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AFIT-ENS-MS-22-M-145 

Abstract 
 
The purpose of this research is to develop, conduct, and analyze an experimental design that 

characterizes wear rates of various materials sliding at high speeds along an AISI 4340 steel rail. 

This work is in support of Holloman Air Force Base, which is invested in engineering a more 

wear-resistant rocket slipper for its high-speed test track. This research uses a design of 

experiments approach to systematically identify and evaluate potential slipper attributes that 

mitigate wear according to a heat transfer model. Final findings include recommendations of 

slipper materials that theoretically perform similar to or better than the baseline 

Vascomax®C300 maraging steel material. Concurrently, this research statistically evaluates the 

finite element analysis heat transfer model of the Air Force Research Laboratory’s pin-on-disc 

experiment.  
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EXPERIMENTAL DESIGN ON HIGH-SPEED SLIDING WEAR 

 

I. Introduction 

1.1 Motivation 
 
This work is in support of Holloman Air Force Base’s (AFB) Holloman High Speed Test 

Track (HHSTT), operated by the United States Air Force’s (USAF) 846th Test Squadron. 

Holloman AFB states that the mission of their high-speed rocket sled tests is to enable critical 

weapon system development in support of the warfighter. The HHSTT serves as a critical link 

between laboratory and full-scale flight tests by simulating select portions of the flight 

environment. This provides an efficient, safe, and cost-effective ground test alternative to 

developmental flight tests (“846th Test Squadron”). 

The HHSTT uses sled “slippers” as the interface that attach the rocket sled to the rail on 

which it slides. The rocket sled configuration and slippers are shown in Figure 1.1. Current 

slippers are composed of maraging 300 alloy steel, commercially known as Vascomax®C300. 

The rail of the track is composed of AISI 4340 alloy steel. As the rocket slides along the track at 

high speeds, the slippers experience documented issues with wear due to frictional, thermal, and 

mechanical properties.  

Excessive slipper wear causes tests to be costly; current slippers are single-use and discarded 

after each run (Hooser). Transfer of worn slipper material onto the track also requires post-test 

cleanup of the 11-mile-long track. In addition, the compounding nature of wear over the duration 

of the test run negatively impacts test quality and accuracy (Yeo, Palazotto and Song). Wear 

along the lips of slippers may also reach a point where total breakage occurs mid-testing, causing 

the sled to derail from the track and triggering catastrophic failure (Hooser). As such, it is 
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important to characterize the nature of wear under test conditions and to develop an approach to 

mitigate wear-induced damage.  

 
Figure 1.1 HHSTT configuration. 

Currently, there are numerous experiments and models that evaluate aspects of wear 

experienced on HHSTT’s slippers. However, there remains an incomplete understanding of the 

exact mechanics behind wear behavior. As such, attempts at improving slipper wear in the past 

have largely involved a “guess and test” approach (Hooser). To address this issue, this work uses 

Design of Experiments (DOE) to systematically identify and evaluate potential slipper attributes 

that improve wear-rates.  

Ideally, a DOE would be conducted on the system in question itself, i.e., HHSTT. 

However, past endeavors have shown it is costly to conduct full-scale testing on slipper design 

alternatives. In addition, unfavorable responses in this environment could translate to 

catastrophic and potentially dangerous results. Instead, the Air Force Research Laboratory’s 

(AFRL) high-speed pin-on-disc experiment attempts to simulate the velocity and contact force 

profiles of Vascomax®300 upon AISI 4340 on a smaller scale. This pin-on-disc rig is the only 

experiment that models these conditions in a controlled laboratory setting.  

Although the scale of this rig is drastically decreased from that of the HHSTT, purchase 

and preparation of materials for use in experimentation is still costly and time consuming. In 

addition, there remains an enormous number of potential designs to consider. It is therefore 
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exceedingly important for AFRL to receive informed design recommendations before conducting 

acquisitions or live testing. This research identifies design aspects that mitigate wear by 

examining mathematical models of wear behavior on the pin-on-disc rig. 

 There are several models that attempt to describe wear behavior of a Vascomax®C300 

specimen on AFRL’s pin-on-disc rig. Boardman and Wing’s models both use data from a 2019 

run to analyze wear as solely a function of heat transfer (Boardman iv, Wing iv). Boardman’s 

model uses a two-dimensional (2D) nonlinear heat transfer equation to predict material removal 

(iv), while Wing concludes that a one-dimensional (1D) approach with constant parameters 

generates a sufficient model (63-64). Of the solution methods tested by Wing, the one-

dimensional transient finite element analysis (FEA) proves to provide accurate temperature 

profile predictions and be easily implementable in the computer simulation software ABAQUS 

(Wing 63-64). As such, this research uses the 1D transient FEA computer simulation of the pin-

on-disc rig to conduct a DOE. This DOE screens for the most significant design factors, 

characterizes the wear response relative to these factors, and finds the factor levels for a more 

wear-resistant slipper design. 

An additional aspect to the experimentation process is model validation. The FEA model 

on which the DOE is conducted is assessed for validity and robustness. The model is constructed 

using data from a single 2019 experimental run of the pin-on-disc rig. To determine whether the 

FEA model truly reflects overall behavior of the pin-on-disc experiment, additional runs are 

conducted on the rig. The response of the current model is then statistically compared against the 

data collected from the additional test runs to determine model accuracy. 



 

 4

1.2 Problem Statement 

The goal of this research is to methodically determine ideal HHSTT slipper design 

specifications using a DOE approach. The DOE is conducted on the 1D transient FEA model of 

AFRL’s pin-on-disc experiment. As this model represents wear using solely heat transfer, the 

resulting recommendations optimize wear according to a heat transfer perspective. This research 

concurrently assesses the FEA model of the pin-on-disc experiment for robustness and validity. 

The results provided by this research allow for informed decisions for expanded live testing on 

AFRL’s pin-on-disc rig. Tested materials that show positive results on the rig may then move 

forward to testing on the HHSTT. 
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II. Literature Review 
 

2.1 Design of Experiments 

2.1.1 Fundamental Principles 
  

One of the fundamental motivations behind experimentation is the need to improve a 

system in which developers do not have complete process knowledge. To date, no mechanistic 

model can completely capture the behaviors of HHSTT slippers, so it is not practical to make 

design improvements based on principles alone. A number of ill-fated slipper design updates 

have performed contrary to the expected behavior dictated by process knowledge (Hooser). 

Experimentation allows for the development of an empirical model, which is based on 

observational data rather than pure scientific or engineering principles. This empirical model can 

be informative in many ways, including identification of significant factors and providing an 

optimal design. 

 The major preliminary step to experimental design is identification of response variables 

and factors. Response variables are measurable outputs of interest. For this DOE, there is a single 

response of interest: slipper wear. Factors are the inputs that drive the behavior of the system 

response. It is important to distinguish between controllable and uncontrollable factors, as 

controllable factors are treated as design factors while uncontrollable factors may be addressed 

with mitigating tactics such as randomization and blocking. For each controllable factor, it is 

necessary to determine the range of experimentation. The specific values that are tested and 

identified within a factor’s range are referred to as factor levels. 

Another important consideration in modeling design factors is the specification of the 

model. This means considering whether the model is linear or if there is some curvature, such as 

interaction between different factors or quadratic factor terms. Process knowledge, or knowledge 
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of the system’s mechanistic behavior, is useful to estimate the correct model specification. In the 

case of this research, there are mechanistic models that demonstrate nonlinear behavior in high-

speed sliding wear. Therefore, curvature terms are considered in the model specification. 

After preliminary design analysis is complete, experimental runs are designed. The 

process of conducting runs is sequential in nature; information gleaned from initial runs is used 

to determine the nature of further experimentation, which provides further information for 

proceeding steps, and so on.  

2.1.2 Screening, Characterization, and Optimization Designs 
 
The preliminary step to experimental design is screening to determine factors that are 

significant contributors to the response. This is done by estimating the magnitude and direction 

of factor effects, or how much the response variable changes when each factor is changed 

(Montgomery 8). If the coefficient on the factor effect has a non-zero magnitude (determined as 

an associated p-value of less than 0.05), the factor is deemed significant. Determining significant 

factors through screening is useful when there are many, i.e., four or more factors or when there 

is low understanding of the process (Muhamed). Usually, screening investigates only factor main 

effects and two-factor interaction effects. 

The next level of experimentation is characterization. This design type considers a 

handful of potentially significant factors’ main effects as well as curvature. The curvature is 

usually characterized by two-factor interactions and quadratic effects. After characterization, the 

next level in experimentation is optimization designs, which include response surface 

methodology designs and complex fits, such as Box-Behnken Designs and Flexible Fast Filling 

Designs.  

2.1.3 Employed Experimental Design Types 
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There are several types of experimental designs that can be used to generate an empirical 

model. These include the Box-Behnken Design (BBD) and Space-Filling Designs (SFD). The 

BBD is a design made up of axial points along the edges of the design space and center points, as 

shown in Figure 2.1. These points are used to capture the curvature of a second-order model. A 

notable aspect of BBDs is that they exclude the extreme points on the corners of the design 

space, which is useful in instances where these extremes are infeasible. BBDs require at least 

three factors and contain three levels on each factor. Because BBDs are spherical, at least 3 to 5 

center point runs are used to estimate pure error and test lack of fit. 

 

 
Figure 2.1. BBD points create a spherical design region, made up of axial points (blue) and 

center points (orange). 

For experiments that employ computer models, space-filling designs are often 

appropriate. SFDs seek to cover as much of the design space in a near even or uniform fashion. 

These designs usually do not include replication, so they are useful for deterministic 

experimentation like computer simulations, where there is no run-to-run variability. Like BBDs, 

these designs can capture nonlinear behavior across different regions of the design space 

(Montgomery 536). This research uses SFDs to fit a second-order polynomial model as given in 

0 +1

+1

+1

–1

–1

0

0
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equation (1) in Section 2.1.4. SFDs are also used to generate interpolated models as determined 

by the Gaussian process in Section 2.1.6. 

One type of SFD is the fast flexible filling design (FFFD), which supports placing design 

points in a non-rectangular region (Jones and Lekvietz 5). An example using this type of design 

is shown in Figure 2.2. The FFFD is useful in cases where there are certain regions of 

infeasibility across the factor space. For this research, this occurs when certain material property 

combinations are infeasible across some factor range combinations. A common criterion used to 

generate FFFDs is the maximum projection (MaxPro) criterion. MaxPro maximizes the product 

of the distances between potential design points in a way that involves all factors. This supports 

the goal of providing good space-filling properties on projections of factors (Jones and Lekvietz 

5) 

 
Figure 2.2. Fast flexible filling design created in JMP, with non-rectangular design space across 

factors latitude and longitude (Jones and Lekvietz 5). 
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2.1.4 Response Surface Methodology Principles 
 
 Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques used for developing, improving, and optimizing processes (Montgomery 490). For 

this research, RSM is used to determine the region in the factor space that yields the optimal 

response. An example of RSM used in a similar application is shown in Figure 2.3, where the 

problem is to maximize a response of yield. A characterization experiment has identified factors 

of interest to be time and temperature. The lines of constant yield are connected to form response 

contours, and the entire surface is referred to as the response surface (Montgomery 9). 

 
Figure 2.3. Response surface of yield as a function of factors time and temperature 

(Montgomery 9). 
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RSM is usually performed as a sequential methodology. Although there are multiple 

RSM techniques that can influence the exact sequence of steps, the initial phase generally begins 

with identifying response variables and potentially significant factors. In this research, the next 

step involves implementing a RSM design that can estimate a second-order model in the form of: 

𝑦 = 𝛽଴ + ෍ 𝛽௜𝑥௜

௞

௜ୀଵ

+ ෍ 𝛽௜௜

௞

௜ୀଵ

𝑥௜
ଶ + ෍ ෍ 𝛽௜௝

௜ழ௝

𝑥௜𝑥௝ + 𝜖 

                  (1) 

where 𝑦 is the response, 𝑥 represents the factor effects from a total of 𝑘 factors, 𝛽 represents the 

coefficients (including the intercept 𝛽଴), and 𝜖 represents the error term. This model captures 

curvature in the system behavior, and is used to identify the response optimum as well as 

associated factor settings (Montgomery 490).  

This second-order model estimates the optimal set of operating conditions for the x’s and 

characterizes the nature of the response surface. Stationary points estimate maximums, 

minimums, and saddle points on the surface. These can be found by generating contour plots 

using computer software when fewer factors are involved. Eigenanalysis characterizes the shape 

of the generated response surface, and optimization locates stationary points to a reasonable 

degree of precision (Montgomery 491). 

