lightning

aloft tracks lightning events that occur but stay in the Earth’s atmosphere. From

these two data sets a third set can be created called Total Lightning which combines

both types of lightning events into one data set. The positions of both types of light-

ning events are tracked using latitude and longitude, as well as the date and time

of the event. Although the latitude and longitude of the events are recorded, the

altitude of the events are not logged in the system. This issue is addressed in the

distance section of this chapter.

Although the MERLIN system covers most of the state of Florida, not all of the

data is important in this investigation. Sanderson (2019) considered data points that
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are within 25 nautical miles from the points of interest. In the thesis, the lightning

events within 25 nautical miles from the points of interest will be used create the

histogram of the distance between new lightning events and the boundary of a storm.

3.3 Shape of the Storm

Initially, ellipses were used to estimate shape and length of the storm with more

than five lightning events. The goal of the ellipse was to capture all of the lightning

events that occurred for a particular storm while minimizing the area of the ellipse

so that an accurate picture of the dimension of the storm can be drawn. Lightning

areas can take different shapes and polygons can be better suited to estimate the

perimeter of a storm rather than an ellipse (Hinkley et al., 2019). Therefore, it could

be beneficial for the perimeter of the storm change shape depending on the lightning

events within the given cluster for the lightning area.

Convex hulls aim to achieve this goal by creating the perimeter of a cluster by

using the outermost points in the system. An example of this is shown in Figure 10

for a particular storm in August of 2018.
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Figure 10. Convex Hull Example

In this example, the perimeter of the storm is clearly defined and is quickly cal-

culated using the convex hull function within the SciPy library. Distances from the

perimeter to the new lightning event are estimated using points along the convex hull

that are 0.1 nautical miles away from one another. The reason for having points that

are 0.1 nautical miles apart is to get a better estimate of the distance from the new

lightning event to the boundary of the storm. There will also be a buffer zone of 0.1

nautical miles around the boundary, such that if a lightning event occurs next to the

boundary and is less than 0.1 nautical miles from the storm, then it is counted as

inside of the storm. This brings into question how distances are calculated in this

model.

3.4 Distances

Although one can use the Cartesian plane to model lightning events with the

x-axis being the latitude and the y-axis being the longitude, the distances between

these events should take into account the curvature of the region. This is because the
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latitude and longitude represent points on a sphere rather than a two-dimensional

plane. To overcome this issue, the haversine function is used to calculate distances

between lightning events.

The haversine formula calculates the great-circle distance between points on a

sphere using the latitude and longitude of the events, along with the radius of the

planet. The great-circle distance is the shortest distance between points on the surface

of a sphere. Although Earth is not a perfect sphere, the great-circle distance is close

to perfect and can calculate the distance between points on Earth with an error of

around 0.5% (Admiralty Manual of Navigation, Volume 1). Now that we understand

the shape, the lightning events used in the system and the method for calculating

distances between events, now we must address how storms are classified and how

lighting events are added to a storm.

Certain cutoff distances are used in the algorithms, namely a 5 nautical mile cutoff

as well as a 10 nautical mile limit. The 5 nautical mile cutoff is for the distances

from new lightning events to new emerging storms, with a new lightning event being

within 5 nautical miles from a cluster of lightning events with less than 5 lightning

events to the cluster. This assumption in the algorithm comes from Tello’s research

on emerging storms, with roughly 3.24% of lightning distances in developing storms

exceed 5 nautical miles (Tello, 2021).

The 10 nautical mile limit refers to developed storms, such that a new lightning

event could be clustered with a developed storms if the lightning strike is within 10

nautical miles from the boundary of the lightning area. The 10 nautical mile limit

comes from the Lightning Launch Commit Criteria, which has a 10 nautical mile

threshold (Roeder and Saul, 2016). Not only that, but Holland (2021) found that

lightning aloft events only extend to 9 nautical miles, with cloud-to-ground events

having a shorter reach (Holland, 2021).
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3.5 Sampling Method

When we initially looked at the problem, we wanted to keep as many points

as possible but still be able to conduct a preliminary investigation in a meaningful

amount of time. For that, we decided to sample the first hour of each storm from 2018

through 2020 for the MERLIN data set. The meaning behind this decision is because

after the first hour, most of the distances from the boundary to new lightning events

are 0 since most of the lightning events are within a pre-existing storm. Therefore,

to minimize the number of samples while still capturing all of the days throughout

the years, taking the first hour proved helpful since it took computation time from

10 days to 5 days. Similar to Sanderson (2019), we decided to only include lightning

events within 25 nautical miles from the central node for LDAR II. The MERLIN

data set is very expansive and includes many lightning events across Florida, but

to shorten the data set to conduct the investigation, only lightning events within 25

nautical miles are included to test 8 important locations around the central node.

3.6 Clustering Method

Initially, a prebuilt machine learning clustering algorithm was thought to be the

solution to the issue of clustering lighting events into storms. The issue with these

methods is that these machine learning algorithms rely on distance between points;

and considering that the distance between points in this model are on a sphere instead

of a two-dimensional plane, we had to make our own clustering algorithm. The python

file created is given in Appendix A.

3.6.1 The Start of a Storm

Hinkley (2019) who uses an algorithm where they used the convex hull to generate

polygons to define a pre-existing lightning area using LDAR data. In the paper,
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Hinkley used lightning strikes within 15 minutes from the current lightning event, a

similar idea that will be implemented in this analysis. In the new system, lightning

events within 10 minutes from the current lightning strike will be considered for the

boundary created by only cloud-to-ground lightning event, and 2 minutes from the

current lightning strike for the boundary created by total lightning events. The reason

for the decrease in the amount of time for the boundary is for computational reasons,

since using 15 minutes for both data sets would take weeks to compute for similar

results.

The program restarts and starts calculating the distances after a few options occur:

30 minutes have passed with no lightning events occurring within the 25 nautical mile

zone after the first hour has passed, 10 or 2 minutes have passed with no lightning

events occurring within the operational zone before the first hour has passed.

3.6.2 Distance from Boundary Algorithm

In the program, there are two types of distances being calculated: convex and

nonconvex distances. The distances calculated for convex has gone through a number

of iterations, but the pseudo code can be found in Algorithm 1. It is the set of

distances calculated from the boundary of the nearby storm with 5 or more lightning

events having occurred within the set time limit given before, either 10 or 2 minutes.

The new lightning event finds a nearby storm with 5 or more lightning events, finds

the distance from the new lightning events to the vertices of the convex hull, and

finds the vertex with the minimum distance. The program then creates a line from

that vertex to the neighboring vertices, and the new lightning event will then find the

minimum distance along the new lines drawn.

Once the minimum distance is found, the algorithm stores the distance along with

the cluster number, and then tests the other pre-existing storms in the simulation also
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within the 10- or 2-minute time frame. To check if a lightning event is within the

boundaries of a pre-existing storm, another convex hull is calculated, this time with

the new lightning event within the pre-existing storm. If the new lightning event is a

vertex, then the new lightning event is outside of the pre-existing boundary. If the new

lightning event is not a vertex, then the new lightning event is within the boundary

and therefore the distance is no longer calculated. Once a minimum distance is found,

or if the new lightning event is within the boundary of a pre-existing storm, then the

new lightning event is added to the pre-existing storm with the minimum distance

and the distances, if needed, are recorded.

Algorithm 1 Convex Hull Pseudocode

Require: time ≤ 600 or 120 seconds ▷ time interval depends on CG or TL
Ensure: len(Cluster) ≥ 5
for Cluster with more than 5 Lightning Events do

Include New Lightning Event into Cluster
if New Lightning Event is in Convex Hull then

distance = -1
else if New Lightning Event is not in Convex Hull then

Take Convex Hull of Cluster except the New Lightning Event
Calculate Distances from New Lightning Event to each Vertex
Find min(distances)
Connect Min Distance Vertex with Neighboring Vertices ▷ Creates 2 Lines
Create Points Along Line at most 0.1 N.M apart
Find Distances From Points to New Lightning Event
Store min(distance) from the points, along with cluster id

Once all of the clusters are evaluated, the minimum from all of the clusters are

recorded and compared with the minimum distance from clusters with less than 5

lightning events. For clusters with less than 5 lightning events, the nonconvex dis-

tances are calculated. Algorithm 2 finds the distance from the new lightning event

to pre-existing lightning events in clusters with less than 5 lightning events using

the haversine function as well. Minimum distances and cluster id are recorded. The

algorithm does this for all storms and clusters with less than 5 lightning events and
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records all distances.

Algorithm 2 Nonconvex Pseudocode

Require: time ≤ 600 or 120 seconds ▷ time interval depends on CG or TL
Ensure: len(Cluster) < 5
for Cluster with less than 5 Lightning Events do

Find Distances from each Lightning Event in Cluster to New Lightning Event
Record min(distance) along with cluster id

Once all of the minimum distances are calculated, minimum distance will compare

with the minimum convex hull distance. If the minimum distance for the convex hull is

greater than 10 nautical miles and the minimum distance for the nonconvex distances

is greater than 5 nautical miles, then the new lightning event will have its own unique

cluster id and will begin looking for new lightning events close to it. If the distance

from the new lightning event to the convex hull is less than 10 nautical miles and the

minimum distance for the nonconvex distances is greater than 5 nautical miles, then

the new lightning event will be added to the cluster with the minimum convex hull

distance.

