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Abstract

The Visual Localization (VL) problem is the question of how to take in a query

image and determine the pose of the camera that took that photo. The fact that

Red Green Blue (RGB) cameras have become incredibly common and inexpensive,

coupled with the huge amount of data they are able to capture have made building

VL pipelines that accurately generate results increasingly interesting and important.

These pipelines are useful in everything from Simultaneous Localization and Map-

ping (SLAM) and Smoothing and Mapping (SAM) for robotics to applications in

Augmented Reality (AR).

The work detailed in this paper seeks to determine if a Bag of Visual Words

(BOVW) is adequately able to look past repetitious features in an indoor environment

and localize the camera that captured an image. This pipeline is intended to be used

as a truth system to verify results from other navigation techniques in development by

the Autonomy and Navigation Technology (ANT) Center at the Air Force Institute

of Technology (AFIT) in lieu of more expensive solutions such as motion capture

systems or the Global Positioning System (GPS) which is unreliable in an indoor

environment.
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Monocular Camera Localization Using a Bag of Visual Words from Virtual World

Data

I. Introduction

1.1 Problem Background

When developing a new navigation technology, a critical aspect of that develop-

ment process is having access to truth data. This allows the researchers developing

that technology the ability to know how accurately their new system is performing

and further refine the system. Typically a Global Navigation Satellite System (GNSS)

such as the Global Positioning System (GPS) is used for this purpose, as it provides a

high level of accuracy to almost any position on the globe. One notable exception to

this though is in indoor environments where the signals from satellites can struggle to

penetrate buildings and provide accurate information to the devices trying to connect

to them.

This characteristic of GPS can make it difficult to use for generating truth data

when testing a navigation technology that is intended to work in an indoor envi-

ronment. As such, it is necessary to have another system to generate that truth

data and validate the results from the technology being developed. There are several

methods for accomplishing this in an indoor environment, including motion tracking

systems, Radio Frequency Identification (RFID), Bluetooth Low Energy (BLE) and

other technologies that have been developed. [1, 2]
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One method of accomplishing localization, which has been thoroughly researched

for use within the robotics community is Visual Localization (VL), which uses Red

Green Blue (RGB) imagery generated by a monocular or stereo camera system in

order to determine the position of the camera that created the image. The appeal

of VL comes from how much information can be gathered by a camera, and how

readily available such cameras are. To that end, this research aims to use images

generated from a monocular camera, such as the camera that can be found on most

mobile devices today, to generate the position of that camera within the second floor

of Building 640 on the Air Force Institute of Technology (AFIT) campus to be used

as the truth data for the development of indoor localization and navigation systems

that come out of the Autonomy and Navigation Technology (ANT) Center.

The overall approach for this research is to use a Bag of Visual Words (BOVW) to

determine which of 5 sections of the building the camera is in, and then a direct feature

matching method in order to generate correspondences between the 2D coordinates of

features present in the query image to the 3D real world coordinates of those features,

and from that information determine the three dimensional position of the camera.

1.2 Research Objectives

This research aims to answer the following questions:

• Is the BOVW model sufficiently able to overcome the issue of repeated visual

features within a building to narrow down the general location of an image to

one of a few possibilities?

• Is a homogeneous sampling of a set of image features, such as that generated

by Suppression via Square Covering (SSC) better suited for indoor localization

on the AFIT campus than sparse sampling?

2



• Is a 3D virtual model of a building generated from a Structure from Motion

(SfM) application accurate enough to generate the data used to train a BOVW,

as well as the reference data used for 2D-3D correspondence detection?

1.3 Document Overview

Chapter II provides a look into the requisite background information in order for

the reader to understand the technologies being used in this research. Chapter III

details the process used for development of the localization system. Chapter IV

provides a breakdown of tests performed to determine the efficacy of the developed

data pipeline, as well as a discussion of the results of those tests. Finally Chapter V

provides a summary of the information within this document, as well as details of

how this research will benefit future efforts at the Air Force Institute of Technology.

3



II. Background and Literature Review

Starting with a high level look at the Visual Localization problem, this chapter

provides the reader an overview of the technologies used throughout this research as

well as previous efforts at accomplishing this task through other methods.

2.1 Visual Localization and Visual Place Recognition

Originally called the Location Determination Problem (LDP), the issue of de-

termining the location from which a camera took a photograph, now referred to as

Visual Localization, is one that has been occupying the minds of researchers since the

middle of the twentieth century. Originally, this problem was solved by having a per-

son assign 3D coordinates to features inside of a query image and then applying the

Least Squares Method to select points with which to solve the Perspective-N-Point

(PNP) problem and return the position of the camera [3]. This method was improved

upon in the 1980s, when the random sample consensus (RANSAC) paradigm allowed

this process to be fully automated [3]. To this day, RANSAC is still an incredibly

useful tool that is widely used for outlier detection in various applications, such as

Computer Vision.

Visual Place Recognition (VPR) is essentially a less precise version of Visual

Localization (VL), in which the computer tries to determine the general area in which

a photograph was taken, rather than the precise location of the camera. This is

incredibly useful in robotics as knowing generally where a photograph was taken

gives a rough starting area for localization. Knowing this general area reduces the

number of possibilities that need to be considered, thus leading to faster and more

accurate localization results. As indicated in [4] an accurate VPR result is essential

for VL, as an estimate of where a photo was taken is necessary in order to more

4



precisely determine the location of the camera that took that photo.

VL, as well as VPR are both problems that have been extensively researched

within the robotics community for use within Simultaneous Localization and Mapping

(SLAM) and Smoothing and Mapping (SAM) algorithms. The overall appeal of using

visual methods of determining the location or a robot, or other devices, such as a

mobile phone, is the fact that Red Green Blue (RGB) cameras are relatively much

less expensive than other equipment which might be used for this task, and they are

also widely available; additionally, RGB cameras provide huge amounts of information

that can be incredibly useful if used correctly [5]. For an overview of SLAM and SAM

technologies and comparisons of some of the more recognized methods for each, refer

to [6, 7].

Overall there are three approaches to solving the issue of Visual Localization [8].

These are:

• Structure Based methods, where a 3D model of the area in question is known

ahead of time and used to draw correspondences to real world coordinates within

the area [9, 10, 11, 12, 13].

• Image Based methods, where a large database of sample images, tagged with

the location they were taken from is available to compare against the query

image and generate a position [14, 15, 16].

• Learning Based methods, where a model of the area is learned through discovery

and used to represent the scene in much the same way as Structure Based

methods [17, 18, 19, 13].

As the work in this paper is intended to produce truth data to be used in other

experiments taking place in a known environment, a Structure Based approach was

chosen. The success of Structure from Motion (SfM) methods found in [20] was
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a factor in this decision, as were the difficulties that typically face VL in indoor

environments. Due to the relatively small size of the area in question, construction of

a 3D model using SfM was feasible. Having such a model also opened the possibility of

utilizing the virtual world, the advantages of which are discussed later in this chapter,

and would greatly benefit future research potentially taking place at the Air Force

Institute of Technology (AFIT).

The overall data pipeline for a structure-based VL approach typically follows the

following steps:

1. Capture a query image.

2. Extract relevant features from the query image.

3. Find general location from which the query image was taken (VPR).

4. Draw correspondences between image coordinates and real world coordinates

for features found within the image.

5. Execute the PNP problem using those feature coordinate correspondences.

6. Return the pose of the camera when the image was taken.

This pipeline is illustrated in Figure 1.

Typically feature extraction is accomplished using one of the standard Feature

Detectors, such as SIFT, SURF, BRIEF and ORB. These are tried and true feature

detection algorithms that are available in the OpenCV library. These algorithms tend

to look at individual pixels and the intensity of a pixel versus that of its neighbors.

