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Abstract

Emotion classification can be a powerful tool to derive narratives from social

media data. Traditional machine learning models that perform emotion classification

on Indonesian Twitter data exist but rely on closed-source features. Recurrent Neural

Networks can meet or exceed the performance of state-of-the-art traditional machine

learning techniques using exclusively open-source data and models. Specifically, these

results show that Recurrent Neural Network variants can produce more than an 8%

gain in accuracy in comparison to Logistic Regression and SVM techniques and a 15%

gain over Random Forest when using FastText embeddings. This research found a

statistical significance in the performance of a single layer Bi-directional Long Short-

Term Memory model over a 2-layer stacked Bi-directional Long Short-Term Memory

model. This research also found that a single layer Bi-directional Long Short-Term

Memory Recurrent Neural Network met the performance of a state-of-the-art Logistic

Regression model with supplemental closed-source features from a study by Saputri

et al. (2018) when classifying the emotion of Indonesian Tweets. This model can

be provided to operational units within the INDOPACOM theater giving them the

ability to identify social media posts based on predicted emotion class - allowing them

to gauge public reaction to military exercises in theater.

iv
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NARRATIVE ANALYSIS OF OPEN-SOURCE SOCIAL MEDIA ACTIVITY IN

THE INDOPACOM AOR

I. Introduction

1.1 General Issue

For over a decade, experts have argued that the U.S. Military should “shift strate-

gic centers of gravity from the physical to the human aspects of warfare” (Gavrilis,

2009). This philosophy is now widely accepted in the context of small-scale opera-

tions (Beskow and Carley, 2019). As adversaries have demonstrated an exceptional

ability to influence narratives through the medium of social media, the Department

of Defense has acknowledged that the modern security environment has become “in-

creasingly complex” and “defined by rapid technological change” with “challenges

from adversaries in every operating domain” (Nimmo, 2015; Department of Defense,

2018). This new operating environment requires that U.S. forces increase their situ-

ational awareness of social media activity in theater.

Sentiment analysis has become an increasingly popular field for research with the

increasing preeminence of the internet and social media. Twitter, in particular, has

become a lightning rod for researchers aiming to model human language through

various machine learning techniques. Notably, most of this research has been per-

formed in the English-speaking world - leaving other languages relatively untouched

and ready for discovery (Saputri et al., 2018).

1



1.2 Problem Statement

In July 2020, an operational unit within INDOPACOM was allocated personnel

for dedicated collection and analysis of Open-Source Intelligence (OSINT) Data. The

unit quickly realized it lacked the tools necessary to ingest and derive insights from

large scale social media data. The processes at the time were user intensive and relied

heavily on manual operations (Smithmeyer, 2021).

The operational unit initially requested assistance from The Research and Analy-

sis Center-Monterey (TRAC-MTRY), which collaborated with partners at the Naval

Postgraduate School (NPS) to create an R-Shiny tool for OSINT tasks such as sen-

timent analysis. The first version of the tool was delivered as a capstone project in

June 2021. The social media data leveraged by the tool was provided via Sprinklr,

a web scraping tool which scrapes social media applications such as Twitter and In-

stagram (Smithmeyer, 2021). The NPS team was also able to acquire and utilize

lexicons for the Indonesian and English languages. The R-Shiny tool currently uses

a lexicon-based sentiment classification methodology.

The new wartime operating environment, defined by the National Defense Strategy

(NDS), makes OSINT analytic capabilities an increasingly important aspect of overall

mission success in the INDOPACOM region. Adversary tactics drive the need for

the U.S. to proactively engage in the social cybersecurity environment in theater.

Operational units can do so by using internal assets at the Division level versus

higher-echelon resources that are often dedicated to higher-priority efforts.

1.3 Research Objectives

The primary research objective of this study will be to meet or exceed the per-

formance of state-of-the-art Indonesian emotion classification using exclusively open-

source data and models. This objective will be met by examining the efficacy of

2



various recurrent neural network (RNN) variants within a deep neural network archi-

tecture in comparison to traditional machine learning techniques. These models will

be trained and tested on a data set of labeled Indonesian Tweets for emotion classi-

fication made by Saputri et al. (2018). The specific variants examined will be Long

Short Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Stacked Bi-LSTM

and Gated Recurrent Unit (GRU). These models will leverage pre-trained Word2Vec

and FastText word embeddings provided by Saputri et al. (2018). Because RNNs

train solely on a sequential representation of text, they have no dependence on propri-

etary dense features. This is in contrast to Saputri et al.’s final ensemble model which

trained Logistic Regression using features such as an Indonesian Sentiment Lexicon,

Bag of Words, part of speech tagging, and emoticon lists. The validity of the models

will be judged based on macro-level F1 score in a 10-fold cross validation experiment.

This project can potentially be used as a methodology for performing emotion

classification for OSINT cells at operational units within the INDOPACOM theater.

This capability could allow OSINT cells to search for social media data based on pre-

dicted emotion class instead of simple positive or negative sentiment. For example, a

user could search for all social media posts predicted to be “angry” or “fearful” for the

purpose of threat identification. Emotion classification can provide characterization

and understanding of Indonesian human, social, cultural and political behavior.

While this specific research is scoped by the INDOPACOM theater, it is impor-

tant to note the possibility of hostile nations outside theater performing information

maneuvers within its bounds. This research could produce insights by examining

anomalies within the context of country of origin (i.e. an “angry” Tweet in Indone-

sian about the U.S. sent from some other country).

3



This study’s use of machine learning to derive narratives from social media aligns

with the NDS prioritization of technologies that “ensure we will be able to fight and

win the wars of the future” (Department of Defense, 2018).

1.4 Organization

This document is organized as follows. Chapter II provides an overview of relevant

background information and literature review. Chapter III details the methodology

behind the various RNN models. Chapter IV presents the results of the various RNN

models. Finally, Chapter V discusses the conclusions drawn from the results.

4



II. Literature Review

2.1 Information Warfare

In 2013, Chief of the Russian Federation’s General Staff, General Valery Gerasi-

mov published an article in the Russian Federation’s Military Industrial Courier,

which is considered the “genesis of hybrid or gray warfare” by the West (Bartles, 2016;

Beskow and Carley, 2019). Gerasimov articulates the view that war is “conducted

by a roughly 4:1 ratio of non-military and military measures. These nonmilitary

measures include economic sanctions, disruption of diplomatic ties, and political and

diplomatic pressure” (Bartles, 2016). These non-military measures are to be viewed

as means of war, not as ways to avoid war (Bartles, 2016).

In 2015, Ben Nimmo, an analyst at Central European Policy Institute, intro-

duced what he called Tactics of Rebuttal to describe the Russian Federation’s social

cyber-security effort to defend itself. The four tactics are dismiss, distort, distract

and dismay (Nimmo, 2015). These observed tactics formed the basis for Beskow’s

“information maneuvers” (Beskow and Carley, 2019). The strategy is to employ a

“network of officials, journalists, sympathetic commentators, and internet trolls to

create an alternative reality in which all truth is relative, and no information can be

trusted” (Nimmo, 2015). This approach was applied to great effect by the Russian

Federation in its 2014 campaign in Ukraine (Nimmo, 2015).

5



In 2018, Fabio Rugge, Head of the Italian Institute for International Political

Studies Centre on Cybersecurity, said the following:

Cyberspace is a powerful multiplier of the destabilizing effects of manip-

ulated information because it allows high connectivity, low latency, low

cost of entry, multiple distribution points without intermediaries, and a

total disregard for physical distance or national borders. Most impor-

tantly, anonymity and the lack of certain attribution of an attack make

cyberspace the domain of ambiguity (Rugge, 2018).