2.1.5 Analyzing the Response Surface Design and Model 
 

A good experimental design has features that contribute to obtaining a reliable model. 

These features include a minimal prediction variance. Good designs also avoid factors that 

strongly correlate with each other, as this could lead to issues with aliased factor effects. This is 

when the effects of certain factors or factor combinations are confounded with each other, 

making it difficult to identify the true behavior of the system. Correlations between effects can 



 

 11 

be examined through a correlation map, in which light colors represent little to no correlation and 

dark represents significant or 100% correlation.  

 The resulting second-order model of a designed experiment is analyzed according to 

numerous criteria. Generally, the first step of analysis is to determine significant factors that 

contribute to the model. This research uses backwards stepwise regression (starting from the 

highest p-value and working down), to determine these factors. The significance level used is α = 

0.05. This level is used as a baseline rather than a hard rule, as it is important to maintain model 

hierarchy. This is where main effects that may have α > 0.05 are kept in the model if there are 

interaction terms that include said effect. Effects that are very close to the α level may also be 

kept if they significantly improve model performance. 

Performance is determined by model fit, which can be measured in R2 and R2
adj. Both 

these metrics measure how well the data fits the model by measuring the proportion of total 

variation explained by the model effects. R2
adj also considers the number of predictors in the 

model. This makes R2
adj a generally more reliable metric in evaluating DOEs, because simply 

adding more factors into the model can inflate R2. R2 values can range from 0 to 1, with 0 

meaning no correlation and 1 meaning perfect fit. R2
adj values are generally close to, but lower 

than R2 for a given model. 

Analysis of variance (ANOVA) is used to evaluate model significance. A significant 

model results in a p-value of lower than α = 0.05. The null hypothesis of this test is that none of 

the identified factors have an effect on the response. A small p-value indicates rejection of this 

hypothesis, meaning that at least one of the identified factors is a predictor for the response. 

 Models must also be evaluated for adequacy. This is done through examining the 

residuals, or error, to determine if the assumptions associated with the error term hold. One 
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important assumption is that residuals are of approximately constant variance. This can be 

evaluated by examining a plot of studentized residuals vs predicted values. A plot with points 

that are near-uniformly scattered across the plot indicates reasonable satisfaction of the constant 

variance assumption. Conversely, a plot with notable structure such as curving or funneling is 

unsatisfactory. Another assumption that is checked in evaluation of model adequacy is that 

residuals are approximately normally distributed. This can be examined through a normal 

probability plot, which plots residuals vs normal quantiles. This plot should closely follow a 45-

degree line; severe deviations from this line indicate violation of the normality assumption, and 

the model should be reevaluated. 

Severe deviations in either the studentized residuals plot or normal quantile plot may 

indicate outliers in the data. This can be formally evaluated using the Cook’s Distance statistic, 

or Cook’s D. Cook’s D for the 𝑖௧௛ observation removes that observation from consideration in 

the model and calculates how much the prediction changes with that observation removed. 

Cook’s D values greater than 1 is usually evidence of an outlier.  

Another common metric for evaluating models is the Variance Inflation Factors (VIFs), 

which checks for multicollinearity among the model effects. Ideally, the effects are not 

multicollinear, and they are independent from one another. VIF values close to 1 indicate 

satisfactory levels of independence, while values of 10 or more indicate multicollinearity. 

The response of the second-order model can be analyzed to determine the estimated 

optimal response and its associated factor settings. A factor profiler, shown in Figure 2.4, is used 

to determine these values. The desirability of the response can be set to maximum, minimum, or 

a specific value. The profiler is used to identify the factor settings that result in the most 

desirable response. The factor profiler also reports the predicted value of this response and the 



 

 13 

associated 95% confidence interval. Another way to examine the response is through a surface 

profiler, which gives a 3D visualization of the second-order model’s response surface. This 

surface allows an experimenter to easily identify minima and maxima as well as the associated 

factor levels. Similarly, a contour profiler lays the response surface on a 2D contour map, with 

factors as the axes.  

 
Figure 2.4. Factor profiler with factor settings on the bottom and response (Y) prediction on the 

left. 

2.1.6 Gaussian Process 
  

One alternative to using a response surface method to analyze experimental designs is the 

Gaussian process, also known as the Kriging method. While RSM is usually centered on a second-

order model as given in equation (1), the Gaussian process uses interpolation to estimate a model 

that does not have to take on this specific form. This means that higher order curvature can be 

estimated. However, this also means that the generated model is usually more complex.  

The Gaussian process considers the distance and degree of variation between known data 

points to estimate the value and variance at unknown points. Known points are weighted depending 

how close they are to the unknown point, which results in optimal and unbiased estimates 
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(Worley). This process is suitable for deterministic simulation modeling, where there is no pure 

error (i.e., there are no repeated points necessary). It is ideally applied to a space-filling design, 

because the near-evenly applied design points bound model bias (Worley). One unique issue with 

the Gaussian process model is that because it interpolates, it cannot be used to extrapolate outside 

the design region. This may or may not be a drawback depending on whether the problem seeks 

information outside the specified design region. 

The Gaussian correlation structure uses the product exponential correlation function with a 

power of two as the estimated model. This model assumes that the response is normally 

distributed with mean μ and covariance matrix 𝜎ଶR, where 𝜎ଶ is the variance of the model 

parameters. The elements of the R matrix for continuous factors are defined as follows: 

𝑟௜௝ = 𝑒𝑥𝑝 ൭− ෍ θ௞൫𝑥௜௝ − 𝑥௝௞൯
ଶ

௄

௞ୀଵ

൱ 

       (2) 
where K is the number of continuous factors or predictors, θ௞ is the theta parameter for the 

kth predictor, 𝑥௜௞ is the value of the kth predictor for subject i, and 𝑥௝௞ is the value of 

the kth predictor for subject j (“Gaussian Process”). The parameters 𝜇, 𝜎ଶ, and 𝜃௞ describe the 

estimated model, and are fitted using the method of maximum likelihood. 

2.1.7 Analyzing the Gaussian Process Model 

Like with a polynomial model, a Gaussian process model is evaluated based on the fit. 

Different model specifications can result in better or worse fits, as determined by metrics such as 

an actual vs predicted plot and the log likelihood. An approximate 45-degree line is considered 

ideal for an actual vs predicted plot. For log likelihood, a higher value indicates a model is a 

better fit for the data. This means that when comparing models using −2𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, a less 

negative number is a better fit. 
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The main specification choice for a Gaussian process model is whether to include 

estimation of the nugget parameter. The nugget is a ridge parameter that factors into the 

maximum likelihood estimation procedure. It is useful if the response has a high amount of 

noise, and it is desirable to smooth over the noise instead of perfectly interpolating (“Gaussian 

Process”). 

The Gaussian process model provides information in terms of total sensitivity, main 

effects, and interaction effects. The sensitivity is the sum of the main effect and interaction 

effects for each factor. It is a measure of the amount of influence a factor and all its two-way 

interactions have on the response variable. The main effect of each factor is the ratio of variation 

due to that factor alone and the total variation in the model. Similarly, interaction effects measure 

the proportion of variation due to each two-way interaction.  

As with a polynomial model, the response of a Gaussian process model can be 

investigated using factor, surface, and contour profilers. The impact of each main effect on the 

response can also be visualized using marginal model plots, as shown in Figure 2.5. For each 

plot, all main effects except one are integrated with a uniform distribution over the factor ranges. 

The marginal prediction of the response for the remaining factor of interest is drawn in blue. The 

data points of the observed response values are included to show how well the marginal model 

fits the data (“Gaussian Process”). The behavior of the marginal model line indicates the effect of 

that factor on the response. Marginal model plots can also very flat, indicating that the factor has 

little to no leverage on the response. 
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Figure 2.5. Marginal model plot generated from a Gaussian process model. The response is Y 

and the investigated factor is density. 

2.2 Wear Models of the Pin-on-Disc Experiment 

 The most recent studies regarding HHSTT slipper wear-rates come from AFRL’s 2019 

high-speed pin-on-disc experiment. This experiment provides a simplified representation of the 

true force and velocity conditions that slippers experience while sliding along the HHSTT. The 

test rig for this experiment (Figure 2.6) consists of a drive stand mounted to a 12-inch diameter 

disc made of the track material, AISI 4340 steel (Wing 4). This disc spins against a pin, which is 

composed of material from a discarded test track slipper made of Vascomax®C300 maraging 

steel. The motor-actuated pin holder pushes the pin against the disc to maintain near-constant 

force as the pin wears down over the course of the experiment. The disc is capable of spinning at 

speeds up to 240 m/s (Wing 4); while this is a small fraction of the speeds experienced on the 

test track of over 2000 m/s, this simplified experiment usefully captures various aspects of wear 

behavior, including micromechanical wear and heat transfer.  
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Figure 2.6. 2019 Pin-on-disc experiment concept design (a) and rig parts (b) (Wing 4).  

2.2.1 Micromechanical Models 
 

Micromechanical analysis of pin-on-disc wear is conducted through observation of the worn 

pin specimens. As shown in Figure 2.7, the face of worn pins display a “mushrooming” effect 

that is indication of plasticity, or permanent deformation of the material. This deformation is due 

to the stress, or force per area, applied to the material. In metals such as Vascomax, the presence 

of plasticity indicates internal sliding along the planes of the material’s molecular structure. 

Plasticity in the metal additionally indicates that the material reaches high temperatures over the 

course of a run, which make the material more susceptible to permanent deformation.  

Liu’s microstructural analysis of worn pin-on-disc specimens finds that the region closest to 

the worn face of the pin are made up of coarse grains compared to the rest of the material (3). 

Liu postulates that this is an indication of recrystallization due to high plastic shear strain and 

high temperatures (11). Shear strain is deformation as a result of shear force applied to the 

material. In this deformed region, worn material accumulates in the direction of the velocity, as 

shown in Figure 2.7. The presence of plasticity in these worn specimens in indication of internal 
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plastic shear, which can generate a local temperature increase given a high enough stress. This 

heat is in addition to the heat transfer due to frictional heating through the face of the pin. 

 
Figure 2.7.  

Figure 2.7. A worn Vascomax®C300 pin specimen (Liu 9). 

The fine grain type present in this region manifests at temperatures around 70% of a 

material’s melting point, which for Vascomax®C300 Tmelt = 1685.95 K. The estimated 

temperature reached in this region is therefore 70% of 1685.95 K = 1180 K. At this temperature, 

the material becomes austenitic, but when cooled becomes martensitic again. The final 

microstructure of the specimen is primarily martensitic (Liu 17).  

The next region in the pin has reduced hardness but no significant grain structure change, 

which indicates the temperature is high enough to coarsen the strengthening precipitates, but not 

high enough to cause significant grain growth. This indicates temperatures in excess of 900K, 

but below 1180K (Liu 17). In this region, the plastic shear pattern is in the direction of wear, as 

shown in Figure 2.8. Figure 2.9 shows the estimated temperatures reached throughout regions 

of the pin. 
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Figure 2.8. Microstructural grain patterns of experimental specimen (Liu 15). 

 
Figure 2.9. Temperature estimates for regions of the pin (Liu 18). 

2.2.2 Heat Transfer Models 
 
While micromechanical behavior is used to characterize the wear response, direct 

experimentation in this research is performed with Wing’s finite element analysis (FEA) heat 

transfer model. Where Liu’s work observes wear through a micromechanical lens, Boardman and 

Wing’s models examine pin-on-disc wear based solely on heat transfer (Boardman iv), (Liu 3), 

(Wing iv). Heat transfer is thermal energy in transit due to a spatial temperature difference. Heat 

energy transfer occurs in the direction from high to low temperature (Bergman, Lavine and 

Incropera 3).  
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Experimental thermal data, captured through thermocouples bored into the specimen, is a 

basis for these heat transfer models. The three thermocouples (T1, T2, T3) are bored into the 

specimen at 0.125, 0.250, and 0.375 inches from the pin face at 30-degree angles, as shown in 

Figure 2.10. The thermocouples used in the pin-on-disc test are type J, which are rated for 

temperatures up to 1030 K. The error on these thermocouples is ± 0.75%. The heat transfer data 

that results from the thermocouple measurements is shown in Figure 2.11. 

.  
Figure 2.10. Thermocouple placement in pin to measure heat transfer, as represented by T1, T2, 

and T3 (Wing 4). 
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Figure 2.11. Experimental temperature data compared to Wing’s 1D transient FEA model 

estimations (Wing 32). 