[21] offers a comparison of the efficacy and efficiency of these algorithms, and led to

the decision to use SIFT as the primary feature detector for this research. For more

information on the specifics of SIFT, refer to [22].
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Figure 1: Illustration of generalized VL data pipeline, * courtesy of [3]

The PNP problem, in short, is the process of taking the known 3D coordinates

of points in a photograph and determining the location of the camera that took that

photo based upon the projection of those points. We know the distance in the real

world between the 3D points, as well as the angles of the lines that connect those

points from the image. Using this information, along with the specific parameters

of the camera used to capture the query image, it is possible to determine where,

relative to those features, the camera was when the image was taken. In order to

solve this problem, it is necessary that at least three points in the image be known,

as with one or two known points there are an infinity of possible solutions. Thus,

it is necessary that there be no less than three known points when solving the PNP

problem, but there is not necessarily an upper limit on the number of points used.

For more information on the mathematics behind solving the PNP problem, refer to

[3]. Fortunately, because of the importance of being able to solve this problem, a

ready made implementation, along with several variations of the PNP problem are

available for use in the OpenCV library.
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2.2 The Difficulties of Urban and Indoor Visual Localization

One key area where Visual Localization struggles tends to be in indoor or large

urban environments. The cause of this difficulty is repeated features. In indoor

environments there tend to be large patches of blank wall that occur throughout the

building, or other features such as water fountains, directory signs or poster boards

that are all repeated and can confuse localization algorithms [12]. In outdoor urban

environments, building features such as windows or doors, as well as items such

as signs, all of which tend to look very similar to one another, can also confuse VL

pipelines [23, 9]. Figure 2 shows some features from the building that repeat. Figure 3

shows how they can be falsely matched to one another. This issue is one that has

been successfully overcome with NetVLAD, a convolutional neural network (CNN)

developed for urban VPR in [23] and utilized as a part of an indoor VL pipeline in

[12].

A key aspect of NetVLAD that made it successful in overcoming the obstacle

of repetitious features is the usage of dense, rather than sparse, feature sampling.

Sparse sampling tends to yield feature descriptors which cluster around objects in

the scene. Dense sampling on the other hand, will break an image into a grid and

provide feature descriptors for each point on that grid [24]. The generation of feature

descriptors for an entire image, rather than just those portions of an image typi-

cally considered “interesting” allows for less interesting regions of imagery, such as

an empty wall, to become more relevant in the feature matching process. Another

approach is to split the difference between these two methods through the use of a

technique such as Adaptive Non-Maximal Suppression (ANMS), like the Suppression

via Square Covering (SSC) technique proposed in [25]. [26] showed that a more even

distribution of detected points led to better feature matching. In SSC, keypoints in

an image are detected using a FAST feature detector, and then filtered, providing a
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Figure 2: Examples of repeated features throughout Building 640

much more evenly spaced set of features for consideration. Descriptors are generated

from those keypoints using a feature descriptor of choice. A comparison of these

three approaches to feature sampling is presented in Figure 4. Notice that in the SSC

filtered image, feature descriptors are generated in the bottom right corner of the

image that were not generated in sparse sampling. However, there are not so many
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Figure 3: Feature matches occurring between different exit signs

descriptors generated that the actual structures within the image are lost, as is the

case in the densely sampled image.

2.3 Machine Learning and Visual Localization

Machine Learning (ML) has been incorporated with Computer Vision with quite

a bit of success over the last several years. Fields of research that have reaped the

rewards of these efforts include VPR, VL, SLAM and SAM. There is a range in the

degree to which the VL pipeline is taught to a specific ML model. The most extreme

version of this would be Absolute Pose Regression (APR) algorithms, which attempt

to have the model learn the entire localization pipeline and regress the pose of the

camera [27, 28, 29, 30, 18]. Unfortunately, as indicated in [31] these approaches tend to

not be as successful as the more traditional structure based approaches. Additionally,

attempts to learn the VL pipeline end to end without the use of some sort of 3D model

or RGBD data for initialization run into issues of overfitting based on global patterns

present in the scene [17].

Other methods of incorporating ML into the pipeline involve having a model learn

a part of the pipeline, and this has been shown to be incredibly successful, especially
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Figure 4: Comparison of Sparse, Dense and SSC Filtered feature sampling

when it comes to VPR, the first step in determining the precise location of the camera

[12, 32, 23, 4, 2, 33]. [34] offers a comparison of the usefulness of three different CNNs

for use in VPR. These and other lines of effort have shown CNNs to be effective at

VPR. Another portion of the VL pipeline researchers have experimented with training

a model on is the matching of 2D features in the query image to 3D features in the

known model. Typically researchers have used regression forests for this task, which

do come with the limitation of needing to be trained offline [19]. Attempts at using

regression forests for this task have struggled with an imbalance in the left and right

trees, and the attempt made in [35] to overcome this difficulty produced results much

slower than the authors considered acceptable.
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Another, more rudimentary version of ML that has been used in the VL pipeline

is the Bag of Visual Words (BOVW). Explained in greater detail in the next section,

this model was successfully used in [36] to determine what room a robot was in, thus

solving the VPR problem and providing the first step in the VL pipeline. Additionally,

[8] used a semantics based approach to solving VL under different lighting conditions.

This approach looked at visual words labeled with semantic information to generate

the 2D-3D feature correspondences needed for localization. Image semantics were

also shown to be effective as part of a localization pipeline that uses multiple sensors,

not just image data, in [37]. It is also possible for a robot to navigate a known path

under various lighting changes based on experience, and the use of a BOVW in order

to pick a supervised driving experience most visually similar to the scenario in which

the robot finds itself [38]. One common thread in these efforts though is a lack of

repeated features. [36] looked at features specific to various rooms in a home (kitchen

appliances, furniture, etc.) that are very distinctive from one another, [8] looked at an

outdoor environment, and [38] specifically looked for repeated features under lighting

changes to choose an experience to replicate, rather than actually trying to localize

the camera producing the query image.

2.4 The Bag of Visual Words (BOVW) Model

To understand the BOVW model, it is necessary to first understand the Bag of

Words (BOW), a natural language processing model that was adapted into the BOVW

for use in Computer Vision. The BOW was developed as a means of categorizing text

documents simply by looking at the number of occurrences of each word within the

document. [39] determined that a State Vector Machine (SVM) could be adequately

trained to determine the category of a text document based upon the frequency with

which words occur in that document, independent of the order in which they appear.
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This model was later adapted to computer vision by the use of Visual Words.

When extracting visual features from an image, it is common for those features

to form clusters around objects within the image. These clusters of features are what

constitute the visual words in the BOVW. In the same manner that a text document

is broken apart into its key features (the frequency of word occurrences), an image

can also be broken apart and described by the number of occurrences of the individual

visual words contained within, and a SVM can also be used to accurately determine

the category of that image [40]. See Figure 5 for a visual representation of this.

In this manner [36] was able to determine the room from which an image was

captured by training the model to recognize which features were common in various

Figure 5: BOVW, courtesy of https://towardsdatascience.com/bag-of-visual-words-
in-a-nutshell-9ceea97ce0fb
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rooms in a home. In [41] a BOVW was used for VPR in a localization pipeline used

outdoors. [42] also discusses several methods that utilize a BOVW to determine the

general area within which an image originated. A key component to the BOVW is an

availability of labeled data upon which the SVM can be trained prior to deployment.

This is a characteristic of the BOVW that makes it difficult to use without retraining

in a new environment.