In 2018, Social Cyber-Security was defined as “an emerging scientific area focused

on the science to characterize, understand, and forecast cyber-mediated changes in

human behavior, social, culture and political outcomes” (Carley et al., 2018). So-

cial Cyber-Security is further defined as a “multi-disciplinary, multi-methodological,

multi-level computational social science” with relevant sub-fields such as language

technologies (i.e. natural language processing (NLP) and sentiment analysis), data-

mining, statistics, and machine learning (Carley et al., 2018).

In 2019, Beskow and Carley defined the term information maneuver as the “ma-

nipulation of information and the flow or relevance of information in cyberspace”

(Beskow and Carley, 2019). They list several examples of information maneuvers:

• Misdirection: introducing unrelated divisive topics into a thread in order to

shift the conversation

• Hashtag latching: tying content and narratives to unrelated trending topics and

hashtags

• Smoke screening: spreading content (both semantically and geographically) that

masks other operations

6



• Thread jacking: aggressively disrupting or co-opting a productive online con-

versation (Beskow and Carley, 2019)

The current NDS released in 2018 acknowledged that the US security environment

is “affected by rapid technological advancements and the changing character of war”

(Department of Defense, 2018). It goes on to add the following:

The fact that many technological developments will come from the com-

mercial sector means that state competitors and non-state actors will also

have access to them, a fact that risks eroding the conventional overmatch

to which our Nation has grown accustomed” (Department of Defense,

2018).

The commercial sector’s technological developments include advanced computing,

“big data” analytics, and artificial intelligence (Department of Defense, 2018).

2.2 Sentiment Analysis

The most basic implementation of NLP is typically in the form of buzzword fre-

quency charts or word clouds. An example of this would be an analyst producing

a table of the most frequently used words that appear on Twitter from a certain

area of interest. This can be a simple, yet effective method to gauge public interest.

However, strict reliance on frequency-based analysis methods may “paint conclusions

with broad brushes, and ignore the intricacies of language which make it so difficult

to study with definitive conclusions” (Jipa, 2019; Haines, 2021). Often simple word

frequency rankings will not offer the insight needed to monitor potential information

maneuvers. Instead one may wish to identify broad public sentiment or emotions.

7



Sentiment analysis has been defined as:

The way toward extricating data from a given dataset. It joins Natu-

ral Language Processing with Artificial Intelligence and analysis of a text.

The sentiment analysis approach is utilized to mine data and deciphers in-

dividuals’ feelings, against a specific topic, about any function and others.

(Raisa et al., 2021)

Sentiment analysis is a sub-field of the broader discipline of NLP. “There are

multiple methods for measuring sentiments, including lexical-based and supervised

machine learning methods... it is unclear which one is better for identifying the

polarity (i.e., positive or negative) of a message” (Ribeiro et al., 2015). Context is

key to determining the sentiment of a word or phrase. “A single keyword can be

used to convey three different opinions, positive, neutral and negative respectively...

For example, ‘fighting’ and ‘disease’ [are] negative in a war context but positive in a

medical one” (Jagtap and Pawar, 2013).

2.3 Emotion Classification

Emotion classification seeks to take the sentiment analysis approach and classify

text into various human emotions instead of a binary response such as positive or neg-

ative. Emotion classification can often be more useful for general purpose sentiment

mining due to the unstructured nature of social media (Saputri et al., 2018). Binary

sentiment analysis is frequently more suitable for specific data sets such as movie

reviews where there is a known subject and somewhat predictable format. There is

no known subject or predictable format in the case of Twitter or Instagram.
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A 2018 study by Saputri et al. produced the first publicly available labeled In-

donesian Twitter data set for emotion classification. The study performed emotion

classification on Indonesian Twitter Data using traditional Machine Learning tech-

niques such as Support Vector Machine (SVM), Logistic Regression, and Random

Forest with an ensemble of lexicons and embedding techniques (Saputri et al., 2018).

The results of the study’s models are published but the models themselves are not.

The study also published pre-trained Word2Vec and FastText embeddings that were

trained on over one million Indonesian Tweets. This study represents the state-of-

the-art in emotion classification performance for Indonesian Tweets.

Traditional machine learning techniques like SVM, Logistic Regression, and Ran-

dom Forest rely on “external resources or manual annotation to learn semantic and

syntax features” (Zhou et al., 2018). Saputri et al.’s final model was trained on an

ensemble of dense features, some of which are not publicly available (i.e. an emoticon

list, an emotion word list and Vania’s sentiment lexicon). Deep learning techniques

like neural networks can automatically “extract the features of context” and thus

have “universal applicability” (Zhou et al., 2018). The consequences of this distinc-

tion are critical to the success of this research. It is more desirable for the military

to rely upon open-source data and models versus proprietary or academic ones. It is

therefore the goal of this research to meet or exceed the capabilities of traditional ML

techniques that leverage private data using deep learning techniques with exclusively

open-source data/models.
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2.4 Recurrent Neural Network Variants

LSTMs were first proposed in 1997 as a solution to RNN’s issues with losing

memory of its initial inputs (Hochreiter and Schmidhuber, 1997). For instance, if

performing sentiment analysis on a lengthy movie review, an RNN will gradually

forget the first few words (i.e. “I loved this movie, but. . . ”), causing the model to lose

full context of the review and potentially make an incorrect sentiment classification

(Géron, 2019). LSTMs mitigate this issue by storing important inputs in long-term

memory.

LSTMs with pre-trained unsupervised word vectors have been shown to be perform

competitively in comparison to traditional machine learning techniques at the task

of classifying movie reviews (Hassan and Mahmood, 2017). The LSTM with pre-

trained word vector method can “likely overcome some flaws of bag-of-words and

n-gram models” (Hassan and Mahmood, 2017). This study will directly compare the

performance of an LSTM with pre-trained word vectors (i.e. Word2Vec, FastText)

against traditional machine learning methods leveraging bag-of-words vectorization.

LSTMs with pre-trained unsupervised word vectors have also performed sentiment

analysis on Turkish online shopping reviews and movie reviews (Ciftci and Apaydin,

2018). The LSTM model with word embeddings showed better validation accuracy

in comparison to Naive Bayes and Logistic Regression models with term frequency-

inverse document frequency (TF-IDF) vectorization (Ciftci and Apaydin, 2018). The

study by Sapurti et al. did not leverage TF-IDF vectorization, however instead they

used bag-of-words which is a similar, yet simplified form of vectorization.

LSTMs have been used to predict sentiment polarity of Indonesian Hotel reviews

in order to study the effectiveness of various word embedding techniques (Imaduddin

et al., 2019). Word2Vec, Glove and Doc2Vec were all paired with an LSTM classifier

and the results showed Glove embeddings produced the highest validation accuracy
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(Imaduddin et al., 2019). This study will only consider the two pre-trained word

embedding techniques (Word2Vec and FastText) provided by Saputri et al.

Bi-LSTM in conjunction with embedding techniques have been shown to be more

accurate than standard LSTMs at tasks such as sentiment analysis and emotion clas-

sification (Xiao and Liang, 2016; Elfaik and Nfaoui, 2020; Devi et al., 2021). The key

difference between a Bi-LSTM and a standard LSTM is that the Bi-LSTM can “cap-

ture both past and future information”, as opposed to only past information in stan-

dard LSTMs (Xiao and Liang, 2016). This allows the Bi-LSTM to capture stronger

dependency relationships between words and phrases (Xiao and Liang, 2016). This

study will include a Bi-LSTM model in its comparative analysis.

