
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Evaluating the use of Boot Image Encryption on Talos II Evaluating the use of Boot Image Encryption on Talos II

Architecture Architecture

Calvin M. Muramoto

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Hardware Systems Commons

Recommended Citation Recommended Citation
Muramoto, Calvin M., "Evaluating the use of Boot Image Encryption on Talos II Architecture" (2022).
Theses and Dissertations. 5325.
https://scholar.afit.edu/etd/5325

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholar.afit.edu%2Fetd%2F5325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5325?utm_source=scholar.afit.edu%2Fetd%2F5325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

EVALUATING THE USE OF
BOOT IMAGE ENCRYPTION

ON TALOS II ARCHITECTURE

THESIS

Calvin M. Muramoto, Second Lieutenant, USAF

AFIT-ENG-MS-22-M-049

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-22-M-049

EVALUATING THE USE OF BOOT IMAGE

ENCRYPTION ON TALOS II ARCHITECTURE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Calvin M. Muramoto, B.S.

Second Lieutenant, USAF

March 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-22-M-049

EVALUATING THE USE OF BOOT IMAGE

ENCRYPTION ON TALOS II ARCHITECTURE

THESIS

Calvin M. Muramoto, B.S.
Second Lieutenant, USAF

Committee Membership:

Scott R. Graham, Ph.D.
Chair

Lt Col James W. Dean, Ph.D.
Member

Stephen J. Dunlap, M.S.
Member

AFIT-ENG-MS-22-M-049

Abstract

Sensitive devices operating in unprotected environments are vulnerable to competi-

tors or bad actors conducting hardware attacks like reverse engineering and side

channel analysis. This represents a security concern because the root of trust can be

invalidated through boot firmware manipulation. For example, boot data is rarely

encrypted and typically travels across an accessible bus like the Low Pin Count (LPC)

bus, allowing data to be easily intercepted and possibly manipulated during system

startup. The flash chip storing the boot data can also be removed from these devices

and examined to reveal detailed boot information.

Firmware that developers deem to contain sensitive code or perform innovative

operations needs to be protected before being flashed onto the boot flash chip. This

paper details an implementation of encrypting a section of the boot image and de-

crypting it during the Initial Program Load (IPL) of the Talos II. During power-on,

the encrypted image travels across the LPC bus into the POWER9 Level3 cache and

is decrypted in the processor. This proves that it is possible to prevent adversaries

from interfering with the IPL flow or obtaining details on firmware from the flash

chip. This method is also expanded upon to create a process of securing the firmware

decryption keys. The boot image encryption method is implemented with multiple

levels of encryption and an analysis of their efficiency is conducted to determine the

performance impact for each algorithm.

iv

AFIT-ENG-MS-22-M-049

This work is dedicated to my brother and my parents for their support,

encouragement, and love.

v

Table of Contents

Page

Abstract . iv

Dedication . v

List of Figures . ix

List of Tables . x

List of Acronyms . xi

I. Introduction . 1

1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3
1.4 Hypothesis . 4
1.5 Approach . 5
1.6 Contributions . 5
1.7 Organization . 6

II. Background and Related Work . 8

2.1 Overview . 8
2.2 Talos II Architecture . 8
2.3 PNOR Image . 11
2.4 Initial Program Load . 12

2.4.1 1st Stage Bootloader . 13
2.4.2 Hostboot . 15
2.4.3 Skiboot . 16

2.5 Secure Boot . 17
2.6 Secure Key Storage . 19
2.7 Encryption Schemes . 19

2.7.1 XOR . 19
2.7.2 SPECK . 20
2.7.3 Advanced Encryption Standard . 20

2.8 Related Work . 21
2.8.1 Secure Firmware Updates with AES Encryption 21
2.8.2 U-Boot Image Encryption . 22

2.9 Summary . 23

vi

Page

III. Implementation Discussion . 24

3.1 Implementation . 24
3.2 Secure Key Management Process . 29
3.3 Application Scenarios . 32

IV. Experimental Setup and Methodology . 33

4.1 Objective . 33
4.2 Assumptions . 33
4.3 Control Variables . 34
4.4 Independent Variables . 35
4.5 Response Variables . 35
4.6 Performance Evaluation . 36
4.7 Experimental Setup . 36

4.7.1 Micro Controller Setup . 37
4.8 Summary . 39

V. Observations and Analysis . 40

5.1 Overview . 40
5.2 Secure Key Management Analysis . 40
5.3 PNOR Image Size . 41
5.4 Performance Experiment Results . 43

5.4.1 Performance Impact of Boot Image Encryption 43
5.4.2 Comparison of Encryption Methods . 47
5.4.3 Encryption Ratio . 49

5.5 Challenges . 50
5.6 Summary . 52

VI. Conclusion . 53

6.1 Overview . 53
6.2 Summary . 53
6.3 Research Contributions to Hardware Security . 54
6.4 Future Work . 55

6.4.1 Full boot image encryption . 55
6.4.2 Compatibility with IBM Secure Boot . 56
6.4.3 Application to Intel or AMD systems . 57

6.5 Conclusion . 60

Appendix A. XOR100 Decryption Firmware . 61

Appendix B. XOR100 Encryption Script . 62

vii

Page

Appendix C. SPECK100 Decryption Firmware . 63

Appendix D. SPECK100 Encryption Script . 64

Appendix E. AES100 Decryption Firmware . 65

Appendix F. AES100 Encryption Script . 66

Appendix G. Talos Control Firmware . 67

Appendix H. UDP Logger Firmware . 71

Appendix I. Experiment Script . 79

Appendix J. HBBL XOR Decryption Firmware . 82

Appendix K. HBBL XOR Script . 83

Appendix L. HBBL Speck Decryption Firmware . 84

Appendix M. HBBL AES Compilation Fail . 85

Bibliography . 86

viii

List of Figures

Figure Page

1 Detailed Hardware Layout of the POWER9 Secure Boot
Environment [1] . 10

2 High-Level View of the PNOR Image [1] . 12

3 OpenPOWER Firmware Boot Flow [2] . 13

4 Detailed OpenPOWER Boot Flow [1] . 14

5 U-Boot Firmware Encryption Setup [3] . 22

6 Hostboot Malloc Code . 26

7 Hostboot Decrypt Code . 27

8 Proof of Concept Decryption . 29

9 Stock Talos II Setup . 37

10 Microcontroller Setup . 38

11 Hostboot Execution Time . 45

12 ISTEP 20.1 Execution Time . 46

13 Skiboot Decompression Time . 47

14 Skiboot Decryption Time . 48

15 Skiboot Decryption Time by Encryption Ratio . 50

16 Encryption ANOVA Test . 51

17 Intel Boot Flow [4] . 58

ix

List of Tables

Table Page

1 Decryption Firmware Size by Encryption Type . 42

2 Breakdown of Boot Times by Encryption . 44

x

List of Acronyms

AES Advanced Encryption Standard

AIK Attestation Identity Key

ANOVA Analysis of Variance

BIOS Basic Input/Output System

BMC Baseboard Management Controller

CPU Central Processing Unit

ECC Error Correction Code

ECDSA Elliptic Curve Digital Signature Algorithm

FPGA field-programmable gate array

FSI Fast Serial Interface

HBB Hostboot Base

HBBL Hostboot Bootloader

HBI Hostboot Extended Image

HBRT Hostboot Runtime

IOT Internet of Things

IPL Initial Program Load

IPMI Intelligent Platform Management Interface

L3 Level 3

LPC Low Pin Count

MBR Master Boot Record

NSA National Security Agency

OCC On Chip Controller

OEM Original Equipment Manufacturer

OPAL OpenPOWER Abstraction Layer

xi

OS Operating System

OTP One-Time Pad

OTPROM One Time Programmable Read Only Memory

P9 POWER9

PCIE Peripheral Component Interconnect Express

PIB Pervasive Interconnect Bus

PKI Public Key Infrastructure

PMU Phasor Measurement Unit

POST Power-On Self-Test

PPE Programmable PowerPC-lite Engine

PSP Platform Security Processor

RAM Random Access Memory

ROM Read-Only Memory

SBE Self Boot Engine

SEEPROM Serial Electrically Erasable Programmable Read Only Memory

SLW Sleep Winkle

TOC Table of Contents

TPM Trusted Platform Module

UDP User Datagram Protocol

UEFI Unified Extensible Firmware Interface

VFSRP Virtual File System Resource Provider

xii

EVALUATING THE USE OF BOOT IMAGE

ENCRYPTION ON TALOS II ARCHITECTURE

I. Introduction

1.1 Background and Motivation

As the complexity of cyber attacks increases and evolves, the demand for in-

creased security in computer systems also rises. In particular, hardware attacks have

become an increasing concern in recent years. Under the assumption that the ad-

versary does not have physical access, device hardware is not normally designed to

be resistant to physical attacks. To counter this threat, trusted computing has be-

come a focus for computing system development with security enhancements, such

as secure boot. Although the authentication capabilities provided by secure boot can

prevent adversaries from loading malicious firmware on a system, no known system

also incorporates encryption of the boot firmware as a security measure.

By greatly increasing the cost to reverse engineer boot operations, encrypting

boot firmware will help prevent outsiders from discovering vulnerabilities on computer

systems. Tamper detection checks are often employed during the boot sequence of a

system to catch intruders before the operating system starts. If an outsider is able

to observe the boot instructions executed during start up, they may be able to avoid

tamper detection to manipulate and gain access to the system. Boot firmware is

rarely encrypted under the assumption that the adversary does not have physical

access to the hardware. To alleviate this problem, the boot firmware could be, and

perhaps should be, encrypted when stored in memory and decrypted in the processor

1

when the instructions are needed.

Secure boot has become a standard to improve hardware security, and works by

ensuring that only signed firmware is run on the system. Although it can prevent

unauthorized firmware from executing on a system processor, it cannot protect against

hardware physical attacks like chip substitution and bus traffic recording [5]. The fo-

cus of this research is to prevent these types of attacks through boot image encryption.

There have also been development efforts to encrypt bootloader firmware which can

then be decrypted during startup in microcontroller platforms [6]. However, micro-

controller bootloaders are very simple and typically employ only two stages to start

up. This research focuses on expanding the encrypted microcontroller boot firmware

concept to a workstation supporting a powerful processor such as the POWER9 (P9).

Although this research implemented boot image encryption on the Talos II, it

could also be applied to any system that utilizes a multi stage bootloader. For

example, Intel and AMD both include bootloaders inside the Basic Input/Output

System (BIOS) or Unified Extensible Firmware Interface (UEFI) which functions

similarly to the firmware in the Talos II. Developing the encryption implementation

for x86 architectures would require the ability to alter the firmware and change the

IPL. Expanding the implementation of boot firmware encryption from the Talos II

to other architecture systems should be straight forward as long as the IPL flow is

similar.

1.2 Problem Statement

As described in the previous section, currently there is no system in place that

protects the boot firmware stored on computing systems through encryption. Al-

though secure boot helps improve hardware security, it does not prevent adversaries

from conducting hardware physical attacks. Secure boot uses shared key encryption

2

which provides integrity protection but is not designed for tamper protection. Using

unencrypted boot firmware leaves the code open to be viewed and tampered with by

adversaries. Encrypting the boot firmware will protect proprietary information on

commodity hardware through confidentiality, preventing outsiders from accessing the

proprietary information and providing an additional layer of deterrence against tam-

pering attempts. Implementing a method of encrypting and decrypting firmware in

the processor also requires a method of secure key storage which needs to be resolved

with the boot firmware encryption method.

1.3 Research Objectives

As part of this research effort the following objectives are identified below:

• Understand the motivation behind encrypting the boot image and how to ac-

complish this given the properties of the hardware.

• Understand the structure of the Talos II IPL flow and how data traverses the

various bus interfaces during the boot sequence.

• Understand the memory and processing limitations of the Talos II during the

early stages of the IPL.

• Evaluate OpenPOWER firmware to determine appropriate locations in the IPL

to decrypt firmware.

• Design and implement the boot firmware encryption method with several en-

cryption schemes.

• Configure an experiment with multiple factors to model and collect timing data

regarding the firmware decryption code.

3

• Evaluate the performance of the boot firmware encryption implementation and

the implications in securing the PNOR image.

• Understand the functionality and properties of secure boot.

• Design and implement a method of securing the firmware decryption keys.

The questions to be answered by this research in order to meet the aforementioned

objectives are as follows:

• Is it feasible to decrypt firmware during the IPL?

• Is it possible to securely store the decryption keys within the P9?

• How much memory space is available during each boot stage to store the de-

cryption firmware?

• What are the constraints and performance limitations of boot firmware encryp-

tion?

• Do the benefits of boot firmware encryption outweigh the performance impacts

and memory consumption?

1.4 Hypothesis

The hypothesis of this research is that it is feasible to utilize boot firmware en-

cryption on vulnerable computer systems to protect the boot image from adversarial

reverse engineering efforts. Boot firmware decryption during the boot sequence will

theoretically require the hardware to alter the firmware data immediately before it

is executed. It also speculates that the additional layer of security will not cause a

significant performance impact to the system during the IPL.

4

1.5 Approach

This approach consists of implementing boot firmware encryption on the Talos II

to protect proprietary information stored on the system. Locations in the IPL have

to be identified where the encrypted boot firmware can be decrypted in the processor

cache. Once a section of firmware is selected, the decryption code is inserted into the

firmware to decrypt the following section of the IPL. Several encryption schemes are

selected to test the performance of the boot firmware decryption during the system

boot up. Once the boot firmware encryption experiment was executed under various

configurations, performance data is collected and analyzed. The boot firmware pro-

duces logging data to the console allowing the boot timing to be measured. Other

findings and implications revealed during the process are documented. The method of

secure key storage can also be solved by utilizing the secure properties of the system

architecture.

1.6 Contributions

The contributions of this thesis to the field of hardware security are as follows:

• Boot Firmware Encryption: It demonstrates a successful implementation

of boot firmware encryption with a variety of encryption methods. It provides

a framework for full boot image encryption and possible use on other computer

systems like Intel and AMD.

• Analysis of Decryption Firmware Memory Requirements: It details the

memory required for each decryption algorithm and discusses the most efficient

options for a variety of scenarios.

• Secure Key Storage Management: It demonstrates a successful implemen-

tation of a secure key storage management approach. This implementation

5

creates the framework to encrypt the entire PNOR image and store the keys

securely within the processor. Since only firmware is added to the system,

additional hardware like a One-Time Pad storage chip is not required.

• Performance Analysis: It demonstrates an approach for measuring the per-

formance of various decryption algorithms during the Talos II boot sequence.

The measurements are collected with varying encryption ratios to identify the

performance limitations with each encryption algorithm.

• Qualitative Analysis: It lists design considerations, challenges, and potential

vulnerabilities of the boot firmware encryption implementation described.

1.7 Organization

This thesis is organized as follows. Chapter II provides background information

required to understand the complexity of boot firmware encryption and decryption.

It introduces the Talos II architecture, firmware, IPL, and encryption algorithms used

in this research. Details on secure boot and secure key storage management are also

presented. This chapter also presents research related to this work and identifies the

areas requiring further research.

Chapter IV lists the assumptions, control factors, and response variables of this

research. The process of developing the boot firmware encryption is discussed, in-

cluding specific developmental challenges encountered in this research. A description

of the methodology for conducting the boot firmware encryption performance anal-

ysis is presented in this chapter along with an overview of the secure key storage

management process in Section 3.2.

Chapter V presents the results and analysis of the experiments described in Chap-

ter IV. An analysis of the secure key storage management implementation is discussed,

6

followed by presentation of the firmware encryption results. The memory space allo-

cated for each firmware is analyzed along with the performance impact of the boot

image encryption, encryption algorithms, and encryption ratio.

