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Abstract

Countries continuously strive to gain and maintain a competitive advantage over

their adversaries. In doing so, countries invest in a variety of technical and other

developments to advance their military preparedness. Although one can observe an

adversary’s investments, unknown are often the manner in which the adversary views

the potential investments, either individually or in aggregate. Thus, it is of interest

to infer the adversary’s information that informs their decisions. The objective of

this research was to develop procedures that estimate selected, unknown parameters

over an adversary’s investment portfolio across a set of new or existing technologies.

To solve for the selected unknown parameters, it is assumed that the adversary is

maximizing the portfolio optimization problem and investing along the efficient fron-

tier. These models give a deeper understanding of the individual’s risk tolerance level,

which is the first step to forecasting an adversary’s investment strategy. Anticipat-

ing an adversary’s investment strategy can give a country or corporation a strategic

advantage when it comes to resources and power. To accurately infer the adversary’s

investment strategy, this research will conduct two unique techniques. The first tech-

nique was when an unknown risk attitude exists but all other parameters were known

(i.e. expected return, variance, covariance). An adaptive line search technique that

iteratively solved the portfolio optimization problem until the adversary’s risk pa-

rameter was found. The size of the stock options varied, but for every experiment

there was less than 1% average error between the identified risk parameter and the

actual risk parameter. The level of precision that the adaptive line search was able

to solve proves to be a noteworthy result. The second technique solved was when

there are unknown parameters for a new investment option but all other information
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is known. To accurately solve this problem two strategies were used. First a system

of equations was used, but the system of equations did not produce any substantial

results. Alternatively, two variants of a mesh-based grid search were implemented

over a three-dimensional space to visualize the feasible region yielding optimal solu-

tions. The mesh-based search strategy produced a majority of the results on a single

three-dimensional plane. Additionally, these strategies revealed that there are multi-

ple optimal solutions for the same portfolio allocation in a subregion, which evidence

shows may be bounded within a convex region.
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INVERSE OPTIMIZATION: INFERRING UNKNOWN INSTANCE

PARAMETERS FROM OBSERVED DECISIONS

I. Introduction

This chapter first discusses the significance of this research i.e., why this topic

is pertinent to countries searching for strategic advantages over their adversaries.

Following that, this chapter will discuss the overarching goals of this research, and

the structure for the remaining chapters.

1.1 Motivation and Background

The United States (United States.) is struggling to maintain its competitive edge

over its adversaries, and these adversaries are enhancing their capabilities militarily,

economically, and technologically. The main competitors of the United States are

the People’s Republic of China (PRC), Russia, Iran, and the Democratic People’s

Republic of Korea (DPRK) (Biden, 2021). The United States. Intelligence Commu-

nity further details the nature of this geopolitical competition, with emphasis on how

adversaries seek to undercut the United States and advance their interests (Haines,

2021). The Interim National Security Strategic Guidance informs readers of the ef-

forts made by antagonists to prevent the United States from supporting and defending

the interest of the United States and its Allies (Biden, 2021).

Defense Department officials have noted the United States’ adversaries are out-

spending them in selected global investments, causing acute security concerns (United

States Senate, 2015). In general, potential adversaries are allocating time, money, and

other resources to develop and advance capabilities that threaten the United States.
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and its ability to safeguard its national security interests. The PRC has been esca-

lating their cyber-espionage operations to extract intelligence from the United States

and its allies (Haines, 2021). Russia has been developing long-range strike weapons

including hypersonic missiles that, when launched by air or sea, pose a compelling

first-strike capability (Missile Defense Project, 2018). Iran continues to increase the

enrichment levels of their uranium in spite of global restrictions (Haines, 2021). More

ever, the DPRK continues to advance its cyber capabilities and is capable of causing

devastation to the United States’ infrastructure.

As these countries are becoming ever more aggressive, there is ever-increasing need

for the United States to anticipate their future actions by understanding their pri-

orities, their attitude towards risk, and the manner in which they perceive potential

investments. This anticipation is necessary because, although an adversaries deci-

sions can be observed, one does not always know what data or assumptions inform

those decisions. Thus, effective methods to accurately infer unknown parameters is

important to assess an adversaries perspective on a problem that may affect future

investment decisions.

1.2 Problem Statement

Given unknown parameters from observed financial distributions of an adversary’s

investment portfolio, this research seeks to identify models and accompanying solution

methods to accurately and efficiently estimate the unknown parameter values.

1.3 Organization of the Thesis

The organization for this thesis is as follows. Chapter II reviews the literature

related to modern and post-modern portfolio theory, as well as parametric infer-

ence techniques. Chapter III proposes solution methods to develop point or interval

2



estimates for selected, unknown parameters for a classical Markowitz portfolio opti-

mization problem, used as a proxy for the broader problem of adversary investment

over a set of existing and in-development capabilities. Chapter IV discusses instance

generation for testing, after which it presents and discusses the efficacy and efficiency

of solving for the unknown risk levels. Chapter V utilizes two separate techniques to

solve for an optimal portfolio with limited or unknown stock information. Chapter

VI concludes the thesis with a summary of results and proposed extensions for future

research.
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II. Literature Review

This chapter first discusses modern and post-modern theories of portfolio opti-

mization. For the former category (i.e., the focus of this research), it subsequently

introduces Sharpe Ratio maximization as the foundational approach to classic portfo-

lio investment strategy, presents the equivalent mathematical programming approach,

and discusses alternative nonlinear math programming formulations that seek to ap-

proximate such a strategy. Thereafter, this chapter discusses the methods used to

identify the parameters for such mathematical programs.

2.1 Portfolio Optimization Frameworks

Understanding modern portfolio theory (MPT) is critical to addressing the prob-

lem introduced in Chapter I. Markowitz is considered the father of modern portfolio

theory, and the fundamentals following are based on and developed from his work

(Markowitz, 1999). The goal of MPT is to invest along an efficient (E, V )-combination

after making probabilistic estimates of future performances. That is, investors should

try to maximize E, which is the expected return of the investments, while minimizing

V , which is the variance of risk (Markowitz, 1952). To limit the risk, the investor

needs to diversify their portfolio and decrease the effect of positive covariances be-

tween the different alternatives. In MPT, Markowitz assumes that there are no short

sells, which occur when one borrows a security and sells it, planning on buying it back

at a future date. A reader interested in a deeper understanding of the portfolio the-

ory with short selling should consult either the work of Pogue (1970) and/or Jacobs

and Levy (2013). Although MPT was created in the 1950’s, it is still relevant today.

Individuals still use Markowitz’s properties to ensure their portfolios are diversified

adequately. Some examples of these topics are examined by Pan (2021) and Green
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(2021).

