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Abstract

Customers at Military Personnel Flights (MPFs) have been experiencing long wait

times. These customers are typically employees of the United States Air Force and

every moment spent waiting for service is a moment they are away from their actual

jobs. By reducing the mean wait time of MPF customers, manhours can be saved

and customer complaints may be alleviated. This research uses data collected from

an MPF to build a discrete-event simulation model of an MPF. A full factorial exper-

imental design was conducted in the model using five factors. The factors included

the total number of employees, the total number of terminals designated for walk-

in customers, the total number of terminals designated for appointment customers,

the minimum number of employees working during lunch, and different appointment

policies. The outputs of the experiment were used to generate regression models that

estimate the mean wait time for walk-in and appointment customers. The regression

formulas were also analyzed to determine relationships between the factors and the

mean wait times. Additionally, several experimental scenarios were tested for reduc-

tions in mean wait time. The analysis showed that the number of employees working

has the largest impact on mean wait times when compared against other factors.

Further, it is recommended to alter baseline model with an increase of number of em-

ployees working from five to six, with a simultaneous increase in designated walk-in

terminals from four to five, to achieve a significant reductions in mean walk-in wait

times and mean appointment wait times.
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MILITARY PERSONNEL FLIGHT CUSTOMER WAIT TIME REDUCTION

MODEL USING SIMULATION

I. Introduction

1.1 Background & Motivation

Long wait times for customers can be common at United States Air Force (USAF)

Military Personnel Flights (MPF), which are units that provide services related to

individual’s identification and personnel records. Excessive waiting results in unhappy

customers and hinders the day-to-day mission of the USAF by keeping personnel away

from their jobs for longer than needed. These long wait times are symptoms of several

factors that, when happening together, cause delays. These factors include system

outages, service priorities, and high volumes of traffic.

Naturally, we desire for a system to have shorter queue times, more customer

throughput, adequate server utilization rates, and maximum profit. While the system

analyzed in this thesis, an MPF, does not make profit, the commander of an MPF is

still concerned with accomplishing the mission using an optimal allocation of available

resources. While talking more generally about the Air Force in his inaugural address

as the 22nd Air Force Chief of Staff, General Brown said, “We need to remove any

of the internal impediments that will stop us from moving forward” (Brown, 2020).

Having Airmen, Department of the Air Force civilians, and contractors waiting in a

queue to be able to perform their job is an internal impediment that is hindering the

Air Force from accomplishing its mission.
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MPFs are responsible for several different tasks in support of all personnel affili-

ated with the USAF. These personnel include military servicemembers, government

civilians, contractors, military dependents, and military retirees. The responsibilities

of an MPF include issuing military identification cards, referred to as Common Ac-

cess Cards (CAC), resetting CAC personal identification numbers, issuing dependent

and retiree identification cards, updating changes in personnel records such as marital

status, and assisting customers with questions pertaining to their personnel record.

MPFs operate with several limited resources. MPF employees are both military

and non-military personnel with varying skill levels, duties, and experience. Most

face-to-face interaction with customers is done by young enlisted Airmen who usually

have limited experience. Employees typically help one customer at a time so they an

MPF is limited in how many customers it can service simultaneously. Additionally,

some tasks require an employee to use a Dependent Enrollment Eligibility Reporting

System (DEERS) terminal. DEERS stores identifying information used for issu-

ing identification cards, updating dependents’ information, and updating TRICARE

benefits. DEERS is subject to system outages that could cause backups in serving

customers.

Customers typically arrive to an MPF and sign-in via a check-in kiosk in the

waiting area. Signing in lets the employees know the type of customer and what

service they are there to receive. Once the appropriate resources are available, em-

ployees bring customers back to be served for their particular task. After completion,

the customer immediately exits the MPF and the employee begins helping the next

customer.

Performance of an MPF can be measured by several different criteria such as mean

wait time, maximum wait time, or total customer throughput. In this research, we

2



are concerned with the mean wait time for a customer at an MPF. Reducing mean

wait time would save manhours, which can help the overall USAF mission.

Simulation techniques, specifically discrete-event simulation (DES), offer the ca-

pability to model a generic MPF, test different policies, and determine improvements

with statistical precision before expending resources in executing a change in the real

world.

1.2 Problem Statement

Military Personnel Flights are seeing high volumes of customer traffic and are

unable to serve every customer in a timely manner, which results in negative impacts

to the overall Air Force mission and low customer satisfaction. This problem is

exacerbated by limited MPF resources and system outages. Current data from an

MPF shows a mean wait time of 76 minutes for walk-in customers and 15 minutes for

appointment customers. Air Force leadership needs a generalizable solution to test

the effectiveness of potential administrative policies and employee practices, with

respect to MPF operations, before fully committing to a drastic change. There are

opportunities to use data analysis to identify administrative policies and practices

that can be implemented to improve the efficiency of MPFs.

1.3 Research Questions

The objective of this thesis is to develop a generalizable model that can be used

to answer questions regarding the analysis and implementation of new administrative

policies and practices. The key questions we explore in this thesis are:

1. What changes to an MPF achieve the largest reductions to mean wait time?

3



2. How much is mean wait time reduced if a resource is increased? (This could be

hiring more employees or acquiring more terminals.)

3. What interactions exist between variable factors?

Answers to these questions will identify courses of action that reduce mean wait

times, determine how much reduction in mean wait time is achieved for each resource

type, and how interactions between factors can help or hinder the problem.

1.4 Scope

There are many areas where effort could be exerted to improve an MPF. This

section will identify areas we exclude from the current research to make the model

more generally applicable.

The model covers a normal five-day work week. It does not account for holidays,

early release, or random events that result in base closure or work stoppages such as

weather or exercises. The model also does not account for employees taking leave,

being late, being sick, or having to leave work during the day for any reason other

than the allotted lunch break.

Additionally, this model does not account for emergency walk-ins that arrive for

a time-sensitive issue. These occurrences are not modeled due to the lack of data on

their frequency.

Further, this model only accounts for the customer service section of the MPF

and excludes passport, special leave accrual, and 100% VA disability services.

Failures of DEERS terminals will be modeled as total DEERS network outages.

Other general computer outages or slowdowns will not be modeled.

Lastly, the utility of a simulation model DES is limited by how closely the model

can replicate the real world. Significant changes to the system outside of well-defined

state changes are not included in the model.

4



1.5 Summary of Contributions

Analysis prior to this thesis was done by Cornman (2020) to determine which

factors are significant in reducing wait times at an MPF. His findings revealed that

employee morale, number of terminals operating, and number of employees avail-

able were the main contributors to impacting wait time. This thesis builds upon

Cornman’s work and generalizes the DES model.

The research in Chapter 3 of this thesis generated a working DES of an MPF that

can be used to test alternative MPF structures. Chapter 4 of this thesis found that the

total number of employees and total number of designated walk-in terminals were the

main factors that contribute reducing mean wait time by using regression modeling

and confidence intervals. Moreover, this thesis also highlighted the impact of how

those two factors interact with each other and cannot be ignored when considering

changes. Additionally, two policy changes, increasing minimum lunch time manning

and serving appointment customers earlier, showed a reduction in mean wait times.

Lastly, the addition of a CAC PIN reset machine at the check-in kiosk also showed a

drastic reduction in mean wait times.

1.6 Organization of Thesis

The second chapter reviews existing pieces of literature related to simulation and

other techniques utilized in this thesis. Chapter 3 covers the methodology of creating

the model and the process of verification and validation. Chapter 4 presents the

analytical methods, the results of those methods, and insights gathered from those

outputs. Chapter 5 provides a summary of this thesis and sets forth possible future

improvements to this research.
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II. Literature Review

2.1 Introduction

Simulation has a right time and wrong time to be utilized. With MPFs being a

small niche of the world, other applications of simulation to similar types of systems

must be studied so their processes and methodologies can be applied to the MPF sys-

tem. The studying of queues and service times commonly occurs in service industries

like transportation, restaurants, and even healthcare. An MPF has several analogous

aspects to these service industries and are candidates for improvement with simula-

tion. In this literature review, several different applications of simulation, queuing

theory, and modeling approaches are examined for their use in properly modeling an

MPF and expanding upon previous work.

2.2 Queuing Theory

Queuing theory can be used to gain insight into basic system performance. Sim-

ple queuing systems are generally described by the distribution of the arrivals, the

distribution of the service times, and the number of servers in the system. With

those parameters, it is possible to compute theoretical values to, for example, max-

imize profits or minimize wait times. While theoretical, Banks states that “queuing

models, whether solved mathematically or analyzed through simulation, provide the

analyst with a powerful tool for designing and evaluating the performance of queuing

systems” (Banks, Carson, Nelson, & Nicol, 2010).

The first foray into queuing theory was in 1908 when Agner Erlang began studying

holding times on a telephone switch (Dharmawirya & Adi, 2012). In his analysis, he

determined that the number of phone calls received followed a Poisson distribution

and the holding time was exponentially distributed.
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When using queuing theory, the intent is often to measure the waiting time for a

typical customer, the length of queues, total number of customers in system, or how

often the servers are busy. However, Shortle et. al. state that “since most queueing

systems have stochastic elements, these measures are often random variables, so their

probability distributions – or at least their expected values – are sought” (Shortle,

Thompson, Gross, & Harris, 2018).

