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Abstract

The emergence of the open-source Reduced Instruction Set Computer Architec-

ture - Five (RISC-V) Instruction Set Architecture (ISA) empowers developers and

engineers, device manufacturers, and individual users with the unique opportunity to

re-evaluate existing Trusted Computing paradigms. Emerging open-source security

mechanisms facilitate the proliferation of Confidential Computing principles. These

technology standards aim to provide secure enclave computing as a fundamental com-

puting attribute, inherent within the RISC-V ISA specification. Security enforcement

within these enclaves are handled by performing computation in memory-isolated,

hardware-based, software-defined Trusted Execution Environments (TEEs). Key-

stone Enclave, an open-source project for building TEEs upon the RISC-V Privileged

ISA, is one promising exemplar.

This research evaluates the firmware development procedures required to imple-

ment Keystone Enclave on new unsupported hardware. Expressly, this effort ex-

tends Keystone Security Monitor (SM) firmware components for use on the HiFive

Unmatched development platform as a demonstration of Keystone Enclave’s device

portability claims. Furthermore, it proposes Keystone Software Development Kit

(SDK) and Enclave Application (Eapp) development recommendations to supplement

contemporary Application Specific Integrated Circuit (ASIC) RISC-V workstations

with TEEs. Moreover, this research asserts that for the wide-spread adoption of Con-

fidential Computing principles to occur, significant hardware, firmware, and software

development advancements are required by all constituent parties.
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EVALUATING SECURE ENCLAVE FIRMWARE DEVELOPMENT FOR

CONTEMPORARY RISC-V WORKSTATIONS

I. Introduction

1.1 Motivation

The persistent desire to securely compute, store, and transport sensitive infor-

mation drives a continuing evolution in the mechanisms for enforcing information

security; keeping pace with, and responding to technological advancements. Today,

sensitive data is encrypted while at rest in storage mediums and while in transit across

networks –nevertheless, data in use remains vulnerable to threats that target appli-

cation data within system memory [2]. This research advocates for the adoption of

Confidential Computing principles to protect data in use by performing computation

inside memory-isolated hardware-based Trusted Execution Environments (TEEs) [1].

To justify promoting the wide-spread adoption of these computing principles, emerg-

ing open-source secure enclave implementations must be evaluated against existing

proprietary Trusted Computing solutions to delineate potential advantages, deficien-

cies, and developmental needs.

1.2 Problem Statement

The existing Trusted Computing paradigm employs closed-source, proprietary

security mechanisms that impute trust by identifying expected behavior operating

within particular hardware and software components [3]. Confidential Computing

principles maintain this accepted model for ascribing trust ; although, these conven-
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tions differ in practice by instead relying upon open-source code with open standards

and open specifications to enforce security [4]. Keystone Enclave is one such open-

source project. Built upon the RISC-V Privileged ISA specification, Keystone is

supported by the Confidential Computing Consortium (CCC) and The Linux Foun-

dation with the goal of providing a SDK for building customizable TEEs [1, 2].

Formally, Keystone Enclave v1.0.0 has been verified to function in emulation using

Quick EMUlator (QEMU), on the FireSim Field Programmable Gate Array (FPGA)

as a softcore processor, and on the (now discontinued) HiFive Unleashed native RISC-

V development board. The Keystone documentation claims that migration to arbi-

trary RISC-V processors is possible with only minor modifications required to plant a

silicon Root-of-Trust [1]. To evaluate Keystone’s implementation portability claims,

this research explores the necessary procedures and development contributions re-

quired to implement Keystone on the HiFive Unmatched development platform.

Irrespective of the requisite measures needed to port Keystone Enclave to new

platforms, previous research has demonstrated that the performance overhead intro-

duced by Keystone Enclave axiomatically degrades average system response times [5].

Accordingly, the operational performance of candidate hardware platforms must be

sufficiently characterized to determine the feasibility and practicality of any particular

hardware implementation. Subsequently, comparative benchmarking is conducted to

characterize system performance across a variety of firmware and software configura-

tions. For Keystone Enclave to competently champion the TEE paradigm promoted

by the CCC, it must satisfy operational performance and security requirements while

simultaneously offering its users clear implementation pathways.
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1.3 Research Objectives

This research aims to assess feasibility and practicality assertions made by Key-

stone Enclave concerning device portability. It also seeks to characterize the per-

formance of a native RISC-V Linux-capable workstation. Concertedly, these goals

form pertinent criteria upon which TEE hardware candidates may be evaluated. The

objectives of this research are encompassed by the following actions:

• Extend Keystone Enclave firmware components for use on the HiFive Un-

matched (an ASIC, Linux capable, RISC-V development platform).

• Characterize the performance of the HiFive Unmatched board quantitatively

using benchmarking.

