
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2022 

Exploring Learning Classifier System Behaviors in Multi-action, Exploring Learning Classifier System Behaviors in Multi-action, 

Turn-based Wargames Turn-based Wargames 

Garth J.S. Terlizzi III 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Terlizzi, Garth J.S. III, "Exploring Learning Classifier System Behaviors in Multi-action, Turn-based 
Wargames" (2022). Theses and Dissertations. 5329. 
https://scholar.afit.edu/etd/5329 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5329?utm_source=scholar.afit.edu%2Fetd%2F5329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


EXPLORING LEARNING CLASSIFIER
SYSTEM BEHAVIORS IN MULTI-ACTION,

TURN-BASED WARGAMES

THESIS

Garth J.S. Terlizzi III, Second Lieutenant, USAF
AFIT-ENG-MS-22-M-066

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-MS-22-M-066

EXPLORING LEARNING CLASSIFIER SYSTEM BEHAVIORS IN

MULTI-ACTION, TURN-BASED WARGAMES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Garth J.S. Terlizzi III, B.S.C.S.

Second Lieutenant, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-22-M-066

EXPLORING LEARNING CLASSIFIER SYSTEM BEHAVIORS IN

MULTI-ACTION, TURN-BASED WARGAMES

THESIS

Garth J.S. Terlizzi III, B.S.C.S.
Second Lieutenant, USAF

Committee Membership:

Lt Col David W. King, PhD
Chair

Gilbert L. Peterson, PhD
Member

Douglas D. Hodson, PhD
Member



AFIT-ENG-MS-22-M-066

Abstract

State of the art game-playing Artificial Intelligence research focuses heavily on

non-symbolic learning methods. These methods offer little explainable insight into

their decision-making processes. Learning Classifier Systems (LCSs) provide an al-

ternative. LCSs use rule-based learning, guided by a Genetic Algorithm (GA), to

produce a human-readable rule-set. The learned rule-set may be given to a human

player, upon which the player can perform exactly as the agent would. This thesis

explores LCS usefulness in game-playing agents for multi-agent wargames. Several

Multi-Agent Learning Classifier System (MALCS) variants are implemented in the

wargame Stratagem MIST: a Zeroeth-Level Classifier System (ZCS), an eXtended

Classifier System (XCS), and an Adaptive Pittsburgh Classifier System (APCS).

These algorithms were tested against baseline agents as well as the Online Evolu-

tionary Planning (OEP) algorithm. In a round-robin comparison among the agents,

all LCS agents outperformed the baselines and OEP. APCS is the most effective game-

playing agent while producing the most explainable output. ZCS and XCS outper-

formed the baselines and produced interpretable rule-sets. The results highlight the

ability for symbolic methods to learn a complex wargame, outperform non-symbolic

competitors, and provide replicable instructions.
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EXPLORING LEARNING CLASSIFIER SYSTEM BEHAVIORS IN

MULTI-ACTION, TURN-BASED WARGAMES

I. Introduction

1.1 Problem Background

Since the inception of Artificial Intelligence (AI), complex games provide a chal-

lenging domain for testing and exploring search techniques. Even Alan Turing pro-

posed the game of Chess as an AI benchmark, proposing a game-playing algorithm

that he would execute by-hand [1]. The importance of games in search algorithms

was later expanded upon in 1958, when Arthur Samuel created a checkers-playing

program using an early version of reinforcement learning [2]. Since the 1970s, the fo-

cus was on chess-playing competitions that eventually paved the way for IBM’s Deep

Blue program to defeat world Chess champion Gary Kasparov in 1996 [3]. In more

recent years, game-playing AI is still at the forefront of the field. In 2016, Google

DeepMind’s agent for the classic large state-space game Go beat a world-champion

in competition [4], marking a milestone in AI development.

Games have large search spaces that are difficult to fully explore. Humans are

exceptionally good at developing strategies for complex games, despite the number

of states and combination of actions one could take. However, with advancements in

computational power and algorithmic theory, AI agents are now able to beat world-

champion humans at complex games. These modern game-playing algorithms often

escape human understandability and seek to replace human decision-making instead

of augmenting it.

1



There exists general efforts throughout the AI field to make AI more transparent,

explicable, and interpretable [5]. Yet, within the game-playing AI field, this effort is

sparse with learning agents, as modern agents traditionally use non-symbolic meth-

ods. A symbolic agent represents its knowledge by using symbolic descriptions of

the learned concepts, while a non-symbolic agent represents its knowledge in internal

formats such as weighted synapses, logic units, or networks of connections [6]. Games

could especially benefit from the explainability of symbolic methods to help human

users understand the game and improve their performance when the AI’s assisted

reasoning is removed [7].

One example of symbolic AI for game-playing is the family of Learning Classi-

fier System (LCS) algorithms. LCSs are rule-based learning machines that employ a

Genetic Algorithm (GA) to discover new rules [8]. LCS implementations are divided

into two families known as Michigan and Pittsburgh-style. Michigan-style LCSs eval-

uate the fitness of individual rules while Pittsburgh-style LCSs evaluate the fitness

of rule-sets. Recent research efforts overwhelmingly focused on Michigan-style im-

plementations [8]. Furthermore, Michigan-style LCS implementations are the widely

preferred system over their Pittsburgh-style counterpart in games due to smaller

evaluation times and online-learning ability. However, they contain lower reasoning

ability due to the large number of rules [7]. While Pittsburgh-style LCSs often pos-

sess limitations in real-time strategy games [9], they otherwise show promise in other

game settings where offline learning is possible [10] while maintaining explainability

[11].

This thesis explores the application of LCS for a specific class of games: wargames.

Wargames do not have a standard definition. The 2020 version of the Joint Publica-

tion 5-0 defines a wargame as “representations of conflict or competition in a synthetic

environment, in which people make decisions and respond to the consequences of

2



those decisions.” [12] To contrast, the Defense Modeling & Simulation Coordination

Office (DMSCO) uses the now defunct Institute of Electrical and Electronics Engi-

neers (IEEE) 610.3-1989 definition for wargame, defining it as “a simulation game in

which participants seek to achieve a specified military objective given pre-established

resources and constraints; for example, a simulation in which participants make bat-

tlefield decisions and a computer determines the results of those decisions.” [13] For

the purposes of this thesis, we define a wargame as a battlefield simulation modeled

after real-world logic in which participants make decisions to accomplish one or more

objectives, and a computer determines the results and interactions.

This thesis focuses on LCS implementations in the turn-based, simultaneous-move,

and multi-action game Stratagem MIST. Stratagem MIST is a game in-development

by the Air Force Research Laboratory (AFRL) and serves as a multi-domain simulator

for wartime conflicts. To the best of the author’s knowledge, an LCS agent dedicated

to a military wargame is currently unexplored. Furthermore, the lack of research

involving Pittsurgh-style LCSs in games in general provides a point of interest and

unexplored territory. Our hypothesis is that LCSs, specifically Pittsburgh-style LCSs,

can be an effective symbolic game-playing agent for Stratagem MIST in addition to

producing explainable outputs that can allow an outside observer to understand its

decision-making process.

1.2 Motivation

Wargames are especially important to the field of military science, as they can be

used for development of combat theory [14]. The concept of the modern wargame

was invented in Prussia in 1780, where records indicate young officers played a table-

top battlefield game to learn military strategy. Historically, lessons learned from

wargames often translate to real-world scenarios. In World War I, every major com-
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batant employed wargaming to aid in war planning [15]. In World War II, the United

States and British Royal Navy used the outcome of analyzed wargames to develop

better tactics while axis forces used wargames to predict allied strategies [14]. In re-

cent years, independent projects demonstrated the success of applying AI techniques

to solve complex wargames [16]. However, the goal of solving games or developing

advanced search techniques to outperform humans may conflict with the established

purpose of wargames. If the objective of a wargame is to prepare a human player

for actual conflict through simulation, the actions of a non-symbolic agent may not

transfer into real-world representation. In contrast, an agent that can play a wargame

well and present its rationale in an interpretable form could potentially help discover

new strategies and tactics that can be translated to real-world scenarios.

Stratagem MIST is a prime domain to explore the use of LCSs in wargames.

Its large complexity, general wargame structure, and adaptability to multiple multi-

domain scenarios prompt research interest on multiple fronts. As other LCS im-

plementations are absent from wargames and Stratagem MIST, it is important to

track the internal makeup of LCS rules with regard to condition distribution, ac-

tion distribution, and action selection tendencies. This data may answer questions

regarding LCSs’ ability to make complex decisions while maintaining explainability

and performance.

1.3 Research Questions

This thesis seeks to answer the following research questions:

1. How effective are LCS agents in a wargame setting?

2. What does the internal makeup of the LCS-generated rules look like for Stratagem

MIST?
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3. How interpretable are the default rule-sets generated by LCS agents, and what

can be done to improve interpretability?

1.4 Research Tasks

The following tasks were performed to answer the aforementioned research ques-

tions:

1. Develop agents that can effectively play Stratagem MIST using known LCS

methods.

2. Conduct experiments comparing the win rate of agents using different symbolic

and non-symbolic game-playing methods.

3. Analyze how well the LCS agents can develop strategies to general Stratagem

MIST scenarios.

4. Examine the distribution of conditions and actions in finalized LCS rule-sets.

5. Analyze how the resulting rule-sets can be interpreted and reduced to a readable

form.

1.5 Document Overview

Chapter II presents an introduction to game theory concepts, an overview of

LCS research, and a description of Stratagem MIST. Chapter III outlines the efforts

implemented to answer the research questions. Chapter IV analyzes and discusses the

resulting data. Finally, Chapter V presents conclusions and discusses future work.
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II. Background and Literature Review

Game-playing agents that make complex decisions continue to be at the forefront

of the field of Artificial Intelligence (AI). While the field witnessed a recent shift away

from explainable AI [17], a return to the Learning Classifier System (LCS) family

of algorithms provides a multi-objective approach to develop effective game-playing

agents while maintaining explainability. In this chapter, Section 2.1 describes the core

components of decision theory and game theory. Section 2.2 covers genetic algorithms,

which are a crucial part of LCSs. Sections 2.3 and 2.4 outline the architecture of var-

ious LCS implementations and their history in games. Finally, Section 2.5 describes

the domain of Stratagem MIST.

2.1 Decision Theory

A familiarization of how agents make decisions is required to understand the

nuances of symbolic game-playing methods. The concept of developing agents that

can perform complex tasks in games falls under the broader scope of decision theory.

Decision theory encompasses the notion of attempting to achieve a maximum expected

utility by combining probability knowledge with a utility function, and a problem that

can be solved using elements of decision theory is known to be a decision problem

[18].

2.1.1 Markov Decision Process

Some of the algorithms described in this thesis use a Markov Decision Process

(MDP) to make their decisions. A MDP [18] is a sequential decision problem for

a fully observable and stochastic environment, often used in reinforcement learning,

with the following components:
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• s is a set of states (with an initial state s0).

• a is a set of actions.

• P (s′|s, a) is a Markovian transition model. A transition is Markovian if the

probability of reaching s′ from s is independent of the history of previous states.

• R(s) is a reward function.

• π is a policy, a solution that specifies what an agent should do for any state the

agent may reach. π(s) is the action recommended by the policy at state s.

• π∗ is the policy that creates the optimal utility.

2.1.2 Decision Trees

A decision tree [18] represents a function that takes in a vector of inputs and

returns a single output, known as a decision. This decision is a made by performing

a sequence of tests. All decision trees start at the root and and traverses conditions

until a decision is formed. This document will explore a specific type of decision tree,

the Fast And Frugal Tree (FFT) [19]. A FFT is a specific type of binary decision

tree that has a single condition as a root and each level of the tree contains a single

action if the previous condition was met, or a branching condition otherwise. The

only exception is the deepest level of the tree, which has a default action. A diagram

of a FFT is shown in Figure 1. A FFT is also known as a decision list [20], and its

usefulness is derived from its interpretability and learnability.

2.1.3 Game Theory

Game theory is a direct extension of decision theory that focuses on games, a

decision simulation which can be described formally as [21]:
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Figure 1: A Fast and Frugal Tree of Depth N [19].

• S is a set of states (with an initial state s0).

• St is a set of terminal states in s that upon reaching, the game ends.

• N is the number of players.

• A is the set of actions.

• f(S, A) is the state transition function that returns a new state.

• R(S) is the reward function associated with a specific state.

Within this definition of a game, there are many attributes that make up game

theory, that can define a game and impact its complexity. These attributes are

aggregated from [18], [21], and [22]:
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• Zero-sum/Non-Zero Sum: A game is considered zero-sum if the sum of the

payoffs for each action is equal to zero. In other words, a move that benefits a

player will equally detriment other players. In a non-zero sum game, an action

that is beneficial to a single player will not necessarily adversely impact other

players.

• Cooperative/Non-cooperative: A game is considered cooperative if there exists

terminal states desirable to multiple players, such that multiple players can win

the game. Otherwise, the game is considered non-cooperative.

• Symmetric/Asymmetric: A game is considered symmetric if all players start off

with the same assets. At the start of the game, all players should possess an

equal chance of winning. In an asymmetric game, players start off with different

assets or available actions.

• Sequential/Simultaneous: A game is considered sequential if the state transition

function is only dependent on the action of one player. Turn-based games are

considered sequential. A game is considered simultaneous if the state transition

function takes into account the actions of multiple players. The actions do not

need to be selected by the player at the same time, but can be queued for

simultaneous execution.

• Perfect Information/Imperfect Information: A game is considered having per-

fect information if all aspects of the game’s state are visible to the player. For

example, chess is a perfect-information game, as all pieces and potential actions

are able to be viewed by both players at all times. A game of imperfect informa-

tion will have some component of the game’s state hidden from the player. For

example, the poker variant Texas Hold ’em involves the players holding cards

in secret from each other [19].
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• Discrete/Continuous: A game is discrete if it has a finite set of states, actions,

and players. Otherwise, the game is continuous.