To fully understand a queueing situation, it may be beneficial to describe the

system in queuing theory terminology and notation to obtain a baseline. From this

baseline, modifications can be proposed, such as varying numbers of servers or differ-

ent arrival and service distributions. Dwyer did this for military entry control points

by first establishing his baseline model, and then creating three alternative systems to

compare against. His comparisons included differing numbers of guards (i.e., servers)

and variations on the behavior of customers entering the system. This work resulted

in statistically significant findings that identified possible policies to implement that

can improve service, such as utilizing parallel servers rather than tandem servers

(Dwyer, 2016).

Queuing theory tends to have shortfalls when systems become more complex.

Joustra and Van Dijk say that these “[queuing theory] formulas represent so-called

steady state situations” (Joustra & Van Dijk, 2001). Many systems that open and

close everyday, or have highly varied demand over time, do not fit this assumption.

These issues do not render queuing theory useless, however they do require careful

consideration when applied to a system under study. Joustra and Van Dijk also

state that “queuing theory remains useful for the verification and validation of a

simulation model. In the experimentation-phase, theory proves to be valuable in

defining experiments as well as analysing results.”
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2.3 Simulation

Queuing theory provides good results for simple systems, however, often a system

becomes too complex to be adequately modeled by queuing theory. The advent

of computing technology has allowed computer simulations to model these complex

systems and provide insight that was unobtainable before. Banks states, “many real-

world systems are so complex that models of these systems are virtually impossible

to solve mathematically” (Banks et al., 2010). The model of a standard Air Force

MPF can be more accurately modeled with simulation due to the various types of

customers, work schedules, and general stochastic nature of arrival and service times.

Banks defines simulation as “the imitation of the operation of a real-world process

or system over time” (Banks, 1998). Computers and software today can imitate

complex systems over long periods of time in moments. However, simulation models

are imitations and cannot be a perfect substitute for the real thing. Vincent says,

“often, the goal of simulation input modeling is to provide a model that is reasonable,

given the goals of the simulation” (Banks, 1998). In examining a simulation model, it

is important to understand that the results may vary from reality. If built correctly,

a simulation model can produce useful insights into the actual system.

While simulation cannot make exact predictions, it can be used to overcome limi-

tations of queuing theory. Joustra and Van Dijk state that “simulation offers the free-

dom of using arbitrary distributions for check-in processing time and arrival patterns”

and make it “possible to test alternative check-in methods, e.g., dynamic opening and

closing of counters” (Joustra & Van Dijk, 2001).

2.3.1 Discrete-Event Simulation

Banks defines discrete-event simulation as “the modeling of systems in which

the state variable changes only at a discrete set of points in time” (Banks et al.,
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2010). Further, a DES is analyzed by numerical methods rather than analytical;

the difference being that analytical methods use deductive reasoning to achieve a

solution, whereas numerical methods employ computational procedures that are akin

to “running” a model as opposed to “solving” it.

A direct application of DES was accomplished in 2018 on a Virginia Department

of Motor Vehicles (DMV) building where the authors were interested in improving the

wait time for customers (Arnaout & Bowling, 2018). Using data collected by observing

this DMV, a DES was constructed and used to test two different alternatives regarding

methods of customers checking in and employee allocation across the facility. Their

results indicated that the alternatives tested were not statistically significant in their

differences from the baseline. Results like these indicate that it may not be worth

spending resources to alter to system to one of the proposed alternatives.

2.4 General Applications

Queuing theory and simulation are only practical if they can be successfully uti-

lized to help some real-world system. Many businesses and government services op-

erate in an environment of cost-cutting and doing more with less. Such organizations

are interested in how to allocate their resources to improve their services. Cornman

states that “businesses have to determine the balance between increasing customer

satisfaction or not overworking their resources or employees” (Cornman, 2020). The

rest of this section looks at several applications of queuing theory and simulation to

identify best practices and improvements.

Given that one measure of interest is wait time, it may be prudent to identify

when and where the wait time is the shortest. From the perspective of the customer,

if the customer can look up average wait times at different places offering the same

service, then they could choose the location with the shortest one. In 2013, research
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was conducted on California Department of Motor Vehicles (DMV) locations and

wait times (Zhang, Nguyen, & Zhang, 2013). Several different prediction techniques

were utilized to inform customers how long the wait would be at each DMV when

a customer arrived from their current location. With this information, the customer

could drive to a DMV a little farther from their location and end up waiting less

time. Their analysis showed that linear regression was the most accurate technique

for forecasting wait times at these DMV locations.

Restaurants fall under the purview of queuing theory applications, because many

often have a queuing area and a counter where customers place an order. Dhamawirya

and Adi studied a sushi restaurant that exhibited exponentially distributed arrival

and service times (Dharmawirya & Adi, 2012). The restaurant was observed during

peak hours and theoretical values were compared to observed values. It was shown

that due to the high server utilization rate, the queue was longer on average and led

to potential customers balking the queue. This study highlighted the importance of

keeping a queue short so that customers are willing to wait, rather than going to a

competing restaurant.

Properly scheduling employees becomes a daunting task when confronted with

fluctuating demand at different areas and times in the system. Transportation sys-

tems are good examples of complex systems with difficult scheduling problems. Sys-

tems like transportation have varying arrival rates throughout the day at different

stations, several different technologies for collecting fare, and unexpected shutdowns.

Understaffing a busy station while simultaneously overstaffing another station could

be detrimental to revenue and customer satisfaction.

The subway metro in Santiago, Chile, was the subject of a 2018 study on staff

scheduling. The metro uses multiple types of fare collectors scheduled throughout

the day. The analysis begins with identifying potential schedules via an integer pro-
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gramming optimization model and then uses discrete-event simulation on different

scheduling schemes to determine an optimal solution. The authors of the study state,

“the optimization model determines the number of fare collectors of each type to

schedule at each station booth and the type of shifts to satisfy service and opera-

tional requirements while minimizing the total staffing cost” (Miranda, Rey, Sauré,

& Weber, 2018). The metro model developed was successful in reducing the time

required to plan schedules from days down to hours and was implemented in the

Santiago Metro. The utilization of different techniques to achieve real-world resource

savings is indicative of the potential to save in other areas.

2.5 Healthcare Applications

Healthcare operations have recently become candidates for simulation techniques

due to healthcare facilities attempting to meet increasing demands with limited re-

sources, similar to the problem Air Force MPFs are facing. Peter and Sivasamy state,

“[q]ueuing theory and simulation methods are analytical techniques that are increas-

ingly accepted as valuable tools to be used in modeling and analyzing the inter-arrival

and service times for patients coming to a health facility” (Peter & Sivasamy, 2019).

The delays that occur can typically be attributed to a disparity between the demand

and current capacity. The authors note the need to apply queuing theory to health-

care due to the variability of interaction between the arrival and service processes, as

well as the desire to improve service standards.

An example of a healthcare simulation from 2015 involves a Sacramento hospital

with a goal to determine the optimal number of operating rooms to keep open at

different times of the day. The authors used Monte Carlo simulation with patient

arrival data and surgical procedure lengths to build a generalizable model that could

guide decisions on how to balance resources. The simulation output average and
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median wait times for different types of patients and assisted decision makers in de-

termining the number of operating rooms need to be devoted to non-elective surgeries

(Antognini, Antognini, & Khatri, 2015).

Emergency rooms also suffer from overcrowding and can be examined with queu-

ing theory and simulation. Xu and Chan modeled an emergency department using

arrival behavior and predicted future patient information (Xu & Chan, 2016). With

this information, different policies were tested to divert patients to alternate medical

facilities in the area based on the predicted patient treatment. While the authors

acknowledge some assumptions in their modeling may not reflect reality perfectly,

this example highlights that queuing theory and simulation give decision makers the

flexibility to not only allocate their servers, but to also modify administrative polices

to improve system operations.

Applying these simulation techniques to any system poses challenges. Healthcare

applications can be even more difficult due to the nature of the healthcare. Patrick

and Puterman ((Patrick & Puterman, 2008)) outline some of the challenges regarding

wait times:

• Patients are not homogenous. Different trauma levels receive different priorities.

• Wait times are calculated from the time the service was requested, not when

the service was needed.

• Averages do not give enough information as wait time distributions tend to be

skewed.

• Accurate wait time data can be difficult to obtain based on how the data is

collected and stored.

These data challenges are not unique to healthcare and apply to other areas. Patrick

and Puterman also used several different techniques, including simulation, to identify
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that “even if more capacity is required, managers must first ensure that current

capacity is used to its fullest potential” (Patrick & Puterman, 2008).

2.6 Appointments

Having customers arrive via walk-in is often an oversimplification in some systems.

For example, many healthcare systems have appointments as well as walk-ins and

attempt to service both sets of patients. Wang, Liu, and Wan state that “without

careful planning for walk-ins, daily service operations may be interrupted, resulting

in long patient waits, provider overtime work, and, ultimately, poor service quality”

(Wang, Liu, & Wan, 2017).

Similar to scheduling appointments, some systems may find virtual queuing to

be feasible. Airports and amusement parks are candidates for this method. Narens

describes a virtual queue as “an invisible line passengers wait in before entering a

physical queue” (Narens, 2004). More specifically, a virtual queue allows customers

join the queue from a computer or phone, displays a position in queue and estimated

wait time, and gives the customer the flexibility to show up when they are about

to be served, instead of waiting in a physical line for the entire duration. Virtual

queues allow the managers of the system to smooth the demand by distributing it

over the course of the day and attempt to utilize the entire operating time period to

its maximum capacity.