Postmodern portfolio theory (PMPT) was developed by Sortino and Ven Der Meer

(1991) many years after MPT was discovered by Markowitz. The main difference is

that PMPT measures negative volatility as risk, whereas MPT measures all standard

deviation in the investments as risk (Swisher and Kasten, 2005). PMPT also uses

minimum acceptable return (MAR), which allows additional constraints of the in-

vestor to be considered in the model (Rom and Ferguson, 1994). PMPT also utilizes

downside risk which minimizes the worst case scenario for an investor. Calculating

downside risk helps individuals construct a more consistent portfolio rather than have

high variance between gains and losses (Sortino et al., 2001). Utilizing PMPT allows

a financial analyst to make more appropriate assumptions when it comes to the in-

vestors and how they respond to losing money. Downside risk is still relevant today;

an interested reader is recommended to read the works by Sortino and Van Der Meer

(1991) and Delle Monache et al. (2021). This paper focuses on MPT instead of PMPT

because many of the advantages that are gained from PMPT (i.e., investment options

and short sales) are not present for the motivating problem of a country investing

resources in the development and acquisition of new technologies (e.g., they may not

be traded on an open financial market). If the reader wishes to learn more about

PMPT, they can explore the works by Yildiz and Erzurumlu (2018), Sortino and Van

Der Meer (1991), Rollinger and Hoffman (2013), and Sortino et al. (2001).

2.2 Sharpe Ratio

In the foundational work of modern portfolio optimization, Sharpe (1966) pro-

posed maximizing the ratio of the expected increase of a portfolio’s return (beyond a

benchmark return) to its variance. Known as the Sharpe Ratio (SR), it is represented

in Equation (1), wherein E(x) is the expected return of the portfolio, Eb is the risk
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free rate of return (e.g., a security backed by the U.S. Treasury), and V (x) is the

variance of the portfolio’s return.

max
x

E(x)− Eb√
V (x)

(1)

Given Eb is a constant, a common proxy is to maximize Equation (2), which is appro-

priate when either there is no risk-free alternative or a lack of consumer confidence

perceives an absence of such an alternative.

max
x

E(x)√
V (x)

(2)

From a mathematical programming perspective, the latter problem can be rep-

resented as a nonlinear program (NLP), given the following sets, parameters, and

decision variables. Define N to be a set of possible investments and xi to be the

proportion of available funds in the portfolio allocated to investment i ∈ N . Each in-

vestment has an expected return ri over a planned duration of portfolio, and each pair

of investments i, j ∈ N has a covariance qij. Within this context, a decision-maker

solves the following problem P1, which is equivalent to solving Equation (2).

P1: max
x

∑
i∈N

rixi√∑
i∈N

∑
j∈N

xiqijxj

(3a)

s.t.
∑
i∈N

xi = 1, (3b)

xi ≥ 0, ∀ i ∈ N. (3c)

Within P1, the objective function (3a) computes the ratio indicated in Equation (2),

6



whereas Constraints (3b) and (3c) collectively require the allocation of available funds

to be efficient and feasible. Of note, the non-negativity of allocations indicated by

Constraint (3c) assumes the portfolio does not allow for short selling (Pogue, 1970).

Given the challenging nature of efficiently and effectively solving nonlinear pro-

grams, having fractional representations of functions can decrease the efficacy of the

program. It is desirable to transform Equations (3a)–(3c) into an simpler math pro-

gramming representation. Defining λ as a risk parameter that corresponds to the

relative priority on the two objectives of maximizing a portfolio’s expected return

and minimizing its variance, a common alternative approach is to solve the nonlinear

program P2.

P2: max
x

(1− λ)
∑
i∈N

rixi − λ
∑
i∈N

∑
j∈N

xiqijxj (4a)

s.t.
∑
i∈N

xi = 1, (4b)

xi ≥ 0, ∀ i ∈ N. (4c)

Within P2, the objective function (4a) combines the two objective functions into a sin-

gle objective function via the implementation of the Weighted Sum Method (Ehrgott,

2005) for a fixed value of λ ∈ (0, 1). For a decision-maker who is completely risk seek-

ing (or arguably risk agnostic), solving this NLP with λ = 0 will identify a solution

that strictly maximizes the expected return of the portfolio, whereas a completely risk-

adverse decision-maker will minimize the portfolio’s variance by solving the problem

with λ = 1.

Note that solving an instance of P2 for a fixed λ is not necessarily equivalent to

solving the corresponding instance of P1. However, for an optimal solution x∗ to

P1, there exists a λ-value for which x∗ is also optimal to P2. Thus, there are two
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practical ways to utilize P2. As a first method, the λ-value may be affixed as a risk

attitude parameter to identify an investment strategy by solving P2 once, or one may

iteratively solve P2 over the range of λ ∈ (0, 1) to identify the λ-value yielding a

maximal Sharpe Ratio. It is also possible to relax λ, treating it as a decision variable,

although such an approach is not common due to the following characteristic of P2

for a fixed λ-value.

An important characteristic of P2 is the potential convexity of the mathematical

program. Theoretically, the covariance matrix and the resulting problem will always

be symmetric and positive semi-definite, but in a practical instance it may be possible

not to have these conditions (Newey and West, 1987). Consider the covariance matrix

P having entries qij,∀i, j ∈ N . If P is positive definite (PD) for an instance of P2,

the objective function (4a) is convex. Given its linear constraints (4b) and (4c), such

an instance of P2 yields a convex program, and any local optimal solution is also

a global optimal solution (Bazaraa et al., 2013). Thus, an instance of P2 having a

PD matrix P allows the use of readily available commercial solvers for convex NLPs

that are guaranteed to find an optimal solution quickly, rather than resort to either

invoking a global optimization solver or developing a customized algorithm.

Alternative to solving P2, one can optimize one objective function while bounding

the other objective function, as follows:

max
x

∑
i∈N

rixi (5a)

s.t.
∑
i∈N

∑
j∈N

xiqijxj ≤ ε (5b)

∑
i∈N

xi = 1,

xi ≥ 0, ∀ i ∈ N.

8



For the objective function (5a), the individual is exclusively maximizing returns

using the ε-constraint Method (Ehrgott, 2005) to impose an upper bound on the

portfolio’s variance. Equation (5b) prevents the decision maker from choosing a port-

folio of investments having insufficiently high variance. Additionally, this formulation

is more intuitive and clearly outlines the worst-case scenario, given their chosen in-

vestment strategy. Such a formulation strategy would be conducted by risk neutral

individuals (Hodnett et al., 2012). The reciprocal of providing an upper bound for

variance is providing a lower bound for the expected return.

min
x

∑
i∈N

∑
j∈N

xiqijxj (6a)

s.t.
∑
i∈N

rixi ≥ ε (6b)

∑
i∈N

xi = 1,

xi ≥ 0, ∀ i ∈ N.