• One-Player/Many-Player: A game is considered one-player if actions are chosen

by a single player. It is important to note that a game played by a single human

can still be considered many-player if actions are being chosen by artificial

agents.

The game being analyzed in this document, Stratagem MIST, is a zero-sum, non-

cooperative, simultaneous, perfect information, discrete, many-player game. A spe-

cific game’s classification as symmetric or asymmetric is dependent on the game mode

and specific scenario.

2.2 Genetic Algorithms

All non-baseline agents explored in this document use a Genetic Algorithm (GA)

in their learning process. A GA is a specific type of evolutionary algorithm that pos-

sess populations of chromosomes, parent selection according to fitness, crossover to

produce new offspring, and random mutation of new offspring [23]. The psuedocode

for a general GA can be found in Algorithm 1, and the individual components de-

scribed in [23] are:

• Populations of chromosomes - A chromosome can be viewed as an entity of

changeable genes that makes up the individual. The initial population should

include diversity in chromosomes.

• Selection According to Fitness - The process of selecting chromosomes in the

population for reproduction. Typically, a chromosome’s probability of selection

is proportional to its fitness function, which is a metric defining the performance

of an individual.
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• Crossover - The process of combining parent individuals to create children off-

spring with chromosomes derived from a combination of both parents. The

crossover process is derived from the biological recombination process between

two single-chromosome (haploid) organisms.

• Mutation - The process of randomly altering a chromosome in an attempt to

create genetic diversity.

Algorithm 1 Genetic Algorithm
numPop = # of Individuals in Population
numIt = # of Iterations
pMut = probability of Mutation

1: function GA(numPop, numIt, pMut)
2: Generate population of size numPop
3: Calculate fitness of Initial Population
4: for currentIteration← 1, numIt do
5: Select two parents from current population (often with high fitness scores).
6: Perform a crossover on the parents.
7: if rand(0, 1) < pMut then
8: Mutate the offspring
9: end if

10: Calculate fitness function of each child.
11: Add offspring to the population.
12: Remove least-fit offspring until the current population is equal to numPop.
13: end for
14: end function

2.2.1 Co-evolutionary Algorithms

Stratagem MIST is a multi-action game that requires units to work together to

accomplish an objective. Thus, it is a prime domain for Multi-Agent Systems (MASs),

where each unit acts as its own agent while co-evolving with other units. Potter and

De Jong [24] expanded on the concept of GAs with regard to MASs, systems that

use more than one agent to accomplish a learning task proposing the first concept

of a Cooperative Co-evolutionary Evolutionary Algorithm (CCEA) as a method for
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function optimization. Whereas GAs showed success with developing fit individuals

through direct competition, they are also able to cooperatively evolve a group of

individuals. This concept was expanded upon in [11], where Grefenstette and Daley

outlined four co-evolutionary approaches for evolving competing agents. In the first

method, an agent is evaluated against a random member of the opposing population.

In the second method, an agent is evaluated against the previous champion of the

opposing population. In the third method, an agent is evaluated against a set of

previous champions. In the fourth method, an agent is evaluated against a preliminary

prediction of the champions of the current generation. Section 4.1.4 outlines the co-

evolutionary methods chosen in the experiments.

2.3 Learning Classifier Systems

A notable example of the success of GAs is shown in the LCS family of algorithms.

A LCS is a rule-based system that converts a state-space to a set of condition-action

pairs. Over the past four decades, since the inception of the original LCS, Classifier

System One (CS-1) developed by Holland in 1978 [25], LCSs have seen many iterations

and implementations. While there are many different variations, Holmes et al. [26]

define a generalized LCS as a system that has the following properties:

1. A population component that consists of classifiers (condition-action rules with

their associated parameters) that represent the current knowledge of the system.

2. A performance component that moderates interaction with the environment.

3. A reinforcement component that determines how certain classifiers are rewarded

based on their fitness.

4. A discovery component that seeks to discover new rules, usually through a

genetic algorithm.
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A recent area of interest in the field involves the extension of classic LCS algo-

rithms to Multi-Learning Classifier Systems (MLCSs) [27]. These include Multi-Agent

Learning Classifier Systems (MALCSs), ensemble classifiers, and distributed classi-

fiers. This thesis focuses on MALCSs, MASs in which agents utilize a LCS.

There are two major types of LCS implementations which differ based on their

representation of the solution [8]: Michigan and Pittsburgh-style. The Michigan-style

LCS encompasses all LCS implementations modeled after University of Michigan

researcher Holland’s breakthrough 1978 proposal of LCS [25]. In a Michigan-style

LCS, a classifier consists of a single condition-action rule and its parameters. Each

classifier is evaluated individually, such that rules can easily be added, mutated,

and removed without severely altering the functionality. The Pittsburgh-style LCS

encompasses all algorithms that are modeled after Smith’s 1980 initial algorithm [28]

at the University of Pittsburgh. In a Pittsburgh-style LCS, the classifier consists of

a set of rules which are evaluated collectively. The complete solution is represented

by the complete rule-set. Both LCS styles differ fundamentally in how the agent

formulates its classifiers and learns from the environment.

2.3.1 Michigan-Style LCSs

Because the term Michigan-style LCS is not a system but a family of systems, it

is difficult to create a unified architecture for it. However, Urbanowicz and Moore’s

generic LCS model [8] inspired by the most popular implementations of LCSs encap-

sulate the core of many Michigan-style algorithms. The architecture can be viewed

in Figure 2, and the individual components are explained in the rest of the section,

with the exception of Section 2.3.1.9.
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Figure 2: A Generic Michigan-style LCS that encompasses elements from many
Michigan-style implementations [8].

2.3.1.1 Interaction with the Environment

The first step of the LCS process is interaction with the environment, through

mechanisms known as detectors and effectors. Detectors sense the environment and

parse an environmental instance into a usable condition-string, which is then placed

into the Learning Machine (all other non-environmental components of LCS). Follow-

ing the outputted action of the Learning Machine, the effector observes the action’s

effect on the environment and returns a reward.
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2.3.1.2 Population [P]

The population set, denoted as [P], consists of classifiers. The classifiers in [P]

can be either initially randomly generated or empty, and filled by the process known

as covering. The classifiers in [P] are allowed to contradict each other, such that two

classifiers with the exact same condition string lead to different actions. Throughout

the LCS process, the classifiers in [P] are added, mutated, or removed. Most LCS

implementations also have some form of population controller that deletes ill-formed

conditions that rarely match an environmental instance, or consumes a specific rule

into a more general rule through a process known as subsumption.

2.3.1.3 Covering

Covering is a mechanism to introduce new classifiers into [P]. Generally, it is

only applied if no classifiers in the population match the environment instance. The

primary goal of covering is to verify that there is at least one classifier in [P] that

matches the current training instance. Through covering, a rule is randomly generated

that will match the training instance, and an action is randomly assigned. The rule

should be general enough to match similar environment instances, but not specific

enough where it will match infrequently.

2.3.1.4 Match Set [M]

The Match Set, denoted as [M], is the subset of classifiers in [P] that matched the

rule of the environment instance. If a classifier was generated due to covering, it is

automatically included in [M] following the initialization.
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2.3.1.5 Action Selection

From the classifiers in [M], the LCS must choose an appropriate action. A classi-

fiers’ parameters are often the determining factor in this decision. A classifier often

has a fitness score that determines its value among other classifiers. This fitness is

often strength-based or accuracy-based. Under a strength-based fitness, classifiers are

evaluated by the expected reward to be received if the classifier’s action is utilized.

Accuracy-based fitness measures a classifier’s accuracy, such that the system develops

a more complete map of the problem space and avoids focusing on only higher-payoff

niches.

Action Selection components also often have a type of exploration vs. exploitation

mechanism, such that the system prioritizes high-payoff classifiers but do not get stuck

in a local maximum. Thus, many action selection systems will have the option to

randomly choose an action from [M] even if its fitness is lower. Other common action

selection policies include roulette selection based on fitness, or tournament selection

with a sample of the population.

If the task of the classifier is a reinforcement learning task, a prediction array is

often used. The prediction array is a list of prediction values calculated for each action

found in [M]. In certain reinforcement-based LCS implementations, the prediction

array can have a form of credit assignment that predicts the Q-value of a particular

action.

2.3.1.6 Action Set [A]

The Action Set, denoted as [A], is the subset of classifiers in [M] whose action

corresponds to the one chosen by the action selection component. These actions

are channeled back to the environment, upon which the effectors in the environment

determine the reward for those actions.
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2.3.1.7 Learning Strategy

The Learning Strategy is often composed of a fitness evaluation phase followed

by a parameter update phase. The learning strategy is implementation-specific, and

often is the component that differentiates two LCS algorithms from one another.

2.3.1.8 Genetic Algorithm

Depending on the specific LCS implementation, the Genetic Algorithm can be

implemented with the classifiers in [P], [M], or [A]. The associated fitness value of

each classifier is often the determining factor behind selection. In a Michigan-style

LCS, the GA performs at the rule-level, as each chromosome is represented as a set

of conditions followed by a proposed action. Mutation occurs by altering a single

condition or action, and crossover occurs by merging two condition sets and selecting

a single action among two parent classifiers. LCSs often have a deletion mechanism

to detect defunct classifiers generated by a GA. A detailed description of a general

Genetic Algorithm not specific to LCS can be found in Section 2.2.

2.3.1.9 Popular Michigan-Style Algorithms

Many modern Michigan-style algorithms stem from the simple architecture found

in Wilson’s Zeroeth-Level Classifier System (ZCS) and eXtended Classifier System

(XCS) algorithms [8]. ZCS [29] is a strength-based extension of Holland’s initial

LCS. The algorithm’s contribution to the field can be attributed to the use of a credit

assignment scheme in its learning strategy. The original algorithm uses a combination

of Q-Learning and Holland’s Bucket Brigade strategy, a credit assignment scheme that

mirrors an information-based service economy where classifiers must "bid" a portion

of their strength to receive a future reward [30]. ZCS simplifies the CS-1 algorithm it

was derived from, removing message-passing and heuristics to improve understanding
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of the algorithm.

XCS [31] is an extension of ZCS that altered the field by evaluating a classifier’s

fitness based off the accuracy of the rule as opposed to the strength. While many vari-

ations and extensions exist, an XCS is generally characterized by an accuracy-based

fitness score, niche-based rule discovery occurring in the action set, and alternating

exploration and exploitation trials [32].

2.3.2 Pittsburgh-style LCS

Shortly after Holland proposed what would later be referred to as a Michigan-style

LCS, researchers at University of Pittsburgh, led by Smith, established what would

later be referred to as the Pittsburgh-style LCS. Whereas a Michigan-style LCS can

be viewed as an iterative, continuous convergence of one solution, a Pittsburgh-style

LCS can be viewed as a generalization optimization process [33]. Because Pittsburgh-

style LCSs evaluate whole rule-sets, they often are not scalable, and are often limited

in size. Thus, the implementation of a Pittsburgh-style LCS involves a trade-off: the

rule-set must find a balance of minimalism and accuracy [34]. A generic Pittsburgh-

style LCS is shown in Figure 3.

There are two common Pittsburgh-style algorithms that are often applied to learn-

ing tasks: GALE [35] and GAssist [36]. Urbanowicz and Moore [8] note the most

successful Pittsburgh-style implementations are designed for data mining and classi-

fication problems, and are limited by their ability to only learn offline.

The SAMUEL algorithm [11] is a common implementation of Pittsburgh-style

learning in game domains. The algorithm uses a population of randomly-generated

decision lists consisting of high-level rules to select actions based on signals from the

environment. As a SAMUEL agent progresses throughout the environment in an

episode, it iterates sequentially through its decision list to select the action corre-
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Figure 3: A Generic LCS that encompasses elements from many Pittsburgh-style
implementations.

sponding to the first matched rule. After k episodes conclude, a cumulative reward

is assigned to the decision list to be used as its fitness. After each individual in the

population has received a fitness, a GA preserves the fittest in the population and

forms a new generation through crossover and mutation.

The Adaptive Pittsburgh Classifier System (APCS) algorithm [37] is an adapta-

tion of Smith’s algorithm designed for reinforcement-learning problems that develops

a population of fixed-sized classifiers. Like SAMUEL, it uses a population of rules

to make decisions, and then applies a GA to form new rule-sets. However, there

are a few distinctions from SAMUEL. First, rules do not need to be represented in

symbolic format. Secondly, online adaptive covering may be applied if no rule in the

rule-set matches the environment. Finally, there is no fixed action selection policy.

While SAMUEL’s decision-list/FFT action-selection policy may be used, other poli-

cies include selecting the most general matched classifier, the most specific matched

classifier, or a random matched classifier.
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2.3.3 Advantages of LCSs

The main advantages of LCSs are derived from its interpretability in form of

the use of symbolic methods [7]. LCS implementations apply a form of symbolic

reasoning to complete their learning tasks. This phenomenon can outperform other

tasks when the objective is to mimic human thinking or provide a platform for human

understanding. A human cannot be expected to understand the agent’s decision-

making process given the end product (a set of weights) of a trained neural network,

but can traverse symbolic rules and come to understand the reasoning behind a LCS’s

decision-making process.

Furthermore, because LCS implementations provide instructions for how to handle

generalized components of a state-space as opposed to the complete state-space, LCSs

are not as computationally expensive as other traditional game-playing methods.

This phenomenon was observed in [38], where the learning rate parameter for the

Michigan-style LCS variant XCS was significantly higher than an agent that used the

Neuroevolution of Augmenting Topologies (NEAT) algorithm.