Devi et al.’s 2021 study of Twitter Emotion Classification for Disaster Manage-

ment used Bi-LSTM for disaster classification and sentiment analysis (Devi et al.,

2021). Their proposed model architecture in Table 1 combines a Glove Embedding

layer and a Bi-LSTM layer with two subsequent dense layers (Devi et al., 2021). This

structure outperforms standard LSTM and Bi-LSTM without an embedding layer in

validation accuracy (Devi et al., 2021). This study will leverage Devi et al.’s proposed

architecture for its comparative analysis.

Elfaik and Nfaoui used Bi-LSTM to perform eleven-dimensional emotion classifi-

cation on Arabic Tweets (Elfaik and Nfaoui, 2020). The dataset consisted of 4,381

Arabic Tweets labeled with the following emotions: anger, anticipation, disgust, fear,

joy, love, optimism, pessimism, sadness, surprise and trust (Elfaik and Nfaoui, 2020).

The Bi-LSTM model outperformed several traditional machine learning baselines such

as SVM, Support Vector Classifier and others when comparing validation accuracy

(Elfaik and Nfaoui, 2020). This study will perform multi-dimensional emotion classi-

fication of Tweets using Bi-LSTM, albeit in five dimensions.

11



Table 1: Model Architecture (Reprinted, with permission, from Devi et al. © 2021
IEEE)
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Stacking multiple Bi-LSTM layers has been shown to improve sentiment analysis

prediction accuracy in Chinese Micro-blog data in comparison with single layer Bi-

LSTM, standard LSTM and traditional machine learning techniques (Zhou et al.,

2018). It was argued that the extra layers aided in the extraction of complex features

in the Chinese language (Zhou et al., 2018). This study will include a stacked Bi-

LSTM architecture in its comparative analysis.

GRU is a simplified variant of LSTM and has been shown to achieve similar

performance with less training time (Liang et al., 2018). Other comparisons of LSTMs

and GRUs across multiple datasets have proven to be inconclusive, claiming that the

choice of one versus the other is heavily dependent on the dataset and task (Chung

et al., 2014). A GRU model will be leveraged in this study as part of its comparative

analysis.

2.5 Limitations

A key limitation for this study’s model is that it is trained exclusively on tweets

determined to have one singular emotion, leaving out tweets that display multiple

emotions or no emotion. This fact will impact its operational implementation. The

intended use for this model’s emotion prediction capability will be to predict the

emotion of posts by individual users as opposed to news organizations. News updates

are most often emotionless statements of fact or opinion and unfit for this model’s

emotion classifier. Filtering out news updates will be key to ensuring that the model

makes accurate classifications. Posts with multiple emotions are not easily identifiable

and filtered en masse. This study’s emotion classifier is likely to predict whichever

emotion is more dominant among multiple emotions.

Another limitation of this study was its limited computational resources. Each

10-fold cross validation experiment took roughly 1 to 3 hours to run using Google
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Colab’s GPU hardware accelerator. This limitation led the hyperparameter tuning

section of this study to be performed sequentially in order of perceived importance. A

dedicated high-end GPU could potentially relax this constraint and allow for robust

tuning of elements such as learning rate and dropout rate.

Cambria and White defined multiple data querying techniques within the context

of sentiment analysis – the first being “Keyword Spotting” where the returned content

is defined by the presence of the exact word queried. The keyword spotting approach

is the “most näıve and probably also the most popular because of its accessibility and

economy” (Cambria and White, 2014). One of the primary issues with this approach

is its “reliance upon the presence of obvious words which are only surface features of

the prose” – meaning that a text document about dogs may never mention the word

‘dog’ because only specific breeds of dogs are discussed (Cambria and White, 2014).

The Keyword Spotting method is currently being implemented by the NPS R-Shiny

application as its search criteria.

Lexical affinity “assigns to arbitrary words a probabilistic ‘affinity’ for a particular

category. . . For example, ‘accident’ might be assigned a 75% probability of indicating

a negative event” (Cambria and White, 2014). These probabilities are derived from

the corpus or lexicon. One of the primary issues with the Lexical Affinity approach is

that it can often misinterpret context based on negation (i.e. “I avoided an accident”)

(Cambria and White, 2014). This method is also biased towards the corpus or lexicon

utilized, meaning it cannot be broadly applied to text outside the given source’s

context (Cambria and White, 2014). The NPS R-Shiny app currently implements an

arithmetic summation of sentiment values per word (-1 for negative, 0 for neutral and

1 for positive) derived from an Indonesian sentiment lexicon to determine sentiment

of a Tweet or Instagram post.
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The data correctness of the utilized lexicon is a critical factor in producing useful

sentiment identification (Indulkar and Patil, 2021). In their 2021 study of Machine

Learning Algorithms for Twitter Sentiment Analysis, Indulkar and Patil find a sig-

nificant decrease in model accuracy for their Random Forest Classifier when using

a dataset that “was not that precise and contained many words that were not in

the standard language” (Indulkar and Patil, 2021). The NPS R-Shiny app currently

allows the user to upload an Indonesian sentiment lexicon of their choosing.

In a 2017 study of Indonesian Public Complaints, Lailiya et al. compare the perfor-

mance of machine learning algorithms performing sentiment analysis leveraging two

different lexical sources: the English-based Sentiwordnet via Google-translate and an

Indonesian Sentiment Lexicon called Vania. Vania produced 65% validation accuracy

compared to 47% when using the Sentiwordnet method on public complaints posted

to Twitter (Lailiyah et al., 2017). The authors cite social and cultural differences as

the reason for the difference in accuracy, noting the Indonesian people’s use of “polite

language” when expressing complaints (Lailiyah et al., 2017).

A study by Koto and Rahmaningtyas in 2017 generated a social media-specific

Indonesian Lexicon called InSet which outperformed the Vania general-language In-

donesian lexicon by 4% accuracy (65% vs 61%) when performing sentiment analysis

on Twitter data (Koto and Rahmaningtyas, 2017). These studies reinforce the po-

tential limitations of using a sub-optimal sentiment lexicon.

Saputri et al.’s 2018 study of Indonesian emotion classification provides pre-trained

embeddings in the form of Word2Vec and FastText (Saputri et al., 2018). However,

multiple studies have found Glove embeddings to be the optimal embedding technique

when paired with LSTM layers (Imaduddin et al., 2019; Devi et al., 2021). The

exclusion of Glove embeddings could prove to be a limitation for this study’s various

models and their accuracy.
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2.6 Primary Sources

The primary sources used for the motivation of this project will be the G2 Analyt-

ics Kickoff, the 2018 National Defense Strategy and the article on Social Cybersecurity

by Beskow and Carley. The G2 Analytics Kickoff by Smithmeyer identifies key infor-

mation and defines the operational unit’s problem statements and objectives. This

research uses those problem statements and objectives as guidance. The connection

between these problem statements and objectives and the current NDS give this re-

search a high level of significance. The article by Beskow and Carley offers a detailed

analysis of the current tactics used by adversaries to influence narratives.