If the minimum distance from the new lightning event to the convex hull is less

than 10 nautical miles and the minimum distance from the new lightning event to the

nonconvex distance is less than 5 nautical miles, then the new lightning event will be

added to the cluster with the minimum distance. This cycle will continue until 1 hour

has passed since the beginning of the thunderstorm, or if a 10 minute break occurs

with no lightning events occurring before the hour has passed. If a 10 minute break

occurs, then the algorithm will start again and stop once a full hour occurs. After a

full hour occurs, distances are no longer recorded and will begin recording again once

30 minutes have passed without a lightning event occurring.

26



3.6.3 Validation of the Algorithm

Sanderson (2019) found that a Weibull distributed was the best fitting distribution

for the distance from the boundary to new lightning events. Although Sanderson used

an ellipse to create and fit the boundary of the cluster, the Weibull distribution was

also the best fitting distribution when using the convex hull to fit the boundary of

the storm. Figure 11 shows the histogram for the distance from the boundary of a

pre-existing storm to new lightning events. In the figure, one of the histograms uses

only cloud-to-ground lightning events to create the boundary of the storm and the

other histogram is created by using both cloud-to-ground and cloud-to-cloud lightning

events to create the boundary.

Figure 11 are examples of the goodness of fit tests to show how well the plots fit

the distributions.

Figure 11 illustrates different fitness tests, such as the P-P Plots and comparing

the Empirical and Theoretical CDF plots for the different histograms in 2018. Both

P-P Plots and Empirical and Theoretical CDF plots show that a Weibull distribution

fits the data well, even though they have different shape and scale values. This is

on par with Sanderson’s findings, and after comparing the different histograms with

the gamma, exponential and Weibull distribution, the Weibull seemed to perform the

best for all of the different histograms.
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Figure 11. Example of Goodness of Fit Analysis: 2018 Total Lightning and Cloud-to-
Ground
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3.7 Comparing the Different Types of Boundaries

Similar to Sanderson (2019) and her experiment conducted using LDAR II, the

experiment for the MERLIN system uses a set of important locations, all with a

lightning warning radius as well as a 1 nautical mile radius around the center of

the important locations. The 1 nautical mile radius is to establish a critical area

that needs to be safeguarded from lightning strikes, such as a launch site or a space

command center. The goal is to see if using both cloud-to-cloud and cloud-to-ground

lightning events will produce a more accurate representation of the whereabouts of

pre-existing storms compared to only using cloud-to-ground lightning events. Once

a lightning event occurs within the warning radius around the place of interest, the

location becomes offline and safe until the storm passes. If the 1 nautical mile radius

is struck by a lightning event before the area is offline, then it is counted as a failure.

Not only is this to test the accuracy and precision of using both types of lightning

events, but it is also to see if the warning radius, initially at 5 nautical miles, can be

shortened while keeping personnel safe.

The places of interest are launch sites, bases, and facilities in eastern Florida

within the 25 nautical mile radius mentioned earlier. Table 1 gives the names and

locations of these places of interest, as well as the acronym used within the python

program. All locations are found using google maps.

Table 1. Places of Interest for Experiment

Place of Interest Acronym Latitude Longitude
Launch Site 39 LC39 28.573469 -80.651070
Launch Site 40 LC40 28.562091 -80.577385
Launch Site 37 LC37 28.531212 -80.564782

Space-X Central Launch Facility Spx central 28.417199 -80.604741
Astrotech Space Operations Astrotech 28.5256 -80.8209
Patrick Space Force Base Psfb 28.234332 -80.605998

Kennedy Space Launch Facility Slf 28.59238 -80.66091
Florida Institute of Technology IA 28.092399 -80.641466
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The investigation will look at a few different metrics: number of base failures,

the warning radius used in the investigation, as well as the different seasons and

years examined. Different warning radii will be tested to see if the change will keep

personnel and the facilities safe.

3.8 Summary

Including cloud-to-cloud lightning events along with the cloud-to-ground events

could give a more accurate boundary for storm, as seen in Figure 11. Using the convex

hull to create the boundary of pre-existing storms, the histograms in Figure 11 are

drawn. From Figure 11, a few distributions, such as a Weibull distribution, could be

used to fit the histogram, which concurs with previous research from Hinkley (2019)

and Sanderson (2019). With all of this information, an investigation is conducted to

see if using both cloud-to-ground and cloud-to-cloud lightning events to create the

boundary is safer than only using cloud-to-ground lightning events.
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IV. Testing, Results, and Analysis

4.1 Overview

An analysis is conducted to examine the different distributions and histograms

created when measuring the distances from boundaries of storms created by using

solely cloud-to-ground lightning events as well as total lightning events. From there,

the empirical cumulative density functions for the different algorithms are used to

find the number of lightning strikes beyond a certain threshold, such as 5 nautical

miles for the different algorithms. An investigation is then conducted to examine

the number of lightning aloft and cloud-to-ground failures occurred when using solely

cloud-to-ground lightning events compared to the number of failures when using total

lightning to establish a warning radius.

4.2 Distance Distributions

From 2017 through 2020, the first hour of uninterrupted lightning storms are

recorded with the boundary of preexisting storms being created by cloud-to-ground

lightning events or total lightning events. Then, both types of boundaries are eval-

uated to see how far new lightning events, both cloud-to-ground and lightning aloft,

are from the boundaries. The initial goal is to see how the global histograms com-

pare when using only cloud-to-ground lightning to create the boundary compared to

using total lightning events to create the boundary of the storm. Figures 12 and

13 illustrate the difference in terms of the distance from boundary to new lightning

events.
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Figure 12. Global Histogram for Distance from the Boundary of the Storm: Cloud-to-
Ground

Figure 13. Global Histogram for Distance from the Boundary of the Storm: Total
Lightning
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As shown in figures 12 and 13, the distances from the boundary to new lightning

events when only using cloud-to-ground lightning events to establish a boundary

have a much wider distribution compared to the algorithm that uses total lightning

to create a boundary. When solely using cloud-to-ground to establish the boundary,

the distances from the boundary to new lightning events stretch the entire 10 nautical

mile boundary compared to using total lightning to create the boundary. In figure

14, much fewer lightning events occur beyond 3 nautical miles, and practically no

lightning events occur beyond 5 nautical miles. This means that total lightning gives

a more accurate representation of where pre-existing storms are currently located in

the model compared to using solely cloud-to-ground lightning events. Figures 12 and

13 use the first hour of every storm from 2017 through 2020.

4.2.1 Distribution for the Global Models

After looking at Figures 12 and 13, it is important to ask which types of distri-

butions might suit the histogram. Three distributions come to mind: the gamma

distribution, the exponential distribution, and the Weibull distribution.

The histogram in Figure 12 will look at two of the distributions, namely the

gamma and Weibull distribution. With the initial hump between 0 and 1 nautical

miles, the exponential distribution would not describe the model accurately. Figures

14 and 15 show the statistical tests applied to the histogram in Figure 12.
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Figure 14. Goodness of Fit Tests for Gamma Distribution of Global Cloud-to-Ground
Algorithm

Figure 15. Goodness of Fit Tests for Weibull Distribution of Global Cloud-to-Ground
Algorithm
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Looking at the P-P plot for both Goodness of Fit Tests, both distributions appear

to model the histogram well for the most part. Towards the tail end of the model,

the distribution is not perfect, as shown in the Q-Q plot after the 10th quantile for

both distributions. However, the vast majority of the points lie on the diagonal line

for both the P-P plots and the Q-Q plots, which entails a good fit, along with the

empirical vs theoretical cumulative density function graphs for both distributions.

Either distribution would suffice to describe the data, but to retain continuity with

Sanderson (2019) a Weibull distribution would be preferred.

As for the total lightning distributions, all three distributions would need to be

evaluated, namely the gamma, exponential and Weibull distribution. The steep fall

in distance from the boundary to new lightning events between 0 and 1 nautical mile

could be best explained with an exponential distribution, and thus this distribution

will need to be examined. Figures 16, 17 and 18 contain the 4 Goodness of Fit tests

for each distribution evaluated.

Figure 16. Goodness of Fit Tests for Gamma Distribution of Global Total Lightning
Algorithm
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Figure 17. Goodness of Fit Tests for Exponential Distribution of Global Total Lightning
Algorithm

Figure 18. Goodness of Fit Tests for Weibull Distribution of Global Total Lightning
Algorithm

Focusing on the Q-Q plots for all of the distributions shown in Figures 16 through

18, it appears that all of the distributions do not fit the histogram well after the

2nd quantile, which is understandable due to there not being many lightning events
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beyond 3 nautical miles, but still having some lightning events up to 8 nautical miles.