Due to the evolutionary-based search of the discovery component, LCS imple-

mentations are competitive in domains where error correction cannot be directly de-

termined [34]. Applying their interactive evaluation-evolution approach, LCS credit

assignment policies use responses from the environment but they do not convert it

directly into structural search biases. As a result, LCS implementations tend to find

globally-optimal solutions in challenging problems, where other game-playing agents

using traditional search-based approaches may get stuck in a local optima [34].

Lastly, LCSs are powerful learning tools that can outperform non-symbolic meth-

ods in some domains. For example, Urbanowicz and Moore in [39] notes that other

machine learning algorithms have trouble adapting to scaled, distributed, and non-

linear problems, citing the 135-bit multiplexer as a problem only being able to be

20



solved by LCSs. The 135-bit multiplexer is a benchmark learning task to predict the

value of one of 128 register bits pointed by the first seven bits of the sequence.

2.3.4 Limitations of LCSs

LCSs suffer from a few limitations, described in [40], which may contribute to

its relative sparsity to the field compared to other learning methods. First of all, it

is not-widely known compared to traditional learning systems, causing fairly limited

software availability and interfacing. Furthermore, it can suffer from over-fitting,

even with rule compaction techniques. There are also many parameters to optimize,

with un-tuned parameters such as learning rate significantly impacting performance.

Moreover, it is sometimes challenging to represent domain-specific rules and extract

knowledge from a state-space.

There also exists relatively little theoretical work for mapping problem domains

to specific implementations. In other words, it is often difficult to take a problem and

determine which LCS algorithm or hyper-parameters would be appropriate, based

off existing implementations. Further research is required to understand the inner

workings of applying LCSs to problem domains and what key properties are crucial

for selecting a learning algorithm [34]. Thus, when applying a LCS to any problem

domain, multiple design choice variations should be considered and tested. Prior to

testing their effectiveness in a tournament, Stratagem MIST’s LCS agents underwent

preliminary experiments determining the best action selection and standardization

strategies (see Section 4.1).

2.4 LCSs in Games

Despite LCSs being in existence for over four decades, their extension to games

are less explored than other learning tasks [7]. While Smith proved that his initial
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Pittsburgh-style LCS algorithm could be extended to a poker domain [10], the ex-

tension to real-time, multi-unit, or spatial games did not occur until much later. In

1995, Serendynski et al. [41] proposed what is suggested to be the first use of LCSs in

a spatial game, developing Michigan-style agents on games that use both small-world

and scale-free networks. Their success prompted many more game agents based off a

LCS algorithm across many platforms. This list includes a ZCS for the multi-agent

game Tank Battle [42], a Modular and Hierarchical Classifier System (MHiCS) for

the Massively Multiplayer Online Role-Playing Game (MMORPG) Ryzom [43], and

an XCS for the board game Connect4 [32].

A vast majority of modern applications of LCS in games are Michigan-style, as

often performance is desired over interpretability. Due to increased complexity and

domain-specific difficulties, Pittsburgh-style LCS implementations struggle in com-

parison to their Michigan-style counterparts in real-time scenarios [7], but are effec-

tive in some domains such as Unreal Tournament 2004 [9]. XCS, the most popular

Michigan-style LCS, is shown to be an effective competitor in a wide range of games,

including Othello [44], Robocode [38], and Starcraft [45].

While all LCS algorithms designated as Michigan-style must follow a version of

the architecture shown in Figure 2, the term Pittsburgh-style LCS is a catch-all term

for any learning processing with an evolving rule-set and a genetic algorithm. Thus,

a common problem with finding its implementation in literature is that its implemen-

tation in games can often be unacknowledged by authors, perhaps inadvertently or

intentionally for novelty purposes. For example, De Mesentier Silva et al. [19] were

able to demonstrate the effectiveness in generating novice heuristics for a poker game

using rule-sets as a FFT and a genetic algorithm. Gallagher and Ryan [46] were able

to use an evolutionary, rule-based approach to play Pac-Man. Both implementations

meet all the requirements for their systems to be considered a variant of a LCS (pos-

22



sessing population, performance, reinforcement, and discovery components [26]), yet

the LCS concepts are absent from their papers. This phenomenon poses a potential

problem to the field, as there exist many implementations that can expand the theory

behind LCS in games but are unacknowledged by their authors.

There exist a few instances where MASs apply LCSs in their decision-making

processes. Hercog and Fogarty [47] introduced homogeneous agents using multiple

ZCS agents to co-evolve rule-sets to solve the El Farol problem. Notable design choices

include the combination of a greedy reward scheme that benefits individual agents

and a cooperative reward scheme that benefits all agents, as well as a controller that

ensures all agents explore or exploit simultaneously. Hercog later used multiple XCS

agents to solve the same problem in [48]. In [49], Castillo and Lurgi extended multi-

agent XCS to the game Robocup. They found that the result of the performance

of XCS was heavily dependent on the quality of the starting homogeneous rule-set

shared by the agents.

2.5 The Game of Stratagem MIST

Stratagem MIST is a game developed by the Air Force Research Laboratory’s

Information Directorate (AFRL/RI). It is a graph-based, simultaneous-move, turn-

based, multi-action game where units may move along a connected graph. The game

can be played with multiple players and multiple teams, but the default settings

consist of two teams (Red/Blue) with one player on each side. Each player is given

near-perfect information. Each player may see all vertices, edges, units, and objec-

tives. At time of writing, the game is currently in development. Each game is loaded

as a scenario, which is a networked-graph map with pre-defined starting unit assets

and positions. A configuration can be defined as a scenario with pre-loaded agent

types, e.g. Red Random Agent vs. Blue Roving Mob Agent on Hex Battle. This
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document refers exclusively to Release Version 4.0, and thus changes made in later

versions of this game will not be reflected in this document.

2.5.1 Objectives and Metrics

A game may be won via the use of objectives and/or metrics. Each team can be

assigned one or more objectives. An objective is a boolean function that returns a

true or false value based on the current state of the game. The current objectives are

as follows:

• Kill All Enemies: The objective is met if all the enemy players have been killed.

• Capture Node: A set of nodes to capture N is given to the player. The objective

is met if all nodes in N are captured by the player’s team.

• Protect Unit: A set of friendly units U is given to the player. The objective is

met if all units are alive at the end of a turn. If a single unit in U dies, the

objective is failed.

• Territory Value Held Consecutively: A set of nodes N that form a territory, a

threshold value k, and a consecutive turn limit t are given to the player. If the

player holds k values in N , a turn counter is initialized to 0. For each turn where

k nodes in N is captured, the turn counter is incremented. In the event that

the condition is not met (the team loses control of the territory), the counter is

reset to 0. The objective is met when the turn counter is equal to t.

The game may also be won via the game’s system of metrics. A metric is a non-

boolean scoring system that determines a player’s success. The highest score wins

the game. The current metrics are as follows:

• Force Ratio: This metric calculates the combined strength of all friendly units

in proportion to enemy units. For example, if combined strength of the blue
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team is 400 and the combined strength of the red team is 600, the blue teams

has a force ratio of 0.4 and the red team has a ratio of 0.6.

• Territory Controlled: This metric calculates how many nodes a player has cap-

tured relative to all available nodes. For example, in a map with 20 nodes, if

the blue team has captured 5 nodes, the red team has captured 10 nodes, and

5 nodes remain uncaptured, the blue team has a territory controlled metric of

0.25 and the red team has a territory controlled metric of 0.5.

Teams may have an unbalanced set of objectives. For example, a scenario may

exist where the red team’s sole objective is Kill All Enemies, while the blue team’s

objectives are Capture Node and Protect Unit.

2.5.2 Ground Plan

Each turn, the agent must submit a Ground Plan comprised of queued move orders

from different units. A move order will consist of three potential actions:

• Attack – The unit is ordered to move to an adversary-occupied node.

• Defend – The unit is not ordered to move, and instead will hold its position at

its current node.

• Move – The unit is instructed to move to an unoccupied node or node with

friendly units.

Units may move independently of each other, and may move towards any vertex on

the graph provided there is an edge. A combat event triggers if two opposing units

cross paths on an edge, or if a unit arrives at a vertex occupied by an opposing unit.

Move orders carry over between turns, such that if a unit is not able to move to the

designated vertex by the end of its turn, the unit will continue to travel on the next
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turn. Furthermore, the game uses an in-game path-finding mechanic to determine

the best path between two vertices, but the user can elect to create a custom path.

A ground unit’s strength is affected by the terrain it is on and whether it is

attacking, defending, or moving. The movement multipliers based on terrain can be

found in Table 1 and the attack/defense multipliers can be found in Table 2.

Unit Type Clear Rough Urban
Infantry 1.0 0.8 1.0
Armored 1.2 0.5 0.25
Mech Inf 1.1 0.65 0.5

Table 1: Movement Multipliers based on Terrain

Unit Type Role Clear Rough Urban
Infantry Attack 1.0 1.0 1.2
Infantry Defend 1.0 1.2 3.0
Armored Attack 1.4 0.9 0.8
Armored Defend 1.6 1.2 1.5
Mech Inf Attack 1.1 0.9 0.9
Mech Inf Defend 1.3 1.2 1.8

Table 2: Attack/Defense Multipliers based on Terrain.

2.5.3 Air Plan

Each turn, the agent must submit an Air Plan consisting of four components:

1. Air Apportionment Orders. Orders are split up into four aircraft groups: Air Su-

periority, Multi-Role, Strike, and Surface-to-Surface Missile (SSM). Each group

can be tasked a ratio that must be added up to one between three priorities: De-

fensive Counter-Air/Offensive Counter-Air (DCA/OCA), Air Interdiction, and

Close Air Support (CAS).

2. DCA/OCA Priorities. The aircraft will prioritize a region for counter-air pro-

cedures. It applies some fraction of its air attack power against all of the other
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Figure 4: A subsection of a map featuring nodes with different terrains. From left to
right, the terrain types of the nodes are Clear, Rough, and Urban. Edges may possess
a terrain type that does not match a connected node, as shown in the two observable
edges here.

aircraft that spent time in the same Air Region.

3. Air Interdiction Priorities. The aircraft will attack specific ground enemies.

Damage dealt from the aircraft will be reflected in a targeted ground unit’s

strength.

4. CAS Priorities. The aircraft will support friendly ground units such that a

bonus will be granted to ground units should they enter into a combat event

with an opposing ground unit.

The in-game Graphical User Interface (GUI) menu to submit an air plan is shown

in Figure 5.
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Figure 5: A sample Stratagem MIST Air Plan using the in-game menu.
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III. Methodology

This chapter discusses the design and evaluation of the examined Learning Clas-

sifier System (LCS) agents, whose performance and generated rule-sets were utilized

to address the questions in Chapter I. Section 3.1 lists the challenges associated with

implementing agents within the Stratagem MIST environment. Section 3.2 describes

the baseline agents included with the game. Section 3.3 discusses development deci-

sions applied to all LCS algorithms. Section 3.4 outlines the learning strategies of all

explored algorithms. Section 3.5 discusses Strategem MIST’s environment for which

the quality of the agents are tested on. Finally, Section 3.6 discusses the scoring

functions used in fitness evaluation and agent evaluation.

3.1 Implementation Challenges

Stratagem MIST is a difficult domain to develop a game-playing algorithm. The

game is currently in development and thus there exists no public research regarding

heuristics or strategies. Furthermore, the challenges with implementing a game agent

and determining the best action given a specific state in Stratagem MIST arise due

to the following properties of the game:

• The game is multi-action. Units move independently of each other, exponen-

tially increasing the state-space. For example, if our team has 10 units with 20

actions each, then our total action set A contains 2010 moves [50].

• The game is simultaneous-move. From any state S, if the set of our agent’s

available actions are defined as A1 and the opposing agent’s available actions are

defined as A2, a state-space S ′ is generated from any a1, a2 pair where a1 ∈ A1

and a2 ∈ A2. Thus, the branching factor for a given ply will be |A1 × A2| [51].
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• The game is multi-objective. Because there is not a single metric to determine

the winner of the game, it is difficult to determine a single fitness score. Does a

state space that places a high value in a single objective have a better evaluation

than a state space that has a more even score distribution across objectives?

This evaluation choice makes heuristic-based algorithms difficult to implement.

• The game’s units have internal state. Each unit contains a strength component

which determines its success in a combat event. Therefore, a decision must be

made in how to represent this value in a state. One implementation could choose

to represent state as a pure decimal value while another implementation could

separate unit strength into discrete buckets. The way this state is represented

could cause significant variation across similar implementations.

• The game’s environment varies across scenarios. Stratagem MIST is not played

in a fixed environment, and each scenario has different configurations of network,

units, and objectives. Thus, an agent must be able to generalize their game-

playing strategy across scenarios.

3.2 Baseline Agents

Stratagem MIST Release 4 provides three baseline agents to play against:

1. Random: This agent will move all units independently of each other. All Air

Plans are generated randomly.

2. Roving Mob: This agent moves all of its agents into a single node and then moves

as a cohesive mob to attack the enemy. It can be paired with the following Air

Plans:

(a) Murder All Air Bases: This agent works by targeting enemy AirBaseUnits

exclusively at the cost of everything else.
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(b) Air To Ground Focus: This agent is designed to take all of its aircraft and

set it on an Air Interdiction task. For each turn, a single ground unit will

be targeted by all aircraft in the Air Plan.

For the remainder of this document, the Random agent is referred to as RAND,

the Roving Mob agent with Murder All Air Bases agent is referred to as RM-MAAB,

and the Roving Mob with Air To Ground Focus is referred to as RM-A2G. These

three agents provided a performance baseline to evaluate the performance of the LCS

agents.

3.3 LCS Algorithm Development

The experiments consider Multi-Agent Learning Classifier System (MALCS) im-

plementations of the Michigan-style Zeroeth-Level Classifier System (ZCS) and eX-

tended Classifier System (XCS) algorithms, and a Pittsburgh-style Adaptive Pitts-

burgh Classifier System (APCS). Each MALCS consisted of two configurations: ho-

mogeneous and heterogeneous. All MALCSs share a common semantic structure for

rule representation, but differ in learning strategy and action selection.