• Assess system performance impacts pertaining to specific versions of these

firmware and software components:

– OpenSBI platform-specific reference implementation

– U-Boot, the universal bootloader

– The Linux Kernel & Distribution Linux Kernels

– Ubuntu Distribution Releases

• Evaluate the Keystone SDK by configuring and modifying the development

tools used to construct enclaves and Enclave Applications (Eapps).

• Verify Keystone Enclave compatibility with modern RISC-V workstations.

1.4 Hypothesis

The performance of contemporary RISC-V computers can be quantitatively char-

acterized to substantiate their suitability for incorporating TEE functionality. More-
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over, this research further hypothesizes that for Confidential Computing practices to

burgeon, significant firmware and software contributions are required by all principal

stakeholders.

1.5 Approach

To sufficiently determine if the HiFive Unmatched is a suitable candidate for

Keystone Enclave, its performance must first be characterized. Performance char-

acterizations are conducted by configuring the HiFive Unmatched board to run 20

compatible benchmarks, selected from the Stress-NG benchmarking suite, across three

distinct Ubuntu distribution versions –each with unique distribution Linux kernels, U-

Boot bootloaders, and OpenSBI versions. Once baseline performance thresholds have

been conducted, appropriate firmware modifications are attempted to supplement the

HiFive Unmatched with TEE capabilities. Expressly, this work catalogues the de-

velopment processes and procedures required to extend the HiFive Unmatched with

Keystone SM firmware. Upon integration of Keystone SM into the OpenSBI layer of

the boot-flow, successive performance characterizations are conducted. Subsequent

benchmarking runs repeat prior Stress-NG benchmarks; however, these configurations

differ from initial baseline characterizations by substituting each of the three unmod-

ified OpenSBI versions with the modified OpenSBI + Keystone SM implementation.

With these benchmarking scores analyzed, Keystone Enclave portability claims are

addressed with appropriate development and policy recommendations proposed.

1.6 Contributions

The contributions of this thesis to the fields of Cyber Security, Computer Net-

working, and Confidential Computing are outlined below:

• Demonstrated device portability claims of an open-source TEE project.
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• Verified performance ramifications for recent Ubuntu Distribution Kernel re-

leases on ASIC RISC-V systems.

• Implemented a platform evaluation framework to assess future RISC-V work-

stations and configurations.

• Assessed benchmarking characterizations to determine platform suitability for

TEEs.

• Identified the need for Linux distribution publishers to directly support Confi-

dential Computing projects.

• Proposed TEE policy and implementation recommendations for relevant com-

munities, industries, and agencies.

1.7 Organization

This thesis document is grouped into six chapters. The remaining chapters of this

work are as follows. Chapter II equips the reader with pertinent context by describ-

ing Trusted Computing, summarizing Confidential Computing, examining TEEs as a

mechanism for security enforcement, listing prevalent examples of TEEs in industry,

and introducing Keystone Enclave, an open-source TEE implementation based on

the RISC-V ISA. Chapter III details the experimental bootloader and firmware mod-

ifications conducted that configure and extend Keystone SM for use on the HiFive

Unmatched. Chapter IV reports the design of experiments and testing methodology

applied to assess system performance across multiple bootloader, kernel, and distri-

bution configurations. Chapter V presents benchmarking results, analysis, and obser-

vations that characterize system performance. Chapter VI offers concluding remarks,

recommends best practices for accelerating the adoption of Confidential Computing
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principles, and outlines anticipated future efforts –including proposed Keystone En-

clave performance characterizations, capable of ensuring that performance obligations

are met while simultaneously enforcing strict security adherence.
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II. Background & Related Work

2.1 Overview

This chapter offers relevant background information pertaining to Trusted Com-

puting, Confidential Computing, the RISC-V ISA, and Keystone Enclave. Discussion

begins by comparing and contrasting Trusted Computing paradigms against emerging

Confidential Computing principles. Next, the open-source RISC-V ISA is described

with particular attention given to the privileged specifications upon which Keystone

Enclave is built. The chapter concludes by explicating the constituent components

and supporting projects employed by Keystone Enclave.

2.2 Trusted Computing

The Trusted Computing Group (TCG) aims to provide secure computing tech-

nologies for “business-critical data and systems, secure authentication and strong

protection of user identities, and the establishment of strong machine identity and

network integrity” through open standards and specifications [6]. Notably, the TCG

omits strong requirements for open-source code implementations, instead prioritiz-

ing the requisite standards and specifications necessary for Trusted Platform Module

(TPM) specification compliance. The TCG is governed by a board comprised of 14

Promoter member companies and hundreds of elected Contributor advisors [6]. Cur-

rently, there are 14 TCG Promoter members. Listed alphabetically, they include the

following companies: Advanced Micro Devices (AMD), Cisco, Dell, Google, Hewlett

Packard Enterprise, HP, Huawei, International Business Machines (IBM), Infineon,

Intel, Juniper Networks, Lenovo, Microsoft, and Toyota [6]. Collectively, these in-

dustry vendors, developers, manufactures, and infrastructure companies establish,

verify, and validate Trusted Computing technologies by publishing their standards
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via the International Organization for Standardization (ISO) and the International

Electrotechnical Commission (IEC).