In the objective function (6a), variance is being minimized over the selected port-

folio. The subsequent constraint (6b) is a lower bound requiring a minimum expected

return for a given solution. Equation (6b) ensures the portfolio’s expected return is

above lr which allows the investor’s goals to be adequately reached. This formula-

tion would generally be the approach taken by risk averse individual (Hodnett et al.,

2012).

From an optimization perspective, solving Equation (6a) ,a quadratic program

with linear constraints, is appealing because many leading commercial solvers (e.g.,

CPLEX, Gurobi) can identify a global optimal solution even if the objective function

is not convex, whereas the previous formulation having a nonlinear constraint requires
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specially designed, global optimization solvers or customized solution procedures to

identify a global optimal solution.

2.3 Parameterization of a Portfolio Optimization Instance

Relevant to solving a portfolio optimization problem instance is having accurate

and useful data. Within this research, expected return was calculated using loga-

rithmic returns. The use of logarithmic returns enhances the ability to compare the

performances across different assets easier (Hudson, 2010). To calculate the returns,

we used the formulations in Equations (7) and (8). Within this research, the period

considered was 24 months; the period selected should be tailored to the application

of interest.

rit = log(Pit − Pi(t−1)), ∀ i ∈ N, t ∈ T \ {1}, (7)

µi =

 ∑
t∈T\{1}

ri


|T | − 1

, ∀ i ∈ N (8)

The formulation in Equation (7) takes the logarithm of the price at time t and

subtracts the previous month’s price. Doing this over |T |-month period will yield the

mean monthly return price as shown in Equation (8) that will be time additive1 and

unique2 (Hudson, 2010).

The calculation for covariance will also depend on the logarithmic approach for

the expected return and will remain consistent to adequately compare assets.

1Time additive means that one can add them across time to get the total return over T .
2Unique means that every stock will have its own differing value each period.
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qij =

∑
t∈T\{1}

(rit − ui)(rjt − uj)

(T − 1)
,∀ i, j ∈ N (9)

Equation (9) multiples the difference of each stock’s return for every day from

their average and divides by T − 1. When i = j, qij is the variance of a given

stock. This strategy is discussed in Cherewyk (2018) and this method will provide an

adequate procedure for determining the similarities and differences that exist between

the differing stock options.
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III. Modeling and Solution Methodology

This chapter will first revisit MPT to discussing how is applied in this research.

The parameters for test instances are presented, and then the formulations for calcu-

lating an unknown risk parameters λ are discussed. Lastly, we will talk through the

possibility of solving for ri and qij for additional stock options.

3.1 The Portfolio Optimization Problem

In MPT, the objective function seeks to maximize the expected return while min-

imizing the variance over the entire portfolio. To optimize the portfolio, the risk

attitude of the investor, expected returns, and the variance of each investment op-

portunity are required. Hereafter, an observed solution means an optimal solution to

the portfolio optimization problem for a subset of known parameters and a conjecture

about the selected, unknown parameters.

3.2 Parameterization of the Portfolio Optimization Problem

For testing the proposed methods developed in this research, the specific instance

data will be informed by the US stock market, and an adversary will be assumed

to select an optimal solution from a set of different stock options indicated by N .

The set of stocks will each have an expected return (E(x)), variance (V (x)), and

a covariance (qij) between differing stock options. T for this problem will be 24,

which is one data point every month for two years. To increase the distinction in

covariance between differing stocks, time increments were monthly rather than daily.

The investor will also have a risk attitude when selecting an optimal portfolio, and

the different attitudes fall on a spectrum anywhere from zero to one. A zero means

the investor is risk seeking, and a one means the investor is risk averse. If a risk
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averse investor had two portfolios that each yielded an expected return of $10,000,

but portfolio A had a volatility of 8% while portfolio B had a volatility of 15%, the

investor would choose portfolio A. However, a risk seeking investor would see those

portfolios as identical in terms of performance.

3.2.1 Expected Value

The expected values were calculated using Equation (7) and the adjusted closing

price of an individual stock once a month for two years. After obtaining the current

price at time t, the value would be subracted from its price at t − 1 to see the

difference. Doing this over a 24-month period yields the mean monthly return price

for this research.

3.2.2 Covariance of stocks

The covariance of a stock uses the expected return of an individual stock, and it

relates the expected return to the mean monthly return of the same stock. Covari-

ance is similar to the variance equation, but instead of squaring the equation , one

multiplies the two different stock’s data. The formulation can be found as Equation

(9).

3.3 Risk Parameter Estimation

The risk parameter in this research enables the investor to characterize their pref-

erence of relative priorities over the two objectives in P2. If the investor has a low

risk tolerance, they have the ability to increase their expected returns. However, as

discussed in Chapter II, Markowitz asserts how a diversification of investments can

lead to much better results for the overall portfolio. The risk parameter λ allows

the individual investing to decide how important maximizing gains is compared to
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minimizing the risk of the portfolio. Changing the risk level does not always yield a

different solution. In Equation(4a), the reader can see how λ influences the overall ob-

jective function; however, changing the risk parameter from (for example) 0.50 to 0.51

may not change the allocations of the investments. The expected values, volatility,

and the risk parameter collectively affect the optimal allocation of investments.

Knowing someone’s risk attitude can help predict how they will invest in the

future, which gives an investor a competitive edge over their adversary. If the expected

returns and the variance of the stocks are known, then the risk (λ) can be iteratively

solved for. Below is a depiction of how the risk factor could be solved for using the

Sharpe’s Ratio, given all the other parameters are known.

3.3.1 Adaptive Line Search Technique

Algorithm 1 is the pseudo code for adaptive line search to solve for the unknown

λ values. The algorithm calculates a Sharpes Ratio (SR) and seeks the λ-value that

yields the observed SR, once it calculates the SRobs in Line 3, the program will iterate

through the different stock options and find a SRinf for any given allocation xi. The

algorithm will compare the two Sharpe Ratios. If the SRinf is significantly smaller

than the SRobs, the algorithm will increase the λ-value by δλ and resolve the problem

at the new λ-value. Since the feasible region of λ is (0-1), λ must stay within the

region. If the next increment to λ would yield a value greater than or equal to 1, lines

8-10 artificially increase the SRinf to ensure that the program maintains a feasible

λ-value via Lines 11-14. Likewise, if the actual SRinf in Line 11-14 is at least ε

greater than SRobs, the algorithm will decrement λ to the previously tested value,

reduce the δλ by an order of magnitude, and continue solving the problem until the

|SRinf − SRobs| < ε.
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Algorithm 1 Adaptive Line Search on λ

1: Given and observed solution x∗ and known parameters r, q
2: Set λ = 0, δλ = 0.1, and user-defined precision parameters ε = 0.0001, N = 10000

3: Calculate SRobs =
(∑

i∈N rix
∗
i

)
/
√∑

i∈N
∑

j∈N x
∗
i qijx

∗
j

4: for k = 1 to M do
5: Solve P2 to identify x̄

6: Calculate SRinf =
(∑

i∈N rix̄i
)
/
√∑

i∈N
∑

j∈N x̄iqijx̄j

7: if |SRinf − SRobs| < ε, break
8: if λ ≥ 1− δλ then
9: SRinf = SRobs + 1

10: end if
11: if SRinf > SRobs then
12: λ = λ− δλ
13: δλ = δλ/10
14: end if
15: Increment λ = λ+ δλ
16: end for
17: Return the point estimate for λ.

