
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Smoothing of Convolutional Neural Network Classifications Smoothing of Convolutional Neural Network Classifications

Glen R. Drumm

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Drumm, Glen R., "Smoothing of Convolutional Neural Network Classifications" (2022). Theses and
Dissertations. 5338.
https://scholar.afit.edu/etd/5338

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5338?utm_source=scholar.afit.edu%2Fetd%2F5338&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

SMOOTHING OF CONVOLUTIONAL
NEURAL NETWORK CLASSIFICATIONS

THESIS

Glen Ryan Drumm, 1st Lt, USAF

AFIT-ENS-MS-22-M-122

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-22-M-122

SMOOTHING OF CONVOLUTIONAL NEURAL NETWORK

CLASSIFICATIONS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Glen Ryan Drumm,

1st Lt, USAF

March 25, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-22-M-122

SMOOTHING OF CONVOLUTIONAL NEURAL NETWORK

CLASSIFICATIONS

THESIS

Glen Ryan Drumm,
1st Lt, USAF

Committee Membership:

Lance Champagne, Ph.D
Chair

Bruce Cox, Ph.D
Member

Trevor Bihl, Ph.D
Member

AFIT-ENS-MS-22-M-122

Abstract

As technologies advance, the Air Force seeks to maintain air superiority. One way

of achieving this revolves around having state of the art sensors capable of collecting

critical information from live streaming video feeds. Data analysis must take place

in real time, and quickly overwhelms human processing, neural networks are quite

capable. Over the course of a few frames, neural networks may skip around in pre-

dictions in an image causing a stutter. This research develops and demonstrates a

methodology that can be used to smooth model predictions to alleviate oscillating

classifications for single action classification. While a simple problem environment

shows proof of concept, obstacles remain for applying such a technique to a more

operationally complex problem.

iv

Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . ix

I. Introduction . 1

1.1 Problem Statement . 2
1.2 Background and Motivation . 2
1.3 Uncertainty in Machines . 3

II. Background and Literature Review . 4

2.1 Computer Vision . 4
2.2 Neural Networks . 6

2.2.1 Convolutional Neural Networks . 6
2.2.2 Recurrent Neural Networks . 9
2.2.3 Bayesian Neural Networks . 10

2.3 Neural Network Usage . 11
2.3.1 Multiple Object Detection . 11
2.3.2 Two-Stage Detectors . 13
2.3.3 One-Stage Detectors . 14
2.3.4 Object Tracking . 15
2.3.5 Similar Applications . 17

III. Methodology . 21

3.1 Smoothing for Single-Video Classification . 21
3.1.1 UCF101 Dataset . 21
3.1.2 Technique . 22
3.1.3 Model . 23

3.2 Order of Operations . 23
3.3 Measures of Performance . 24
3.4 YOLOv4 . 25

3.4.1 Dataset Description . 25
3.4.2 Data Annotations . 25
3.4.3 Dataset Challenges . 28

3.5 Model Architecture . 29
3.5.1 Choosing YOLOv4 . 29

3.6 Training YOLOv4 . 31
3.6.1 Hyper-parameters . 31

3.7 Smoothing for Multi-Object Classification . 32

v

Page

3.7.1 Obstacles . 32

IV. Results and Analysis . 34

4.1 Toy Problem . 34
4.1.1 Classification Impact . 35
4.1.2 Frames Analysis . 38

4.2 YOLOv4 . 40

V. Conclusions . 42

5.1 Future Work . 42

Appendix A. Toy Problem Additional Results . 44

Appendix B. Code: Toy Problem Training . 48

Appendix C. Code: Video Classification . 57

Appendix D. Code: Video to Frames . 61

Appendix E. Code: Heatmap . 64

Appendix F. Code: Frames Graph . 66

Appendix G. Code: Sequential Video Frame Predictions . 69

Appendix H. Code: YOLO . 74

Bibliography . 75

vi

List of Figures

Figure Page

1. Edge Detection . 4

2. Basic Neural Network . 5

3. LeNet-5 Architecture . 6

4. LeNet-5 Noise . 8

5. Dropout Visualized . 8

6. Intersection Over Union . 12

7. Two-Stage Detector Architecture . 14

8. One-Stage Detector Architecture . 15

9. SqeezeNet Fire Module . 18

10. YOLO Overview. 20

11. Snapshot of UCF101 classes. 22

12. Dataset Example 1 . 26

13. Dataset Example 2 . 26

14. Dataset Example 3 . 26

15. Darknet .txt Format . 27

16. Dataset .NAMES file . 27

17. Dataset Statistics . 29

18. YOLOv4 Scores . 30

19. No smoothing - Classification heatmap . 36

20. 30 Frame smoothing - Classification heatmap . 37

21. Multiclass frame smoothing for no smoothing, 25-frame
smoothing and 50 frame smoothing. 39

vii

Figure Page

22. No smoothing - Sequential frames (Red are
misclassifications) . 40

23. 25 Frame smoothing - Sequential frames(Red are
misclassifications) . 40

24. Model training loss statistics . 40

25. Appendix Extra 1 . 44

26. Appendix Extra 2 . 45

27. Appendix Extra 3 . 45

28. Appendix Extra 4 . 46

29. Appendix Extra 5 . 46

30. Appendix Extra 6 . 47

viii

List of Tables

Table Page

1. Hyperparameters for YOLO Trained on UAV Footage 31

2. Model Training Analysis Summary . 34

3. Model Precision broken out by class . 41

ix

SMOOTHING OF CONVOLUTIONAL NEURAL NETWORK

CLASSIFICATIONS

I. Introduction

Modern warfare increasingly depends on up-to-date battlespace information to

feed real-time decision making utilizing automated and human-in-the-loop machine

learning techniques. As sensors and their associated capabilities flourish, the warfighter

increasingly relies on automated systems to handle complex data. In this respect, ar-

tificial intelligence (AI) has a proven potential in being integrated into the battlespace

[1].

Intelligence, surveillance, and reconnaissance (ISR) systems constantly record and

compile optical data needed for immediate observation. Video classification is a tech-

nique used to autonomously categorize this data. Video data can be parsed into

images where AI techniques such as neural networks are a popular choice for image

classification. Neural network subcategories such as convolutional neural networks

(CNNs) and recurrent neural network (RNNs) can be used to classify these images.

This research extends Swize’s thesis [2] in which she concluded that the inclusion of

a Bayesian neural network was able to detail model prediction probabilities and also

increase overall model accuracy [2]. This thesis alters her methodology and applica-

tion of the Bayesian convolutional neural network (BCNN) – RNN blended network,

to test if other methods can increase overall model accuracy and attempt to smooth

classification prediction stuttering.

1

1.1 Problem Statement

This research was conducted to reduce, or eliminate, seemingly random, intermit-

tent, and false classifications from neural network predictions taken from live video.

1.2 Background and Motivation

A primary objective of ISR systems is to gather and react to a substantial volume

of collected data. A vast number of sensors produce massive amounts of data which

requires timely analysis. Human review may not be feasible given the amount of data,

therefore machine learning (ML) and AI techniques are being relied on to bridge

the gap [1], [3], [4]. During video classification, network results are gathered via

continuous video frame-by-frame. This process naturally considers each frame as

an independent observation; however, by independently categorizing each frame, the

linkage between past and current frames is severed. This broken link prevents the

model from using all of the information available.

The result of this broken connection, or the incorrect treatment of linked data as

independent, could contribute to stuttering video classification. A highly accurate

network boasting even 95% accuracy on 100 frames would missclassify five frames on

average. Such stutters result in questions related to the reliability and trust-ability

in AI algorithm results [1] and resolve around users of the algorithm invariantly ask-

ing the typical questions about the automation: What is it doing? Why is it doing

that? What will it do next? which related to the inability of the algorithm to address

fundamental “ilities” [1]. On top of these interpretation issues, this can cause many

issues in the application of a neural nets. Fixing this stutter by smoothing the out-

put is highly important for applications that require the output for identification and

detection in real time. Reducing the amount of misclassifications reduces the time

needed by a human in human-in-the-loop techniques. Examples of these techniques

2

may be rectifying misclassifications or handling scenarios in which the network is un-

able to be used. This extends to applications that use the classification for executing

other tasks such as targeting or detection. This research investigates whether or not

smoothing the network output can increase accuracy of the model overall and can

give the system more surety in the prediction as it can leverage the last n predictions

to make its classification for the current frame.

1.3 Uncertainty in Machines

In classic stochastic processes, we are able to determine cases that are more likely

and less likely to happen. Bounds of our confidence intervals are directly related to

the system we are studying. Current neural networks do not let us interpret the way

in which they make their predictions. In 2016, Gal raises the point of needing to

be able to determine how certain a model is on its prediction [5]. When computers

are becoming the decision makers on critical questions such as “ is there a bystander

walking in front of the car?” or becoming central to facilitating decisions in man-

machine teaming operations, such as determining if a sample has cancer, we want

to know just how certain they are when making decisions. This is a crucial point of

investigation for this research.

3

II. Background and Literature Review

This chapter reviews past and current literature regarding neural networks and

how they apply to image classification. The initial subsection begins with an overview

of computer vision and transitions to discussing applying computer vision with general

neural networks and closes by reviewing the specific networks administered for this

model’s application.