2.2.1 Trusted Platform Module

TPMs are hardware components that enforce Trusted Computing conventions by

adhering to the TPM Library Specification. The current TPM Library Specifica-

tion is named “Trusted Platform Module Library Specification, Family ‘2.0’ Level

00 Revision 1.59” and is openly available under the ISO/IEC 11889:2015 standard

publication [7]. Overwhelmingly, TPM hardware components utilize proprietary tech-

nologies to meet the openly published specification and are manufactured and sold

by TCG Promoter and Contributor members to provide secure computing.

2.3 Confidential Computing

The Confidential Computing Consortium (CCC) is a Linux Foundation project

community whose members focus on securing data in use through open collaboration.

Commonly deployed encryption techniques enforce the full Confidentiality, Integrity,

and Availability (CIA) triad for data at rest (i.e. within storage mediums) and for data

in transit (i.e. across public or private networks). Nonetheless, these techniques are

limited by the conventional computing infrastructure. To sufficiently protect data in

use (i.e. during execution), computation must either be performed within a hardware-

based TEE [8], or operate on a system with the ability to manipulate encrypted data

without decrypting it first –as in homomorphic computing, which is not addressed by

this research. Figure 1 illustrates the appropriate security mechanisms as they apply

to classical computing data states.
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Figure 1. Security Mechanisms Applied to Classical Computing Data States

2.3.1 Trusted Execution Environments

While no formal definitions for TEEs have been arbitrated, the CCC defines TEEs

“as an environment that provides a level of assurance of the following three properties:

data confidentiality, data integrity, and code integrity” [8, 9]. Our work uses this defi-

nition interchangeably with variations commonly found within industry. Many preva-

lent TEE implementations are proprietary, including Intel Software Guard eXtensions

(SGX), Advanced RISC Machines (ARM) TrustZone, and AMD Secure Encrypted

Virtualization (SEV). Vendor specific TEE implementations pose two distinct disad-

vantages: (1) Intellectual Property (IP) ties both new features and bug fixes directly

to vendors; and (2) different threat models have been ascribed to specific ISAs. By ob-

servation, Intel SGX targets server and desktop application isolation, ARM TrustZone

addresses vendor-provisioned mobile application isolation, while AMD SEV focuses

on virtual machine isolation. Markedly, Intel SGX extensions do not recognize side-

channel analysis as an active threat vector [10]. Consequently, speculative execution

attacks, such as Spectre and Meltdown, can exploit this threat model omission to

compromise all Trusted Computing enclaves running on Intel SGX platforms [10]. In-

tel has since depreciated the SGX extensions and removed them from 11th generation
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and newer “CoreTM ” series processors.

To combat known Trusted Computing deficiencies, proprietary disadvantages must

be weighed against emerging open-source alternatives. One promising project, Key-

stone Enclave, provides an extensible open-source TEE implementation for the RISC-

V ISA. This research asserts that Keystone Enclave –along with supporting hardware,

firmware, and software– may provide a viable avenue for extending native RISC-V

computers with Confidential Computing capabilities while avoiding potential inade-

quacies found within existing proprietary TEE offerings.

2.4 The RISC-V ISA

ISAs provide technical specifications for interfacing processor hardware to low-

level firmware. The RISC-V ISA is a free and open architecture aiming to enable

a new era of processor innovation through open standard collaboration [11]. The

RISC-V ISA describes a hardware thread as a “hart”; comparatively, these “harts”

are equivalent in terminology to the colloquial term “core” widely accepted for exist-

ing x86 64 systems [11]. The RISC-V Instruction Set Manual is organized into two

volumes: Volume I, Unprivileged ISA and Volume II, Privileged Architecture.

2.4.1 Unprivileged ISA

The Unprivileged RISC-V Instruction Set Manual accounts for the base integer

architecture (designated by I ) and additional optional instruction set extensions. The

set standard of extensions currently defines multiply/divide operations “M”, atomic

operations “A”, single and double-precision floating-point arithmetic “F” and “D”,

as well as compressed 16-bit instructions “C” [11]. The M, A, F, and D identifiers are

standard extensions that are collectively referred to by “G”. Our research employs 64-

bit integer registers with all standard and compressed extensions –thus the particular
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ISA descriptor used for this research is designated as RV64GC (where RV signifies

RISC-V, 64 identifies the register width, G indicates the base ISA with standard

extensions, and C shows support for compressed operations).