Boardman uses a two-dimensional nonlinear model to predict heat transfer on the pin-on-disc 

experiment. Wing builds off this work to conclude that a one-dimensional approach generates a 

sufficient model. In particular, Wing’s 1D FEA with constant parameters and a transient solution 

method generates a representative temperature profile of the empirical data. Finite element 

analysis is a method for numerical solution of field problems such as the distribution of 

temperature in a specimen. Individual finite elements are represented as small pieces of a larger 

structure. The temperature through each element is assumed to have simple variation defined by 

a shape function (Wing 16). FEA therefore provides the approximated temperature variation 

throughout a body where the distribution is continuous across the element connections, or nodes. 

A particular arrangement of nodes that make up a shape is called the mesh, and can be 

represented by a system of algebraic equations where the nodal quantities represent the 

temperature. Solving these equations approximates the temperature distribution (Wing 16). 
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Wing’s FEA model, generated and executed in ABAQUS simulation software, is able to 

quickly compute temperatures through the specimen using this method. This FEA model is also 

suitable for experimentation because various material properties, i.e., design factors, can be 

toggled to give unique temperature profile outputs. Given these considerations, this research uses 

the 1D FEA model to conduct experimental design.   

The surface heat flux equation used by the FEA to describe heat transfer through the pin is 

given by equation (3) (Wing 24). This equation for heat flux 𝑞 in units Watts/meter2 (W/m2) is 

applied to each sequential material removal at the face of the pin:  

𝑞(𝑡) =
𝛽(𝑡)𝜇(𝑡)𝐹(𝑡)𝑣(𝑡)

𝐴(𝑡)
= 5.950 ⋅ 10଺  

𝑊

𝑚ଶ
 

(3) 

where 𝛽 is the partition function, μ is the coefficient of friction, 𝐹 is the applied force, 𝑣 is the 

velocity of the pin relative to the rig, and 𝐴 is the area of the pin face. The flux parameters are 

treated as constants to describe the pin-on-disc test environment, with values given in Table 2.1. 

Material removals are given in Table 2.2.  

Table 2.1. FEA flux parameters (Wing 24). 

Parameter Value 
𝛽(𝑡) 0.12 
𝜇(𝑡) 0.20 
𝐹(𝑡) 656.76 N 
𝑣(𝑡) 47.83 m/s 
𝐴(𝑡) 0.0001276 m2 

 
Table 2.2. FEA material removals (Wing 23). 

Step Total material 
displacement (m) 

Total 
time (s) 

Initial 0.00 0 
1 0.00 0-1  
2 0.00005 1-2 
3 0.000125 2-3 
4 0.00035 3-4 
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5 0.0007 4-5 
6 0.0011 5-6 
7 0.0015 6-7 
8 0.0020 7-8 
9 0.0022 8-9 

 
The 1D FEA generates a temperature profile based on experimental material removal 

data, given in Figure 2.12. This wear data is taken in timesteps of 1 second, so the model is 

partitioned by these sequential removals. Figure 2.13 shows the model in ABAQUS, which is 

built off of a cross-sectional representation of the pin. Finite elements are implemented in the 

form of a nodal mesh (Figure 2.14) so that temperatures can propagate through the model 

according to constant parameter values for flux and material properties. Temperature profiles are 

then generated from the nodes at each of the three thermocouples. In summary, this model 

estimates temperatures through the specimen over the course of the wearing event. 

 
Figure 2.12. Material removal data from 2019 experimental run. 
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Figure 2.13. Wear representation in FEA model through material removals. 

 
Figure 2.14. Temperature flowing through finite elements, represented by nodal mesh in 

ABAQUS. 
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2.3 Characterizing Slipper Wear 

The most widely accepted definition of wear is “the loss of material from a surface, 

transfer of material from one surface to another, or movement of material within a single 

surface” (Hutchings 1). Given this general description, Bayer elaborates that wear is a system 

rather than a material property (2). Wear can be caused by various mechanisms and 

combinations of mechanisms, depending on the tribosystem context. “Wear behavior is 

frequently nonlinear. Transitions can occur in wear behavior as a function of a wide variety of 

parameters” (Bayer 2). These parameters may include velocity, temperature, friction, and 

material characteristics. From these varying parameters also arise a variety of wear responses, 

such as material removal, surface deformations, internal deformations, and melt. One of the first 

steps of this DOE characterizes high-speed slipper wear by identifying an appropriate metric for 

the wear response and determining controllable design parameters which dictate the response. 

2.3.1 Wear Response 
  

The response for this experimental design is slipper wear performance. As such, this 

research seeks to optimize the variable chosen to represent this response. To determine an 

appropriate metric for wear performance, it is important to first understand the nature of wear 

behavior. Lim and Ashby’s comprehensive wear map of steel, shown in Figure 2.15, 

characterizes different wear responses based on input parameters most closely associated with 

the wear process: normalized force (𝐹෨) and normalized velocity (𝑣෤). Their work also analyzes the 

impact of thermal effects across these different regions. The majority of the data used to build 

this map is from a series of 1980s dry sliding, pin-on-disc experimental tests (Lim and Ashby).  
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Figure 2.15. Lim and Ashby wear map of steel. 

The map in Figure 2.15 shows regions of wear types across a factor space of [𝐹෨, 𝑣෤]. The 

lines on the map represent possible areas of transition from one form of wear to another; they are 

not precise and are only used to express general behaviors (Boardman 19), (Lim and Ashby). 

These wear types are described (in approximate order from low to high regions across [𝐹෨, 𝑣෤] 

space): ultra-mild wear, delamination wear, mild-oxidational wear, severe-oxidational wear, and 

melt wear. Ultra-mild wear occurs while the oxide layer formed between the materials remains 

intact (Boardman 19). Delamination wear occurs when surface cracks cause shearing the 

material in thin sheets. Mild-oxidational wear is described as the splitting off of the brittle 

oxidation layer (Lim and Ashby). The wear in this region may also be influenced by a phase 
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change to increased material hardness, which equates to a sudden decrease of the wear rate. 

Other than this factor, thermal effects have little impact in the regions of ultra-mild, 

delamination, and mild-oxidational wear (Hutchings 17).  

Severe-oxidational wear occurs when the surface temperature is high but not yet at melt, and 

material continues to be removed from the oxide layer but not yet the metal. Wear is more 

continuous in this regime, and may be due to abrasion or melting of the oxide. Finally, melt wear 

of the metal occurs when temperatures are so high that thermal conduction becomes ineffective 

at removing heat from the surface. This melt may cause a layer of lubrication that decreases the 

coefficient of friction values, but is still characterized by higher wear rates due to the ease with 

which the molten material is removed. Because temperatures are so high, oxidation wear is likely 

also present (Boardman 19), (Lim and Ashby). Both severe-oxidational and melt wear are greatly 

impacted by thermal effects, and these regions are of particular concern when it comes to high 

wear-rates.  

Another predominant wear characteristic comes from mechanical behaviors of the sled 

sliding along the track. In investigation of HHSTT slipper wear, Yeo finds that when slippers 

impact a roughness on the track, deformation occurs at the surface of the slipper (Yeo, Palazotto 

and Song). These areas of roughness, also known as asperities, are on the scale of a several 

micrometers. One type of deformation that can occur on the slipper surface plowing, which is a 

continuous scratch pattern present in sled velocities of around 20 m/s (Yeo, Palazotto and Song). 

Gouging is another type of deformity that presents as a teardrop-shaped groove in the surface of 

the slipper at higher velocities, around 200 m/s. Gouging and plowing damage patterns observed 

after a 2008 HHSTT test run are shown in Figure 2.16.  
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Figure 2.16. Scanning electron microscope (SEM) images of the slipper surface (a) before and 

(b) after the 2008 test mission in HHSTT, as well as (c) and plowing (d) schematics (Yeo, 
Palazotto, and Song). 

In Sandia National Laboratory’s 1968 rocket sled tests, Gerstle et. al. find that high-speed 

asperity impacts can cause shear. This is when the impacted material experiences internal 

micromechanical sliding. These findings are consistent with the micromechanical analysis of 

worn pin-on-disc specimens of Section 2.2.1. The results of both tests suggest that high-speed 

wear of metal slipper material is associated with stress-induced micromechanical sliding along 

internal surfaces.  

In the case of the Sandia tests, Gerstle finds that when a high-temperature projectile (e.g., 

a slipper) impacts a target (e.g., a rail) with a severe combination of thermal energy and high 

velocity, layers of local temperature differentials occur. The stress of the impact causes internal 

mechanical deformation, which in turn causes additional heating of the material. The temperature 

differentials induced by this behavior are so high that the local rate of temperature change 

softens the material quicker than strain hardening can strengthen it. It then becomes an area of 
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local weakness in the material, which makes that area susceptible to catastrophic thermoplastic 

shear (Gerstle, Follansbee and Pearsall), (Szmerekovsky 10).  

These shear bands are present in areas where the force of the slipper impacting an 

asperity causes a gouge. The bands are located below the surface of the gouge, and are 

characterized by microcracks known as shear fractures. These areas of shear are problematic, as 

they can induce additional heating of the material at that site. Higher temperatures make the 

material more susceptible to plasticity, or permanent deformation. This type of wear is 

additionally problematic as aggregation of cracks within the material can lead to catastrophic 

shattering of the slipper (Hooser). 

2.3.2 Slipper Design Factors 
  
In the current experimental design, factors are design attributes that potentially influence 

slipper wear performance. Controllable factors investigated in this research involve the material 

composition of the slipper. The current slippers are composed of Vascomax®C300 maraging 

alloy steel. “Maraging” refers to a type of steel that is fully hardened to a martensite structure 

and is strengthened by aging. “300” refers to this material’s approximate yield strength of 300 

kilopound per square inch. Maraging steel is unique in that it has both high strength and high 

ductility. Its high strength makes it suitable for bearing heavy loads, and high ductility gives it 

high damage tolerance (Liu 3). Despite these favorable characteristics, current Vascomax 

slippers experience documented issues with wear at the HHSTT. 

Because this research uses a FEA computer model to conduct experimentation, design 

factors are material properties controllable within this model. These factors are mass density (𝜌), 

thermal conductivity (𝜆), and specific heat (𝑐௣). These properties can vary within a given 

material depending on temperature. For example, mass density is a function of a material’s 
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coefficient of thermal expansion as well as temperature (T). Specific heat is likewise a function 

of temperature, with values for Vascomax given by Table 2.3. Despite this, Wing’s baseline 

FEA approximates these properties as constant, with values given in Table 2.4. 

Table 2.3. Temperature and specific heat for Vascomax®C300 (Wing 10). 

Temperature (K) Specific Heat, cp, (J/(kg⋅K)) 
298 360 
422 481 
598 599 
700 858 

 
Table 2.4. Vascomax®C300 material properties used in baseline FEA model (Wing 10). 

Property Value Temperature 
Density, ρ 8000 kg/m3 All 

Conductivity, λ 30.807 W/(m⋅K) All 
Specific heat, cp 857.98 J/(kg⋅K) All  

 
 Mass density represents material mass per volume in kg/m3.  Density plays a role in 

various other material properties, such as specific stiffness and specific strength. These are 

measures of a material’s ability to withstand deformation under load given its density. While 

specific stiffness is a measure of how much materials elastically deform, specific strength is a 

measure of permanent deformation. Density also factors into how heat flows through a specimen 

(Wing 13). As discussed, the distribution and flow rate of heat energy through a slipper has 

considerable impacts on wear.   

Thermal conductivity is also an important factor in heat transfer through a material. 

Thermal conduction is the rate at which heat energy transfers from adjacent molecules, whether 

through two materials in contact or through the body of a material (Gregersen). An example of 

thermal conductivity at work is Szmerekovsky’s findings in the CTH simulation of the HHSTT 

scenario: adding an epoxy coating to the slippers decreases temperatures by half over the course 

of 20 microseconds (Szmerekovsky). This is because epoxy has a much lower thermal 
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conductivity (~0.3 W/(m⋅K)) than maraging 300 steel (30.807 W/(m⋅K)). However, it is notable 

that while epoxy has a higher thermal resistance, it has a lower resistance to impact 

(Szmerekovsky).   