2.1 Computer Vision

Computer vision is a rapidly growing field of computer science that applies to a

plethora of disciplines across the world. It seeks to be able to apply ML and AI to

simulate a human agent for pattern recognition and item/task classification. Com-

mon tasks include processing visual data for finding differences and commonalities

amongst a large dataset or live feed. Due to significant progress in graphics processing

unit (GPU) computing power and recent deep learning developments, performance of

computer vision techniques have began to rapidly excel [6]. Popular computer vision

applications includes object detection, object tracking, segmentation, item classifica-

tion and more [8]. One way computers “see” an object are by analyzing features that

Figure 1: An example of edge detection, a type of image processing method. A)
Original image, b) and c) images with two different max (1 and 4) gradients for
detecting edges [7]

4

are stripped from the image using many various image processing forms as displayed

in Figure 1. This is precisely what the blended network of neural networks seeks to

do in this research. Research has shown that neural networks can be successfully

applied to computer vision tasks for issues such as drug development and biological

research [3]. Other fields such as security have made use of computer vision to detect

pedestrians or anomalies that may pose a threat [8]. Thus, this research makes use

of a series of neural network as the tool to accomplish computer vision techniques.

Computer vision has three challenges. First, training for computer vision takes

a large amount of data to become robust in its predictions [6], [8]. Second, these

algorithms are often only applicable to data that is similar to the training data and

often of limited utility to data far removed from training [1]. Third, training a system

capable of robust computer vision can be difficult [6]. Large networks can have an

extremely large number of parameters that effect how well a system can learn [6]. All

of these challenges can play a role in how well computer vision is ultimately used.

Figure 2: Basic layout of a neural network. [9]

5

2.2 Neural Networks

First introduced in 1943 by Mcculloch and Pitts , Artifical Neural Networks

(ANNs) are a structure of machine learning that was conceived to model the way

neurons function within the human brain [9], [10]. Neural networks have been proven

to be applicable in a wide breadth of fields. They can take on large data sets and

conduct predictions without having any prior knowledge of the task [3]. Neural net-

works are a broad definition for the process in which they conduct their algorithm

through the nodes. Figure 2 shows the basic layout of a NN consisting of an input

layer, hidden layer and output layer. The bulk of the algorithm happens in the hidden

layer in which data is algorithmically digested to learn patterns that represent the

data [11].

2.2.1 Convolutional Neural Networks

Figure 3: Composition of CNN LeNet-5. Convolutional steps for feature map pro-
cessing. [4]

First introduced in 1980 by Fukushima as the “Neocognitron”, Convolutional

Neural Networks (CNNs) are a branch of neural networks that analyze the invariances

in 2D shapes by finding patterns and further implementing constraints to the node

weights [4], [12]. Examples with applications of CNNs are used in 1998 with LeNet-5

[4] to analyze handwriting and recently in autonomous driving [13], [14]. Patterns in

6

the larger image are searched for using kernels, which are a type of small filter used to

iterate over the image in smaller chunks [15]. This is helpful for a closer examination

of 2D images to recognize patterns.

Figure 3 shows how a connection of convolutional layers is depicted and how a

digital image is processed throughout LeNet-5 for handwriting analysis. Starting with

a 32 x 32 image, a convolution happens with six filters of size 5 x 5. This creates

six feature maps of size 28 x 28. In the next layer, average pooling occurs which

emphasizes the important filtering and reduces dimensionality. This continues for the

next few layers until dimensionality has been reduced and 84 feature maps have been

created. These final feature maps are connected to 10 classifications at the end of the

algorithm, used to classify numbers 0-9.

During the convolution process, kernels extract important features, outputting

them into feature maps. The feature maps are thus a collection of important qualities

from the layers previous image. The network then shifts and distorts the map using

a method called pooling. Pooling is mostly done through max pooling or average

pooling [11], which is a way of identifying the most prominent features in the size

of the filter. This allows the network to learn the common feature qualities while

forgetting about the location of the feature in the full image [4]. The pattern is

the important quality to learn and if the algorithm were to rely on the location

of the feature in the larger image, that could be potentially harmful to the overall

robustness of the network. Figure 4 shows that learned patterns can be used to

predict obscured images because of the distortion conducted by the algorithm during

the learning process. Pooling helps in reducing the dimensionality of the input image

giving CNNs the ability to scrutinize the image in smaller chunks [13].

A frequent issue with CNNs is overfitting. Overfitting is when the network is

very accurate at predicting the training data but is not robust enough to pivot into

7

Figure 4: Examples of unusual, distorted and noisy characters correctly recognized
by LeNet-5 [4]

classifying data that is significantly different from the training data. A few common

origins of overfitting is not having enough diverse training data or having too many

connections to nodes in the network. A proven way to alleviate this problem is through

dropout [16]. Dropout is usually randomly conducted in which connections to nodes

are temporarily not used. This introduces noise into the training set. Dropout is

visualized in Figure 5. With this noise, the method attempts to make connections

Figure 5: Dropout visualized in a basic neural network [4]

8

throughout the model account for more of the relationship between patterns than the

algorithm and seeks breaks up learned complex co-adaptions between the layers [16].

One way dropout is further utilized is through Bayesian networks. Bayesian networks

handle dropout as an approximation of the true probability of predictions. This

gives the analyst a means of judging model prediction certainty. These networks are

investigated in section 2.2.3 of this chapter as a possible way to handle classification

stuttering.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are again another branch of neural networks

with a specialty in handling sequence-based systems. They differ from generic NNs

by having an internal memory state that allows them to process sequential inputs.

This directly explains why they are used for video sequencing and why an RNN

is chosen for the back end network in this research. These algorithms are solved

through moving between nodes of the network until at the end, the gradient of descent

is calculated [4]. This is found via the partial derivative of the weights and the

error term. By systematically tuning the weights to find the minimum value of the

error term function, the accuracy of the model is maximized. This is known as

Backpropagation Through Time (BPTT) and is commonplace in RNNs. Similar to

CNNs, dropout is used during BPTT to remove connections between nodes in a

network, reducing overfitting [14].

RNNs originally had issues with long term memory. This issue would happen when

backpropagation failed and a gradient was tuned to be zero or infinity [11]. However,

the method used to overcome this was pioneered by Hochreiter and Schmidhuber

in 1997, called long short – term memory (LSTM) and works in conjunction with

gradient based learning (Hochreiter and Schmidhuber, 1997). LSTM units consist of

9

a cell and multiple gates in which the cell “remembers” information passed to it and is

regulated by the accompanying gates. LSTM fixed issues RNNs had with oscillating

weights, time lags and cases where BPTT would not work. However, with BPTT and

LSTM working in partnership they alleviate these shortfalls. Due to RNNs proven

record in handling sequential data, it would be very viable to handle predictions

for similar issues that this research faces. However, due to the operational speed

constraints for live data, this type of network is not chosen.

2.2.3 Bayesian Neural Networks

Since other networks are unable to assess uncertainty in their predictions, they of-

ten over confidently make predictions [17]. Bayesian neural networks are implemented

to address this issue. Specifically, they use the dropout of the CNN as a Bayesian

approximation [5]. Computing the true probability in the prediction would be taxing

on system performance. However, as shown by Gal and Ghahramani in 2016, the

approximation of the true probability prevents a penalty to model complexity and

computational costs [13]. BNNs are relatively new compared to other types of neural

networks. Shridhar et al. showed in 2019 that they could eliminate dropout entirely

from the structure by incorporating a method called “Bayes by Backprop”, which

applies a convolutional operation for both the mean and variance [9].

Gal found that dropout applied before the weighted layers of a CNN can be un-

derstood as approximate Bayesian inference [5] and that these uncertainty estimates

can be obtained via the variance given on multiple predictions [9]. In 2019, Shridhar

et al. showed an additional way of implementing Bayesian methods for uncertain-

ties. They claim deficiencies with Gal and Ghahramani, stating that one should start

with prior probability distributions and not calculate the probabilities from dropout.

Shridhar et al, tested their methods with Image Super-Resolution and Generative

10

Adversarial Networks where they received good results [9]. However, these methods

proved to be more computationally exhaustive and only slightly improved on model

accuracy. While Bayesian methods could be a potential viable candidate for improv-

ing stuttering of network classifications, Bayesian methods pose computational costs.

Operational viability must be maintained and thus Bayesian methods are excluded

from this research.

2.3 Neural Network Usage

2.3.1 Multiple Object Detection

For this research, Unmanned Aerial Vehicle (UAV) footage will be used. Scans

from the aerial sensors could include multiple objects in one video frame, so a network

designed to detect more than one object in a frame is required.

Object detection happens in two phases, the first phase is locating the demanded

item in the image using learned features, while the second phase is verifying the sug-

gested item using a classifier [8]. Different forms of object detection exist such as

appearance-based, motion-based and deep learning. Appearance-based approaches

have trouble with recognizing images that are obstructed or obscured [8]. Motion-

based approaches can fill the gap where appearance-based approaches lack, however,

these approaches have their own flaws. Motion-based approaches have a higher like-

lihood to fail when scenarios are complex and contain objects that are moving in

chaotic ways that are difficult to predict [8].

Model accuracy is measured through a metric known as Average Precision (AP).

AP is calculated by finding the area under a precision-recall curve [18]. Precision

and recall are core statistics in the measurement of neural network performance.

Precision is a measurement of the proportion of identified positives of a dataset that

were actually correct, or how many objects detected that were actually there, a value

11

closer to one is a better score, meaning the model has fewer false positives. Recall is

the measurement of the proportion of actual positives that were correctly identified,

or how good the model was at identifying all of the actual positives, a value closer

to one is a better score, meaning the model has fewer false negatives. Equations for

precision and recall are as follows:

Precision =
(TruePositive)

(TruePositive + FalsePositive)
(1)

Recall =
(TruePositive)

(TruePositive + FalseNegative)
(2)

Unique to object detection, Intersection Over Union (IoU) is used to measure

overlap of the object truths bounding box and the object detectors predicted bounding

box. Figure 6 displays the IoU process. The amount of overlap in these boundaries is

measured and used to classify a positive classification. Standard IoU thresholds are

0.5 and 0.75 [19], [20]. For example, AP50 = 35 would indicate that the model had

an AP of 35% at an IoU threshold of 50%.