2.4.2 Privileged ISA

The Privileged RISC-V Instruction Set Manual was formally ratified on 4 Decem-

ber 2021 and describes all aspects of RISC-V systems beyond the unprivileged ISA

[12]. The features pertinent to this work are Physical Memory Protection (PMP) and

three of the four specified privilege levels: User Mode (U-Mode), Supervisor Mode

(S-Mode), and Machine Mode (M-Mode). The fourth mode, Hypervisor Mode (H-

Mode), has not been utilized for this work. Keystone Enclave makes appropriate

use of these security primitives to enforce memory-isolated execution within TEEs

[1]. Colloquially, these memory isolated environments are often referred to as secure

enclaves. Because we utilize Keystone Enclave throughout the creation, execution,

and destruction lifecycle of these enclaves, they are aptly named Keystone Enclaves.

2.4.3 Physical Memory Protection and Machine Mode Operations

The Privileged RISC-V Instruction Set Manual defines the PMP specification.

PMP units are optional hardware components responsible for limiting physical mem-

ory address accesses by software to support secure processing and contain faults. [12]

If included within the System on a Chip (SoC) design, PMP units provide “per-hart

M-Mode control registers to allow physical memory access privileges to be specified

for each physical memory region” [12].
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2.5 Keystone Enclave

As a current project of the CCC, Keystone offers an accessible open-source frame-

work supporting academia and industry with resources to build trustworthy secure

hardware enclaves. Keystone is the first open-source framework for building cus-

tomized TEEs [1]. It is designed for and built upon the RISC-V Privileged ISA. By

leveraging trusted hardware, Keystone enables software-defined, hardware-enforced,

memory-isolated execution beneath an untrusted Operating System (OS) [1]. Cur-

rently, Keystone supports the following three standard TEE primitives: (a) Secure

Boot, (b) Secure Source of Randomness, and (c) Remote Attestation [1]. Figure 2

depicts the distinct Keystone Enclave components as they operate within the RISC-V

ISA privilege levels, alongside the untrusted OS.

Figure 2. Compute System Operations with Keystone Enclave [1]

2.5.1 Keystone Security Monitor

As the core component for Keystone Enclave, the SM relies solely upon RISC-

V standards for operation. This intentional design constraint promotes portability

between various RISC-V hardware platforms. This research applies these design prin-

ciples to port Keystone SM for use on the HiFive Unmatched development platform.
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Keystone SM achieves memory isolation for enclave runtimes and Eapps by utiliz-

ing PMP hardware built directly into each hart [13]. Precise development platform

features, specifications, and configurations are provided in Chapter III. This work

concentrates development efforts on extending Keystone SM for use on the Unmatched

test platform.

Figure 3. Keystone Enclave Lifecycle

During operation, Keystone SM facilitates secure enclave requests to the OS by

calling the appropriate Keystone OpenSBI functions described in Table 1. Keystone

enclaves experience three distinct phases during their lifecycle: creation, execution,

and destruction. (These phases are illustrated in Figure 3.) Upon a creation request

by the OS, the SM measures enclave memory, ensuring that the OS correctly loaded

the enclave binaries into physical memory. Then, the SM hashes the page contents

and the virtual addresses along with configuration data. At execution, the SM sets

PMP entries and delegates control to the enclave entry point. After program com-

pletion, the runtime (RT) entity calls the exit function prompting the OS to initiate
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a destruction request. Upon a destruction call, the SM clears the enclave memory

region prior to returning the memory address space to the OS [1].

Table 1. Keystone SM OpenSBI Function Calls [1]

Caller OpenSBI Function Call Description

create validate & measure the enclave
OS run start enclave & boot Eryie RT

resume resume enclave execution
destroy clean & release enclave memory

stop pause enclave execution
RT exit terminate the enclave

attest get signed attestation report
random get secure random values

2.5.2 Keystone Root-of-Trust

Although the Root-of-Trust is typically depicted as a hardware component (as

shown in Figure 2), Keystone also supports tamper-proof firmware implementations.

Our research leverages this feature, employing modified first and second-stage boot-

loaders to simulate the Secure Boot primitive. Furthermore, this work does not

attempt to verify, validate, or otherwise assess cryptographic techniques employed by

Keystone to achieve TEE primitives –rather, this work examines Keystone Enclave

portability claims by attempting to extend its use on unsupported hardware.