2.7 Summary

This chapter highlighted recent applications of queuing theory and simulation

to the study of real-world systems with the goal of extracting information to allow

managers to make decisions that improve their business or service. It was shown

that simulation is about knowing arrival and service times, as well as about resource
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allocation and setting policies that benefit the system. Finally, the concept of applying

an appointment scheme to a system was examined and shown to have potential to

improve a system when applied appropriately.

This research intends to take parts from the literature discussed above and apply

them to the problem of long wait times at MPFs. The methodology may differ from

the discussed applications, but uses a combination of techniques to determine better

alternatives to the system in question.
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III. Methodology

3.1 Overview

This chapter explains the methodology and tools used for this analysis. The de-

sired outcome was to accurately model a USAF MPF unit in Simio using real-world

data collected from Langley-Eustis (L-E) Air Force Base from April 2018 to April

2019. The parameters of this model are called the baseline parameters. Once verified

and validated, alternative scenarios can be tested against the baseline parameters and

used to answer the research questions from Chapter 1 to potentially help a real-world

MPF reduce wait times for customers. This chapter contains a model overview, as-

sumptions made for the model, data examination, and the verification and validation

process.

3.2 Model Overview

This model represents a USAF MPF customer service section providing various

services to customers each day. The simulation covers a Monday-to-Friday work week

with operating hours of 0730 to 1600. After 1600, arrivals are halted as the MPF no

longer accepts new customers for that day, but the employees are modeled to stay

on shift until either all customers in the system have been serviced or 1930 hours,

whichever comes first. The simulation begins in an empty and idle state at 0730 on

Monday and it ends on Friday at 1930 hours. Figure 1 depicts a schematic view of

the baseline model.

3.2.1 Customer Types

Customers are represented as ten different types of entities. Each type of entity

corresponds to the service the customer is there to receive and is determined by a
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Figure 1. The schematic of the model shows the flow of the system from a customer
entering until they exit the system after service.

random draw proportional to the number of customers requesting each service type

from the Langley-Eustis Air Force Base MPF data. Similarly, arrival rates follow

probability distributions fit to the same data.

Entities arrive through three different arrival nodes. The first arrival node is

for loiters : customers that arrive prior to 0730, queue up outside, and file in at

the start of business each day. The second arrival node is for walk-in customers

arriving throughout the workday from 0730 until 1600. The third arrival node is for

customers with an appointment. Appointments are scheduled for every 30 minutes

starting at 0730 and ending at 1530 allowing for 17 daily appointments per terminal.

The proportions of each type of customer generated from loiter and walk-in arrival

nodes are shown in Table 1.

The number of loiter arrivals at the start of each day are drawn from a Poisson

distribution, where the parameter is the average number of customers per hour that

checked in on that particular weekday before 0735 throughout the time period of

data collection. This cutoff was to account for loiters who may have arrived at 0730,

but were unable to check-in immediately as they were not at the front of the queue.

The walk-in arrivals are modeled as a non-homogeneous Poisson process with varying

arrival rates based on the real-world data, binned into 30-minute intervals. Due to
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Table 1. Proportions of Walk-in and Loiter Types

Service Type Proportion

CAC (Other) 0.402

Dependent ID 0.215

CAC PIN Reset 0.214

DEERS Update 0.067

Retiree ID 0.047

Marriage/Divorce 0.024

Other 0.017

Questions 0.008

MilPDS Update 0.006

varying arrival rates on different weekdays, arrivals are fit to different distributions

for each weekday. Outside of operating hours, arrival rates are set to zero. Arrival

times of appointment customers are based on a schedule with a stochastic element

to account for customers arriving early or late. During the data collection period,

only one terminal was designated for appointments; however, appointment customers

waiting longer than 15 minutes past their scheduled appointment time can be serviced

by terminals not specifically designated for them in the model.

3.2.2 Service Types

The model has one server node for the check-in kiosk and ten additional server

nodes, one for each type of service. The ten services are: Appointments, Retiree

ID, CAC (other than Marriage/Divorce updates), CAC PIN Reset, DEERS Update,

Dependent ID, Marriage/Divorce, MilPDS Update, Questions, and Other. Due to the

absence of data, we assume the self-service check-in kiosk to have a constant one-

minute service time. The processing time for each service, other than the check-in
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kiosk, follows its respective empirical probability distribution using the L-E MPF

data.

3.2.3 Model Flow

Upon arrival, a customer entity checks in at the self-service check-in kiosk and, if

unable to be serviced immediately, moves to a waiting area until resources become

available. This model uses a first-come, first-served policy for walk-in customers

with one exception where the model prioritizes the next customer serviced with the

currently available resources. This mirrors real-world MPF policies for walk-ins as well

as situations where a certain resource has failed, but a customer farther back in the

queue can be serviced with currently available resources. Appointment customers are

serviced as soon as resources become available. Once the required resources become

available, the resources are seized, and the customer is transferred to, and serviced

at, the appropriate service node. If an appointment customer is still waiting fifteen

minutes after their scheduled appointment, model logic will bring the customer into

service next regardless of the status of any appointment terminals. Fifteen minutes is

an assumed value called Appointment Wait Threshold in the model. Upon finishing

service, the resources used are released and the entity immediately exits the system

at the exit node.

Each customer entity type is assigned a Resource ID property, which designates

the resources it requires for service. When an entity enters the waiting room or

exits the MPF, the model checks the Resource ID of the next waiting customer and

evaluates the available quantity of each resource to determine if they can be serviced

(Figure 2). If so, the next customer is immediately transferred to its respective service

node. If not, the model checks if any customer can be serviced with the available

resources.
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Figure 2. Model logic flow when an entity enters the waiting room or exits the MPF.

3.2.4 Model Resources

The employees and service terminals of an MPF are limited resources and are

modeled as such. Both resources are modeled separately, as the employees take

a lunch break, which leads to reduced manning in the middle of the day, and to

designate terminals for appointment or walk-in customers. After each service, each

employee is delayed from returning as an available resource to account for any short

cleanup actions or rest breaks.

The availability of the DEERS network is modeled as a resource due to the po-

tential of system outages. The DEERS resource must be seized to begin any task

requiring DEERS, but the capacity is large enough to never be exhausted. Upon a

DEERS outage, no DEERS tasks may be started, but any DEERS tasks in progress

are continued.

All services require an employee resource. All services except for Questions require

a terminal resource. Only MilPDS Update and Other require just an employee and

terminal resource. Table 2 shows the resources required by each service type.
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Table 2. Resources Required by Service Type

Type Employee Terminal DEERS

Appointment Only Yes Yes Yes

CAC (Other) Yes Yes Yes

CAC PIN Reset Yes Yes Yes

DEERS Update Yes Yes Yes

Dependent ID Yes Yes Yes

Marriage / Divorce Yes Yes Yes

MilPDS Update Yes Yes No

Other Yes Yes No

Retiree ID Yes Yes Yes

Questions Yes No No

3.2.5 Baseline Model Parameters

The discrete-event simulation was created to model the Langley-Eustis MPF at

the time of data collection. The discrete-event simulation using the values from the

Langley-Eustis MPF, called the baseline model parameters, as input parameters is

called the baseline model. These values were formulated in conversations with the

MPF personnel or by assumption. Table 3 shows the value of each parameter used

in the baseline model.

Table 3. Baseline Model Parameters

Parameter Value

Number of Walk-In Terminals 4

Number of Appointment Terminals 1

Number of Employees 5

Minimum Number of Employees During Lunch 3

Appointment Wait Threshold (minutes) 15
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3.2.6 Baseline Outputs

The outputs of the model when using the baseline parameters are shown in Table

4. These are discussed in Section 3.5. Figures 3-6 show proportional histograms of

the frequency of wait times in the simulation and in the data.

Table 4. Outputs from the model when using the baseline parameters

Measure of Interest
Output

(minutes)

Mean Wait Time - Appointments∗ 13.66

Mean Wait Time - Walk-ins∗ 74.94

Mean Maximum Wait Time - Appointments 83.53

Mean Maximum Wait Time - Walk-ins 207.05

* - Validated

Due to data availability, the baseline model is only validated on the two measures

of mean wait time. However, it is important to observe the mean maximum wait times

that are output from the model because unexpected values could indicate something

happening that is undesirable. Fortunately, the mean maximum wait times seem

reasonable compared to the empirical distributions used to build the model. True

values for maximum wait times are unknown, due to the omission of large wait times

from erroneous entries (Section 3.4). The validation data for mean wait times (Section

3.5) had a maximum value of 83 minutes for appointment customers and 429 minutes

for walk-in customers. While the model is not validated on maximum wait times, the

measure is still worth observing to ensure some semblance of reason.

3.3 Assumptions

Several assumptions were necessary to build the model. These assumptions are

made to help manage unnecessary model complexity or to account for the absence of
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Figure 3. Frequency of walk-in customer wait times observed in the L-E MPF data.

Figure 4. Frequency of walk-in customer wait times observed in 41 replications of the
model.
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Figure 5. Frequency of appointment customer wait times observed in the L-E MPF
data.