Finally, Chapter VI concludes with a summary of the work presented and the

contributions to the field. In addition, recommendations for those utilizing similar

tools or frameworks are presented. Future work areas for this research which in-

volve improvements to the simulation environment, upgraded components, and other

performance data collection tools are also discussed.

7

II. Background and Related Work

2.1 Overview

This chapter provides the background information required to understand the

challenges of boot firmware encryption. It covers the hardware and firmware of the

Talos II along with an overview of the boot flow. It builds off previous information to

introduce secure boot and the problem of secure key storage. Encryption algorithms

that are used in this thesis are also introduced with a description of the use case and

strengths of each algorithm. The literature surrounding boot firmware encryption

related work is reviewed to supply perspective to the problem this research attempts

to solve. The related work also provides possible directions to take for the problem

of encrypting low level boot firmware.

2.2 Talos II Architecture

The Talos II workstation was used in this research effort to develop and test the

boot encryption implementation. It is designed by Raptor Computing Systems and is

the world’s first owner controllable workstation-class motherboard that is compatible

with open source firmware from OpenPOWER. OpenPOWER is a foundation that

strives to promote open sourced high performance processors, firmware, and soft-

ware [7]. The Talos II supports dual P9 Central Processing Units (CPUs), trusted

boot, and is compatible with OpenBMC. The OpenBMC compatibility allows the

Talos II to boot from custom firmware which is essential to this research.

The Baseboard Management Controller (BMC) is a specialized service processor

that resides on the motherboard and monitors all physical and network data. It is

primarily used in server environments to control and monitor multiple systems to

ensure normal operation. Even if the server is shut off, the BMC remains on as long

8

as the system is connected to a power source. The BMC provides the system admin-

istrator an avenue for communication with the server, specifically allowing remote

power cycling and rebooting. This is possible because the BMC has its own IP ad-

dress and can be accessed remotely from an external system. Having full control of

the BMC firmware enables the capability to modify the instructions executed during

the IPL [1] as well as the boot image that the system uses.

IPL refers to the operations that the Talos II executes from power on until the

operating system starts up. During this initial start up, several interfaces are used

to transfer data between the PNOR flash memory, random access memory, and the

P9 module. The Intelligent Platform Management Interface (IPMI) and Fast Serial

Interface (FSI) are two important communication interfaces that are used later during

the IPL. Since this research focuses on the early portions of the boot flow, IPMI and

FSI will not be discussed further in this thesis. LPC and Pervasive Interconnect

Bus (PIB) are also two interfaces that are essential to the boot process. The LPC

bus connects the P9 to external systems like the BMC. If trusted boot is enabled

on the system, the LPC bus is used to communicate with the Trusted Platform

Module (TPM) [5]. The LPC bus would connect the TPM and PNOR flash chip

in Figure 1. The PIB exists inside of P9 CPUs and provides read and write access

to the various components attached such as the On Chip Controller (OCC), Serial

Electrically Erasable Programmable Read Only Memory (SEEPROM) and Self Boot

Engine (SBE) as shown in Figure 1. Data transfer inside the processor will use the

PIB and is considered secure because it is physically contained inside the P9.

The PIB connects several components, including the SBE and SEEPROM, that

are essential to the start of the boot flow [1]. The SBE is an auxiliary microprocessor

inside the P9 CPU that is specifically designed to initialize the first core to begin the

IPL process. It executes from a Programmable PowerPC-lite Engine (PPE) and its

9

Figure 1. Detailed Hardware Layout of the POWER9 Secure Boot Environment [1]

firmware is stored in SEEPROM. As a backup in the event that the system fails to

reach the 2nd stage bootloader, the SEEPROM stores two redundant copies of the

initial boot stage. It also stores the root of trust hash when secure boot is enabled.

Two major concerns in this research were memory space limitations within the

PNOR image and the Level 3 (L3) cache of the P9. The beginning portion of the

IPL executes from the processor cache which is limited to 10 MB. This could cause

problems with booting the system if the firmware requirements exceed the memory

space available in the L3 cache. The second possible problem concerns the limited

amount of space on the PNOR image. Each partition in the PNOR is allocated a

specific amount of space so that the entire image fits on the flash chip. Although

the PNOR has buffer space built in for each partition, problems could occur if the

compiled firmware exceeds the allocated space. This concern was addressed by ensur-

10

ing that the correct space requirement checks are accomplished during the firmware

compile stage. Additional code that causes the firmware to overflow the specified

memory space would result in a failed PNOR compilation.

2.3 PNOR Image

The PNOR flash image contains all the instructions needed to boot the Talos

II and is split into several sections defined in the PNOR Table of Contents (TOC)

as shown in Figure 2. The TOC is one of the most important sections of the boot

image because it contains data such as the name of the partition, physical offset, and

physical size [8]. It is located at the beginning and end of the PNOR and is queried

multiple times during the IPL by the P9.

The PNOR image allows developers to alter almost every part of the boot process

with a single boot image file. The PNOR structure in Figure 2 is a general layout of

the firmware used in OpenPOWER systems. The PNOR version specific to booting

the Talos II is 4 MB and contains 31 sections ranging from 28 KB of memory configu-

ration to 1.8 MB of boot kernel firmware data [8]. Each section in the PNOR contains

a firmware module that is used during the IPL. The sections that are most relevant

to this research are the Hostboot Extended Image (HBI) and Skiboot partitions.

The PNOR image needs to be compiled with the various firmware libraries used

to build the boot image. The PNOR is best compiled through the buildroot-based

op-build system, since the op-build system automatically compiles the PNOR image

with firmware from the master git repository branch. This can be altered by using the

<pkg> OVERRIDE SRCDIR variable which allows for custom firmware to be compiled

into the PNOR image [9]. For this research, the Hostboot library was modified

to contain custom firmware so the op-build command was used with HOSTBOOT -

OVERRIDE SRCDIR.

11

Figure 2. High-Level View of the PNOR Image [1]

2.4 Initial Program Load

The Initial Program Load (IPL) is a term in OpenPOWER systems that refers

to the operations that the system executes from power on until the operating system

starts up. The IPL consists of five main sections as shown in Figure 3 with the two

SBE stages, Hostboot, Skiboot, and Petitboot. This research focuses on the stages

of the IPL up to Skiboot because the earlier sectors are easier to alter and contain

important details regarding system start up. The firmware for each of the stages of

the IPL are stored in the PNOR, allowing developers to alter the boot firmware by

updating the flash image. Figure 4 shows a detailed breakdown of the IPL by ISTEPS

and firmware sections. To start the IPL, the BMC sends the system start signal to

the SEEPROM through the PIB. This starts up the 1st stage bootloader.

12

Figure 3. OpenPOWER Firmware Boot Flow [2]

2.4.1 1st Stage Bootloader

The 1st stage bootloader is stored in the SBE of the P9. Working with limited

flash memory and a dedicated boot processor, first stage bootloaders face tight mem-

ory constraints. Any code added to the firmware must not exceed the flash memory

space and can only contain instructions that the SBE is capable of executing. Compu-

tationally intensive instructions running out of the SBE can also impact performance

of the boot processor and slow down the IPL flow.

13

Figure 4. Detailed OpenPOWER Boot Flow [1]

The 1st stage bootloader on the Talos II system comes in two parts. The first

section is permanently written on One Time Programmable Read Only Memory (OT-

PROM) through eFuses in the P9 silicon. The SBE firmware in OTPROM contains

the first instructions that are executed on the SBE. The OTPROM section of the

SBE initializes the PIB which provides a method of communication within the P9.

The PIB is then used to load firmware from SEEPROM into the SBE core [1].

The SBE firmware from SEEPROM is responsible for initializing the first CPU

core that the Hostboot Bootloader (HBBL) is run on and initializes the L2 and L3

caches along with access to the PNOR flash memory. If secure boot is enabled, the

TPM would be reset during this stage. The SBE running off of the SEEPROM then

loads the HBBL into the L3 cache and starts its execution.

14

2.4.2 Hostboot

Hostboot is an major portion of the IPL because it configures all the interfaces

that are needed for Skiboot and the Operating System (OS) kernel. It acts as a cache-

contained operating system for self-hosting chip initialization in POWER platforms.

Virtual memory and a virtual file system layer are both used for demand-paging to

bring code out of the flash chip as necessary [10]. This is because the code and data

required for Hostboot does not fit on the 10 MB of L3 cache available. Hostboot is

split into three main sections which are HBBL, Hostboot Base (HBB), HBI. They all

function differently and have unique purposes to progressing the IPL.

The Hostboot Bootloader (HBBL) is stored in the SEEPROM and contains the

first instructions that are run on the CPU core started by the SBE. It is responsible for

cryptographically verifying the integrity of Hostboot when secure boot is enabled [10].

The main function of the HBBL is to load the HBB binary from the PNOR into the

P9 L3 cache and start execution on the first CPU core. The important characteristic

of this firmware is that it is stored within the P9 during the boot sequence, but can

be updated through a successful PNOR update. This will be a key feature to securing

the firmware decryption keys and will be covered later in Section 3.2.

The Hostboot Base (HBB) partition consists of a base initialization service task

list which starts all the services needed in the HBI stage. HBB contains the Host-

boot executable core, or kernel, and the services necessary to read and write to the

PNOR. It provides message passing, task control, memory management, and interrupt

support for the POWER processor. HBB also initializes the dynamic random-access

memory, processor bus, and memory buffers, acting as the foundation for the HBI [7].

The Hostboot Extended Image (HBI) stage is executed through an extended ini-

tialization service task list in the form of ’ISTEPs’ [10]. Each task in the service

task list acts to progress the initialization of the chip. The HBI is structured in an

15

image containing Hostboot sub-component code with the Hostboot extended table of

contents. This stage performs the majority of the system initialization to setup the

system for the next boot stage. The Powerbus, memory controllers, POWER device

tree, and Hostboot Runtime (HBRT) services are all initialized during this stage.

The Powerbus is a set of buses that carry data between the processor and external re-

sources like the cache, memory, and I/O. The POWER device tree is a data structure

in memory that stores attributes and system configuration information. The HBI also

wakes up the remaining processor cores by initializing the Sleep Winkle (SLW) image

for each core. The last two ISTEPs in the HBI, ISTEP 20 and 21, are designed load

and start Skiboot which is essential for the boot firmware encryption implementation

shown in Figure 4. These ISTEPs are covered later in this thesis when discussing

the implementation details. Once the final ISTEPs are complete, Hostboot releases

control of the CPU to Skiboot.

2.4.3 Skiboot

Skiboot is late stage boot firmware that provides the OpenPOWER Abstraction

Layer (OPAL) runtime services used later in the Skiroot. It provides wider platform

initialization compared to hostboot and initializes Peripheral Component Intercon-

nect Express (PCIE) controllers, device trees, real time clock, and several sensors [7].

The sensors are integral to the OCC, which is also started in the Skiboot boot stage.

The OCC is an embedded subprocessor within the P9 that controls the thermal and

power management of the processor. When working with the compiled PNOR image,

it is important to note that Skiboot is compressed to fit 16 MB of instructions into 1

MB of space. The Skiboot image is decompressed at the end of the Hostboot stage

in ISTEP 20.1. After Skiboot is complete, Skiroot and Petitboot are chain-loaded.

Petitboot is the final boot stage and loads the runtime operating system.

16

2.5 Secure Boot

Secure boot is a feature that is used to verify the authenticity of each stage of

the boot process and ensure that the device is only booting with Original Equip-

ment Manufacturer (OEM) software. It usually operates by starting with one time

programmable memory which creates the core root of trust. At every stage in the

boot process, the bootloaders are signed and verified to ensure that the firmware is

authentic with a signature and hash checking mechanism. The core root of trust then

authenticates the first stage bootloader which is signed with the manufacturing key.

After additional bootloader stages are signed and verified, the OS is signed which

finishes the secure boot process. If all the firmware signatures are valid, the device

will boot and the firmware gives control of the hardware to the operating system.

IBM’s secure boot utility works by having each component in the IPL verify the

integrity and authenticity of the following component before allowing it to execute.

The integrity verification is completed through a secure hash like SHA512, and the

authenticity is verified by a cryptographic signature like Elliptic Curve Digital Sig-

nature Algorithm (ECDSA). All the executable components are verified with secure

boot with a chain of trust that is rooted in hardware. This means that the root of

trust must be stored immutably in system hardware and is assumed to be inherently

secure. Each component that follows is loaded from an unprotected location in flash

memory so it is not trusted until verified. During the secure boot process, each com-

ponent in the unprotected location in flash memory is moved to a secure container

with the corresponding cryptographic signature. The OpenPOWER firmware must

be stored in secure containers within flash memory to enable the secure boot verifi-

cation. The boot process will stop if any of the components fails the authentication

with an incorrect signature. This creates the complete chain of trust in secure boot

for all executable boot code where the root of trust is anchored in platform hardware.

17

A two-level key hierarchy is used to ensure security of the hardware and firmware

domain. The root keys are considered the hardware keys, while the signing keys

are the firmware keys. The hardware keys sign the firmware keys, and the firmware

keys sign each of the firmware components with three keys per set. This separation

of duties within the signing process increases the overall security of the secure boot

process. Each key pair is made from asymmetric keys which have a public and private

side and uses 512-bit ECDSA. The private keys are stored in a hardware security

module at the manufacturer while the public keys are compiled with the PNOR so

that they are available for the signature check during boot. The hash of the public

portion of the three hardware keys are stored in the SEEPROM to anchor the key

hierarchy in hardware. During the IPL, each component of the PNOR is verified

by checking the hash stored in the container with the value stored in SEEPROM.

This is how secure boot verifies that the keys used to sign the firmware are properly

authorized.

Enabling secure boot on the Talos II requires the use of a TPM which is a secure

crypto-processor that is designed to execute cryptographic operations. The TPM

takes a hash at each stage of the process and these hashes are signed to return an

Attestation Identity Key (AIK). Attestation in the boot process is a signed report of

the hash values retrieved during the various boot stages. The problem with the secure

boot process is that the TPM requires the use of the LPC bus to communicate with

the P9. An interposer could be used to sniff and modify the LPC signals between

the host and TPM. Although secure boot is not used in this research, the structure

of firmware verification is used for the secure key storage implementation.

18

2.6 Secure Key Storage

When considering the problem of using an encrypted PNOR image, the problem

of secure key storage also needs to be investigated. The principal challenge to using

encrypted boot firmware is that a boot stage needs to exist within the hardware

capable of decrypting the subsequent firmware section. If the decryption boot stage

is stored on the PNOR flash chip, the plaintext code would need to travel across the

LPC bus from the PNOR to the P9, which is vulnerable to interception.

One way to circumvent this problem is through Public Key Infrastructure (PKI).

The keys would be stored in separate secure locations and shared over an insecure

channel using a combination of symmetric and asymmetric encryption. PKI would

allow for data to be transmitted across the LPC bus but also requires control of both

endpoints of the PKI implementation. This is difficult with the Talos II meaning that

the task remains in the effort to accomplish secure key storage.

2.7 Encryption Schemes

The boot firmware encryption method was initially developed with an XOR cipher

due its simplicity as a proof of concept and possible use as a one time pad. After

achieving a working proof of concept, SPECK and Advanced Encryption Standard

(AES) were chosen as two well known encryption standards to compare the encryp-

tion performance during the IPL. SPECK represents the performance of a lightweight

cipher [11] while AES represents the performance of a computationally intensive ci-

pher.

2.7.1 XOR

An XOR cipher can be considered a secure encryption algorithm through the use

of a one time pad, which cannot be cracked (if used only once) but requires a key that

19

is as long as the plaintext. In this implementation, the key is truncated to 16 bits,

otherwise the decryption key would take up an additional 1 MB of valuable memory.

A simple XOR operation was used in this case to explore the capabilities of the P9

during IPL.