One primary source used for this research’s methodology will be the Saputri et

al. (2018) study of Indonesian emotion classification. This study’s methodology will

act as a comparative analysis of the utilized algorithms and published results from

Saputri et al. The other primary source for this research’s methodology will be Devi

et al.’s (2021) study of Location Based Twitter Emotion Classification for Disaster

Management. Devi et al. propose an RNN structure that will be used as the basis

for this study’s model structure.
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III. Methodology

Preamble

This study leverages various RNN variants within deep neural network architec-

tures to perform multi-dimensional emotion classification on Indonesian Tweets. The

methodology behind deep neural networks as well as each RNN variant will be de-

scribed here.

3.1 Artificial Neural Networks

The earliest version of an Artificial Neural Network (ANN) was introduced in

1943 when neurophysiologist Warren McCulloch and mathematician Walter Pitts

introduced a “simplified computational model” based on the biological neuron in

animal brains (Géron, 2019). The artificial neuron can be thought of as an object

with “one or more binary (on/off) inputs and one binary output” (Géron, 2019). A

network of connected artificial neurons can be used to perform logical computations

as seen in Figure 1 below.

Figure 1: ANNs performing simple logical computations (Reprinted, with permission,
from Géron, 2019 © O’Reilly)

In 1957, the Perceptron was introduced by Frank Rosenblatt (Géron, 2019). A

Perceptron refers to a single layer of Threshold Logic Units (TLUs). TLUs are a
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variant of the artificial neuron where the inputs and output consist of numbers as

opposed to binary values. Additionally, each input has an associated weight assigned

to it. Figure 2 below demonstrates the structure of a single TLU.

Figure 2: Threshold Logic Unit (Reprinted, with permission, from Géron, 2019 ©
O’Reilly)

The output of the TLU is computed by taking the weighted sum of its inputs

(z = w1x1 + w2x2 + ... + wnxn = xTw), applying a step function to the weighted

sum and outputting the result: hw(x) = step(z), where z = xTw (Géron, 2019). A

common step function is the heaviside function as seen below.

heaviside(z) =


0, if z < 0

1, if z ≥ 0

(1)

A fully connected layer or dense layer is the result of all neurons in a layer being

connected to every neuron in the previous layer. There is often an extra bias neuron,

which outputs a value of 1. Figure 3 on the next page represents a Perceptron.
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Figure 3: Perceptron Diagram (Reprinted, with permission, from Géron, 2019 ©
O’Reilly)

Perceptrons learn and adapt by making predictions at each training instance,

then updating the weights within the network that correspond with correct predic-

tions. For every neuron that produces an incorrect prediction, the network “reinforces

the weights from the inputs that would have contributed to the correct prediction”

(Géron, 2019). This iterative process is referred to as backpropogation.

A Multi-Layer Perceptron consists of an input layer, one or more layers of TLU’s

called hidden layers or dense layers and one final layer of TLU’s called the output

layer (Géron, 2019). This structure can be seen on the next page in Figure 4. When

multiple hidden layers are stacked together, it is referred to as a Deep Neural Net-

work (DNN). This structure forms the basis for each variant of Neural Network (i.e.

Recurrent Neural Networks, Convolutional Neural Networks, etc.).
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Figure 4: Multi-Layer Perceptron (Reprinted, with permission, from Géron, 2019 ©
O’Reilly)

3.2 Deep Neural Networks

DNNs learn by training on a portion of the training data, called a batch size,

performing backpropogation and then repeating this process until all of the training

data has been used. One complete pass over the entire training set is referred to as

an epoch. Batch size and the number of epochs are both tunable hyperparameters.

Another key tunable hyperparameter is the number of hidden layer units. This simply

refers to the dimensionality of the hidden or dense layer. Increasing the number of

hidden layer units can increase the DNNs ability to learn complex relationships at

the cost of more computational resources.

The most popular backpropogation algorithm for training DNNs is Stochastic

Gradient Descent (SGD) which calculates the derivative of an activation function.

An activation function is used in place of a step function like heaviside because step

functions contain only flat segments (zero derivative everywhere). Instead, activa-

tion functions like the logistic sigmoid function or hyperbolic tangent function are

used, which are differentiable everywhere. SGD iterates the networks’ weights in the

direction of the correct response at a constant learning rate. A learning rate is a
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scalar typically between values of 0.01 and 0.001. In SGD, learning rate is a critical

hyperparameter for tuning (Géron, 2019).

One issue with using activation functions such as logistic sigmoid in DNNs is

saturation. Saturation occurs when input values become very large in either the

positive or negative direction and the resulting derivative is close to zero (see figure

5 below). This causes backpropogation to be rendered in-effective, particularly in

DNNs with many layers (Géron, 2019).

Figure 5: Logistic sigmoid activation saturation (Reprinted, with permission, from
Géron, 2019 © O’Reilly)

Instead, many use a ReLU (rectified linear unit) activation function in DNN dense

layers because it does not saturate for positive values (Devi et al., 2021). It is also fast

to compute as the derivative of the slope is equal to one (Géron, 2019). An example

ReLU activation function is illustrated on the next page in Figure 6.

Another issue that occurs in DNN is overfitting. Overfitting means that the neural

network has become too biased towards the training data. Evidence of overfitting

occurs when validation error increases after reaching a minima, while training error

continues to decrease. Dropout has been widely used to mitigate overfitting in DNN

(Devi et al., 2021). Dropout reduces overfitting by excluding input and dense layer

neurons with some probability, typically between 0.2 and 0.5. Dropout effectively
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Figure 6: ReLU activation function

causes a unique neural network to be generated at each training step, resulting in

an ensemble of smaller networks that are robust against overfitting. Dropout tends

to slow down model convergence, however it does typically result in a significantly

improved model when tuned appropriately (Géron, 2019). This process is illustrated

in Figure 7 below.

Figure 7: Dropout in a MLP (Reprinted, with permission, from Géron, 2019 ©
O’Reilly)
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Pooling layers are another method of mitigating overfitting in DNN. The goal of

a pooling layer is to shrink an input in order identify the most important feature.

The pooling layer also reduces dimensionality, which helps reduce parameters and

computational complexity (Géron, 2019).

RMSProp (Root Mean Squared Propogation) is a faster optimizer than SGD

(Géron, 2019). It uses the concept of decay to ignore distant observations from the

past and focus on more recent inputs. RMSProp is an adaptive learning algorithm and

therefore “requires less tuning of the learning rate hyperparameter” (Géron, 2019).

RMSProp has been used to perform emotion classification (Devi et al., 2021).

3.3 Recurrent Neural Networks

RNNs are a form of DNN that can handle sequences of arbitrary length, such as

Tweets of various length. Most other DNNs are feedforward neural networks, meaning

that activations only flow in one direction, from the input layer to the output layer.

RNNs are structured similarly to feedforward neural networks, however they also have

connections pointing backwards (Géron, 2019).

Figure 8 illustrates an RNN with a single neuron receiving inputs, producing an

output and recycling that output into itself; while Figure 9 illustrates a layer of

recurrent neurons.
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Figure 8: A recurrent neuron (left), unrolled through time (right) (Reprinted, with
permission, from Géron, 2019 © O’Reilly)

Figure 9: A layer of recurrent neurons (left), unrolled through time (right) (Reprinted,
with permission, from Géron, 2019 © O’Reilly)
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The recurrent neuron is a form of memory cell due to the fact that it “preserves

some state across time steps” (Géron, 2019). A recurrent neuron is a rudimentary

form of memory cell in comparison to more complex cells (i.e. LSTM or GRU).

Figure 10 below demonstrates a simple recurrent neuron memory cell through time.

The cell’s state at any certain time step t is denoted by h(t) and is a function of inputs

from both its current and previous time steps.