Figure 6: Overlaping bounding boxes of truth versus prediction where IoU is calcu-
lated from

Deep learning object detection has been the interest of researchers in the past few

years [6]. Results from algorithmic advancements as well as technological advance-

ments have sprung this form of object detection forward. These approaches have two

12

separate ways of proceeding: one-stage detectors and two stage detectors [8]. Two

stage detectors attempt to approximate object regions that are predicted, based on

features learned, from the architecture [8]. These regions are then used for classi-

fication as well as bounding box regression for the proposed object [8]. This form

of object detection usually results in higher accuracy because of the added step of

having a proposed region. One stage detectors lose the region proposal stage, thus

predicting bounding boxes over the entire region. One-stage detectors are able to do

predictions faster but do so at the loss of accuracy. This makes one-stage detectors

increasingly favored for real-time devices [8]. Pal et al. list a few notable networks

that utilize deep learning for object detection such as AlexNet, ResNet and VGG16

[8].

2.3.2 Two-Stage Detectors

Two stage object detectors are given their name because of their two phases to

identify objects: region proposal and object classification [8]. A region is suggested

by the model by using convolutional layers to identify object features [8]. Since there

are two phases to these models, higher accuracy is commonly seen because the models

can take their time to hone in on the first pass of the convolutional filters. Pal et al.

explain that two stage detectors are commonly comprised of four modules: “The first

module proposes object regions in the image frame. In the second module, a fixed-

length feature vector is extracted from these regions. Third module deals with object

classification task. In the last module, bounding boxes are fitted over the classified

objects” [8].

Within the first module, the network is fitted with a search method that will

give suggestions for future modules to use as a proposed location of sought after

objects. These locations are images that are fed into a deep CNN where inputs are

13

Figure 7: Basic architecture of a two-stage detector [8]

fixed length vectors used to classify the objects within the proposed zones [8]. These

vectors are the same size so that the features extracted are able to extrapolate to any

sized object in the original image. This means that the objects can be different sizes

amongst the training/testing split within the images, therefore, the region proposals

can be different sizes [8]. The feature generation is handled by the CNN component of

the network. A basic understanding of CNNs is discussed further on in this chapter.

Not all two stage detectors are alike. Two stage detectors further break down

into architectures such as region convolutional neural network (RCNN), Fast RCNN,

Faster RCNN and many more. The details of these networks are outside the scope of

this research; however, the understanding that a two stage detector sacrifices speed

for accuracy is important. The demand for an accurate network architecture that is

also operational on live video pushes this research to explore options that are faster

than two stage detectors.

2.3.3 One-Stage Detectors

What One-stage detectors lack in detection accuracy they make up for in speed

[8]. Here, the regional proposal stage is skipped causing bounding boxes creation

14

and object classification to be made in one step [8]. Figure 8 shows that there is no

region proposal to aide in object classification that is included in Figure 7. The allure

of using a one stage detector over a two stage detector is for detection of real-time

images. These type of detectors are the basis for this research since speed is required

to keep up with operational usage.

Figure 8: Basic architecture of a one-stage detector [8]

2.3.4 Object Tracking

Object detection is naturally followed by object tracking. The goal of tracking

the object is so that the network is able to link to the detected object through

progressive frames and follow it by holding on to past information [8]. Similar to

object detection, there are singular and multiple versions of object tracking; this

research is only concerned with Multiple Object Tracking (MOT). A primary concern

of MOT is to create unique identifiers for the separate objects as they move around

frame by frame [21].

Highly sophisticated networks are needed to provide these links to be applied

in real time scenarios [8]. Such a network (AlexNet) was created by Krizhevsky’s

team for the ILSVRC 2012 competition, showing that object tracking is indeed useful

for increasing accuracy of a deep network [20], [15]. Specific object tracking results

among object tracking literature is hard to derive since interrelated disciplines such

15

as feature tracking and object detection must be done also [8]. Object tracking has

three difficulties that newer networks are always trying to adapt to and overcome:

tracking speed, background distractions and spatial scales [21].

Prepping the network is crucial for it to be able to track fast enough to handle

real-time data. These issues are caused and fixed by the choice of the type of detector

utilized [21]. If track speed is too slow, then the network may cease to track the object

on screen. Likewise, if accuracy is too low, the network may again lose its tracking of

the object. A good blend in the network will be the deciding factor of how well your

model can track.

Background distractions are caused by the available training and testing data.

These are not factors that may always be able to overcome. These distractions greatly

affect the accuracy of the model. Tracking objects in a cluttered environment or

tracking small objects among large objects can be problematic for the detectors. One

specific type of network distractions is called occlusion [21]. This occurs when objects

that are being tracked overlap for some amount of frames, and this can confuse the

model. Not only can this affect model performance but when the objects cease to

overlap, the model may predict the objects as new objects, seemingly out of thin air

[21].

When performing object tracking, targets shown are often different sizes[21]. The

different aspect ratios of the targets from one image to another can further confuse

the detectors, which will negatively affect model performance. One way that this

issue is combated is through “anchor boxes”, which are a series of bounding boxes

with a fixed size that are used by the network to size up the targets [21].

A technique using MOT is explained in the methodology section with an attempt

to utilize a similar application for detection smoothing.

16

2.3.5 Similar Applications

2.3.5.1 Thesis Predecessor

The predecessor of this thesis work showed that the addition of a BNN into a

CNN-RNN combined network saw gains in performance and the additional capability

of monitoring prediction probabilities [22]. Swize tested the differences between a

BCNN-RNN for classifying video data. The dataset employed by Swize was from

The University of Central Florida (UCF), which comprised of 13,320 videos spanning

101 total classes [2].

The research of Swize [22] was similar to Simonyan and Zisserman who used a very

deep CNN to great success for the 2014 ImageNet Challenge [23]. Their application

of a very deep CNN is more than is applied in this research but their initial setup

of the CNN framework is useful. Their model was used to classify a dataset of 1.3M

videos for training and 1000 classes with roughly 25% misclassification [23].

2.3.5.2 SqueezeDet

SqueezeDet is a fully convolutional single-shot detector (SSD) used for object

detection, written about in June 2019 [24]. SqueezeDet was created with object de-

tection specific to autonomous driving in mind [24]. The inspiration for this network

was to focus on a small model size that was energy efficient to aid in implementation

for system deployment [24]. Many paths taken for design choices in SqueezeDet’s cre-

ation were closely tied to the You Only Look Once (YOLO) architecture. SqueezeDet

utilizes SqueezeNet as their CNN backbone for its model size and energy effeciency

for detection [25]. The SqueezeNet Model size is smaller than other tradionally larger

models because of it being built upon “Fire Module”, which is made up of a “squeeze”

layer for input and is output to the “expand” layer for output shown in Figure 9 [25].

This module allows for a faster, less parameter backbone at the expense of some ac-

17

curacy. The SqueezeDet team consciously chose the decision of speed over accuracy

to allow for a more operational design.

SqueezeDet is the starting point for this research. The background of its usage

will be elaborated on in the methodology. While not using SqueezeDet directly, using

the inspiration for SqueezeDet, YOLO, will be the main architecture in this research.

Figure 9: Organizational layout of convolutional filters in the Fire Module [25]

2.3.5.3 You Only Look Once (YOLO)

YOLO-net is tailored to object detection of real-time images, making it a very fast

design. The YOLO network can predict up to 100 regions per image at a speed of 45

FPS, not considering batching when used with a Titan X GPU [8]. The way YOLO-

net is able to achieve these speeds is partially due to the way it considers the object

detection problem. Using regression, YOLO picks features for class probabilities and

bounding box locations [26]. YOLO first separates the initial image into a S x S

grid. Then, creates B bounding boxes with a confidence level per bounding box. The

network creates a class probability map in parallel to the bounding boxes map that

labels each cell with a probability of containing a class. The two maps are then cross

analyzed to produce the final detections [26].

18

YOLO has had many iterations in the past. There have been smaller forks of

main version iterations to achieve certain model parameters or constraints, however,

there are four distinct versions. YOLOv1 in 2015 [26], followed by YOLOv2 at the

end of 2016 [27] and YOLOv3 in 2018 [28] are the most commonly known. With the

withdrawal of Joseph Redmon from the computer vision scene, Alexey Bochkovskiy

picked up where Redmon left off. In April 2020, Bochkovskiy published a paper on

YOLOv4 detailing significant improvements and a community fork to the publicly

accessible code [19]. YOLOv4 continues to use Darknet as the CNN backbone similar

to its predecessors and performs admirably with real-time detection speeds exceeding

60 FPS [19]. As an aside, there is a “YOLOv5” that has had claims of faster speeds

and even more lightweight. This version has not been published in this iteration with

replicable results as of this date and thus was not considered for implementation in

this research.

Darknet is an open source neural network framework that is written in C and

uses CUDA [29]. CUDA is an API that helps existing libraries connect to compatible

GPUs for accelerated processing. This speeds up computations by giving these GPUs

the capability of parallel processing on their available CUDA cores [30]. C is extremely

useful as a compiled programming language meaning that it has an edge for efficiency

and speed. Darknet being coded from C and CUDA means that it has the speed for

clean computations as well as being open source gives Darknet many positives to be

used for the YOLO CNN backbone.