Figure 1. Illustration of Adaptive Line Search

Figure 1 provides a visual representation of how the Adaptive Line Search will

continue to iterate through λ until an optimal solution given a tolerance of ε is found.

It is worth noting that an adversary’s risk attitude need not be static (Mallpress

et al., 2015). As circumstances occur that may alter one’s risk attitude, the inference

on λ attained via this procedure must be updated by observing new behavior and

reapplying the algorithm.

As an aside, the convexity is tested for each instance via a preprocessing step to
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verify that the covariance matrix is positive definite, to accurately identify an optimal

solution.

3.4 Parameter Estimation For a ‘New’ Investment Option

Using Algorithm 1, it is possible to solve for a single unknown λ-value. However,

what if a new investment option is introduced and its parametric values for the

portfolio optimization problem are unknown? Given an adversary’s observed optimal

portfolio investments, their risk attitude parameter λ, expected returns, and variances

for all but the new investment option, is it possible to solve for the expected return,

covariances, and variance of a new investment option? This research considers three

inference procedures: the first considers a system of equations to identify unique

and exact values for each of the unknown variables, and the second and third utilize

mesh-based search techniques.

3.4.1 System of Equations

This procedure assumes the optimal objective function value for the adversary

is known. Setting Equation (4a) equal to that value, the x-variables are known but,

even for an instance having only two investment options – one with known parameters

and one with unknown parameters – the result is an underdetermined system. That

is, this approach will have three unknown values (i.e., r2, q12 = q21, q22) for a single

equation. As such, even with bounds on the covariance values, we expect this solution

method to fail, and preliminary experiments confirmed this intuition. As such, it is

not discussed further.
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3.4.2 Mesh-based Search Techniques

There are two differing search techniques that will be tested in Chapter V. Both

are limited within this study to problems having |N | = 2.

Algorithm 2 searches over the three unknown parameters (i.e., r2, q12 = q21, q22)

and solves Problem P2, searching for nearly identical xi-values to the adversary’s

observed portfolio investments. As an alternative approach, Algorithm 3 fixes the

xi-variables and searches over the unknown covariance parameter space, iteratively

solving for the r2-parameter. Since the only unknown parameter is r2, this problem

evolves from a NLP to a LP which locates the local optimal solutions instead of global

optimal solutions.

3.4.2.1 Solving for xi-values Searching Over q22, q12, and r2

As presented in pseudocode, Algorithm 2 does require some user-determined pa-

rameters. The first parameter utilized is δ, which is the search granularity for iterating

through the three unknown variables. The search granularity was altered to compare

the results of different levels. The next parameter is ε which is the tolerance allowed

between the observed solution’s allocations and the inferred allocations. Lastly, rUB2

limits the computation time of this algorithm. It is reasonable to assume an upper

bound on the expected return of the new stock because if the value is too much higher

then the other stock option then it would never be chosen and therefore would never

be selected by the portfolio optimization algorithm.

Algorithm 2 starts each variable (r2, q12, and q22) at its lower bound and solves

Equation (4a). If at least ones of stock’s portfolio allocations are within the user

defined tolerance level (ε), then the three variables are recorded. If one or both of the

stock’s allocations are higher than ε then the program continues to iterate through

the three unknown parameters. The parameter r2 has a range from (0,1) because if
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Algorithm 2 Plane search for r2, q12, q21, and q22, given N = 2

1: Given an observed solution x∗ and known parameters λ, r1, q11.
2: For a search granularity δ, an assumed upper bound rUB2 on r2, and a user-defined

accuracy tolerance ε:
3: for q22 = 0 to 1 by δ do
4: for q12 = −1 to 1 by δ do
5: for r2 = 0 to rUB2 by δ do
6: Solve Problem P2 with q21 = q12 to identify xinf

7: if |x∗i − x
inf
i | ≤ εi then

8: Store the values for q22, q12, and r2
9: end if

10: end for
11: end for
12: end for

the expected return was higher than one then it would allocate all of the resources to

that investment. On the contrary, if r2 is lower then zero the alternative investment

would get allocated all of the portfolio. Next, q22 has a range from (0,1) because the

variance of a stock must fall somewhere on that region. Lastly, q12 was given a range

from (-1,1) because all of the covariances tested in this research fell within this range.

Depending on those covariance values the problem being solved may or may not be

globally optimal. As with Algorithm 1, the convexity of each instance is tested to

verify that the covariance matrix is positive definite.

3.4.2.2 Fix xi-values, Iterate Over q-values, and Search for r2

As presented in pseudocode, Algorithm 3 does require some user-determined pa-

rameters. The first parameter utilized is δ which is a the search granularity for

iterating through the three unknown variables. The search granularity was altered to

compare the results of different levels. The next parameter is ε which is the tolerance

allowed between the observed solution’s allocations and the inferred allocations. Al-

gorithm 3 communicates how the code iterates through the differing q-values until it

finds an optimal solution. This is done by solving Equation (4a) with the xi-values
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fixed and then maximizes the r2-value.

Algorithm 3 Plane search for r2 with fixed xi values

1: Given an observed solution x∗ and known parameters λ, r1, q11.
2: For a search granularity δ:
3: for q22 = 0 to 1 by δ do
4: for q12 = −1 to 1 by δ do
5: Solve Problem P2 with q21 = q12, fixed x-values, and a relaxed r2 ≥ 0
6: to identify r∗2
7: if a local maximum is identified then
8: Store the values for q22, q12, and r2
9: end if

10: end for
11: end for
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IV. Testing, Results, and Analysis for Unknown Risk
Parameter Identification

This chapter discusses the specific MPT problem instances examined in this re-

search, and the values associated with their parameters. Then it discusses how sub-

setting can affect the problem, and whether subsetting can be used to increase the

computational burden of solving problems without degrading the algorithm’s efficacy.

Lastly, this chapter discusses the significant outcomes of their results and how they

could be further used with larger data sets.