2.7.2 SPECK

The second encryption standard selected was SPECK, a lightweight block cipher

optimized for software implementation. It was developed by the National Security

Agency (NSA) alongside SIMON which is also a lightweight block cipher, but opti-

mized for a hardware implementation. Both SPECK and SIMON are ciphers with a

range of options of block and key sizes. They were created for use in Internet of Things

(IOT) devices with the US Government to minimize computational performance im-

pact. SPECK was selected because it is one of the best performing lightweight ciphers

and does not use lookup tables [11]. This reduces the size of the compiled code as

the tables do not have to be stored in the hostboot source code. The lightweight

nature of SPECK also allows it to run efficiently, reducing the performance impact

the decryption phase has on the boot sequence.

2.7.3 Advanced Encryption Standard

AES was selected as a heavyweight encryption standard because it is a well-known

and widely used block cipher. AES utilizes a Rijndael algorithm that was published in

1998 and is maintained by the Department of Commerce, National Institute of Stan-

dards and Technology, and Information Technology Laboratory [12]. It is a symmetric

key algorithm, using the same key for encrypting and decrypting data. Although AES

supports a range of block sizes, this research uses AES-256 as a sufficiently secure

configuration. As stated by the NSA, the design and strength of all key lengths of the

20

AES algorithm are sufficient to protect classified information up to the Secret level

while Top Secret information will require use of either the 192 or 256 key lengths [13].

The block size was a concern because the limited space in memory poses a possible

problem during run time. AES uses a substitution permutation network which means

that it is efficient in hardware and software implementations.

2.8 Related Work

Before developing the boot firmware encryption for this research, background

research was conducted to understand previous work in this field. Three examples of

successful boot firmware encryption were used as a foundation in this thesis. Although

these implementations were designed for secure firmware updates on microcontrollers,

the structure of decrypting an encrypted firmware update is similar to boot firmware

encryption.

2.8.1 Secure Firmware Updates with AES Encryption

The process of encrypting sections of the bootloader before being loaded onto the

system is important to this research. A guide by Silicon Labs helped introduce the

idea of encrypting boot firmware and decrypting it in a secure storage space. The

goal of this paper was to provide a secure distribution system for firmware updates

to microcontrollers. This is needed because application sensitive information could

be stored in firmware updates which could be accessed by bad actors to develop zero

day vulnerabilities. This implementation from Silicon labs allows the microcontroller

system to receive encrypted firmware and decrypt it once it is stored in the internal

flash chip [14]. This structure is applicable to boot firmware encryption in the Talos

II by applying the encryption and decryption portions to the IPL flow.

Microchip Technology also implemented an encrypted bootloader that functions

21

similar to the AES encrypted bootloader from Silicon Labs. The purpose of the

encrypted bootloader was to safely update ultra-low power microprocessor firmware

in the field through encryption [6]. A vulnerable firmware update process for in-field

embedded systems would allow attackers to compromise system security and possibly

gain complete control of the deployed system.

Figure 5. U-Boot Firmware Encryption Setup [3]

2.8.2 U-Boot Image Encryption

Digi developed a method of encrypting signed firmware to obscure image data

from unauthorized users. It was applied to U-Boot which is an open source boot-

loader used in embedded devices and compiles the instructions necessary to boot the

embedded system operating system kernel [3] just like the PNOR image in Open-

POWER systems. The process of encrypting firmware and decrypting it during the

boot sequence is identical to the process used in this research. Figure 5 shows the

layout of running an encrypted U-boot image with secure key storage. The imple-

mentation of the encrypted U-boot firmware can be applied to specific stages in the

PNOR image. A concern with this implementation is the requirement for an One-

22

Time Pad (OTP) memory chip within the processor. Since this is not feasible within

the scope of this research, only the encryption and decryption format is useful.

2.9 Summary

This chapter covers the background information surrounding boot image encryp-

tion like the Talos II architecture, firmware used during boot up, and the stages the

firmware is utilized in. Secure boot is also reviewed with the concepts related to

secure key storage and encryption algorithms. Finally, the research related to boot

firmware encryption is discussed to provide context to the work in this thesis.

23

III. Implementation Discussion

3.1 Implementation

A key challenge with this research was configuring the decryption firmware to

work within the constraints of the hardware during the IPL. In order to demonstrate

the feasibility of boot firmware encryption, a simple proof of concept was used before

starting the experiment. The methodology for this proof of concept was complex due

to the multiple stages required to make firmware changes. Before the PNOR was

flashed onto the Talos II, a section of memory needed to be identified for encryp-

tion. The decryption function was then programmed into the firmware that loads the

section of memory. For example, since the Hostboot stage chain-loads the payload

stage, the payload would be encrypted and the decryption function would be located

in Hostboot. The PNOR was then compiled and the address space identified ear-

lier was encrypted. The PNOR with the encrypted section and decryption function

was flashed onto the Talos II. The implementation proved to be successful through

multiple successful boot sequences.

After analyzing the IPL firmware, several points in the code were identified where

the decryption code could execute successfully. The first possibility was the HBBL

which was located in bootloader.C. A function called handleMMIO is used to copy

the HBB code from the PNOR to a working location. The HBBL code is executed

near the start of the boot process, and machine code is used to instruct the LPC

to transfer data. At this stage of the boot, the console output (print out and log

commands) is not yet accessible, making it difficult to verify the correct address and

size of the partition for encryption. Although this was a limitation during the proof

of concept development, the bootloader.C firmware will be employed for secure key

storage.

24

A non-trivial concern throughout development of the decryption mechanism was

the risk of “bricking”, or rendering inoperable, the P9 through a broken boot sequence.

This could arise while altering the firmware before HBB in the IPL because the

SEEPROM uses two sides to save low-level firmware while keeping a backup. When

the Talos II boots up with new firmware, the new HBBL is saved to Side 0. If the

system successfully runs through the HBBL once, the system saves the new firmware

to Side 1. A critical problem may occur if the firmware successfully boots once but

fails in subsequent runs, resulting in permanent failure to boot, i.e., the P9 could get

“bricked”. This risk could be mitigated by altering the firmware that conducts the

SEEPROM side updates. By default, the Talos II uses sequential SBE updates which

updates the second SEEPROM side upon a successful SEEPROM Side 1 update and

boot. The system allows for independent SBE updates which prevent the second side

of the SEEPROM from being updated, so the BMC can be manually configured to

boot off the Side 1 memory to use the stock HBBL firmware.

A second possible location where decryption code could execute is the HBI. Since

HBB handles the modules for starting the HBI, it was possible to narrow down

the location to the vfsrp.C, which is the Virtual File System Resource Provider

(VFSRP). HBI is executed through ISTEPs, and a module list which each have their

own services to initialize. HBB reads through the module list and sends messages to

the P9 to load each task and initialize it. Each task sends a MSG MM RP READ, which

executes a memcpy to load the relevant data into the local execution space. A concern

with using the VFSRP is that a maximum of 68 tasks may be started during the HBI

phase. This means that 68 addresses and address spaces must be managed during

the encryption phase making this implementation extremely complicated. Each of

the 68 modules will need to be individually encrypted and the decryption firmware

will need to decrypt each module as it is loaded into the local execution space.

25

A final possible location where decryption code could execute is the end of the

HBI in call host load payload.C in ISTEP 20. This code is responsible for calling

a function, load pnor section, which runs one time to load the payload from the

PNOR into local memory space. One complication working in this code is the XZ

compression. Since the payload section is nearly 16 MB but is only allocated 1 MB

on the PNOR image, it must be compressed when stored on the flash chip. The

decompression code handles the memcpy from PNOR but raised concerns with read

and write operations with regard to the LPC address space.

Figure 6. Hostboot Malloc Code

One approach is to allocate a space to store the encrypted payload, as shown in

Figure 6, and copy the data from the PNOR to the local memory space. The en-

crypted payload was loaded in 4 KB chunks, as shown in Figure 7. After the encrypted

data was stored in the temp buf, the data was encrypted in place in Figure 7. The

26

encrypted data was then passed into the XZ decompression function. The displayf

function from the console was used to display important data to the BMC console

client and helped determine if the code failed at a specific section.

Figure 7. Hostboot Decrypt Code

That approach results in a problem with call host load payload.C because the

payload in the Talos II PNOR is XZ compressed. The memcpy responsible for loading

the compressed payload exists in the XZ decompression code, adding a layer of com-

plication. In this implementation, space is allocated in memory to manually store the

PNOR image, decrypt the compressed image, and pass the decrypted data into the

decompression function as shown in Appendix A. The corresponding XOR firmware

encryption code, shown in Appendix B, is programmed in Python for simplicity.

In this approach, the XOR decryption function is used directly on the data pointed

to by the pnorSectionInfo.vaddr. The virtual address specified for each PNOR

section is memory mapped to an address space on the LPC bus. This is a problem

with attempting to XOR the data in place because this would attempt to write over

27

the PNOR section over the LPC bus. An alternate implementation, with a higher

cost to memory, allocates a 1 MB block that would copy memory from PNOR and

XOR the data in place. This memory space is then passed into the decompression

function resulting in a successful boot.

After successfully running all the steps, a standard boot operation was conducted

as a test. This was done to verify that the XOR function did not interfere with

the OPAL firmware and the following boot process. Figure 8 shows the OpenBMC

console client logs where the print statements in Figures 6 and 7 are shown. The

figure also shows ISTEP 21.3 and the following log shows that Skiboot was able to

start, implying that the XOR code ran successfully. The XOR of the header can be

verified with the data printed out in the console client. The header for Skiboot begins

with the hex values of fd 37 which matches the XORed header values. After running

the boot sequence several times and cycling the power, the Talos II was able to boot

Linux without any problem.

With a working XOR proof of concept completed, SPECK was chosen as the

lightweight block cipher to implement next. The decryption function, shown in Ap-

pendix C, was programmed in C++. The Speck and Simon implementation guide

provided working sample code with test vectors. The encryption function in Ap-

pendix D was programmed in Python due to the simpler address management and

file management code. After confirming that the SPECK cipher successfully works

with the boot firmware encryption model, the final algorithm to implement was AES.

The decryption function was programmed in C++ because the cipher must work with

the rest of the firmware which is in C++. As shown in Appendix E, the substitution

boxes along with the supporting functions must be stored in the ISTEP 20 firmware

along with the decryption function. Appendix F shows the AES encryption function

written in Python for simplicity.

28

Figure 8. Proof of Concept Decryption

3.2 Secure Key Management Process

The data contained in the P9 module is considered secure under an assumption

from Section 3.3; that adversaries do not have the capability to sniff the interfaces

within the processor. This implies that data and keys are secure if they are stored

inside the P9 module, provided there are no methods to retrieve them from external

interfaces. With this understanding, there are three methods that can help solve the

problem of secure key management that will be discussed.

The first method involves adding an OTP storage chip in the POWER9 module

which is how manufacturers typically manage keys. The OTP storage chip would be

connected to the PIB and transmit the decryption key to the P9 L3 cache when the

29

firmware decryption code executes. Although this implementation would allow for

secure key management for boot firmware encryption, it also requires hardware to be

physically added to the P9. Since this research focuses on firmware-only solutions,

this method is not feasible.

An alternative to adding a storage chip to the P9 is to utilize existing SEEPROM

memory space on the SBE. The SEEPROM memory stores the SBE firmware along

with verification keys for secure boot. During secure boot, the verification keys are

compared to the hash of the boot image. The key management system can be used to

securely transport keys to the image decryption firmware when needed. A significant

constraint with this option is that the SEEPROM memory space is extremely limited

in size. In fact, the verification keys must be stored as hashes because they occupy

too much space as raw keys. This limitation with the SEEPROM memory prevents

this option.

Another method for secure key management can be implemented in firmware by

utilizing the structure of the initial program load with boot firmware encryption. The

Hostboot bootloader stage is integral to this method because it is stored and runs

in the SBE. This means that it is isolated to the P9 module and is secured from

adversaries. The following stage is the HBB image which travels from the PNOR,

across the LPC bus, and into the L3 cache of the P9. The HBB section can be

secured by encrypting the base section and implementing a decryption function in

the bootloader.

This option also enables the user to update the decryption firmware through the

PNOR because the boot image contains a HBBL section, meaning that the bootloader

firmware can be altered and recompiled into a new PNOR image. Upon the first

successful Talos II boot with an altered HBBL image, the SBE will detect a firmware

difference and proceed to update the SEEPROM Side 0 memory at the start of the

30

IPL. The system will then reboot from Side 0. Then, if the system successfully reaches

ISTEP 10, the SEEPROM Side 1 will also be updated. This is important because it

allows the user to safely update the SBE and HBBL firmware.

After the final bootloader firmware is updated on both sides of the SEEPROM,

several steps need to be executed to ensure that the bootloader stays protected. The

first step is to ensure the SEEPROM side updates are disabled. This is required

because the SBE automatically updates the HBBL firmware if it detects a firmware

change. The first step will allow us to encrypt the HBBL or remove the HBBL section

in the PNOR but still use the unencrypted HBBL stored in the SBE, protecting the

key stored in the firmware. Preventing automatic SEEPROM updates will lock the

system so that the SBE firmware can’t be updated.

To implement this method, a PNOR containing the decryption code in HBBL

with an unencrypted HBB needs to be flashed onto the system. This is required

because on the initial boot, the SBE will not have the decryption code in the HBBL

to decrypt HBB. After reaching ISTEP 10.5, the system will flash the new HBBL to

the SBE. This will give the system the capability to boot with an encrypted HBB

section in subsequent system startups.

To remove the secure key storage and management, the reverse of the aforemen-

tioned method needs to be executed. A PNOR image with HBBL firmware without

the decryption code and encrypted HBB firmware needs to be compiled and flashed.

After the SEEPROM side update, the SBE will have the HBBL firmware without

the decryption code, meaning it can now boot an unencrypted HBB. The 2nd SEEP-

ROM side will be updated on ISTEP 10.5 again allowing the system to boot with an

unencrypted HBB. A PNOR without decryption firmware and an unencrypted HBB

will then be flashed onto the system, allowing for normal PNOR updates.

31

3.3 Application Scenarios

Boot firmware encryption can be applied to any embedded application with pro-

prietary information that needs to be protected. For example, self driving cars may

be exposed to corporate espionage and reverse engineering attempts. Since it is not

feasible to limit the sale of self driving cars, anyone can get access to the hardware

and attempt to leak information from the firmware. Manufacturers may want to deter

attackers from revealing sensitive firmware from the hardware. Leaking the firmware

may allow competitors to get access to proprietary self driving algorithms and possibly

replicate it. Encrypting the boot firmware of the embedded systems would prevent

this and make it extremely difficult for any 3rd party to uncover sensitive data in

firmware.

Another application scenario for boot firmware encryption is in public infrastruc-

ture. This research can be applied to unprotected end node environments in systems

like the power and water grid [15]. In the power grid, the Phasor Measurement

Unit (PMU) records the phasor data at various points in the grid and the data gets

aggregated at phasor data collectors. These data collectors may be vulnerable to

hardware attacks, allowing attackers to gain access to the infrastructure system [16].

Manipulating the sensor systems could cause a power grid failure and damage power

plant systems. The water grid also has similar vulnerabilities with pressure and flow

sensors being placed in vulnerable end node environments. The data collectors for

these sensors could be protected with boot firmware encryption, preventing possible

hardware attacks.

32

IV. Experimental Setup and Methodology

4.1 Objective

The goal of this experiment is to measure the performance impact of an imple-

mentation of boot image encryption. The experiment is designed to provide sufficient

data for a discussion on the options of boot firmware encryption and the possible

performance trade-off for security. The experimental setup is specified along with a

breakdown of the development process along with the secure key management im-

plementation. The computer setup for developing the boot firmware encryption and

collecting data is also specified for future research and development.

4.2 Assumptions

The assumptions made in this experiment are related to the experiment design

decisions, constraints and known factors.