Figure 6. Frequency of appointment customer wait times observed in 41 replications
of the model.
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information while attempting to mimic a real-world MPF. This section presents the

assumptions made and the reasoning behind each one.

1. The MPF opens everyday at 0730. In reality, some customers do arrive before

0730, but are modeled as loiters and enter the system at 0730.

2. Appointments are fully booked every day. Otherwise, available appointments

would be reserved by any of the walk-in customers.

3. The skill level of all employees is the same. In reality, each employee has varying

levels of proficiency at each task; however, the same employees do not work

everyday. To account for the variation of employee proficiency, a random draw

from the empirical distribution of service times in the data is used to determine

how long each service lasts.

4. There will always be a lower bound on employees on shift at any time during the

workday. This is because employees should be available for the entire duration

of daily MPF operations.

5. During lunch hours (1100-1300), it is assumed that the employees make the

appropriate lunch accommodations so that the number of employees on shift

does not drop below the lower bound of employees.

6. The MPF will close the doors to new arriving walk-in customers at 1600 each

day, but employees will always stay until the last customer in the system for that

day has been serviced or 1930 hours, whichever is earlier. At 1930 hours, the

remaining customers in the queue exit the system unserved. This assumption

allows for the rare occurrence of an employee staying several hours past closing

before departing, an event which is reflected in the original data. This cutoff

was chosen to allow for employees to leave work by a reasonable time.
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7. Service times greater than 180 minutes are likely an error in data entry. These

data entries often came in groups and looked like they had been retroactively

added to the data or that the operator did not check the customer out until the

next morning.

8. Customers leave the system immediately following service. This does not allow

for multiple services for a customer. The data only shows one service for each

customer, so the addition of further services cannot be supported by the data.

While in reality, some customers likely did show up for multiple services, the

service time for those customers is present in the empirical distributions used

to construct the model.

9. Due to the unavailability of DEERS reliability data, DEERS failures have been

assumed to follow an exponential distribution with an average of 12 hours be-

tween failures; the restoration of DEERS service is assumed to follow an expo-

nential distribution with an average of 15 minutes.

10. Due to the unavailability of check-in duration data, check-in durations are a

constant one minute for each customer.

11. Services that are in progress when a DEERS failure occurs are not suspended.

Here, we assume that any time waiting for DEERS restoration is accounted for

in the service times in the original data.

12. An appointment customer waiting an unreasonable amount of time after their

scheduled appointment time is serviced next. An unreasonable amount of time

is assumed to be 15 minutes. These assumptions come from the notion that

customer service will try to keep their scheduled appointments on track in an

attempt to not fall behind.
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13. Data entries occurring on a weekend represent a different population of cus-

tomers than the weekday customers and are excluded from this analysis.

14. Data entries with an arrival time before 0700 or after 1600 were assumed to be an

error in data entry. This is due to the normal operating hours and accounting

for a 30-minute grace period where the MPF could have possibly opened for

service early.

15. The reduction of employee or terminal resources to the model will increase the

mean wait time. This is reasonable because reducing their totals would reduce

the number of customers that can be served throughout the day.

3.4 Data

The input data for this model was collected at Langley-Eustis AFB MPF starting

10 April 2018 and concluding on 29 April 2019 and contains 29, 733 data points. The

data captures twelve characteristics on each customer that arrived during that time

period. The data used to develop and validate the model include: Date, Check-In

Time, Time Service Starts, Service Type, Minutes Serviced, and Appointments. Pre-

vious work (Cornman, 2020) used the same data but modeled service times using

triangular distributions and did not account for varying arrival times throughout the

day. Upon reevaluation, a non-homogeneous Poisson process for arrival times was fit

to the data with 30-minute intervals throughout the time the MPF is servicing cus-

tomers. Additionally, service times were reexamined and used to generate empirical

distributions for each service type.

The process of preparing data for analysis by removing or modifying data that

are incorrect, incomplete, irrelevant, duplicated, or improperly formatted, is called
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data cleaning. This section describes the actions taken on the raw data to clean it

and generate the arrival and service time distributions.

To create the arrival distributions, the data was cleaned starting with the raw

data. The raw data was cleaned a second time to create service time distributions,

entirely separate from the arrival distributions. This duplication of effort maximized

the amount of usable data for both the arrival and service times. This allowed the

use of rows that had invalid or incomplete data, such as a missing service time, but

still had a valid arrival time, or vice-versa. Each set of cleaned data maintained over

90% of the original data. Proportions of the data used to create the model are shown

below in Table 5.

Table 5. Proportions of Data Used After Cleaning

Type of Distribution Proportion

Walk-In Arrivals & Loiters 0.915

Service Times 0.975

Walk-In Wait Times 0.964

Appointment Wait Times 0.974

For arrival times, any customers that were logged as arriving prior to 0700 were

excluded as the MPF did not open that early and these points were more likely

data with incorrect arrival times. Similarly, any arrivals logged after 1600 were ex-

cluded. Additionally, some entire days were removed as they did not contain an entire

workday of data, contained implausible entries (e.g., consecutive customer wait times

oscillating between zero minutes and four hours), or were influenced by a holiday and

not representative of a normal weekday (e.g., Christmas Eve).

For service time durations, entries over 180 minutes were excluded. This modifi-

cation follows from the assumption that service times greater than 180 minutes are

likely to have been an error in data entry. Additionally, service times entered as zero
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minutes were rounded to one minute to account for service that began and ended

before the clock progressed a minute.

One final adjustment was made to service times to account for some ambiguity in

the data. One service type is labeled as Appointment Only and leaves out any mention

of what actual service was conducted. Additionally, some entries have a service type

and also indicate in the Appointments column that the customer had an appointment.

In creating the empirical service distribution for the Appointment service, all entries

containing that service type, as well as any points indicating an appointment in the

Appointments column, were considered. For all other empirical service type distribu-

tions, all entries containing each respective service type were considered, regardless

of what was indicated in the Appointments column. A small portion of entries were

labeled as Appointment Only but indicated a No in the Appointments column; these

were considered to be appointments.

The wait times from the data were cleaned in a similar way as arrival times. First,

customers arriving prior to 0700 or after 1600 were removed. Next, any wait time

that began prior to 0730 was recalculated to be the wait time once service began for

that day. The final action was removing any wait times that were greater than the

length of the workday or otherwise illogical in the context of the data collection (e.g.,

the first customer of the day was not serviced for several hours).

3.5 Verification & Validation

Building just any model is not enough to gain insight. It is important to build

the correct model and accomplish the necessary actions to ensure it imitates the sys-

tem of interest. These necessary actions are a process called verification & validation

(V&V). Sargent defines verification as “ensuring that the computer program of the

computerized model and its implementation are correct” (Sargent, 2013). Verifica-
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tion ensures that the actions taking place in the model are the developer’s intended

actions. Sargent defines validation as “substantiation that a model within its domain

of applicability possess a satisfactory range of accuracy consistent with the intended

application of the model.” Validation ensures the model outputs are within a toler-

ance of the measurements of interest that exist in the real system. The process of

conducting V&V is an iterative process throughout the development of the model.

It can be expensive in terms of resources to develop a model that imitates the

real system as much as possible. Because of this, several different tests and eval-

uations were conducted to build sufficient confidence that the model works for its

intended application. This section describes the different methods Sargent suggests

for verifying and validating a model.

3.5.1 Subjective Methods

Subjective V&V methods are those that do not involve a mathematical or sta-

tistical procedure. These methods involve observations of the model under certain

conditions or over time periods. Every type of scenario cannot be observed for cor-

rectness, but the modeler uses their best judgement to ensure that important design

points are examined before the model is considered verified and validated.

The V&V process began with discussions with subject-matter experts that un-

derstand how an MPF works. The information gathered was used to construct the

conceptual model using the appropriate conditions upon which the data was collected.

These first steps helped develop the foundation upon which the V&V stands. With-

out the right parameters of the system when the data was collected, any analysis

would be tenuous.

One method Sargent (2013) describes is observing animation. Sargent describes

animation as “the model’s behaviour is displayed graphically as the model moves
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through time.” The Simio software has graphical animations of the system that

allow users to see what is happening throughout the simulation. This technique

was used extensively during construction to ensure that entities flowing through the

system are doing what the modeler intended, as well as what actually happens when

a real customer flows through a real MPF. Animation was also used to ensure server

and resource capacities were not violated and the values of state variables were set

correctly at different times in the simulation.

A more in-depth method called tracing is used to ensure that model logic is

correct. Sargent describes tracing as “the behaviour of a specific type of entity in

a model is traced (followed) through the model to determine whether the model’s

logic is correct and if the necessary accuracy is obtained.” Tracing provides a look

behind the animation to see how the model is evaluating logic as the simulation runs.

Simio has a trace capability that shows the checks within processes as a simulation

progresses. This tool was used to verify that different types of entities in various

scenarios were processing through the system as expected and that the model was

accomplishing the correct processes for the current conditions. Because the trace

contains too many entries to do an exhaustive check, filters were applied to observe

when specific events occur. For example, in the case of a resource constraint, the

model should be servicing the next customer in the queue that can be immediately

helped. This is checked by filtering for the events where a resource constraint exists

and verifying the model logic was evaluated correctly.