YOLOv4 showcased many appealing qualities that this research seeks to imple-

ment. Most appealing was a lightweight architecture capable of performing at oper-

ational speeds. Given the above reasons, YOLOv4 was the chosen architecture for

object detection.

19

Figure 10: Basic overview of the YOLO process [26]

20

III. Methodology

The methodology described in this chapter illustrates the path taken from us-

ing a toy problem to illustrate the usage of a classification smoothing technique to

employing smoothing for a robust object detector. The first section details the toy

problem setup for single video classification. Then, a prospectus of the model trained

for multi-object detection using Bochkovskiy et al. newly published object detection

network, YOLOv4 [19]. This section finshes with a synopsis of the implementation

efforts for object detection smoothing within a possible multi-object space.

3.1 Smoothing for Single-Video Classification

3.1.1 UCF101 Dataset

The toy problem uses the University of Central Florida’s (UCF) dataset for action

recognition [31]. The dataset boasts 13,320 videos spread over 101 classes. The videos

are collected from YouTube videos that showcase an action. The recordings are given

as 320 x 240 pixel images shot at 25 frames per second (FPS). Classes are sectioned

into 25 groups that consist of around five videos each lasting approximately five

seconds per video. The dataset was slightly modified from being an entire YouTube

video to only being clips from the video that showcase the action listed as the truth

value for that video. This just means every frame of the video should result in the

truth value and there are no B-role shots or background noise.

To scale down the problem, the original dataset had to be modified. The 101 origi-

nal classes were modified to only include 10 classes: ApplyEyeMakeup, ApplyLipstick,

Archery, BrushingTeeth, CuttingInKitchen, Fencing, GolfSwing, HeadMassage, Hu-

laHoop, and PizzaTossing. These classes were carefully picked to introduce some

21

Figure 11: Snapshot of UCF101 classes.

hard to decipher actions, such as ApplyEyeMakeup, ApplyLipstick, HeadMassage,

and BrushingTeeth; as well as some clearly distinguishable actions such as Cut-

tingInKitchen, Archery, and Fencing. 1-2 videos were extracted from each of the

first 20 groupings to be used in training and validation. This totaled 270 videos.

3.1.2 Technique

CNNs perform video classification by treating each frame as an independent test

frame. CNNs are a tried and true method and are especially useful for showcasing

the video stutter at the frame level [11]. Since CNNs use no temporal information in

classification, this research investigated a technique to bring together past information

to assist in making the prediction on the current frame. However, this technique

still allows for the networks independent prediction for the current frame to hold

some weight. In order to do this, an average smoothing technique is used. Where

22

smoothing is done over some queue size, length x. Every frame is predicted by the

CNN as normal. This prediction is placed into a first in first out (FIFO) queue.

The current frames prediction is calculated using the past x frames independent

predictions, including the current. The frames prediction is stored as the pseudo

probability distribution output from the network. The entire queue is summed across

the axis of each class and divided by the count of predictions. The highest average

across the classes is selected to be the smoothed output prediction from the model.

This technique effectively seeks to suppress the stuttering effect at the frame-by-

frame level. Importantly, the smoothed prediction is never used for any future model

smoothed predictions, only for classification. Hence, the model will not get stuck in

a reoccurring prediction of the same class because of past smoothing. Thresholds can

be changed as well as the queue lengths to produce different results. Shorter queues

result in less past information being used, but provides for a more responsive network,

while the opposite is true for longer queues.

3.1.3 Model

Resnet-50 is used as the base model for this experiment and transfer learning is

used to freeze part of this network [32]. From Resnet-50’s 50 layers, 49 of them are

frozen. The head of the network is removed for the application of our layers that are

tailored to the modified UCF dataset. Pooling is done to condense features and then

the images are flattened and fed into two dense layers used to streamline the outputs

into the classes of concern.

3.2 Order of Operations

This process will start from the classes and videos selected in the “Dataset” chap-

ter. These 270 videos are first compiled into frames. During this phase, the videos

23

are broken down one frame at a time and converted from BGR (due to the library

Open-CV) to RGB. Each frame is then given a specific label and sorted into a direc-

tory folder with its truth value as the folder name. This phase creates 43,826 frames

which are used for training and validation.

Before the frames are able to go through the network, they must undergo pre-

processing. They are loaded into a data frame with their truth values being extracted

from folder names, and are reduced to a resolution of 224 x 224 so they can be used

in Resnet-50’s architecture. The images are augmented so the network can be more

robust. Training and validation occurs in batches of 32 for three epochs. The resulting

model is saved as an “h5” model and saved for use in testing.

Testing is finalized by performing a few different methods listed in the section

below. Video prediction is run using the saved model. The video is compiled again

into frames, run through the CNN and smoothed using the average smooth queue

method. The smoothed prediction is placed at the top of the frame and saved. Once

all frames from the test video is run through the network, all frames are stitched back

together and saved as a .avi format. The code has been used to predict overall video

classification as well as output an array of every frame in the video for closer inspection

on where the frames being misclassified lay, as well as computing the number of total

misclassified frames. This is helpful in judging the performance of differing numbers

of sizes for the smoothing queue.

3.3 Measures of Performance

The measures of performance of this technique come in three distinct ways. First,

testing model accuracy with training and validation. This comes from recall, pre-

cision, loss, and overall accuracy. This measures how well the model learned at the

frame level for model implementation. Secondly, looking at a confusion matrix among

24

the model as it is classified to an unseen test set of videos. This is also examined

further at an overall video classification level with no smoothing frame-by-frame and

then also smoothed at a 30 and 120 frame smoothing level. Lastly, video inspection

is conducted on how well smoothing was preformed and supplemented by a frames

analysis in section 4.1.2.

3.4 YOLOv4

3.4.1 Dataset Description

The dataset used for this research, consists of 23,067 frames of annotated high-

altitude drone images. The frames were initially contained in 33 different folders

which indicated the video or same landscape they came from, hence all 23,067 frames

are not distinctly different. The original images are annotated in KITTI format

within their accompanying “.txt” files. The images are pre-augmented, with each

frame being rotated, mirrored, resized and having the color inverted. There are nine

distinct classes: MV, van, car, truck, suv, bus/rv/motor home, cargo, dismount and

other. Most of the images are taken of highway and rural landscapes from a top-down

viewpoint. The images vary in quality with some being very clear and others hazy.

All images are at 1600 x 1200 resolution, however, they are inlaid within a black

surrounding box. The image size within the boarder varies as showcased in figures

12, 13, and 14.

3.4.2 Data Annotations

The research dataset was initially in KITTI format. All text files needed to

be converted from KITTI to YOLO Darknet TXT. YOLO Darknet TXT contains

one .txt file per data image. These annotations are normalized within a [0, 1] range

which makes it easier for Darknet to stretch and scale them. Each line in the .txt file

25

Figure 12: Ex 1. Buildings and Vehicles, slight haze and large

Figure 13: Ex 2. General Highway Image, high quality, clear and medium inlay

Figure 14: Ex 3. Rural Image, hazy and small inlay

26

corresponds to an object in the related image and contains four peieces of information:

< objectclass >< x center >< y center >< width >< height > (3)

Where:

• < object class > — integer specifying the object’s classification from 0 to

(classes− 1)

• < x center >< y center >< width >< height > — float values relative to

width and height of image

Associated with the .txt files are an accompanying master file which is a .NAMES

file. This file is the key to decoding the names of the objects. Each name of a detection

object is on a newline of this file and tells the network the number associated with the

objectclass. Figure 15 is an example of a sample image with three objects annotated

in Darknet format. Figure 16 is the dataset’s .NAMES file, showing that two of the

objects in figure 16 are car and the last object is a suv (indexes are off by one because

of zero indexing).

Figure 15: Darknet .txt Format Figure 16: Dataset .NAMES file

27

3.4.3 Dataset Challenges

There are some important features from the dataset to detail in the dataset and

to highlight their potential effect on gathered results. First, two of the 33 folders

were removed from training. The two folders consisted of images not from the drone

but of stock image frames that were excessively watermarked, thus were removed to

not contaminate the training. This removed 2,492 images from the original dataset,

leaving 20,575 frames.

Second, the most of the original folders contained frames that were very similar,

or exact images only augmented. Frames were commonly sequential frames stripped

from videos. These folders varied immensely in size, from a max of 4434 frames to a

minimum of 33 frames. Further, the largest four folders (just four different landscapes)

make up 61.5% of the total data. A robust model requires multiple landscapes and

differing images. Some difficulty in predicting in other landscapes could be stemmed

from the dataset being skewed toward these four backgrounds for testing.

Third, all of the data is taken from a high altitude. Therefore, future usage for low

altitude object classification may not benefit from this training set. If model usage

were to be considered on lower altitudes, additional training data is required.

Lastly, there is an imbalance within the classes of the data set. In figure 17, a

breakdown of classes is detailed. Classes such as “MV”, “dismount”, and “bus/rv/-

motor home” are severely lacking representation in the dataset while “cargo” and

“other” also show potential issues in representation. These five classes individually

have less than 2% representation of total instances. Together, these bottom five

classes account for 6% of all instances. When looking at file representation, these

classes only slightly gain better representation. For example, this means that most

of the files that include a “MV” only contain one, whereas files that contain “car”

are much more likely to contain multiple instances of the class. These classes could

28

be predicted to a better quality if the model could train on more instances of these

lower represented classes.

Figure 17: Research dataset class statistics

3.5 Model Architecture

This research began with code from SqueezeDet, with the intention of further ap-

plying this architecture for investigating smoothing of object classifications between

frames. The code was delivered in a repository that came with the original SqueezeDet

code [24], as well as a wrapper configured to detect based on the provided data. The

code was abandoned for the YOLO architecture after encountering package depre-

ciation issues, legacy version complications and a lack of possible model retraining

excursions.