• Level 3 Cache Security: Adversaries do not have the capability to directly

read the L3 cache to observe data stored inside during operation. Since the

encrypted firmware is decrypted in the processor, the plaintext firmware would

be observable in the cache. It would be extremely difficult to pause the boot

process at the right time and remove volatile memory from the P9 module, but

it may be possible for a skilled hardware attacker.

• SEEPROM Security: Adversaries do not have the capability to remove the

SEEPROM from the P9 and extract data from memory. The secure key man-

agement implementation relies on the assumption that the memory interfaces

within the P9 module are relatively secure. The ability to read data out of

33

SEEPROM would allow attackers to retrieve the firmware decryption keys and

invalidate the security of the PNOR firmware encryption.

• BMC Firmware Access: The BMC cannot access data within the L3 cache

or SEEPROM during the IPL. The ability to forcibly read data from the L3

cache or SEEPROM would allow outsiders to view the decrypted firmware,

invalidating this research effort. The SEEPROM can be secured through the

use of Secure Boot because the SBE memory is locked from the BMC when the

secure mode jumper is enabled [17].

• Effect of PNOR Updates on Boot Timing: Each trial does not have an effect

on the subsequent boot up. Artifacts left from previous PNOR images may

cause marginal effects on the system performance during IPL. Randomizing

the selection of PNOR images should mitigate any residual effects caused by

previous boot images.

4.3 Control Variables

The control variables are those held constant over the execution of the various

scenarios and experiments of this research. In this experiment, the Talos II system

was kept constant as the only system the data collection was run on. The firmware

was also constant throughout the duration of the data collection to minimize possible

sources of error. The firmware loaded onto the microcontroller allows it to act as a

BMC and perform the repeated trials for data collection in this experiment. Although

the microcontroller has custom functionality added to the firmware, it still performs

similar to a stock Talos II system.

34

4.4 Independent Variables

The independent variables are aimed at evaluating and optimizing the boot image

encryption performance. For this experiment there are several factors to consider

when capturing boot image encryption performance. This effort focused on two fac-

tors which directly answer the research questions pertaining to this effort. The main

research objective was to understand the performance impacts of various types of

encryption for boot firmware encryption. The first factor was the type of encryp-

tion, with 4 representative levels, including: no encryption, XOR cipher, SPECK,

and AES. The second factor is the amount of the section that is encrypted which

will be referred to as the encryption ratio. Although partially encrypting the Skiboot

firmware makes little security sense, the experiment used firmware versions capable

of encrypting 25%, 50% and 100% of the Skiboot firmware in order to measure the

per byte encrypted overhead.

A full factorial design was utilized when narrowing down the experimental factors.

Since this experiment has two factors with each factor having three to four levels, an

analysis would require at least 16 trials. In this experiment, we decided to run 100

trials per factor level resulting in 1000 total runs. This helps us determine the main

effects and interactions on the boot timing metrics. A full factor analysis will reveal

the optimal encryption type and encryption ratio for boot performance and security.

4.5 Response Variables

The response variables for this research are correlated to the performance of the

boot image encryption. The data collected for this experiment is primarily time

based to measure the effects the decryption code has on boot time. Several locations

throughout the IPL were selected to measure the total time to run Hostboot, time to

load the payload, time to decrypt Skiboot, and time to decompress Skiboot. These

35

metrics were collected through timestamps in the console client logs.

The second response variable was memory consumption on the flash chip for the

decryption firmware. The boot firmware encryption requires the decryption code to

be stored on the PNOR which has limited space. The amount of memory left available

in the HBI was measured and collected at the end of each PNOR image compilation.

This will allow for an evaluation of the decryption firmware memory requirements.

4.6 Performance Evaluation

The performance of the boot firmware encryption is evaluated by measuring the

boot time required by different encryption algorithms and encryption ratios. Char-

acterizing the various boot firmware encryption factors can help paint a clear picture

of its impact on the Talos II. Different portions of the boot process are measured to

decompose the performance impacts of the decryption firmware. For example, during

ISTEP 20, the payload section is copied into the local buffer, decrypted, and de-

compressed. Each of these steps are measured to assess how the different encryption

algorithms perform.

4.7 Experimental Setup

Consistent test runs are required to gather reliable boot timing data because there

may be artifacts from previous boot images that could affect the boot time of future

trials. To solve this problem, the PNOR images were randomized to minimize the

influence of noise or other anomalies. During a new PNOR image boot sequence, an

error correction check is executed and updates the boot image. This is done during

the first few boots of a new image update so each PNOR image has to boot multiple

times until it stabilizes. The finalized images were downloaded after they were able to

boot without requiring a reboot during the IPL. This allows different PNOR images to

36

be flashed for each trial without needing to reboot the system during data collection.

Although this experiment can be run on a stock Talos II system as shown in

Figure 9, running hundreds of boot ups for data collection on the stock BMC can be

a problem. Since the ASPEED BMC cannot be modified at the hardware level in

this research, it is extremely difficult to add functionality that is required for running

hundreds of data collection trials. Instead, a Talos II setup with a microcontroller

acting as the BMC was used which allows for more control over the BMC functionality.

Figure 9. Stock Talos II Setup

4.7.1 Micro Controller Setup

To run the data collection for boot encryption efficiently, a microcontroller setup

was combined with the Talos II as shown in Figure 10. Instead of booting from the

Talos-supplied ASPEED 2500 BMC, an ARM Cortex microcontroller was employed

to accomplish the task. A field-programmable gate array (FPGA) was also used as

the LPC bridge between the microcontroller and P9. This setup enabled a change to

how the PNOR is transferred onto the Talos II.

Three python scripts were used to run the experiment with the micro controller

setup. The first is the talos ctrl code in Appendix G which handles the BMC com-

37

Figure 10. Microcontroller Setup

mands in the microcontroller. This was important for scripting the data collection

trials because it allowed for the automation of PNOR flashing and the Talos II re-

boots required after each data collection run. The udp logger shown in Appendix H

was essential in two ways for this research. The firmware contains the functionality

to collect detailed IPL data and save the files to the system controlling the microcon-

troller. The firmware also allowed the Talos II to boot off of PNOR images supplied

over Ethernet with a User Datagram Protocol (UDP) server which was essential for

automating the data collection. The experiment script in Appendix I combined the

functions in the talos ctrl and udp logger. It processed the data file of randomized

PNOR images and collected the boot time metrics for each trial.

The data collection system was set up so the microcontroller acting as the BMC

would wait for the PNOR image to be transmitted over Ethernet during boot. A

laptop with all the PNOR images would select one image to send through UDP. The

capability to boot without flashing the PNOR chip saved around 5 minutes per boot.

Although the PNOR images were supplied to the Talos II through Ethernet, this does

not affect the performance of boot time decryption which is entirely contained within

and dependent on the P9.

38

The microcontroller setup also has a UDP logger that is set to collect data from

the boot process. All the boot and error logs are transferred to a laptop for straight-

forward data collection on repeated runs. The logger records the LPC data transfers,

PNOR access messages, warning logs, and P9 messages. The data of interest is con-

tained in the P9 message log file.

4.8 Summary

This chapter described the objectives, assumptions, and variables of the exper-

iment covered in Chapter V. The process of developing boot firmware encryption

and secure key management is also explained to provide a better understanding of

this research. The application scenarios detailed the different ways boot firmware

encryption could be employed and how its implementation would solve the possible

vulnerabilities in the scenarios. The performance evaluation, secure key management,

and experimental setup are further detailed in Chapter V.

39

V. Observations and Analysis

5.1 Overview

This chapter presents the observations, results, and analysis from the experiment

described in Chapter IV. An evaluation of the secure key management implementation

is presented along with its constraints and limitations. The memory requirements for

each encryption algorithm are discussed to show the possible hardware limitations

with this research. The performance experiment consists of an evaluation of the boot

firmware encryption, comparison of encryption methods, and the encryption ratio

performance.

5.2 Secure Key Management Analysis

The method of securing the firmware decryption keys was described in Chapter IV

and implemented to assess its feasibility. The main concern when altering firmware

that is stored in the SBE is the amount of memory space available in SEEPROM. The

HBB decryption was first tested with XOR by loading the XOR decryption function

from Appendix J into the bootloader.C firmware. The compiled PNOR image was

then flashed onto the system without encrypting the HBB section. This is required

so that the SEEPROM updates will be complete after ISTEP 10 which requires the

HBB image to be unencrypted. After the system successfully updates the SEEPROM

side 2, a PNOR with an encrypted HBB from Appendix K can be flashed onto the

Talos II. The HBBL firmware is located at 0x3971000 and the specific bootloader.C

firmware is located at 0x3972200. The stock HBBL firmware requires 10197 Bytes.

With the XOR code loaded into the HBBL firmware, the memory requirement of

bootloader.C increased by 107 Bytes to 10304 Bytes. The system was also able

to boot with SPECK encryption in the firmware shown in Appendix L on the HBB

40

section. Incorporating this algorithm only required 917 more Bytes than the stock

HBBL firmware to implement successfully and required 11114 Bytes.

An AES HBBL implementation was attempted but failed due to the memory

requirement to store the decryption firmware. Appendix M shows the compilation

failure from op-build stating that the HBBL raw size without padding and Error

Correction Code (ECC) was 21040 Bytes when the limit was 20480 Bytes. This

resulted in HBBL not being able to fit the hardware key hash at the end of the

section without overwriting real data. Since there was not enough room within the

HBBL section, the PNOR image did not compile.

The security of the firmware decryption keys relies on the security of the SBE and

SEEPROM. If we assume that the interfaces within the P9 are secure, this method

of securing the firmware decryption keys should also be secure. Since the keys in

the later IPL stages will be stored in the source code which is encrypted, it is safe

to assume that the keys for the later firmware stages are secure. Future work will

consider the assumption that the interfaces within the P9 are secure.

5.3 PNOR Image Size

Understanding the memory space required for the firmware decryption keys and

the firmware decryption function is essential when applying this research to different

systems. Since the PNOR image only has a limited amount of space allocated for each

firmware section, it is important to avoid overflowing the space available. Another

consideration is the amount of space available in the execution space memory. For

example, the SEEPROM that stores the SBE firmware is only 64 KB, so memory

space is a concern when adding code to the firmware. Compiling the PNOR image

through the op-build system makes the process of altering firmware safer because it

verifies the firmware will not overflow the allocated space for each section.

41

Although the op-build compile system prints out the memory utilization for each

section, the metrics are not a true representation of the real memory space used. This

is because some of the sections are substantially padded before applying the error cor-

rection code so the compilation output is not accurate for memory analysis. To get

around this problem, HxD which is a hex editor, was used to manually calculate the

amount of memory consumed for each encryption algorithm.

Table 1. Decryption Firmware Size by Encryption Type

Encryption
Type

Start
Address

End
Address

Image Size
(Bytes)

Total Size
(Bytes)

Normal 0x7EA400 0x7EB6F0 4848 9216

XOR 0x7EA400 0x7EB820 5152 9216

SPECK 0x7EA400 0x7EB830 6144 9216

AES 0x7EA400 0x7EC410 8208 13824

Each PNOR image was loaded into the hex editor and the start of ISTEP 20 was

located at 0x7EA400 as shown in 1. This was done by searching for the text used

in the print statements for this ISTEP. This is possible because the PNOR image

stores the plaintext of the print statements at the end of the chunk of ISTEP 20 hex

instructions. For the stock Hostboot PNOR image, the ISTEP 20 section ended at

0x7EC800 meaning that the normal Hostboot ISTEP 20 section takes 4848 Bytes.

There is padding at the end of each section, giving ISTEP 20 9216 Bytes of space in

the PNOR image.

The XOR decryption firmware ends at the hex address 0x7EB820 meaning that

it requires 5152 Bytes which is 304 Bytes more than the stock PNOR image. The

SPECK firmware takes 6144 Bytes which is 1296 more Bytes than the stock firmware.

Both the XOR and SPECK algorithm and keys do not exceed the default padding

allocated so they only require 9216 Bytes of space in total on the PNOR image.

42

With the ECC added to the AES decryption firmware, the ISTEP 20 firmware

section overflows the 9216 Bytes allocated, requiring more memory space. After

compiling the PNOR image with AES, the final ISTEP section takes 8208 Bytes. With

the ECC and padding, the section takes a total of 13824 Bytes on the PNOR image.

This means that the code requires 3360 Bytes more than the stock image and the

padding causes the section to require 4608 Bytes more than the stock firmware. Since

the HBI firmware has extra padding at the end of the allocated space, the additional

firmware does not cause problems in the final image compilation process. Since there is

extra room in the PNOR image with the padding, the additional memory requirement

is not a limitation. Using AES on a system would only become a limitation if the

flash chip could not support the additional 4608 Bytes required.

5.4 Performance Experiment Results

After running 1000 boot data collection trials, a python script was used to process

the experimental data in Appendix J. The timestamps corresponding to the boot

stages that are important to this research were extracted through regular expressions

and inserted into a data frame. The data was exported into a .CSV file and processed

in RStudio. 2 shows the total data collected for each encryption type and encryption

ratio. Since the data shows the boot time metrics, a lower time is better. The

Load Payload data represents the amount of time the system requires to execute the

host load payload.C firmware section.

5.4.1 Performance Impact of Boot Image Encryption

The first research objective was to observe any performance differences with im-

plementing the boot image encryption. Figure 11 displays the time for the Hostboot

phase of the IPL to complete. This is measured from ISTEP 3 until the start of

43

Table 2. Breakdown of Boot Times by Encryption

Encryption
Type

Encryption
Ratio

Load
Payload

Decryption Decompress Hostboot
Time

NORMAL - 0.27955 - 0.26748 24.777

XOR
100% 0.52089 0.01030 0.13118 25.096

50% 0.51726 0.00574 0.13094 25.081

25% 0.51645 0.00559 0.13009 25.049

SPECK
100% 0.59249 0.08755 0.13105 25.077

50% 0.55308 0.04457 0.12630 29.959

25% 0.53777 0.02281 0.13098 25.008

AES
100% 1.0439 0.53969 0.12878 25.557

50% 0.78171 0.27139 0.13234 25.298

25% 0.64457 0.13670 0.12878 25.119

Skiboot which helps put the performance impact of boot image encryption in per-

spective. The median Hostboot time for AES was 25.51 sec while the time for a

normal boot was 24.69 sec. This means that it took Hostboot 0.86 seconds longer to

run by protecting the entire Skiboot firmware section with AES-256. The SPECK

implementation had a median Hostboot execution time of 24.99 sec while XOR had

a median of 25.06 sec. It is interesting that SPECK performed slightly better than

XOR by 0.07 seconds which was not a statistically significant difference when con-

ducting a two sample t-test (p=0.632). This may be caused by the implementation

of the XOR function as each Byte in Skiboot is iterated through and XORed while

SPECK loads and decrypts Skiboot in 8 Byte chunks.

The difference in performance overhead can be observed better in Figure 12 where

the time for the load payload function in ISTEP 20 is shown for each encryption

method. The differences in the Hostboot execution times are caused by the execution

of the load Skiboot step which contains the decryption function. The median time for

AES took 1.0443 sec, SPECK took 0.5923 sec, XOR took 0.5193 sec, and unencrypted

firmware took 0.2796. The variation in Skiboot loading times are much smaller than

44

Figure 11. Hostboot Execution Time

the hostboot execution times in Figure 11 which may be due to the earlier ISTEPs

in Hostboot introducing variability.

A one way Analysis of Variance (ANOVA) was used to analyze the boot timing

data to see if there is a significant difference between the different encryption meth-

ods. The first ANOVA test was run on the Hostboot execution time revealing that

the boot time had a significant difference between the different factors. The second

ANOVA was run on execution time to load Skiboot revealing that was also a sig-

nificant difference between the different encryption options. These tests help answer

the research question showing that there is a performance difference between each

45

Figure 12. ISTEP 20.1 Execution Time

encryption method and the unencrypted Skiboot implementation.