Additionally, the use of operational graphics were implemented as visual aids to

watch dynamic information change throughout the simulation. The primary use of

this technique was to ensure that customer proportions were being generated accord-

ing to the proportions in the data. Table 6 shows the outputs of the operational
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graphic at the end of one replication compared to the actual proportions from the

L-E data.

Table 6. Proportions of Walk-in and Loiter Types — L-E Data & Simulated

Service Type Data Proportion Simulated Proportion

CAC (Other) 0.402 0.413

Dependent ID 0.215 0.198

CAC PIN Reset 0.214 0.235

DEERS Update 0.067 0.049

Retiree ID 0.047 0.056

Marriage/Divorce 0.024 0.032

Other 0.017 0.007

Questions 0.008 0.0005

MilPDS Update 0.006 0.005

Sargent also describes degenerate testing, where values that result in degenerate

behavior are input into the model to ensure that degenerate behavior is exhibited

as expected. One test consisted of ensuring the queue grew without bound when

inducing arrivals faster than the servers can manage.

Similar to the previous method, extreme condition testing is checking the outputs

of a model when given extreme or unlikely values. When testing the scenario where

resource capacities were greatly increased, the average wait time decreased to nearly

zero, which is expected. Additionally, when resources were severely limited, the model

showed a large increase in wait times.

3.5.2 Objective Methods

V&V would not be complete without an objective test. For Sargent’s internal

validity, two statistical hypothesis tests were conducted using the model with baseline
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parameters: one for mean walk-in wait time, and one for mean appointment wait time.

After each interval is constructed, they are compared against the collected real-world

data with the desired outcome being that the interval contains the value from the

collected data. For this model, the measures of interest are the mean wait times for

each of the appointment customers and the walk-in customers. These intervals are

constructed using α = 0.05.

An absolute precision of a five minute half-width was chosen for each interval.

The decision to use five minutes was arbitrary but is a common acceptable window in

society. The model was run for ten replications to obtain an initial estimate for the

population variance. This estimate was then used to determine how many additional

replications were needed to achieve the desired precision for both intervals, according

to

R ≥ (
zα/2S0

ε
)2. (1)

In (1), zα/2 is the critical t-value, S0 is the sample standard deviation after the initial

ten replications, R is the number of total replications needed, and ε is the desired

precision. Using Equation 1, we determined that an additional 31 replications were

needed for a total of 41 replications. The intervals capture both of the means from

the data, so the model passes this test for validation.

Table 7 shows the results of the simulation after 41 replications.

Table 7. 95% Confidence Interval on Mean Wait Times — Baseline Model (n = 41)

Measure of Interest Mean (Data) Mean (Simulation) Interval

Mean Wait Time - Appointment Customers 14.90 13.66 (12.19, 15.14)

Mean Wait Time - Walk-In Customers 76.40 74.94 (69.65, 80.23)
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3.5.3 Summary of V&V

Sargent states “there is no set of specific tests that can easily be applied to de-

termine ‘correctness’ of a model.” However, his methods provide confidence that this

model is sufficient for the task of analyzing MPF wait times. The process of V&V

indicates the model is doing what it is intended to do and that its outputs are within

a statistical tolerance of the real-world data.

3.6 Summary

This chapter covered the methodology that was utilized to create a DES of a USAF

MPF, including how the model logic was built, criteria for cleaning the Langley-

Eustis MPF data, the V&V process, and the limitations that exist. The next chapter

explores how this model was used to answer the research questions from Chapter 1.
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IV. Analysis

The creation of a verified and validated model allows the testing of different sce-

narios to gain insights and to identify possible changes in the measures of interest.

For this particular model of the Langley-Eustis MPF, we want to observe any changes

to wait times for customers when we modify resource capacities or policies to help

answer each research question posed in Chapter 1. A full factorial experimental de-

sign was generated and each design point was simulated in Simio. The simulation

outputs of every design point were then used in a regression analysis where insights

were gleaned regarding the relationships between variables. Additionally, several al-

ternative scenarios were hypothesized, simulated, and analyzed to identify if one or

more of the alternatives can help reduce mean wait times. Finally, a data excursion

was conducted to observe the results of the simulation when an additional machine is

added to the check-in kiosk that is able to accomplish CAC PIN resets. The analysis

of each scenario and excursion will answer the first and second research questions and

the regression analysis will answer the third research question (Section 1.3). This

chapter explains the design of the experiments, regression, the selected design points,

one analytical excursion, and the results.

4.1 Experimental Design

The Simio software can run as many scenarios as desired, as long as the time

and computing power are not constrained. This allowed the implementation of a full

factorial experimental design for this MPF simulation. Factors were determined by

the likely impact they may have on the mean wait times for customers in the model,

while the levels of each factor, or factor levels, were determined as a range of values

that seemed reasonable to implement.
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4.1.1 Factors & Factor Levels

For the design of this experiment, five factors were selected: the numbers of walk-

in terminals, appointment terminals, total employees, employees to remain on shift

during lunch hours (1100-1300), and the Appointment Wait Threshold. Each of these

factors can be modified in the simulation and may affect the mean wait times for

customers in the simulation.

The factor levels for each factor are shown in Table 8. Some combinations of factor

levels would only require shifting current resources or policies in an actual MPF,

however most combinations would require an MPF to acquire additional resources.

Table 8. Factors and factor levels for the full factorial design of the MPF model

Factors Factor Levels

Number of Appointment Terminals 0, 1, 2, 3, 4, 5, 6

Number of Walk-In Terminals 0, 1, 2, 3, 4, 5, 6

Number of Employees 5, 6, 7, 8

Number of Lunch Time Employees 3, 4, 5

Appointment Wait Threshold (minutes) 0, 5, 10, 15, 20

When the number of appointment terminals was changed from one, the arrival rate

of walk-in customers was scaled proportionally (Table 9). Because the appointments

are always fully booked, the number of appointment customers scales proportionally

with the number of appointment terminals. The final assumption here is that when

five or more terminals are designated for appointments, the MPF is closed to walk-in

customers.

The full factorial design considered every possible combination of feasible factor

levels. Infeasible combinations were omitted, namely those where the number of

lunch time employees was greater than total employees. Also omitted were design

points where fewer employees than designated appointment terminals existed, as those
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Table 9. The scaled rate of walk-in customers based upon the number of designated
appointment terminals

Number of
Appointment Terminals

Scaled Rate

0 1.25

1 1

2 0.75

3 0.5

4 0.25

5 or more 0

combinations are unlikely to be used in a real MPF. The last set of omitted design

points were redundant points that occurred when the MPF was appointment only,

but gained additional walk-in terminals. In total, 220 design points were omitted and

2720 were used for analysis. The number of replications for each design point ranged

from 10 to 650 to achieve an absolute precision of five minutes. Confidence intervals

were not obtained for each scenario, however, enough replications were completed to

ensure the mean wait times were within a statistical tolerance of five minutes. The

outputs of the simulation, including mean wait time for appointment and walk-in

customers, are used to conduct the rest of the analysis in this chapter.

4.2 Regression

Regression helps identify and characterize the relationships between inputs and

responses. Using regression for this problem helps determine which parameters influ-

ence the mean wait time for an MPF and the magnitude of the effects. This section

utilizes partial first derivatives to analyze how modifying different factor levels affects

the mean wait times.
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The regressors in this regression analysis are the input parameters for the simu-

lation model (Table 8). The response variable is the mean wait time for customers,

however the data show a large difference between how long walk-in customers wait

and how long appointment customers wait. Because of this, we split mean wait time

into two different response variables — the mean wait time for walk-in customers and

the mean wait time for appointment customers — and accomplished two separate

regression analyses.

The full factorial design results in a wide variety of design points. The design

points used to generate this regression analysis happen to only be cases in which

the MPF keeps the same amount of resources as the baseline model, but shifts them

around, or where the MPF gains resources. A loss of resources was not accounted for

in the regressions to restrict the domain to alternatives that would not increase mean

wait times. The 2,720 design points and their outputs from the factorial design were

migrated into the JMP software to generate each regression.

4.2.1 Mean Wait Time — Walk-In Customers

Building the regression formula to analyze the mean wait time for walk-in cus-

tomers started by using every variable and interaction term available — up to four-way

interaction and up to third-power polynomial terms. From that point, a backwards

regression was performed.

The response variable, mean walk-in wait time, was transformed using the natural

logarithm function such that the model’s estimation for the mean walk-in wait time

is eWw . The resulting regression equation is

9.492 − 0.266x1 + 0.088x2 − 1.132x3 − 0.074x1x3 + 0.064x21 + 0.078x23 = Ww (2)
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where the log mean walk-in wait time (Ww) is expressed as a function of the numbers

of walk-in terminals (x1), appointment terminals (x2), and employees (x3). Table

10 shows the detailed regression parameter estimates. In addition to the first-order

terms, there is one interaction term between x1 and x2 and two second-order polyno-

mial terms — one for x1 and another for x3.

Table 10. Parameter estimates for the regression to estimate the mean wait time for
walk-in customers when at least two terminals are designated for walk-in customers

Term Estimate Error t-ratio p-value

Intercept 9.492 0.334 28.45 <0.0001
Walk-in Terminals (x1) -0.266 0.036 -7.39 <0.0001
Appointment Terminals (x2) 0.088 0.005 19.21 <0.0001
Number of Employees (x3) -1.132 0.010 -11.34 <0.0001
x1x3 -0.074 0.004 -17.75 <0.0001
x21 0.064 0.003 20.37 <0.0001
x23 0.078 0.008 19.21 <0.0001

This regression model has an R2 = 0.796 and is statistically significant, with

p < 0.0001, which indicates that at least one of the regression coefficients can explain

the response variable. Additionally, each of the parameter estimates are statistically

significant with p < 0.0001.