3.3.1 Rule Representation and Generation

In most LCS systems, rules are mainly represented by fixed-length ternary strings

[8]. However, due to the complexity of Stratagem MIST, it would require large

memory requirements to form conditions out of the complete state-space and mask

human readability. One potential solution is the application of using conjunctions

of variable-length condition predicates over continuous values, initially referred to as

"messy" representation [52] and later converted to symbolic expressions (s-expressions)

[53]. In this scheme, each rule represents a partial component of the state-space, with
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the ability to be joined together to form a more complete representation of the state-

space. For all LCS-based agents, rules are structured using the following structure:

Condition (& Condition)∗ =⇒ Action (Action Modifier)∗

Each rule contains at least one condition to avoid trivial classifiers, and the number

of conditions was determined by a conjunction probability pc that holds the probabil-

ity that another rule will be selected for conjunction with the current condition clause

after each addition of a condition. For example, let n be the number of conditions in

a rule. If pc = 0.5, then p(n = 1) = 0.5, p(n = 2) = 0.25, p(n = 3) = 0.125, until

a condition upper bound is reached. Some actions have an action modifier that give

further information to the agent about an action, e.g. the name of a specific unit

to target. The Boolean OR operator is excluded from our scheme due to associated

generalization issues, specifically within the XCS algorithm [53]. The Boolean NOT

operator is implicitly included in each condition. All implemented LCS algorithms

do not have a subsumption component, as subsumption produces smaller rule sets

at the cost of adaptability to environmental changes [54] and thus would affect the

agent’s robustness against different game-playing strategies.

Each LCS agent possesses a separate rule-set each for the ground domain and air

domain. Ground conditions are composed of a combination of information relative

to the unit, e.g. current strength, and information available to all units, e.g. total

team strength. Thus, a ground unit’s inputs are a combination of unique values

only specific to the unit to allow individual decision-making as well as shared team

inputs that allow for team-based decision making. Air conditions only consist of

information available to all units, as air units possess no internal state. A list of

available conditions and actions can be found in Appendix B.
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3.4 Algorithms Explored

In addition to the baseline agents, the experiments feature three LCS categories

and a modern multi-action Genetic Algorithm (GA)-based algorithm known as Online

Evolutionary Planning (OEP). Within each LCS category, a homogeneous and a

heterogeneous version was explored.

3.4.1 ZCS

For our implementation of the ZCS algorithm in Stratagem MIST, each rule is

assigned a strength-based fitness that determines the success of a classifier. In ac-

cordance with the initial proposed algorithm of ZCS [29], the genetic algorithm is

panmictic, thus taking place in the [P ] classifier set. Each classifier (cl) contains its

fitness (f) as its only parameter. The credit assignment takes place as follows:

1. Each classifier in the set [M] - [A] (matched classifiers that were not selected)

get "taxed" by a fixed fraction τ : fcl ← fcl(1− τ).

2. Each classifier in [A] offers a portion of their fitness and places it in a shared

"bucket" B: B ← B + βfcl, fcl ← fcl(1− β).

3. If an immediate reward ρ exists, then it is reflected in each classifier in [A]:

fcl ← fcl + ρβ
|A| .

4. All classifiers in the previous action set [A]−1 are updated: fcl ← fcl + γB
[A]−1

.

3.4.2 XCS

Our application of the XCS algorithm in Stratagem is modeled off Butz and

Wilson’s refined XCS algorithm [54]. In this implementation, the genetic algorithm is

performed using only the classifiers in the action set. Notable deviations from the core
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algorithm include the use of a power law function to calculate the accuracy κ, and the

addition of a parameter that controls the minimum number of classifiers in a match

set before a covering mechanism occurs. For each possible action A, XCS contains a

prediction array that predicts the reward R. Each classifier (cl) contains four distinct

parameters: prediction (p), prediction error (ϵ), fitness (f), and experience (exp).

The parameters are updated as follows: [8]

1. The ϵ in each classifier is updated: ϵcl ← ϵcl + β(|R− pcl| − ϵcl).

2. Each prediction is updated: pcl ← pcl + β(R− pcl).

3. The accuracy is computed: κ = ϵ−exp
cl if ϵcl > ϵ0, otherwise 1.

4. A relative accuracy is computed: κ′
cl = κcl

Σκ[A]t−1
.

5. Each fitness is updated: fcl ← fcl + β(κ′
cl − fcl).

6. The experience exp is incremented for all classifiers: exp← exp + 1.

3.4.3 APCS

The experiments evaluate a multi-agent version of APCS, described in [37]. APCS

is primarily based off of Smith’s initial Pittsburgh-style algorithm [28]. It consists of:

1. A population of fixed-size rule-sets are randomly initialized and its fitness is set

to zero.

2. Each individual trains for k iterations using a fixed action selection policy. Upon

receiving a reward, it is added to the rule-set’s fitness.

3. A GA component creates the next generation offline, and fitness is reset to 0.

Enée [37] notes four different action selection policies for APCS. In the First/F&F

policy, the rule-set is ordered in a decision list such that rules at the top of the list
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are prioritized over lower-ranked rules. The remaining action selection policies utilize

unranked rule-sets. In the Specific selection policy, the most specific rule, i.e., the

rule with the most condition constraints, is selected to create tuned decision-making

to small changes in the environment. In the General selection policy, the most general

rule, i.e. the rule with the least condition constraints, is selected to create generalized

decision making. Finally, in the Random selection policy, rules are randomly selected

such that any matched rule in the rule-set has equal chance in being picked.

There are advantages to each policy. The First/F&F action selection method

is easily human-readable as it corresponds to a decision list. The General policy is

especially of interest in Stratagem MIST, as domains can vary vastly across scenarios.

This method could theoretically create adaptable classifiers that scale across unknown

scenarios. In contrast, the Specific policy produces a tuned rule-set to a specific

scenario if known beforehand. Finally the Random policy attempts to enforce that

all rules in the rule-set lead to a desirable state, as any matched classifier could be

selected and thus harshly penalizes negative mutations. To the best of the author’s

knowledge, no effort has been made to compare action selection policies or distinguish

which policy corresponds to a specific domain. Section 4.1.1 provides a comparison

of the policies for Stratagem MIST.

For the GA component, our implementation of APCS uses uniform crossover be-

tween two rule-sets, with each rule representing an allele. A mutation rate of 0.1 is

considered at each allele to promote diversity. The APCS preserves its fittest individ-

ual via elitist strategy and Tournament-Selection (k=5) to form the next generation

in its GA. Figure 6 demonstrates this process.

It is important to note that unlike the Michigan-style algorithms, all learning

occurs offline, and thus APCS requires significantly longer training times. However,

unlike ZCS or XCS, the resulting decision list is a readable optimized instruction list
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Figure 6: Crossover for APCS.

that requires no or minimal additional computation to perform action selection.

3.4.4 Heterogeneous LCS

As Stratagem MIST is a novel multi-agent domain, homogeneous and heteroge-

neous strategies have yet to be explored. To verify the success of LCS agents under

both options, all examined MALCS agents (ZCS, XCS, and APCS) were separated

into homogeneous/heterogeneous pairs. For the remainder of this document, the het-

erogeneous versions are referred to by an Ht prefix, while the homogeneous versions

are referred to by their base name, as the original multi-agent versions [47, 48] were

homogeneous. In the homogeneous version, all units in the ground component of the

game share a centralized rule-set and thus perform actions based off the same rules.

To prevent two units from always performing the same action in the same position

and encouraging diversity in actions, some rules are only accessible to certain units

or unit types. For example, a condition set may be joined with the condition type

= "Light Infantry" or unit = "Fire Team Alpha". In the air component of the game,

rules are only based off non-relative information, and each action directly affects the

complete air plan. The immediate benefit of this strategy is lower training time,

evaluating one set of rules at a time as opposed to sets of sets of rules.
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In the heterogeneous MALCS agents, each ground unit is assigned their own rule-

set. This rule-set is tied to a unit’s unique identifier, such that rule-sets cannot be

carried over between scenarios, as units possess different names and types in other

scenarios. In the heterogeneous Michigan-style MALCSs, the GA still occurs within

each individual’s rule-set, and does not select parents between units. In Heteroge-

neous Adaptive Pittsburgh Classifier System (HtAPCS), crossover can occur between

individuals, but occurs only between rule-sets with the same identifier. Therefore,

rules and rule-sets only crossover with matching identifiers in other individuals (i.e.

Unit A cannot crossover rules with Unit B in another population). An example

iteration can be found in Figure 7.

Figure 7: A sample HtAPCS Iteration with four individuals and elitism(n = 2). The
fittest individuals are preserved, with the least fit individuals formed from a crossover
of the elites with mutation. Unit Identification is preserved in this crossover. In other
words, a child’s Unit 1 must be formed from either Unit 1s of its parents (barring
mutation).
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3.4.5 Online Evolutionary Planning

The aforementioned baseline and LCS agents also competed against an agent using

OEP, a modern non-symbolic GA-based learning algorithm. Designed by Justesen

[50], OEP is a multi-action game-playing algorithm that uses a genetic algorithm to

determine the best action. The initial population consists of vectors of randomly-

selected actions. Each vector is passed through an evaluation process and assigned

a fitness score. A GA then crossovers and mutates the fittest individuals to form

the next generation and repeat the cycle. The OEP algorithm’s notable attribute is

that it only focuses on developing an action sequence for the current turn instead of

developing a "rolling horizon" action list for subsequent turns. The psuedocode for

the algorithm can be found in Algorithm 2. Our implementation matches the original

algorithm with the exception that the evaluation function uses a depth-limited roll-

out instead of a static state scoring function to avoid greedy states and evaluate

short-term consequences of a certain move.
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Algorithm 2 The Online Evolutionary Planning algorithm [50].
numPop = # of Individuals in Population
numIt = # of Iterations
pMut = probability of Mutation
state = current game state

1: function OEP(numPop, numIt, pMut, state)
2: ind[] pop = population of size numPop seeded with random actions;
3: count = 0;
4: while count < numIt; do
5: for Individual ind in pop do
6: clone = CLONE(state);
7: clone.update(ind.actions);
8: if ind.visits == 0; then
9: ind.value = EVAL(clone);

10: end if
11: ind.visits++;
12: end for
13: pop.GA(pMut);
14: count++;
15: end while
16: end function

3.5 Stratagem MIST Environment

All agents competed on Stratagem MIST Release 4’s default scenarios:

• Hokkaido simulates a conflict taking place on the northernmost of Japan’s main

islands. The objective is to inflict the most damage on the opponent and prevent

units from taking damage.

• Hex Battle simulates a conflict on a 10 x 9 grid where most of the nodes have

a degree of six. The objective is to receive the most points for capturing and

holding six nodes in the grid

• Three Main Lanes simulates a conflict where two opposing teams must destroy

each other’s capital, and may travel through three lanes.

• Air Assault On Crete simulates a conflict on the Greek island of Crete. Like the

39



Hokkaido scenario, the objective is to inflict the most damage on the opponent

and prevent units from taking damage.

All starting configurations in the default scenarios are shown in Figure 8. Scenario-

specific information regarding units and map layouts can be found in the appendix

(Table B.5).

(a) Hokkaido (b) Hex Battle

(c) Three Main Lanes (d) Air Assault On Crete

Figure 8: Stratagem MIST’s four default scenarios

3.6 Reward Evaluation and Performance Metrics

Stratagem MIST has a built in scoring function that evaluates the current metrics

and returns a scalar value. In all scenarios except Three Main Lanes due to its use

of objectives in addition to metrics, this scoring function is applied at the end of the

game to determine the winner. In Three Main Lanes, this evaluation is applied only

if neither teams’ objective is not completed. All agents use a version of this scoring

function as a measure of fitness opposed to win rate, with a win/loss bonus to help
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distinguish between actions that lead to a marginal victory and a clear victory. Thus,

the reward for all agents is calculated as shown in Algorithm 3. In Chapter IV, the

win rate and the pure metric evaluation are used as a performance metric for all

agents.

Algorithm 3 Reward Function for Agents
Of = Set of Friendly Objectives
Oe = Set of Enemy Objectives
Mf = Set of Friendly Metrics
Me = Set of Enemy Metrics
W = Win/Loss Bonus

1: function GenerateReward(Of , Oe, Mf , Me, B)
2: if Of .AllCompleted() then
3: return 1 + B
4: end if
5: if Oe.AllCompleted() then
6: return -1 - B
7: end if
8: score ← METRICEVALUATION(Mf , Me)
9: if score > 0 then

10: score ← score + B
11: else if score < 0 then
12: score ← score - B
13: end if
14: return score
15: end function
16:
17: function MetricEvaluation(Mf ,Me)
18: myScore ← 0
19: enemyScore ← 0
20: for m in Mf do
21: myScore ← myScore + m.value * m.multiplier
22: end for
23: for m in Me do
24: enemyScore ← enemyScore + m.value * m.multiplier
25: end for
26: return myScore - enemyScore
27: end function
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IV. Results and Analysis

This chapter presents the experiments designed to answer the research questions

and the associated results. Section 4.1 details the design of the conducted experi-

ments. Section 4.2 displays the results of the main Round-Robin tournament and

analyzes a supplemental general case. Section 4.3 examines each agent’s ruleset com-

position and how it relates to behavior. Section 4.4 looks into how each Learning

Classifier System (LCS) prompts interpretablity. Finally, Section 4.5 discusses limi-

tations and solutions to the explainability of the agent’s rule-sets.