2.5.3 Keystone Modular Runtime: Eryie

Once the SM has isolated an enclave’s physical memory, the enclave then initializes

the enclave RT to run in S-Mode. Eryie has been developed by [1] as an exemplar RT

enabling modular system-level abstraction for Eapps. With functionality analogous

to an isolated kernel operating inside the enclave, Eryie satiates developers RT needs

by including only the necessary capabilities required for specific Eapps in an effort to

reduce the Trusted Computing Base (TCB) [1]. Because enclaves are created with
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S-Mode privileges, they are capable of running the S-Mode RT, which in turn hosts

Eapps in U-Mode. This defensive design permits only the enclave RT access to the

shared memory buffer. Furthermore, these abstraction layers allow and encourage

developers to substitute the Eryie RT with alternative microkernels, such as seL4 [1].

Currently, the Eryie RT does not support parallel multi-core enclave execution

–instead, thread management is delegated to the enclave RT which then runs the

multi-threaded Eapps on a single thread. Keystone SM could be extended to support

parallel multi-threaded enclave execution by issuing multiple Keystone OpenSBI func-

tion calls across different cores. Future performance characterizations will be required

to exhaustively evaluate the consequences of these design constraints. Moreover, ex-

tending the Keystone Enclave project to fully support multi-threaded applications

exceeds the scope of this work.

2.5.4 The seL4 Microkernel

The seL4 microkernel “is a high-assurance, high-performance operating system

microkernel” [14]. It has been formally verified for compiler correctness and imple-

mentation safety with provable trustworthiness [15]. These traits are desirable for

use as a Keystone Enclave RT. Using the now discontinued HiFive Unleashed board,

Keystone researchers have demonstrated seL4 functioning as the enclave RT [1]. As

the Keystone Enclave project matures and evolves, alternative RTs, such as seL4

must be explored with new hardware platforms. The The seL4 microkernel is not

used in this research; however, it has been identified as an additional recommended

RT for future Keystone Enclave development. Keystone Enclave RT development

opportunities are further discussed in Section 6.3.
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2.5.5 Keystone Enclave Applications

With successful modifications to hardware specific M-Mode software (i.e. firmware),

the HiFive Unmatched equipped with Keystone SM could conceivably be configured to

support the Eryie runtime or the seL4 microkernel. With capable execution environ-

ments configured, future Keystone Eapps may be developed, verified, and validated.

The Keystone SDK Eapp development for any statically compiled RISC-V binary,

so long as all supporting libraries are also included within the Keystone runtime.

Respectively, proposed secure enclave applications are envisioned that characterize

system performance from within enclaves. Such insight would arm decision makers

with system performance expectations for TEEs and would encourage the adoption

of Confidential Computing principles. Proposed Eapps are presented in Section 6.3;

however, Eapp development is beyond the scope of this research venture.

2.6 The RISC-V SBI Specification & The OpenSBI Library

The OpenSBI project provides “an open-source reference implementation of the

RISC-V SBI specification for platform-specific firmwares executing in M-Mode” [16].

The primary component of OpenSBI is a generic, platform-independent static library

(named libsbi.a) that implements the SBI interface. RISC-V platform and SoC

vendors use this library to link their respective firmware and bootloader implementa-

tions to ensure SBI conformity. The OpenSBI project also provides platform-specific

static libraries that integrate platform-dependent hardware manipulation functions

with the libplatsbi.a and libsbi.a reference implementations. Collectively, these

example firmwares replace the legacy riscv-pk bootloader (known as the “Berkeley

Bootloader (BBL)”) with U-Boot, the universal bootloader [16].

Keystone Enclave v1.0.0, released on 2 March 2021, transitioned their bootloader

development from the BBL to the OpenSBI bootloader implementation. Subse-
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quently, this work leverages the OpenSBI project, alongside the Keystone Enclave

project, to build and modify novel OpenSBI implementations that incorporate Key-

stone SM function calls for enclave operations beneath the OS and host kernel.

Platform-specific libraries were provided by SiFive to the OpenSBI project for the

HiFive Unmatched on 27 July 2021 [16].

2.7 Related Work

Porting Keystone SM to new hardware platforms is only an initial step in the

furtherance of Confidential Computing principles. To fully implement all Keystone

Enclave components on contemporary RISC-V hardware, additional Linux Kernel

modifications will need to be baselined into supporting Linux Distributions. More-

over, to encourage the adoption of Confidential Computing paradigms, Linux distribu-

tions will likely need to provide flexible tools to facilitate porting Keystone Enclave to

more devices. To justify extending RISC-V compute systems with TEE technologies,

strict performance requirements must also be maintained. The addition of secure en-

clave computing unavoidably impacts system performance [5]; to effectively evaluate

TEE performance impacts, future characterization studies must be explored.