4.1 Problem Setup

This thesis analyzes randomly selected stocks that are listed on the National

Association of Securities Dealers Automated Quotations (NASDAQ), a computerized

system for trading in securities. The testing is designed to examine how accurately

an investor’s risk can be analyzed, given a set of investment options with known

parameters. There will be three different sets of stocks to test the validity of our

formulation, and to measure the accuracy as the set sizes increase. Each problem

will be solved over 10 iterations with differing unknown λ-values and investment

allocations. The program will solve Problem P2 for all 10 instances to make inferences

for the given λ-value and its appropriate allocation of investments. Table 1 provides

the original models results for portfolio allocation.
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Table 1. Allocation of stocks over 10 instances

Instance 1 2 3 4 5 6 7 8 9 10

KTOS (%) 0 0 0 0 0 0 0 0 0 0

VOO (%) 27.32 0 0 0 10.79 15.43 0 0 0 0.78

CBRL (%) 0 0 0 0 0 0 0 0 0 0

WMT (%) 0 0 0 0 0 0 0 0 0 0

ATVI (%) 58.28 37.96 64.83 36.13 62.99 61.67 51.54 26.27 57.49 65.85

BABA (%) 0 0 0 0 0 0 0 0 0 0

BA (%) 0 0 0 0 0 0 0 0 0 0

GME (%) 14.39 62.04 35.17 63.87 26.22 22.90 48.46 73.72 42.51 33.37

LMT (%) 0 0 0 0 0 0 0 0 0 0

λ-values 0.9942 0.9752 0.9859 0.9745 0.9895 0.9908 0.9806 0.9706 0.9829 0.9866

The baseline results reveal a slight dominance with Gamestop (GME) and Ac-

tivision (ATVI). These stocks are consistently used in every model which indicates

they are more ideal stocks. A stock is more ideal in a portfolio if they have a higher

expected return and a lower variance. Now we will show the baseline results for sets

of 20 and 30 stock options. The number of stock options are increased to analyze

trends within the program as well as test the accuracy of the model as the size of

data increases.
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Table 2. Allocation for 20 stock set over 10 instances (only reporting stocks having
allocation values ≥ 0.10%)

Instance 1 2 3 4 5 6 7 8 9 10

GILD (%) 3.87 0.00 0.00 0.00 1.66 4.08 0.00 0.00 0.00 0.01

AMAT (%) 12.78 31.71 47.07 31.23 35.58 30.95 39.67 24.78 43.55 46.29

ZM (%) 23.70 68.29 51.74 68.76 40.69 36.45 60.33 75.22 56.45 49.93

ABNB (%) 20.00 0.00 1.19 0.00 9.08 10.77 0.00 0.00 0.00 3.31

COST (%) 30.30 0.00 0.00 0.00 12.99 17.60 0.00 0.00 0.00 0.25

TMUS (%) 9.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFLX (%) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.14

λ-values 0.9837 0.9749 0.9861 0.9745 0.9893 0.9907 0.9803 0.9706 0.9829 0.9865

Table 3. Allocation for 30 stock set over 10 instances (only reporting stocks having
allocation values ≥ 0.10%)

Instance 1 2 3 4 5 6 7 8 9 10

SHOP (%) 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T (%) 8.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NVDA (%) 11.15 0.00 0.00 0.00 0.00 2.09 0.00 0.00 0.00 0.00

TSLA (%) 28.53 100.00 73.61 100.00 56.32 49.40 94.40 100.00 87.78 70.67

TWTR (%) 1.17 0.00 0.00 0.00 0.25 2.91 0.00 0.00 0.00 0.00

AMN (%) 30.84 0.00 9.73 0.00 23.08 26.19 0.00 0.00 0.00 12.08

ETSY (%) 18.29 0.00 16.66 0.00 20.35 19.41 5.60 0.00 12.22 17.25

λ-values 0.9670 0.9750 0.9859 0.9742 0.9852 0.9835 0.9800 0.9700 0.9829 0.9865

Tables 2 and 3 respectfully provide the results and allocations of portfolios for the

sets of 20 and 30 stocks. These results suggest there are superior performing stock

options that consistently are selected within an optimal portfolio, and these stocks

have a good ratio of return and risk.
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4.2 Analysis of Adaptive Line Search λ-values

To test the accuracy of the model, the adaptive line search will identify an optimal

allocation of stocks and their respective λ-value. To test the accuracy, the inferred

stock allocations and respective λ-values will attempt to infer the observed allocations

and λ-values from Tables 1, 2, and 3. First, the λ-values between the actual and

identified models will be compared.

Table 4. Comparing λ’s – observed vs inferred

Instance 10 Stocks 20 Stocks 30 Stocks

λobserved λinferred λobserved λinferred λobserved λinferred

1 0.994180 0.994180 0.994180 0.98370 0.994180 0.966245

2 0.975185 0.975181 0.975185 0.97492 0.975185 0.975100

3 0.985886 0.985884 0.985886 0.98590 0.985886 0.986302

4 0.974466 0.974470 0.974466 0.97494 0.974466 0.974378

5 0.989448 0.989447 0.989448 0.98940 0.989448 0.985000

6 0.990772 0.990771 0.990772 0.99080 0.990772 0.982310

7 0.980567 0.980570 0.980567 0.98030 0.980567 0.980600

8 0.970605 0.970600 0.970605 0.97060 0.970605 0.970730

9 0.982939 0.982940 0.982939 0.98276 0.982939 0.983000

10 0.986607 0.986600 0.986607 0.98660 0.986607 1.000000

Average error - 0.00000 - 0.00118 - 0.00551

Absolute error -

Table 4 displays the difference in λ values from the observed optimal risk values

compared to the inferred optimal solutions for each of the stock sizes. The 10 stock

options solved nearly perfect for every iteration, while the 20 and 30 stock available

sets under performed in terms of accuracy they still had noteworthy results. The 20
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stock set had adequate results and would most likely meet be usable given the λ value

was necessary, however, the results for the set of 30 stocks did have accurate results

(less than 1% error). Due to the increasing complexity of the problem, the reduction

in accuracy does make sense. To mitigate any computational or accuracy issues, a

dynamic subset will be added later in this thesis to improve the results. To get a

more complete scope of the correctness that the identified results had, the number of

stocks in the actual model was compared to the identified stocks.

Table 5. Comparing number of stocks in observed solution versus inferred via Adapative
Line Search on λ

Instance 10 Stocks 20 Stocks 30 Stocks

obs inf obs inf obs inf

1 3 3 6 2 5 5

2 2 2 9 4 4 5

3 2 2 4 9 5 6

4 2 2 4 4 5 5

5 3 3 6 5 5 5

6 3 3 8 7 7 5

7 2 2 3 4 5 7

8 2 2 3 3 5 4

9 2 2 3 9 7 6

10 3 3 10 5 5 5

Avg Correct (%) 100 72.3 72.3

Table 5 reveals that, as the number of stock options increase, the relative number

of stocks identified in an optimal portfolio for an inferred λ-value decreases. Having

more stocks available to chose from inevitably causes the absolute error between

observed and inferred λ-values to increase. Additionally, increasing the number of
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stock options exponentially increases the computational time to solve the problem.