Specific heat, measured in J/(kg⋅K), is the amount of heat energy per unit mass required 

to raise the temperature by a unit amount, in this case Kelvin. As such, materials with high 

specific heats are useful for temperature regulation. For example, the specific heat of water is at 

least double that of any metal. This means much more total energy is required to increase the 

temperature of water than metal (“Internal Energy”). In choosing factor ranges and levels for 

specific heat, the engineering feasibility of potential slipper materials must also be considered.   
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III. Methodology 

3.1 Find Region of Interest 

 To begin experimentation for optimal slipper design, an appropriate response variable 

and process variables are identified. The response variable is a measurable metric that 

characterizes the output in question: wear. This metric is the variable to be optimized using 

experimentation to find the best settings. Examples of potential responses in the context of this 

problem may include material removal, slipper temperature, or other indicators of wear over the 

course of a test run. 

Process variables are factors that affect the slipper wear response. There are both 

controllable and uncontrollable process variables, also known as factors. Controllable factors 

relating to design are referred to as design factors. Examples of design factors may include the 

slipper material’s specific heat, conductivity, coefficient of friction, and density. They may also 

include aspects like size and structure. There are also controllable variables that are not 

considered design factors. These are called held-constant factors, and include aspects that are not 

intrinsic to slipper design such as sliding velocity, normal force due to load, and any other factors 

related to the test environment. While these aspects have an impact on the wear response, they 

are not aspects of design. In this research, all experiments are set to a constant force, velocity, 

and run time for purposes of comparison and repeatability. 

Uncontrollable factors in this case involve aspects of the experiment that may impact the 

response, but are beyond control to the actors involved in experimentation. For physical 

experimentation, this can include natural variation in mechanical behavior or human-in-the-loop 

processes. For a simulation, this can include software issues or unknown modeling errors. For 
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example, simulations built for one material but extrapolated to other materials will impact the 

measured wear result. 

Once all factors are identified, significant factors are identified through screening and/or 

characterization. Screening is used in the case of many (four or more) potential design factors. 

Characterization involves a pared down set of factors, and examines the approximate behavior of 

the experiment. This includes determination of interaction and/or quadratic effects. Once the 

experiment is characterized, experimentation is designed and conducted to determine the 

approximate region in the design space that yields the best possible response. In this case, it 

determines the factor levels which yield an optimal wearing result. This region in the design 

space is referred to as the region of interest, and it is used for materials identification and 

analysis. 

It is important that a suitable design is constructed for this step, as the design points and 

resulting response surface should accurately depict wearing behavior. Information gleaned 

through this process may also be used for augmented or improved experimentation. These results 

should also be independently useful to informing physical slipper design and analysis.  

There are several design considerations throughout this process. Firstly, this design is 

conducted using the 1D transient FEA model of the 2019 pin-on-disc experiment. As such, 

potential process variables are limited to design factors that may be controlled in the model. In 

addition, real-world material characteristics must be considered. That is, there are a limited 

number of materials, treatments, coatings, etc., that are produced and are available for use. In 

addition, certain materials have properties that are not characterized by the pin-on-disc 

experiment. For example, ceramics are excellent at withstanding certain types of wear, but they 

shatter upon impact of blunt force caused by bouncing at the HHSTT sled track. These 
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considerations, which are often found through SME knowledge and literature, must be 

considered throughout design and experimentation. 

3.2 Conduct Materials Analysis 

 Once the region of interest is determined, materials with specifications in and/or around 

this space are identified. Ideal slipper materials are identified as those that perform at or near the 

optimum response, as determined by the specified model. These materials should also aim to 

meet goals not encompassed within the scope of the DOE problem. One of these goals is cost 

effectiveness. This is analyzed using a cost curve and identifying materials that lie on the cost 

efficiency frontier. Other goals may include availability of the material in large quantities, 

existing engineering and industrial applications, malleability, and the ability of the material to 

withstand significant load and impact.  

3.3 Validate Existing Pin-on-Disc Model  

This work utilizes the FEA model of the pin-on-disc experiment to design and conduct a 

DOE. It is therefore important to assess the validity and robustness of this model. The current 

FEA is based off of a single 2019 run on the pin-on-disc rig. As such, additional replicated runs 

are conducted at AFRL to generate more data on the true behavior of Vascomax wear. Once 

these runs are conducted, the FEA model is statistically assessed against the full set of data to 

determine if the temperature profiles generated by the FEA are truly representative of the wear 

behavior. This is done using outlier analysis and by comparing the model-generated profiles to 

both the estimated true mean.  
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IV. Experimental Design and Analysis 

4.1 Initial Design and Analysis 

 The initial phase of this DOE characterizes the experiment. This phase includes 

determination of the response variable, the factor space, and which factors significantly influence 

the response. Main effects, interaction effects, and second order effects are tested for significance 

in a Box-Behnken Design. In this phase, an initial response surface is generated to estimate 

where ideal designs may be located within the factor space. Process knowledge is also gleaned 

from analyzing how different factor combinations impact the behavior of the FEA model output.  

4.1.1 Response Variable Selection 
  

For this DOE, the selected response variable is maximum temperature change, △ 𝑇௠௔௫. This 

response is generated from simulated runs on the 1D transient FEA model of the high-speed pin-

on-disc experiment. △ 𝑇௠௔௫ is calculated as the maximum temperature change observed by any 

thermocouple over the duration of a run, or 𝑇௠௔௫ − 𝑇଴. An example measurement of this 

response on the Vascomax temperature profile is shown in Figure 4.1.  

 
Figure 4.1. Example measurement of △ 𝑇௠௔௫ from the FEA temperature profile, baseline 

Vascomax®C300 specimen. 

max △T 
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This response variable is chosen for several reasons. It is a metric that usefully captures 

the heat transfer information generated by the FEA. The FEA model gives numerous outputs 

which represent heat transfer through a material, such as heat flow visualization and temperature 

over time profiles. While all these graphics have value, △ 𝑇௠௔௫ is a single measurable output 

that can be inputted as data for the DOE. 

There is also the mechanistic and most important reason △ 𝑇௠௔௫ is chosen as the 

response variable. There are broadly two known causes of specimen wear under the high-speed 

pin-on-disc environment: heat transfer and micromechanical wear. The FEA model simulates a 

fixed wearing event entirely due to heat transfer. However, it is known that micromechanical 

wear corresponds with additional problematic phenomenon such as plastic deformation, 

subsurface catastrophic thermoplastic shear, and microcracking. These events are not directly 

characterized by the FEA. However, model temperature profile results can indicate whether the 

wear event is predominated by heat transfer or by non-heat transfer induced wear such as 

mechanics. 

It is best to maximize △ 𝑇௠௔௫ given by the FEA model, since a high △ 𝑇௠௔௫ signifies 

wear due predominantly to heat transfer. Conversely, an observation that undergoes the fixed 

wearing event with a △ 𝑇௠௔௫ significantly lower than melt cannot have worn due to heat 

transfer. Rather, the wearing event is likely due to mechanical wear, which is a more problematic 

mechanism in the context of HHSTT slippers. Thus, a high △ 𝑇௠௔௫is more ideal as the wear is 

predominated by heat transfer. 

4.1.2 Determination of Factors, Ranges, and Levels 
  

For slipper design, the factors of interest are the material specifications of a given 

specimen. Since this experiment is conducted using the FEA computer model, factors must also 



 

 37 

be controllable as parameters within the model. They must also be reliably measurable across the 

entire region of operability. Ideally, specifications must apply to as many potential materials as 

possible. In other words, it is not good for a specification to only be measurable on certain types 

of materials. These considerations lead to the identification of three potential factors for design: 

mass density (𝜌), thermal conductivity (𝜆), and specific heat (𝑐௣).  

Ranges for these factors are selected such that they span a wide enough testing region, 

but do not go outside the realm of feasible utility. Examples of properties outside the realm of 

feasible utility include specific heats above 3000 J/(kg⋅K), where materials become extremely 

flammable. Another example is materials with high densities above 22 kg/m3, which display very 

brittle qualities. Therefore, range selection involves striking a balance between covering a broad 

enough region to test many possibilities and limiting the region to a tractable and useful scope. 

Limiting the range also improves the fidelity of the DOE model; a broader range generally 

requires more observations to capture potential curvature. 

In conducting range research, there are three main categories of materials scoped. These 

are metals, engineering ceramics, and engineering plastics (Hooser). Each material type has an 

approximate range for the properties of density, conductivity, and specific heat. The range across 

all these categories can then be aggregated to construct a general range for each property. For 

example, ranges for mass density are observed across metals, ceramics, and plastics. Commonly 

used metals have a density range between 2,700 kg/m3 (aluminum) and 21,500 kg/m3 (platinum) 

(“Metal properties”). Engineering ceramics, also known as advanced ceramics, have a density 

range of 2,500 kg/m3 (boron carbide) and 6,000 kg/m3 (zirconia Y-TZP) (“Thermal 

Conductivity”). Engineering plastics, which include grades heat of heat-resistant plastics such as 

thermosets and thermoplastics, range between 1,000 kg/m3 (acrylonitrile butadiene styrene 
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(ABS) and 2,200 kg/m3 (Polytetrafluoroethylene/PTFE) (“Engineering plastics”). Therefore, the 

general range of mass density that should be tested is between 1,000 kg/m3 and 21,400 kg/m3. 

The full ranges for each material property are shown in Table 4.1.  

Table 4.1. Factor ranges. 

Material 
Property 

Ranges 
Metals Ceramics Plastics Full Range 

Mass Density 
(kg/m3) 

2,700 – 21,500  
(aluminum, 
platinum) 

2,500 – 6,000 
(boron carbide, 
zirconia Y-TZP) 

1,000 – 2,200 
(ABS, PTFE) 

1,000 – 21,500 

Thermal 
Conductivity 
(W/(m⋅K)) 

15 – 420  
(stainless steel 316L 
EN1.4404, silver) 
 

1.5 – 150 
(quartz, aluminum 
nitride) 

0.122 – 0.41 
(PEI, PBI) 
 

0.122 – 420  

Specific Heat 
(J/(kg⋅K)) 

 117 – 1825  
(uranium, beryllium) 

270 – 1288  
(zirconium, boron 
carbide) 

970 – 2000  
(PTFE, PEI) 

117 - 2000 

 
4.1.3 Initial Design and Analysis Using Box-Behnken 
  

The initial design chosen for this experiment is the Box-Behnken Design (BBD). The 

BBD generates a spherical design space that excludes the extreme corner points. This is ideal for 

this DOE, as factor combinations that lie entirely at the extremes of ranges are materially 

infeasible. For example, no material can have a maximum possible density (21,500 kg/m3), 

minimum possible conductivity (0.122 W/ (m⋅K)), and a maximum possible specific heat (2000 

J/(kg⋅K)). As such, all design points in the BBD are either center points or axial points that 

contain a midpoint level on at least one factor. 

This initial BBD is made up of 13 runs, augmented with the baseline Vascomax 

observation for a total of 14 observations. Note that there are no repeated center points since this 

experiment is conducted on a deterministic computer model. Design points are shown in Table 

4.2. The visualization of the design space is shown in Figure 4.2. All designs are generated 

analyzed using the software tool JMP. 
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Table 4.2. Initial BBD. 

Pattern 
Density 
(kg/m3) 

Conductivity 
(W/(m⋅K)) 

Specific 
Heat 

(J/(kg⋅K)) 
−0+ 1000 210.061 2000 
+0+ 21500 210.061 2000 
0+− 11250 420 117 
0−+ 11250 0.122 2000 
−0− 1000 210.061 117 
0 21500 420 1058.5 
0++ 11250 420 2000 
0−− 11250 0.122 117 
+0− 21500 210.061 117 
−+0 1000 420 1058.5 
+−0 21500 0.122 1058.5 
0 11250 210.061 1058.5 
−−0 1000 0.122 1058.5 
Baseline 8000 30.807 857.98 

 

 
Figure 4.2. 3D visualization of the initial BBD. This design does not contain points on the edges 

of the design space. 
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This BBD is built to estimate the response surface as well as all main effects, two-factor 

interactions, and second order polynomial effects. The average prediction variance of this design 

is 0.5212, which is moderate. An ideal prediction variance would be very close to zero. Figure 

4.3 shows the correlation map between the effects, with higher correlation marked by darker 

colors. The diagonal black correlations indicate that each effect is perfectly correlated with itself, 

as expected. Most correlations on the map are very light, so are not of concern. There is some 

remarkable correlation between the second order effects density*density (𝜌ଶ), 

conductivity*conductivity (𝜆ଶ), and specific heat*specific heat (𝑐௣
ଶ). However, the map does not 

indicate these correlations are very severe.  

 
Figure 4.3. Correlation color map of the initial BBD. The black diagonal indicates each effect is 

perfectly correlated with itself. Less correlation is preferable between effects. 
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 All design points are entered into the 1D transient FEA model in ABAQUS. The 

responses, measured as maximum change in temperature △ 𝑇௠௔௫), are recorded from the 

numeric temperature profile outputs. The design responses are given in Table 4.3. 