The addition of walk-in terminals lowers the response, which is an intuitive ef-

fect because more available terminals will allow more customers to be serviced si-

multaneously. Similarly, hiring more employees to service customers also lowers the

response. However, adding appointment terminals and holding all other factors con-

stant marginally increases the mean walk-in wait time, perhaps due to the increased

allocation of resources away from walk-in customers. By changing the single ap-

pointment terminal in the baseline model to a walk-in terminal, the estimated mean

walk-in wait time changes from 75.9 minutes to 65.5 minutes. The first order effects

make sense on the surface, but the second-order polynomial terms and the interaction

need to be taken into account to understand the full effect.
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Partial derivatives show the instantaneous rate of change when increasing the re-

spective variable. The partial first derivatives of the regression function help identify

the relationships between the variables when the regression formula includes interac-

tion terms or polynomial terms. While the first derivative shows the instantaneous

rate of change and not the exact amount of change received, the values of the partial

derivatives show the direction the response variable is trending when changing the

respective variable. These trends show the relationships between the regressors and

themselves, as well as between the regressors and the response variable.

The first derivative of the regression function shows the change in the response

with respect to the change the chosen variable. The partial first derivative must be

taken twice, once for x1 and another time for x3. The first partial derivative with

respect to x1 is

∂y

∂x1
= −0.266 − 0.074x3 + 0.128x1 (3)

and the first partial derivative with respect to x3 is

∂y

∂x3
= −1.132 − 0.074x1 + 0.156x3 (4)

.

Both partial first derivatives have a similar form, however Equation 4 shows that

the number of employees (x3) has over double the impact on mean walk-in wait time

than number of walk-in terminals (x1) in the domain of values tested (Table 8). In

both partial first derivatives, the interaction term has a negative coefficient and the

second-order term has a positive coefficient. These values indicate that a large increase

in one term, while holding the other term constant, will have a smaller impact than

the impact the estimate would receive if there was a small increase to both terms.

One takeaway is that the increase in mean wait time from each equation is offset by
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the magnitude of the other variable. In other words, it helps to increase both the

number of walk-in terminals and employees by one, as opposed to an increase of two

or more to one of the variables.

Table 11. Regression estimates for mean walk-in wait time when modifying the baseline
parameters

Modification
Walk-in

Terminals
(x1)

Appointment
Terminals

(x2)

Employees
(x3)

Regression
Estimate
(mins)

Percent
Change

Baseline 4 1 5 81.0 N/A
x1 + 1 5 1 5 77.1 -4.8%
x2 + 1 4 2 5 88.4 +9.2%
x3 + 1 4 1 6 45.8 -43.4%
x1 + 1 & x3 + 1 5 1 6 40.5 -50.0%

Table 11 shows regression estimates for mean walk-in wait time and the percent

change from the baseline. Each row shows the regression estimate when each factor

is increased by one, except the last row where both x1 and x3 are increased by one.

These results help corroborate the importance of increasing the number of employees

before adding any terminals. Notably, adding a walk-in terminal has a marginal

reduction on the estimated mean walk-in wait time while adding an appointment

terminal increases the estimate.

4.2.2 Mean Wait Time — Appointment Customers

Similar to the regression analysis for mean walk-in customer wait times, we began

with every possible regressor and used backwards regression to remove insignificant

regressors. As before, the response variable, mean appointment wait time, was trans-

formed by the natural logarithm function. The estimate for mean appointment wait

time is eWa . The resulting regression equation is

3.404 + 0.412x2 − 0.212x3 − 0.115x4 − 0.094x2x4 = Wa (5)
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where the log mean appointment wait time is expressed as a function of the numbers

of designated appointment terminals (x2), employees (x3), and the minimum number

of employees during lunch time (x4). Table 12 shows the detailed regression parameter

outputs.

Table 12. Parameter estimates for the regression model to estimate the mean wait time
for appointment customers

Term Estimate Error t-ratio p-value

Intercept 3.404 0.061 56.14 <0.0001
Appointment Terminals (x2) 0.412 0.013 32.89 <0.0001
Number of Employees (x3) -0.212 0.006 -37.31 <0.0001
Minimum Lunch Time Employees (x4) -0.115 0.014 -8.49 <0.0001
x2x4 -0.094 0.003 27.64 <0.0001

This regression model has an R2 = 0.820 and is statistically significant at p <

0.0001, which indicates that at least one of the regression coefficients can explain the

response variable. Further, each regression coefficient in the model is statistically

significant with a p < 0.0001.

The coefficients show that increases in each factor reduce the mean wait time,

with the exception of the term for appointment terminals. As with mean walk-in

wait times results, the number of employees have the largest effect on reducing mean

appointment wait times. The positive term for appointment terminals is explained

by the interaction term with the minimum number of lunch time employees. The first

partial derivative with respect to x2 is

∂y

∂x2
= 0.412 − 0.094x4 (6)

and the first partial derivative with respect to x4 is

∂y

∂x4
= −0.115 − 0.094x2 (7)
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.

Equation 6 shows that by adding an additional appointment terminal, mean ap-

pointment wait time will rise, unless it is offset by at least five employees working

through lunch. Because the simulation model schedules appointments during lunch

hours, the reduction in manning creates a bottleneck that increases the mean ap-

pointment wait time. Equation 7 is important because it shows that increasing the

minimum lunch time manning will reduce appointment wait times, because there is

a negative intercept and a negative coefficient for the x2 term.

Table 13. Regression estimates for mean appointment wait time when modifying the
baseline parameters

Modification
Appointment

Terminals
(x2)

Employees
(x3)

Minimum
Lunch Time
Employees

(x4)

Regression
Estimate
(mins)

Percent
Change

Baseline 1 5 3 8.4 N/A
x2 + 1 2 5 3 9.6 +13.8%
x3 + 1 1 6 3 6.8 -19.1%
x4 + 1 1 5 4 6.8 -18.8%
x3 + 1 & x4 + 1 1 6 4 5.5 -34.4%

Table 13 shows the regression estimates and percent change in mean appointment

wait time from the baseline. As expected, adding an appointment terminal does in-

crease the estimate because there are too few employees during lunch time. Increasing

total employees provides the largest reduction, however an increase to minimum lunch

time manning gives close to the same effect. Combining those two changes almost

doubles the reduction.

4.2.3 Regression Insights

The regression analysis indicates that the number of employees typically has the

largest effect on reducing the mean wait time for walk-in and appointment customers,

however, the other terms should be taken into account when considering changes. For
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mean walk-in wait time, increasing the total number of employees while simultane-

ously increasing the number of walk-in terminals is beneficial because of the way they

interact. For mean appointment wait times, total employees also has the largest re-

duction, but the bottleneck caused by the minimum number of lunch time employees

does have a powerful impact, as well. Employees are important to both measures of

interest because they are a shared resource between the two customer types. Hiring

more employees is an intuitive solution to reducing mean wait time, but it is impor-

tant to keep in mind that the total throughput of appointment customers is fixed by

the number of appointment terminals.

The mean appointment wait times are not very high relative to the mean walk-in

wait times. In the baseline model, the mean walk-in wait time is over five times greater

than the mean appointment wait time and because there is only one appointment

terminal, there are many more walk-in customers to be served. The total time saved

will likely be greater when attention is given to the mean walk-in wait times. Adding

to the importance of the total number of employees, x3 does show up in both regression

formulas and provides the largest reduction to mean waiting times per unit increase

in both. The analysis indicates that by investing in an additional employee, mean

walk-in wait time would be reduced by 43.4% and mean appointment wait time would

be reduced by 19.1%.

4.3 Design Point & Data Excursion Analysis

4.3.1 Design Point Analysis

Some select design points from the experimental design are highlighted in this

section due to the minor changes required to implement them into an MPF. The

simulation outputs from each selected design point are examined in this section.

The number of replications for each design point was calculated, separate from each
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other, to achieve an absolute precision of five minutes at the 95% confidence level

after running 10 initial replications. Table 14 shows the parameters used in each

scenario, and Tables 15 and 16 show the results.

The first design point is adding one employee and one walk-in terminal. This

should naturally reduce wait times but comes at the cost of hiring a new employee

and purchasing an additional terminal.

The second design point is increasing the lunch time manning from three employees

to four. This scenario has the potential to cost nothing except the effort to ensure

employees have sufficient time for their lunch break, and it will likely decrease mean

wait times as the bottleneck caused by the lunch time manning is widened.

The third through sixth design points modify the number of terminals designated

for appointments from anywhere between two and five, inclusive. As in the regression

analysis, an assumed proportional decrease in the arrival rate of walk-in customers

is applied based on how many terminals are designated for appointments (i.e., 25%

decrease from the baseline per additional appointment terminal) (Table 9). These

scenarios could highlight an optimal number of designated appointment terminals

when only five total terminals exist.

The seventh design point modifies the Appointment Wait Threshold from fifteen

minutes to zero minutes. This requires appointments be serviced as soon as their

appointment time passes and resources become available. This should reduce the

mean appointment wait time but may potentially increase the mean walk-in wait

time.