2.5 Virtual Worlds, Digital Twins, and Their Benefits

The use of virtual worlds is a concept that has been gaining more traction in recent

years. The many benefits of using a virtual world in research all lead to the same

end result: time and money saved for the researcher. As an example, the Automated

Aerial Refueling (AAR) project out of the Autonomy and Navigation Technology

(ANT) center at AFIT uses a virtual world to run multitudes of tests of algorithms

without the need for actually flying aircraft, which is logistically infeasible, as well

as hugely expensive and potentially dangerous in the case that automated systems

collide during flight [43].

In [44] the authors test collision avoidance in navigation algorithms for an un-

manned aerial vehicle (UAV) through the use of a virtual world generated by the

Unity game engine. In reality, the UAV is flying through empty space, but the

game engine feeds imagery data from the virtual room that is being navigated to the

computer on board the UAV while a motion capture system tracks the location of

the vehicle. In this way, the authors were able to test algorithms without running

the risk of having their equipment collide with real world obstacles, thus damaging

equipment. Another advantage to using virtual worlds can be seen in [45] where the

authors created simulation software, dubbed “UnrealNavigation,” for testing SLAM

algorithms intended to be used in environments such as outer-space, other planets or
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underwater, which are inaccessible for testing purposes except at great expense. Not

only were the authors able to accurately test these algorithms, the use of a totally

virtual world also offered access to accurate truth data which could be used to verify

the results coming out of the algorithms being tested.

Relating this to the problem of VL, the data pipeline can be implemented and

results from that pipeline can be verified by the engine running the virtual environ-

ment, because the engine will know the exact location of the camera that generated

the image. Additionally, thanks to SfM technologies, it is possible to quickly and

easily generate to-scale, photorealistic models of an environment such as the inside of

a building or even large outdoor environments [9, 13, 46].

Refer to Figure 6 and Figure 7 for side by side images taken from the real world

and the 3D model used in this research. The accuracy of these SfM reconstructions

is to such a degree that even a cockroach trapped in a light fixture was picked up and

can be seen in the 3D model used in this research, reference Figure 8.

Figure 6: Real vs. Reconstructed Hallway
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Figure 7: Real vs. Reconstrcuted Poster Board

Figure 8: Reconstructed Cockroach

Another area where the use of virtual worlds is keenly advantageous is in the

generation of training data for ML models. Not only is it a simple matter to script

out image capture locations, thus negating the need to manually take photos of the

environment, it is also possible within the virtual world to generate thousands of

photos for training purposes within a matter of minutes, as well as randomly alter

the environment to account for changes such as objects moving and changes in lighting

due to time of day or year. This leads to a more robust ability for a model to recognize

images and features within them that are useful for VPR and VL [47, 48]. In the case

of [49] the researchers generated so many randomly altered scenarios of the training

data that the model in question treated any sort of abnormalities in the real world

16



not accounted for in the virtual world as yet another variation that could have been

generated virtually.
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III. Methodology

3.1 Preamble

The primary goals of this work are as follows:

• Build a data pipeline able to take in a monocular photo taken within the second

floor of building 640 and return to the user the three degrees of freedom position

of the camera that took the photo within a local coordinate frame.

• Construct a scale 3D virtual model of the second floor of Building 640 to use

for generating the data which will be used in the data pipeline as well as testing

of the constructed data pipeline.

• Engineer a module for the Aftrburner Engine which incorporates the aforemen-

tioned virtual model, which allows for easy integration and testing of future

indoor localization algorithms developed by students and faculty within the

ANT Center.

Starting with an overview of the data pipeline, this chapter will cover how and

why the pipeline was constructed as it is, and how the data used was collected.

3.2 Data Pipeline and Methodology Overview

From image capture to return of camera position, the data pipeline implemented

for this work follows this series of steps:

1. Image capture

2. SIFT feature extraction

3. K-Means clustering of features

18



4. Bag of Visual Words (BOVW) determination of two most likely building regions

5. SIFT descriptors generated for SSC filtered FAST keypoints from query image

6. Comparison of query image data against reference photos for BOVW determined

building region

7. Feature matching between query and selected reference images

8. Run Perspective-N-Point (PNP) on feature matches

9. Return XYZ coordinate of the camera that captured the query image

This data pipeline is illustrated in Figure 9.

While there has been some success recently in the use of a convolutional neural

network (CNN) for Visual Place Recognition (VPR) in indoor environments [12],

one key issue which this work seeks to address with using a CNN is the need for

huge amounts of training data, as well as extensive amounts of time and computing

Figure 9: The data pipeline used in this work, * courtesy of [3]
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resources needed to train a CNN. For example, the NetVLAD CNN used in [23]

used more than 83k training images. While it would be possible to use a CNN like

NetVLAD which has already been trained for VPR, a BOVW can be trained on

a personal computer in a matter of minutes using a smaller data set. [50] showed

Visual Words could be used for accurate localization and [41] constructed a Visual

Localization (VL) pipeline that used a BOVW for VPR. These papers show promise

for the usefulness of the BOVW in VL, but neither focused specifically on indoor

environments. If the issue of repeated features indoors could be overcome, a BOVW

would make an easily constructed and implemented portion of a VL pipeline.

SIFT feature descriptors and keypoints generated using the built-in OpenCV SIFT

feature detector were used for training as well as querying the BOVW. This decision

was made considering that a homogeneous spread of keypoints, such as that gener-

ated by Suppression via Square Covering (SSC) filtering, may not produce the image

clusters necessary to create a robust visual vocabulary. SSC filtering is used later in

the data pipeline for feature matching between query and reference images consider-

ing the success found in [25] and [26] for matching features based on homogeneous

keypoint distributions. SIFT was used as the primary feature detection algorithm

based upon the results of [21] which showed SIFT to be more accurate than other

popular feature detection algorithms. Based upon experimental results within this

work, ORB was chosen as a backup in the event that SIFT failed to generate the nec-

essary keypoint matches. Additionally, based on experimental results, it was decided

the data pipeline would consider the top two choices of area generated by the BOVW,

as opposed to just the first choice. This is discussed more in the next chapter, but

the use of top two most likely areas of the building greatly increased the likelihood

with which the correct area of the building was chosen.

All data used for training the BOVW as well as initial testing was gathered from
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a 3D model of the second floor of Building 640 on the Air Force Institute of Tech-

nology (AFIT) campus. Data capture and pipeline testing were performed using the

Aftrburner game engine, developed by Dr. Scott Nykl and used in [43] and [2] for

their research. The decision to use Aftrburner as opposed to another game engine

was predicated on the integration of OpenCV within the engine, and the ease with

which image textures can be captured, processed and returned within the engine.

Additionally, the Aftrburner engine provided an easy means of verifying results from

the data pipeline as it is able to write out the exact location from which an image

was captured.

3.3 3D Model Construction

The 3D model used in this research was constructed through the use of Scani-

verse, an application designed for iPhone which makes use of the on-board camera

and LIDAR sensor to generate a 3D point cloud (see Figure 10). The phone used

for data collection was an iPhone 12 Pro. Due to performance limitations of the ap-

plication, the building had to be scanned in sections, which were then exported and

combined using Blender, a free 3D modeling software. While piecing together the

different sections of the model it was also necessary to correct for some errors that

were generated during the scanning process. Many of these errors, however, were not

able to be corrected and do appear as cosmetic blemishes in the completed model.

The impact of these blemishes is discussed in chapter IV. See Figure 11 and Fig-

ure 12 for examples of Scaniverse generated errors that could be corrected in Blender.

Figure 13 and Figure 14 give a few side by side comparisons demonstrating blem-

ishes that persist after correction. After all pieces of the model were put together

in Blender, the scale measurements of the model were verified through the use of

the program’s measurement tool and independent measurements of the real building
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captured using a laser distance measuring tool. Once completed, the model of the

building was exported from Blender as a .fbx file and then loaded into the Aftrburner

engine for data collection and pipeline testing.