Figure 10: A simple memory cell (Reprinted, with permission, from Géron, 2019 ©
O’Reilly)
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3.3.1 LSTM and GRU

The complexities of the LSTM cell allow for improved performance, faster training

and detection of long-term dependencies in the data (Géron, 2019). Figure 11 below

demonstrates the structure of the LSTM cell. The LSTM cell state stores long term

information and the hidden state stores short term information. The cell and hidden

states are represented by c and h. LSTM cells also possess three gate controllers that

handle the storage and erasure of information from stored memory (Géron, 2019).

These forget, input and output gate controllers are represented by f(t), i(t) and o(t),

respectively (Géron, 2019).

Figure 11: LSTM Cell (Reprinted, with permission, from Géron, 2019 © O’Reilly)

The GRU cell was proposed by Kyunghyun Cho et al. in 2014 and can be visual-

ized on the next page in Figure 12 (Chung et al., 2014). The primary simplifications

of GRU over LSTM are that both state vectors are merged into a single vector h(t), a

single gate controller controls the input and forget gates and the removal of an output

gate (Géron, 2019).
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Figure 12: GRU Cell (Reprinted, with permission, from Géron, 2019 © O’Reilly)

Bi-LSTMs “consist of two LSTMs that are run in parallel: one on the input

sequence and the other on the reverse of the input sequence” (Xiao and Liang, 2016).

The hidden state of the Bi-LSTM is the result of the concatenation of the forward

and backward hidden states at each time step, allowing the Bi-LSTM to capture

both past and future information (Xiao and Liang, 2016). Figure 13 on the next

page illustrates the structure of a Bi-LSTM across three time steps, highlighting the

forward and backward hidden layers as well as the input and output sequences.

Similar to Bi-LSTM, Stacked Bi-LSTM can extract “rich contextual information

from both past and future time sequences” (Zhou et al., 2018). However, Stacked Bi-

LSTM possesses more layers to perform feature extraction, as opposed to Bi-LSTM

which has only one hidden layer per direction (Zhou et al., 2018). Figure 14 on the

next page illustrates the structure of a two-layer Stacked Bi-LSTM.
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Figure 13: Bidirectional Recurrent Neural Network (Reprinted, with permission, from
Xiao and Liang, 2016 © Springer)

Figure 14: 2-Layer Stacked Bi-LSTM (Reprinted, with permission, from Zhou et al.
© 2018 IEEE)
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In Figure 14, the input sequence {x1, x2, ..., xt} enters the hidden layers in the

forward direction {a1, a2, ..., at} to extract information from all past time steps while it

also passes through the hidden layers in the reverse direction {c1, c2, ..., ct} to extract

information from all future time steps (Zhou et al., 2018). After this, the second

hidden layers, represented by {b1, b2, ..., bt} and {d1, d2, ..., dt}, receive outputs from

the first hidden layers as their inputs to produce further feature extraction (Zhou

et al., 2018). And finally, the output layer integrates both of the second hidden

layers’ output vector as its final output (Zhou et al., 2018).

Recurrent dropout has been proposed as a method of applying dropout to gated

architectures such as LSTM and GRU (Semeniuta et al., 2016). Traditional dropout

methods which are designed for feed-forward networks can cause loss of long-term

memory when used with LSTM or GRU. Recurrent dropout is applied to the hidden

state update vectors rather than the hidden states, themselves. This distinction has

shown an increase in network performance using LSTMs to predict Twitter Sentiment

Analysis (Semeniuta et al., 2016).

3.4 Word Embeddings

RNNs train on a sequential representation of text, making sequence-independent

feature extraction processes like Bag of Words and other dense features such as emoti-

con lists and sentiment lexicons unsuitable for use. RNNs are, however, able to lever-

age word embedding techniques such as Word2Vec and FastText.

Word embeddings represent words in vector form such that the distance between

vectors represents the semantic relations between respective words (Garg et al., 2018).

Word2Vec is an example of a static embedding, meaning that the method learns one

fixed embedding per word in the vocabulary. “The intuition of Word2Vec is that

instead of counting how often each word w occurs near, say, apricot, we’ll instead train
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a classifier on a binary prediction task: ‘Is word w likely to show up near apricot?’”

(Jurafksy and Martin, 2020). This method uses self-supervision, therefore it does not

require a labeled dataset. Word2Vec is “fast” and “efficient to train” on unsupervised

data (Jurafksy and Martin, 2020). As such, there are many examples of pre-trained

Word2Vec embeddings publicly available (Jurafksy and Martin, 2020). For example,

Saputri et al. make publicly available a 400-dimension Word2Vec embeddings model

that was trained on over one million Indonesian Tweets.

FastText is another static embedding technique and an extension of Word2Vec.

FastText represents words as themselves along with a “bag of constituent n-grams”

(Jurafksy and Martin, 2020). For instance, if n = 3, the word there would be rep-

resented by the sequence there along with the character n-grams: <th, the, her,

ere, re>. Then the skipgram embedding is learned for each constituent n-gram and

the word there is represented by the sum of all the embeddings of its constituent

n-grams (Jurafksy and Martin, 2020). Saputri et al. also provide a pre-trained 100-

dimensional FastText model trained on the same set of Indonesian Tweets.

3.5 Dataset

Saputri et al. produced a dataset of 4,403 Indonesian Tweets labeled into five

emotion classes: love, anger, sadness, fear and joy. This dataset was labeled by

two individuals and evaluated using a Cohen Kappa measurement – a statistic for

measuring interrater reliability (Saputri et al., 2018). A score above 0.81 is considered

to be “almost perfect agreement” between two raters (McHugh, 2012). This study

produced a Kappa score of 0.917 (Saputri et al., 2018). Multi-emotion tweets and

no-emotion tweets were excluded from this dataset (Saputri et al., 2018). The data

classifications are slightly imbalanced with the distribution seen on the next page in

Figure 15.
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Figure 15: Classification Balance of Tweets

Saputri et al.’s data set contains emoticons (i.e. :) expressing joy). Saputri et al.

created an unpublished list of emoticons and their respective emotion. This study

will not recreate an emoticon list, but instead allow the models to learn such features

automatically.

The tweets produced by the 2018 study already have some level of pre-processing.

Usernames with the @ symbol have been replaced with the generic [USERNAME],

URL’s and hyperlinks have been replaced with the generic [URL] and sensitive num-

bers such as phone numbers, invoice numbers, and courier tracking numbers have

been replaced with the generic [SENSITIVE-NO] (Saputri et al., 2018).

The preprocessing steps defined by Raisa et al. will be utilized by this research:

eliminating deficient and conflicting information, URLs, punctuation, numbers, other

special characters, stop word removal, and tokenization (Raisa et al., 2021). Stop

words are defined as extremely common words which are of little value such as “a, an,

he, is, it” (Manning, 2008). Tokenization refers to splitting a sentence into separate

“tokens”, often delineated by white space (Manning, 2008).
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The data and pre-trained embeddings were downloaded from Saputri et al.’s

GitHub page in CSV form. Additional pre-processing was performed on the tweets

by removal of stop words via the Natural Language Toolkit (NLTK) Indonesian Stop

Word library. Tokenization is performed using Keras’ Tokenizer function, which con-

verts the tweets into sequences of integers. Each tweet is set to the same length by

padding the sequences with zeroes up to the maximum length of the longest tweet.

The pre-trained embeddings are then loaded into a dictionary and cross-referenced

with the words from the dataset of Tweets. This process results in finding each word

in the dataset’s vector representation. The embeddings are stored in a matrix the size

of the maximum tweet length times the dimensionality of the pre-trained embeddings

(i.e. 65x400 or 65x100). Words that exist in the tweets but not in the embeddings

are given a value of zero.