Figure 13 shows the time taken for the decompression of Skiboot with boot im-

age encryption. In the PNOR without Skiboot encryption, the decompression code

must wait for the compressed Skiboot section to get transferred into the working

memory which takes 0.2654 seconds on average. In the decryption code for the en-

crypted Skiboot firmware, memory is allocated for the decryption to execute before

the decompression occurs. The average decompression time for encrypted firmware

takes 0.1281 seconds which is 0.1373 seconds faster than the stock boot image. This

helps offset the decryption time by handling the PNOR image data transfer in the

46

Figure 13. Skiboot Decompression Time

decryption stage instead of the decompression stage.

5.4.2 Comparison of Encryption Methods

The three types of ciphers were implemented in this research to demonstrate the

range of encryption that the P9 would be able to handle during the IPL. The Skiboot

decryption times for each encryption type is shown in Figure 14. The XOR cipher

takes an average of 0.0103 seconds which shows the efficiency of XOR operations. This

implementation would be efficient in a system that required minimal boot firmware

execution delay while supporting MBs of free memory to store the one time pad

47

key. SPECK also ran efficiently with decryption taking 0.0875 seconds. Although

the SPECK cipher is not as secure as AES, it provides a layer of protection while

decrypting Skiboot around 6 times as quickly. AES took the longest to decrypt but

provides the most secure encryption implementation with an average decryption time

of 0.5397 seconds. An ANOVA test showed that the implementation of each algorithm

resulted in a statistically significant boot time increase.

Figure 14. Skiboot Decryption Time

48

5.4.3 Encryption Ratio

Encryption ratio is shorthand for describing how much of Skiboot is subject to

encryption. Figure 15 displays the Skiboot decryption time for each encryption type

and ratio. The XOR cipher performance for each encryption ratio shows that the

amount encrypted does not affect the overall performance by a significant amount.

The increase from 25% to 100% only increased the Skiboot decryption time by 4.71

ms. The SPECK and AES implementations both show a linear increase in decryption

time as the encryption ratio increases. AES takes longer to decrypt per byte compared

to SPECK which is observable in Figure 15. AES takes 5.43 ms for each percentage

of Skiboot that is encrypted while SPECK takes 0.89 ms for each additional percent

encrypted. Skiboot is 1 MB, one percent is 10,486 bytes, so AES takes 518 ns per

encrypted byte of Skiboot, SPECK takes 89 ns per encrypted byte, and XOR takes

4.71 ns per encrypted byte.

Based on these results, an estimation of the performance for a hypothetical imple-

mentation of a complete encryption of the PNOR image could be done. Encrypting

the entire 64 MB image with XOR would increase the boot time by 0.3161 seconds,

SPECK would add 5.973 seconds, and AES would add 34.76 seconds.

A two way ANOVA was used to test if there is a significant difference between

each encryption method and encryption ratio. The results in Figure 16 revealed that

there was a significant difference between the boot timing between each encryption

implementation and the ratio of Skiboot that was encrypted. This means that it may

be worthwhile to investigate the possibility of only encrypting the section of firmware

that contains sensitive information. For example, information or keys that need to be

secured within the IPL may not require the entire firmware section to be encrypted.

Isolating and encrypting a smaller percentage of the firmware would be meaningful

in an implementation scenario where a slight delay in boot time is consequential.

49

Figure 15. Skiboot Decryption Time by Encryption Ratio

5.5 Challenges

There were several challenges that were encountered when progressing through

this research. The first was the lack of detailed documentation regarding the inter-

action between the hardware and firmware, and the documentation within the code

to explain the functionality of each section of code. Since this research requires a

thorough understanding of the IPL, the lack of completed documentation created

obstacles for analyzing the firmware. For example, the readme.txts for most of the

firmware sections were empty, limiting the ease of access for firmware development.

50

Figure 16. Encryption ANOVA Test

The second challenge in this research was the limitations with debugging during

the IPL. Since this research focused on the development of the boot firmware encryp-

tion, the process of debugging the decryption firmware was important. There was

no easily accessible method of predicting that the decryption function would work

correctly before running the IPL and observing a successful boot sequence. The con-

sole client helps by allowing data during the later stages of the IPL to be printed out

to the console logs. This was used to help verify that the XZ decompression header

matched the expected values during the decryption process.

The last major challenge was the risk of bricking the P9. Since the Talos II uses

two sides for the SEEPROM, the risk of bricking the processor is low but still a

possibility. At the beginning of the IPL, the SEEPROM Side 0 is updated with the

new SBE firmware. If the system is able to reach ISTEP 10, the SBE firmware change

will be saved into the SEEPROM Side 1. This means that the Talos II verifies that

the new firmware can boot successfully at least once before permanently updating the

SBE. There is still the possibility of the firmware functioning correctly for a single

boot sequence and failing upon consecutive boot ups. This would cause both sides of

the SEEPROM to contain faulty firmware which will prevent the system from booting

past the HBBL. This challenge can be mitigated by altering the SBE update firmware.

By default, the Talos II boots in Sequential mode which is how the SEEPROM gets

updated as explained previously. This can be changed to Independent mode which

51

only updates the SEEPROM Side 0 and does not alter the second side.

5.6 Summary

This chapter discussed the findings and results of the scenarios presented in Chap-

ter IV. The evaluation of the secure key management implementation was discussed

along with a memory analysis of the various encryption methods. The performance

experiment results include the performance impact of boot image encryption, the

encryption algorithm comparison, and the analysis of the encryption ratio.

52

VI. Conclusion

6.1 Overview

This chapter summarizes the work performed for this research including the de-

sign and development of boot firmware encryption and secure key management. It

reiterates contributions of the work and summarizes the observations and analysis of

the experiment. Areas of future work for this research effort are also covered with a

plan described for each of the areas.

6.2 Summary

The primary goal of this research was to develop a method of protecting the

boot flash image, securing any proprietary information loaded onto commodity hard-

ware. In this research, the commodity hardware was the Talos II which supports

open source firmware. This allows developers to customize the firmware and alter

boot functionality, allowing for the possibility of protecting proprietary information

through firmware. The work in this paper has shown that the Talos II is capable of

decrypting firmware during the early stages of the IPL by carefully designing around

the limitations of the hardware.

This was accomplished by identifying locations in firmware that connected the

various sections of the IPL. The first section selected was the HBI which loads Skiboot.

The decryption firmware was loaded into the HBI and Skiboot was encrypted prior to

being compiled and flashed onto the Talos II. The experiment tested the performance

of three different encryption schemes and compared them to the standard PNOR

image.

The results from the experiment demonstrate that even in the case of a crypto-

graphically strong algorithm, such as AES, encryption on a portion of the boot image

53

is cost efficient. SPECK would work effectively in an implementation where minimiz-

ing boot time or memory usage is critical. Since a system only needs to boot once

in most implementations, a 0.86 second delay to incorporate AES-256 on Skiboot to

the boot firmware is negligible in most circumstances. The evaluation of encryption

ratios also shows that there is a constant cost for encrypting each additional byte.

Since there is a significant performance difference between the encryption ratios, re-

ducing the amount of firmware encrypted may be required in systems with larger

boot firmware images.

This boot firmware encryption implementation is secured through the encryption

of the firmware decryption keys. The root of trust for the secure key management

exists in the SBE where it is assumed that the plaintext firmware stored in the

SEEPROM is secure. The keys to decrypt the following firmware stage are hardcoded

into the source code but will be protected since the entire firmware section will be

encrypted through the boot firmware encryption implementation. This should be

changed in a final implementation to provide an additional layer of security of the

decryption keys.

6.3 Research Contributions to Hardware Security

Boot Firmware Encryption: The successful implementation of the PNOR encryp-

tion methodology in this research demonstrated that it is possible to add a layer of

security over the IPL without changing the hardware. The encrypted boot instruc-

tions are decrypted in the P9 and stored in the L3 cache, making it extremely difficult

for an adversary to obtain the plaintext firmware. The ability to alter boot data dur-

ing the IPL showed that the capabilities of the P9 are only limited by the memory

space available during the early stages of the boot process.

Memory Analysis of Decryption Firmware: This analysis enumerated the amount

54

of memory required for each decryption algorithm and discusses the most efficient

options for a variety of scenarios.

Secure Key Management: This effort successfully demonstrated a successful im-

plementation of a secure key management approach. This implementation creates

the framework to encrypt the entire PNOR image and store the keys securely within

the processor. Since only firmware is added to the system, additional hardware like

a One-Time Pad storage chip is not required.

Performance Analysis: This research demonstrated an approach for measuring the

performance of various decryption algorithms during the Talos II boot sequence. The

measurements are collected with varying encryption ratios to identify the performance

limitations with each encryption algorithm.

Qualitative Analysis: This analysis provided design considerations, challenges,

and potential vulnerabilities of the boot firmware encryption implementation de-

scribed.

6.4 Future Work

There are several areas where this research can be matured, expanded and further

developed. Listed below are topics of interest that would expand the scope of this

research:

6.4.1 Full boot image encryption

The first area of future work is the completion of boot image encryption on all

firmware sections in the PNOR image. This research demonstrates a successful im-

plementation of boot image encryption on HBB and Skiboot firmware sections. For

the secure key management method to be considered secure, the entire PNOR image

should be encrypted. This would require further investigation on the encryption of

55

HBI, Hostboot Data, OCC, and Petitboot firmware. The code responsible for trans-

porting the specific PNOR sections will need to be located and the decryption code

will be added to the existing firmware. For the encryption of the HBI, the HBB sec-

tion contains the firmware that will require the decryption function. Since the HBI

uses a VFSRP, only the modules that need to be initialized are loaded into memory.

This could cause possible problems with encryption and decryption for the modules

because each module in the HBI will need to be encrypted individually because the

HBB firmware will decrypt each module individually.

There are possible limitations when investigating full PNOR encryption. The

first possible problem is limited computational power available at the early boot

stages which would cause a significant performance impact during boot up. Another

possible limitation is the use of Random Access Memory (RAM) in the later boot

stages. Since data traversing outside the P9 is considered vulnerable to adversaries,

firmware running out of RAM will be stored as plaintext and will not be secure.

6.4.2 Compatibility with IBM Secure Boot

The next area of research is to ensure compatibility of the boot image encryp-

tion implementation with IBM’s secure boot utility. The boot firmware encryption

research implementation is not designed to be used with IBM’s secure boot. When

developing and testing the custom firmware, the secure boot jumper was not set, so

the secure boot utility was not used. The secure key management structure along

with firmware decryption stages is able to prevent unauthorized firmware from boot-

ing on the Talos II. This works because overwriting portions of firmware in the PNOR

will also overwrite the encryption, causing the system to fail to boot when the de-

cryption code runs. Although the firmware decryption key management can prevent

unauthorized firmware from booting on the system, the secure boot utility can lock

56

the SEEPROM, preventing BMC from accessing the plaintext HBBL firmware [18].

Since the secure boot utility runs additional instructions during the IPL, there should

not be significant conflicts with the firmware encryption and secure boot systems.

6.4.3 Application to Intel or AMD systems

Finally, the last area of future work is to apply the boot firmware encryption

method to Intel and AMD systems. Since both system manufacturers use BIOS or

UEFI with bootloaders, the structure of the IPL should be similar. With access to

detailed documentation and the source code of the boot firmware, implementing the

decryption code should be straightforward. Aside from IPL structure, the ability to

alter the firmware in the flash chip is essential to getting the firmware encryption

to work. Having access to the firmware source code is required for developing this

implementation on new architectures.

On Intel and AMD computing systems, a BootROM, PreLoader, and Bootloader

are traditionally used to boot up the OS as shown in Figure 17. The bootloader on x86

platforms works similarly to the SBE firmware where it is decomposed into at least two

stages [19]. The first stage consists of machine code binary on the Master Boot Record

(MBR) that locates the second stage boot loader and loads it into memory. The

second stage boot loader handles the Power-On Self-Test (POST) screen for the user,

showing the OS or kernels available for boot [19]. It is also responsible for locating and

loading the OS kernel into the memory. On AMD processor systems, there is a secure

processor called the Platform Security Processor (PSP) that executes immutable on-

chip boot ROM, locates the Embedded Firmware Table and PSP Directory Table in

the Serial Peripheral Interface ROM at system power on [20]. It then verifies and

executes the PSP off-chip bootloader. Although x86 architecture systems perform a

similar boot sequence to OpenPOWER systems, the usage of BIOS and UEFI could

57

be a possible obstacle with the compatibility of boot firmware encryption.

Figure 17. Intel Boot Flow [4]

6.4.3.1 Legacy BIOS Boot Flow

BIOS is low level software that provides critical configuration and booting services

from the moment of powering on a computer until the kernel’s main() routine begins.

When the computer system boots, the processor searches for and executes the BIOS

at the end of system memory [19]. The BIOS is written into read-only permanent

memory because it controls the first step of the boot process. It also provides the

lowest level interface to peripheral devices. The BIOS then loads the bootloader at

0x7C00 as well as the partition table stored in the MBR and transfers control of the

boot process to the bootloader [21].

Applying boot firmware encryption to the legacy BIOS initialization will be diffi-

cult due to the early stages of the BIOS boot flow. The processor is pre-programmed

to always search for the BIOS at the end of system memory in Read-Only Memory

(ROM). Once the processor executes the instructions to jump to the startup program,

the BIOS starts performing the POST. Implementing the boot firmware encryption

requires the decryption instructions to be stored within the processor module so the

data sent to the processor can be decrypted. If the pre-programmed instructions to

locate the BIOS cannot be altered, the first section of the BIOS will need to be stored

in plaintext which complicates the problem of securing the firmware decryption keys.

58

If researchers are able to flash new instructions to the CPU, the BIOS can be

encrypted beforehand and decrypted in the processor. The BIOS could then be altered

to include a decryption function for the specific bootloader used in the following

portion of the IPL. Another foreseeable problem is the use of a boot drive and RAM

for the BIOS. Since the assumption that data traversing on buses external to the

processor is not secure, the BIOS data stored in the RAM and boot drive must be

encrypted for the chain of firmware encryption to perform correctly.

6.4.3.2 UEFI Boot Flow

BIOS has existed for over 40 years and has many limitations with modern com-

puter systems. For example, BIOS requires the processor to run in 16-bit mode, and

only has 1 MB of space to execute in [22]. This causes hardware initialization to run

slowly, especially when multiple hardware devices need to be initialized. This led to

the development of UEFI to keep up with advancements in computer systems. UEFI

has a few advantages over BIOS as it supports boot drives larger than 2 TB with

more than 4 partitions on a drive. It also enables faster booting and more efficient

power management. Legacy BIOS based systems and UEFI based systems both come

with the BIOS ROM which contains the instructions to perform the initial power-on

sequence and jump to the bootloader [22]. UEFI is stored on non-volatile memory

and runs instead of legacy BIOS. It also eliminates the need for a second stage boot-

loader by using a mountable file system. Although there are differences between BIOS

and UEFI with the bootloader process, there is not a significant difference during the

beginning stages of the IPL.

59

6.5 Conclusion

This research demonstrated that encrypting boot firmware and decrypting it dur-

ing the IPL is feasible and adds a layer of protection over the firmware stored in

the boot flash chip. It also demonstrated a method of securing the keys used in the

firmware decryption stage and outlines an implementation that would work alongside

secure boot. A successful implementation of this research would enable the system to

boot in a vulnerable environment without leaking firmware details. The evaluation

of the performance with the decryption code also showed that the additional layer of

security did cause a significant performance impact to ISTEP 20, but the effect was

marginal when comparing the impact to the entire IPL. Boot firmware encryption

can be expanded to other architectures which will allow more proprietary hardware

to secure the sensitive information.

60

Appendix A. XOR100 Decryption Firmware

This is to explain about the code...