Therefore, for this analysis, the Q-Q plot will be ignored after the 2nd quantile for

all of the distributions since all of the distribution explain the model well for the

most part. With regards to the P-P plots, all three distributions fit the data well,

but the exponential distribution fits the data the best, with there being less points

off the diagonal line in the middle of the plot, with the Weibull distribution being a

close second. For the empirical vs theoretical graphs for the density and cumulative

density function, both explain the data well, with the Weibull having an initial hump

between 0 and 0.5 nautical miles. Although the distributions explain the global or

entire data set well, the seasonal difference between the hot and cold months need to

be examined.

One noted characteristic from the Q-Q plots is that it diverges after the second

quantile and is above the line. This means that skewness is present within the plot.

Using the theoretical distributions generated from this study by itself may not tell

the full story, and thus it is beneficial to present other goodness of fit tests along side

the Q-Q plots.

4.2.2 Yearly Changes

It is important to see how the years compare, to see if there are any important

features that occur every year. Figures 19 through 22 illustrate the histogram for

every year starting from 2017 through 2020 when using Cloud-to-Ground lightning

events to establish a boundary.

For the cloud-to-ground algorithm, a noticeable change occurs at 5 nautical miles,

where there is a sudden drop off for year 2018. Although a similar shape occurs every

year where there is a large amount of lightning events between 0 and 1 nautical miles

and then it begins to drop in an exponential fashion. Although these graphs are for
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Figure 19. Histogram for 2017 Using Cloud-to-Ground

Figure 20. Histogram for 2018 Using Cloud-to-Ground
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Figure 21. Histogram for 2019 Using Cloud-to-Ground

Figure 22. Histogram for 2020 Using Cloud-to-Ground
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cloud-to-ground, it is also important to observe the yearly changes for total lightning.

Figure 23. Histogram for 2017 Using Total Lightning

Figure 24. Histogram for 2018 Using Total Lightning

For the utilization of both lightning aloft and cloud-to-ground lightning events,

the vast majority of lightning events occur before 5 nautical miles, with very little

40



Figure 25. Histogram for 2019 Using Total Lightning

Figure 26. Histogram for 2020 Using Total Lightning
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lightning events occurring beyond 4 nautical miles every year. This signifies that total

lightning gives a more accurate representation for generating a lightning boundary.

4.2.3 Season Plots: Total Lightning

The warm months are between the months of May and September, as stated

earlier, and therefore all lightning events between these months will be compared to

its counterparts with regards to the types of lightning events to create the boundary.

In other words, Figures 27 and 28 will be split into two separate histograms, one with

lightning events having occurred between the months of May and September, and the

other with lightning events having occurred outside of the warm months.

Figure 27. Warm Seasonal Months for Total Lightning
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Figure 28. Cold Seasonal Months for Total Lightning
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Both figures appear the same, with a few more lightning events occurring beyond

8 nautical miles in the warmer season compared to the colder season. There appears

to be more lightning events occurring in the warmer months compared to the colder

months, which concurs with previous studies by the NOAA (US Department of Com-

merce, 2018b). However, the distributions of each histogram will need to be examined,

and again all 3 types of distributions will need to be examined. Figures 29 through

34 contain the Goodness of Fit tests for the different seasons.

Figure 29. Gamma Distribution for the Warm Season
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Figure 30. Exponential Distribution for the Warm Season

Figure 31. Weibull Distribution for the Warm Season
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With the three distributions examined, it appears the Weibull distribution is the

best fit for the warm seasons from 2017 through 2020. In terms of the parameter

estimates for the distributions, the shape and rate parameters for the gamma distri-

bution are 1.23 and 2.11, with the standard errors of 0.003 and 0.006, respectively.

For the exponential distribution tested in Figure 30, the rate parameter is 1.71 with

a standard error of 0.003. For the final Weibull distribution in Figure 31, the shape

and scale parameters are 1.01 and 0.59, with the standard errors of 0.001 and 0.001,

respectively. Figures 32 through 34 will examine the three distributions during the

cold seasons.

Figure 32. Gamma Distribution for the Cold Season
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Figure 33. Exponential Distribution for the Cold Season

Figure 34. Weibull Distribution for the Cold Season
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The cold season appears to have more of a bend at the beginning of the histogram,

with the exponential doing slightly better than the Weibull and the gamma distribu-

tion. For the shape and rate parameter estimates for the gamma distribution in Figure

32, the shape parameter is 1.31 and the rate parameter is 2.33, with a standard error

of 0.01 and 0.01, respectively. The rate parameter for the exponential distribution in

Figure 33 is 1.78, with the standard error of 0.01. The shape and scale parameter for

the Weibull distribution are 1.05 and 0.58, with a standard error of 0.003 and 0.002,

respectively. Since both seasons have similar parameter estimates for all 3 types of

distributions, it is safe to sat there is not much of a difference between the warm and

cold season when using total lightning.

4.2.4 Seasonal Plots: Cloud-to-Ground

The same process as shown in 4.2.2 will also be applied to the model that cre-

ated the boundary of pre-existing storms by solely utilizing cloud-to-ground lightning

events to shape the storm. Figures 35 and 36 show the entire histograms for the warm

and cold seasons from 2017 through 2020 as a way to glance at the differences between

the seasons when using cloud-to-ground lightning events to establish a boundary.
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Figure 35. Warm Seasonal Months for Cloud-to-Ground

Figure 36. Cold Seasonal Months for Cloud-to-Ground
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In term of differences between the two plots, there appears to be more of a spread

during the cold season compared to the warm season with regards to lightning strikes

between 0.5 and 5 nautical miles.

4.2.5 Yearly Seasonal Plots

It is also important to compare the different seasons between the years for the

different seasons as well. The following figures illustrate the differences and similarities

between the seasons when using cloud-to-ground lightning events to establish the

boundary of the storm.

Figure 37. Warm Season of 2017 for Cloud-to-Ground
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Figure 38. Warm Season of 2018 for Cloud-to-Ground

Figure 39. Warm Season of 2019 for Cloud-to-Ground
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Figure 40. Warm Season of 2020 for Cloud-to-Ground

Figure 41. Cold Season of 2017 for Cloud-to-Ground
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Figure 42. Cold Season of 2018 for Cloud-to-Ground

Figure 43. Cold Season of 2019 for Cloud-to-Ground
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Figure 44. Cold Season of 2020 for Cloud-to-Ground
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The warm seasons throughout the years appear to have similar amount of lightning

strikes between 0 and 0.5 nautical miles compared to the number of lightning strikes

between 0.5 and 1 nautical mile. From there the distribution seems to follow a Weibull

or an exponential distribution. For the cold seasons throughout the years, there seems

to be a large number of lightning strikes between 0 and 3 nautical miles for most of

the years, with a noticeable drop off of lightning strikes beyond 5 nautical miles.

With the following plots examined, it is also important to evaluate the total lightning

distributions throughout the years.

Figure 45. Warm Season of 2017 for Total Lightning
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Figure 46. Warm Season of 2018 for Total Lightning

Figure 47. Warm Season of 2019 for Total Lightning
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Figure 48. Warm Season of 2020 for Total Lightning

Figure 49. Cold Season of 2017 for Total Lightning
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Figure 50. Cold Season of 2018 for Total Lightning

Figure 51. Cold Season of 2019 for Total Lightning

58



Figure 52. Cold Season of 2020 for Total Lightning

There does not seem to be an apparent difference between the warm and cold

seasons for total lightning. In terms of characteristics, all of the graphs have a large

amount of lightning strikes between 0 and 0.5 nautical miles with not many if any

lightning strikes beyond 3.5 nautical miles.

4.2.6 Number of Occurrences

With the previous plots and histograms being drawn, it is important to keep in

mind the number of lightning occurrences being examined. Table 2 gives light on the

number of lightning strikes in each year, as well as by the season, whether it is the

warm season or the cold season.

Table 2. Number of Lightning Strikes Beyond 0.1 N.M for Cloud-to-Ground Boundary

Year Warm Season Cold Season Total for Year
2017 1,067,868 114,750 1,182,618
2018 113,687 25,274 138,961
2019 4,292,093 1,588,602 5,880,695
2020 3,282,749 751,235 4,033,984
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Table 3. Number of Lightning Strikes Beyond 0.1 N.M for Total Lightning Boundary

Year Warm Season Cold Season Total for Year
2017 62,186 12,040 74,226
2018 31,096 12,263 43,359
2019 46,252 21,088 67,340
2020 113,675 26,264 139,939

As shown in Tables 2 and 3, the number of lightning strikes beyond 0.1 nautical

miles from the boundary of a storm is much lower when lightning aloft is also utilized

in the algorithm compared to not using lightning aloft such as in Table 2.

4.2.7 Empirical and Theoretical CDF

When finding the risk associated with new lightning events, it is important to

evaluate the cumulative density function for the data and the theoretical distribution

to see how many lightning events occurred beyond a certain threshold, for instance,

how many lightning events occurred beyond 5 nautical miles from the boundary of a

pre-existing storm. Tables 4 and 5 investigate how many lightning events occurred

outside of the pre-existing storm for different distances, both for the cloud-to-ground

and the total lightning algorithms for the warm and cold seasons for each year.