3.5.1 Choosing YOLOv4

Since SqueezeDet was based off of YOLO and YOLO is a leading one stage detec-

tor for competitive object detection, YOLO was a clear choice. The newest version

of YOLO is currently YOLOv4. YOLOv4 was introduced on 23 April, 2020 [19]. It

boasted impressive AP scores while also maintaining a classification speed of approx-

29

Figure 18: YOLOv4 Object Detection comparison

imately 65 FPS [19].

Basic YOLOv4 is trained on the Microsoft COCO dataset [33]. This is a dataset

consisting of 80 easily identifiable classes from in their natural context [33]. The

dataset has a train/validate split of 118k/5k [33]. Of the classes trained for COCO,

classes such as car, truck and bus are beneficial for potentially classifying ISR footage

taken from a lower altitude than what the provided dataset supports.

3.5.1.1 Windows 10 - Python

The hardware used for running the network was done on a windows 10 machine

using an AMD Ryzen 7 5800X CPU, NVIDIA GeForce RTX 3080 and 16 GB DDR4-

3600MHz RAM. CUDA was configured for the RTX 3080 to make use of the 8704

CUDA cores and 10 GB of memory to enhance computations. One of the libraries that

CUDA commonly interacts with is cuDNN. NVIDIA cuDNN is a GPU accelerated

library made specifically for deep neural networks. cuDNN’s library is customized to

provide highly efficient applications of commonly found neural network process such

as convolutions, pooling, normalization, and other similar processes [34].

30

3.6 Training YOLOv4

The YOLOv4 custom configuration file had to be changed to train competently

on the UAV footage. Training for this new dataset is not done completely from

scratch. For example, weights on all network nodes are not random. The weights are

taken from the first 137 layers of YOLOv4 and used as a starting point for training.

Therefore, the file “yolov4.conv.137” is used to initiate training.

3.6.1 Hyper-parameters

The file “yolov4-custom.cfg” houses all of the preliminary setup information for

the training of the network. The network’s final hyper-parameters are summarized

below:

Table 1: Hyperparameters for YOLO Trained on UAV Footage

batch = 32 subdivisions = 16 width = 416

exposure = 1.5 hue = 0.1 height = 416

channels = 3 momentum = 0.949 learning rate = 0.001

decay = 0.0005 saturation = 1.5 max batches = 20000

burn in = 1000 steps = 16000, 18000 policy = steps

Bochkovskiy et al gives specific parameter guidelines for training datasets on

YOLOv4 [19]. A GitHub repository is shared by Bochkovskiy et al to aid in train-

ing YOLOv4 networks on new datasets [19]. The following are the changes from the

“yolov4.conv.137.cfg” network configuration, which is the network structure Bochkovskiy

et al used in training on the COCO dataset [19]. The changes are made at the rec-

comendation of Bochkovskiy et al because the extra features needed for the COCO

dataset found in the previous model, such as higher batching, subdivisions, and steps,

are not needed in this dataset since it is remarkably smaller. Batching was changed

31

from 64 to 32, multiple of 16 is kept. The reduction in total images were dramatically

reduced compared to the COCO dataset. Since batch is set to 32, subdivisions are

set to 16 to determine the mini batches, again multiples of 16. max batches should

roughly be 2000 ∗ (number of classes), yet larger than number of total images. So

max batches is changed to 20,000 to be above 18,000 but close to max number of

images. line steps is set to be roughly 80% and 90% of max batches. Before each of

the three YOLO layers in the network, the filters parameters need to be hard coded

to be filters = (classes + 5) ∗ 3.

3.7 Smoothing for Multi-Object Classification

This section details the methodology for the transition between the toy problem

for smoothing single video classification to an operational problem of multi-object

detection smoothing.

3.7.1 Obstacles

Key differences between the toy problem and the operational problem need to be

identified so that a way forward can be determined.

First, in the toy problem we made use of the simplicity of a video always having

some classification. In the operational problem, there is always a changing number of

possible objects in an image. We no longer have one static queue, but a dynamically

changing number of queues. This could result in having dozens of queues at once or

conversely zero queues if no objects are in the frame. A procedure needs to be in

place that constantly creates or terminates queues related to when objects enter or

leave the frame. This dynamic queue has to also inherently track the object such

that the queue knows what object it is smoothing. This could possibly rectified with

other types of algorithm additions, such as Deep SORT [35].

32

Second, the model could fail to detect the object at all. This is a moot point for

the toy problem where there is always some classification, even if it is the incorrect

one. Here, procedures must be detailed in order to handle the correct, incorrect, and

lack of classification. Upon doing this, the model must be able to continue tracking

the object such that the queue is not totally reset after failing to detect for one (or

possibly greater than one) frame.

Third, is the inverse to the classification stutter we are trying to solve. We have

previously detailed the stutter from correct detection classification, to false classifica-

tion, and back to correct detection. However, the issue of correctly identifying that

the object is not there, to incorrectly identifying an object as being there, to back

to correctly showing no object is detected is harder to solve. This is harder to solve

because using this method, there would have to be a queue for every object on the

screen in order to smooth. If a object isn’t detected, there is no queue to smooth. A

proposed solution to this is to smooth all new identified objects by a smaller queue

amount. For example, if all new objects identified by the model are not shown until

6 of the last 10 frames are identified to be a class object. This would prevent cases

in which objects flicker onto the screen that should not be class objects in the first

place. This would impose a delay onto all new objects entering the image but would

greatly reduce the stutter of false positive predictions from the model.

33

IV. Results and Analysis

This chapter summarizes research results from the toy and operational problems.

4.1 Toy Problem

Table 2: Model Training Analysis Summary

Precision Recall Accuracy

ApplyEyeMakeup 0.97 0.97 0.97

ApplyLipstick 0.92 0.95 0.94

Archery 0.87 0.95 0.94

BrushingTeeth 0.97 0.97 0.97

CuttingInKitchen 1.0 1.0 1.0

Fencing 1.0 0.96 0.98

GolfSwing 0.94 0.94 0.94

HeadMassage 0.88 0.98 0.93

HulaHoop 0.91 0.69 0.79

PizzaTossing 0.87 0.75 0.81

Total Accuracy 0.93

Table 2 shows summary statistics for the model used for the toy problem. The

model statistics showcase notably high accuracy and recall amongst most of the classes

individually. These results were promising because it showcased that the model was

learning correctly and operating well. However, a potential issue lays in these accu-

racy measurements. It doesn’t affect model usage, but does artificially inflate these

accuracy numbers. When the train and validation splits occur, these images are still

too close in temporal space. Take for example, a snapshot in time during the training

34

process; imagine that the Archery class has a video of a man pulling back a bow.

It could be the case that frames 1,3,5,7 are used for training, while validation is

conducted on frames 2,4,6,8. The difference in information in these frames are very

minimal, so it would be expected that the accuracy would be higher than if the model

was trained on a complete set of independent images. In the below subsection, impact

from the smoothing technique on the overall video’s classification is tested, as well as

test accuracy derived from videos that the network has never seen such that there is

no impact from closely related frames as mentioned above.

4.1.1 Classification Impact

Testing was conducted to measure the impact that the smoothing technique played

on overall video classification. Theoretically, if the technique should converge more

individual frames to the greater predicted class, then the videos overall classification

should stay the same. A confusion matrix was created based on doing no frame

smoothing (Figure 19), 30 frame smoothing (Figure 20), and 120 frame smoothing.

Overall classification for 275 videos resulted in 90 misclassifications when no

smoothing was implemented. This results in 67% test accuracy. Many classifications

seem to be a result of having classes that were close together, which was intended

as this helped to see greater benefit in smoothing at the frame level. The result

of smoothing 30 frames did not change the test accuracy, however, this was only

a coincidence because it did change a couple of the videos overall classification, an

unexpected result.

Upon reflection, it seems that overall classification could change if the network had

many oscillating classes frame-by-frame or the total number of frames that predicted

the original class were spread over the whole videos classification, which would result

in some of the frames instead being smoothed to a different class than was predicted

35

Figure 19: No smoothing - Classification heatmap

36

Figure 20: 30 Frame smoothing - Classification heatmap

37

in a denser area of the video. One other potential reason could be that the frames

at the beginning of the videos are not fully smoothed. What this means is that the

queue is not full until the first x frames have been classified. So if the queue length is

30 and frame 15 is being classified, only 15 frames are currently in the queue so the

smoothing for that frame is 15, not yet 30. Therefore, the beginning frames where

(frame number) < x have less past information used to smooth than the remaining

frames in the video.

Testing done with 120 frame smoothing was identical to 30 frame smoothing except

that one additional video was misclassified. Increasing the queue length to incorporate

more frames to average against eventually leads to too much smoothing. The longer

the queue, the more delay is artificially introduced into the architecture’s response

time. So, since 120 frame smoothing was frequently similar to 30 frames of smoothing,

choosing a smaller queue is more valuable for keeping a highly responsive system.

Additionally, the smoothing technique has very little affect on overall classifica-

tion, which is a positive trait.

4.1.2 Frames Analysis

Testing was conducted on how the frames classification was spread along the video.