Figure 10: 3D point cloud generated by Scaniverse, with and without image texture
overlay

Figure 11: Example of blemishes that could be corrected using Blender. Note the
hole in the wall.
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Figure 12: More blemishes that could be corrected. Note the holes and the warping
in the door.

Figure 13: Blemishes that could not be corrected. Note the edges of the sign, as well
as the room number.
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Figure 14: More incorrectable blemishes. Note the seam in the floor, legs of the chairs
and warping around door frames.

Figure 15: An overhead view of the full model loaded into Blender

Figure 16: An overhead view of the full model loaded into Aftrburner
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3.3.1 Variations on the 3D Model and Data Pipeline

It should be noted that there are several objects that were modeled within the

building that are considered “movable” such as trash cans and chairs. Throughout the

course of the this research the majority of these objects remained in roughly the same

position in the building, however, this does not mean that the day to day position

of such objects do not vary slightly. For example, a trashcan, after being emptied,

might be put back a little to the left of where it was initially, it is also possible that

such objects might be removed from the halls of the building entirely.

Due to the strong likelihood that such shifts in the environment could make it

difficult for the data pipeline proposed in this research to produce accurate results,

two additional models of Building 640 were produced in order to generate additional

training and testing data to cover these cases. This means that in total, three models

were created. The first model contains these movable objects in their original “start-

ing” positions. In the second model, these objects were shifted slightly, in ways that

might seen in the real world, such as a slight move to one side, rotation or removal

from the scene altogether. The third model was created with all such movable objects

removed. Using data created from these three models, there are three variations on

the data pipeline that were built, they are:

Figure 17: Images showing the change between the three versions of the model. Note
the trashcan at the end of the hall
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1. A pipeline in which the BOVW training images and panoramic reference images

(discussed later) are generated using only the model with movable objects in

their starting positions.

2. A pipeline in which the BOVW training images come from model with movable

objects in their starting positions, and the panoramic reference images are pulled

from the model without movable objects.

3. A pipeline in which the BOVW training images and panoramic reference images

both come from the model that does not have any movable objects

Without testing, it would seem that the first data pipeline, consisting of images

all taken from the model with movable objects would be the least robust. In the

scenario that a movable object is present, but shifted, in both query and reference

image, any feature matches used in PNP would likely negatively impact the final

result. The third data pipeline seems likely to overcome this challenge, as by removing

the movable objects entirely and the data pipeline is forced to localize entirely based

off of immovable features of the building, such as walls and doors. Since these objects

tend to be in roughly the same position, it seemed reasonable to keep them present

in the training data use for the BOVW. Keeping these objects would create more

visual words with which the BOVW could determine the rough area of the building,

but removing them from reference data would maintain the advantage in forcing the

pipeline to only use feature matches generated on immovable features of the building

for PNP.

3.4 Data Collection

There were three datasets that were collected for this pipeline. The first dataset

consists of training data for the BOVW, the second dataset contains reference images
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used for feature matching, 2D-3D point correspondence and PNP, and the third

dataset contains test images collected from all three versions of the model, as well as

the real world.

3.4.1 BOVW Training Data

To begin with, the building was split into 5 different regions, each corresponding

to one of the five major hallways in the building as shown in Figure 18. Training

data was then collected by placing a starting point at one end of the hall, and an

ending point at the other end of the hallway. A camera in the virtual world was then

moved along the line connecting these two points in increments of two meters. At

each position along the line, the camera would be rotated in 30 degree increments

around the vertical axis, after each rotation, three images would be captured, one

with the camera positioned perfectly level, one with the camera panned up thirty

degrees from level, and one with the camera panned down thirty degrees from level.

The camera used for training image collection was a virtual camera which generated

images that were 500 pixels wide by 500 pixels tall, with a horizontal field of view of

97 degrees.

This process was used to collect training images from the building model where

movable objects are kept in the starting positions, as well as the empty building

model. Additionally, a third set of training images was collected which only captured

distinctive features of each area of the building. Features that qualified as distinctive

were features that only appear in that area of the building, such as artwork on the

walls or the “Laser in Use” signs which only appear in area three of the building,

see Figure 19. This reduced training set was captured to cover the possibility that

numerous photos of repeated features such as doors, fire alarms or light fixtures would

make it difficult for the BOVW to distinguish regions of the building. This was done
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Figure 18: The five areas into which the building was divided

to determine what effect excluding such repeated features from training would have

on the accuracy of the BOVW. See Figure 20 for examples of these features. In total,

the empty building model and model with movable objects were used to generate

around 4,400 images each to train the BOVW, while only 109 images were collected

for the reduced training set that only focused on distinctive features.

3.4.2 Reference Data

Following the completion of image collection for training the BOVW, Aftrburner

was then used to collect reference images for use in the next part of the data pipeline.

Images collected were 2,500 pixels wide by 1,000 pixels tall, with a horizontal field

of view of 150 degrees. See Figure 21 for a comparison of reference and training im-

ages. At the same time that each reference image was captured, Aftrburner’s built-in
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Figure 19: A “Laser in Use” sign, there are several of these, but in only one area of
the building

Figure 20: Examples of distinctive features captured for the reduced dataset
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Figure 21: Comparison of images generated for reference and images generated for
BOVW training

Virtual Flash Lidar (VFL) module was used to generate a 3D point cloud corre-

sponding to the image. The VFL module inverses the OpenGL Rendering Pipeline

to determine the 3D world coordinate of each individual pixel captured within the

viewing frustum of the camera attached to the module. These coordinates are then

returned as a point cloud which is written to file. The end result of this process is a

reference image containing 2,500,000 pixels and a .txt file associated with each image

containing the 3D world coordinate of every single pixel in that image. Once feature

matches are established between the query image and reference image, the feature

pixel coordinates from the reference image are taken from the corresponding pixel

coordinate file and then used in conjunction with the 2D pixel coordinates for those

same features in the query image as inputs to PNP.

3.4.3 Test Data

Finally Test Data was collected in order to test the accuracy of the data pipeline.

A total of thirty eight test images were collected across four different datasets. Those

datasets are:

1. “objects” dataset - images generated from the model containing movable objects
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Figure 22: The view frustum of the camera used to collect reference and 3D point
data

in their start positions. Consists of fifteen images.

2. “empty” dataset - images generated from the model containing no movable

objects. Consists of eleven images.

3. “moved” dataset - images captured in the model with movable objects shifted

from their start positions. Contains seven images.

4. “realworld” dataset - images captured from the real world. Contains five images.

Test images captured in the virtual world were done so using the same virtual

camera module that was used to capture training images for the BOVW, a 500x500

pixel camera with 97 degree horizontal field of view. Accompanying the three datasets

generated in Aftrburner is a positions file containing the three coordinate position of

the camera when each image was captured. The real world images were captured

using an iPhone 12 Pro. These images do not have the associated truth position, but

were used to verify that the data pipeline is able to match each query image with an
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“appropriate” reference image (as deemed by a human overseeing the matching).
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IV. Results and Analysis

4.1 Preamble

Upon completion of constructing the data pipeline, as well as generation of the

datasets discussed in Chapter III the various steps contained within the data pipeline

were tested for efficacy. First, the Bag of Visual Words (BOVW) was tested to

determine which dataset provided the most accurate area determination, along with

a test of whether considering the two most likely results from the BOVW resulted in

higher accuracy. The pipeline’s ability to determine an appropriate reference image

using homogeneous keypoint filtering via Suppression via Square Covering (SSC) was

also tested.