Table 4. Empirical Right-Hand Tail Probabilities for the Lightning Strikes Beyond 5
Nautical Miles for Cloud-to-Ground Boundary

Year Warm Season Cold Season Total for Year
2017 2.43% 1.21% 2.34%
2018 3.13% 4.61% 3.38%
2019 5.47% 10.80% 6.71%
2020 5.30% 17.10% 6.55%
Total 4.86% 11.56% 5.94%
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Table 5. Empirical Right-Hand Tail Probabilities for the Lightning Strikes Beyond 5
Nautical Miles for Total Lightning Boundary

Year Warm Season Cold Season Total for Year
2017 0.017% 0.017% 0.017%
2018 0.22% 0.07% 0.16%
2019 0.005% 0.005% 0.005%
2020 0.009% 0.02% 0.01%
Total 0.015% 0.014% 0.015%

As shown in Table 5, the number of lightning strikes beyond 5 nautical miles

is extremely small when utilizing lightning aloft to determine a boundary warning.

When solely using cloud-to-ground lightning events, a greater number of lightning

strikes are not accounted for, and therefore is not as accurate, as shown in Figure 12.

However, with the current safety protocol being at 5 nautical miles, when using both

lightning aloft and cloud-to-ground lightning events, the warning radius can decrease

while remaining safe for personnel outside. Table 6 seeks to find a safe alternative to

the current safety warning radius by testing different radii. Table 6 takes into account

every year from 2017 through 2020 where both lightning aloft and cloud-to-ground

lightning events are taken into account when creating the boundary for pre-existing

storms.

Table 6. Empirical Right-Hand Tail Probabilities for Different Potential Warning Radii
Using Total Lightning

Warning Radius (N.M.) Warm Season Cold Season Total for Year
5 0.015% 0.014% 0.015%
4.5 0.020% 0.19% 0.19%
4 0.024% 0.025% 0.024%
3.5 0.031% 0.033% 0.032%
3 0.041% 0.046% 0.041%
2.5 0.057% 0.066% 0.058%
2 0.086% 0.106% 0.090%

As shown in Table 6, as the warning radius decreases, the number of lightning

events beyond the warning radius increases, with the percentages being extremely
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small. With that being said, a reasonable warning radius could be at 4 nautical

miles, with the percentage of lightning events beyond 4 nautical miles being 0.024%.

However, another alternative could be lowering the warning radius to a proposed 3.5

nautical miles with the percentage of lightning events beyond 3.5 nautical miles being

0.032%. Again, this is for the number of lightning events beyond the boundary, most

of the lightning events for total lightning resides within the boundary of the storm,

and not accounted for in these tables.

4.3 Cloud-to-Ground vs. Total Lightning at Locations of Interest

When it comes to lightning storms, there are often precautions and rules-of-thumb

used to keep people safe from destructive acts of nature. One said rule is “lightning

in 5,” which means that if a lightning event occurs within 5 nautical miles from a

location of interest, the location “shuts down” and the personnel go inside to avoid

getting injured. Previous research by Sanderson (2019) and Hinkley (2019) showed

that decreasing the warning radius from 5 nautical miles to 4 nautical miles can be

accomplished without compromising personnel safety. An investigation is conducted

to see if utilizing lightning aloft lightning events along with cloud-to-ground lightning

events would yield better results compared to only using cloud-to-ground lightning

events.

For only using cloud-to-ground lightning events, a location of interest would “shut

down” once a cloud-to-ground lightning event occurs within 4 nautical miles from the

place of interest. If any type of lightning event occurs within 1 nautical mile from

the location, a failure occurs, and if the failure is a cloud-to-ground lightning event,

the base will also “shut down,” but if the lightning event is a cloud-to-cloud lightning

event, the base remains open, and failures continue to be tracked. The location will

be up and running once 30 minutes have occurred without a lightning event within 5
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nautical miles from the base. For using total lightning events to establish a lightning

warning radius, the same rules apply; however, if any lightning event occurs within 4

nautical miles, the location closes, and the personnel are safe.

Currently, the lightning warning radius of 4 nautical miles is fixed, but later

investigations will look at potentially shortening the warning radius for lightning aloft

lightning events. Table 7 shows the results of this investigation, with the locations of

interest located in Table 1. This investigation covers all lightning events from 2017

through 2020 as well as all of the locations of interest. Tables 7 and 8 will take a

closer look at where the failures occurred and the circumstances around them.

Table 7. Number of Failures by Year (4 Nautical Miles)

Year CC Fails CG CG Fails CG CC Fails TL CG Fails TL
2017 4,770 13 3 1
2018 2,350 17 0 17
2019 48,542 7 4 0
2020 30,479 17 7 0

As shown in Table 7, the number of failures dropped drastically, with total light-

ning closing the places of interest in time before failures could occur more often than

only using cloud-to-ground lightning events could give the proper warning. The fasci-

nating part is that of the 15 failures from 2017-2020 (with the exception of 2018 since

the data has some days with only cloud-to-ground), 14 failures were only lightning

aloft failures with only 1 cloud-to-ground failure throughout the 3 years. For most of

the lightning aloft failures in the total lightning, the failure occurred when there were

no lightning events within 5 nautical miles. In essence, after 30 minutes have passed

without a single lightning event occurring within 5 nautical miles from the center of

the location, the first lightning event is within 1 nautical mile from the base. The

question now is to see if there is a difference in terms of seasons when it comes to

the failures for both using the cloud-to-ground and total lightning events, as well as

looking at the breakdown of where the failures occurred.
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4.3.1 Location of Failures

Initially, only lightning events within 25 nautical miles from the center point

[28.5387, -80.6428] in terms of [latitude, longitude] were considered in order to de-

crease the size of the total data set. Once the sample size is decreased, only lightning

events within 5 nautical miles from the location of interest were considered, with the

warning radius for both total lightning and cloud-to-ground lightning remained con-

stant at 4 nautical miles. Table 8 shows how many lightning events were examined

for every location of interest from 2017 through 2020, along with how many failures

occurred at each location depending on the type of failure as well as if total lightning

was utilized or not.

Table 8. Failures at Location of Interest

Location Strikes CC Fails CG CG Fails CG CC Fails TL CG Fails TL
Lc39 5,591,014 13,423 7 3 0
Lc40 4,593,987 13,592 6 1 1
Lc37 4,565,283 9,602 5 1 3

Spx central 4,717,596 12,208 4 3 4
Astrotech 7,693,108 13,576 13 5 6

Psfb 2,236,282 8,260 13 1 2
Slf 5,584,622 15,480 6 0 2
IA 392,745 0 0 0 0

As shown in Table 8, the number of lightning aloft failures dramatically decreases

when the total lightning is added to the data set. The number of cloud-to-ground

failures decreased or stayed the same, but as shown in table 7, most of the cloud-to-

ground failures occurred in 2018 alone, with only one cloud-to-ground failure occurring

in 2017 when total lightning is used. The warning radius for both the cloud-to-ground

lightning events and the lightning aloft events were set at 4 nautical miles at the start

of the investigation, but as the warning radius shrinks, how much does the number

of failures increases when using total lightning?
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4.3.2 Comparing Different Warning Radii

Table 9 seeks to answer this question by decreasing the radius by 0.1 nautical

miles starting from 4 nautical miles to 3.5 nautical miles to see how they compare.

Both the lightning aloft failures and the cloud-to-ground lightning events will be

tracked separately such as in Table 7; however, the number of failures will not be split

into years. Instead, the rows will focus on the warning radius using total lightning,

similar to Table 6. The purpose of this investigation is to see if the warning radius can

decrease while maintaining similar results as Table 6 to ensure that personnel are safe.

For Table 9, the warning radius for lightning aloft and cloud-to-ground lightning will

be the same radius, which means that if either a lightning aloft or a cloud-to-ground

lightning event occurs within the warning radius, the location of interest will close.

Table 9. Warning Radius Comparison

Warning Radius (N.M.) CC Fails CG Fails Total Fails
4 14 18 32
3.9 16 19 35
3.8 16 22 38
3.7 16 23 40
3.6 17 23 40
3.5 19 23 42

From Table 9, the number of failures does not increase by much as the warning

radius decreases, with only 10 more failures occurring as the warning radius drops

to 3.5 nautical miles. Looking at the cumulative density function when using total

lightning, the amount of risk associated with decreasing the warning radius from 4

to 3.5 nautical miles increases from 0.024% to 0.032%, and when using Table 9, the

number of failures from 2017 through 2020 increased from 32 to 42 failures. Thus,

utilizing 4 nautical miles could become a great alternative to the “lightning in 5”

rule-of-thumb, but decreasing the warning radius to a lower value, such as 3.9 or

3.8 nautical miles when using total lightning can keep personnel outside safe while
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keeping locations of interest operational.

Now, it is important to look at the different years as well, to see if excluding 2018

data would affect the results from Table 9. Tables 10 through 13 show the different

years, all with varying warning radii to see how many failures occur as the warning

radius shrinks.