Table 4.3. Initial BBD results. 

Run 
Density 
kg/m3 

Conductivity 
W/(m⋅K) 

Specific 
Heat 

J/(kg⋅K) 
△ 𝑻𝒎𝒂𝒙 

K 
1 1000 210.061 2000 430.506 
2 21500 210.061 2000 218.76 
3 11250 420 117 230.761 
4 11250 0.122 2000 0.14 
5 1000 210.061 117 492.011 
6 21500 420 1058.5 192.473 
7 11250 420 2000 192.919 
8 11250 0.122 117 1647.77 
9 21500 210.061 117 426.967 

10 1000 420 1058.5 234.06 
11 21500 0.122 1058.5 0.135 
12 11250 210.061 1058.5 381.144 
13 1000 0.122 1058.5 3054.18 

Baseline 8000 30.807 857.98 1407.22 
 
 These results are fit to a least squares response surface model in JMP, which estimates 

the response surface along with main effects, two-factor interaction terms, and second order 

polynomial effects. The prediction expression is as follows: 

△ 𝑇௠௔௫ = − 0.115317𝜌 −  6.29024 𝜆 +   0.000352149𝜌𝜆 +  2368.32, 
 
where 𝜌 = density and 𝜆 = conductivity. This model indicates that the effects of 

density*conductivity and conductivity are significant to predicting △ 𝑇௠௔௫ at a significance level 

of α = 0.05, with p-values of 0.0217 and 0.0284, respectively. The main effect of density is also 

included in the model because it is a factor within the significant interaction 

density*conductivity. This maintains model hierarchy. The effects p-value for density of 0.0574 
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is also quite close to the 0.05 significance level. In terms of fit, this model has moderate 

predictive capability, with an R2 value of 0.662 and R2
adj of 0.560. The visualization of the fit is 

given in the actual vs. predicted plot in Figure 4.4. 

 
Figure 4.4. Actual vs. predicted plot of initial BBD model.   

 In terms of model adequacy, the studentized residuals vs predicted values in Figure 4.5a 

do not show any notable structure, indicating it reasonable to assume that residuals are of 

approximately constant variance. Likewise, residuals fall within a band of the ideal line in 

Figure 4.5b, indicating normal distribution of residuals can be reasonably assumed. The 

Variance Inflation Factors (VIFs) on the model parameter estimates are all very close to 1, which 

is ideal. This indicates that the model has no issues with multicollinearity among effects, and that 

they are independent from one another. Overall, this fitted model is deemed adequate. 

-500

0

500

1000

1500

2000

2500

3000

3500

Y
 A

ct
u

al

-500 0 500 1000 1500 2000 2500 3000 3500
Y Predicted RMSE=562.14 RSq=0.66 PValue=0.0101



 

 43 

   
(a)           (b) 

Figure 4.5. Plots for studentized residuals vs predicted response (a) and normal quantile plot of 
residuals (b). 

In terms of the prediction profile for △ 𝑇௠௔௫, Figure 4.6 shows that an optimal maximum 

temperature change is achieved with density at its low level (1000 kg/m3) and conductivity at its 

low level (0.122 W/(m⋅K)). The predicted △ 𝑇௠௔௫ at these settings is 2253.58 K above ambient, 

with a 95% confidence interval of [1362.34, 3144.82], as indicated in the profiler. These 

temperatures are higher than the melting point of most metals and ceramics, which would 

indicate that the predominant wear regime would be melt. However, the factor settings at this 

point are actually only found in engineering plastics, many of which have no known melting 

point. Therefore, this material is valuable to note for recommendations in potential slipper 

design. 
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Figure 4.6. Factor settings for optimal (maximum) △ 𝑇௠௔௫, which rests at levels [density, 

conductivity] = [-1, -1]. Note desirability is high at these levels. 

The minimum response can also be observed to investigate the full range of this 

experiment. Figure 4.7 shows that minimal temperature change is achieved at factor settings 

with density at its low level (1000 kg/m3) and conductivity at its high level (420 W/(m⋅K)). 

However, the predicted △ 𝑇௠௔௫ is -240.045 K, with a 95% confidence interval of [-1189.1, 

709.01] as shown. A negative temperature change is highly unlikely, given what is known about 

the nature of wear in high-speed environments. In fact, the lower end of the confidence interval 

is physically infeasible, as it implies a temperature decrease of over 1000K when the starting 

ambient temperature in the model is 296 K. This decrease would infeasibly put material 

temperatures below 0 K, or absolute zero.  
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Figure 4.7. Factor settings for minimal △ 𝑇௠௔௫, falling at levels [density, conductivity] = [-1, 1]. 

Desirability is low at these levels. 

 The 3D response surface (Figure 4.8) can also be examined to visualize the where 

optimal designs lie. The model factors conductivity and density lie on the horizontal plane while 

the response △ 𝑇௠௔௫ (labelled as Y) lies on the vertical axis. The marked data points are 

residuals between the model response surface predictions and actual experimental observations. 

This surface has a saddle shape, with both positive and negative eigenvalues.  
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Figure 4.8. Response surface of initial BBD experiment. 

The maxima on the response surface lie at factor levels [density, conductivity] = [-1, -1] 

and [1, 1]. These are visible on the backmost and frontmost areas of the response surface 

perspective in Figure 4.8. The factor setting [-1, -1] corresponds with the global optimum, 

△Tmax = 2252.759. The setting [1, 1] corresponds with a local maximum, with a predicted 

temperature increase of 427.00 K. Despite [1, 1] resting at a local optimum, this value is 

significantly lower than the baseline temperature change of 1407.22 K. A temperature change of 

427.00 indicates an internal temperature of 296 K (ambient) + 427 K = 723 K, which is still 

significantly lower than melt for most metals and ceramics. Therefore, this point is not ideal.  

Minima lie at the far left and right corners of the shown perspective, with [density, 

conductivity] levels at [1, -1] and [-1, 1], respectively. As indicated in Figure 4.7, [-1, 1] is the 

global minimum in the design region. However, these factor settings both yield response values 

of △ 𝑇௠௔௫ < 0, which goes against process knowledge of high-speed wear. The local minimum 
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on the saddle portion of the surface lies at approximately ρ ≃ 18,000 kg/m3 and λ ≃ 330 

W/(m⋅K), yielding a minimum △ 𝑇௠௔௫ ≃ 310 K.  

 The response minima of this design exhibit concerning behavior that casts doubt on the 

validity of this model. The global minimum and one local minimum have physically improbable 

values. This could indicate a few things. It is possible that the original FEA model is not suited to 

predict the range of material specifications tested in this initial design. It may also be that 

improbable points on the response surface correlate with factor settings that are not physically 

possible. While a BBD is specifically chosen to avoid corner points, it is possible that regions at 

or near the edges of the space are also materially infeasible. These considerations are factored 

into the next iteration of design. 

4.1.4 Process Issues with Initial Design 
 
Other issues during the initial phase of experimentation arise from observation of the 

FEA model outputs. The baseline design with Vascomax has a temperature profile as shown in 

Figure 4.1, where temperature curves exhibit nearly-linear, mildly oscillating behavior. While 

many tested design points exhibit similar behavior to this, as shown in Figure 4.9a, there are 

also points that exhibit severely oscillating temperatures as in Figure 4.9b.  
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(a) 

 
(b)  

Figure 4.9. Temperature profile of observation 2 of the BBD (a), exhibiting similar behavior to 
baseline; and BBD observation 3 (b), exhibiting severely oscillating temperatures. 

Severe oscillations are suspected due to numerical computation issues within the FEA, 

which may be alleviated by decreasing the size of material removal timesteps. The baseline FEA 

models material displacements in 1-second increments, so a fine-tuned model using timesteps of 

0.5 seconds is implemented in ABAQUS 2021 Student Edition. However, the Student Edition 

cannot execute more than 1000 nodes in the model mesh. The increased number of displacement 
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timesteps in the fine-tuned model takes up too many nodes at the bottom of the mesh compared 

to the original FEA, as shown in Figure 4.10. Because there are not enough nodes to compute 

the FEA, this tactic for alleviating oscillations is not executed for this research. 

  
           (a)            (b) 

Figure 4.10. The increased number of material removal steps in (b) compared to (a) does not 
leave enough nodes to compute temperature flow using FEA. 

Instead, temperature profiles with severe oscillations are fit to a smooth least-squares 

curve. These fitted curves take on the exponential form: 

𝑓(𝑥) = 𝑎(𝑒௕௫) + 𝑐(𝑒ௗ௫) 
    (4) 

 
 The maximum temperature change over the profile △ 𝑇௠௔௫ is derived from the fitted 

curve, as shown in Figure 4.11. This example is taken from the third BBD run, with parameter 

estimates as follows: 

𝑓ଷ(𝑥) = 496.8(𝑒ି଴.଴଴ଶହହଵ௫) − 184(𝑒ିଵ.଻ଷ଴௫) 
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Figure 4.11. Deriving △ 𝑇௠௔௫ from a fitted least-squares exponential curve on BBD observation 

3. △ 𝑇௠௔௫  in this example lies at 491.969 K – 296 K (ambient) = 195.969 K. 

Another family of concerning temperature profiles exhibits highly exponential behavior, 

as shown in Figure 4.12. These observations are concurrent with designs in which specific heat 

lies at the low level (cp = 0.122). These observations are concerning because they are often 

associated with extreme responses: observations 4 and 11 in Table 4.3 result in a maximum 

temperature change of less than a single Kelvin, while observation 13 results in a maximum 

temperature change of over 3000 K.  

These exponential profiles also exhibit drastically differing temperatures between the 

three thermocouples. In fact, temperatures for thermocouples 2 and 3 are so small relative to 

thermocouple 1 that only thermocouple 1 is visible on these graphs, as shown in Figure 4.12.  
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Figure 4.12. Temperature profile of observation 4, exhibiting exponential behavior in one 

thermocouple, temperatures do not increase above ambient 286 K in thermocouples 2 and 3. 

Overall, the behavior of these observations is drastically different from that of the 

baseline material. This casts doubt on whether the applied factor settings are a) materially 

feasible, and b) able to be modeled with validity within the FEA. These issues are again taken 

into consideration in the next phase of experimentation. The problem of potentially infeasible 

observations in particular indicates that a BBD is insufficient to generate an accurate response 

surface. While the BBD is made up of axial points along the edge of the cube and a single center 

point, it is necessary to augment this experiment with more points inside the region and to 

discard any infeasible points.  

4.2 Improved Design and Analysis 

 Results from initial experimentation using the BBD indicate that not all axial points in the 

factor space are materially feasible. The next step of design is to then conduct experimentation 

using the same response and factors, but on an updated design space. The updated space blocks 

off materially infeasible regions, and the feasible region is filled with near-evenly spaced design 
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points in a Space Filling Design (SFD). Because the region is non-rectangular, a Flexible Fast 

Filling Design (FFFD) type of SFD is implemented.  

4.2.1 Determination of Improved Design Space 
 
The first step in this phase is to narrow down the design space by blocking off materially 

infeasible regions. The approximate regions of feasibility based off of Table 4.1’s specifications 

are shown in Figure 4.13. While it is possible to simply block off all areas outside of each 

region, this does not leave room for potential composites. Composites are materials made out of 

two or more materials with different properties (Williams). For the purposes of this research, 

only two-material composites are considered.  
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   (a)              (b) 

 
(c) 

Figure 4.13. Material specification range for (a) density and conductivity, (b) density and 
specific heat, and (c) conductivity and specific heat. 

Composites are important to consider because they can combine useful features of 

multiple materials. For example, mud bricks reinforced with straw have good compressive 

strength from mud as well as good tensile strength from straw (Williams). Composites can also 
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increase the magnitude of strength, such as a graphene-copper composite that produces a 

material 500 times stronger than copper individually. Many composites are also tailored to 

produce materials with ideal heat conduction or insulation properties (Williams).  

In terms of density, thermal conductivity, and specific heat relating to composites, there 

is generally a normalizing effect between specification values. That is, the specifications of 

composites lie somewhere between the individual specifications that make up the material.  

For example, the Ashby chart in Figure 4.14 shows how polymer-metal composite 

densities lie roughly in the middle of polymer densities and metal densities. Polymers are 

materials composed of large macromolecules, which include engineering plastics such as PEEK 

and HDPE as well as nylons (Ayers).  

 
Figure 4.14. Normalization of densities between plastic and metal composites (Ayers). 