In addition to the tests above, a naive data pipeline was also implemented against

which the BOVW pipeline was compared. This naive pipeline cut out the BOVW and

instead compared a given query image against every reference image for the building.

In order to determine if SSC filtering generated better feature matches, a multi-filter

control was also utilized in which generic SIFT and ORB detectors, as well as an

SSC filtered ORB detector were all allowed to compete with one another for reference

image determination.

The results and methodologies of these tests are discussed in this chapter.

4.2 BOVW Testing

This section discusses the methodology used to test the efficacy of the BOVW as

well as the results that came out of those tests.
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4.2.1 Testing Methodology

As mentioned in Chapter III training data for the BOVW was generated in three

different sets. The first set used images gathered from the model of the building con-

taining movable objects in their respective “starting” positions, this is the “Objects”

training set. The second set, called the “Empty” training set, contains images gener-

ated from the building model where those movable objects are not present. Finally is

the “Reduced” trainig set which is comprised of images taken only of those features

in each area that would be considered significant and unique to that specific area of

the building.

4.2.2 Testing Results

An overview of results from each of the tests presented in table 1. More detailed

results are available in Appendix 1.1 in table 10, table 11, table 12, and table 13.

In table 1 the number of correct area guesses out of the thirty eight test images is

presented when the BOVW is trained of each of the three training datasets. So, for

example, when trained on the Objects dataset, the BOVW was able to accurately

guess the area of the building for 13 out of 38 test images on the first guess and 15

out of 38 test images on the second guess.

Table 1: BOVW Test Results Summary

BOVW Training Set # Correct 1st Choice # Correct 1st or 2nd Choice

Objects 13 15
Empty 7 10
Reduced 7 20
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4.2.3 Discussion of Results

If looking at only the first choice provided by the BOVW the training data gen-

erated within the model containing movable objects showed the best results, with

a 34% success rate. However, when looking at the top two choices provided by the

BOVW, this number pales in comparison to the 53% correct guess rate provided when

the BOVW is trained on the reduced dataset. However, upon further inspection, it

becomes apparent that the success rate of the reduced dataset is perhaps not to be

trusted. Every single result generated from this training data was area three for the

first choice and area four for the second choice. This is what led to the dramatic jump

in correct guesses when looking at the top two choices, out of the test images, seven

were from area three, and thirteen were from area four. This skew towards these two

areas likely comes from the fact that both of these areas provided the highest number

of images for training. In fact, of 109 images in the reduced training set, 57 of them

come from these two areas of the building. Taking this into consideration, it stands

to reason that the tendency towards picking these two areas comes from the fact that

over half the training data in this set comes from these two areas.

Based upon the results presented in the confusion matrices in Appendix 1.1 it was

apparent that a BOVW trained using data from the “objects” training set produced

the correct area of the building more frequently than when the BOVW is trained

using the other two datasets. This is highlighted in table 2 below. For this reason, it

was decided that the “objects” training set would be used for training the BOVW.
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Table 2: BOVW Success Percentages

Training Set % Correct 1st Choice % Correct 2nd Choice % Correct Overall

Objects 31% 13% 44%
Empty 22% 11% 33%
Reduced 20% 20% 40%

4.3 Reference Image Selection Testing

This section discusses the methodology used to test the pipeline’s ability to decide

on an appropriate reference image, as well as the results that came out of those tests.

4.3.1 Testing Methodology

Once the two potential areas of the building are identified, a reference image is

then chosen. In order to determine the efficacy of SSC filtering for this task there

were two tests performed. In both tests the returned reference image was given a pass

or fail depending on whether it was deemed to adequately capture the portion of the

building contained within the query image. See Figure 23 for an example of a well

selected reference photo, and Figure 24 for an example of an unacceptable reference

photo.

Figure 23: An example of good reference photo selection. Notice that the board is
the same board in both photos.
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Figure 24: An example of bad reference photo selection. Notice the only shared
features are the design on the floor, a pattern repeated throughout the building.

The first test looked at reference photos only chosen by SSC filtered SIFT key-

points. The second test looked at reference images selected by SSC filtered SIFT key-

points, along with SSC filtered ORB keypoints, as well as reference images selected

using the regular SIFT and ORB feature detectors. Of the four provided reference

images, the pipeline then chose what it considered to the best match. These tests

were run on both the naive data pipeline, as well as the full pipeline which utilized a

BOVW trained on the “Objects” dataset. Every test image was used during this test

for two reasons. The first reason being the need to test whether the BOVW would

lead to better reference image selection than the naive approach. The second reason

is that due to overlap in the different areas of the building, such as at intersections

in the hallways, there is a chance that even if the BOVW incorrectly determined the

area of the building for a query image, the reference image selected might still be

appropriate and give a correct localization.

4.3.2 Testing Results

A summary of test results is provided below in table 3. In this table the total

number of acceptable reference images selected out of all thirty eight total test images,

is listed, along with the filter that was chosen most often when the respective pipelines

were allowed to choose from multiple filters. A more detailed breakdown of results is
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available in Appendix 1.2 in table 20 and table 21.

Table 3: Reference Image Selection Summary

Pipeline SSC SIFT Only All Feature Detectors Detector Chosen

Full Pipeline 10 13 Regular SIFT
Naive Pipeline 15 18 Regular SIFT

4.3.3 Discussion of Results

Upon completion of reference image selection, it is apparent that the BOVW

pipeline does not out perform the naive pipeline. Additionally, it appears that when

given the choice between using reference image matches generated by homogeneous

filtering based on SSC or the typically generated image features, the pipeline tended

to favor SIFT features generated normally over the homogeneously filtered features.

It was also noticed during testing that every reference image generated via ORB or

SSC filtered ORB descriptors did not prove to be acceptable. As such, another test

was performed comparing only the results of SIFT and SSC filtered SIFT descriptors.

This test was also performed using only the Naive Pipeline, as that showed a greater

chance of selecting the correct reference image than the full pipeline using the BOVW.

The summary of these test results can be seen in table 4, with the more detailed

breakdown available in table 22 in Appendix 1.2.

4.4 Homogeneous Feature Detection Filtering

It was noticed in the previous test that ORB was not chosen to provide a reference

image for any of the test images, and in all cases where homogeneously distributed

ORB descriptors were used for reference image selection, the chosen reference image

was not a good match. Additionally it was noticed that the normal SIFT algorithm
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routinely was chosen more frequently than homogeneously distributed SIFT descrip-

tors. Thus, another test was performed, similar to the last, which excluded ORB

altogether, and only looked at reference images generated by traditional SIFT and

homogeneously filtered SIFT. The intent behind this test was two fold. First, to

determine if the number of acceptable reference images selected would improve when

the pipeline only used SIFT descriptors. Second, to determine if the trend towards

traditional SIFT over homogeneously distributed SIFT held true under this shift in

parameters.

4.4.1 Testing Methodology

Given the naive pipeline provided a higher rate of acceptable reference image

selection than the full pipeline using BOVW, this test only utilized the naive pipeline.

For this test, all thirty eight test images were run through the naive pipeline, using

both unfiltered SIFT descriptors and SSC filtered descriptors.

4.4.2 Testing Results

The results of this test are presented in table 4. A more detailed breakdown of

the results can be seen in table 22 in Appendix 1.3.

Table 4: SIFT Reference Image Selection Summary
SSC SIFT Regular SIFT

# Images Acceptable 8 26

4.4.3 Discussion of Results

This test made it apparent that SIFT not filtered homogeneously outperformed

SSC filtered SIFT descriptors. While the results in [25] and [26] are that a more even,

rather than clustered spread of descriptors leads to better feature matching, this has
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not held true inside of Building 640 on the Air Force Institute of Technology (AFIT)

campus. Likely, this is due to the fact that there are so many repeated features

within the environment that tighter clusters of features led to the improved results

when matching features, either through the full pipeline or the naive pipeline.