1 const uint32_t BLOCK_SIZE = 4096;
2 for (uint32_t i=0;i<originalPayloadSize;i+= BLOCK_SIZE) {
3 memcpy(reinterpret_cast <void*>(
4 reinterpret_cast <uint64_t >(temp_buf) + i),
5 reinterpret_cast <void*>(pnorSectionInfo.vaddr + i),
6 std::min(originalPayloadSize - i, BLOCK_SIZE));
7 }
8
9 for (uint64_t i = 0; i < originalPayloadSize; i++) {

10 temp_buf[i] ^= 0x55;
11 }

61

Appendix B. XOR100 Encryption Script

1 infile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/
PNOR_XOR_100/preXOR100_payload_talos.pnor’

2 outfile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/
PNOR_XOR_100/XOR100_payload_talos.pnor’

3
4 with open(infile , ’rb’) as input:
5 image = input.read()
6
7 print(f’Original file size: {len(image)}’)
8
9 part_start = 0x21a2000

10 part_end = part_start + 0xFF000
11
12 pre = image[: part_start]
13 print(f’Pre -Payload: {len(pre)}’)
14 payload = image[part_start: part_end]
15 print(f’Payload size: {len(payload)}’)
16 post = image[part_end:]
17 print(f’Post -size: {len(post)}’)
18
19 L = list(payload)
20 print(range(len(L)))
21 for i in range(len(L)):
22 L[i] = L[i] ^ 0x55
23
24 final_image = pre + bytes(L) + post
25
26 print(f’End Addr: {part_end :08x}’)
27 print(f’New file size: {len(image)}’)
28
29 with open(outfile , ’wb’) as write_file:
30 write_file.write(final_image)

62

Appendix C. SPECK100 Decryption Firmware

The SPECK decryption firmware uses code from the SIMON and SPECK Imple-

mentation Guide. The supporting decryption functions can be found in this guide [11].

1 uint8_t* temp_buf = (uint8_t *) malloc(originalPayloadSize);
2 const uint32_t BLOCK_SIZE = 4096;
3 for (uint32_t i=0;i<originalPayloadSize;i+= BLOCK_SIZE) {
4 memcpy(reinterpret_cast <void*>(
5 reinterpret_cast <uint64_t >(temp_buf) + i),
6 reinterpret_cast <void*>(pnorSectionInfo.vaddr + i),
7 std::min(originalPayloadSize - i, BLOCK_SIZE));
8 }
9

10 for (uint64_t i = 0; i < originalPayloadSize / 8; i++) {
11 /* **
12 * Prep Cipher text
13 *** */
14 int ct_numbytes = 8;
15 uint8_t ct_bytes[ct_numbytes];
16 for(uint32_t j = 0; j < 8; j++) {
17 ct_bytes[j]= temp_buf [(8 * i) + j];
18 }
19 // Convert byte array to 32bit words
20 int ct_length = ct_numbytes / 8;
21 uint32_t ct_words[ct_length];
22 BytesToWords32(ct_bytes , ct_words , ct_numbytes);
23
24 /* **
25 * Prep Key
26 *** */
27 // 12 Byte = 96 Bit key
28 uint8_t key[] = {0x00 ,0x01 ,0x02 ,0x03 ,0x08 ,0x09 ,0x0a ,0x0b ,0

x10 ,0x11 ,0x12 ,0x13};
29 int key_numbytes = sizeof(key);
30 uint32_t key_words[key_numbytes];
31 BytesToWords32(key , key_words , key_numbytes);
32
33 /* **
34 * Key Schedule
35 *** */
36 uint32_t rk[26];
37 Speck6496KeySchedule(key_words , rk);
38
39 /* **
40 * Decrypt
41 *** */
42 uint32_t pt_words[ct_length];
43 Speck6496Decrypt(pt_words , ct_words , rk);
44
45 uint8_t pt_bytes[ct_numbytes];
46 Words32ToBytes(pt_words , pt_bytes , 2);
47 for(uint32_t j = 0; j < 8; j++) {
48 temp_buf [(8 * i) + j]= pt_bytes[j];
49 }
50 }

63

Appendix D. SPECK100 Encryption Script

This script shows the process of encrypting a section of the PNOR with SPECK.

The supporting encryption functions are not displayed but can be found on github:

https://github.com/inmcm/Simon Speck Ciphers.

1 import binascii
2
3 infile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/

PNOR_SPECK_100/preSPECK100_payload_talos.pnor’
4 outfile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/

PNOR_SPECK_100/SPECK100_payload_talos.pnor’
5
6 with open(infile , ’rb’) as input:
7 image = input.read()
8
9 print(f’Original file size: {len(image)}’)

10
11 part_start = 0x21a2000
12 part_end = part_start + 0xFF000
13
14 pre = image[: part_start]
15 print(f’Pre -Payload: {len(pre)}’)
16 payload = image[part_start: part_end]
17 print(f’Payload size: {len(payload)}’)
18 post = image[part_end:]
19 print(f’Post -size: {len(post)}’)
20
21 tempkey = 0x131211100b0a090803020100
22 my_speck = SPECK (64, 96, tempkey)
23
24 L = list(payload)
25 for i in range(0, len(L), 8):
26 tempPayload = L[i : i + 8]
27 block = int.from_bytes(tempPayload , ’little ’, signed =

False)
28 encrypted = my_speck.encrypt(block)
29 L[i : i + 8] = encrypted.to_bytes(8, ’little ’)
30
31 final_image = pre + bytes(L) + post
32
33 print(f’End Addr: {part_end :08x}’)
34 print(f’New file size: {len(final_image)}’)
35
36 with open(outfile , ’wb’) as write_file:
37 write_file.write(final_image)

64

Appendix E. AES100 Decryption Firmware

This appendix contains the firmware decryption code in ISTEP 20. The support-

ing AES decryption code and sboxes are from https://github.com/kokke/tiny-AES-c.

1 uint8_t* temp_buf = (uint8_t *) malloc(originalPayloadSize);
2
3 const uint32_t BLOCK_SIZE = 4096;
4 for (uint32_t i=0;i<originalPayloadSize;i+= BLOCK_SIZE) {
5 memcpy(reinterpret_cast <void*>(
6 reinterpret_cast <uint64_t >(temp_buf) + i),
7 reinterpret_cast <void*>(pnorSectionInfo.vaddr + i),
8 std::min(originalPayloadSize - i, BLOCK_SIZE));
9 }

10
11 /* **
12 * Prep Key and Initialization Vector
13 *** */
14 uint8_t key[] = { 0x60 , 0x3d , 0xeb , 0x10 , 0x15 , 0xca , 0x71 , 0

xbe , 0x2b , 0x73 , 0xae , 0xf0 , 0x85 , 0x7d , 0x77 , 0x81 , 0x1f ,
0x35 , 0x2c , 0x07 , 0x3b , 0x61 , 0x08 , 0xd7 , 0x2d , 0x98 , 0x10 ,
0xa3 , 0x09 , 0x14 , 0xdf , 0xf4 };

15 uint8_t iv[] = { 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0
x07 , 0x08 , 0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0x0f };

16 struct AES_ctx ctx;
17 AES_init_ctx_iv (&ctx , key , iv);
18
19 for (uint64_t i = 0; i < originalPayloadSize / 64; i++)
20 {
21 /* ***
22 * Prep Cipher text
23 *** */
24 int ct_numbytes = 64;
25 uint8_t ct_bytes[ct_numbytes];
26 for (uint32_t j = 0; j < 64; j++)
27 ct_bytes[j] = temp_buf [(64 * i) + j];
28
29 /* ***
30 * Decrypt
31 *** */
32 AES_CBC_decrypt_buffer (&ctx , ct_bytes , 64);
33
34 for (uint32_t j = 0; j < 64; j++)
35 temp_buf [(64 * i) + j] = ct_bytes[j];
36 }

65

Appendix F. AES100 Encryption Script

This script shows the process of encrypting a section of the PNOR with AES

using functions from Crypto.Cipher. The supporting documentation is located on

pycryptodome: https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html

1 import binascii
2 import json
3 from base64 import b64encode
4 from Crypto.Cipher import AES
5 from Crypto.Util.Padding import pad
6 from Crypto.Util.Padding import unpad
7
8 infile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/

PNOR_AES_100/preAES100_payload_talos.pnor’
9 outfile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/

PNOR_AES_100/AES100_payload_talos.pnor’
10
11 with open(infile , ’rb’) as input:
12 image = input.read()
13
14 print(f’Original file size: {len(image)}’)
15
16 part_start = 0x21a2000
17 part_end = part_start + 0xFF000
18
19 pre = image[: part_start]
20 print(f’Pre -Payload: {len(pre)}’)
21 payload = image[part_start: part_end]
22 print(f’Payload size: {len(payload)}’)
23 post = image[part_end:]
24 print(f’Post -size: {len(post)}’)
25
26 temp_key = b’\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\

x85\x7d\x77\x81\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10
\xa3\x09\x14\xdf\xf4’

27 temp_iv = b’\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\
x0c\x0d\x0e\x0f’

28 cipher = AES.new(temp_key , AES.MODE_CBC , iv = temp_iv)
29
30 L = list(payload)
31 for i in range(0, len(L), 64):
32 tempPayload = L[i : i + 64]
33 encrypted = cipher.encrypt(unpad(pad(bytes(tempPayload),

AES.block_size), AES.block_size))
34 L[i : i + 64] = encrypted
35
36 final_image = pre + bytes(L) + post
37
38 print(f’End Addr: {part_end :08x}’)
39 print(f’New file size: {len(final_image)}’)
40
41 with open(outfile , ’wb’) as write_file:
42 write_file.write(final_image)

66

Appendix G. Talos Control Firmware

1 import time
2 import json
3 import argparse
4
5 import os
6 import contextlib
7
8 # Dependencies:
9 # pip3 install dlipower

10 # pip3 install paramiko
11 #
12 import dlipower
13 import paramiko
14
15
16
17 def get_devs(config_filename):
18
19 with open(config_filename , ’r’) as infile:
20 devs = json.loads(infile.read())
21
22 return devs
23
24
25
26 ### Create a PowerSwitch object using the provided device

credentials
27 ### devs should be retrieved using get_devs(config_filename)
28 ###
29 ### Usage:
30 ### config_filename = ’local/talos_config.json’
31 ### devs = get_devs(config_filename)
32 ### switch = get_switch(devs)
33 ###
34 ### NOTE: I was going to make this a context manager , but

PowerSwitch doesn ’t
35 ### have any close or cleanup function.
36 ###
37 def get_switch(devs):
38 ip = devs[’power ’][’ip’]
39 user = devs[’power’][’user’]
40 pw = devs[’power’][’pw’]
41
42 return dlipower.PowerSwitch(hostname=ip , userid=user ,

password=pw)
43
44 def send_bmc_cmds(devs , commands):
45 ip = devs[’bmc’][’ip’]
46 user = devs[’bmc’][’user’]
47 pw = devs[’bmc’][’pw’]
48
49 start = time.time()
50 timeout = 180
51 print(’Attempting to connect to the BMC’)
52 while time.time() - start < timeout:

67

53 try:
54 # This suppresses error messages from

Paramiko ssh
55 # Source: https :// stackoverflow.com/a

/46129367
56 with open(os.devnull , ’w’) as f,

contextlib.redirect_stderr(f):
57 # Source: https ://www.

thepythoncode.com/article/
executing -bash -commands -
remotely -in -python

58 #
59 ssh = paramiko.SSHClient ()
60 ssh.

set_missing_host_key_policy
(paramiko.AutoAddPolicy ())

61
62 ssh.connect(ip , username=user ,

password=pw, allow_agent =
False , timeout = 3)

63
64 for command in commands:
65 print(command)
66 stdin , stdout , stderr

= ssh.exec_command(
command)

67 print(stdout.read().
decode ())

68
69 err = stderr.read().

decode ()
70 if err:
71 print(err)
72
73 # TODO: check stdout.read()

result to see if it
succeeded

74 print(stdout.read().decode ())
75 print(f’BMC took {time.time() - start}

seconds to boot’)
76 return True
77 except Exception as e:
78 pass #print(e)
79
80 print(’Failed to connect to the BMC’)
81 return False
82
83 # TODO: Fix gpio -fsi driver bind
84 #
85 #
86 def enable_bmc(devs):
87 print(’Enabling BMC’)
88
89 # List of commands that will be sent through ssh
90 #
91 commands = [
92 ’devmem 0x1e6e20ac 32 0x000000FF ’,
93 #’echo gpio -fsi > /sys/bus/platform/drivers/

68

fsi -master -acf/bind ’,
94 ’devmem 0x1e7801e4 32 0x00050000 ’,
95 ’devmem 0x1e780004 32 0x19000040 ’,
96 ’devmem 0x1e6e2090 32 0x07FF0000 ’
97]
98
99 send_bmc_cmds(devs , commands)

100
101 def disable_bmc(devs):
102 print(’Disabling BMC’)
103
104 # List of commands that will be sent through ssh
105 #
106 commands = [
107 ’devmem 0x1e6e20ac 32 0x00000000 ’,
108 ’echo gpio -fsi > /sys/bus/platform/drivers/fsi

-master -acf/unbind ’,
109 ’devmem 0x1e7801e4 32 0x00000000 ’,
110 ’devmem 0x1e780004 32 0x19000000 ’,
111 ’devmem 0x1e6e2090 32 0x023F0000 ’
112]
113
114 send_bmc_cmds(devs , commands)
115
116 def power_off(switch):
117 print(’Powering off Talos II’)
118 # This seems like a better method , but the index it

returns is 1 higher
119 # than it should be. Further testing is needed to see

if we can use this
120 # out = switch.determine_outlet(’Talos_II ’)
121 # switch[out -1]. off()
122 for outlet in switch:
123 if ’Talos’ in outlet.name:
124 return outlet.off()
125
126 def power_on(switch):
127 print(’Powering on Talos II’)
128 # This is slow , but it works
129 for outlet in switch:
130 if ’Talos’ in outlet.name:
131 return outlet.on()
132
133 def power_reset(switch):
134 power_off(switch)
135 # TODO: Find a better method
136 print(’Power off , waiting 10 seconds ’)
137 time.sleep (10.0)
138 power_on(switch)
139
140 if __name__ == "__main__":
141
142 DEFAULT_CONFIG = ’local/talos_config.json’
143
144 examples = ’’’
145 Example commands:
146
147 ’’’

69

148
149 parser = argparse.ArgumentParser(description=’

heist_ctrl.py’, epilog=examples , formatter_class=
argparse.RawTextHelpFormatter)

150
151 parser.add_argument(’-c’, ’--config ’, dest=’config ’,

metavar=’FILENAME ’, default=DEFAULT_CONFIG , type=
str , help=f’JSON config file with device
information (default ={ DEFAULT_CONFIG })’)

152
153 parser.add_argument(’-r’, ’--reset’, dest=’reset’,

default=False , action=’store_true ’, help=’Reset the
power of the Talos II (power off then power on)’)

154
155 parser.add_argument(’-p’, ’--poweroff ’, dest=’poweroff

’, default=False , action=’store_true ’, help=’Power
on the Talos II if not already on’)

156 parser.add_argument(’-P’, ’--poweron ’, dest=’poweron ’,
default=False , action=’store_true ’, help=’Power on
the Talos II if not already on’)

157
158 parser.add_argument(’-b’, ’--bmc_disable ’, dest=’

bmc_disable ’, default=False , action=’store_true ’,
help=’Disable the BMC interfaces via SSH’)

159 parser.add_argument(’-B’, ’--bmc_enable ’, dest=’
bmc_enable ’, default=False , action=’store_true ’,
help=’Enable the BMC interfaces via SSH’)

160
161 args = parser.parse_args ()
162
163 config_filename = args.config
164 devs = get_devs(config_filename)
165 switch = get_switch(devs)
166
167 if args.reset:
168 power_reset(switch=switch)
169
170 if args.poweroff:
171 power_off(switch=switch)
172
173 if args.poweron:
174 power_on(switch=switch)
175
176 if args.bmc_disable:
177 disable_bmc(devs)
178
179 if args.bmc_enable:
180 enable_bmc(devs)

70

Appendix H. UDP Logger Firmware

1 #####
2 ### This module provides logging for UDP messages received

from the uC
3 ###
4 ### Multiple UDP ports are open and each port gets logged to a

different file
5 ### TODO: List of ports and purposes
6 #####
7 import threading
8 import argparse
9 import socket

10 import queue
11 import time
12 import os
13
14 # ref:
15 # https :// stackoverflow.com/questions /36760127/ how -to-

use -the -new -support -for -ansi -escape -sequences -in -the -
windows -10- console

16
17 from sys import platform
18
19 if platform == ’win32’:
20 import ctypes
21 kernel32 = ctypes.windll.kernel32
22 kernel32.SetConsoleMode(kernel32.GetStdHandle (-11), 7)
23
24 start_time = time.time()
25
26 ### Print debug messages from PNOR server
27 ### Warning: this causes delays that may prevent
28 ### the system from booting. Only use for testing
29 ###
30 DEBUG = False
31
32 LOG_DIR = ’local/’
33
34 ### ports 1000 - 10002 == info , warn , error
35 ### port 1016 == P9 messages (0x3f8)
36 ###
37 ports = [1000 , 1001, 1002, 1003, 1016]
38 filenames = [’log_info.txt’, ’log_warn.txt’, ’log_error.txt’,

’log_lpc.txt’, ’log_p9_msgs.txt’]
39
40 aggregate_filename = ’log_all.txt’
41 aggregate_lock = threading.Lock()
42
43 pnor_log_file = ’pnor_accesses.txt’
44 pnor_port = 999
45 BLOCK_SIZE = 4096
46 pnor_size = 67108864
47
48 pnor_log_q = queue.Queue ()
49
50 # Check the beginning of each log message and remove these

prefixes from log file.