3.6 Evaluation Metrics

The Saputri et al. (2018) study produced a comparative study of various ma-

chine learning techniques leveraging many different dense features – see Table 2 on

the next page. This research will compare the results of its various RNN models

using Word2Vec and FastText pre-trained embeddings against the Saputri study’s

Logistic Regression model on the “New Dataset”. This research will also perform a

direct comparison of its models to Saputri’s using only word embedding features (i.e.

Word2Vec and FastText). Saputri et al. used 10-fold cross-validation to split their

data into training and test sets. The average Macro-level F1 score across all 10 folds

are displayed in Table 2. This study will identify the optimal model based on identi-

fying a global maxima for validation accuracy for each of the 10 folds and taking the

average. This study will also examine precision, recall and F1 score for predictions of

each respective class from the model with the best averaged macro-level F1 score.
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Table 2: Comparative Macro-Level F1 Scores (Reprinted, with permission, from Sa-
putri et al. © 2018 IEEE)

Precision is defined as the ratio of True Positive results over the Total Predicted

Positive (True Positive + False Positive) results. Recall is defined as the ratio of True

Positive over the Total Actual Positive (True Positive + False Negative). F1 score

represents the harmonic mean of precision and recall and is defined by the following

equation:

F1 = 2× Precision×Recall

Precision + Recall
(2)

Macro-F1 score is the simple mean of each of the classes F1 scores, unweighted by

class size. Micro-F1 accounts for the weight of classes based on sample size. Macro-F1

scores are typically used when balanced classes are present.
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3.7 Model Architecture

This experiment consists of four models: LSTM, GRU, Bi-LSTM and Stacked

Bi-LSTM. Parameters were held constant across each model with the exception that

hidden layer units in Bi-LSTM layer were halved to maintain dimensionality. The

models are run for 20 epochs for each fold in the 10-fold cross-validation experiment.

Batch size is fixed to 64 for each epoch. The RMS Prop optimizer uses the default

learning rate of 0.001 and default decay rate, rho, of 0.9. Loss is measured by Cate-

gorical Crossentropy.

Table 3 illustrates the architecture of the LSTM, GRU, and Bi-LSTM Models. The

first layer of the model is the embedding layer which uses the pre-trained Word2Vec

or FastText embeddings from Saputri et al. This layer converts each word in the

corpus of tweets to a 400 or 100-dimensional vector representation, respectively. The

input length is set to the maximum length of the longest tweet in the dataset (i.e.

65 words), thus every tweet is padded with zeroes up to that length. The size of the

output of the embedding layer is a 65 x 400/100 matrix for every unit in the batch

(i.e. in Table 3 represented as (None, 65, 400/100) indicating that the tweets have

not yet been batched). The embedding layer is trainable, meaning that the model will

adjust the values of the embeddings during backpropogation. This matrix then passes

through a 1-dimensional Spatial dropout layer with a rate of 0.2 to avoid overfitting.

The output of the Spatial dropout layer feeds into the LSTM/GRU/Bi-LSTM

layer with 512 units (256 x 2 for the Bi-LSTM layer). Thus, the output of the

LSTM/GRU/Bi-LSTM layer is a 65 x 512 matrix. The GRU layer has slightly fewer

parameters than the LSTM layer due to its simplicity. The Bi-LSTM’s output shape

accounts for both the forward and backwards directions, therefore in order to have an

output dimension of 512, the Bi-LSTM layer must possess half the cell units or in this

case, 256. This accounts for the Bi-LSTM layer having less parameters than both the
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LSTM and GRU layers in Table 3. The LSTM/GRU/Bi-LSTM layer has dropout at

its inputs of 0.2 and recurrent dropout of its recurrent state of 0.2 to avoid overfitting

(Semeniuta et al., 2016). This output is then fed into a 1-dimensional global max

pooling layer. The output of the Global Max Pooling layer is a vector of length 512.

Table 3: LSTM/GRU/Bi-LSTM Models in Keras

Next, the output vector is fed into two dense layers of decreasing size. The first

dense layer is of size 512 and the second is of size 256. Both layers utilize ReLU

activation functions. Dropout is applied after both dense layers at a rate of 0.5 to

avoid overfitting. The final output layer reduces the vector to length 5 with a softmax

activation function which converts the vector of numbers into a vector of probabilities.

Softmax returns the index of the highest probability (i.e. the predicted emotion).
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The stacked Bi-LSTM model can be seen below in Table 4. The 2 layers of Bi-

LSTMs are stacked upon one another. The dimensionality of the other models is

preserved; however, the number of parameters is increased from roughly 3 million to

4.7 million. This increase in parameters will likely increase the training time of the

stacked Bi-LSTM model. This distinction will be monitored during model evaluation.

Table 4: Stacked Bi-LSTM Model in Keras
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IV. Results and Analysis

4.1 Programming Platform

This work was performed using the Python Programming language (3.7.12) with

the following key packages: Numpy (1.19.15), Pandas (1.1.5), Keras (2.5.0), SkLearn

(0.22) and NLTK (3.4.5). See Appendix A for full Model Code. The primary exper-

iments were conducted in a Google Colab environment using Google Colab’s GPU

hardware accelerator. Google Colab utilizes GPUs with varying performance depend-

ing on the particular connection instance, therefore compute times cannot be reliably

tracked for comparative purposes. Additional time trials were conducted using an

AMD Ryzen 5 2600 6 Core, 12 Thread Processor.

4.2 Cross Validation Results

The results of this study’s cross validation comparative experiment can be seen

below in Tables 5 and 6. In Table 5, this research’s models are compared to Saputri’s

models using only embedding techniques. In Table 6, this research’s models are

compared to the best model from Saputri et al. that uses various dense features.

These values represent the mean of the maximum validation accuracies for each of

the 10 K-Fold splits.

Table 5: Embedding Technique Comparison (Saputri et al., 2018)

Each of the models produced by this research outperform each model from Saputri

et al. when embedding techniques are the only features considered. The best models
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from this study (FastText Bi-LSTM and 2-layer Stacked Bi-LSTM) outperform Sa-

putri et al.’s Logistic Regression model with FastText embeddings by more than an

8% margin of accuracy in 10-fold cross validation. The best models from this research

also outperform Saputri et al.’s Random Forest model by more than 15%.

Table 6: Comparison Using All Features (Saputri et al., 2018)

Each of the models with FastText embeddings outperform the best model from Sa-

putri et al. when all features are considered, while each of the models using Word2Vec

embeddings under-perform relative to their FastText counterpart. The increase in

performance when using FastText over Word2Vec is consistent with the results of the

Logistic Regression model from Saputri et al. (seen in Table 2 on page 31). The best

performing models are the FastText Bi-LSTM and FastText 2-layer Stacked Bi-LSTM

models with the same validation accuracy of 70.71% (seen emboldened in Table 6).

The Stacked Bi-LSTM model has significantly more parameters than the single layer

Bi-LSTM and yet, does not produce higher validation accuracy. The distribution of

results over 10 folds for the FastText RNN variants can be seen in Figure 16.
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Figure 16: FastText RNN Variant Cross Validation Results

4.3 Time Trials

Time trials were conducted on a local machine in order to further examine the

performance of these models. These models are identical to the FastText models

from the Cross Validation experiment in the previous section. The results represent

the compute time of a 90/10 training and validation split of the data trained for 20

epochs. The resultant compute times can be seen below in Table 7.