Table 10. Warning Radius Comparison: 2017

Warning Radius (N.M.) CC Fails CG Fails Total Fails
4 3 1 4
3.9 3 1 4
3.8 3 1 4
3.7 3 1 4
3.6 3 1 4
3.5 3 1 4

Table 11. Warning Radius Comparison: 2018

Warning Radius (N.M.) CC Fails CG Fails Total Fails
4 0 17 17
3.9 0 18 18
3.8 0 20 20
3.7 0 21 21
3.6 0 21 21
3.5 0 21 21

Table 12. Warning Radius Comparison: 2019

Warning Radius (N.M.) CC Fails CG Fails Total Fails
4 4 0 4
3.9 5 0 5
3.8 5 0 5
3.7 5 0 5
3.6 5 0 5
3.5 7 0 7
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Table 13. Warning Radius Comparison: 2020

Warning Radius (N.M.) CC Fails CG Fails Total Fails
4 7 0 7
3.9 8 0 8
3.8 8 1 9
3.7 8 1 9
3.6 9 1 10
3.5 9 1 10

Tables 10 through 13 show that 2018 was a bit of an anomaly, but the decrease

in the warning radius appears to be safe for the decrease from 4 nautical miles to

3.5 nautical miles for most of the years. For 2017 and 2019, the number of cloud-

to-ground failures stayed constant as the warning radius decreased to 3.5 nautical

miles. For 2020, when the warning radius decreased from 4 to 3.8 nautical miles, a

cloud-to-ground failure occurred but remained steady after 3.8 nautical miles. As for

cloud-to-cloud failures, the number rose as the warning radius decreased; however,

the number of failures did not increase by more than 3 failures in a year.

4.4 Summary

An analysis is conducted to examine the number of lightning strikes beyond bound-

aries constructed by using only cloud-to-ground lightning events or using both cloud-

to-ground and lightning aloft events. The analysis compares the warm and cold

seasons for the different types of algorithms, as well as how the algorithm compares

throughout years and the seasons within the years. From there, a statistical analysis of

the empirical cumulative density functions was conducted to see how many lightning

events occur beyond potential warning radii, such as dropping the current standard

of 5 nautical miles to 4 nautical miles. An investigation was then constructed where

all of the lightning events from 2017 through 2020 were tested with different warning

radii for locations of interest, as well as an investigation that seeks to compare the

67



effectiveness of a warning radius of 4 nautical miles for both cloud-to-ground as well

as total lightning.
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V. Conclusions and Recommendations

5.1 Overview

This chapter provides a comprehensive summary of the results and methodology

used within this research, along with alternative methods that could be useful for

further research. This chapter also seeks to give insights on future research opportu-

nities.

5.2 Results

With the vast majority of lightning strikes being within the boundary of pre-

existing storms when using total lightning, along with less than 0.024% of lightning

strikes being beyond 4 nautical miles, the utilization of total lightning would be

beneficial to add when accounting for positions of lightning storms. When using total

lightning, a warning radius of 4 nautical miles can be a safe distance to adopt, and

if some more risk can be taken, the up to 3.5 nautical miles can safely be adopted

without much of a risk increase. If the warning radius does not change, then the use of

total lightning would be beneficial to give accurate representations of the existence of

pre-existing storms within models. When total lightning is utilized, there is not much

of a difference in terms of the distance from the boundary to new lightning events

when it comes to the warm and cold season. When only cloud-to-ground lightning

strikes are utilized to fit the boundary of the storm, there appears to be a difference

between the warm and cold seasons. Only using cloud-to-ground lightning events

greatly impacts the safety of locations and personnel, with Table 7 illustrating that

using total lightning decreases risk substantially. Table 4 also shows that 5.94% of

lightning events occur beyond 5 nautical miles when using cloud-to-ground compared

to 0.015% when using total lightning to establish a boundary.
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5.3 Future Research Opportunities

As for future research in the field, it would be beneficial to experiment with the

ellipse fitting methods from previous researchers to speed up the processing time

for the clustering algorithm. Bear in mind that this study focused on the central

eastern coast of Florida, with lightning storms varying by location around the country.

Therefore, testing different regions of Florida or even different parts of the United

States could be beneficial in painting a more accurate depiction of lightning events.

A place of interest could be Oklahoma, seeing as they have been experiencing an

abundance of lightning events in recent years. Another place of interest could be

the Houston Spaceport in Texas. In terms of accurate depictions of lightning events

and predictions, it could be beneficial to track how the center of the storm moves

throughout time, and see if that can help predict where the next few lightning strikes

might occur. Such a process would take advantage of modern software and the use of

neural networks. Another opportunity would be removing percentages of data from

total lightning in order to simulate sensor failure. This could bear insight on how

robust the system is when losing 5% of data compared to 10% or even 20% of its

data. The investigation within this study looked at various warning radius but did

not account for operational hours, so it could be beneficial to see how the warning

radius affects working hours.

5.4 Final Remarks

From the results of this study, consider reducing the lightning warning radius

on the eastern coast of Florida. The warning radius could drop to 4 or perhaps

3.5 nautical miles while keeping personnel safe from lightning strikes. If the warning

radius is not reduced, the utilization of total lightning will provide adequate protection

of the whereabouts of pre-existing storms and lightning strikes compared to solely
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using cloud-to-ground lightning events. Implementing total lightning gives a more

accurate representation of the location of lightning areas compared to solely using

cloud-to-ground lightning events.
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Appendix . Python Code for Total Lightning Boundary

import datetime as dt
import numpy as np
import math
from s c ipy . s p a t i a l import ConvexHull
import matp lo t l ib . pyplot as p l t
from haver s ince import Unit , haver s ine

in1 = open( ’ 2017 combined txt f i l e . txt ’ )
next ( in1 )
next ( in1 )
next ( in1 )
input r eade r = in1 . r e a d l i n e s ( )
raw data = [ ]
for row in i nput r eade r :

s p l i t d a t a = row . s p l i t ( ’ ’ )
i f s p l i t d a t a [ 0 ] ==’\n ’ or s p l i t d a t a [ 0 ] [ 0 ] ==”c” or s p l i t d a t a [ 0 ] [ 0 ] ==’ ∗ ’ or s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ ) [ 0 ] ==”−” :

pass
else :

date = s p l i t d a t a [ 0 ] . s p l i t ( ’− ’ )
c l o ck = s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ )
s ec = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 0 ] )
nano = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 1 ] )
l a t = f loat ( s p l i t d a t a [ 3 ] )
i f len ( s p l i t d a t a ) > 6 :

long = f loat ( s p l i t d a t a [ 5 ] )
else :

long = f loat ( s p l i t d a t a [ 5 ] . s p l i t ( ”\\” ) [ 0 ] )
row data = [ dt . datet ime ( int ( date [ 0 ] ) , int ( date [ 1 ] ) , int ( date [ 2 ] ) , int ( c l o ck [ 0 ] ) , int ( c l o ck [ 1 ] ) ,

sec , nano ) , la t , long ]
print ( row data [ 0 ] )
raw data . append ( row data + [ 0 ] )

in1 . c l o s e ( )

raw data = sorted ( raw data )

view data = np . array ( raw data )

print ( view data )

cente r = [28 . 5387 , −80.6428]

def d i s t a n c e n au t i c a l m i l e s ( p o i n t o f i n t e r e s t , l i n e ) :
lat1 , lon1 , = p o i n t o f i n t e r e s t [ 0 ] , p o i n t o f i n t e r e s t [ 1 ]
lat2 , lon2 , = l i n e [ 0 ] , l i n e [ 1 ]
return haver s ine ( ( lat1 , lon1 ) , ( lat2 , lon2 ) , un i t = Unit .NAUTICAL MILES)

print ( len ( raw data ) )

raw data = [ x for x in raw data i f d i s t a n c e n au t i c a l m i l e s ( x [ 1 : 3 ] , c ente r ) <= 25 ]

#raw data = [ x f o r x in raw data i f x [ 0 ] > d t . da t e t ime (2018 , 9 , 1 , 10 , 10 , 46 , 6 6 ) ]
print ( len ( raw data ) )

#cr e a t e t x t f i l e
”””
wi th open ( ’ u n f i l t e r e d t x t f u l l . t x t ’ , ’w ’ ) as f 2 :

f o r row in raw data :
f 2 . w r i t e ( s t r ( row ) )