Another result determined by this test that is worth mentioning is that SSC failed

to produce any acceptable reference images for query images generated from the real

world, whereas unfiltered SIFT features were able to determine the correct reference

image for four out of the five test images. This fact alone, that SSC is less capable of

bridging the gap between real and virtual data, makes it a less appealing choice for

indoor localization on the AFIT campus than regular SIFT features detection.

4.5 Perspective-N-Point (PNP) Testing

This section presents the results of comparisons in efficacy between the full and

naive pipelines in determining camera position.

4.5.1 Testing Methodology

While the naive pipeline proved better at generating an acceptable reference image

off which to work, there is still the chance that the end result of the pipelines, the

camera’s actual position, is more reliable from the full pipeline. When a reference

image is chosen, both the naive pipeline and full pipelines begin to look for feature

matches between the query and reference images which are used for 2D-3D coordinate

correspondences. When the reference image chosen does not contain the appropriate

features from the query image, there are three possibilities for the result returned

from PNP. They are:

• Too few 2D-3D correspondences are generated and PNP fails, returning a “None”

result.
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• Enough 2D-3D correspondences are generated, but the result returned is outside

the realm of possible (e.g. a negative Z coordinate would require the camera to

be under the floor, something which is impossible).

• Enough 2D-3D correspondences are found and a feasible result is returned.

In the event that an incorrect reference image is chosen, the first two scenarios

listed above are ideal. They are easily caught with basic error checking, and would

thus be considered favorable failures. The third scenario however requires more in-

tricate methods to catch, such as virtual view synthesis, which was used in [12], but

not implemented in this paper, and would thus be considered unfavorable failures.

Because the full and naive pipeline choose different reference images, they will also

have differing rates of favorable and unfavorable failures. This means that a BOVW

approach might outperform the naive pipeline when it comes to how favorible their

respective failures are.

In order to rule out this possibility, both pipelines were used to generate camera

positions for all test images. Additionally, because of the results from homogeneous

feature testing and reference image determination testing, pipelines used only either

SIFT or SSC filtered SIFT keypoints for both reference image determination and

2D-3D correspondence determination. To address the issue of movable objects and

the effect they might have on the accuracy of PNP, both the “Objects” and “Empty”

reference datasets were used in testing.

Due to limitations in accuracy of PNP when the number of keypoints is too low,

any query image/reference image pairing that generated less than four feature cor-

respondences were discarded. If a result was successfully generated, it was also run

through a check to validate that it made sense. The checking function looked to see

if the generated result contained any values listed as “Not a Number” or whether or

not the numbers generated could feasibly exist within the bounds of the building. For
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example if a determined position returned a negative Z coordinate, the camera would

have had to be beneath the floor of the building, so the returned position would be

discarded.

4.5.2 Testing Results

The summary of results of this test are presented in table 5 with a more detailed

breakdown of the results available in Appendix 1.4. Results of this test are presented

as the error in the result, meaning the magnitude of the vector connecting the truth

position to the calculated position, and the number of test images for which a result

was returned. Distances are measured in meters. Table 5 only presents findings for

test images generated in the virtual environment. As the images generated in the

real world were not tagged with an exact location, it was only possible to generate

an approximate truth location against which to compare the PNP results. Due to

the fact that on virtually generated test data, results were consistently more accurate

using the Object reference dataset, this was the only reference dataset used when

testing real world test images. These findings are presented in table 6.

Table 5: PNP Results Summary

Pipeline “Objects” # Found Avg Error “Empty” # Found Avg Error

Full 13 7.034 11 8.91
Naive 22 2.765 20 6.27

Table 6: Real World PNP Results
Pipeline # Found Avg Estimated Error

Full 1 44.837
Naive 3 1.531
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4.5.3 Discussion of Results

From these results it is clear that the naive pipeline significantly outperforms the

full pipeline. Not only was the naive pipeline able to generate results for more images,

it also averaged a significantly higher level of accuracy across the three virtually

generated datasets. At the time of collection, truth data was not generated for the

real world test images. Instead, this truth data was determined via an estimation of

the camera’s position using Aftrburner. As precise truth data was not available for

the real world test set, and only one camera position was able to be generated by the

full pipeline, it is not possible to definitively say that the naive pipeline outperformed

the full pipeline. However, in terms of area selection from the BOVW, as well as

reference image selection, the performance of both pipelines on real world test images

was comparable to their performance on virtual world test images. It stands to reason

that with accurate truth data for real world test images, the performance of PNP on

those images will also stand up to performance of PNP on virtual world test images.

Further test data collection and testing will be required to definitively determine this.

When looking at the individual image results generated by both pipelines for vir-

tual test data, there are several results that stand out as being particularly erroneous.

A summary of test results removing images with an error greater than one meter can

be seen below in table 7. The percentages of results that are considered to be erro-

neous are detailed in table 8.

Table 7: Pruned PNP Results Summary

Pipeline “Objects” # Found Avg Error “Empty” # Found Avg Error

Full 10 0.08 8 0.064
Naive 15 0.058 14 0.046
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Table 8: PNP Erroneous Returns Percentages
“Objects” Ref Images “Empty” Ref Images

Full 23% 27%
Naive 32% 30%

Taking this into consideration, after pruning, the naive pipeline still performed

better overall, however, the full pipeline, using a BOVW had a lower percentage of

results that were egregiously incorrect, twenty three percent as opposed to thirty two

percent. Additionally with a difference in average error of slightly more than two

centimeters, the advantage gained in ability to trust the results coming out of the

pipeline might make the full pipeline a preferred candidate.

4.6 Pipeline Execution Time Comparisons

The final set of tests detailed in this chapter pertain to the execution time required

by each implementation of the pipeline.

4.6.1 Testing Methodology

This test was performed by finding the average execution time of each pipeline on

every image generated in the virtual environment, thirty three in total. The BOVW

was trained using the “Objects” training set, and reference images were generated

from the “Objects” reference set. Additionally image features were found using SIFT

descriptors not sorted via SSC. Pipeline implementations were written using Python

script and run on a 2020 iMac equipped with a 3.6 GHz 10-Core Intel i9 processor.

4.6.2 Testing Results

Results of execution time testing can be seen in table 9.
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Table 9: Execution Time Test Results
Pipeline # Executions Avg Time/Image

Full 100 5.10966 sec
Naive 100 2.5829 sec

4.6.3 Discussion of Results

The results of this test show that the naive pipeline also runs far more quickly

than the full pipeline, taking about half the time to process an image and return a

result that the BOVW requires to do the same. There are several improvements that

might be able to be made on the full pipeline that could improve this execution time,

such as multithreading reference image determination, but these improvements would

also be able to be implemented on the naive pipeline as well, meaning that the naive

pipeline would likely still be faster to execute than the full pipeline.

45



V. Conclusions

The primary aims of this work were to determine the following:

• Is the Bag of Visual Words (BOVW) model sufficiently able to overcome the

issue of repeated visual features within a building to narrow down the general

location of an image to one of a few possibilities?

• Is a homogeneous sampling of a set of image features, such as that generated

by Suppression via Square Covering (SSC) better suited for indoor localization

on the Air Force Institute of Technology (AFIT) campus than sparse sampling?

• Is a 3D virtual model of a building generated from a Structure from Motion

(SfM) application accurate enough to generate the data used to train a BOVW,

as well as the reference data used for 2D-3D correspondence detection?