Table 7: FastText Time Trials

The single layer Bi-LSTM model can achieve the same accuracy as the 2-layer

stacked Bi-LSTM in less than one-fifth of the compute time. This suggests that the

single layer Bi-LSTM model with FastText embedding may be optimal, although this

cannot be verified without a test for statistical significance.
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4.4 Statistical Significance

A statistical test such as ANOVA cannot be used to compare multiple classifiers

based on the means of a cross validation experiment because cross validation violates

the assumption of statistical independence (Raschka, 2018). Therefore it cannot be

stated that any of the models in this study are statistically better than the final

model from Saputri et al. However, an internal comparison can be performed to de-

termine any statistical significance among this study’s models using the bootstrapping

method. Bootstrapping is similar to cross validation but with sample replacement.

This distinction satisfies the ANOVA test’s assumption of statistical independence

among samples. The results of the bootstrapping experiment with 10 training splits

can be seen below in Table 8 and Figure 17.

Table 8: 10-Sample Bootstrap Macro-Level F1 Scores

Figure 17: FastText RNN Variant Bootstrap Results
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A single-factor ANOVA was performed on the bootstrap comparative results with

a null hypothesis that all classifier means are equal and an alpha of 0.05. The single-

factor ANOVA fails to reject the null hypothesis (F -stat = 1.35 and p-value = 0.27),

meaning that the data cannot conclude that the four classifiers’ means are not equal.

In addition, post hoc pairwise t-tests were conducted with a null hypothesis that

the mean difference between two classifiers is zero and an alpha of 0.05. For the

comparison of the single layer Bi-LSTM model and the 2-layer stacked Bi-LSTM

model, this test rejects the null hypothesis (p-value = 0.037) which reveals a statistical

significance between the two models. All other pairwise t-tests were found to be

statistically insignificant. Therefore, this research can conclude that the single layer

Bi-LSTM model is optimal in comparison to the 2-layer stacked Bi-LSTM model.

4.5 Hyperparameter Tuning

The single layer Bi-LSTM model with FastText embedding was chosen as the

candidate model for hyperparameter tuning based on its statistical significance over

the 2-layer stacked Bi-LSTM, and it possessing the highest macro-level F1 score in

both the cross validation and bootstrap comparative experiments, as well as the

fastest compute time. Hyperparameter tuning can identify model dependencies that

can potentially be exploited in order to boost performance. The first hyperparameter

for consideration is the number of Bi-LSTM cell units. Variation of the number of

units in the Bi-LSTM layer produces the following results in Table 9. Increasing the

number of units in the Bi-LSTM layer from 256 to 512 leads to an increase in Macro-

Level F1 score up to 70.83%. However, increasing the cell units up to 1024 shows a

decrease in performance.
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Table 9: Cell Unit Tuning Macro-Level F1 Scores (Saputri et al., 2018)

Lowering the batch size can increase accuracy at the cost of additional run time.

Variation of batch size with Bi-LSTM layer set to 512 can be seen below in Table 10.

Decreasing the batch size below 64 did not produce higher accuracy. Notably, increas-

ing the batch size to 128 also caused a decrease in validation accuracy, suggesting 64

is an optimal batch size.

Table 10: Batch Size Tuning Macro-Level F1 Scores (Saputri et al., 2018)

After tuning, the best model is determined to be a FastText Single-Layer Bi-LSTM

with 512 units in the Bi-LSTM layer and a batch size of 64. This model is able to

produce a study-best 70.83% accuracy average across 10-fold cross validation. The

final model architecture can be seen on the next page in Table 11. Note: the output

shape of the Bi-LSTM layer is twice the Bi-LSTM layer units to account for both the

forward and backwards directions (i.e. 512 x 2 = 1024).

Tunable elements such as learning rate, dropout rates and the number of neurons

in dense layers 1 and 2 were not tuned due to computational resource constraints.

Learning and dropout rates largely impact convergence time within a certain number

of epochs. The model was found to converge to a global maximum validation accu-

racy within the given number of epochs during every training split during the cross
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Table 11: Final Single-Layer Bi-LSTM Model in Keras

validation experiment. Additionally, the RMSprop optimizer is an adaptive learning

algorithm which makes the default learning rate suitable in most cases. The number

of neurons in the dense layers were chosen to preserve the dimensionality of the RNN

layer’s output with a stepwise decrease until the final dense layer.
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4.6 Model Examination

The Single-Layer Bi-LSTM Model will now be further examined to show its be-

havior during training. The model’s accuracy and loss values over 20 epochs can be

seen below in Figures 18 and 19. These values were extracted from one of the K-Fold

Cross Validation training splits.

Figure 18: Single-Layer Bi-LSTM Model Accuracy

Figure 19: Single-Layer Bi-LSTM Model Loss
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The optimal model was identified by maximizing the validation accuracy at epoch

13 (73.41%). The slight increase in validation loss after epoch 5 suggests some over-

fitting, however this increase is not significant enough to rule out the optimal model

at epoch 13. It is noteworthy that validation accuracy at epoch 5, the validation loss

minimum, is 71.14%, which is still greater than the optimal model from Saputri et

al. This suggests that the model is robust against overfitting.

Examination of the model’s classification report reveals that the fear class has the

highest level of precision at 84%, which indicates a false positive rate of 16%. Recall

for the fear class is also high with a score of 71%. This performance is in contrast with

the baseline model from Saputri et al., which performs relatively poorly in the fear

class with a precision rate of 65% and recall rate of 53%. The classification reports

from this study and Saputri et al. can be seen below in Tables 12 and 13.

Table 12: Classification Report (Glenn, 2022)

Table 13: Classification Report (Reprinted, with permission, from Saputri et al. ©
2018 IEEE)
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Examination of the fear and anger classes in Table 12 reveals diverging successes

when evaluating the classes based on precision and recall metrics. Precision is a metric

often used when the cost of a false positive is high while recall is often used when the

cost of a false negative is high. In a military intelligence context, failing to identify a

potential threat (i.e. an angry or fearful tweet) could prove costly. If this model were

to be provided to a social media threat analyst, perhaps the optimal criteria would

be to maximize recall in order to provide the user with more data rather than less in

the interest of reducing false negatives.

The confusion matrix below in Figure 20 demonstrates the classification perfor-

mance of the model in greater detail. It can clearly be seen that the model produces

the most true positives in the fear category - meaning 84% of its “fear” predictions

are actual “fear” tweets according to the labeled data set.

Figure 20: Single-Layer Bi-LSTM Confusion Matrix

The model’s worst performing category is “sadness”, which could be due to sar-

casm. Indonesians frequently use sarcasm and polite language when making com-

plaints (Lailiyah et al., 2017). This could explain why sadness is mistaken for joy

20% of the time. An example of this can be seen using the following tweet. The tweet
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in Indonesian states “pengen ikut indonesia idol tapi aku g punya bakat nyanyi :D”

which translates to “I want to join Indonesian idol but I don’t have singing talent

:D” according to Google Translate. The Single-Layer Bi-LSTM model predicts that

this tweet’s emotion is joy, likely due to the emoticon ‘:D’ indicating an open mouth

smile. However, this tweet could be intended as sarcasm and classified as ‘sadness’

instead. This ambiguity highlights the difficulty in determining the emotion of social

media posts even for a human.

The “sadness” emotion class is the only class where the Saputri et al. model out-

performs this study’s model in terms of F1 score (see tables 11 and 12 on page 42).