”””
# i n i t i a l i z a t i o n

t im e d i f f g o a l = 120
cur r ent t ime = [ ]
d i s t anc e s = [ ]
s t a r t t ime = dt . datet ime . now( )

def c l e an cu r r en t t ime ( array ) :
return [ array [ row ] for row in range ( len ( array ) ) i f ( array [ −1 ] [ 0 ] − array [ row ] [ 0 ] ) . seconds < t im e d i f f g o a l ]

def check un ique l en ( array ) :
un i qu e c l a s s = np . unique ( array [ : , 3 ] )
un i qu e t f = False
for unique va lue in un i qu e c l a s s :

i f len (np . where ( array [ : , 3 ] == unique va lue ) [ 0 ] ) >= 5:
un i qu e t f = True

return un i qu e t f

def f i nd nonconvex d i s tance ( p o i n t i n t e r e s t , sample data ) :
un i qu e c l a s s = np . unique ( sample data [ : , 3 ] )
d i s t = [ ]
for unique va lue in un i qu e c l a s s :

i f len (np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] ) < 5 :
for i in sample data [ np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] , 1 : 3 ] :
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d i s t . append ( [ d i s t a n c e n au t i c a l m i l e s ( p o i n t i n t e r e s t , i ) , un ique va lue ] )
i f len ( d i s t ) < 1 :

d i s t . append ( [ 5 0 , 0 ] )
d i s t = np . array ( d i s t )
s h o r t e s t d i s t a n c e = min( d i s t [ : , 0 ] )
return [ s h o r t e s t d i s t an c e , int ( d i s t [ np . where ( d i s t [ : , 0 ] == sho r t e s t d i s t a n c e ) [ 0 ] , 1 ] [ 0 ] ) ]

def f i n d c onv ex d i s t ( p o i n t i n t e r e s t , sample data ) :
un i qu e c l a s s = np . unique ( sample data [ : , 3 ] )
d i s t = [ ]
for unique va lue in un i qu e c l a s s :

i f len (np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] ) >= 5:
curr = sample data [ np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] , 1 : 3 ]
hu l l = ConvexHull ( curr )
t o t a l = np . append ( curr , p o i n t i n t e r e s t ) . reshape ( len ( curr ) + 1 , 2)
t e s t h u l l = ConvexHull ( t o t a l )
ve r t = [ ]
for i in t e s t h u l l . v e r t i c e s :

ve r t . append ( t o t a l [ i , 0 : 2 ] . t o l i s t ( ) )
i f p o i n t i n t e r e s t . t o l i s t ( ) not in ver t :

d i s t . append ([ −1 , un ique va lue ] )
break

l o ca l m in = [ ]
d i s t l i s t = [ ]
for i in hu l l . v e r t i c e s :

d i s t l i s t . append ( [ d i s t a n c e n au t i c a l m i l e s ( curr [ i ] , p o i n t i n t e r e s t ) ] )
sma l l e s t v a l = min( d i s t l i s t )
min vert = hu l l . v e r t i c e s [ d i s t l i s t . index ( sma l l e s t v a l ) ]
s i m p l i c e s l i s t = np . where ( hu l l . s imp l i c e s == min vert ) [ 0 ]
for j in s i m p l i c e s l i s t :

a = np . l i n s pa c e ( curr [ hu l l . s imp l i c e s [ j ] [ 0 ] , 0 ] , curr [ hu l l . s imp l i c e s [ j ] [ 1 ] , 0 ] ,
100) , np . l i n s pa c e ( curr [ hu l l . s imp l i c e s [ j ] [ 0 ] , 1 ] ,
curr [ hu l l . s imp l i c e s [ j ] [ 1 ] , 1 ] , 100)

for i in range ( 1 00 ) :
l o ca l m in . append ( d i s t a n c e n au t i c a l m i l e s ( p o i n t i n t e r e s t , [ a [ 0 ] [ i ] , a [ 1 ] [ i ] ] ) )

d i s t . append ( [min( l o ca l m in ) , un ique va lue ] )
d i s t = np . array ( d i s t )
#pr i n t ( d i s t )
s h o r t e s t d i s t a n c e = min( d i s t [ : , 0 ] )
return [ s h o r t e s t d i s t an c e , int ( d i s t [ np . where ( d i s t [ : , 0 ] == sho r t e s t d i s t a n c e ) [ 0 ] , 1 ] [ 0 ] ) ]

d i s t a n c e h i s t = [ ]
num storms = [ ]
counter = 1
with in hour = True
for i in range ( len (np . array ( raw data ) ) ) :

i f not with in hour :
print ( raw data [ i ] [ 0 ] )
i f ( raw data [ i ] [ 0 ] − raw data [ i − 1 ] [ 0 ] ) . seconds > 1800 : #gr e a t e r than 30 minutes

with in hour = True
i f with in hour :

cu r r ent t ime . append ( raw data [ i ] )
cu r r ent t ime = c l ean cu r r en t t ime ( cur r ent t ime )
i f len (np . array ( cur r ent t ime ) ) == 1 :

counter = 1
cur r ent t ime [ 0 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1
s t a r t = cur r ent t ime [ 0 ] [ 0 ]

e l i f not check un ique l en (np . array ( cur r ent t ime ) ) :
i f ( cur r ent t ime [ −1 ] [ 0 ] − s t a r t ) . seconds >= 3600:

print ( cur r ent t ime [ −1 ] [ 0 ] )
with in hour = False
pass

else :
sample array = np . array ( cur r ent t ime )
s h o r t d i s t = f ind nonconvex d i s tance ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
i f s h o r t d i s t [ 0 ] < 5 :

d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , s h o r t d i s t [ 0 ] ] )
cu r r ent t ime [ −1 ] [ 3 ] = s h o r t d i s t [ 1 ]
num storms . append ( s h o r t d i s t [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1

#pr i n t ( d i s t a n c e h i s t [−1])
e l i f check un ique l en (np . array ( cur r ent t ime ) ) :

i f ( cur r ent t ime [ −1 ] [ 0 ] − s t a r t ) . seconds >= 3600:
print ( cur r ent t ime [ −1 ] [ 0 ] )
with in hour = False
pass

else :
sample array = np . array ( cur r ent t ime )
short noncon = f ind nonconvex d i s tance ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
shor t con = f i nd c onv ex d i s t ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
i f shor t con [ 0 ] <= 10 or short noncon [ 0 ] <= 10 :

i f shor t con [ 0 ] <= short noncon [ 0 ] :
cu r r ent t ime [ −1 ] [ 3 ] = shor t con [ 1 ]
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d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , shor t con [ 0 ] ] )
num storms . append ( shor t con [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = short noncon [ 1 ]
d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , short noncon [ 0 ] ] )
num storms . append ( shor t con [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1

print ( d i s t a n c e h i s t [ −1])

with open( ’ t e s t upda t ed tx t f i l e 2 0 17 . txt ’ , ’w ’ , newl ine= ’ ’ ) as f1 :
for row in raw data :

i f row [ 3 ] > 0 :
f 1 . wr i t e ( str ( row ) )
f1 . wr i t e ( ’\n ’ )

else :
pass

with open( ’ t e s t f u l l d i s t a n c e h i s t 2 0 1 7 . txt ’ , ’w ’ , newl ine= ’ ’ ) as f4 :
for row in d i s t a n c e h i s t :

f 4 . wr i t e ( str ( row ) )
f4 . wr i t e ( ’\n ’ )

end time = dt . datet ime . now( )

print ( end time − s t a r t t ime )
#pr i n t ( num storms )
bins = range (0 , 10)
p l t . h i s t ( [ x [ 1 ] for x in d i s t a n c e h i s t i f x [ 1 ] > 0 . 1 ] , b ins = bins , edgeco l o r = ’ black ’ )
p l t . show ( )
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Appendix . Python Code for Cloud-to-Ground Boundary

import datetime as dt
import numpy as np
import math
from s c ipy . s p a t i a l import ConvexHull
import matp lo t l ib . pyplot as p l t
from haver s ince import Unit , haver s ine

in1 = open( ’ 2017 combined txt f i l e . txt ’ )
next ( in1 )
next ( in1 )
next ( in1 )
input r eade r = in1 . r e a d l i n e s ( )
raw data = [ ]
for row in i nput r eade r :

s p l i t d a t a = row . s p l i t ( ’ ’ )
i f s p l i t d a t a [ 0 ] ==’\n ’ or s p l i t d a t a [ 0 ] [ 0 ] ==”c” or s p l i t d a t a [ 0 ] [ 0 ] ==’ ∗ ’ or
s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ ) [ 0 ] ==”−” :

pass
else :

date = s p l i t d a t a [ 0 ] . s p l i t ( ’− ’ )
c l o ck = s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ )
s ec = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 0 ] )
nano = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 1 ] )
l a t = f loat ( s p l i t d a t a [ 3 ] )
CG or CC = None
i f len ( s p l i t d a t a ) > 6 :

long = f loat ( s p l i t d a t a [ 5 ] )
CG or CC = ”cg”

else :
long = f loat ( s p l i t d a t a [ 5 ] . s p l i t ( ”\\” ) [ 0 ] )
CG or CC = ”cc ”

row data = [ dt . datet ime ( int ( date [ 0 ] ) , int ( date [ 1 ] ) , int ( date [ 2 ] ) , int ( c l o ck [ 0 ] ) , int ( c l o ck [ 1 ] ) ,
sec , nano ) , l a t , long ]
print ( row data [ 0 ] )
raw data . append ( row data + [ 0 ] + [ CG or CC ] )

in1 . c l o s e ( )

raw data = sorted ( raw data )

view data = np . array ( raw data )

print ( view data )

cente r = [28 . 5387 , −80.6428]

def d i s t a n c e n au t i c a l m i l e s ( p o i n t o f i n t e r e s t , l i n e ) :
lat1 , lon1 , = p o i n t o f i n t e r e s t [ 0 ] , p o i n t o f i n t e r e s t [ 1 ]
lat2 , lon2 , = l i n e [ 0 ] , l i n e [ 1 ]
return haver s ine ( ( lat1 , lon1 ) , ( lat2 , lon2 ) , un i t = Unit .NAUTICAL MILES)

print ( len ( raw data ) )

raw data = [ x for x in raw data i f d i s t a n c e n au t i c a l m i l e s ( x [ 1 : 3 ] , c ente r ) <= 25 ]