The total time to solve the 10, 20, and 30 stock sets were 47 seconds, 3426 seconds,

and 8281 seconds respectfully. This time issue needs to be resolved to improve the

scalability of the problem. To combat the increase in time, a dynamic subset will be

used to solve the problem.

4.3 Dynamic Subset to Exclude some Stock Options

The two key aspects of solving these problems are accuracy and time. To improve

accuracy and decrease the computational time to solve the problem, a dynamic sub-

setting technique will be implemented. The main objective is to reduce the overall

time to solve the models while maintaining an acceptable risk value for each itera-

tion. If the subsetting is done correctly, it will reduce the alternatives available to

the program which should reduce the total computational time. Tests were run to

see if creating a subset of stocks while removing only stocks with an xi = 0 has any

effect of the model, but removing those stocks does not effect the optimal results

because they were dominated by other investments. This result is not only intuitive,

but holds in general. Eliminating the consideration of stocks for which xi = 0 is

observed when applying the Adaptive Line Search on λ is equivalent reducing the

feasible region of the observed problem without eliminating the optimal solution; the

optimal objective function value will not change. Reducing the feasible region of this

problem drastically reduced the computation time of this problem.
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Figure 2. Computational effort (seconds) required by the Adaptive Line Search on
λ for 10-stock Instances 1-10, without and with elimination of 0-valued stocks in the
observed solutions

Figure 2 illuminates a slight decrease in the overall computational time. The total

time went from 4.76 seconds to 4.31 seconds. For a majority of the instances there is

a significant reduction, however for two instances, the time after applying the subset

increased slightly. Overall, the time was reduced by not momentously.
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Figure 3. Computational effort (seconds) required by the Adaptive Line Search on
λ for 20-stock Instances 1-10, without and with elimination of 0-valued stocks in the
observed solutions

Figure 3 displays a much more varied distribution when it comes to the success

in the reduction of time for each instance. Using the dynamic subset for the 20 stock

set did reduce the computational time from 3426 seconds to 2826 seconds which is a

reduction by roughly 16%, on average. This is a significant reduction, even though it

was not as consistent for each individual performance.
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Figure 4. Computational effort (seconds) required by the Adaptive Line Search on
λ for 30-stock Instances 1-10, without and with elimination of 0-valued stocks in the
observed solutions

Figure 4 shows a reduction from 8221 seconds to 1401 seconds which is approxi-

mately an 83% reduction in average computational time for the 30 stock instances.

The subset narrows the best potential investment options, and it limits the number

of stocks that the program must iterate through every time. The time reduction was

not as significant for the 10 and 20 stock options, but the reduction in time was still

noteworthy and provided similar results. Table 6 visualizes the overall computational

time before an after including the dynamic subsetting. Along with those values, the

overall percent change was included to see the increase in efficiency of the dynamic

subset. Figures 2-4 above show that using a dynamic subset can drastically improve

the computational time, but how does it effect the results for λ? Table 7 displays

the total difference in λ over 10 separate iterations before and after the subset was

applied.

28



Table 6. Comparing the computational time before and after dynamic subsetting au-
tomatically removing xi = 0

10 Stocks 20 Stocks 30 Stocks

N Nxi>0 N Nxi>0 N Nxi>0

Average Time (seconds) 4.75 4.31 342.61 287.68 828.13 140.11

Change in Time - -9.26% - -16.03% - -83.08%

Table 7. Comparing observed solution versus identified for λ via dynamic subsetting
automatically removing xi = 0

10 Stocks 20 Stocks 30 Stocks

Target λ N Nxi>0 N Nxi>0 N Nxi>0

0.994180 0.99418 0.99418 0.98310 0.98400 0.96625 0.96701

0.975185 0.97518 0.97518 0.97590 0.97557 0.97510 0.97504

0.985886 0.98588 0.98588 0.98581 0.98609 0.98630 0.98590

0.974466 0.97447 0.97447 0.97480 0.97446 0.97438 0.97421

0.989448 0.98945 0.98945 0.98940 0.98532 0.98500 0.98518

0.990772 0.99077 0.99077 0.99100 0.98418 0.98231 0.98354

0.980567 0.98057 0.98056 0.98030 0.98000 0.98060 0.98000

0.970605 0.97060 0.97060 0.97060 0.97060 0.97073 0.97000

0.982939 0.98294 0.98294 0.98290 0.98200 0.98300 0.98290

0.986607 0.98661 0.98661 0.98660 0.98650 1.00000 0.98650

Average error 0.00000 0.00000 0.00128 0.00231 0.00551 0.00404

Figure 7 illustrates the importance of this dynamic subset on larger sets of stock

options. The average computation time was substantially reduced and in some in-

stances the λ-value was more accurately inferred. Limiting the options of the program

may have substantial results, but this theory should be tested further to test the va-

lidity of these results.

29



4.4 Removing Significant Stock Options

To reduce time even further, it is imperative to test if there are any patterns that

exist when reducing the set of available stocks. After obtaining the baseline results, a

subset of the original model was made by removing one of the active investment op-

tions (xi ≥ 0). Activision (ATVI) was removed to identify if there is proportionality

given to the remaining investment options. Knowing if there is an exact distribution

given to each remaining stock would be useful because it would enable the investor

to accurately allocate a different subset by distributing the removed stocks in a pre-

dictable pattern.

Table 8. Portfolio in the absence of ATVI - optimal stock allocations and relative
change (%) over original, optimal allocations.

Instance 1 2 3 4 5 6 7 8 9 10

VOO (%)
73.85 36.65 64.11 34.78 73.13 76.47 50.54 24.70 56.61 65.95

170% * * * 578% 396% * * * 8370%

WMT (%)
11.42 0 0 0 0 0 0 0 0 0

* - - - - - - - - -

GME (%)
14.72 63.35 35.88 65.22 26.87 23.53 49.46 75.30 43.39 34.05

- - 2% 2% 3% 2% 2% 2% 2% 2%

* A relative percent change (%) cannot be computed; cannot divide by 0

However, Table 8 indisputably reveals there is no consistency in the percent change

increase from the reduction of stock with an xi ≥ 0. Adding Walmart (WMT) is the

leading indicator that there is uncertainty in the new distribution of investments after

removing ATVI from the original set. Therefore, the model will need to be completely

solved again if certain investment options are no longer available to choose from.
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4.5 Results and Analysis

The expected results are that the unknown parameters can either be predicted

correctly or very close to what adversaries have chosen. Originally the problem was

solved while keeping every stock option available for all 10 iterations. This led to

noteworthy results that showed the λ-value can be accurately identified. To expedite

the computational time and strive for better results, the dynamic subsetting strategy

that removed unused stocks was tested. After implementing the dynamic program-

ming, the average error between the observed and inferred solution was less than

0.404%. Although it does not always infer the exact risk level, inferring someone’s

risk attitude within 0.404% is a notable result. Additionally, the computational time

for solving the 30 stock set problem was reduced by 83%. For the 30 stock instance,

the computational time was decreased from 138 minutes to 23 minutes. The reduc-

tion in time may be an important for time sensitive decision making that requires

the adversary’s risk attitude. These results are promising when it comes to utilizing

this process for inferring our adversaries risk attitude while observing their previous

spending habits. This is the first step to the United States being able to infer the

spending habits of its enemies. The United States will be able to allocated enough

money to surpass their adversaries while not overspending in any particular area

which creates a more efficient portfolio. Having this advantage will allow the United

States to deter or defeat potential adversaries in a resource-efficient manner.
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V. Testing, Results, and Analysis for a New Stock with
Unknown Performance Data

This chapter will start by describing the toy problem and all of the accompanying

variables. Following that, we will discuss significant results and show accompanying

visuals for our system of equations and mesh-based search techniques.