Similarly, the thermal conductivity and specific heat of composites tend to lie in between 

those of the individual components. Figure 4.15 shows the relationship between the thermal 
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conductivity value and the % AgNP silver within a PEEK thermoplastic composite. Figure 4.16 

shows the specific heat relationship for this composite. In general, the specification values lie in 

between those of AgNP and PEEK (Rivière, Causse and Lonjon).  

 
Figure 4.15. Relationship between thermal conductivity and AgNP content within a 

PEEK/AgNP composite (Rivère, Causse, and Lonjon). 

 
Figure 4.16. Relationship between specific heat and AgNP content within a PEEK/AgNP 

composite (Rivère, Causse, and Lonjon). 

As shown in Figure 4.16, the relationship between material proportion in a composite 

and the specification value is not always linear, so a conservative approximation of a feasible 
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design space is taken. This is to avoid blocking off areas that may be feasible. It is always 

possible to generate an observation and remove it later upon finding it infeasible, but it is more 

difficult to determine new points to generate upon already having completed design and 

experimentation. 

To determine the design space, infeasible regions are approximated. The method for 

approximation is as follows: for each material specification pair as in Figure 4.13, determine the 

extreme (boundary) specifications for any given material, then generate bounds of infeasibility 

using midpoints. For example, when observing conductivity (𝜆) vs. density (𝜌), the lower bound 

for 𝜌 is found in plastics. Composite behavior and Figure 4.13 (a) indicate that a material with 

densities in this low region of ρ must be predominantly if not all plastic. Conversely, materials 

with 𝜆 in the upper boundary range of must be predominantly if not all metal. Therefore, it is 

very unlikely for a material to assume both specifications of extremely low 𝜌 and extremely high 

𝜆.  

To account for potential composites between plastics, ceramics, and metals, an 

approximation is made that no material can assume specifications where 𝜌 falls below the 

midpoint of 𝜌’s lower bounds (1000 for plastics and 2500 for ceramics), while 𝜆 simultaneously 

rests above the midpoint of 𝜆’s upper bounds (150 for ceramics and 420 for metals). This equates 

to ruling that no material can have a 𝜌 < 1750 and a 𝜆 > 285. This process is repeated for the 

converse boundaries (upper bounds for 𝜌 and lower bounds for 𝜆), and for all three specification 

combinations. The approximated region of infeasibility for the 𝜆 vs. 𝜌 example is shown in 

Figure 4.17.  
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Figure 4.17. Infeasible combinations for conductivity and density. 

 This process for estimating infeasible regions is repeated for specific heat 𝑐௣ vs 𝜌, and 𝑐௣ 

vs λ. These regions are given in Table 4.4.  

Table 4.4. Infeasible combinations in SFD design space. 

Combination Infeasible 1 Infeasible 2 
𝜌 & λ  𝜌 < 1750 & 𝜆 >  285  𝜌 >  13,750 & 𝜆 < 0.811 
𝑐௣ & 𝜆 𝑐௣ < 193.5 & 𝜆 < 0.811 𝑐௣ > 1912.5 & 𝜆 > 285 
𝑐௣ & 𝜌 𝑐௣ <  193.5 & 𝜌 < 1750 𝑐௣ > 1912.5 & 𝜌 > 13,750 

 
4.2.2 Analysis of Space-Filling Design using Response Surface Method 
 

Using the updated design space, a Fast-Flexible Filling Design (FFFD) type of Space-

Filling Design (SFD) is generated. The FFFD near-evenly spreads design points throughout the 

non-rectangular design space using the maximum projection (MaxPro) criterion.  

The FFFD is made up of 15 runs, augmented with 5 viable design points from the BBD 

and the baseline Vascomax for a total of 21 observations. The MaxPro value of the FFFD is 
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𝐶ெ௔௫௉௥௢ = 18.7843. The full design for this phase is shown in Table 4.5, and visualization of 

design points is shown in Figure 4.18.  

Table 4.5. Augmented SFD. 

Observation Density  
kg/m3 

Conductivity  
W/(m⋅K) 

Specific heat 
J/(kg⋅K) 

SFD1 21394.6107 7.41683103 166.40989 
SFD2 13682.8142 80.028082 1952.41725 
SFD3 20055.7326 142.487369 1345.72045 
SFD4 20962.2328 397.82461 1847.77728 
SFD5 15120.1517 419.58395 314.172811 
SFD6 1828.99384 409.783324 910.815775 
SFD7 9407.53905 122.430071 271.332988 
SFD8 16571.4374 219.575883 820.576009 
SFD9 19256.7348 330.967448 514.768525 
SFD10 1091.30096 1.10786968 1661.33804 
SFD11 8375.76193 359.959705 1521.19419 
SFD12 11324.0565 245.409138 1751.04734 
SFD13 6654.43585 27.3940272 648.897563 
SFD14 5220.38412 178.653464 1162.05168 
SFD15 3783.62058 273.861328 137.856523 
BBD1 1000 210.061 2000 
BBD3 11250 420 117 
BBD6 21500 420 1058.5 
BBD9 21500 210.061 117 
BBD12 11250 210.061 1058.5 
Baseline 8000 30.807 857.98 
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Figure 4.18. 3D visualization of the augmented SFD. 

 These observations are used to estimate the response surface as well as all main 

effects, two-factor interactions, and second order polynomial effects. SFD design points are 

entered into the FEA model in ABAQUS to generate unique temperature profiles. The responses 

△ 𝑇௠௔௫ are recorded from the numeric temperature profile outputs and given in Table 4.6. In 

cases where the profile exhibits severe oscillation, determined as when a curve drawn through 

the oscillations does not monotonically increase, the fitted least squares approach described in 

equation (4) Section 4.1.4 is applied to estimate △ 𝑇௠௔௫. Of these tested 21 design points, the 

baseline Vascomax performs better than 0.773 of results, or in the 77th percentile. 

Table 4.6. Augmented SFD results. 

Observation Density (kg/m3) Conductivity 
(W/(m⋅K)) 

Specific heat 
(J/(kg⋅K)) 

△ 𝑇௠௔௫ (K) 

SFD1 21394.6107 7.41683103 166.40989 3426.42 
SFD2 13682.8142 80.028082 1952.41725 414.801 
SFD3 20055.7326 142.487369 1345.72045 338.083 
SFD4 20962.2328 397.82461 1847.77728 169.94 
SFD5 15120.1517 419.58395 314.172811 200.0196 
SFD6 1828.99384 409.783324 910.815775 201.7625 
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SFD7 9407.53905 122.430071 271.332988 683.8543 
SFD8 16571.4374 219.575883 820.576009 357.055 
SFD9 19256.7348 330.967448 514.768525 262.003 
SFD10 1091.30096 1.10786968 1661.33804 7288.4 
SFD11 8375.76193 359.959705 1521.19419 238.249 
SFD12 11324.0565 245.409138 1751.04734 295.229 
SFD13 6654.43585 27.3940272 648.897563 1955.79 
SFD14 5220.38412 178.653464 1162.05168 481.592 
SFD15 3783.62058 273.861328 137.856523 298.474 
BBD1 1000 210.061 2000 399.0753 
BBD3 11250 420 117 195.9702 
BBD6 21500 420 1058.5 192.473 
BBD9 21500 210.061 117 399.7829 
BBD12 11250 210.061 1058.5 381.144 
Baseline 8000 30.807 857.98 1407.22 

 
 These results are fit to a response surface model in JMP. Once again using a significance 

level of 𝛼 =  0.05, the prediction expression for this model is as follows: 

△ 𝑇௠௔௫ = 0.0000109𝜌ଶ − 0.295𝜌 + 0.0414𝜆ଶ − 24.882𝜆 + 5024.160, 
 

This model indicates that the effects of conductivity and conductivity2 are significant to 

predicting △ 𝑇௠௔௫ below the level of 𝛼 = 0.05, with p-values of 0.00015 and 0.00348 

respectively. The second order effect density2 is on the border of the significance level, with an 

effects p-value of 0.0517. Maintenance of model hierarchy dictates that the main effect of 

density (p-value = 0.130) should also be kept if including density2. It is found that the model 

including the density terms yields an R2
adj of 0.661 compared to an R2

adj of 0.587 without, so the 

higher term model is kept. This higher term model has overall good predictive capability, with an 

R2 value of 0.728. The visualization of the fit is given in the actual vs. predicted plot in Figure 

4.19.  
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Figure 4.19. Actual vs. predicted plot of augmented SFD model.   

 In terms of model adequacy, the studentized residuals vs row number in Figure 4.20 

indicate a potential issue with observation 10. Ideally, residuals should fall approximately within 

a horizontal band, as indicated by the red 95% Bonferroni limits. However, observation 10 lies 

well outside of this band. This observation is associated with the largest △ 𝑇௠௔௫ of 7288.4 K. 

While this in itself does not present an issue, the Cook’s D value of this observation is 2.193, 

which is above the ideal value of 1.00. This indicates the observation is likely an outlier, and 

may exert undue influence on the model. The model is thus rerun with observation 10 removed. 

The resulting model’s significant effects (maintaining hierarchy) and p-values are given in Table 

4.7. 

 
Figure 4.20. Studentized residuals indicate abnormality in observation 10.  
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Table 4.7. Model effects with observation 10 removed. 

Effect p-value 

Conductivity 0.00001 

Conductivity*Conductivity 0.00011 

Conductivity*Specific Heat 0.00276 

Specific Heat 0.02619 

Density*Specific Heat 0.02767 

Density 0.61662 
 
 This rerun model is significant with a large F-statistic of 29.290 and a good fit with R2 = 

0.918; however, the same issue with model adequacy appears. Figure 4.21 shows that 

observation 1 contains studentized residuals that fall outside of an approximately horizontal 

band. Cook’s D influence value on this observation is 2.240, which again falls above the ideal of 

1.00.  

 
Figure 4.21. Studentized residuals indicate abnormality in observation 1. 

It is notable that barring observation 10, this observation corresponds with the next 

highest △ 𝑇௠௔௫ of 3426.42 K. Since the goal for this problem is to maximize △ 𝑇௠௔௫, it is 

problematic that the regression model treats these high values as outliers.  

Removal of this observation confirms this trend: the rerun model excluding both 

observations 10 and 1 gives that observation 13, corresponding with the next highest △ 𝑇௠௔௫ of 

1955.79 K, is considered an outlier. This is especially concerning given that this value is not far 

off from the baseline Vascomax △ 𝑇௠௔௫ of 1409.58 K. Even though the studentized residual for 
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observation 13 once again falls above the Bonferroni limit and the Cook’s D is 1.3110, it would 

be tenuous to remove this observation from consideration. 

This raises the issue that a second-order response surface model may not be able to 

capture the highly nonlinear behavior of this data. It is suspected that there may be higher order 

terms, such as third or fourth order polynomials, that better capture the behavior of the data. In 

the next phase, a Gaussian process approach is taken to assess and model the data. 

4.2.3 Analysis of Space-Filling Design using Gaussian Process 
 

The Gaussian process is applied to obtain a higher resolution estimation of the data. 

Instead of a second-order model, the data is interpolated using weights. The same FFFD design 

points as in Table 4.6 are loaded into JMP. Two approaches to the Gaussian process are taken: 

with and without estimating the nugget parameter. The nugget is a parameter that can be useful 

to include in model estimation when there is high noise or randomness in the data. Figure 4.22 

shows that the model sans nugget parameter estimation provides a better actual vs predicted plot, 

with very similar log-likelihood values (344.781 with nugget and 345.127 sans nugget). As such, 

the no-nugget parameter estimation model is taken.  
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(a) 

 
(b) 

Figure 4.22. Actual vs predicted plots with (a) and without (b) nugget parameter estimation. The 
plot for (b) is closer to the ideal 45-degree line in red. 

 The mean response value given by this Gaussian process model is μ =  3808.802 K 

while σ =  4126.083, which is a considerably large spread. The parameter estimates for the 

model are given by the theta values in Table 4.8.  

The Gaussian process model estimates that conductivity has the highest impact on the    

△ 𝑇௠௔௫ response with a total sensitivity value of 0.866. Density is also a significant predictor to 

the response, while the impact of specific heat is negligible. The sensitivity from conductivity 
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comes approximately 61% from the main effect and 39% from the conductivity*density 

interaction. Density effects are derived approximately 25% from the main effect and 75% from 

the conductivity*density interaction. 

Table 4.8. Parameter estimates for Gaussian process model. 