71

51 #
52 prefixes = [’INFO: ’, ’WARN: ’, ’ERROR: ’]
53
54 _log_threads = []
55 _pnor_thread = None
56 _thread_running = False
57
58 _boot_finished = False
59 _boot_failed = False
60
61 ### Signal the logging thread to stop
62 ###
63 def stop_udp_logger ():
64 global _thread_running
65
66 _thread_running = False
67
68 ### Spawn a thread and launch the logger
69 ###
70 def start_udp_logger(remove_old=False , timestr = ’’):
71 global _thread_running
72 global _log_threads
73
74 _thread_running = True
75
76 for i in range(0, len(ports)):
77 t = threading.Thread(target=

_logger_thread_entry , args=(i, remove_old ,
timestr))

78 t.start ()
79 _log_threads.append(t)
80
81 ### Spawn a thread to serve up a PNOR image
82 ###
83 def start_pnor_server(pnor_filename , remove_old , timestr = ’’)

:
84 global _thread_running
85 global _pnor_thread
86
87 _thread_running = True
88
89 _pnor_thread = threading.Thread(target=

_pnor_thread_entry , args=(pnor_filename , remove_old
, timestr))

90 _pnor_thread.start()
91
92 ### Internal function
93 ### Entry point for logger thread launched by start_udp_logger
94 ###
95 def _logger_thread_entry(port_index , remove_old=False , timestr

= ’’):
96 global _thread_running , _boot_finished , _boot_failed
97
98 ## Create empty local directory if it doesn ’t exist
99 ##

100 if not os.path.exists(LOG_DIR):
101 os.makedirs(LOG_DIR)
102

72

103
104 ## Prepend the timestamp
105 ##
106 filename = timestr + filenames[port_index]
107
108 ## Pre join the log dir and filenames
109 ##
110
111 file_path = os.path.join(LOG_DIR , filename)
112
113 if remove_old and os.path.isfile(file_path):
114 print(’Deleting old files ’)
115 os.remove(file_path)
116
117 aggregate_path = os.path.join(LOG_DIR , timestr +

aggregate_filename)
118
119 with aggregate_lock as lock:
120 if remove_old and os.path.isfile(

aggregate_path):
121 print(’Deleting old files ’)
122 os.remove(aggregate_path)
123
124 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM

)
125 sock.setblocking(True)
126 ## We need a timeout so we can kill the thread with

_thread_running=False
127 sock.settimeout (1.0)
128
129 # Bind to the port
130 sock.bind((’’, ports[port_index]))
131
132 print(f’Log server {port_index} thread started ’)
133
134 buffer = ’’
135
136 ## Run until we are flagged to stop
137 ##
138 while _thread_running:
139
140 try:
141 data , sender_addr = sock.recvfrom

(4096)
142
143 if len(data) > 0:
144 data = data.decode("utf -8", "

ignore")
145
146 if len(data) > 500 and not

ports[port_index] == 0x3f8:
147 print(f’Received {len(

data)} bytes on
port {ports[
port_index]}’)

148 else:
149 print(data , end=’’)
150

73

151 with open(file_path , ’a’) as
log:

152 log.write(data)
153
154 ## All threads share this file

, so we need a lock
155 ##
156 with aggregate_lock as lock ,

open(aggregate_path , ’a’)
as log:

157 log.write(data
)

158
159 buffer += data
160
161 if ’Enjoy!’ in buffer:
162 _boot_finished = True
163 buffer = ’’
164
165 if ’Fault callback issued ’ in

buffer:
166 _boot_failed = True
167 buffer = ’’
168
169 if len(buffer) > 100:
170 buffer = buffer [-100:]
171
172 except Exception as e:
173 pass
174 #print(e)
175
176 print(’Closing UDP Socket ’)
177 sock.close()
178
179 ### Internal function
180 ### Entry point for pnor server thread launched by

start_pnor_server
181 ###
182 def _pnor_thread_entry(pnor_filename , remove_old , timestr = ’’

):
183 global _thread_running
184
185 assert os.path.isfile(pnor_filename), ’ERROR: Given

PNOR file does not exist’
186
187 ## Create empty local directory if it doesn ’t exist
188 ##
189 if not os.path.exists(LOG_DIR):
190 os.makedirs(LOG_DIR)
191
192
193 ## Prepend the timestamp
194 ## Pre join the log dir and filename
195 ##
196 file_path = os.path.join(LOG_DIR , timestr +

pnor_log_file)
197
198 if remove_old:

74

199 print(’Deleting old files ’)
200
201 if os.path.isfile(file_path):
202 os.remove(file_path)
203
204 ## Create the UDP server sockets
205 ##
206 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM

)
207 sock.setblocking(False)
208
209 # Bind to the port
210 sock.bind((’’, pnor_port))
211
212
213 # Storing the PNOR image in lists of BLOCK_SIZE bytes

will allow
214 # us to avoid string slicing which is super slow
215 pnor_image = []
216
217 with open(pnor_filename , ’rb’) as p:
218 for i in range(0, pnor_size , BLOCK_SIZE):
219 pnor_image.append(p.read(BLOCK_SIZE))
220
221 length = len(b’’.join(pnor_image))
222
223 assert length == pnor_size , f’PYTHON ERROR: PNOR file

- expected {pnor_size} bytes , got {length} bytes’
224
225 print(’PNOR server thread started ’)
226
227 total_length = 0
228 last_time = start_time
229
230 ## Run until we are flagged to stop
231 ##
232 while _thread_running:
233
234
235 ## Try to receive from the interface
236 ##
237 try:
238 data , client_addr = sock.recvfrom

(5000)
239
240 #print(f’Received {len(data)} bytes: {

data}’)
241
242 ## Use the flash read command syntax

CFR ,[ADDR],[FLENGTH]
243 if data.startswith(b’CFR ,’):
244
245 parts = data.strip ().split(b’,

’)
246
247 # Part 0 is CFR ,
248 addr = int(parts[1], 0)
249 length = int(parts[2], 0)

75

250
251 if addr % BLOCK_SIZE > 0 or

not length == BLOCK_SIZE:
252 print(’ERROR: Address

or length not block
aligned ’)

253
254 fw = pnor_image[int(addr /

BLOCK_SIZE)]
255
256 sock.sendto(fw, (client_addr

[0], 999))
257
258 now = time.time()
259 log_msg = f’{now - last_time

:.03f}: {parts [0]} ,{ addr :08
x},{length }\n’

260 pnor_log_q.put(log_msg)
261 last_time = now
262
263 if DEBUG:
264 if addr % 0x10000 ==

0:
265 print(log_msg ,

end=’’)
266
267
268 ## CFW ,[ADDR],[FLENGTH],[DATA]
269 elif data.startswith(b’CFW ,’):
270
271 # Split the command into 4

parts - CFW ,[ADDR],[FLENGTH
],[DATA]

272 parts = data.split(b’,’, 4)
273
274
275 addr = int(parts [1], 0)
276 length = int(parts[2], 0)
277
278 if addr % BLOCK_SIZE > 0 or

not length == BLOCK_SIZE:
279 print(’ERROR: Address

or length not block
aligned ’)

280
281 fw_data = parts [3]
282
283 while _thread_running and len(

fw_data) < length:
284 try:
285 data ,

client_addr
= sock.

recvfrom(
length -
len(fw_data
))

286 #print(len(

76

data))
287 fw_data +=

data
288 except:
289 pass
290
291 sock.sendto(b’OK\n’, (

client_addr [0], 999))
292
293 total_length += len(fw_data)
294
295 pnor_image[int(addr /

BLOCK_SIZE)] = fw_data
296
297 # Do this last so the uC isn’t

waiting on us
298 #
299 now = time.time()
300 log_msg = f’{now - last_time

:.03f}: {parts [0]} ,{ addr :08
x},{length }\n’

301 pnor_log_q.put(log_msg)
302 last_time = now
303
304 if DEBUG:
305 if addr % 0x10000 ==

0:
306 print(log_msg ,

end=’’)
307
308 else:
309 print(f’Received invalid

command: {data}’)
310
311 except Exception as e:
312 #print(e)
313 pass
314
315 print(’Closing UDP socket ’)
316 sock.close()
317
318 ## When we’re finished , write the modified pnor out to

file
319 ##
320 pnor_image = b’’.join(pnor_image)
321 assert len(pnor_image) == pnor_size , f’PYTHON ERROR:

PNOR file after modification - expected {pnor_size}
bytes , got {len(pnor_image)}’

322
323 print(f’Final length of written data: {total_length}’)
324 print(’Saving modified PNOR image ’)
325 with open(pnor_filename , ’wb’) as p:
326 p.write(pnor_image)
327
328 ## And save off the access log
329 ##
330 print(f’Writing log to: {file_path}’)
331 with open(file_path , ’a’) as log:

77

332 while not pnor_log_q.empty ():
333 log.write(pnor_log_q.get())
334
335 def get_local_ip(server_ip):
336 s = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
337 s.connect ((server_ip , 0))
338 return s.getsockname ()[0]
339
340 if __name__ == "__main__":
341
342 print(socket.gethostname ())
343 parser = argparse.ArgumentParser(description=’

udp_logger.py’)
344 parser.add_argument(’-r’, ’--remove_old ’, dest=’

remove_old ’, default=False , action=’store_true ’,
help=’Delete default log files if they exist (e.g.,
local/log_info.txt)’)

345 parser.add_argument(’-t’, ’--timestamp ’, dest=’
timestamp ’, default=False , action=’store_true ’,
help=’Add timestamp to log filenames ’)

346 parser.add_argument(’-p’, ’--pnor’, dest=’pnor_image ’,
metavar=’PNOR_FILE ’, type=str , help=’Start a

firmware server with the given PNOR file’)
347 args = parser.parse_args ()
348
349 # https :// stackoverflow.com/questions /1112343/ how -do-i

-capture -sigint -in-python
350
351 import signal
352
353 def signal_handler(sig , frame):
354 print(’You pressed Ctrl+C!’)
355 stop_udp_logger ()
356
357 timestr = ’’
358
359 if args.timestamp:
360 timestr = time.strftime(’%Y%m%d-%H%M%S_’)
361 print(f’Timestamp: {timestr [: -1]}’)
362
363 start_udp_logger(args.remove_old , timestr)
364
365 if not args.pnor_image is None:
366 start_pnor_server(args.pnor_image , args.

remove_old , timestr)
367
368 signal.signal(signal.SIGINT , signal_handler)
369 print(’Press Ctrl+C’)
370
371 while _thread_running:
372 time.sleep (1.0)

78

Appendix I. Experiment Script

1 import talos_ctrl
2 import udp_logger
3 import time
4 import socket
5 from src.heist_device import HeistDevice
6
7 experiments = open(’local/random_experiments.txt’, ’r’).

readlines ()
8
9 #for trial in experiments:

10 while len(experiments) > 0:
11 trial = experiments [0]
12
13 prefix , pnor_filename = trial.strip().split(’,’)
14
15 print(f’Starting: {prefix}, {pnor_filename}’)
16
17 #Step 1: Power cycle the motherboard and Disable BMC
18 print(’Power cycling and disabling BMC’)
19 devs = talos_ctrl.get_devs(’talos_config_example.json’

)
20 switch = talos_ctrl.get_switch(devs)
21 talos_ctrl.power_reset(switch)
22 talos_ctrl.disable_bmc(devs)
23
24 #Step 2: Start UDP logger and PNOR server
25 timestr = time.strftime(’_%Y%m%d-%H%M%S_’)
26 udp_logger._boot_finished = False
27 udp_logger._boot_failed = False
28 #start_udp_server with log file prefix
29 print(’Starting UDP Logger ’)
30 udp_logger.start_udp_logger(False , prefix + timestr)
31 #start_pnor_server with desired PNOR file
32 print(f’Starting PNOR Server with local/FINAL_IMAGES /{

pnor_filename}’)
33 udp_logger.start_pnor_server(’local/FINAL_IMAGES/’ +

pnor_filename , False , prefix + timestr)
34
35 #Step 3
36 interface = socket.socket(socket.AF_INET , socket.

SOCK_STREAM)
37 interface.settimeout (1.0)
38 interface.connect ((’192.168.237.101 ’, 23))
39 interface.setblocking(False)
40 hdev = HeistDevice(interface)
41
42 #sys_reset
43 print(’System Resetting and Reconnecting ’)
44 hdev.system_reset ()
45 interface.close()
46 time.sleep (5.0)
47 interface = socket.socket(socket.AF_INET , socket.