In his Master’s Thesis, titled Characterizing Security Monitor and Embedded Sys-

tem Performance Across Distinct RISC-V IP-Cores, Tullos (2021) conducted rele-

vant performance characterizations for embedded RISC-V devices configured with

Keystone Enclave implemented on FPGA hardware [5]. As the RISC-V landscape

matures, performance characterizations ought to include ASIC hardware implemen-

tations with representative system evaluations for workstation focused systems such

as the HiFive Unmatched.
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2.8 Summary

Chapter II presents sufficient background knowledge to articulate the distinctions

between theTrusted and Confidential Computing paradigms. It succinctly describes

foundational operations of the RISC-V ISA and encapsulates the security mechanisms

employed to enforce Confidential Computing principles through the use of TEEs. Pre-

dominately, this chapter affords perspective by conveying the precise research domain

targeted for exploration. Lastly, it recognizes the achievements and contributions by

antecedent researchers that lay the groundwork for future Keystone Enclave develop-

ment.
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III. Experimental Platform Configurations

3.1 Overview

Chapter III begins by revealing the selection criteria used to pursue Keystone

SM platform expansion. Discussion continues by specifying the relevant hardware

features and capabilities of the HiFive Unmatched development platform. The exact

hardware configuration used during experimentation is also documented. Subsequent

sections contain expositions of the standard unmodified boot-flow along with pre-

cise experimental bootloader and firmware modification procedures. These firmware

modifications configure and extend Keystone SM for use on the HiFive Unmatched.

Relevant console output is presented in Figures 8 and 9 that showcase boot opera-

tions with both an unmodified and modified boot-flow. Additional console output is

also shown in Figure 10 to substantiate successful Keystone SM integration into the

OpenSBI SPL boot-flow layers.

3.2 The HiFive Unmatched by SiFive

The HiFive Unmatched development platform was selected by evaluating its mer-

its against the following four criteria: (a) form factor standardization, (b) commodity

Personal Computer (PC) hardware compatibility, (c) Linux OS support, and (d) en-

hanced SoC monitoring capabilities. Currently, the Unmatched is the only commer-

cially available RISC-V development platform that satisfies each of the desired crite-

rion. The Unmatched is uniquely positioned to facilitate desired research objectives

by adopting the Mini-ITX form factor commonly used by many AMD/Intel x86 64

systems. This standard PC form factor enables straightforward hardware extensions

via Peripheral Component Interconnect Express (PCIe) and Non-Volatile Memory

Express (NVMe) interconnects. Out-of-the-box, the Unmatched is pre-configured
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with the OpenEmbedded Linux distribution; however, the Ubuntu distribution is

leveraged for this work. Enhanced SoC monitoring capabilities are not pursued by

this research, with envisioned use-cases proposed in Section 6.3.

Importantly, the Unmatched is a product by SiFive, an industry leader for RISC-

V technologies. SiFive company leadership includes three of the RISC-V ISA co-

founders: Yunsup Lee, Chief Technology Officer (CTO); Krste Asanović, Chief Ar-

chitect; and Andrew Waterman, Chief Engineer. Strikingly, Krste Asanović, is a

contributing author to the Keystone project [1]. SiFive involvement inspires con-

fidence by incentivizing support for HiFive products as RISC-V specifications and

Keystone Enclave implementations evolve.

Furthermore, the Unmatched succeeds the previous generation HiFive Unleashed

(the first Linux-capable native RISC-V development platform). Although discontin-

ued, the Unleashed platform was used to demonstrate the first Keystone Enclave

implementation on an ASIC RISC-V computer. Moreover, the Unmatched is ad-

vertised as “the world’s fastest native RISC-V development platform” which sets it

apart from other platforms by positioning it as an independent, Linux-capable, native

RISC-V workstation –rather than as an embedded system.

3.2.1 Hardware Features & Specifications

The Unmatched is powered by the closed-source SiFive Freedom U740 SoC: a

multi-core, 64-bit dual-issue, superscalar RISC-V processor, with advertised perfor-

mance comparable to the ARM Cortex-A55 [13]. The Freedom U740 contains four

Linux-capable U74 application cores supporting RV64GC operations and includes a

fifth S7 monitor core supporting RV64IMAC operations. All cores have dual-issue

in-order execution pipelines that support a peak sustained execution rate of two In-

structions per Clock Cycle (IPC) and maintain a fully-coherent 2 Megabyte (MB)
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shared Level 2 (L2) cache [13]. Additional board specifications include 16 Gigabytes

(GBs) of Double Data Rate 4 (DDR4) synchronous dynamic random-access memory

(SDRAM), a 32 MB Quad Serial Peripheral Interface (SPI) Flash, microSD card ex-

pansion, Gigabit Ethernet, four Universal Serial Bus (USB) 3.2 Gen 1 Type A ports,

one microUSB Joint Test Action Group (JTAG) console port, one x16 PCIe Gen 3

expansion slot, one M.2 M-Key slot for NVMe 2280 SSD modules, and one M.2 E-Key

slot for Wi-Fi/Bluetooth modules [13].