4.1 Design Decisions

This paper identifies two potential gaps in research involving LCSs that require

experimentation prior to Round-Robin comparison. The first is a direct comparison

of action selection strategies for Pittsburgh-style LCSs. The second is an analysis of

setting up rule-sets for Multi-Agent Learning Classifier Systems (MALCSs). Because

these are preliminary experiments, only agents that do not require any training must

be used for testing. For the remainder of the document, we define groups of agents

as the following:

• Baseline agents: RAND, RM-MAAB, and RM-A2G.

• Non-LCS agents: The baseline agents plus the Online Evolutionary Planning

(OEP) agent.

• Homogeneous LCS agents: Zeroeth-Level Classifier System (ZCS), eXtended

Classifier System (XCS), and Adaptive Pittsburgh Classifier System (APCS).

• Heterogeneous LCS agents: Heterogeneous Zeroeth-Level Classifier System (HtZCS),
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Heterogeneous eXtended Classifier System (HtXCS), and Heterogeneous Adap-

tive Pittsburgh Classifier System (HtAPCS).

• LCS agents: All agents that utilize a LCS.

4.1.1 APCS Action Selection Comparison

The APCS algorithm is the least occurring algorithm in literature, and therefore

required preliminary experimentation prior to testing. This experiment compared

the action selection policies described in Section 3.4.3, in addition to a fifth selection

policy: Mode. This action selection policy takes the most advocated action in the

match set. If there is a tie, or if the action modifiers do not match, placement in

the rule-set is the tie-breaker. The experiment did not consider the base maps as

winning strategies could be found by the APCS agents against the baseline agents

after only a few generations. Therefore, the agents trained on custom "Hard" version of

Hokkaido, which involved the removal of some friendly ground units and the addition

of enemy ground units. Each individual played as the red player to avoid winning

by tie and ran 100 games against an even rotation of the four non-LCS agents. The

first generation’s rule-set was randomly initialized with 100 ground rules and 100

air rules. The Genetic Algorithm (GA) formed each subsequent rule-set through

elitist preservation (n=1) and tournament selection (k=5). The average scores of

each individual in the population in each generation across 10 trials can be viewed in

Figure 9.

Across all scenarios, the Fast and Frugal method, Specific method, and General

method prevailed over the Mode method and the Random method. The means of the

top three methods all fall within each others’ 95% confidence intervals in the latter

generations, and thus any one of them could be the most effective method in this

domain.
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For the remainder of experiments, the Fast and Frugal method provides the action

selection policy used by the APCS and HtAPCS agents, as its decision-list nature is

highly interpretable [19] and does not require iterating through all rules in the rule-set

as the other two methods would.

Figure 9: The average score over 10 trials each of red APCS agents versus baseline
blue agents using different action selection policies. Error bars are 95% confidence
intervals of the means.

4.1.2 Standardizing Starting Rule-sets for Heterogeneous Agents

Early implementations of non-baseline agents would often fail if units were ini-

tialized to randomly move independently of each other. While the agents would

eventually find the winning strategy, it would take significantly longer to converge.

This effect can be attributed to a strength-in-numbers effect in Stratagem MIST,

where clusters of units are less vulnerable to enemy attacks. Therefore, a method to
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catalyze the convergence process is to seed the initial population with coordinated

movements. For the OEP agent, a individual where each unit initially moves to the

same node is guaranteed to be in the initial population. As crossover and mutation

occurs, deviations from this strategy allow for units to diverge from the main group

to find optimal strategies. For homogeneous LCS agents, this problem does not exist

due to the pre-built Converge action, which encourages unit grouping if the condition

is general enough. However, for the heterogeneous LCS, agents have a small prob-

ability of initially clumping in groups. A solution to this problem is a two-phased

approach where all ground units initially follow a shared rule-set, and then allow for

individual crossover and mutation to become heterogeneous. Once the agent trains

for k iterations and converges on a homogeneous strategy, units are free to find unit-

specific rules that improve team performance. For our implementation, k was set to

1.

The results of a preliminary experiment to test this strategy can be found in

Figure 10, which plots the results of red heterogeneous agents against blue non-LCS

agents on the Air Assault on Crete scenario. In the experiment, agents are assigned

the category NS (Non-standardized, agents were initially assigned different rule-sets)

or S (Standardized, agents were initially assigned a single rule-set). The Pittsburgh-

style agents used the Fast and Frugal action selection method. All initially standard-

ized agents converged faster than their non-standardized counterparts, although with

different margins, as noted in Table 3. As two S-LCS agents are found to outperform

their NS-LCS counterpart, the remainder of experiments only utilized standardized

agents.
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Figure 10: The standardization strategy is denoted by the prefix NS (Non-
standardized, agents were initially assigned different rule-sets) or S (Standardized,
agents were initially assigned a single rule-set).

Mean σ Max p-value t-value Statistically
Significant

S-HtZCS vs.
NS-HtZCS 0.221/0.161 0.155/0.082 0.500/0.350 .274 -1.12 No

S-HtXCS vs.
NS-HtXCS 0.465/0.194 0.047/0.107 0.500/0.475 <.00001 -7.680 Yes

S-HtAPCS vs.
NS-HtAPCS 0.699/0.274 0.241/0.018 0.898/0.313 <.00001 -5.839 Yes

Table 3: Results of a t-test comparing standardized vs. non-standardized implemen-
tations on Air Assault On Crete.

4.1.3 Performance Comparison

To assess the efficiency of all agents, a Round-Robin tournament was performed.

The tournament compared games between ten agents: the three baseline agents de-

scribed in Section 3.2, the three homogeneous LCS agents, the three heterogeneous

LCS agents, and an agent using the OEP method described in Section 3.4.5. An

agent played every agent (including themselves) across the four default maps as both

the red and blue teams. In addition, to test the ability of the LCS agents to perform

generally, LCS agents were also tested in a General case, where they are trained on

all scenarios and thus are barred from using scenario-specific conditions and actions.
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4.1.4 Training and Testing Information

There exists a challenge training the Michigan-style agents against the Pittsburgh-

style agents due to the differences in learning strategies (online vs. offline). Under

default training conditions, the Michigan-style agent would be inherently advantaged

because it could train against a population of individuals and thus train against

diverse play-styles. An alternative would be to train the Michigan-style agents as

a population as opposed to a single individual. Therefore, the experiments train a

population of Michigan-style MALCSs.

Section 2.2.1 outlined four methods to co-evolve agents proposed in [11]. A varia-

tion of the first approach was chosen, which consists of individuals competing against

randomly selected individuals in opposing populations. Thus, the training scheme

consists of twelve (six red/six blue) homogeneous populations consisting of agents

using each of the algorithms. As each individual learns or is evaluated, it is paired

with a randomly-selected individual in the opposing population. The four non-LCS

agents (RAND, RM-MAAB, RM-A2G, and OEP) are considered in evaluation but

do not contain their own populations due to no variation across the agents. Pop-

ulations consisted of 20 individuals. Upon forming a new generation, the 10 fittest

individuals were preserved and the new generation was formed from the elites via uni-

form crossover with a mutation rate of 0.02. LCSs possess many different parameter

settings. Due to the novelty of Stratagem MIST’s domain, no predefined LCS param-

eters exist to immediately adapt into the tournament. Therefore, a GA was utilized

to tune the necessary parameters for the agents. A description of these parameters

and their values are shown in Table 4.

Upon the completion of training, each individual in the population is subject to

an evaluation of a preliminary 200 games against a random sample of the opposing

population. The fittest individual from each population is chosen to compete in the
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Parameter Description ZCS XCS APCS
NG # of ground rules in population 1000 1000 100
NA # of air rules in population 1000 1000 100
α Controls the decline in accuracy if classifier is inaccurate N/A .025 N/A
β Learning rate .025 .025 N/A
γ Discount factor .8 .8 N/A
ϵ Probability of selecting a random action (exploration) .05 .05 N/A

θdel Minimum threshold required for deletion vote 20 20 N/A
µ Probability of mutation in GA .3 .3 .3
ν Fitness exponent N/A 5 N/A
τ Strength deduction for non-selected classifiers .001 N/A N/A
χ Crossover rate in GA .25 .25 .25
e0 Minimum error for classifiers to be considered of equal accuracy N/A .2 N/A
pc Conjunction probability .8 .8 .5
p0 Minimum number of conditions required in condition clause 1 1 3

pGA Probability of GA in each step .05 .01 N/A

Table 4: Values for LCS parameters for all implementations. Homogeneous and
Heterogeneous agents used the same parameters.

Round-Robin tournament. Each agent then plays 1000 games against each agent

(including itself) on each scenario. All training/testing was shared between an Intel

Xeon Core CPU E5-2687W with 3.10GHz clock speed/64GB RAM and an Intel Core

i7-10700 with 2.90 GHz clock speed/16GB RAM.

4.2 Main Tournament Results

The win rates and final scores for each agent match-up on all scenarios can be

found in Appendix A. Aggregated win rates across all scenarios are shown in Table 5,

along with a relative rank associated with the combined win rates of all scenarios.

While the LCS agents utilized a LCS in both the ground and air domains, the ground

domain was mainly analyzed as it is the primary domain. The four default scenarios

are not balanced, even though they start off with the same assets. The blue team has

a default advantage due to ties in the scoring system result as a blue win. The blue

agent may use this feature to their advantage, achieving a win by picking a strategy

that ultimately leads to a scoring tie. As an example, this is evident in blue HtAPCS

versus red XCS matchup on Hokkaido (see Table A.1 and Table A.2). While every
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Red/Blue Hokkaido Hex Battle Three Main
Lanes

Air Assault
On Crete Combined Relative

Rank
RAND 4.6 6.3 8.2 5.6 38.2 43.3 0.9 52.1 12.9 26.8 10 10
RM-MAAB 13.3 44.4 49.1 20.2 0 20 0.1 59.7 15.6 36.1 8 9
RM-A2G 13.2 44.3 49.2 26.4 0 20 0.1 59.6 15.6 37.5 8 8
OEP 39.7 50.4 32.5 25.3 52.6 53.7 14.4 83.2 34.4 53.1 7 6
ZCS 79.2 70 87.5 62.1 77.3 64.6 37.4 82.3 69.4 69.7 3 5
XCS 46.1 80.6 52.4 39.1 21.1 73.5 22.2 95.1 34.9 72.1 6 4
APCS 82.2 100 69.4 79.1 73.5 60 44.9 100 71.4 84.8 1 1
HtZCS 43.3 73.2 73.4 74.4 71.4 75.5 27.6 86.8 53.2 77.5 4 2
HtXCS 21 29.4 65.6 21.7 74.8 54.1 3.7 99.5 41.2 51.2 5 7
HtAPCS 89.7 69.2 77.9 81.4 67.4 59.2 50.4 100 70.1 77.4 2 3
Average 43.2 56.8 56.5 43.5 47.6 52.4 20.2 79.8

Table 5: The win rates for all scenarios against every other agent in the tournament.
The win rates are presented as (Red/Blue), where the left value is the overall win
rate of the red agent and the right value is the overall win rate of the blue agent.
In addition, a combined score of the four scenarios is presented along with a relative

rank based on the combined score.

game in this configuration technically resulted in a scoring tie, the blue agent won

every game. The weight of this advantage is dependent by scenario. For example,

under a red RAND vs. blue RAND configuration, 7.41% of games on Hokkaido

resulted in a tie, while 0.47% of Hex Battle games resulted in a tie.

The ZCS agent performed average among the tested agents, relatively ranking

3rd as a red player and 5th as the blue player. The HtZCS agent achieved similar

performance, relatively 4th as the red player and 2nd as the blue player. Across all

scenarios, it was able to achieve a 100% win rate against the Roving Mob agents

and 100% or near 100% against the RAND agent. The XCS and HtXCS agents

under-performed their LCS counterparts, respectively ranking 6th and 5th on the red

team and 4th and 7th on the blue team. On the Air Assault on Crete Scenario, the

HtXCS agent was unable to outperform any blue agent. The APCS agent performed

well, relatively ranking 1st on both teams. The HtAPCS agent achieved similar

performance, relatively ranking 3rd on the blue team and 2nd on the red team. These

implementations were also the only agents to achieve 100% win rates against all other

agents on a scenario (Blue APCS on Hokkaido and Air Assault On Crete, and Blue
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HtAPCS on Air Assault On Crete). The results indicate that both agents are able to

succeed under different environmental circumstances, showing their effectiveness as

complex game-playing agents.

4.2.1 General Case

One metric of an agent’s success in Stratagem MIST is their ability to perform

with no prior knowledge of the environment. We redefine the objective to create a

general agent that can apply its rule-sets to any scenario, as Stratagem Release 4 has

limited capability to create new maps outside of the default four. To test this ability,

a supplementary experiment where agents cannot use scenario-specific knowledge was

performed in addition to the main tournament. Under these constraints, agents can

only use scenario-general rules and are barred from using any condition or action

that use a specific aspect of the environment, e.g., Move to Node "X" on scenario

"Y". Thus, classifiers can only contain condition and actions labeled as "General" in

Tables B.1 and B.2. This experiment only considers the homogeneous agents due

to heterogeneous agents assigning rule-sets by unique unit identifiers that do not

transfer across scenarios. The non-LCS agents are unaffected, as they already possess

no knowledge of the environment or optimized-strategy tailored to an environment

prior to the start of the game.

To train the agents, each LCS agent trained against the baseline agents and pop-

ulations of the LCS agents on each of the four scenarios on both sides. Each agent

played all agents (including itself) for 100 games on each scenario. The aggregated

results of each agent, along with a relative rank among agents, are shown in Table 6.