SOCK_STREAM)
48 interface.settimeout (1.0)
49 interface.connect ((’192.168.237.101 ’, 23))

79

50 interface.setblocking(False)
51 hdev = HeistDevice(interface)
52 print(’Reconnect Success ’)
53
54 #TO -DO: Check if uC started up correctly
55
56 #Send options to uC
57 udp_addr = udp_logger.get_local_ip(’192.168.237.101 ’)
58 resp , success = hdev.cmd_logging_set(False , True ,

udp_addr)
59 if not success:
60 print(’uC Failed to Start!’)
61 break
62
63 #
64 resp , success = hdev.cmd_pnor_set_options(udp_addr)
65 if not success:
66 print(’uC Failed to Start!’)
67 break
68
69 #chassis_on
70 print(’Chassis On’)
71 hdev.chassis_on ()
72 time.sleep (2.0)
73
74 #init
75 print(’CMD Init All’)
76 hdev.cmd_init_all ()
77
78 #boot
79 print(’Boot Host’)
80 hdev.boot_host ()
81
82 start_time = time.time()
83 # if ’Fault callback issued ’ then run failed
84 #wait for udp_logger to finish
85 print(’Waiting for UDP Logger to finish ’)
86 while (not udp_logger._boot_finished) and (not

udp_logger._boot_failed):
87 time.sleep (1.0)
88 #Check if time greater than 5 mins
89 if time.time() - start_time > 300:
90 print(’UDP Logger Took longer than 5

minutes ... BREAK!’)
91 break
92 #Log the trial and restart run
93
94 interface.close()
95
96 time.sleep (2.0)
97
98 print(’Stopping UDP logger ’)
99 udp_logger.stop_udp_logger ()

100
101 udp_logger._pnor_thread.join()
102
103 for t in udp_logger._log_threads:
104 t.join()

80

105
106 print(’UDP logger threads all joined ’)
107
108 #copy/move log to results folder
109 if udp_logger._boot_finished:
110 experiments.remove(trial)
111
112 with open(’local/random_experiments.txt’, ’w’)

as outfile:
113 outfile.write(’’.join(experiments))
114
115 with open(’local/completed.txt’, ’a’) as

outfile:
116 outfile.write(trial)
117
118 else:
119 with open(’local/failed.txt’, ’a’) as outfile:
120 outfile.write(trial)

81

Appendix J. HBBL XOR Decryption Firmware

1 uint8_t* buffer = (uint8_t *) ((l_hbbEcc) ?
2 (HBB_ECC_WORKING_ADDR | IGNORE_HRMOR_MASK) :
3 (HBB_WORKING_ADDR | IGNORE_HRMOR_MASK));
4
5 for (uint32_t i = 0; i < workingLength; i++) {
6 buffer[i] ^= 0x55;
7 }

82

Appendix K. HBBL XOR Script

1 infile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/
PNOR_XOR_HBBL/preXOR_hbbl_stock_talos.pnor’

2 outfile = ’A:/ Calvin Muramoto/Documents/Talos PNOR Images/
PNOR_XOR_HBBL/XOR_hbbl_stock_talos.pnor’

3
4 with open(infile , ’rb’) as input:
5 image = input.read()
6
7 print(f’Original file size: {len(image)}’)
8
9 part_start = 0x205000

10 part_end = part_start + 0x100000
11
12 pre = image[: part_start]
13 print(f’Pre -Payload: {len(pre)}’)
14 payload = image[part_start: part_end]
15 print(f’Payload size: {len(payload)}’)
16 post = image[part_end:]
17 print(f’Post -size: {len(post)}’)
18
19 L = list(payload)
20 print(range(len(L)))
21 for i in range(len(L)):
22 L[i] = L[i] ^ 0x55
23
24 final_image = pre + bytes(L) + post
25
26 print(f’End Addr: {part_end :08x}’)
27 print(f’New file size: {len(image)}’)
28
29 with open(outfile , ’wb’) as write_file:
30 write_file.write(final_image)

83

Appendix L. HBBL Speck Decryption Firmware

1 uint8_t* buffer = (uint8_t *) ((l_hbbEcc) ?
2 (HBB_ECC_WORKING_ADDR | IGNORE_HRMOR_MASK) :
3 (HBB_WORKING_ADDR | IGNORE_HRMOR_MASK));
4
5 for (uint64_t i = 0; i < workingLength / 8; i++) {
6 /* **
7 * Prep Cipher text
8 ** */
9 int ct_numbytes = 8;

10 uint8_t ct_bytes[ct_numbytes];
11 for(uint32_t j = 0; j < 8; j++) ct_bytes[j]= buffer [(8 * i)

+ j];
12
13 // Convert byte array to 32bit words
14 int ct_length = ct_numbytes / 8;
15 uint32_t ct_words[ct_length];
16 BytesToWords32(ct_bytes , ct_words , ct_numbytes);
17
18 /* **
19 * Prep Key
20 ** */
21 // 12 Byte = 96 Bit key
22 uint8_t key[] = {0x00 ,0x01 ,0x02 ,0x03 ,0x08 ,0x09 ,0x0a ,0x0b ,0

x10 ,0x11 ,0x12 ,0x13};
23 int key_numbytes = sizeof(key);
24
25 uint32_t key_words[key_numbytes];
26 BytesToWords32(key , key_words , key_numbytes);
27
28 /* **
29 * Key Schedule
30 ** */
31 uint32_t rk[26];
32 Speck6496KeySchedule(key_words , rk);
33
34 /* **
35 * Decrypt
36 ** */
37 uint32_t pt_words[ct_length];
38 Speck6496Decrypt(pt_words , ct_words , rk);
39
40 uint8_t pt_bytes[ct_numbytes];
41 Words32ToBytes(pt_words , pt_bytes , 2);
42 for(uint32_t j = 0; j < 8; j++) buffer [(8 * i) + j]=

pt_bytes[j];
43 }

84

Appendix M. HBBL AES Compilation Fail

1 //============= Generate PNOR Image Settings ===========//
2 PNOR Layout = /home/murtly50/talos -op -build/output/build/

openpower -pnor -06 cd438e98b89d1b28b3cbfcdf6a880e9c02621f/
p9Layouts/defaultPnorLayout_64.xml

3 Emit ECC -less versions of output files , when possible = No
4 Test Mode = No
5 Secureboot = Disabled
6 Sign Mode = NA
7 Key Transition Mode = NA
8 Lab security override (valid for SBE partition only) = Yes
9 //==//

10 Loading bin files ...
11 TRACE: manipulateImages
12 HBBL raw size (/home/murtly50/talos -op -build/output/host/

powerpc64le -buildroot -linux -gnu/sysroot/
openpower_pnor_scratch //HBBL.staged) (no padding/ecc) =
21040/20480

13 HBBL cannot fit HW Keys ’ Hash (64 bytes) at the end without
overwriting real data at /home/murtly50/talos -op-build/
output/host/powerpc64le -buildroot -linux -gnu/sysroot/
hostboot_build_images // genPnorImages.pl line 632.

85

Bibliography

1. D. Heller and N. Sastry, “OpenPower secure and trusted boot, Part 2: Protecting

system firmware with OpenPOWER secure boot,” 2019. [Online]. Available:

https://developer.ibm.com/articles/protect-system-firmware-openpower/

2. A. Geissler, “Hostboot POWER Systems Initialization Firmware,” 2015. [On-

line]. Available: https://github.com/open-power/docs/blob/master/hostboot/

HostBoot PG.md

3. “Image Encryption,” 2019. [Online]. Available: https:

//www.digi.com/resources/documentation/digidocs/embedded/dey/2.6/cc8x/

yocto-trustfence t image-encryption.html

4. “AN 709: HPS SoC Boot Guide - Cyclone V SoC Development

Kit.” [Online]. Available: https://www.intel.com/content/www/us/en/docs/

programmable/683265/current/boot-flow.html

5. “Secure Initial Program Load (IPL) process,” 2020. [Online].

Available: https://www.ibm.com/docs/en/power9/9009-42A?topic=9009-42A/

p9ia9/p9ia9 secure ipl proc concept.htm

6. “AVR231: AES Bootloader,” 2017. [Online]. Available: http://ww1.microchip.

com/downloads/en/AppNotes/00002462A.pdf

7. “OpenPOWER Firmware,” 2021. [Online]. Available: https://wiki.raptorcs.

com/wiki/OpenPOWER Firmware

8. “Default Pnor Layout,” Tech. Rep. [Online]. Available: https://git.raptorcs.

com/git/pnor/tree/p9Layouts/defaultPnorLayout 64.xml [Accessed: 2021-09-20]

9. A. Jeffery, “Hacking Hostboot,” 2018. [Online]. Available: https://amboar.

github.io/notes/2018/08/17/hacking-hostboot.html [Accessed: 2021-09-20]

10. ——, “General Architecture of Hostboot,” 2018. [Online]. Avail-

able: https://amboar.github.io/notes/2018/08/19/hostboot-architecture.html

[Accessed: 2021-09-20]

11. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,

“Simon and Speck: Block Ciphers for the Internet of Things,” Proceedings of the

52nd Annual Design Automation Conference on - DAC ’15, pp. 1–6, July 2015.

[Online]. Available: http://dl.acm.org/citation.cfm?doid=2744769.2747946

86

https://developer.ibm.com/articles/protect-system-firmware-openpower/
https://github.com/open-power/docs/blob/master/hostboot/HostBoot_PG.md
https://github.com/open-power/docs/blob/master/hostboot/HostBoot_PG.md
https://www.digi.com/resources/documentation/digidocs/embedded/dey/2.6/cc8x/yocto-trustfence_t_image-encryption.html
https://www.digi.com/resources/documentation/digidocs/embedded/dey/2.6/cc8x/yocto-trustfence_t_image-encryption.html
https://www.digi.com/resources/documentation/digidocs/embedded/dey/2.6/cc8x/yocto-trustfence_t_image-encryption.html
https://www.intel.com/content/www/us/en/docs/programmable/683265/current/boot-flow.html
https://www.intel.com/content/www/us/en/docs/programmable/683265/current/boot-flow.html
https://www.ibm.com/docs/en/power9/9009-42A?topic=9009-42A/p9ia9/p9ia9_secure_ipl_proc_concept.htm
https://www.ibm.com/docs/en/power9/9009-42A?topic=9009-42A/p9ia9/p9ia9_secure_ipl_proc_concept.htm
http://ww1.microchip.com/downloads/en/AppNotes/00002462A.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00002462A.pdf
https://wiki.raptorcs.com/wiki/OpenPOWER_Firmware
https://wiki.raptorcs.com/wiki/OpenPOWER_Firmware
https://git.raptorcs.com/git/pnor/tree/p9Layouts/defaultPnorLayout_64.xml
https://git.raptorcs.com/git/pnor/tree/p9Layouts/defaultPnorLayout_64.xml
https://amboar.github.io/notes/2018/08/17/hacking-hostboot.html
https://amboar.github.io/notes/2018/08/17/hacking-hostboot.html
https://amboar.github.io/notes/2018/08/19/hostboot-architecture.html
http://dl.acm.org/citation.cfm?doid=2744769.2747946

12. I. T. L. Computer Security Division, “Aes development - crypto-

graphic standards and guidelines: Csrc,” Aug 2021. [Online]. Avail-

able: https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/

archived-crypto-projects/aes-development

13. M. E. Smid, “Development of the advanced encryption standard,” Journal of

Research of the National Institute of Standards and Technology, vol. 126, 2021.

14. “AN0060: Bootloader with AES Encryption,” 2016. [On-

line]. Available: https://www.silabs.com/documents/public/application-notes/

an0060-bootloader-with-aes-encryption.pdf

15. A. Fournaris, “Using Hardware Means to secure Critical Infras-

tructure Devices.” [Online]. Available: https://www.cipsec.eu/content/

using-hardware-means-secure-critical-infrastructure-devices

16. R. Nuqui and A. Phadke, “Phasor measurement unit placement techniques for

complete and incomplete observability,” IEEE Transactions on Power Delivery,

vol. 20, no. 4, pp. 2381–2388, 2005.

17. “OpenPower-Firmware: SBE Questions,” 2019. [Online]. Available: https:

//lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.html

18. S. Smith, “OpenPower-Firmware SBE questions,” 2019. [Online]. Avail-

able: https://lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.

html [Accessed: 2021-12-05]

19. “Red Hat Enterprise Linux 4: Reference Guide. Chapter 1. Boot Process,

Init, and Shutdown.” [Online]. Available: https://web.mit.edu/rhel-doc/4/

RH-DOCS/rhel-rg-en-4/s1-boot-init-shutdown-process.html [Accessed: 2021-

01-11]

20. “AMD Family 17h in coreboot.” [Online]. Available: https://doc.coreboot.org/

soc/amd/family17h.html?highlight=amd

21. “x86 System Initialization.” [Online]. Available: https://wiki.osdev.org/

System Initialization (x86) [Accessed: 2021-01-11]

22. “UEFI Applications in Detail.” [Online]. Available: https://wiki.osdev.org/

UEFI#UEFI applications in detail [Accessed: 2021-01-11]

87

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://www.silabs.com/documents/public/application-notes/an0060-bootloader-with-aes-encryption.pdf
https://www.silabs.com/documents/public/application-notes/an0060-bootloader-with-aes-encryption.pdf
https://www.cipsec.eu/content/using-hardware-means-secure-critical-infrastructure-devices
https://www.cipsec.eu/content/using-hardware-means-secure-critical-infrastructure-devices
https://lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.html
https://lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.html
https://lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.html
https://lists.ozlabs.org/pipermail/openpower-firmware/2019-July/000337.html
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/s1-boot-init-shutdown-process.html
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/s1-boot-init-shutdown-process.html
https://doc.coreboot.org/soc/amd/family17h.html?highlight=amd
https://doc.coreboot.org/soc/amd/family17h.html?highlight=amd
https://wiki.osdev.org/System_Initialization_(x86)
https://wiki.osdev.org/System_Initialization_(x86)
https://wiki.osdev.org/UEFI#UEFI_applications_in_detail
https://wiki.osdev.org/UEFI#UEFI_applications_in_detail

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Evaluating the use of Boot Image Encryption on Talos II Architecture

21G195

Muramoto, Calvin M., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-22-M-049

Air Force Research Laboratory
2241 Avionics Circle
WPAFB OH 45433-7765
Attn: Pranav Patel
COMM 937-656-9045
Email: pranav.patel.2@us.af.mil

AFRL/RYDA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Sensitive devices operating in unprotected environments are vulnerable to hardware attacks like reverse engineering and
side channel analysis. This represents a security concern because the root of trust can be invalidated through boot
firmware manipulation. For example, boot data is rarely encrypted and typically travels across an accessible bus like the
LPC bus, allowing data to be easily intercepted and possibly manipulated during system startup. The flash chip storing
the boot data can also be removed from these devices and examined to reveal detailed boot information. This paper
details an implementation of encrypting a section of the boot image and decrypting it during the IPL of the Talos II.
During power-on, the encrypted image travels across the LPC bus into the POWER9 Level3 cache and is decrypted in
the processor. This proves that it is possible to prevent adversaries from interfering with the IPL flow or obtaining
details on firmware from the flash chip. The boot image encryption method is implemented with multiple levels of
encryption and an evaluation of their efficiency is conducted to determine the performance impact for each algorithm.

Secure Boot, Hardware Security, Firmware Encryption, Boot Security

U U U UU 101

Dr. Scott Graham, AFIT/ENG

(937) 255-6565 x4581; scott.graham@afit.edu

	Evaluating the use of Boot Image Encryption on Talos II Architecture
	Recommended Citation

	Abstract
	Dedication
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Hypothesis
	Approach
	Contributions
	Organization

	Background and Related Work
	Overview
	Talos II Architecture
	PNOR Image
	Initial Program Load
	1st Stage Bootloader
	Hostboot
	Skiboot

	Secure Boot
	Secure Key Storage
	Encryption Schemes
	XOR
	SPECK
	Advanced Encryption Standard

	Related Work
	Secure Firmware Updates with AES Encryption
	U-Boot Image Encryption

	Summary

	Implementation Discussion
	Implementation
	Secure Key Management Process
	Application Scenarios

	Experimental Setup and Methodology
	Objective
	Assumptions
	Control Variables
	Independent Variables
	Response Variables
	Performance Evaluation
	Experimental Setup
	Micro Controller Setup

	Summary

	Observations and Analysis
	Overview
	Secure Key Management Analysis
	PNOR Image Size
	Performance Experiment Results
	Performance Impact of Boot Image Encryption
	Comparison of Encryption Methods
	Encryption Ratio

	Challenges
	Summary

	Conclusion
	Overview
	Summary
	Research Contributions to Hardware Security
	Future Work
	Full boot image encryption
	Compatibility with IBM Secure Boot
	Application to Intel or AMD systems

	Conclusion

	XOR100 Decryption Firmware
	XOR100 Encryption Script
	SPECK100 Decryption Firmware
	SPECK100 Encryption Script
	AES100 Decryption Firmware
	AES100 Encryption Script
	Talos Control Firmware
	UDP Logger Firmware
	Experiment Script
	HBBL XOR Decryption Firmware
	HBBL XOR Script

	HBBL Speck Decryption Firmware
	HBBL AES Compilation Fail
	Bibliography