The ability to predict negative emotions such as sadness, fear and anger is more im-

portant than positive emotions such as joy or love in a military intelligence context.

And in terms of the importance of negative emotions relative to one another, fear

and anger are more noteworthy for a social media threat analyst than sadness. For

instance, a tweet such as “Polisi Indonesia Biadab” which translates to “Barbaric In-

donesian Police” is more consequential than a tweet lamenting one’s inability to make

it onto Indonesian idol (see tweet from previous paragraph). A further examination

of each RNN variants’ performance by response class can be seen in Appendix B.

The model does not consider the possibility of emotionless or neutral posts as

mentioned in the limitations section. This limitation could require the user to filter

out posts suspected to be neutral such as news posts, although this workaround will

likely not be sufficient as there will certainly exist many posts from non-news sources

that exhibit neutral emotion. In order to demonstrate the importance of this limita-

tion, a collection of 1125 non-news Indonesian Tweets predicted to be “neutral” by

Sprinklr’s sentiment analysis classifier were given to the model for emotion classifi-

cation. The results below in Table 14 show that “neutral” posts are predicted to be

either “anger” or “joy” more than two-thirds of the time. The ability to properly han-
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dle “neutral” emotions will be critical to avoid over-classifying the “anger” emotion

and therefore diminishing the model’s ability to provide an accurate representation

of public behavior.

Table 14: Neutral Post Classification
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V. Conclusions

The results of this study demonstrate the efficacy of RNNs when leveraging pre-

trained FastText embeddings in comparison to traditional machine learning tech-

niques. Specifically, these results show that RNN variants can produce more than

an 8% gain in accuracy in comparison to Logistic Regression and SVM techniques

and a 15% gain over Random Forest. This research found a statistical significance

in the performance of a single layer Bi-LSTM model over a 2-layer stacked Bi-LSTM

model. This research also found that single layer Bi-LSTM models produce com-

parable macro-level F1 when compared to the best model from Saputri et al. The

final ensemble method from Saputri et al. was a logistic regression model leveraging

FastText pre-trained embeddings, bag-of-words feature extraction, an emotion word

list, and several other lexical features for a final macro-level F1 score of 69.73%. This

study’s single layer Bi-LSTM model achieves a macro-level F1 score of 70.83% using

only the pre-trained FastText embeddings. This suggests that RNNs are success-

fully able to automatically extract the dense features manually provided in the legacy

study (i.e. emoticons, parts of speech, etc.). These results satisfy this research’s

goal of meeting or exceeding the performance of Saputri’s legacy machine learning

methods using exclusively open-source data and models.

This single layer Bi-LSTM emotion classification model can be provided to opera-

tional units within INDOPACOM in order to enhance their OSINT capabilities. The

emotion classification model can provide characterization and understanding of In-

donesian behavior through analysis of its social media data. OSINT cells can use this

new capability to search for social media posts based on prediction emotion class in

order to gauge public reaction to military actions in theater. These capabilities align

with the NDS’s prioritization of technological developments in artificial intelligence

that can change the character of war.
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5.1 Future Work

Future work could include producing a model that handles tweets with neutral

emotion or multi-emotion tweets. A model that could handle neutral emotion posts

would be particularly useful for operational implementation as it would remove the

need for filtering posts before making predictions. Saputri et al. indicate they may

produce a dataset in the future that has multi-emotion and neutral-emotion labeling

(Saputri et al., 2018). It may be necessary to acquire additional labeled data from

other Indonesian sources in order to train a model that can predict neutral and

multiple emotions. A potential solution could be to create a customized labeled

dataset of Indonesian tweets with the assistance of language experts.

Other research areas such as topic modeling and network analysis could be ap-

plied in conjunction with this emotion classifier model in order to further expand

upon its ability to provide characterization and understanding of societal behaviors.

For example, network analysis could delineate social groups by examining Twitter

interactions and emotion classification could be used to determine how those social

groups respond to specific topics.
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Appendix A. Model Code
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Appendix B. Aggregate Cross Validation Analysis

Each of the four RNN variant models’ aggregate cross validation confusion ma-

trices can be seen below in Figures 21 through 24. These models were examined to

determine if a model other than the single-layer Bi-LSTM displayed better perfor-

mance in the fear and anger classes. This analysis was performed in case a model with

lesser overall F1 score would be preferable to an operational user due to exceptional

performance in the classes deemed most important for a military intelligence context.

However, these confusion matrices show that each model displays similar behavior

when classifying these classes. Therefore, this research retains it’s finding that the

single-layer Bi-LSTM is optimal.

Figure 21: Aggregate Cross Validation LSTM Confusion Matrix
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Figure 22: Aggregate Cross Validation Bi-LSTM Confusion Matrix

Figure 23: Aggregate Cross Validation Stacked Bi-LSTM Confusion Matrix
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Figure 24: Aggregate Cross Validation GRU Confusion Matrix
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and Marcos André Gonçalves. “SentiBench - a benchmark comparison of state-of-

the-practice sentiment analysis methods.” EJP Data Science, 5(1), 2015.

Rugge, Fabio. “’Mind Hacking’: Information Warfare in the Cyber Age.” Italian

Institute for International Political Studies, 319:1–8, 2018.

Saputri, Mei Silviana, Rahmad Mahendra, and Mirna Adriani. “Emotion Classifica-

tion on Indonesian Twitter Dataset.” Proceeding of International Conference on

Asian Language Processing, 90–95, 2018.

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. “Recurrent Dropout

without Memory Loss,” 2016. URL https://arxiv.org/abs/1603.05118.

Smithmeyer, Colby. “G2 Analytics Kickoff.” Technical report, The Research and

Analysis Center-Monterey, 2021.

69

https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1603.05118


Xiao, Zheng and PiJun Liang. “Chinese Sentiment Analysis Using Bidirectional

LSTM with Word Embedding.” International Conference on Cloud Computing

and Security, 601–610, 2016.

Zhou, Junhao, Yue Lu, Hong-Ning Dai, Hao Wang, and Hong Xiao. “Sentiment Anal-

ysis of Chinese Microblog Based on Stacked Bidirectional LSTM.” 2018 15th In-

ternational Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN),

162–167. IEEE, 2018.

70



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Narrative Analysis of Open-Source
Social Media Activity in the INDOPACOM AOR

Glenn, Aaron K, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-22-M-131

The Research and Analysis Center-Monterey
LTC Brian M. Wade, Director
1 University Circle
Monterey CA 93943
(831) 656-3086
Email: brian.wade@nps.edu

TRAC-Monterey

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Emotion classification can be a powerful tool to derive narratives from social media data. Recurrent Neural Networks
(RNN) can meet or exceed the performance of state-of-the-art traditional machine learning techniques using exclusively
open-source data and models. Specifically, these results show that RNN variants can produce more than an 8% gain in
accuracy in comparison to Logistic Regression and SVM techniques and a 15% gain over Random Forest when using
FastText embeddings. This research found a statistical significance in the performance of a single layer Bi-directional
Long Short-Term Memory (Bi-LSTM) model over a 2-layer stacked Bi-LSTM model. This research also found that a
single layer Bi-LSTM RNN met the performance of a state-of-the-art Logistic Regression model with supplemental
closed-source features from a study by Saputri et al. (2018) when classifying the emotion of Indonesian Tweets. This
model can be provided to operational units within the INDOPACOM theater giving them the ability to identify social
media posts based on predicted emotion class - allowing them to gauge public reaction to military exercises in theater.
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