The inclusion of this case measures the ability of the agents to perform when

the environment is not explicitly given. Overall, the agents did not perform nearly

as well without the scenario-specific classifiers but were still able to outperform the
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RAND RM-MAAB RM-A2G OEP ZCS XCS APCS
Win Rate 42.1 38.3 37.4 73.4 59.4 45.4 54.0

Relative Rank 5 6 7 1 2 4 3

Table 6: The aggregated win rates of agents across all scenarios. The LCS agents
were limited to scenario-general rules. A relative rank is calculated among the agents.

baseline agents. They were not able to outperform the OEP agent, which achieved a

73.4% overall win rate. This shortcoming is likely due to the play-forward ability of

OEP which can help on an unseen scenario. While the perceived adaptability of the

agents in the general case may be due to the limited number of scenarios available

to train on, as there exist a countably infinite set of environment configurations, a

larger sample size is required to further analyze the ability of agents to generalize.

4.3 Rule Composition and Behavior Analysis

To the best of the author’s knowledge, LCSs within the wargame subclass of

games are absent in literature. Therefore, to determine how the algorithms approach

wargaming, a deep dive into the internal makeup of the rules is warranted. This

section observes the internal makeup of the rule-sets with respect to condition/action

distribution and selection frequencies.

4.3.1 ZCS

A look into the action selection behaviors of a few of its games reveal much about

the nature of the ZCS agent. Figure 11 compares the firing of classifiers for red ZCS

and HtZCS agents across three games against a blue RAND agent on Hex Battle.

A classifier is considered "fired" if it is in [A] at the end of a step. The ZCS agent

only shared eleven of its 500 classifiers across all three games, and there exist between

9-30 classifiers only used in one or two games. However, the "base" classifiers were

fired the most often, with the eleven classifiers accounting for 84.0% of the agent’s
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Figure 11: A comparison of the sets of classifiers chosen by three different trials of
a red ZCS and HtZCS versus a blue RAND agent on Hex Battle. The top diagrams
track the subsets of classifiers across the trials, while the bottom graphs track their
frequency in action selection.

action set throughout the game. This behavior suggests that in Stratagem MIST,

high performance can be achieved with a small set of actions. A supplementary

experiment tracking the firing of classifiers of a blue ZCS agent against a red RAND

agent on Hex Battle across 100 games discovered that the agent utilized 100% of its

classifiers at least once (all classifiers at least advanced to [M]), fired 30.2% of its

available classifiers, but fired its top 3 classifiers 80.6% of the time. This is displayed

in Figure 12, which shows the cumulative distribution of the fired classifiers across

all games. It is important to note that the top three classifiers advocate for the same

action, G11-Urban: move to the nearest urban terrain, or defend if already there.

This strategy makes sense in the context of the game, as urban terrain provides large
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Figure 12: The distribution of classifiers in the finalized action set across 100 games
of a red ZCS agent against a blue RAND agent on Hex Battle.

defense multipliers for certain units. An outside observer would note ZCS’s initial

strategy is to move its forces to the nearest urban terrain (which all happen to be

point-generating nodes), defend to generate points and protect against aggressive

agents, and then seek further point-generating nodes in the late-game. However,

the turn that the agent switched to its node-seeking phase varied between games

and showed dependence of the behaviour of the opposing agent. This phenomenon

highlights how ZCS can react to environmental changes.

4.3.2 XCS

XCS achieved a lower win rate than ZCS. A glimpse into its classifier selection

can be offered as an explanation. Figure 13 tracks the classifier selection across

three games on Hex Battle against a RAND agent. XCS possessed no deviation

in classifiers across its games, while HtXCS possesed some deviation but less of an

extent than ZCS. Each turn, the XCS agent ordered units to converge to the nearest

urban terrain, but did not initiate any other order regardless of state change. This

proved to be a less effective strategy, as the red ZCS agent outperformed its XCS

counterpart against five agents and only under-performed against one agent. These
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Figure 13: A comparison of the sets of classifiers chosen by three different trials of a
red XCS and HtZCS versus a blue RAND agent on Hex Battle.

XCS agent likely performed worse than ZCS due to high error values on states closer

to the beginning of the game, upon which the prediction is heavily dependent of the

agent currently being played. If the XCS agent develops a winning strategy against

a single agent but loses to a secondary agent, its fittest classifiers are at risk due to

the XCS’s credit assignment scheme. A classifier that previously had a high fitness

is punished twice with a lower prediction and a higher error. ZCS does not suffer

from this problem as while a negative reward would lower the fitness, but would

gradually grow over time assuming the number of positive rewards is greater than

the number of negative rewards. While subsequent experiments showed that XCS

can develop a winning strategy if trained only on a single baseline agent, it struggles

when training on multiple agents. This is likely due to high and volatile prediction
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errors, as observed in Figure 14. A potential solution is an adaption to an offline

Figure 14: The average prediction error of all classifiers in the action set of a red
XCS agent on HokkaidoMD over 200 games. The agent played against each of the
baseline agents, in addition to a rotation of all three agents (denoted as ALL). When
learning against all agents, the average prediction error in the action set was larger
and more volatile. A large prediction error negatively impacts XCS’s ability to find
optimal classifiers.

learning system, similar to APCS, where the reward is delayed and thus averaged

over the course of multiple games.

4.3.3 APCS

To visualize the rule selection process for these agents, we tracked games featuring

APCS and HtAPCS agents against a RAND agent under each configuration (each

side on each scenario). Figures 16 to 19 show the results of the red APCS and

HtAPCS agents against a blue RAND agent on each scenario. Figure 15 displays

the cumulative action selection distribution of the the sixteen tracked games. Over

the course of the games, the agents showed preference or aversion to certain actions,

but no specific action dominated the distribution. This trend is of interest because

APCS outperformed the other agents while taking very different actions, showing its

adaptability and ability to use all available actions in its decision-making process.
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Scenario
Name

Red
Agent

Blue
Agent

# Rules
Utilized

Avg
Rule

Position

Standard
Deviation

Avg Distinct
Rules Per

Turn
Hokkaido APCS RAND 9 25.6 9.3 2.4
Hokkaido HtAPCS RAND 10 8.5 6.7 2.8
Hokkaido RAND APCS 3 6.0 4.6 1.2
Hokkaido RAND HtAPCS 7 28.0 15.6 1.4

Hex Battle APCS RAND 6 13.3 13.0 2.0
Hex Battle HtAPCS RAND 15 26.3 29.1 4.6
Hex Battle RAND APCS 5 12.4 8.1 2.5
Hex Battle RAND HtAPCS 12 28.9 22.2 2.3

Three Main Lanes APCS RAND 7 18.0 10.6 2.1
Three Main Lanes HtAPCS RAND 16 27.9 21.0 4.1
Three Main Lanes RAND APCS 9 28.2 30.4 1.5
Three Main Lanes RAND HtAPCS 22 25.5 26.6 5.7

Air Assault On Crete APCS RAND 2 12.0 11.3 1.0
Air Assault On Crete HtAPCS RAND 3 27.7 22.0 1.1
Air Assault On Crete RAND APCS 4 35.5 23.4 1.2
Air Assault On Crete RAND HtAPCS 11 47.1 32.6 3.3

Table 7: Information regarding the resulting APCS and HtAPCS rule-sets across all
scenarios. In this experiment, all agents only played one game per configuration.

Table 7 displays information regarding the utilized rules across all tables. In a

single game, no Pittsburgh-style agent used more than 22% of the rules in their rule-

sets. There also appears to be no distinct advantage or disadvantage to having general

rules near the top of the list as opposed to spreading classifiers among classifiers that

never fire. On average, the Pittsburgh-style agents for Three Main Lanes used 13.5

rules while the agents for Air Assault on Crete used 5.0 rules. Furthermore, the Air

Assault on Crete scenario on average contained less variation in movements compared

to the other scenarios. This phenomenon suggests that more complex environments

foster more complex behaviors.
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Figure 15: The cumulative action distribution of all fired rules across all heterogeneous
and homogeneous APCS configurations across all scenarios.
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Figure 16: A rule selection chart for red APCS and HtAPCS agents versus a blue
RAND agent on Hokkaido.
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Figure 17: A rule selection chart for red APCS and HtAPCS agents versus a blue
RAND agent on Hex Battle.
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Figure 18: A rule selection chart for red APCS and HtAPCS agents versus a blue
RAND agent on Three Main Lanes.
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Figure 19: A rule selection chart for red APCS and HtAPCS agents versus a blue
RAND agent on Air Assault On Crete.
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4.4 Symbolic Analysis

In addition to their contrasting performance, the LCSs’ trained rule-sets provide

different levels of explainability and replicability. As an example, a sample of the

LCSs rule-sets following the tournament on Hokkaido are shown in Figure 20. To

replicate the decision-making process of the APCS agent, the human user needs only

to read the rule-set as a Fast And Frugal Tree (FFT). If the user has online access to

the required information, this process is simple. If the objective is to interpret rather

than replicate, the reader can determine valuable heuristics from the rule-set. For

example, a simplified interpretation of the first rule is "IF my team is mainly located

in the north of the map AND there are no enemies near me AND the enemies are

mainly not in the center of the map AND my unit is a light unit THEN Move South".

This rule aligns with the heuristics of the game, as it prompts an advancement to a

more maneuverable position of the map. They can also infer offline how APCS makes

certain associations between state and action. In this particular rule-set, centrality is

a frequently occurring condition that prompts a MoveDirection action, and thus the

reader can infer that one should consider the centrality of a team before moving a

unit a certain direction.

Michigan-style MALCSs do not not possess the explainability of APCS, as a user

attempting to interpret or replicate these agents forced to check the condition and

track the expected payoff of each classifier in [M ]. Like APCS, a human user could

interpret offline what condition-action pairs prompt good outcomes by looking at the

fittest and least fit rules. As an example, if only the first three rules and the last rule

in the ZCS rule-set were in [M ], the running tally would be {MoveToNearestUnoc-

cupiedNode: 9.84, Diverge, 9.80, TargetSpecificUnit: -3.22}. Given the associated

fitnesses, a human can form associations between the current state and the agent’s

recommended action ranking. An advantage in interpretability not shared with APCS
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Figure 20: A sample of the trained rule-sets on Hokkaido. The six fittest rules and
fitnesses are shown, along with the rule that possessed the weakest fitness or predicted
payoff.

is the availability of smaller condition clauses, upon which the user can observe the

effect of individual conditions. Furthermore, the user may potentially observe what

the agent constitutes as bad decisions through negative payoffs. In APCS, the rule-set

can be viewed as what the agent defines as the best 100 rules, but the worst rules are

not tracked. Lower-ranked rules in APCS imply the advancement to a weaker state

but not necessarily a "bad" one. The least fit rule in the ZCS rule-set can be inter-

preted as "IF there are no enemies near me AND there are no friendly units at my

location AND my team is not located in the east portion of the map AND my team’s

total health is near-depleted or full THEN Attack". This rule makes sense with the

nature of the game, as a lone attack without the help of the team would likely result

in the destruction of the unit with minimal damage to the opposing team.

The Michigan-style LCSs fall short of APCS when the objective is to replicate

the agent. A human user may need to go through all matched rules to completely

replicate the outcome of ZCS or XCS. While a human can achieve near-replication

by sorting the classifiers in [M ] by fitness and noting the action recommended by a

63



sample of the most polar classifiers, it does not guarantee 100% accuracy.

4.5 Towards Interpretability

Despite being shown to be interpretable, LCSs are limited by their ability to filter

out irrelevant conditions that consequently joined with relevant conditions. Figure 21

displays the distribution of conditions and actions of the top 10% of ZCS classifiers

in the finalized rule-sets. Despite conditions measuring very different aspects of the

state-space, no set of rules was over-saturated with a subset of informed conditions,

or conditions with high information-gain. This phenomenon suggests that LCSs are

incapable of filtering out conditions that do not provide value to the decision-making

process, and their inclusion requires unnecessary computation. To further examine

this idea, a subsequent experiment was required to determine a MALCS’s ability to

filter out uniformed conditions. A irrelevant variable was added to the set of available

ground conditions. This variable, known as CT , has a 100% chance of always returning

true in a condition clause. Thus, CT provides no useful information regarding the

state-space. Figure 22 demonstrates finalized APCS and ZCS rule-sets with CT as a

rule-set. Despite providing no accurate information about the state-space, the best

classifiers in the rule-sets still incorporated them in their condition clauses. This

phenomenon conflicts with the established trade-off of keeping classifiers minimal yet

accurate. If a human were attempting to recreate the algorithm’s decision-making

processes, unnecessary computations and condition checks would interfere with the

rule-set’s interpretability.

There are ways to potentially clean a finalized rule-set generated by LCSs to make

it more readable. Wilson proposed Classifier Reduction Algorithm (CRA) [55], which

was expanded by Dixon et al [56]. This algorithm is a three-step offline learning model

which finds the minimal number of classifiers that achieve 100% performance, elimi-
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Figure 21: Distribution of conditions in the top 10% of classifiers in the finalized ZCS
rule-set.
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Figure 22: Distribution of conditions in the top 10% of classifiers in the finalized ZCS
rule-set.

nates any subset of classifiers that do not improve the overall solution, and discards

any unused classifiers. While this scheme could be adapted to other Michigan-style

classifiers, a similar algorithm for Pittsburgh-style LCSs is currently unexplored.

A minimizing pipeline is suggested as follows: a Pittsburgh-style agent plays a

large number of games (n>100) against a variety of agents. At each step of action

selection, the agent tracks which conditions in each classifier return true and which

return false. A condition’s match rate is defined as the number of times it returns

true divided by the total of number times it is checked. In the first step of minimizing,

if a single condition’s match rate in a classifier is at or below a certain low threshold

α (likely near 0%), the entire classifier can be removed, shortening the overall length
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of the rule-set. In the second step, if a condition’s match rate is at or above a certain

high threshold β (likely near 100%), the condition can be removed from the finalized

list. The exception to this policy is the last classifier, for if the entire condition clause

has a match rate of 100%, that classifier is the default action, and all classifiers after

it can be removed from the list.