While the model was not validated on mean maximum wait times (i.e., the mean

of each replication’s maximum wait time), those values are included in Appendix B to

highlight the effect these scenarios do have on the model. The focus of this analysis

44



Table 14. Selected Design Point Model Parameters

Scenario
Walk-In

Terminals
Appointment

Terminals
Employees

Lunch
Employees

Appointment
Wait Threshold

(mins)

Baseline 4 1 5 3 15

1 5 1 6 3 15

2 4 1 5 4 15

3 3 2 5 3 15

4 2 3 5 3 15

5 1 4 5 3 15

6 0 5 5 3 15

7 4 1 5 3 0

Table 15. Selected Design Point Estimates — Walk-in Wait Times

Scenario
Mean Walk-in

Wait Time
Percent Change

Regression
Walk-in

Wait Time
Percent Change

Baseline 74.9 N/A 81.0 N/A

1 33.3 -55.5% 40.5 -50.0%

2 59.0 -21.2% 81.0† 0.0%

3 155.3 +107.3% 105.5 +30.3%

4 284.3 +279.6% 156.3 +93.1%

5 415.0 +454.1% 263.2 +225.1%

6 N/A N/A N/A N/A

7 75.4 +0.6% 81.0† 0.0%

† The factors in the regression formula are the same as the baseline parameters for these design
points.
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Table 16. Selected Design Point Estimates — Appointment Wait Times

Scenario
Mean Appointment

Wait Time
Percent Change

Regression
Appointment
Wait Time

Percent Change

Baseline 13.7 N/A 8.4 N/A

1 10.2 -25.9% 6.8 -19.0%

2 12.4 -9.5% 6.8 -19.0%

3 8.8 -35.8% 9.6 +14.3%

4 7.4 -46.0% 10.9 +30.0%

5 9.2 -32.8% 12.4 +47.6%

6 13.2 -3.7% 14.1 +67.9%

7 5.5 -59.9% 8.4† 0.0%

† The factors in the regression formula are the same as the baseline parameters for these design
points.

is on mean wait times, therefore other possible effects to the system are outside the

current scope of work.

4.3.2 Scenario Comparisons

Table 15 results indicate that the only reductions in mean walk-in wait time from

the baseline scenario happen in scenarios 1 and 2. Table 16 results indicate that

scenarios 1 and 7 have the largest decrease to mean appointment wait times, while

not increasing the mean walk-in wait time from the baseline. All other scenarios

either increase the mean walk-in wait time or have a negligible effect on the mean

appointment wait time. With this information, four comparisons are made against

the baseline scenario’s outputs to identify which scenarios reduce mean wait times

and by how much. The four comparisons are scenario 1 and 2’s mean walk-in wait

times, and scenario 1 and 7’s mean appointment wait times. The mean appointment

wait time for scenario 2 and the mean walk-in wait time for Scenario 7 were omitted
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from the confidence interval analysis to minimize the number of tests computed to

increase the statistical power of those tests.

Common random numbers were used for each design point to reduce the variance

and thereby improve the comparisons. Using common random numbers means every

scenario will be exposed to the same random number streams. This helps reduce the

variance between scenarios to achieve more narrow confidence intervals. However, the

use of common random numbers makes the samples not independent of each other.

Because of this, each comparison was done with a paired t-test. Table 17 shows the

95% joint confidence intervals for the difference between the experimental scenarios

and the baseline model. We are 95% confident that the actual difference in mean wait

times between the scenario are the baseline are contained in each interval, therefore

any scenario’s interval that only contains numbers strictly less than zero can be said

to reduce the mean wait time.

Table 17. 95% Joint Confidence Intervals — Difference Between Experimental Scenar-
ios and Baseline

Scenario
Mean Walk-In Wait Time

(mins)
Mean Appointment Wait Time

(mins)

1 (-43.1, -25.0) (-13.1, -3.6)

2 (-20.7, -1.4) —

7 — (-10.0, -6.3)

Based on the results, in Table 17, scenario 1 reduces both the mean walk-in wait

time by between 25.0 and 43.1 minutes and the mean appointment wait time by

between 3.6 and 13.1 minutes. Scenario 1 requires the addition of a terminal and

employee, which may be prohibitively expensive. However, the magnitude of the

mean walk-in wait time reduction, at least 25 minutes, is relatively large compared

to the simulated baseline model’s 74.9 minutes and the data’s 76.4 minutes.
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Additionally, scenario 2 reduces the mean walk-in wait time by between 1.4 and

20.7 minutes. Scenario 2 utilizes the current resources of the MPF and only requires

shifting lunch time employees to ensure that at least four employees are working

during lunch time.

Lastly, scenario 7 reduces mean appointment wait time by between 6.3 and 10.0

minutes. This scenario also utilizes only the currently available resources of the MPF

but adjusts how appointment customers are handled upon arrival.

4.3.3 Excursion — CAC PIN Reset Station at Check-In

This analytical excursion explores the addition of a CAC PIN reset station at

the check-in kiosk. This design change uses the same parameters from the baseline

model but adds the functionality for a CAC PIN reset to be accomplished while a

customer is checking into the MPF for service. This functionality was implemented

in the simulation model by immediately transferring customers that require a CAC

PIN reset from the check-in kiosk to the CAC PIN reset service node without the

seizure of an employee or terminal. If another customer requiring a CAC PIN reset

arrives while the additional CAC PIN reset station is in use, they are transferred to

the normal waiting room until either the CAC PIN reset station is available or until

resources become available to help them as usual, whichever comes first.

Table 18 shows the simulation outputs after 20 replications of the model to achieve

an absolute precision of five minutes. The mean maximum wait times are included in

Appendix B to highlight the effect of this modification on metrics from the model.

This excursion was also compared to the baseline scenario using a paired t-test.

The comparison was only done on the mean walk-in wait times to keep a 95% joint

confidence level with the intervals in the previous section. The 95% joint confidence

interval on the difference between the excursion and the baseline is (-38.5, -21.6).
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Table 18. CAC PIN Reset Station at Check-in — Simulation Outputs

Scenario

Mean
Walk-In

Wait Time
(mins)

Percent
Change

Mean
Appointment
Wait Time

(mins)

Percent
Change

Baseline 74.9 — 13.7 —

Excursion 40.1 -46.5% 10.9 -20.4%

With 95% confidence, the addition of a CAC PIN reset machine at the check-in kiosk

would reduce the mean walk-in wait time between 21.6 and 38.5 minutes.

4.3.4 Design Point & Excursion Insights

The design point analysis showed three alternative scenarios with statistically

significant reductions in mean wait times. While the two largest differences come

from a scenarios that have a cost to implement, two of the design points require

no additional funds to implement. The increase of minimum lunch time manning

from three to four employees showed a reduction in the mean walk-in wait time by

between 1.4 and 20.7 minutes. Additionally, servicing appointment customers as soon

as possible once their appointment time has passed, reduced mean appointment wait

times by between 6.3 and 10.0 minutes.

Further, the analytical excursion showed that by adding a CAC PIN reset machine

at check-in, the mean walk-in wait time could be reduced by between 21.6 and 38.5

minutes from the baseline model. This particular modification to an MPF would re-

quire some expenditures, including the purchase of a CAC PIN reset terminal and the

hiring of an administrative clerk to work the check-in kiosk. However, this change is

significant because it highlights how impactful it can be to expend resources servicing

a common customer, one that accounts for over 20% of total customers. The data

collected from Langley-Eustis shows that over 60% of CAC PIN resets take under ten
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minutes, while overall, 27% of service times are under ten minutes. This change is an

attempt to focus effort towards a large proportion of the customer base that typically

have shorter service times.

Figures 7 and 8 show the 95% confidence intervals for the differences in mean wait

times from the baseline model. Appendix A graphically displays the simulated mean

wait times for each scenario and excursion.

Figure 7. Shows the change in minutes from the baseline model mean walk-in wait
time for scenarios 1, 2, and the analytical excursion to add a CAC PIN reset machine
at check-in.

Lastly, the outputs from the simulation showed several alternative scenarios that

would likely increase wait times. These scenarios were the reduction of walk-in termi-

nals to three or fewer while increasing appointment terminals so that the total number

of terminals remained at five. A notable exception is the scenario where walk-ins are

no longer accepted and all customers must have an appointment. The simulation of

this scenario showed similar outputs to the baseline model, but has the benefit of

the MPF being able to control their total throughput and essentially regulate the

“busyness” throughout the day.
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Figure 8. Shows the change in minutes from the baseline model mean appointment
wait time for scenarios 1 and 7.

4.4 Summary

This chapter explored different analytical techniques applied to simulation outputs

to gain insight into possible solutions aimed at reducing the mean wait time for

customers in an MPF. The output of a full factorial experimental design was used

to generate regression models that identify relationships between factors and their

effects on mean wait times. The analysis showed that the total number of employees

greatly affects the mean wait times, especially when combined with the addition of

walk-in terminals. Additionally, several design points were selected for statistical

comparison against the baseline model to highlight the potential changes in mean

wait times when implementing reasonable alternative resource levels. The analysis

in this chapter showed that the number of employees working usually has the largest

effect on mean wait times. Additionally, it showed that increasing lunch time manning

to four employees and immediate servicing of appointment customers were two policy

alternatives that reduce mean wait times at no monetary cost to the MPF.
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V. Conclusions

This chapter summarizes the initial problem statement, insights from Chapter 4,

provides recommendations based on those insights, and presents several ideas for

future work on the problem of high mean wait times at MPFs.