#raw data = [ x f o r x in raw data i f x [ 0 ] < d t . da t e t ime (2018 , 6 , 1 5 ) ]
print ( len ( raw data ) )

#cr e a t e t x t f i l e
”””
wi th open ( ’ u n f i l t e r e d t 2 0 1 9 x t c g f u l l . t x t ’ , ’w ’ ) as f 2 :

f o r row in raw data :
f 2 . w r i t e ( s t r ( row ) )

”””
# i n i t i a l i z a t i o n

t im e d i f f g o a l = 600 # 15 minutes from Te l l o Paper
cur r ent t ime = [ ]
d i s t anc e s = [ ]

def c l e an cu r r en t t ime ( array , t t ime ) :
return [ array [ row ] for row in range ( len ( array ) ) i f ( t t ime − array [ row ] [ 0 ] ) . seconds <
t im e d i f f g o a l
and array [ row ] [ 4 ] == ’ cg ’ ]

def check un ique l en ( array ) :
un i qu e c l a s s = np . unique ( array [ : , 3 ] )
un i qu e t f = False
for unique va lue in un i qu e c l a s s :

i f len (np . where ( array [ : , 3 ] == unique va lue ) [ 0 ] ) >= 5:
un i qu e t f = True

return un i qu e t f
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def f i nd nonconvex d i s tance ( p o i n t i n t e r e s t , sample data ) :
un i qu e c l a s s = np . unique ( sample data [ : , 3 ] )
d i s t = [ ]
for unique va lue in un i qu e c l a s s :

i f len (np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] ) < 5 :
for i in sample data [ np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] , 1 : 3 ] :

d i s t . append ( [ d i s t a n c e n au t i c a l m i l e s ( p o i n t i n t e r e s t , i ) , un ique va lue ] )
i f len ( d i s t ) < 1 :

d i s t . append ( [ 5 0 , 0 ] )
d i s t = np . array ( d i s t )
s h o r t e s t d i s t a n c e = min( d i s t [ : , 0 ] )
return [ s h o r t e s t d i s t an c e , int ( d i s t [ np . where ( d i s t [ : , 0 ] == sho r t e s t d i s t a n c e ) [ 0 ] , 1 ] [ 0 ] ) ]

def f i n d c onv ex d i s t ( p o i n t i n t e r e s t , sample data ) :
un i qu e c l a s s = np . unique ( sample data [ : , 3 ] )
d i s t = [ ]
for unique va lue in un i qu e c l a s s :

i f len (np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] ) >= 5:
curr = sample data [ np . where ( sample data [ : , 3 ] == unique va lue ) [ 0 ] , 1 : 3 ]
hu l l = ConvexHull ( curr )
t o t a l = np . append ( curr , p o i n t i n t e r e s t ) . reshape ( len ( curr ) + 1 , 2)
t e s t h u l l = ConvexHull ( t o t a l )
ve r t = [ ]
for i in t e s t h u l l . v e r t i c e s :

ve r t . append ( t o t a l [ i , 0 : 2 ] . t o l i s t ( ) )
i f p o i n t i n t e r e s t . t o l i s t ( ) not in ver t :

d i s t . append ([ −1 , un ique va lue ] )
break

l o ca l m in = [ ]
d i s t l i s t = [ ]
for i in hu l l . v e r t i c e s :

d i s t l i s t . append ( [ d i s t a n c e n au t i c a l m i l e s ( curr [ i ] , p o i n t i n t e r e s t ) ] )
sma l l e s t v a l = min( d i s t l i s t )
min vert = hu l l . v e r t i c e s [ d i s t l i s t . index ( sma l l e s t v a l ) ]
s i m p l i c e s l i s t = np . where ( hu l l . s imp l i c e s == min vert ) [ 0 ]
for j in s i m p l i c e s l i s t :

a = np . l i n s pa c e ( curr [ hu l l . s imp l i c e s [ j ] [ 0 ] , 0 ] , curr [ hu l l . s imp l i c e s [ j ] [ 1 ] , 0 ] , 100) ,
np . l i n s pa c e ( curr [ hu l l . s imp l i c e s [ j ] [ 0 ] , 1 ] , curr [ hu l l . s imp l i c e s [ j ] [ 1 ] , 1 ] , 100)
for i in range ( 1 00 ) :

l o ca l m in . append ( d i s t a n c e n au t i c a l m i l e s ( p o i n t i n t e r e s t , [ a [ 0 ] [ i ] , a [ 1 ] [ i ] ] ) )
d i s t . append ( [min( l o ca l m in ) , un ique va lue ] )

d i s t = np . array ( d i s t )
#pr i n t ( d i s t )
s h o r t e s t d i s t a n c e = min( d i s t [ : , 0 ] )
return [ s h o r t e s t d i s t an c e , int ( d i s t [ np . where ( d i s t [ : , 0 ] == sho r t e s t d i s t a n c e ) [ 0 ] , 1 ] [ 0 ] ) ]

d i s t a n c e h i s t = [ ]
num storms = [ ]
counter = 1

s t a r t t ime = dt . datet ime . now( )

for i in range ( len (np . array ( raw data ) ) ) :
cu r r ent t ime . append ( raw data [ i ] )
cu r r ent t ime = c l ean cu r r en t t ime ( cur r ent t ime [0 : −1 ] , cu r r ent t ime [ −1 ] [ 0 ] )
cu r r ent t ime . append ( raw data [ i ] )
i f len (np . array ( cur r ent t ime ) ) == 1 :

counter = 1
cur r ent t ime [ 0 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1
s t a r t = cur r ent t ime [ 0 ] [ 0 ]

e l i f not check un ique l en (np . array ( cur r ent t ime ) ) :
i f ( cur r ent t ime [ −1 ] [ 0 ] − s t a r t ) . seconds >= 3600:

print ( cur r ent t ime [ −1 ] [ 0 ] )
pass

else :
sample array = np . array ( cur r ent t ime )
s h o r t d i s t = f ind nonconvex d i s tance ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
i f s h o r t d i s t [ 0 ] < 5 :

d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , s h o r t d i s t [ 0 ] ] )
cu r r ent t ime [ −1 ] [ 3 ] = s h o r t d i s t [ 1 ]
num storms . append ( s h o r t d i s t [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1

#pr i n t ( d i s t a n c e h i s t [ −1])
e l i f check un ique l en (np . array ( cur r ent t ime ) ) :

i f ( cur r ent t ime [ −1 ] [ 0 ] − s t a r t ) . seconds >= 3600:
print ( cur r ent t ime [ −1 ] [ 0 ] )
pass

else :
sample array = np . array ( cur r ent t ime )
short noncon = f ind nonconvex d i s tance ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
shor t con = f i nd c onv ex d i s t ( sample array [−1 , 1 : 3 ] , sample array [0 : −1 ] )
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i f shor t con [ 0 ] <= 10 or short noncon [ 0 ] <= 10 :
i f shor t con [ 0 ] <= short noncon [ 0 ] :

cu r r ent t ime [ −1 ] [ 3 ] = shor t con [ 1 ]
d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , shor t con [ 0 ] ] )
num storms . append ( shor t con [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = short noncon [ 1 ]
d i s t a n c e h i s t . append ( [ sample array [ −1 ,0 ] , short noncon [ 0 ] ] )
num storms . append ( shor t con [ 1 ] )

else :
cu r r ent t ime [ −1 ] [ 3 ] = counter
num storms . append ( counter )
counter += 1

print ( d i s t a n c e h i s t [ −1])

with open( ’ upda t ed tx t f i l e 2017cg . txt ’ , ’w ’ ) as f1 :
for row in raw data :

i f row [ 3 ] > 0 :
f 1 . wr i t e ( str ( row ) )
f1 . wr i t e ( ’\n ’ )

else :
pass

with open( ’ 2017 d i s t a n c e h i s t c g . txt ’ , ’w ’ ) as f4 :
for row in d i s t a n c e h i s t :

f 4 . wr i t e ( str ( row ) )
f4 . wr i t e ( ’\n ’ )