5.1 Toy Problem Setup

In this toy problem example, there will be two stocks (N = 2) having a unique,

optimal allotment of xi-values equal to x1
∗ = 0.452, and x2

∗ = 0.548. The goal is

to solve for r2, q12, q21, and q22 given r1 = 0.377, q11 = 0.0097, and λ = 0.978. To

acquire the observed xi-values, Problem P2 was solved using the values r2 = 0.469,

q12 = q21 = 0.0058, and q22 = 0.0109.

5.2 Mesh-based Search Techniques

The first technique solves for xi-values within an allowed tolerance level (ε) while

adjusting q22, q12, and r2. The second technique holds the xi-values to the optimal

solution and iterates over q22 and q12 to find local and optimal solutions.

5.2.1 Solving for xi-values searching over q22, q12, and r2

For the initial setup we iterated over all three of the parameters with a δ-value

of 0.1. We are setting rUB2 = 1 to bound the overall computational time, and the

upper bound is consistent with the maximum returns observed in the data sampled

to generate problems for this research. Another method to limit the computational

time of each problem, the maximum number of solutions allowed is 100. After solving

P2 with the iterated parameters, the xi-values will be compared to the observed, and
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if they within the specified ε of 0.01, they will be stored. Table 9 shows the results

for the 21 solutions that came from the model. The visual depiction of this technique

is shown in Figure 5.

Table 9. Solving for xi-values with unknown parameters over a δ = 0.1 and ε = 0.01

Solution r2 q12 q22 x1 x2

1 0.0 -0.6 1.0 0.45424 0.54575

2 0.1 -0.6 1.0 0.45322 0.54678

3 0.2 -0.6 1.0 0.45219 0.54780

4 0.3 -0.6 1.0 0.45117 0.54882

5 0.4 -0.6 1.0 0.45015 0.54984

6 0.5 -0.6 1.0 0.44913 0.55086

7 0.6 -0.6 1.0 0.44810 0.55189

8 0.7 -0.6 1.0 0.44708 0.55291

9 0.8 -0.6 1.0 0.44606 0.55393

10 0.9 -0.6 1.0 0.44504 0.55495

11 1.0 -0.6 1.0 0.44402 0.55597

12 0.0 -0.5 0.8 0.44407 0.55592

13 0.1 -0.5 0.8 0.44282 0.55717

14 1.0 -0.5 0.9 0.46149 0.53850

15 0.4 -0.4 0.7 0.46022 0.53977

16 0.5 -0.4 0.7 0.45872 0.54127

17 0.6 -0.4 0.7 0.45722 0.54277

18 0.7 -0.4 0.7 0.45572 0.54427

19 0.8 -0.4 0.7 0.45422 0.54577

20 0.9 -0.4 0.7 0.45272 0.54727

21 1 -0.4 0.7 0.45122 0.54877
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Figure 5. Solutions for Unknown x with a δ = 0.1 and ε = 0.01

As is visible in Table 8 and Figure 5, there were multiple solutions that resulted in

nearly the same xi-values as the original solution (i.e., they were within the tolerance

ε). This shows that multiple near-optimal solutions exist, and if we want to accurately

return the exact xi-values, the δ-value needs to be reduced and a finer granularity

of iterates needs to be examined. Implied from Figure 5 is that the solutions are

confined to a subregion of the possible parameter values and, in fact, may be a

convex set within that region. Additionally, Figure 5 indicates the solutions for this

problem may be coplanar, and the granularity will need to be reduced to accurately

asses the validity of this conjecture.
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5.2.2 Fix xi-values, iterate over q-values, and search for r2

For the initial setup we iterated over q12 and q22 with a δ = 0.1. We are setting

rUB2 = 1 to bound the overall computational time, and the upper bound is consistent

with the maximum returns observed in the data sampled to generate problems for

this research. Another method to limit the computational time of each problem, the

maximum number of solutions allowed is 1000. Once a 1000 solutions are found, the

model automatically stops solving for additional solutions. After solving P2 with the

iterated parameters, the optimal solutions will be stored. Table 10 and Figure 6 show

the results for the four solutions that came from the model.

Table 10. Solving for r2-values with unknown parameters with δ = 0.1

Solution r2 q12 q22

1 0.249379 -0.6 1

2 0.968874 -0.4 0.7

3 0.109885 -0.3 0.5

4 0.829379 -0.1 0.2
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Figure 6. Solutions for Unknown r2 with δ = 0.1

After running the first grid search, there were four optimal solutions for this

problem. This shows that having two unknown parameters can inhibit the model

from having exactly one optimal solution. Additionally, Figure 6’s results are much

less consequential because they encapsulate a larger region and have fewer optimal

solutions. This could reduce the importance of finding optimal solutions with this

approach. To test the theory that all the optimal solutions are coplanar, Figure 7

combines the optimal solutions from Figures 5 and 6. Figure 6’s optimal solutions

are indicated by the red points on the representation.

Within Figure 7, it is evident that there are no overlapping points but there are

points that fall into the same plane.
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Figure 7. Combined solutions for unknown r2 and unknown xi with δ = 0.1

The two models do not yield the exact same results, but when the δ-values are

reduced to 0.01, the two programs have some matching solutions. Even when the

search granularity for each test is lowered to δ = 0.01, the original optimal solution is

not found with the exact q-values. If the maximum number of solutions were increased

from 100 to ∞, then the exact solution would most likely be identified.

5.2.3 Sensitivity Analysis on δ

Additionally, we tested both of the strategies above with a granularity (δ) of 0.05

and 0.01. To limit the computational time, we limited the maximum solutions allowed

to 1000. Below are the graphs of those charts:
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Figure 8. 82 solutions identified for unknown xi with a δ = 0.05 and ε = 0.01

Figure 8 visualizes the solutions for solving for unknown xi-values while searching

over r2, q12, and q22. The coplanar pattern that forms a rectangle shown in Figure

5 still exists when the granularity was reduced, but additional solutions were found

when the granularity was decreased from δ = 0.10 to δ = 0.05.
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Figure 9. 1000 solutions for unknown xi with a δ = 0.01

Figure 9 illustrates differing optimal solutions from Figure 5, and if the total

number of optimal solutions was increased from 1000 to a much larger number, we

assume the original observed value would be included in the figure. Figure 9 does

not provide great insight because it visualizes to many nearly identical solutions that

would take the entire memory of the computer before providing substantial results.