Using this method with α = 0 and β = 100 on the resulting rule-book generated

from the red HtAPCS agent playing against all other agents on Air Assault On Crete,

100 ground classifiers averaging 4.06 conditions per classifier was transformed to nine

classifiers averaging 3.33 conditions per classifier, and finally 9 classifiers averaging

2.0 conditions per classifier. On Hokkaido, 100 ground classifiers averaging 3.90 con-

ditions per classifier was transformed to 26 classifiers averaging 3.46 conditions per

classifier, and finally 26 classifiers averaging 2.80 conditions per classifier. In both

cases, there existed no significant difference between the minimized rule-sets and the

original rule-sets. However, because the classifiers were tracked through sampling, it

is not guaranteed that this method will maintain the same performance, even with

non-zero floors or non-hundred ceilings. Another potential method to improve read-

ability is to set an upper-bound to the number of conditions such that APCS can only

make decisions based off a restricted set of classifiers and thus would perform poorer

if one of the slots required to maintain an accurate representation of the state-space

were taken by an uninformed classifier.
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V. Conclusions

This chapter provides conclusions to the results presented in Chapter IV and

recommendations for future work. Section 5.1 highlights key takeaways from the

results. Section 5.2 outlines how this document produced novel research. Section 5.3

covers the limitations of the this document in regards to the experiments. Finally,

Section 5.4 outlines the next pressing steps for further research.

5.1 Key Takeaways

The results offer a few key takeaways. First of all, the results demonstrate that

Learning Classifier Systems (LCSs) can be effective competitors in Stratagem MIST,

showing promise for further LCS experimentation in wargame domains. In the main

tournament, the LCS agents outperformed Online Evolutionary Planning (OEP) and

the baselines. While OEP persevered in the general case, all LCS agents outperformed

the baselines. The most notable achievement is the success of Adaptive Pittsburgh

Classifier System (APCS) in an environment that is often saturated with Michigan-

style LCSs [7]. Its success as well as its enhanced interpretability may prompt a

renaissance of the long-forgotten Pittsburgh-style classifier system.

5.2 Significance of Research

This thesis offered several novel perspectives to the field, to include:

• A direct comparison of action selection strategies for Pittsburgh-style learning,

specifically within the APCS algorithm.

• A comparison of heterogeneous and homogeneous control strategies in Multi-

Agent Learning Classifier System (MALCS) agents.
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• An extension of LCS algorithms to wargames, with a focus on symbolic classifier

representation.

• An examination of interpretability of LCSs, with regard to their explainability

and potential replicability by a human agent.

• A novel approach to the game of Stratagem MIST, which currently has limited

exposure to advanced agents due to its in-development status.

5.3 Limitations

Some limitations of the LCS algorithms occur in the representation of the state-

space. One of the main issues with rules consisting of partial representations of the

state-space is that in the covering phase and the Genetic Algorithm (GA) phase, an

over-saturation of ineffective condition clauses can occur. There are a few methods

in literature that aim to correct this problem. Abedini et al. developed a feature-

ranking system for eXtended Classifier System (XCS) [57]. In this system, a Rule

Discovery Probability Vector (RDP) contains a probability associated with each po-

tential condition in C = {c1, c2, ..., cn}, with all the probabilities adding up to 1.0.

When a condition is generated in covering or through the GA component, the condi-

tions with the higher probability in the RDP are more likely to be chosen. Abedini

et al. utilized supervised learning methods such as Information Gain and Entropy

to determine the distribution of the RDP. To the best of the author’s knowledge,

this phenomenon has not been extended to Pittsburgh-style classifier systems and/or

reinforcement learning domains. The need for a feature-ranking system is amplified

by the incorporation of heuristic-based actions. Available actions are formed from the

game’s default Move Unit A to Node X action in addition to heuristic-based actions

as chosen by the algorithm implementer. While the premise behind implementing
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non-default actions is that the GA would filter out non-relevant actions, there exists

a possibility that these actions add a layer of overhead to the algorithm, leading to

slower convergence. A RDP that diminishes actions known to lead to inferior states

would allow an implementer to experiment with new heuristic-based actions without

consequence of slowing down the GA.

Another limitation was the simplicity of the multi-agent systems in question. In

the homogeneous systems, the agents derive from the same rule-set and therefore

"think" the same in the absence of unit-specific conditions. Therefore, it makes it

easier for clustering to occur compared to a heterogeneous system, even with homoge-

neous seeding. There likely exist enhancements to the multi-agent system that would

aid the algorithms, such as rule-sharing across units, a messaging system across units

to include the proposed actions of fellow units as a condition, and a reward system

that combines greedy individual rewards with a collective team reward.

5.4 Future Work

This thesis paves paths for future work, to include:

• Further analysis on other LCS implementations. The list of LCS algorithms

compared in this paper is by no means exhaustive. In [8], R. Urbanowicz lists

84 LCS implementations. The implementations in this thesis were not chosen by

their novelty but by their frequency in literature. While the results of the three

LCS algorithms showed that LCSs can perform well in a wargame environment,

a pressing step would be to test out more modern implementations to find a

best LCS algorithm for the domain.

• Exploration of Control Strategies. While LCS literature is heavily concentrated

on single-agent implementations, there is much more work to be done with
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control strategies. The multi-agent LCSs all used a decentralized approach in

which units moved independently of each other and had no knowledge of the

planned actions of other units. A centralized agent that acts as a "commander"

may be more in line with how wargames operate, as real-life military units would

follow the orders of a superior rather than operate entirely independently or only

with a set of static predefined orders.

• Extension to other wargames. This thesis showed that symbolic game-playing

methods have a place in wargames through its success in Stratagem MIST. An

extension to other graph-based, multi-action games could test if the results are

domain-specific or can be generalizable.

• A revisit to a release version. At time of writing, Stratagem MIST is still in-

development. Thus, game features and scenarios added after Release 4 are not

present in this document. While the game has potential to generate complex

environmental configuration in terms of graph layout, unit placement, and met-

ric/objective setups, the domains were limited to just four scenarios. As more

scenarios and features are released, a pressing step would be to verify that the

algorithms explored in this document maintain their effectiveness. This is es-

pecially true with the scenario-general experimental configuration, as just four

scenarios could cause over-fitting to small sample size of environments rather

than reflect an agent’s ability to generalize on an unseen scenario.

• LCS/human pairing. The results showed that symbolic methods are an effective

way to play Stratagem MIST compared to the baseline agents and the state-of-

the-art OEP algorithm. One of the distinct features of LCSs is the end product

of a human-readable rule-set upon which a human player can follow to play the

game effectively. A further step is to test whether or not a human given a rule-
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set generated by an algorithm such as APCS could effectively learn the ideal

rules and strategies quicker than a control group. Furthermore, the APCS with

Fast And Frugal Tree (FFT) action selection could even act as a testing ground

for human players to evaluate their own rules. As a preliminary experiment for

future work, the author seeded hand-crafted rules immune to mutation in each

individual classifier. The hand-crafted rules had to be included in the final rule-

set, but could be swapped with an existing rule. After a few generations, the

rules that were expected to be representative of a heuristic for Stratagem MIST

were cycled to the top of the rule-sets in most generations, while the assumed

weak-rules were pushed to the bottom of the decision list. While this example

requires formal experimentation, it shows that the extent how LCS (specifically

APCS) can teach humans has much to be explored.
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Appendix A. Results Tables

Table A.1: Hokkaido Win Rates. The win rate is read as ROW/COL.

Red/Blue (B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS

(R)
RAND 39.4/60.6 0/100 0/100 0/100 0/100 0/100 0/100 0/100 6.7/93.3 0/100

(R)
RM-
MAAB

99.2/0.8 0/100 0/100 33.8/66.2 0/100 0/100 0/100 0/100 0/100 0/100

(R)
RM-
A2G

99.2/0.8 0/100 0/100 33/67 0/100 0/100 0/100 0/100 0/100 0/100

(R)
OEP 100/0 55.8/44.2 57.4/42.6 37.1/62.9 0.3/99.7 8.1/91.9 0.2/99.8 30.3/69.7 100/0 8.1/91.9

(R)
ZCS 100/0 100/0 100/0 91.7/8.3 99.8/0.2 0/100 0/100 100/0 100/0 100/0

(R)
XCS 100/0 100/0 100/0 61.3/38.7 0/100 0/100 0/100 0/100 100/0 0/100

(R)
APCS 99.5/0.5 100/0 100/0 97.9/2.1 100/0 86.3/13.7 0/100 37.8/62.2 100/0 100/0

(R) Ht-
ZCS 100/0 100/0 100/0 32.6/67.4 0/100 0/100 0/100 0/100 100/0 0/100

(R) Ht-
XCS 99.8/0.2 0/100 0/100 11.5/88.5 0/100 0/100 0/100 0/100 99/1 0/100

(R) Ht-
APCS 99.7/0.3 100/0 100/0 97.3/2.7 100/0 100/0 0/100 100/0 100/0 100/0

Table A.2: The final scores for the Hokkaido Scenario.

(B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS Avg

(R)
RAND -0.080 -1.458 -1.454 -1.315 -1.647 -1.595 -1.631 -1.331 -0.471 -1.000 -1.198

(R) RM-
MAAB 1.089 -0.566 -0.566 -0.300 -1.817 -1.735 -1.788 -1.760 -0.523 -0.897 -0.886

(R) RM-
A2G 1.076 -0.567 -0.566 -0.316 -1.817 -1.735 -1.783 -1.760 -0.528 -0.897 -0.889

(R)
OEP 1.169 -0.078 -0.066 -0.128 -1.011 -0.756 -1.205 -0.326 0.926 -0.528 -0.200

(R)
ZCS 1.596 1.175 1.175 0.651 0.220 -0.080 -0.940 0.024 1.517 0.375 0.571

(R)
XCS 1.446 1.624 1.624 0.066 -0.861 -0.302 -1.323 -0.507 0.220 0.000 0.199

(R)
APCS 1.142 1.080 1.080 1.164 0.338 0.162 -1.504 -0.110 0.983 1.344 0.568

(R) Ht-
ZCS 1.329 0.430 0.431 -0.023 -0.324 -1.045 -0.028 -0.265 1.456 -0.552 0.141

(R) Ht-
XCS 0.868 -1.612 -1.558 -0.455 -0.966 -0.613 -1.617 -1.433 0.047 -0.396 -0.773

(R) Ht-
APCS 1.131 0.998 0.998 0.820 0.249 0.348 -0.418 0.117 0.329 0.563 0.514

Avg 1.077 0.103 0.110 0.016 -0.763 -0.735 -1.224 -0.735 0.396 -0.199
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Table A.3: The win rates for the Hex Battle Scenario. The win rate is read as
ROW/COL.

Red/Blue (B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS

(R)
RAND 52.4/47.6 9.3/90.7 10.5/89.5 0/100 0/100 9.3/90.7 0/100 0/100 0/100 0/100

(R) RM-
MAAB 97.8/2.2 100/0 100/0 93.2/6.8 0/100 0/100 0/100 0/100 100/0 0/100

(R) RM-
A2G 97.7/2.3 100/0 100/0 94.2/5.8 0/100 0/100 0/100 0/100 100/0 0/100

(R)
OEP 100/0 6.7/93.3 6.9/93.1 49.9/50.1 11.7/88.3 99.6/0.4 0.1/99.9 2.3/97.7 47.5/52.5 0.2/99.8

(R)
ZCS 100/0 100/0 100/0 100/0 100/0 100/0 74.6/25.4 100/0 100/0 0/100

(R)
XCS 99.3/0.7 100/0 100/0 25.1/74.9 0/100 0/100 100/0 0/100 100/0 0/100

(R)
APCS 97/3 99.9/0.1 100/0 97/3 67.6/32.4 100/0 0.1/99.9 0/100 36/64 96.1/3.9

(R) Ht-
ZCS 100/0 100/0 100/0 99.8/0.2 100/0 100/0 33.8/66.2 0/100 100/0 0/100

(R) Ht-
XCS 100/0 87.2/12.8 27.2/72.8 88/12 100/0 100/0 0/100 54/46 100/0 0/100

(R) Ht-
APCS 100/0 94.5/5.5 95/5 99.9/0.1 0/100 100/0 0/100 100/0 99.9/0.1 89.5/10.5

Table A.4: The final scores for the Hex Battle Scenario.

(B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS Avg

(R)
RAND 0.098 -0.702 -0.659 -1.327 -1.586 -1.207 -1.673 -2.127 -1.391 -1.466 -1.204

(R) RM-
MAAB 0.886 0.154 0.154 0.895 -1.855 -1.701 -0.535 -0.501 1.093 -1.803 -0.321

(R) RM-
A2G 0.885 0.154 0.154 0.917 -1.855 -1.696 -0.535 -0.502 1.151 -1.803 -0.313

(R)
OEP 1.620 -0.874 -0.872 0.051 -0.577 1.462 -1.539 -0.948 -0.016 -1.372 -0.306

(R)
ZCS 2.629 0.971 0.971 1.376 0.488 2.407 0.124 0.524 1.775 -0.402 1.086

(R)
XCS 1.408 1.361 1.361 -0.300 -0.688 -1.090 1.801 -1.268 0.607 -0.828 0.236

(R)
APCS 1.069 0.230 0.229 1.068 0.706 1.931 -0.729 -0.475 -0.103 0.405 0.433

(R) Ht-
ZCS 1.235 1.334 1.334 1.571 1.403 1.147 -0.100 -0.561 1.812 -0.727 0.845

(R) Ht-
XCS 1.997 0.245 -0.279 0.745 0.778 1.296 -1.942 0.050 1.028 -0.919 0.300

(R) Ht-
APCS 1.820 0.202 0.207 1.756 -0.913 0.300 -1.224 1.619 1.268 0.926 0.596

Avg 1.365 0.307 0.260 0.675 -0.410 0.285 -0.635 -0.419 0.722 -0.799
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Table A.5: The win rates for the Three Main Lanes scenario. The win rate is read as
ROW/COL.