Figure 21 shows a rather typical result for many of the videos in the set. Most of the

time, having a queue length of 25 frames was enough for total image smoothing on a

video that was relatively well predicted. Since this research expects a relatively good

network to be used on the front-end, these are promising results. In Figure 21, the

pattern showed very consistently where zero frame smoothing showed many frames

to be misclassified into a large number of bins (Figure 21 showed 6 different bins that

frames were categorized into). Then using 25 frames of smoothing, this would usually

push the number of misclassified bins to be just one, two or three. Even though this

38

Figure 21: Multiclass frame smoothing for no smoothing, 25-frame smoothing and 50
frame smoothing.

has a change in categorization while the video plays, it is already much more easy to

understand visually. With 50 frame smoothing, the image was smoothed to be only

one bin, which was the correct bin for classification.

Figures 22 and 23 show the same video from Figure 21. These figures show how

the sequential frames on how they are classified relative to their neighboring frames.

With no smoothing stuttering can be clearly seen from the intermittent red bands. If

the red bands are more than a couple in a sequential order, this can be attributed to

poor model performance instead of a model stutter. After smoothing for 25 frames,

all small stuttering occurrences have been smoothed. Now instead of stutters, there

are blocks of classifications.

Overall, smoothing does its job well, but certainly will suffer from having a bad

CNN front end. There were instances where smoothing can coerce an image classifi-

cation to the wrong classification depending on how uncertain the base CNN model

is at predicting certain classes. If the model is truly misclassifing the bulk of frames

39

Figure 22: No smoothing - Sequential frames (Red are misclassifications)

Figure 23: 25 Frame smoothing - Sequential frames(Red are misclassifications)

for a video then the smoothing technique will smooth correct classifications to the

wrong classification.

Given these results, the smoothing technique does work effectively for smoothing

model predictions. The smoothing technique still relies heavily on the base model

predictions. The technique works best in cases where stuttering is intermittent. The

technique performs poorly when many model misclassifications are made in sequence,

which leads to the technique smoothing away correct classifications.

4.2 YOLOv4

Figure 24: Model training loss statistics

40

YOLOv4 was trained on the dataset for 20,000 iterations. Upon completion the

model had a loss of 2.6%. Since the entirety of the dataset was used for training,

additional drone footage was requested for testing. Non sequential frames were ex-

tracted from the requested footage and hand-annotated. These frames were used in

mAP testing and for summary statistics of the model. Using a confidence threshold

of 50, the model had a precision of 33% and recall of 31%. The model mAP50 was

23.7%. Model precision suffered from issues resulting in false positive detections as

can be seen in 3 below:

Table 3: Model Precision broken out by class

Class True Positive False Positive

Cargo 0 11

Other 0 5

Car 21 32

Truck 6 5

Table 3 shows that the model is cable of detecting these classes, but tends to

falsly identify some objects. It is important to observe the models ability to correctly

identify “car” and “truck” roughly 50% of the time, while incorrectly identifying the

“cargo” and “other” classes. This shows that the model is able to be used to detect

the former but has not learned the later classes. The overall mAP50 is pushed down

greatly from these false identifications in classes that are not correctly learned.

41

V. Conclusions

Solving neural network misclassification is an issue at the leading edge of AI

research. Much research has been conducted in enhancing the capabilities of the

underlying model. This research scopes this problem into the lens of classification

stuttering, where misclassifications are the minority in an expanse of correct classi-

fications. Therefore, we take a different approach of making additions to a network

and acquiring smoothed results with a potentially low impact to the speed at which

the model runs.

In this thesis, the problem of video stuttering was investigated. A toy problem

was used to test a potential way of smoothing classification stuttering in single ac-

tion videos. This gave promising results showing smoothed classifications. Benefits

and consequences of the technique were discussed such as keeping the system highly

responsive yet creating an artificial delay.

Following the toy problem, the dataset consisting of UAV footage was analyzed.

Dataset challenges were detailed and areas for improvement were listed. Using this

dataset, a YOLOv4 network was trained on 20,575 frames. Using this trained network

and lessons learned from the toy problem, the smoothing technique was applied to

a multi-object detection problem. After continuous unsuccessful implementations,

important obstacles were documented and potential solutions are outlined for future

work below.

5.1 Future Work

This thesis paves the way for additional research to be conducted. Future work

should seek to implement the smoothing technique into a multiple object detection

network. This research has showed proof of concept with a toy problem but was unable

42

to resolve the technique for multiple objects. A detailed breakdown of important

obstacles to overcome are documented in the methodology section. A method for

smoothing needs to be introduced for each object in the frame as well as smoothing

objects before they are introduced as a positive detection in the frame. If this can be

done, I believe this technique should be used as a end component for any competent

object detection network. If implemented to an accurate network, stuttering should

rarely be seen.

43

Appendix A. Toy Problem Additional Results

Figure 25: Frames analysis for video ApplyEyeMakeup 25 01.

44

Figure 26: Frames analysis for video ApplyEyeMakeup 24 06.

Figure 27: Frames analysis for video Archery 20 06.

45

Figure 28: Frames analysis for video BrushingTeeth 24 04.

Figure 29: Frames analysis for video GolfSwing 21 06.

46

Figure 30: Frames analysis for video HulaHoop 21 01.

47

Appendix B. Code: Toy Problem Training

Training the toy problem and provides graphs of training.

Saves a h5 model and labels object for later use.

Transfer learning is used from Resnet-50.

(He et all, 2015),(Rosebrock, 2019).

import matplotlib

matplotlib.use("Agg")

import os

import cv2

import pickle

import numpy as np

from imutils import paths

import matplotlib.pyplot as plt

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Input

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Flatten

from tensorflow.keras.optimizers import SGD

from sklearn.preprocessing import LabelBinarizer

from tensorflow.keras.applications import ResNet50

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import AveragePooling2D

48

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from sklearn.metrics import classification_report, confusion_matrix

def plot_confusion_matrix(cm, target_names, title=’Confusion matrix’,

cmap=None, normalize=True):

"""

given a sklearn confusion matrix (cm), make a nice plot

Arguments

cm: confusion matrix from sklearn.metrics.confusion_matrix

target_names: given classification classes such as [0, 1, 2]

the class names, for example: [’high’, ’medium’, ’low’]

title: the text to display at the top of the matrix

cmap: the gradient of the values displayed from matplotlib.pyplot.cm

see http://matplotlib.org/examples/color/colormaps_reference.html

plt.get_cmap(’jet’) or plt.cm.Blues

normalize: If False, plot the raw numbers

If True, plot the proportions

Usage

49

plot_confusion_matrix(cm = cm,# confusion matrix created by

sklearn.metrics.confusion_matrix

normalize = True, # show proportions

target_names = y_labels_vals, # names of the classes

title = best_estimator_name) # title of graph

Citiation

scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

"""

accuracy = np.trace(cm) / np.sum(cm).astype(’float’)

misclass = 1 - accuracy

if cmap is None:

cmap = plt.get_cmap(’Blues’)

plt.figure(figsize=(8, 6))

plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

plt.title(title)

plt.colorbar()

if target_names is not None:

tick_marks = np.arange(len(target_names))

plt.xticks(tick_marks, target_names, rotation=45)

50

plt.yticks(tick_marks, target_names)

if normalize:

cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]

thresh = cm.max() / 1.5 if normalize else cm.max() / 2

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

if normalize:

plt.text(j, i, "{:0.4f}".format(cm[i, j]),

horizontalalignment="center",

color="white" if cm[i, j] > thresh else "black")

else:

plt.text(j, i, "{:,}".format(cm[i, j]),

horizontalalignment="center",

color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()

plt.ylabel(’True label’)

plt.xlabel(’Predicted label\naccuracy={:0.4f};

misclass={:0.4f}’.format(accuracy, misclass))

plt.show()

epochs = 3

51

frame_folder = ’/UCF101/Frames10/’ # path to folder holding folder of frames

output_img_path = ’/UCF101/Output/plot2.png’ # path to output plot

output_model_path = ’/UCF101/Output/activity2.model’ # path to output model

output_label_bin = ’/UCF101/Output/lb2.pickle’ # path to output label binarizer

#Set of labels

LABELS = set(["ApplyEyeMakeup", "ApplyLipstick", "Archery",

"BrushingTeeth", "CuttingInKitchen", "Fencing",

"GolfSwing","HeadMassage", "HulaHoop", "PizzaTossing"])

imagePaths = list(paths.list_images(frame_folder))

data = []

labels = []

for imagePath in imagePaths:

extract the class label from the filename

label = os. path. basename(imagePath.split(os.path.sep)[0])

if the label of the current image is not part of of the labels

are interested in, then ignore the image

if label not in LABELS:

continue

load the image, convert it to RGB channel ordering, and resize

it to be a fixed 224x224 pixels, ignoring aspect ratio

image = cv2.imread(imagePath)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

52

image = cv2.resize(image, (224, 224))

update the data and labels lists, respectively

data.append(image)

labels.append(label)

data = np.array(data)

labels = np.array(labels)

perform one-hot encoding on the labels

lb = LabelBinarizer()

labels = lb.fit_transform(labels)

#Training and testing splits using 75% of data

#Testing is 25%

(trainX, testX, trainY, testY) = train_test_split(data, labels,

test_size=0.25, stratify=labels, random_state=42)

#Data augmentation

trainAug = ImageDataGenerator(

rotation_range=30, zoom_range=0.15, width_shift_range=0.2,

height_shift_range=0.2, shear_range=0.15, horizontal_flip=True,

fill_mode="nearest")

valAug = ImageDataGenerator()

#mean subtraction

mean = np.array([123.68, 116.779, 103.939],

dtype="float32")

53

trainAug.mean = mean

valAug.mean = mean

#ResNet-50 network

#Citation

#(He et all, 2015)

#(Rosebrock, 2019)

baseModel = ResNet50(weights="imagenet", include_top=False,

input_tensor=Input(shape=(224, 224, 3)))