#pr i n t ( num storms )
end time = dt . datet ime . now( )
print ( end time − s t a r t t ime )

b ins = range (0 , 10)
p l t . h i s t ( [ x [ 1 ] for x in d i s t a n c e h i s t i f x [ 1 ] > 0 . 1 ] , b ins = bins , edgeco l o r = ’ black ’ )
p l t . show ( )
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Appendix . Python Code for Investigation

import datetime as dt
import numpy as np
import math
from s c ipy . s p a t i a l import ConvexHull
import matp lo t l ib . pyplot as p l t
from haver s ine import Unit , haver s ine
import pandas as pd

def d i s t a n c e n au t i c a l m i l e s ( p o i n t o f i n t e r e s t , l i n e ) :
lat1 , lon1 , = p o i n t o f i n t e r e s t [ 0 ] , p o i n t o f i n t e r e s t [ 1 ]
lat2 , lon2 , = l i n e [ 0 ] , l i n e [ 1 ]
return haver s ine ( ( lat1 , lon1 ) , ( lat2 , lon2 ) , un i t = Unit .NAUTICAL MILES)

l c39 = [28 . 573469 , −80.651070 , ’LC39 ’ ]
s l f = [28 . 59238 , −80.66091 , ’SLF ’ ]
IA = [28 .092399 , −80.641466 , ’ IA ’ ]
l c 40 = [28 . 562091 , −80.577385 , ’LC40 ’ ]
pafb = [28 . 234332 , −80.605998 , ’PAFB’ ]
l c37 = [28 . 531212 , −80.564782 , ’LC37 ’ ]
s px c en t r a l = [28 . 417199 , −80.604741 , ’SPX CENTRAL ’ ]
a s t r o t e ch = [28 . 5256 , −80.8209 , ’ASTROTECH’ ]

l i s t l o c a t i o n s = [ lc39 , s l f , IA , lc40 , pafb , lc37 , spx cent ra l , a s t r o t e ch ]

def i n p u t f i l e ( f i l e name ) :
in1 = open( f i l e name )
next ( in1 )
next ( in1 )
next ( in1 )
input r eade r = in1 . r e a d l i n e s ( )
raw data = [ ]
c ente r = [28 . 5387 , −80.6428]
for row in i nput r eade r :

s p l i t d a t a = row . s p l i t ( ’ ’ )
i f s p l i t d a t a [ 0 ] ==’\n ’ or s p l i t d a t a [ 0 ] [ 0 ] == ”c” or s p l i t d a t a [ 0 ] [ 0 ] == ’ ∗ ’ or s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ ) [ 0 ] == ”−” :

pass
else :

date = s p l i t d a t a [ 0 ] . s p l i t ( ’− ’ )
c l o ck = s p l i t d a t a [ 1 ] . s p l i t ( ’ : ’ )
s ec = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 0 ] )
nano = int ( c l o ck [ 2 ] . s p l i t ( ’ . ’ ) [ 1 ] )
l a t = f loat ( s p l i t d a t a [ 3 ] )
CG or CC = None
i f len ( s p l i t d a t a ) > 6 :

long = f loat ( s p l i t d a t a [ 5 ] )
CG or CC = ”cg”

else :
long = f loat ( s p l i t d a t a [ 5 ] . s p l i t ( ”\\” ) [ 0 ] )
CG or CC = ”cc ”

row data = [ dt . datet ime ( int ( date [ 0 ] ) , int ( date [ 1 ] ) , int ( date [ 2 ] ) , int ( c l o ck [ 0 ] ) , int ( c l o ck [ 1 ] ) , sec , nano ) , la t , long ]
i f d i s t a n c e n au t i c a l m i l e s ( row data [ 1 : 3 ] , c ente r ) <= 25 :

#pr i n t ( row data )
raw data . append ( row data + [ CG or CC ] )

else :
pass

in1 . c l o s e ( )
return raw data

raw data = sorted ( i n p u t f i l e ( ’ 2019 part1 t o t a l combined f i l e . txt ’ ) )
def exper iment cg ( row , center , center warning , b a s e f a i l c g , base on ) :

i f d i s t a n c e n au t i c a l m i l e s ( row [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= center warn ing :
b a s e f a i l c g . append ( row + [ cente r [ 2 ] ] )
i f row [ 3 ] == ’ cg ’ :

base on = False
e l i f row [ 3 ] == ’ cg ’ and d i s t a n c e n au t i c a l m i l e s ( row [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= 4: # t e s t u s ing 4 n a u t i c a l m i l e s

base on = False
else :

pass
return b a s e f a i l c g , base on

def run exper iment cg ( raw data ) :
global l i s t l o c a t i o n s
s t a r t = dt . datet ime . now( )
b a s e f a i l c g = [ ]
base on = True
for cente r in l i s t l o c a t i o n s :

raw data part1 = [ x for x in raw data i f d i s t a n c e n au t i c a l m i l e s ( x [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= 5]
center warn ing = 1
base on = True
for row in raw data part1 :

i f base on == True :
b a s e f a i l c g , base on = exper iment cg ( row , center , center warning , b a s e f a i l c g , base on )

else :
i f ( row [ 0 ] − cur r ent t ime ) . seconds >= 1800: #more than an hour pas sed l a s t s hu t down

base on = True
b a s e f a i l c g , base on = exper iment cg ( row , center , center warning , b a s e f a i l c g , base on )
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cur r ent t ime = row [ 0 ]
print ( dt . datet ime . now( ) − s t a r t )
return b a s e f a i l c g

def expe r iment t l ( row , center , center warning , b a s e f a i l t l , base on ) :
i f d i s t a n c e n au t i c a l m i l e s ( row [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= center warn ing :

b a s e f a i l t l . append ( row + [ cente r [ 2 ] ] )
i f row [ 3 ] == ’ cg ’ or row [ 3 ] ==’ cc ’ : #

base on = False
e l i f d i s t a n c e n au t i c a l m i l e s ( row [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= 4: #

base on = False #
else :

pass
return b a s e f a i l t l , base on

def run expe r iment t l ( raw data ) :
global l i s t l o c a t i o n s
s t a r t = dt . datet ime . now( )
b a s e f a i l t l = [ ]
base on = True
for cente r in l i s t l o c a t i o n s :

raw data part1 = [ x for x in raw data i f d i s t a n c e n au t i c a l m i l e s ( x [ 1 : 3 ] , c ente r [ 0 : 2 ] ) <= 5]
#pr i n t ( [ l e n ( r aw da t a pa r t 1 ) , c en t e r [ 2 ] ] )
center warn ing = 1
base on = True
for row in raw data part1 :

i f base on == True :
b a s e f a i l t l , base on = expe r iment t l ( row , center , center warning , b a s e f a i l t l , base on )

else :
i f ( row [ 0 ] − cur r ent t ime ) . seconds >= 1800: #more than an hour pas sed l a s t s hu t down

base on = True
l e n b e f o r e = len ( b a s e f a i l t l )
b a s e f a i l t l , base on = expe r iment t l ( row , center , center warning , b a s e f a i l t l , base on )

cur r ent t ime = row [ 0 ]
print ( dt . datet ime . now( ) − s t a r t )
return b a s e f a i l t l

part2 2019 = sorted ( i n p u t f i l e ( ’ 2019 part2 t o t a l combined f i l e . txt ’ ) )
part3 2019 = sorted ( i n p u t f i l e ( ’ 2019 part3 t o t a l combined f i l e . txt ’ ) )
part4 2019 = sorted ( i n p u t f i l e ( ’ 2019 part4 t o t a l combined f i l e . txt ’ ) )

p a r t 2 2 019 t l = run expe r iment t l ( part2 2019 )
pa r t 3 2 019 t l = run expe r iment t l ( part3 2019 )
pa r t 4 2 019 t l = run expe r iment t l ( part4 2019 )
pa r t 1 2 019 t l = run expe r iment t l ( raw data )

par t2 2019 cg = run exper iment cg ( part2 2019 )
par t3 2019 cg = run exper iment cg ( part3 2019 )
par t4 2019 cg = run exper iment cg ( part4 2019 )
par t1 2019 cg = run exper iment cg ( raw data )

part1 2020 = sorted ( i n p u t f i l e ( ’ 2020 part1 t o t a l combined f i l e . txt ’ ) )
part2 2020 = sorted ( i n p u t f i l e ( ’ 2020 part2 t o t a l combined f i l e . txt ’ ) )
part3 2020 = sorted ( i n p u t f i l e ( ’ 2020 part3 t o t a l combined f i l e . txt ’ ) )
part4 2020 = sorted ( i n p u t f i l e ( ’ 2020 part4 t o t a l combined f i l e . txt ’ ) )

p a r t 1 2 020 t l = run expe r iment t l ( part1 2020 )
pa r t 2 2 020 t l = run expe r iment t l ( part2 2020 )
pa r t 3 2 020 t l = run expe r iment t l ( part3 2020 )
pa r t 4 2 020 t l = run expe r iment t l ( part4 2020 )

par t1 2020 cg = run exper iment cg ( part1 2020 )
par t2 2020 cg = run exper iment cg ( part2 2020 )
par t3 2020 cg = run exper iment cg ( part3 2020 )
par t4 2020 cg = run exper iment cg ( part4 2020 )

part1 2018 = sorted ( i n p u t f i l e ( ’ 2018 combined txt f i l e . txt ’ ) )
part1 2017 = sorted ( i n p u t f i l e ( ’ 2017 combined txt f i l e . txt ’ ) )

par t1 2017 cg = run exper iment cg ( part1 2017 )
pa r t 1 2 017 t l = run expe r iment t l ( part1 2017 )
pa r t 1 2 018 t l = run expe r iment t l ( part1 2018 )
par t1 2018 cg = run exper iment cg ( part1 2018 )
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