This information is not the most helpful at showing relevant trends for future studies.

However, it can be expected that a majority of the results would exist in the same

plane that was shown in the previous two figures.

After solving for the unknown r2-values with fixed xi-values, we used the inferred

r2, q12, and q22-values and resolved Problem P2 to identify if it yielded the same

xi-values. Table 10 shows the observed and inferred xi-values resulted in differing
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allocations of resources, which means this process can not adequately infer all the

unknown parameters.

Table 11. Solving for the unknown r2-values with fixed xi-values, and then using inferred
r2, q12, and q22-values and resolved Problem P2.

Allocation of stock 1 Allocation of stock 2

Observed solution 0.45169 0.54831

Inferred solution 1 0.72473 0.27527

Inferred solution 2 0.72421 0.27579

Inferred solution 3 0.72362 0.27638

Inferred solution 4 0.71982 0.28018

Since the second method resulted in differing xi-values this invalidates this solution

method. Therefore the first method is the only reliable method for accurately solving

the three unknown parameters. Since the first method took nearly 24 hours and

outputs 1000 solutions, the first method is reliable but not necessarily practical. To

be practical, the first model would need to solve iterations at a much faster rate and

reduce the number of slightly vary solutions that are stored as optimal solutions. If

someone has the technology or computational capacity for those underlying issues

then the first method may be a viable option.
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VI. Conclusions and Recommendations

Chapter VI starts by discussing the significant results from the previous two chap-

ters. Following the results, we discuss the recommendations that can be gained from

using the algorithm in this paper. Lastly, we consider future work that could extend

this research, and how this is foundational for future extensions.

6.1 Conclusions

Senior leaders have consistently emphasized the rapidly increasing technological

and militaristic spending from the United States’ adversaries. To reduce the gap

in spending and development, we attempted to infer their risk tolerance λ of an

investment portfolio given their past portfolios are known. Knowing an adversary’s

risk tolerance is an important factor to anticipating their future investment strategy.

Calculating an adversaries’ risk is the first step to identify their overall investment

strategy. The investor solves to maximize the Sharpe Ratio which maximizes the ratio

between expected return and volatility based off the investor’s risk level. After the

investor maximizes the ratio, an optimal portfolio will be generated. After having

the optimal portfolio, an Adaptive Line Search technique was solved to infer the

investor’s risk parameter. We found that the error from the exact risk value increases

as the number of stocks increase, but computation time is dependent on the stocks

that are being analyzed and do not directly relate to the number. For the 10 stock

instance the average error over 10 iterations was 0.0%, for 20 stocks it was 0.1%,

and for 30 stocks it was 0.5%. The largest problem that was identified for that

method was the computational time to solve for those results. To reduce the overall

computational time of the problem, we performed a dynamic subsetting method that

removed any stock option that was removed if it was not chosen in the portfolio.
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After implementing the subsetting, the average error over 10 iterations was 0.0%, for

20 stocks it was 0.2%, and for 30 stocks it was 0.6%. More importantly than the

slight decrease in error for the 30 stock iteration, the dynamic subsetting drastically

reduced the computational time from 123 minutes to 23 minutes.

After inferring the risk parameter, we worked through a toy problem solving for

the unknown expected return for a stock, co-variance between two stocks, and the

variance of one stock. This was to identify if it is possible to determine the unknown

parameters of any new investment introduced as an available stock. We attempted

to use a system of linear equations to identify these unknown parameters, which re-

sulted in an under determined system and provided insignificant results. Following

that, we used two separate mesh-based search technique which iterated through the

differing unknown parameters and found multiple optimal solutions. The first tech-

nique provides noteworthy results because it resulted in multiple optimal solutions

that all existed on a single plane. The main flaw of the first technique was the time

it takes to find the optimal solutions. To get accurate results the search granularity

needs to be small, which results in a plethora of computations that can take far to

long and take most of the computers memory. To improve the practically of this

method, the computational time needs to be reduced and a method for storing every

near-optimal result would need to be fixed. The second technique of the mesh based

search technique provided insufficient results. After solving for the inferred optimal

solutions, the original observed solution and the inferred solutions had differing port-

folio allocations. At this time, the second method is not a feasible alternative for

solving for all of the unknown parameters.
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6.2 Recommendations

A first recommendation to extend this research is to test an individual’s risk level

based on their past investments. After we solve for their risk level, we could give them

an investor profile questionnaire that many major financial institutions use to identify

risk and compare the results. If the results are similar, the broker could identify the

investor’s risk level without having to figure out their risk tolerance through a series

of questions. This research was conducted as a foundation to identify adversarial

country’s risk attitude, so we would recommend procuring their allocation of resources

and finding a way to determine the risk of those assets. Being able to accurately asses

the risk level of different assets is the first step to identify their overall risk level. It

is also imperative to track the interested parties allocation of resources to assess how

often their economic strategies pivot.

To increase the effectiveness while having an unknown r2 and q-values, we recom-

mend considering assumptions that can bound the space of these unknown parame-

ters. To make either of the mesh-based search techniques practical, some restrictive

constraints need to be included such as limiting the covariance between stocks to

include only positive variables. If there is any known information about the new

investment, then some reasonable assumptions can be made that should improve the

success of these models. Another recommendation would be to reduce the number

of unknown parameters to accurately solve for the xi-values, and this could lead to

some discoveries in finding optimal solutions while having unknown parameters.

6.3 Future Work

There is an ample amount of work that could build on this research. The first one

discussed will be utilizing supervised learning techniques and the second is scaling

the size of these problems.
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One of the most significant pieces of future work would be to use supervised

learning techniques to accurately predict an adversaries’ inferred risk level. If valid

portfolio allocations and risk tolerance levels were provided, a training and testing

set could be built to predict the risk tolerance of a portfolio. These results could be

compared to the Adaptive Line Search approach as a validation model if the results

are similar. Using supervised learning techniques may be a useful tool to solve for

risk tolerance as the number of stocks available increase, and may provide a more

adaptive model as time progresses and more data points are included.

This research focused on one adversary’s portfolio to simply test if inferring some-

one’s risk tolerance was possible. Since we know that it is possible to solve for the risk

tolerance level, the size of the problems should be increased to incorporate large scale

business decisions. This will be critical in determining the feasibility of this process

for a business or agency. increasing the size and scope will allow a group to predict

how government agencies or large scale businesses will utilize their assets. This will

give a strategic advantage for the organizations that can predict their adversaries’

investment strategies.
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