The research conducted in this paper determined that the BOVW model is likely

not sufficiently able to overcome the challenge of repeated features in a building. It

was also determined that homogeneous distributions of image features, such as those

created by the SSC filter do not provide an advantage over sparse feature distributions

when it comes to matching features between images in an indoor environment. In all

tests, a naive approach to Visual Localization (VL) employing sparse SIFT feature

sampling was able to generate more results, with a higher level of accuracy than a

VL approach that employed a BOVW to narrow the search space and homogeneous

feature distributions for matching query and reference images.

There was some success in the use of the BOVW when it came to the frequency

with which an erroneous result was returned, however without a means by which

to automatically determine if a result is erroneous, this advantage falls somewhat
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flat. Additionally, the results of this work showed that image data generated in the

virtual world is sufficiently able to stand in for data generated in the real world for

VL pipelines, at least as far as Building 640 on the AFIT campus is concerned. This

determination, combined with the 3D model of Building 640 built during the course

of this research should augment future research out of the Autonomy and Navigation

Technology (ANT) center in this area.

5.1 Future Work

The next steps that might build upon this work include the following:

• Common features within the building that led to false reference image selection,

as well as incorrect feature matches were the patterns on the floor or ceiling.

The implementation of a feature mask that removes those features from query

and reference images might improve the performance of the data pipeline.

• Other features in the building that are totally unique are room signs. While

the general shape and coloring of these signs is standardized, the actual text on

the signs is unique. The ability to single out these signs and use them for both

Visual Place Recognition (VPR) and even generation of 2D-3D correspondences

would likely lead to very accurate results. In order to make this happen though,

the 3D model constructed for this research would have to be updated to ensure

all room signs are legible and picture perfect. This is something that could be

achieved through the use of an application such as Blender.

• The construction of a means of filtering out erroneous returned results from the

data pipeline without a prior knowledge of where in the building the camera

has been.
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• The implementation of a Neural Network, such as NetVLAD or the Neural Net

constructed in [2] in an architecture specific to the AFIT campus could lead to

better VPR and determination of general area of the building.
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Appendix A. Detailed Test Results

1.1 Section 4.2 Detailed Results

Below are results from testing BOVW models. The first choice is the top number

and second choice the bottom number in the cell.

Table 10: BOVW Objects Dataset Results
Image Truth Objects BOVW Empty BOVW Reduced BOVW

image0 1 3 4 3
1 5 4

image1 1 3 4 3
4 3 4

image2 1 3 1 3
1 2 4

image3 4 3 4 3
1 5 4

image4 4 4 2 3
1 1 4

image5 4 2 2 3
4 1 4

image6 4 4 2 3
1 1 4

image7 4 3 2 3
2 3 4

image8 5 4 1 3
2 2 4

image9 5 4 2 3
1 1 4

image10 5 3 4 3
2 2 4

image11 3 3 4 3
1 1 4

image12 3 3 4 3
2 2 4

image13 3 4 2 3
1 1 4

image14 3 3 5 3
2 3 4
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Table 11: BOVW Empty Dataset Results
Image Truth Objects BOVW Empty BOVW Reduced BOVW

image0 5 3 5 3
2 3 4

image1 5 3 5 3
2 3 4

image2 4 4 2 3
1 1 4

image3 4 3 2 3
2 3 4

image4 4 4 2 3
1 1 4

image5 4 3 5 3
1 1 4

image6 1 3 4 3
1 1 4

image7 3 3 5 3
2 3 4

image8 2 3 4 3
1 1 4

image9 2 4 2 3
1 1 4

image10 2 2 2 3
3 1 4
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Table 12: BOVW Moved Dataset Results
Image Truth Objects BOVW Empty BOVW Reduced BOVW

image0 1 3 4 3
1 3 4

image1 4 3 1 3
2 2 4

image2 4 3 2 3
2 1 4

image3 4 3 5 3
1 1 4

image4 5 3 1 3
1 2 4

image5 3 3 1 3
2 2 4

image6 2 3 4 3
1 3 4

Table 13: BOVW Real World Dataset Results
Image Truth Objects BOVW Empty BOVW Reduced BOVW

image0 1 1 3 3
5 5 4

image1 1 3 2 3
2 3 4

image2 3 3 5 3
2 3 4

image3 3 4 2 3
1 1 4

image4 4 4 4 3
1 1 4
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1.1.1 Section 4.2 Confusion Matrices

Below are the confusion matrices for each of the three sets of training data. Rows

are the truth area, and columns are the area of the building chosen by the BOVW. In

the matrices with raw numbers (not percentages), the bottom right most cell of each

matrix is the total number of correct guesses, e.g. the sum total of the diagonal line

running from top left to bottom right. In the percentage matrices the bottom right

cell contains the average success rate across all 5 areas.

1.1.1.1 “Objects” Training Data Set

Table 14: Objects Confusion Matrix
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Totals Truth 1 2 3 4 5 Totals

1 1 0 6 0 0 7 1 4 1 0 1 1 7
2 0 1 2 1 0 4 2 3 0 1 0 0 4
3 0 0 6 2 0 8 3 3 5 0 0 0 8
4 0 1 7 5 0 13 4 8 4 0 1 0 13
5 0 0 4 2 0 6 5 2 4 0 0 0 6

Totals 1 2 25 10 0 13 Totals 20 14 1 2 1 5

Table 15: Objects Confusion Matrix Percentages
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Truth 1 2 3 4 5

1 14 0 86 0 0 1 58 14 0 14 14
2 0 25 50 25 0 2 75 0 25 0 0
3 0 0 75 25 0 3 38 62 0 0 0
4 0 8 54 38 0 4 61 31 0 8 0
5 0 0 67 33 0 5 33 67 0 0 0

31 13
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1.1.1.2 “Empty” Training Data Set

Table 16: Empty Confusion Matrix
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Totals Truth 1 2 3 4 5 Totals

1 1 0 0 4 0 5 1 1 1 2 0 1 5
2 0 2 0 2 0 4 2 3 0 1 0 0 4
3 1 1 0 2 2 6 3 2 2 2 0 0 6
4 1 8 0 1 2 12 4 8 2 1 0 1 12
5 2 1 0 1 2 6 5 1 3 2 0 0 6

Totals 5 12 0 10 6 6 Totals 15 8 8 0 2 3

Table 17: Empty Confusion Matrix Percentages
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Truth 1 2 3 4 5

1 20 0 0 80 0 1 20 20 40 0 20
2 0 50 0 50 0 2 75 0 25 0 0
3 17 17 0 33 33 3 33 33 33 0 0
4 8 67 0 8 17 4 67 17 9 0 83
5 33 17 0 17 33 5 17 50 33 0 0

22 11

1.1.1.3 “Reduced” Training Data Set

Table 18: Reduced Confusion Matrix
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Totals Truth 1 2 3 4 5 Totals

1 0 0 5 0 0 5 1 0 0 0 5 0 5
2 0 0 4 0 0 4 2 0 0 0 4 0 4
3 0 0 6 0 0 6 3 0 0 0 6 0 6
4 0 0 12 0 0 12 4 0 0 0 12 0 12
5 0 0 6 0 0 6 5 0 0 0 6 0 6

Totals 0 0 33 0 0 6 Totals 0 0 0 33 0 12
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Table 19: Reduced Confusion Matrix Percentages
First Choice Second Choice
BOVW Area BOVW Area

Truth 1 2 3 4 5 Truth 1 2 3 4 5

1 0 0 100 0 0 100 1 0 0 0 100 0 100
2 0 0 100 0 0 100 2 0 0 0 100 0 100
3 0 0 100 0 0 100 3 0 0 0 100 0 100
4 0 0 100 0 0 100 4 0 0 0 100 0 100
5 0 0 100 0 0 100 5 0 0 0 100 0 100

20 20
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1.2 Section 4.3 Detailed Results

Detailed results from Reference Image Selection testing. Listed is acceptability of

chosen reference image and chosen feature detector in the multi-filter test.