5.1 Revisiting the Problem

The problem examined in this research was motivated by long wait times for

customers at MPFs and how those long wait times cost the USAF resources and

hinder the overall USAF mission. Since customers cannot accomplish their USAF

mission while waiting in an MPF, the cumulative man-hours spent waiting is a cost

and a reason to resolve the problem of high wait times. Three research questions were

posed in Chapter 1 and are repeated below:

1. What changes to an MPF achieve the largest reductions to mean wait time?

2. How much is mean wait time reduced if a resource is increased? (This could be

hiring more employees or acquiring more DEERS terminals.)

3. What interactions exist between variable factors?

5.2 Summary of Insights

This analysis covered a regression approach to identify relationships between the

controllable factors (Table 8) and the mean wait times, as well as how the factors

interact with each other. Additionally, this analysis included statistical tests on

several alternative design points and a different MPF setup that showed potential to

reduce mean wait times. This section will first summarize the regression insights, and

conclude with the design point statistical analysis insights.
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5.2.1 Regression

The regression analysis provided several key insights, the first being that the

total number of employees working has a profound effect on the mean wait times

for walk-in and appointment customers. Further, there does exist a non-negligible

amount of interaction between the total number of employees and the number of

designated walk-in terminals. More specifically, it helps to increase the total number

of employees, but it is more helpful to increase the total number of employees and

the number of designated walk-in terminals simultaneously.

The regression analysis also showed that while increasing the number of walk-in

terminals marginally reduces the mean walk-in wait time, increasing the number of

appointment terminals increases the mean walk-in wait time. This is likely due to the

increase in appointment customers it will cause, which will pull the shared resources

(i.e., employees) away from the walk-in customers.

The final insight is the minimum number of lunch time employees creates a bot-

tleneck that increases both mean wait times. It is important to consider how lunch

time manning might affect customer wait times, especially if more appointments are

scheduled than there are employees to service them.

5.2.2 Design Point & Excursion

The statistical analysis conducted on the selected design points and the analyti-

cal excursion identified four alternatives that reduce mean walk-in wait time, mean

appointment wait time, or both (Table 17 & 18). The key insight gleaned is that

the number of employees has the largest impact to mean wait time reduction, which

reinforces what was shown in the regression analysis. Additionally, it was shown that

there are policy changes that can be implemented to reduce mean wait times with no

resources added to the MPF. The final insight is that using resources to streamline
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service to a large proportion of the customer base has a significant impact on the

entire system.

5.3 Recommendations

The purpose of this research was to identify potential solutions to help reduce wait

times at MPFs by analyzing the data collected at the Langley-Eustis MPF and using

simulation to examine alternatives for MPF operations. The insights gained yield

these recommendations for MPFs that have a similar current set up as the baseline

model with high mean wait times.

The first recommendation is to hire one additional employee to work full time.

Additionally, if possible, add a terminal for walk-in customers, however adding one

employee should be the first priority. Adding one employee was shown to be extremely

effective at reducing the mean walk-in wait time and mean appointment wait time in

the simulation. While there is a cost to implement, the cost could possibly be offset

by the number of man hours saved in wait time reduction.

The second recommendation is to increase the minimum number of lunch time

employees from three to four. This change alleviates the impact of the lunch time

bottleneck on the mean wait times with potentially no additional cost to implement.

The last recommendation is to consider shifting to a service model that accom-

modates appointments only. While this may lower total customer throughput, it will

help remove the customer’s uncertainty of not knowing how long they will have to

wait and allow the MPF to regulate how many customers they want to serve in a day.

5.4 Limitations

This section identifies the limitations of this MPF DES as well as the model

accommodations to reduce the impact on analysis.
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This MPF was modeled for a normal 5-day work week with service starting at

exactly 0730 and new arrivals being turned away after 1600. There are exceptions

to these rules that are not modeled, such as the MPF opening earlier, or a walk-

in customer arriving after 1600 and needing assistance before the start of the next

business day. These exceptions likely have an impact on the mean wait time if they

occur too often.

DEERS system time between failure and restoration are assumed, due to the

absence of DEERS system reliability data. An hours-long DEERS system failure

would certainly lead to much longer wait times in real life and skew any outputs from

the model. The decision to have shorter DEERS system failures was to highlight the

effects of short-term service stoppages that do exist without giving them too much

influence.

Every data entry from the Langley-Eustis data has a Check-In Time, Time Service

Starts, and Minutes Serviced. The decision to omit reneging and balking in the model

was made because the data used to build the model did not show any of that behavior.

Similarly, the data for Service Type only holds one type of service for each data

entry. It is unknown if a customer was helped on just one task or for several tasks.

The decision to have entities only serviced for one task aligns with the data collected.

In the experimental design, the walk-in arrival rate was scaled down proportionally

to the number of appointment terminals added to the system. This assumption is to

account for the customers that would have been walk-ins but were then able to reserve

an appointment. The rate of scaling could be adjusted with future data collection to

achieve more accurate results.

Finally, it is recommended to revisit the regression insights when considering a

potential change. While the recommendations provided in the previous section may

55



work for the MPF that was modeled, other MPFs may need a different approach and

the regression models can assist in finding the right direction to move towards.

5.5 Future Work

This section contains ideas for future work to better MPFs. The first two are

suggestions to achieve greater fidelity to the discrete-event simulation model. The last

four are additional avenues of analysis that may be useful to know when considering

changes to an MPF.

The current simulation model does not account for emergency walk-in customers,

such as a late arriving walk-in needing assistance before the start of the next business

day. These do occur in reality but are not captured in the data or in the model.

Adding this possibility into the model would provide insight into how these customers

influence the system and what policies regarding emergency walk-ins may benefit the

MPF the most.

The simulation model does account for DEERS outages through an assumption

of how often DEERS fails and how long it takes to be restored. Collecting data

on DEERS outages and restorations and implementing it into the model would help

bring the simulation outputs closer to the actual outputs of the MPF.

The analytical excursion of adding a CAC PIN reset machine at the check-in kiosk

was shown to reduce the mean wait times, however it was omitted from the regression

analysis. Because the excursion is a large change to the model, accomplishing a

regression analysis with the CAC PIN reset machine at check-in may provide better

insight into how that particular model can be improved.

Next, it is recommended to conduct statistical analysis on combinations of the

scenarios that were shown to reduce the mean wait times. While each scenario does
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reduce the mean wait time, the interactions between the factors shown in the regres-

sion analysis, could have effects that should be considered.

Additionally, the mean wait times are not the only important metrics to consider

when gauging how well an MPF is performing. Other outputs that may be worth

considering in follow-on work include the mean maximum wait times, total customer

throughput, or server utilization rates. Using additional measures of interest may help

MPF leaders determine a wider breadth of impacts to any changes they implement.

Lastly, an in-depth cost-benefit analysis should be conducted to give decision

makers relevant information to resolve the problem while staying within their own

budgetary constraints or advocating for additional funding. Specifically, how many

man-hours are put back into the USAF mission per dollar spent on increasing a

resource to the MPF (e.g., hiring an additional salaried employee).
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Appendix A. Mean Wait Times — Bar Charts

Figure 9. Shows the simulated mean walk-in wait time for each scenario and excursion from Chapter 4.
These are the values after enough replications to achieve an absolute precision of five minutes.

Figure 10. Shows the simulated mean appointment wait time for each scenario and excursion from
Chapter 4. These values all have an absolute precision of less than five minutes.
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Appendix B. Design Point Simulation Output

Table 19. Selected Design Point Estimates — Walk-in Wait Times

Scenario
Mean Walk-in

Wait Time
Percent Change

Mean
Max Walk-in
Wait Time

Percent Change

Baseline 74.9 N/A 207.0 N/A

1 33.3 -55.5% 133.3 -35.6%

2 59.0 -21.2% 173.0 -16.4%

3 155.3 +107.3% 331.8 +60.3%

4 284.3 +279.6% 545.1 +163.3%

5 415.0 +454.1% 686.5 +231.6%

6 N/A N/A N/A N/A

7 75.4 +0.6% 211.6 +2.2%
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Table 20. Selected Design Point Estimates — Appointment Wait Times

Scenario
Mean Appointment

Wait Time
Percent Change

Mean Max
Appointment
Wait Time

Percent Change

Baseline 13.7 N/A 83.5 N/A

1 10.2 -25.9% 67.2 -19.5%

2 12.4 -9.5% 86.0 +2.3%

3 8.8 -35.8% 52.1 +-37.6%

4 7.4 -46.0% 46.7 -44.1%

5 9.2 -32.8% 51.6 -38.2%

6 13.2 -3.7% 65.5 -21.6%

7 5.5 -59.9% 31.4 -62.4%

Table 21. CAC PIN Reset Station at Check-in — Simulation Outputs

Scenario

Mean
Walk-In

Wait Time
(mins)

Mean
Max Walk-in
Wait Time

(mins)

Mean
Appointment
Wait Time

(mins)

Mean Max
Appointment
Wait Time

(mins)

Baseline 74.9 207.0 13.7 83.5

Excursion 40.1 153.7 10.9 71.9
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