#We use a new head tailored to our data

headModel = baseModel.output

#Create the pooling/full connection layers, with inclusion of dropout

headModel = AveragePooling2D(pool_size=(7, 7))(headModel)

headModel = Flatten(name="flatten")(headModel)

headModel = Dense(512, activation="relu")(headModel)

headModel = Dropout(0.5)(headModel)

headModel = Dense(len(lb.classes_), activation="softmax")(headModel)

model = Model(inputs=baseModel.input, outputs=headModel)

#Freezes the layers from Resnet-50 (The "base model")

for layer in baseModel.layers:

layer.trainable = False

#Compiling of the model hyperparameters

54

opt = SGD(learning_rate = 1e-4, momentum=0.9, decay=1e-4 / epochs)

model.compile(loss="categorical_crossentropy", optimizer=opt,

metrics=["accuracy"])

#The model is fit (training) (Only the head is traininable)

H = model.fit(

x=trainAug.flow(trainX, trainY, batch_size=32),

steps_per_epoch=len(trainX) // 32,

validation_data=valAug.flow(testX, testY),

validation_steps=len(testX) // 32,

epochs=epochs)

#Statistics for the network are below

print("Network Stats")

predictions = model.predict(x=testX.astype("float32"), batch_size=32)

print(classification_report(testY.argmax(axis=1),

predictions.argmax(axis=1), target_names=lb.classes_))

#Loss and accuracy graphs

N = epochs

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")

plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")

plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")

plt.title("Training Loss and Accuracy on Dataset")

55

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig(output_img_path)

trainPredictions = model.predict(x=trainX.astype("float32"), batch_size=32)

#Confusion Matrix for both train and test

cm_train = confusion_matrix(trainY, trainPredictions)

cm_test = confusion_matrix(testY, predictions)

#Plot Confusion matrix

plot_confusion_matrix(cm_train, lb.classes_, title=’Confusion matrix: Training’)

plot_confusion_matrix(cm_test, lb.classes_, title=’Confusion matrix: Testing’)

#Saving the model as an h5 so it can be used for classification later

model.save(output_model_path, save_format="h5")

#Pickle the labels for later use as well

f = open(output_label_bin, "wb")

f.write(pickle.dumps(lb))

f.close()

56

Appendix C. Code: Video Classification

Predicts videos classification and also saves output video

with all frames strung together for an output classifcation.

Used to visually inspect stuttering.

import the necessary packages

import cv2

import pickle

import numpy as np

from collections import deque

from tensorflow.keras.models import load_model

model_path =’/Output/activity2.model’# path to trained serialized model

label_bin = ’/Output/lb2.pickle’ # path to label binarizer

input = ’/UCF101/UCF-101/HulaHoop/v_HulaHoop_g21_c01.avi’# path to our input video

output_path = ’/Output/makeup_output.avi’# path to our output video

size = 1# size of queue for averaging (1-128) (1 means no averaging)

load the trained model and label binarizer

model = load_model(model_path)

lb = pickle.loads(open(label_bin, "rb").read())

initialize the image mean for mean subtraction along with the

predictions queue

57

mean = np.array([123.68, 116.779, 103.939][::1], dtype="float32")

Q = deque(maxlen= size)

initialize the video stream, pointer to output video file, and

frame dimensions

vs = cv2.VideoCapture(input)

writer = None

(W, H) = (None, None)

video_classification = [0] * len(lb.classes_)

loop over frames from the video file stream

while True:

read the next frame from the file

(grabbed, frame) = vs.read()

if the frame was not grabbed, then we have reached the end

of the stream

if not grabbed:

break

if the frame dimensions are empty, grab them

if W is None or H is None:

(H, W) = frame.shape[:2]

clone the output frame, then convert it from BGR to RGB

ordering, resize the frame to a fixed 224x224, and then

perform mean subtraction

58

output = frame.copy()

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

frame = cv2.resize(frame, (224, 224)).astype("float32")

frame -= mean

make predictions on the frame and then update the predictions

queue

preds = model.predict(np.expand_dims(frame, axis=0))[0]

Q.append(preds)

perform prediction averaging over the current history of

previous predictions

results = np.array(Q).mean(axis=0)

i = np.argmax(results)

label = lb.classes_[i]

video_classification[i] += 1

draw the activity on the output frame

text = "activity: {}".format(label)

cv2.putText(output, text, (10, 20), cv2.FONT_HERSHEY_SIMPLEX,

0.75, (0, 255, 0), 2)

check if the video writer is None

if writer is None:

initialize our video writer

fourcc = cv2.VideoWriter_fourcc(*"MJPG")

writer = cv2.VideoWriter(output_path, fourcc, 25,

59

(W, H), True)

write the output frame to disk

writer.write(output)

show the output image

cv2.imshow("Output", output)

key = cv2.waitKey(1) & 0xFF

if the ‘q‘ key was pressed, break from the loop

if key == ord("q"):

break

release the video

writer.release()

vs.release()

print(video_classification) # print list of how all frames were classified in video

print(lb.classes_[np.argmax(video_classification)]) # print classes associated with

#highest amount of predictions

60

Appendix D. Code: Video to Frames

Strips videos into frames. This gave more

control for training/validation/testing

import cv2

import time

import os

def video_to_frames(input_loc, output_loc,name):

"""Function to extract frames from input video file

and save them as separate frames in an output directory.

Args:

input_loc: Input video file.

output_loc: Output directory to save the frames.

Returns:

None

"""

try:

os.mkdir(output_loc)

except OSError:

pass

Log the time

time_start = time.time()

Start capturing the feed

cap = cv2.VideoCapture(input_loc)

61

Find the number of frames

video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1

print ("Number of frames: ", video_length)

count = 0

print ("Open Video\n")

Start converting the video

while cap.isOpened():

Extract the frame

ret, frame = cap.read()

if not ret:

continue

Write the results back to output location.

cv2.imwrite(output_loc + ’/’ +name+"_%#05d.jpg" % (count+1), frame)

count = count + 1

If there are no more frames left

if (count > (video_length-1)):

Log the time again

time_end = time.time()

Release the feed

cap.release()

Print stats

print ("Done extracting frames.\n%d frames extracted" % count)

print ("It took %d seconds forconversion." % (time_end-time_start))

break

if __name__=="__main__":

62

#input_loc = ’/UCF101/Videos/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.avi’

#output_loc = ’/UCF101/Frames/ApplyEyeMakeup/’

video_path = ’/UCF101/Videos10/’

folders = os.listdir(video_path)

for classes in folders:

video_sub = os.listdir(video_path + str(classes))

for video in video_sub:

input_loc = video_path+classes+"/"+video

output_loc = ’/UCF101/Frames10/’ + classes

video_to_frames(input_loc, output_loc,video[:-4])

63

Appendix E. Code: Heatmap

Saves a heatmap analysis graph using array rows that come

from video prediction output (must be copied over)

import seaborn as sn

import pandas as pd

import matplotlib.pyplot as plt

import pickle

model_path =’/UCF101/Output/activity2.model’# path to trained serialized model

label_bin = ’/UCF101/Output/lb2.pickle’ # path to label binarizer

output_img_path = ’/UCF101/Output/heatmap_1frame.png’ # path to output plot

lb = pickle.loads(open(label_bin, "rb").read())

#This array comes from classification of all videos

array = [[19, 9, 0, 2, 0, 0, 0, 0, 0, 0],

[4, 21, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 29, 0, 0, 0, 0, 0, 0, 0],

[2, 21, 1, 7, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 22, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 24, 0, 0, 0, 0],

[0, 0, 6, 0, 0, 0, 26, 0, 1, 0],

[7, 0, 0, 0, 0, 0, 0, 24, 0, 0],

[0, 0, 17, 0, 0, 3, 0, 0, 4, 0],

64

[0, 0, 9, 0, 0, 4, 0, 3, 1, 9]]

df_cm = pd.DataFrame(array, index = lb.classes_,

columns = lb.classes_)

plt.figure(figsize = (11,12))

sn.heatmap(df_cm, annot=True, linewidths=.5, cmap=’Greens’,cbar=0)

plt.title("Test Data - 30 Frame Smoothing")

#ax.figure.tight_layout()

plt.savefig(output_img_path)

plt.show()

65

Appendix F. Code: Frames Graph

Saves a frames analysis graph using array rows that come

from video prediction output (must be copied over)

import pickle

import pandas as pd

import matplotlib.pyplot as plt

model_path =’/UCF101/Output/activity2.model’# path to trained serialized model

label_bin = ’/UCF101/Output/lb2.pickle’ # path to label binarizer

output_img_path = ’/UCF101/Output/MultiFrame.png’ # path to output plot

lb = pickle.loads(open(label_bin, "rb").read())

#Array rows come from video prediction output (Copied over)

array =[[0, 0, 0, 0, 3, 0, 0, 0, 65, 28],

[0, 0, 0, 0, 0, 0, 0, 0, 76, 20],

[0, 0, 0, 0, 0, 0, 0, 0, 82, 14]]

df_cm = pd.DataFrame(array, columns = lb.classes_,

index = ["Frames 1","Frames 25", "Frames 50"])

print(df_cm.iloc[0,])

66

plt.subplot(3,1,1)

plt.bar(df_cm.columns,df_cm.iloc[0,])

plt.ylabel("Frames 1")

plt.title("HulaHoop(g21_c01) Smoothing")

plt.gca().spines[’top’].set_position((’data’,0))

plt.gca().spines[’right’].set_position((’data’,-10))

plt.xticks([],[])

for i, v in enumerate(df_cm.iloc[0,]):

plt.text(i-.25, v + 0.4, str(v))

#set_yticklabels(df_cm.columns, minor=False)

plt.subplot(3,1,2)

plt.bar(df_cm.columns,df_cm.iloc[1,])

plt.xticks([],[])

for i, v in enumerate(df_cm.iloc[1,]):

plt.text(i-.25, v - 0.4, str(v))

plt.ylabel("Frames 25")

plt.gca().spines[’top’].set_position((’data’,0))

plt.gca().spines[’right’].set_position((’data’,-10))

plt.subplot(3,1,3)

plt.bar(df_cm.columns,df_cm.iloc[2,])

for i, v in enumerate(df_cm.iloc[2,]):

plt.text(i-.25, v - 0.4, str(v))

67

plt.ylabel("Frames 50")

plt.gca().spines[’top’].set_position((’data’,0))

plt.gca().spines[’right’].set_position((’data’,-10))

plt.xticks(df_cm.columns, rotation=’vertical’)

plt.subplots_adjust(bottom=0.3)

plt.savefig(output_img_path)

plt.show()

68

Appendix G. Code: Sequential Video Frame Predictions

Prints two vectors.