Effect Theta 
Total 
Sensitivity 

Main 
Effect 

Density 
Interaction 

Conductivity 
Interaction 

Specific Heat 
Interaction 

Density 4.81E-09 0.4474842 0.1097304 . 0.3361762 0.0015775 

Conductivity 0.000011 0.8658509 0.5270687 0.3361762 . 0.002606 
Specific 
Heat 9.03E-09 0.0190658 0.0148823 0.0015775 0.002606 . 

 
The impact of each main effect on the response can also be visualized using marginal 

model plots, as shown in Figure 4.23. The plots for density and conductivity display curvature 

that flattens out toward the higher ends of the respective ranges. Specific heat does not display 

notable curvature. The plot also lies very flat, indicating it has little leverage on the response.  
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(a) 

 

   
   (b)       (c) 

Figure 4.23. Marginal model plots of △ 𝑇௠௔௫ response (labelled “Y”) vs main effects density 
(a), conductivity (b), and specific heat (c). 

  This Gaussian process model is used to determine optimal material specifications for 

slipper design. The surface profile of the response △ 𝑇௠௔௫ (labelled as “Y” on the z-axis) 

compared to significant effects conductivity and density can be viewed in Figure 4.24. The 

surface displays highly nonlinear behavior, with flared ‘wings’ of higher △ 𝑇௠௔௫ toward the 

edges of the space at [conductivity, density] levels of [-1, 1], [1, -1], and [-1, -1]. As shown, the 

highest increase occurs at the low levels [-1, -1] of conductivity and density.  

The factor profiler shown in Figure 4.25 also provides visualization of the model 

prediction. Maximizing desirability on this profile gives an estimated △ 𝑇௠௔௫ of 7565.931 K, 
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with a 95% confidence interval [7397.35, 7734.51]. As supported by the surface profiler, this 

optimal response is achieved at factor settings [conductivity, density, specific heat] = [-1, -1, 1]. 

Figure 4.25 also shows significant curvature in the conductivity and density factors, while 

specific heat displays very little impact on the response. This elaborates on the parameter 

estimates given in Table 4.8 and confirms the behavior in the marginal model plots given in 

Figure 4.23.  

 
Figure 4.24. Surface profiler of Gaussian process model. 
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Figure 4.25. Factor profiler for the Gaussian process model set at maximum desirability 

(maximum △ 𝑇௠௔௫). 

 Potentially the most useful output from this Gaussian process model is the contour 

profiler given in Figure 4.26. For materials design, it is not always possible or preferable to 

simply pick the precise specification levels that give the maximum possible output. Contour plots 

can show factor regions where the response may not be at absolute optimal, but values are close 

to ideal or more ideal than the current baseline design.  

The contour lines represent response values for △ 𝑇௠௔௫ on a profile looking at the two 

most significant factors, conductivity and density. The baseline design with Vascomax maraging 

steel has a response value of 1409.58 K. Regions on the plot that yield contour lines near or 

above this baseline response are of interest. This approximate region is shaded in green in Figure 

4.26, with areas yielding a △ 𝑇௠௔௫ greater than ~1300 K being of interest. The contour identifies 

that in general, materials with low conductivity and very high or very low densities are of 

interest. 
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Figure 4.26. Contour profiler of Gaussian process model with shaded green optimal region. 

Conductivity is measured in W/(m⋅K) and density in kg/m3. 
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4.3 Applied Materials Analysis  

 The located region of interest is used to identify potential real-world materials for 

improved slipper design. The factor space within the shaded green region of Figure 4.26 yields a 

list of materials that fall within the ideal ranges for density and conductivity. These include 

metals, ceramics, and plastics. A list of 35 of these materials and their specifications is compiled 

and inputted into the Gaussian process model, which yields the estimated △ 𝑇௠௔௫ response. 

Table 4.9 gives this list of materials, including Vascomax, in order of largest to smallest △

𝑇௠௔௫. The material type is indicated by P (plastic), M (metal), or C (ceramic). This list is not 

exhaustive of every existing material that falls within specifications, but rather those on the 

market with known engineering and industrial applications.  

Table 4.9. List of materials within region of interest. 

Rank Material name, 
type 

Density 
g/m3 

Conductivity 
W/(m⋅K) 

△ 𝑻𝒎𝒂𝒙 
K 

1 PEI, P 1.27 0.122 5023.78438 

2 PES, P 1.37 0.15 5023.05804 

3 pDCPD, P 1 0.17 5022.66933 

4 ABS, P 1.03 0.18 5022.41163 

5 Torlon, P 1.43 0.18 5022.29378 

6 PET, P 1.38 0.19 5022.05967 

7 PEEK, P 1.3 0.25 5020.59035 

8 PTFE, P 1.49 0.25 5020.53437 

9 Nylon, P 1.14 0.27 5020.13992 

10 PBT, P 1.35 0.28 5019.82928 

11 POM, P 1.41 0.3 5019.31409 

12 Vespel, P 1.4 0.35 5018.07339 

13 Quartz, C 2.2 1.4 4991.7691 

14 Ferrite, C 5 3 4951.39651 

15 Zirconia, C 5.68 3 4951.19623 

16 Mullite, C 2.8 4 4927.43503 
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17 Stainless steel, 
M 

7.9 15 4660.701 

18 FeCrAl, M 7.2 16 4637.29272 
19 Silicon nitride, C 3.17 20 4544.8513 

20 Titanium, M 4.5 21 4521.25973 

21 Alumina, C 3.95 32 4271.69718 

22 Boron carbide, C 2.52 35 4205.75321 

23 Carbon steel, M 7.7 54 3801.246 

24 Silicon carbide, 
C 

3.21 60 3681.53068 

25 Steel, M 7.9 80 3298.25094 

26 Bronze, M 8.8 85 3207.69425 

27 Nickel, M 8.8 91 3102.08083 

28 Zinc, M 7.1 116 2694.65967 

29 Molybdenum, M 10.2 138 2377.64879 

30 Aluminum 
nitride, C 

3.26 150 2224.19265 

31 Brass, M 8.5 150 2222.64931 

32 Tungsten, M 19.3 174 1944.29453 

33 Cast iron, M 7.15 52 3842.41731 

34 PBI, P 1.3 0.41 5016.61076 

35 Platinum, M 21.4 107 2831.33161 

36 Vascomax, M  8000 30.807 1409.58 
 

The top performing materials on this list have a △ 𝑇௠௔௫ of approximately 256% better 

than the baseline Vascomax. The maximum △ 𝑇௠௔௫ produced from this materials list is the 

thermoplastic polyetherimide, or PEI (commercially sold as ULTEM®). While this material is 

theoretically the most promising, there are more factors than solely experimental performance to 

consider. One of these is cost. Since a major motivator for finding a higher performing slipper is 

cost effectiveness, a curve is generated to investigate which materials have the best performance 

to price ratio.  

This cost curve is given in Figure 4.27. Materials on the cost efficiency frontier lie as 

much toward the bottom right (low cost and high △ 𝑇௠௔௫) as possible. The chart in part (a) 
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includes all 35 compiled materials; however, this chart has two materials that are so cost-

prohibitive that it decreases resolution of the materials on the efficiency frontier. Part (b) 

eliminates these materials so that the efficiency frontier is more clearly visible. The materials on 

this frontier are given in Table 4.10.  

 
(a) 

  
(b) 

Figure 4.27. Cost vs △ 𝑇௠௔௫ curve of all materials (a) and materials under $200/kg (b). Points 
on the efficiency frontier are shown in green. Cost-effective points not on the frontier but within 

the resolution of the model are shown in orange. 
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Table 4.10. Materials on the cost efficiency frontier, in order from high to low △ 𝑇௠௔௫. 

Material 
Name 

Density 
g/cm3 

Conductivity 
W/(m*K) 

△ 𝑻𝒎𝒂𝒙 
K 

Price 
USD/kg 

PEI 1.27 0.122 5023.784 20 

PES 1.37 0.15 5023.058 5 

pDCPD 1 0.17 5022.669 3 

ABS 1.03 0.18 5022.412 2 

PET 1.38 0.19 5022.060 1 
 
 It is notable that all the materials on the cost efficiency frontier have very similar 

performance. The lowest value △ 𝑇௠௔௫ on the frontier is only 1.724 K less than the highest 

value, which is well within the estimated model error of ±9.35 K as described in Section 5.1. 

Given this consideration, the most cost-effective choice on the frontier at $1/kg is the plastic 

polyethylene terephthalate (PET), commercially sold as Dacron®. Other cheaper materials that 

are not on the frontier but still perform within the bounds of optimal performance given the 

model’s natural error is listed in Table 4.11. Like the materials on the efficiency curve in Table 

4.10, these are all engineering plastics. These materials again have density and conductivity 

values that lie on the low end of the design space. The overall best performer considering both 

error and cost remains PET/ Dacron®. 

Table 4.11. Cost-effective materials outside the frontier that are within optimal according to 
model error. 

Material 
Name 

Density 
g/cm3 

Conductivity 
W/(m*K) 

△ 𝑻𝒎𝒂𝒙 
K 

Price 
USD/kg 

PTFE/Turcite® 1.49 0.25 5020.534 10 

Nylon 1.14 0.27 5020.140 2 

PBT 1.35 0.28 5019.829 3 

POM/Acetal 1.41 0.3 5019.314 3 
 
Tradeoffs other than cost are also important to consider when evaluating materials. This 

DOE uses heat transfer as a metric for wear and experiments across the factors of density, 
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thermal conductivity, and specific heat. However, there are many aspects of the slipper problem 

not encapsulated by these metrics. For example, the highest performing materials according to 

the Gaussian process model are all engineering plastics. On top of performing well according to 

the wear model, many of these plastics are known to have advantages such as high heat and 

creep resistance. However, many plastics also come with issues such as being difficult to 

machine, low stiffness, sensitivity to ultraviolet (UV) light, and emitting toxic fumes in contact 

with heat or during the manufacturing process. Similarly, ceramics and metals have advantages 

and disadvantages that stem from the nature of their chemical composition that are not 

encapsulated by this experimentation. Given this, Table 4.12 lists known pros and cons of the 

top three performers in each material category.  

Table 4.12. Tradeoff table for top three performers in each material category in order of 
decreasing △ 𝑇௠௔௫ (“Top 5 heat-resistant plastics”, “Introduction to Engineering Ceramics”). 

Category 
Rank 

Material 
Name 

△ 𝑻𝒎𝒂𝒙 
 (K) 

Cost 
(USD/kg) 

Advantages Disadvantages 

Plastic 1 PEI 5023.784 20 High strength and 
rigidity, dimensional 

stability over wide range 
of temperatures 

Poor resistance to 
some alkali salts 

Plastic 2 PES 5023.058 5 High strength and 
rigidity, dimensional 

stability over wide range 
of temperatures, easy 

fabrication 

Unknown 

Plastic 3 pDCPD 522.670 3 Corrosion and heat 
resistant, flexible 

molding, fast 
manufacturing 

New material with 
limited known 
applications 

Ceramic 1 Quartz 4991.769 15 Thermal shock resistant 
and chemical resistant 

Brittle 

Ceramic 2 Zirconia 4951.196 35 Corrosion and heat 
resistant, non-brittle, 

high strength and 
hardness, flexible 
fabrication options 

Abrasive 
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Ceramic 3 Mullite 4927.435 20 High-temperature 
strength, thermal shock 
resistant, corrosion and 

abrasion resistant 

High porosity 

Metal 1 Stainless 
steel 

4660.701 
 

1.2 Corrosion and heat 
resistant, high tensile 

strength, easy 
fabrication, recyclable 

Poor weldability 
(ferritic and 
martensitic) 

Metal 2 FeCrAl 4637.297 12 Corrosion and heat 
resistant 

Brittle 

Metal 3 Titanium 4521.260 20 Corrosion resistant, high 
strength, abundant 

High reactivity that 
causes difficult 
manufacturing, 
environmentally 

destructive 
extraction 
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V. Model Validation 
 

This DOE is conducted with a computer-simulated representation of the pin-on-disc 

experiment. As such, it is important to examine whether this model accurately represents the true 

behavior of the physical experiment. One major downfall to the FEA model is that it is built off 

of a single experimental run from 2019. Because the FEA is only calibrated to this one 

observational temperature profile, it is unknown whether the model truly represents the 

experiment. This section of research statistically analyzes whether the model is a good 

representation of the physical wear event on the pin-on-disc rig.  

5.1 Test Process 

 While the FEA model suitably represents the 2019 experimental run, it is unknown 

whether this run is representative of true temperature behavior. As such, additional tests were 

conducted at the AFRL Aerospace Systems Directorate’s (AFRL/RQ) pin-on-disc rig. These 

runs are analyzed and statistically compared with the 2019 run.  