Red/Blue (B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS

(R)
RAND 52.3/47.7 100/0 100/0 8.9/91.1 3/97 68.7/31.3 15.2/84.8 32.1/67.9 0.3/99.7 1.8/98.2

(R) RM-
MAAB 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R) RM-
A2G 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R)
OEP 95.3/4.7 100/0 100/0 63.1/36.9 13.8/86.2 96.6/3.4 3/97 44.1/55.9 3.9/96.1 6.5/93.5

(R)
ZCS 95.6/4.4 100/0 100/0 77.2/22.8 100/0 0/100 100/0 0/100 100/0 100/0

(R)
XCS 10.8/89.2 100/0 100/0 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R)
APCS 94.2/5.8 100/0 100/0 91.5/8.5 67/33 0/100 100/0 4.2/95.8 78.7/21.3 99.7/0.3

(R) Ht-
ZCS 20.9/79.1 100/0 100/0 36.9/63.1 100/0 100/0 100/0 65.3/34.7 89.9/10.1 0.5/99.5

(R) Ht-
XCS 99.5/0.5 100/0 100/0 92.4/7.6 70.6/29.4 0/100 0/100 99.1/0.9 86.2/13.8 100/0

(R) Ht-
APCS 98.8/1.2 100/0 100/0 93.5/6.5 0/100 0/100 82.1/17.9 0/100 100/0 100/0

Table A.6: The final scores for the Three Main Lanes scenario. Unlike the other
scenarios, a higher score does not necessarily equate to a win due to the presence of
an objective.

(B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS Avg

(R)
RAND 0.018 0.557 0.553 -0.268 -0.414 0.074 -0.202 -0.070 -0.468 -0.491 -0.071

(R) RM-
MAAB -0.543 0.000 0.000 -0.431 -0.344 -0.004 -0.066 -0.013 -0.328 -0.438 -0.217

(R) RM-
A2G -0.549 0.000 0.000 -0.428 -0.344 -0.004 -0.066 -0.013 -0.328 -0.435 -0.217

(R)
OEP 0.335 0.474 0.474 0.058 -0.195 0.171 -0.328 -0.006 -0.414 -0.463 0.011

(R)
ZCS 0.187 0.474 0.474 0.071 0.175 -0.212 0.516 -0.148 0.368 0.432 0.234

(R)
XCS -0.662 0.008 0.008 -0.863 -0.657 -0.192 -0.210 -0.075 -0.569 -0.676 -0.389

(R)
APCS 0.272 0.476 0.476 0.254 0.043 -0.150 0.578 -0.112 0.155 0.346 0.234

(R) Ht-
ZCS -0.125 0.004 0.004 -0.061 0.189 0.004 0.071 0.025 0.103 -0.238 -0.002

(R) Ht-
XCS 0.374 0.269 0.270 0.318 0.079 -0.118 -0.817 0.217 0.390 0.581 0.156

(R) Ht-
APCS 0.461 0.591 0.591 0.356 -0.144 -0.100 0.078 -0.107 0.639 0.406 0.277

Avg -0.023 0.285 0.285 -0.099 -0.161 -0.053 -0.045 -0.030 -0.045 -0.098
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Table A.7: Air Assault On Crete Win Rates. The win rate is read as ROW/COL.

Red/Blue (B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS

(R)
RAND 4.9/95.1 1.1/98.9 1/99 0/100 0/100 0/100 0/100 0.8/99.2 0/100 0/100

(R) RM-
MAAB 1/99 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R) RM-
A2G 1.1/98.9 0/100 0/100 0.1/99.9 0/100 0/100 0/100 0/100 0/100 0/100

(R)
OEP 97.4/2.6 2.6/97.4 3.3/96.7 12.5/87.5 0.4/99.6 3.5/96.5 0/100 5.7/94.3 3.8/96.2 0/100

(R)
ZCS 99.1/0.9 100/0 100/0 5.6/94.4 0/100 6.2/93.8 0/100 25.6/74.4 0/100 0/100

(R)
XCS 0.1/99.9 100/0 100/0 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R)
APCS 93.9/6.1 100/0 100/0 93.4/6.6 77.8/22.2 38.9/61.1 0/100 100/0 0/100 0/100

(R) Ht-
ZCS 48/52 99.2/0.8 99.5/0.5 2/98 0/100 0/100 0/100 0/100 0/100 0/100

(R) Ht-
XCS 33.3/66.7 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100 0/100

(R) Ht-
APCS 100/0 100/0 100/0 54.7/45.3 98.4/1.6 0/100 0/100 0/100 0.9/99.1 0/100

Table A.8: The final scores for the Air Assault On Crete Scenario.

(B)
RAND

(B) RM-
MAAB

(B) RM-
A2G

(B)
OEP

(B)
ZCS

(B)
XCS

(B)
APCS

(B) Ht-
ZCS

(B) Ht-
XCS

(B) Ht-
APCS Avg

(R)
RAND -0.206 -0.540 -0.542 -0.628 -0.696 -0.707 -0.739 0.001 -0.678 -0.821 -0.556

(R) RM-
MAAB -0.656 -0.464 -0.464 -0.699 -0.810 -0.861 -0.693 -0.761 -0.766 -0.753 -0.693

(R) RM-
A2G -0.648 -0.463 -0.464 -0.698 -0.810 -0.861 -0.692 -0.762 -0.766 -0.753 -0.692

(R)
OEP 0.310 -0.525 -0.509 -0.230 -0.094 -0.519 -0.697 0.008 -0.562 -0.733 -0.355

(R)
ZCS 0.370 0.643 0.643 -0.260 -0.196 -0.761 -0.647 -0.002 -0.770 -0.633 -0.161

(R)
XCS -0.066 0.153 0.295 -0.383 -0.243 -0.722 -0.754 -0.294 -0.385 -0.827 -0.322

(R)
APCS 0.271 -0.747 -0.747 0.292 0.005 -0.157 -0.627 0.536 -0.557 -0.411 -0.214

(R) Ht-
ZCS -0.024 0.282 0.284 -0.450 -0.452 -0.869 -0.639 -0.108 -0.712 -0.686 -0.338

(R) Ht-
XCS -0.369 -0.872 -0.872 -0.854 -0.862 -0.824 -0.872 -0.165 -0.790 -0.651 -0.713

(R) Ht-
APCS 0.561 0.210 0.211 0.040 0.020 -0.818 -0.462 -0.007 -0.331 -0.668 -0.124

Avg -0.046 -0.232 -0.217 -0.387 -0.414 -0.710 -0.682 -0.155 -0.632 -0.694
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Appendix B. Supporting Tables

Table B.1: Absolute Conditions for the LCS Agents.

ID Name Operator General/
Specific Description

C1 Current
Turn Interval General Determines if the current turn in the game

is in or out of the desired interval.

C2 Enemy Density Interval General

Calculates the average Euclidean distance of
the point of enemy centrality to each enemy unit

and determines if it is in or out of the desired
interval.

C3 Total Enemy
Strength Interval General

Determines if the total combined strength of
enemy ground units is in or out of the

desired interval.

C4 Total Force
Strength Interval General

Determines if the total combined strength of
friendly ground units is in or out of the desired

interval.

C5 Total #
Enemies Interval General

Determines if the total number of
enemy ground units is in or out of the

desired interval.

C6 Total #
Friendly Units Interval General

Determines if the total number of
friendly ground units is in or out of the desired

interval.

C7 Metrics
Progress Interval General Determines if a metric’s value is in or out of the

desired interval

C8 Enemy Force
Centrality X Interval Specific Determines if the total centrality of enemy forces

(x-axis) is in or out of the desired interval.

C9 Enemy Force
Centrality Y Interval Specific Determines if the total centrality of enemy forces

(y-axis) is in or out of the desired interval.

C10 Force
Centrality X Interval Specific Determines if the total centrality of friendly forces

(x-axis) is in or out of the desired interval.

C11 Force
Centrality Y Interval Specific Determines if the total centrality of friendly forces

(y-axis) is in or out of the desired interval.
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Table B.2: Available Relative Conditions for the LCS Agents.

ID Name Operator General/
Specific Description

C12
Enemy Units on

Neighboring
Nodes

Interval General

Determines if the number of enemy units on
the neighboring nodes of the closest node to
the ground unit is in or out of the desired

interval.

C13
Friendly Units
on Neighboring

Nodes
Interval General

Determines if the number of friendly units on
the neighboring nodes of the closest node to
the ground unit is in or out of the desired

interval.

C14 Friendly Units
on Closest Node Interval General

Determines if the number of friendly units on
the closest node to the ground unit is in or out

of the desired interval.

C15 Strength Interval General
Determines if the strength of the unit (as a %
of starting strength) is in or out of the desired

interval.

C16 Unit Type Membership General Determines if a unit has membership of a
subset of the five unit types.

C17 Nearest Enemy
Distance Interval General

Determines if the Euclidean distance to the
nearest enemy is in or out of the desired

interval.

C18 Nearest Enemy
Direction Interval Specific Determines if the degree to the nearest enemy

is in or out of the desired interval.

C19 Unit Position X Interval Specific Determines if the x position of the unit is in
or out of the desired interval.

C20 Unity Position Y Interval Specific Determines if the y position of the unit is in
or out of the desired interval.

C21 Unit Name Membership Specific Determines if a unit’s unique ID matches the
desired value.
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Table B.3: Available Ground Actions for the LCS Agents. It is important to note that
within each action exist certain action modifiers that can further distinguish actions
from another.

Name General/
Specific Description

G1 Converge General Combines forces with nearby units.

G2 Diverge General Moves in separate directions to a neighboring node to cover
more ground.

G3 Double Diverge General Diverges to a neighboring node, and diverge again.

G4 Attack Heaviest
Enemy Node General Moves to the node with the heaviest enemy strength.

G5 Attack Lightest
Enemy Node General Moves to the node with the lightest enemy strength that is

greater than zero.

G6 Attack Nearest
Enemy Node General Moves to the nearest node with an enenmy on it.

G7
Move to

Unoccupied
Node

General Moves to the nearest node that is not occupied by a team.

G8 Stay General Stays in current position.

G9
Move to
Highest

Degree Node
General Move to node within specified radius with the

highest vertex degree.

G10
Move to
Lowest

Degree Node
General Move to node within specified radius with the

lowest vertex degree.

G11 Move to
Nearest Terrain General Move to the nearest node with terrain of specified type.

G12 Move Direction General
Move to the node for which the angle between the starting
position and the node’s position is closest to the specified

target value.
G13 Evade General Move to a neighboring node that is furthest from any enemy.

G14 Move to
Specific Node Specific Attempts to move to a specific node.

G15 Target Units Specific Attempts to move to the location of a unit from a target list.
If the target has been eliminated, move on to the next target.
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Table B.4: Available Air Actions for the LCS Agents. It is important to note that
within each action exist certain action modifiers that can further distinguish actions
from another.

Name General/
Specific Description

A1 Randomly-Generated
Unit-Specific Air Plan Specific

Uses a randomly-generated Air Plan that sets CAS
priority, CA priority, and OCA/DCA priority. It then

apportions Strike aircraft, Multi-role
aircraft, Counter-Air aircraft, and SSM aircraft based

on unit-specific target values.

A2 GA-optimized Specific
Air Plan Specific Uses a pre-determined rule-set optimized by a GA

to include specific units.

A3 Murder All Air Bases
Air Plan Both

Uses an Air Plan that targets enemy Air Base Units
exclusively at the cost of everything else. If the scenario

is known, a specific air base is targeted. Otherwise,
a single one is randomly selected.

A4 Air To Ground Focus
Air Plan Both

Uses an Air Plan that takes all of its aircraft
and sets it on an Air Interdiction task. For each turn,

a single ground unit will be targeted by all
aircraft in the Air Plan. If the scenario is known,

a specific named unit is targeted. Otherwise, one is
randomly selected.

A5 Randomly-Generated
Unit-General Air Plan General

Uses a randomly-generated Air Plan that sets CAS
priority, CA priority, and OCA/DCA priority. Specific

air units are not apportioned.

A6 GA-optimized General
Air Plan General Uses a pre-determined rule-set optimized by a GA

that excludes naming specific units.
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Table B.5: Information regarding Stratagem MIST’s default scenarios. For the Ob-
jectives & Metrics column, the Enemy Forces Degraded (EFD), Self-Forces Preserved
(SFD), Percent Territory Value Consecutively (PTVC), and Percent Territory Value
Enemy Consecutively (PTVEC) metrics were used. The Territory Value Held Con-
secutively Objective (TVHC) is the only objective used in the default scenario.

Nodes Edges
Air

Reg-
ions

Ground Units
(Red/Blue)

Air Units
(Red/Blue)

Objectives
& Metrics

Max
Turn

Count

Hokkaido 40 52 3

4/2 Light Infantry
2/2 Heavy Infantry
1/0 Mech Infantry
1/5 Light Armor
2/1 Heavy Armor

1/1 F-16
1/1 F-22
1/1 A-10

EFD
SFP

PTVC
PTVEC

20

Hex Battle 94 230 6

2/2 Light Infantry
1/1 Heavy Infantry
3/3 Mech Infantry
4/4 Light Armor
4/4 Heavy Armor

2/2 F-16
1/1 F-22
1/1 A-10

EFD
SFP

PTVC
PTVEC

20

Three Main
Lanes 41 54 5

2/2 Light Infantry
3/3 Heavy Infantry
3/3 Mech Infantry
4/4 Light Armor
2/2 Heavy Armor

1/1 F-16
1/1 F-22
1/1 A-10

EFD
TVHC 20

Air Assault
On Crete 20 25 5

5/2 Light Infantry
2/2 Heavy Infantry
1/1 Light Armor
0/2 Heavy Armor

1/1 F-16
1/1 F-22
1/1 A-10

EFD
PTVC 20
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