1) The first vector is a breakdown of all the frame’s classification binned

together for a specified video

2) A vector of all of the frames classification in a sequential order.

import cv2

import pickle

import numpy as np

from collections import deque

from tensorflow.keras.models import load_model

model_path =’/UCF101/Output/activity2.model’# path to trained serialized model

label_bin = ’/UCF101/Output/lb2.pickle’ # path to label binarizer

input = ’/UCF101/UCF-101/PizzaTossing/v_PizzaTossing_g22_c02.avi’#input video

output_path = ’/UCF101/Output/makeup_output.avi’# path to our output video

size = 25# size of queue for averaging (1-128) 1:no averaging

69

load the trained model and label binarizer from path

model = load_model(model_path)

lb = pickle.loads(open(label_bin, "rb").read())

initialize the image mean for mean subtraction along with the

predictions queue

mean = np.array([123.68, 116.779, 103.939][::1], dtype="float32")

Q = deque(maxlen= size)

initialize the video stream, pointer to output video file, and

frame dimensions

vs = cv2.VideoCapture(input)

writer = None

(W, H) = (None, None)

video_classification = [0] * len(lb.classes_)

sequential = []

loop over frames from the video file stream

while True:

read the next frame from the file

(grabbed, frame) = vs.read()

if the frame was not grabbed, then we have reached the end

of the stream

70

if not grabbed:

break

if the frame dimensions are empty, grab them

if W is None or H is None:

(H, W) = frame.shape[:2]

clone the output frame, then convert it from BGR to RGB

ordering, resize the frame to a fixed 224x224, and then

perform mean subtraction

output = frame.copy()

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

frame = cv2.resize(frame, (224, 224)).astype("float32")

frame -= mean

make predictions on the frame and then update the predictions

queue

preds = model.predict(np.expand_dims(frame, axis=0))[0]

Q.append(preds)

perform prediction averaging over the current history of

previous predictions

results = np.array(Q).mean(axis=0)

i = np.argmax(results)

label = lb.classes_[i]

video_classification[i] += 1

sequential.append(i)

71

draw the activity on the output frame

text = "activity: {}".format(label)

cv2.putText(output, text, (10, 20), cv2.FONT_HERSHEY_SIMPLEX,

0.75, (0, 255, 0), 2)

check if the video writer is None

if writer is None:

initialize our video writer

fourcc = cv2.VideoWriter_fourcc(*"MJPG")

writer = cv2.VideoWriter(output_path, fourcc, 25,

(W, H), True)

write the output frame to disk

writer.write(output)

show the output image

#cv2.imshow("Output", output)

key = cv2.waitKey(1) & 0xFF

if the ‘q‘ key was pressed, break from the loop

if key == ord("q"):

break

release the file pointers

writer.release()

vs.release()

print(video_classification) # print list of how all frames were classified in video

print()

print(sequential)

72

print()

#print(lb.classes_[np.argmax(video_classification)]) # print classes associated

#with highest amount of predictions

73

Appendix H. Code: YOLO

All things YOLO, as well as training and testing source code is provided at:

https://github.com/AlexeyAB/darknet.

74

https://github.com/AlexeyAB/darknet

Bibliography

1. Trevor J. Bihl, Joe Schoenbeck, Daniel Steeneck, and Jeremy Jordan. Easy and

efficient hyperparameter optimization to address some artificial intelligence ”ili-

ties”. In 53rd Hawaii International Conference on System Sciences, HICSS 2020,

Maui, Hawaii, USA, January 7-10, 2020, pages 1–10. ScholarSpace, 2020.

2. Emmie Swize. Bayesian augmentation of convolutional neural network - long

short term memory for video classification with uncertainty measures. Master’s

thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio,

3 2021.

3. Giacomo Deodato, Christopher Ball, and Xian Zhang. Bayesian neural networks

for cellular image classification and uncertainty analysis. bioRxiv, 2020.

4. Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86:2278 – 2324,

12 1998.

5. Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge,

Gonville and Caius College, 9 2016.

6. John E. Ball, Derek T. Anderson, and Chee Seng Chan. A comprehensive sur-

vey of deep learning in remote sensing: Theories, tools and challenges for the

community. CoRR, abs/1709.00308, 2017.

7. Djemel Ziou and Salvatore Tabbone. Edge detection techniques - an overview.

INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND IMAGE

ANALYSIS, 8:537–559, 1998.

75

8. Sankar Pal, Anima Pramanik, Jhareswar Maiti, and Pabitra Mitra. Deep learning

in multi-object detection and tracking: state of the art. Applied Intelligence, 51,

09 2021.

9. Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A Comprehensive guide to

Bayesian Convolutional Neural Network with Variational Inference. PhD thesis,

12 2018.

10. Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

11. Aurelien Geron. Hands-on machine learning with Scikit-Learn and TensorFlow

: concepts, tools, and techniques to build intelligent systems. O’Reilly Media,

Sebastopol, CA, 2019.

12. Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36:193–202, 1980.

13. Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning, 2016.

14. Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for

camera relocalization, 2016.

15. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12, page

1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

76

16. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

17. Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.

Weight uncertainty in neural networks, 2015.

18. Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva. A survey on perfor-

mance metrics for object-detection algorithms. In 2020 International Conference

on Systems, Signals and Image Processing (IWSSIP), pages 237–242, 2020.

19. Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-

timal speed and accuracy of object detection, 2020.

20. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,

2015.

21. Vidushi Meel. What is object tracking? - an introduction, 2021.

22. Emmie Swize, Lance Champagne, Bruce Cox, and Trevor Bihl. Bayesian aug-

mentation of deep learning to improve video classification. Hawaii International

Conference on System Sciences, 2022.

23. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition, 2015.

24. Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, and Kurt Keutzer.

Squeezedet: Unified, small, low power fully convolutional neural networks for

real-time object detection for autonomous driving, 2019.

77

25. Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and ¡0.5mb model size, 2016.

26. Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

27. Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger, 2016.

28. Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

29. Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.

com/darknet/, 2013–2016.

30. NVIDIA Developer. Cuda - gpu accelerated computing with python, Aug 2021.

31. Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset

of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402, 2012.

32. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

33. Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr

Dollár. Microsoft coco: Common objects in context, 2015.

34. NVIDIA Developer. Nvidia cudnn, Jun 2021.

35. Addie Ira Borja Parico and Tofael Ahamed. Real time pear fruit detection and

counting using yolov4 models and deep sort. Sensors, 21(14), 2021.

78

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25 Mar 2022 Master’s Thesis Sept 2020 — Mar 2022

Smoothing of Convolutional Neural Network Classifications

Drumm, Glen, R 1st Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENS-MS-22-M-122

Trevor Bihl, DAF, DR-III, PhD
Sensors Directorate Air Force Research Laboratory
2242 Avionics Circle
Wright-Patterson AFB OH 45431
trevor.bihl.2@afresearchlab.com

AFRL/RY

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Smoothing convolutional neural networks is investigated. When intermittent and random false predictions happen, a
technique of average smoothing is applied to smooth out the incorrect predictions. While a simple problem environment
shows proof of concept, obstacles remain for applying such a technique to a more operationally complex problem.

artificial neural network (ANN), convolutional neural network (CNN), deep learning (DL), computer vision (CV),
machine learning (ML), artificial intelligence (AI)

U U U UU 89

Dr. Lance Champagne, AFIT/ENS

(937)255-3636x9999;Lance.Champagne@afit.edu

	Smoothing of Convolutional Neural Network Classifications
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background and Motivation
	Uncertainty in Machines

	Background and Literature Review
	Computer Vision
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Bayesian Neural Networks

	Neural Network Usage
	Multiple Object Detection
	Two-Stage Detectors
	One-Stage Detectors
	Object Tracking
	Similar Applications

	Methodology
	Smoothing for Single-Video Classification
	UCF101 Dataset
	Technique
	Model

	Order of Operations
	Measures of Performance
	YOLOv4
	Dataset Description
	Data Annotations
	Dataset Challenges

	Model Architecture
	Choosing YOLOv4

	Training YOLOv4
	Hyper-parameters

	Smoothing for Multi-Object Classification
	Obstacles

	Results and Analysis
	Toy Problem
	Classification Impact
	Frames Analysis

	YOLOv4

	Conclusions
	Future Work

	Toy Problem Additional Results
	Code: Toy Problem Training
	Code: Video Classification
	Code: Video to Frames
	Code: Heatmap
	Code: Frames Graph
	Code: Sequential Video Frame Predictions
	Code: YOLO
	Bibliography