The setup and test plan of these runs reproduce those of the original 2019 run as closely 

as possible. The rig’s basic design and functionality are as specified in Section 2.2. The rig 

components that perform the wearing event and the measurement devices remain largely the 

same as the old design, as shown in Figure 5.1. This includes the 12-inch AISI 4340 steel disc, 

the Vascomax®300 pin, motor-actuated holder, and position sensor. The three thermocouples are 

embedded into the specimen in the same manner as specified in Section 2.2, but type K 

thermocouples with a maximum temperature threshold of 1530 K are used instead of the old type 

J (maximum 1030 K). A schematic of the full system used in the 2021 test is given in Figure 5.2 

(Walter). 
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Figure 5.1. 2021 pin-on-disc rig. 

 
Figure 5.2. Schematic of the 2021 pin-on-disc system (Walter). 

 To run the system, an operator specifies the run time of the wearing event using the PC. 

The operator also specifies the force to be applied between the pin and the spinning AISI 4340 

steel wheel, as shown in Figure 5.2’s PC to force control box interface. The force controller 
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operates with a feedback loop that senses the force and adjusts accordingly. This update is 

performed every 18 degrees of wheel revolution. The desired velocity of the wheel in rotations 

per minute (RPM) is also inputted via an external controller. The values used for the run time, 

force, and velocity are given in Table 5.1. During the entire run time, the three thermocouples 

embedded in the specimen pin capture the temperature inside the pin and send the data to the 

DEWESOFT data acquisition box. A total of nine validation runs are performed with this 

system.  

 There is measurement error associated with the rig system. The error on the Type K 

thermocouples is the maximum of 2.2 K and 0.75% of the measurement. In other words, 

measurements under approximately 300 K have an error of ±0.75% while measurements over 

300 K have an error of ±2.2 K. The thermocouple amplifier has an error of ±0.5%, which is 

approximately ±6.5 K at maximum temperature. The DEWESOFT data acquisition box has an 

error of ±0.65 K according to the manufacturer. Therefore, the maximum error on this system is 

the sum of errors, or ±9.35 K. This value is important to consider when comparing the 

performance of alternatives as in Section 4.3. Because the FEA temperature profile is based off 

these measurements, this error also applies to model temperature outputs.  

Despite the goal to reproduce original operating conditions to perform data validation, 

there are a few differences between the 2019 run and the newer tests. In terms of system 

function, the older test applies the pin to the rig using a human-in-the loop method whereas the 

new system is closed-loop once the wearing event begins. In the 2019 setup, an engineer presses 

a button to move the pin holder forward as the run proceeds and the pin wears down. The 2021 

setup uses a sensor-operated system that applies a near-constant force over the duration of the 

run. This updated setup is necessary because it is difficult for a human to control the amount of 
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force applied in the high-speed pin-on-disc environment. It would be nearly impossible for a 

human operator to manually reproduce the same force profile as applied in 2019 over the course 

of several replicated runs. Therefore, a machine-controlled system is used to replicate the 2019 

run with as much fidelity as possible.  

Another difference between the 2019 and 2021 runs is the diameter of the pin. The older 

Vascomax pins have a diameter of 0.55 inches, while the newer pins are manufactured with a 

diameter of 0.50 inches. This is significant because the area of the pin 𝐴 is inversely proportional 

to surface heat flux as in equation (3), and thus to heat transfer-induced wear. Equation (3) shows 

that 𝐹 and 𝐴 are also inversely proportional to each other, so the applied force 𝐹 must be 

adjusted to reproduce operating conditions as much as possible. The following relationship is 

used to calculate the corrected force: 

𝐹௢௟ௗ

𝐴௢௟ௗ
=

𝐹௡௘௪

𝐴௡௘௪
 

(5) 

where 𝐴 is given by π(𝐷/2)ଶ, 𝐷 being the diameter of the pin face. Using the old and new 𝐷 

values of 0.55 and 0.50 respectively, equation (5) gives that 𝐹௢௟ௗ = 0.8264𝐹௡௘௪. Given this 

correction, 2021 test parameters are adjusted according to Table 5.1. Parameters marked with an 

asterisk (*) indicate discrepancy between the old and newer tests. Values are given in both 

scientific units and the units inputted into the rig system software. Note that velocity is converted 

to rotations per minute (RPM) given the diameter of the 12-inch AISI 4340 wheel. 

Table 5.1. 2019 vs 2021 test parameters. 
Test parameter 2019 SI 2019 Field 2021 SI 2021 Field 

𝐹* 656.76 N 148 lbf 542.75 N 122 lbf 
𝑣 47.83 m/s 3000 RPM 47.83 m/s 3000 RPM 

𝐴 ∗ 0.00015328 m2 0.55 in 0.0001267 m2 0.50 in 
Run time 9 s 9 s 9 s 9 s 
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5.2 Validation Analysis 

 The temperature profiles from the 9 validation runs are analyzed and compared to the 

temperature profile generated by the FEA model. The goal is to determine whether the collected 

data supports the model output. The variable tested in this analysis is the response, △ 𝑇௠௔௫, 

which is measured from the temperature profile of each run as specified in Section 4.1.1. An 

example temperature profile taken from a validation run is shown in Figure 5.3. The sample 

mean of these 9 runs is yത = 1038.429 K with sample standard deviation 𝑠 = 68.396 K. The 

corresponding model temperature profile is generated using the FEA, with flux adjusted 

according to the new values of 𝐹 and 𝐴 given in Table 5.1. Plugging these diameter-corrected 

values into equation (3) gives a flux of 4.918 ⋅ 10଺ ௐ

௠మ
 compared to the old flux of 5.950 ⋅

10଺ ௐ

௠మ
. The resulting temperature profile is given in Figure 5.4, with a △ 𝑇௠௔௫ of 1167.170 K. 

 

Figure 5.3. Example temperature profile from 2021 validation run #3. △ 𝑇௠௔௫ for this run is 
calculated as △ 𝑇௠௔௫ − 𝑇଴ = 1344.297 − 300.569 = 1043.727𝐾. 
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Figure 5.4. Temperature profile generated from the FEA using the adjusted flux model. 

The FEA-generated temperature profile is compared with those of the physical runs to 

determine if the model is supported by test data. To do this, the model △ 𝑇௠௔௫ is compared with 

the true mean as estimated from the test runs. This is accomplished by constructing a two-sided 

95% confidence interval around the mean. A t-distribution is used to construct the interval, 

which yields a range between 985.855 and 1091.003 K. As the model △ 𝑇௠௔௫ of 1167.170 K lies 

outside this range, it is concluded that the model likely does not represent the true mean of the 

pin-on-disc experiments.  

In addition to examining whether the model is reflective of the true mean, outlier analysis can 

be performed to test whether the model lies within the distribution of △ 𝑇௠௔௫  at all. As there is 

no one method of using sample data to determine whether a data point lies within the population 

distribution, this is tested with a variety of statistical techniques: the prediction interval, normal 

probability plot, Grubbs’ outlier test, and outlier box plot. 

A prediction interval provides a range of values that a single future observation may fall 

under. The two-sided 95% prediction interval of the test data is [872.175 K, 1204.682 K]. As the 
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model △ 𝑇௠௔௫ of 1167.170 K falls within this range, the prediction interval affirms that the 

model output likely lies within the distribution of the pin-on-disc experiment. This conclusion is 

supported by the normal probability plot in Figure 5.5, which shows that the model output 

(labelled as the red data point) lies within the dotted red band of approximately normally 

distributed data. An outlier would likely fall outside this band. The histogram shown on the left 

of Figure 5.5 confirms this approximately normal behavior. 

  
Figure 5.5. Graphical descriptions of the dataset from left to right: histogram, outlier box plot, 

and normal probability plot. 

An underlying normal distribution is useful so that formal outlier tests may be performed. 

These tests depend on the assumption of normality. Grubbs’ outlier test detects whether there is a 

single outlier in a dataset, with the null hypothesis being that there are no outliers and the 

alternative that there is exactly one. The test statistic 𝐺 is defined as: 

𝐺 =
𝑚𝑎𝑥|𝑦௜ − 𝑦ത|

𝑠
 

(5) 
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where 𝑦௜ is the 𝑖௧௛ observation, 𝑦ത is the sample mean, and 𝑠 is the sample standard deviation. 

The 𝐺 value of the test data is 1.519, which is below the critical level of 2.290. This indicates 

failure to reject the null hypothesis. Therefore, none of the data points, including the model-

generated point, are considered outliers. The final test to confirm this is Figure 5.5’s outlier box 

plot, in which the model data point of 1167.170 K lies on the “whisker” of the plot, not outside 

the range. In summary, statistical analysis shows that while the model output likely lies within 

the experimental distribution, it likely does not represent the true mean.  

 In addition to this statistical conclusion, the FEA model has several process-based 

limitations. For one, the model incorrectly uses a pin diameter of 0.50 inches when the pin from 

2019 has a diameter of 0.55 inches. Although the FEA closely represents the 2019 thermal 

profile despite this error, there are likely modeling inconsistencies that impact thermal profiles 

when experimenting across the material design space. Another issue that could affect the 

accuracy of DOE results is the use of constant parameters in the heat flux equation (3). While 

these parameters again suffice to represent the 2019 run, heat flux is known to be a time variable 

property. These issues suggest that experimental results should be used with caution for use in 

future testing. A future recommendation is to construct a new model based off of the full test 

data and information acquired in 2021. The FFFD designed in Section 4.2.2 should then be 

applied to this updated wear model for a more reliable experimentation.  
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VI. Conclusion 
 

This work uses experimental design to mathematically characterize the behavior of high-

speed wear due to heat transfer. Experimentation in this research is conducted on the 1D 

transient FEA representation of AFRL’s pin-on-disc experiment. The most appropriate design for 

this problem is the FFFD, given the irregular shape of the design space. A total of 21 design 

points are tested using an augmented FFFD, with the baseline Vascomax performing in the 77th 

percentile of all observations. 

Of the resulting models that are generated from this design, it is determined that the Gaussian 

process model is the most accurate due to the highly nonlinear behavior of wear. The Gaussian 

process model estimates that the factor of material conductivity has the highest impact on the     

△ 𝑇௠௔௫ response with a total sensitivity value of 0.866. Density is also a significant predictor to 

the response, while the impact of specific heat is negligible. A significant portion of sensitivity 

also comes from the interaction between conductivity and density, with a value of 0.336.  

The Gaussian process model produces a response profile that can be used to identify the 

region in the factor space that generates a △ 𝑇௠௔௫ that is at or greater than the baseline 

Vascomax slipper material. This yields a list of commercially available materials that fall within 

these specifications. According to the model, the highest performing materials are all engineering 

plastics. Cost analysis is performed to identify materials on the efficiency frontier of price and 

performance. The overall best performer considering cost and the margin of model error is the 

engineering plastic PET (Dacron®). High-performing materials according to the model are also 

assessed in regard to aspects such as malleability, impact resistance, and ease of manufacturing.  

This work concurrently performs model validation on the 1D FEA of the pin-on-disc 

experiment. Nine additional runs are performed at AFRL/RQ, which yield that the current FEA 
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likely falls within the distribution of maximum thermal output, but that it likely does not 

represent the true mean. In addition, micromechanical analysis of worn pin specimens indicate 

that significant wear is induced from mechanical stress. This wear, which includes plastic 

deformation and potential additional thermal effects, is not accounted for by heat transfer. As 

such, the experimentation in this research provides materials that wear ideally according to solely 

a heat transfer perspective.  

 This research provides a proof of concept for using experimental design to mitigate high-

speed sliding wear. Potential future work in this field involves direct materials experimentation 

using the pin-on-disc rig. The findings of this research demonstrate the need for physical 

experimentation in a controlled setting that mimics the high speed, temperature, and force 

conditions of the HHSTT. Existing models and simulations provide valuable information on 

certain characteristics of slipper wear behavior such as heat transfer. However, they cannot 

holistically represent all possible wearing behavior, and have issues extrapolating outside the 

immediate scope of the model.  

Recommendations for further research include using the methods, data, and insight provided 

by this work to construct, conduct, and analyze a physical DOE at AFRL/RQ’s pin-on-disc rig. 

This involves selecting appropriate response variable(s) and design space. Unlike simulated 

experimentation, points should be replicated to estimate pure error. For fitting a model, a 

Gaussian process model is recommended due to the observed highly nonlinear behavior of wear.   
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