Figure 4. HiFive Unmatched Mini-ITX Development Platform, Hardware Configura-
tion as Tested

The selected hardware configuration utilizes the M.2 M-Key NVMe slot to take ad-

vantage of a 500 GB Samsung 980 PRO PCIe 4.0 SSD. Additional components are not
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strictly required for system testing, but aid performance by providing faster memory

technology and could allow for testing in environments without wired internet access.

The PCIe expansion slot is not used for this research, with graphical capabilities left

for future investigation. Figure 4 captures the test platform, as configured during

experimentation.

3.3 Standard Test Configurations

There are few Linux distributions that officially support the RISC-V ISA; fewer

still are those which support the Unmatched platform directly. At the time of de-

velopment, only the OpenEmbedded and Ubuntu distributions officially offer com-

patible bootable images for the Unmatched. Although the included OpenEmbedded

distribution could have been used to support Keystone SM portability, the OS is

fundamentally designed for embedded systems. It lacks basic features typically found

in other workstation-focused distributions, such as Ubuntu. Notably, OpenEmbed-

ded does not include a package manager, such as Advanced Packaging Tool (APT),

Debian Package Management System (DPKG), Pacman Package Manager (pacman),

Red Hat Package Manager (RPM), or Yellowdog Updater Modified (YUM); thus,

installing, updating, and removing testing packages and programs requires rebuild-

ing independent static OS configurations. (The time required to build these static

bootable images often exceeds eight hours and consumes 200 GB or more of disk

space per configuration.) Ultimately, Ubuntu better suits the Unmatched platform

by supporting existing workstation programs and work-flows without OS modifica-

tions.
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3.3.1 Standardized Boot-Flow

The “SiFive FU740-C000 Manual” details the boot process stages for the HiFive

Unmatched [13]. Typical boot operations proceed in the following order of precedence:

0. Power on Reset (PoR)

1. Zeroth Stage Bootloader (ZSBL), stored in an on-chip mask Read Only Memory

(ROM)

2. First Stage Bootloader (FSBL), the U-Boot Secondary Program Loader (SPL)

3. Second Bootloader (SBL), containing the U-Boot Image Tree Blob (ITB), De-

vice Tree Blob (DTB), and platform-specific OpenSBI reference implementation

4. EXTLINUX, for Linux Kernel version control and management

5. Distribution Linux Kernel, modified from the upstream mainline Linux Kernel

maintained by Linus Torvalds

For baseline performance characterizations conducted on the system without Key-

stone SM, this boot-flow is preconfigured for Ubuntu and provided by Canonical

within a preinstalled server image. By flashing this bootable image onto a microSD

card, the Unmatched successfully boots into Ubuntu. Figure 5 delineates the un-

modified boot-flow for standard test platform configurations without Keystone SM

modifications. Where appropriate, PoR, SoC ROM, microSD, and NVMe M.2 SSD

glyphs designate they physical location of each firmware stage as they resides in hard-

ware on the Unmatched system.

3.3.2 Unmodified Ubuntu Preinstalled Server Images

To best ensure testing uniformity across numerous Ubuntu releases, only one build

for each of the available preinstalled server images are downloaded from Canonical,
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Figure 5. Standardized Boot Flow for the HiFive Unmatched, microSD

the publisher of Ubuntu [17, 18, 19]. The publishing date for these bootable images

is 4 January 2022. Furthermore, once these images have been configured for use on

the system, they are never updated and remain unpatched throughout performance

testing. This practice is inadvisable for operational systems; however, updating is

avoided to enforce strict software version control during testing. Canonical hosts daily

builds of preinstalled server images for the Unmatched. Available major Ubuntu OS

releases include the following distribution versions:

• 21.04 (Hirsute Hippo) [17]

• 21.10 (Impish Indri) Beta [18]
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• 22.04 Long Term Support (LTS) (Jammy Jellyfish) Development Branch [19]

All preinstalled server images are downloaded and flashed to the microSD bootable

medium for benchmarking, which is detailed in Chapter IV.

3.3.3 Configuring the M.2 NVMe Drive

By default, the Unmatched Boot Mode Selector Dual In-Line Package (DIP)

switches are configured to boot from the microSD card slot. The provided microSD

card has an advertised maximum read speed of 98 MB/s and maximum write speed

of 58 MB/s, which is serviceable for initializing the system and preparing the NVMe

drive. To substantially improve disk performance and reduce average system response

time, EXTLINUX, the distribution Linux Kernel, and the Ubuntu OS are configured

to run on the 500 GB Samsung 980 PRO PCIe 4.0 NVMe M.2 SSD. For comparison,

this M.2 drive boasts read speeds of up to 7,000 MB/s and write speeds of up to 5,100

MB/s.