Table 20: BOVW Pipeline Reference Image Selection

Image SSC SIFT Only All Feature Detectors Detector Chosen

Objects Set
image0 good good SIFT
image1 bad bad ORBSSC
image2 bad bad ORBSSC
image3 bad bad ORBSSC
image4 good good SIFT
image5 bad bad SIFTSSC
image6 good good SIFTSSC
image7 bad bad SIFTSSC
image8 bad bad ORBSSC
image9 bad bad ORBSSC
image10 bad bad SIFTSSC
image11 bad bad ORBSSC
image12 good good SIFT
image13 bad bad SIFTSSC
image14 good good SIFT

Empty Set
image0 bad bad SIFT
image1 bad bad SIFT
image2 good good SIFT
image3 bad bad SIFTSSC
image4 good good SIFT
image5 good good SIFT
image6 bad bad ORBSSC
image7 good good SIFT
image8 bad bad SIFT
image9 bad bad SIFT
image10 bad bad ORBSSC
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Image SSC SIFT Only All Feature Detectors Detector Chosen

Moved Set
image0 good good SIFT
image1 bad bad ORBSSC
image2 bad bad SIFTSSC
image3 bad bad SIFT
image4 bad bad ORBSSC
image5 bad bad ORBSSC
image6 bad bad ORBSSC

Real World Set
image0 bad good SIFT
image1 bad bad SIFTSSC
image2 bad good SIFT
image3 bad bad SIFT
image4 bad good SIFT

Table 21: Naive Pipeline Reference Image Selection

Image SSC SIFT Only All Feature Detectors Detector Chosen

Objects Set
image0 good good SIFT
image1 bad bad ORBSSC
image2 bad bad SIFT
image3 good good SIFT
image4 good good SIFT
image5 good good SIFT
image6 good good SIFTSSC
image7 bad bad SIFTSSC
image8 good good SIFT
image9 good good SIFTSSC
image10 good good SIFT
image11 bad bad ORBSSC
image12 bad bad ORBSSC
image13 good good SIFT
image14 good good SIFT
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Image SSC SIFT Only All Feature Detectors Detector Chosen

Empty Set
image0 good good SIFT
image1 bad bad ORBSSC
image2 good good SIFT
image3 bad bad SIFTSSC
image4 good good SIFT
image5 bad bad SIFTSSC
image6 bad bad SIFTSSC
image7 bad bad SIFTSSC
image8 bad bad SIFT
image9 bad bad SIFTSSC
image10 bad bad ORBSSC

Moved Set
image0 bad bad SIFT
image1 bad bad SIFTSSC
image2 bad bad SIFT
image3 good good SIFT
image4 bad bad ORBSSC
image5 bad bad ORBSSC
image6 good good SIFT

Real World Set
image0 bad good SIFT
image1 bad bad SIFTSSC
image2 bad good SIFT
image3 bad bad SIFT
image4 bad good SIFT
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1.3 Section 4.4 Detailed Results

Below are detailed results of the comparison of SSC filtered SIFT and non-filtered

SIFT descriptor generation. For each image the result is annotated as good or bad.

Table 22: SIFT Reference Image Selection
Image SSC SIFT SIFT Image SSC SIFT SIFT

Objects Set Moved Set
image0 good good image0 bad bad
image1 bad bad image1 bad bad
image2 bad good image2 bad good
image3 bad good image3 bad good
image4 good good image4 bad bad
image5 bad good image5 bad good
image6 good good image6 good good
image7 bad good Real World Set
image8 good good image0 bad good
image9 good good image1 bad good
image10 bad good image2 bad good
image11 bad bad image3 bad bad
image12 bad good image4 bad good
image13 bad good
image14 bad good
Empty Set
image0 good good
image1 bad bad
image2 bad good
image3 bad bad
image4 good good
image5 bad bad
image6 bad good
image7 bad bad
image8 bad bad
image9 bad bad
image10 bad good

58



1.4 Section 4.5 Detailed Results

Below are the detailed results of error generated for each test image when solving

Perspective-N-Point (PNP) for that image. Rows left blank are images for which a

result was not generated. Error is measured in meters off from truth.

Table 23: PNP Results: Full Pipeline, Objects Reference Data
Image Error Filter Image Error Filter

Objects Set Moved Set
image0 0.079 SIFT image0 0.165 SIFT
image1 image1
image2 0.009 SIFT image2 48.661 SIFT
image3 image3
image4 0.026 SIFT image4
image5 0.07 SIFT image5
image6 0.005 SIFTSSC image6
image7 Real World Set
image8 image0
image9 image1
image10 image2 44.837 SIFT
image11 0.282 SIFT image3
image12 image4
image13
image14 0.151 SIFT
Empty Set
image0
image1
image2 0.008 SIFT
image3
image4 0.005 SIFT
image5 37.22 SIFTSSC
image6
image7
image8
image9
image10 4.763 SIFT
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Table 24: PNP Results: Full Pipeline, Empty Reference Data
Image Error Filter Image Error Filter

Objects Set Moved Set
image0 0.033 SIFT image0 0.048 SIFT
image1 image1
image2 image2 46.17 SIFTSSC
image3 image3
image4 image4
image5 image5
image6 0.009 SIFTSSC image6
image7
image8
image9
image10
image11
image12 0.189 SIFT
image13
image14 0.004 SIFT
Empty Set
image0
image1
image2 0.016 SIFT
image3 46.731 SIFTSSC
image4 0.025 SIFT
image5 0.188 SIFT
image6
image7
image8
image9
image10 4.597 SIFT
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Table 25: PNP Results: Naive Pipeline, Objects Reference Data
Image Error Filter Image Error Filter

Objects Set Moved Set
image0 0.079 SIFT image0 0.165 SIFT
image1 7.054 SIFTSSC image1
image2 0.009 SIFT image2 3.933 SIFT
image3 0.009 SIFT image3 2.188 SIFT
image4 0.026 SIFT image4
image5 0.07 SIFT image5
image6 0.005 SIFTSSC image6 0.006 SIFT
image7 Real World Set
image8 0.022 SIFT image0 1.803 SIFT
image9 0.729 SIFTSSC image1 1.299 SIFT
image10 0.016 SIFT image2 1.492 SIFT
image11 0.282 SIFT image3
image12 image4
image13 4.063 SIFT
image14 0.151 SIFT
Empty Set
image0 0.017 SIFT
image1
image2 0.008 SIFT
image3
image4 0.005 SIFT
image5 37.22 SIFTSSC
image6
image7
image8
image9
image10 4.763 SIFT
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Table 26: PNP Results: Naive Pipeline, Empty Reference Data
Image Error Filter Image Error Filter

Objects Set Moved Set
image0 0.033 SIFT image0 0.048 SIFT
image1 6.964 SIFTSSC image1
image2 image2 0.065 SIFT
image3 0.015 SIFT image3
image4 image4
image5 image5
image6 0.009 SIFTSSC image6 0.021 SIFT
image7 1.867 SIFT
image8
image9 0.146 SIFTSSC
image10 0.018 SIFT
image11
image12 0.189 SIFT
image13 0.021 SIFT
image14 0.004 SIFT
Empty Set
image0 0.028 SIFT
image1 22.533 SIFT
image2 0.016 SIFT
image3 46.731 SIFTSSC
image4 0.025 SIFT
image5
image6 42.066 SIFTSSC
image7
image8
image9
image10 4.597 SIFT
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