For version control and efficiency purposes, an NVMe-to-USB-C adapter is lever-

aged to preemptively flash corresponding preinstalled Ubuntu server images to the

SSD prior to system configuration. Once the Unmatched board initializes from the

microSD card (with the SSD drive prepared and physically mounted to the board),

the following commands are executed to configure U-Boot for use with the NVMe

device:

1. sudo mount /dev/nvme0n1p1 /mnt to mount the NVMe boot partition

2. sudo chroot /mnt to change the apparent root directory to the NVMe mount

point

3. nano /etc/default/u-boot to edit the U-Boot configuration file
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4. U_BOOT_ROOT="root=/dev/nvme0n1p1" to set the relevant environment vari-

able

5. u-boot-update to save and update the U-Boot configuration file

6. exit to exit the chroot session

7. sudo shutdown -h now to shutdown the system

Upon reboot, the system is configured start Ubuntu from the NVMe drive. Figure 6

highlights the unmodified boot-flow for standard test platform configurations, after

the M.2 NVMe SSD has been configured. Notably, the EXTLINUX and distribution

Linux Kernel are the only boot-flow stages accessed by the M.2 NVMe SSD. At the

time of development, U-Boot maintainers had not finalized support for flashing the

FSBL and SBL to the on-board Quad SPI interface. Consequently, the microSD card

is required to bring up the Unmatched, even when the NVMe drive is configured to

host the entire bootable image. As of 4 December 2021, U-Boot maintainers have

added support for flashing and booting directly from the Quad SPI, eliminating the

requirement to boot from the microSD. This research does not rely upon the Quad

SPI boot method; however, additional testing configurations utilizing this method are

proposed in Section 6.3.

3.4 Modified Test Configurations

After each of the three targeted Ubuntu releases are prepared for use on the Hi-

Five Unmatched, modifications ensue to integrate Keystone SM into their respective

boot-flows. Due to the physical separation of boot-flow components across microSD

and NVMe devices, development modifications to the U-Boot firmware become more

practical. An independent Linux environment –complete with constituent SDKs, code

repositories, and toolchains– is required to pursue firmware development. This effort
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Figure 6. Standardized Boot Flow for the HiFive Unmatched,
NVMe M.2 SSD

conducts development work on a Kubuntu 20.04 Virtual Machine (VM) –although

the specific Linux distribution used for development is mostly arbitrary. Notably,

complete Keystone Enclave integration with the Unmatched platform requires distri-

bution kernel modifications. Because the Unmatched represents the bleeding-edge of

RISC-V hardware, at the time of writing, Canonical has not yet incorporated RISC-

V ISA distribution kernel support into their existing open-source kernel repository.

Consequently, without source code for the precise Ubuntu Distribution Kernels used

during testing, Keystone Enclave on the Unmatched lacks support for kernel-specific
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drivers that interface OS enclave requests with the underlying Keystone OpenSBI

function calls described in Section 2.6. Accordingly, this effort addresses the integra-

tion of Keystone SM into the HiFive Unmatched boot-flow; however, the continued

development, integration, and testing of additional Keystone Enclave components is

left for future research.

3.4.1 Boot-Flow Modifications

To configure Keystone SM for use with the Unmatched, modifications to the

platform-specific OpenSBI reference implementation (detailed in Section 2.6) are con-

ducted to integrate SM function calls into the U-Boot bootloader firmware executing

in M-Mode. The OpenSBI project enables modifications to the HiFive Unmatched

boot-flow by publishing the Freedom U740-specific library (named sifive_u740.c);

the first release of this library occurred on 27 July 2021 [16]. With the source code to

this platform-specific OpenSBI reference implementation, along with the supporting

RISC-V GNU’s Not Unix (GNU) Compiler Toolchain, integration of Keystone SM

becomes possible.

OpenSBI is extended with Keystone SM functionality by using an out-of-tree

platform build configuration, supported by the OpenSBI build process. This con-

figuration build is contained within the Keystone SDK. Because Keystone does not

officially support the Unmatched development platform, several Keystone Enclave

components require manual intervention and patching to successfully build. Markedly,

older versions of the OpenSBI and Linux Kernel repositories are archived as submod-

ules within the Keystone Enclave repository to ensure continued compatibility with

legacy hardware. To support the Unmatched, these submodules are replaced with

current versions of their respective repositories and necessarily break compatibility

with older platforms, such as the HiFive Unleashed. Figure 7 highlights the boot-flow
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Figure 7. Modified Boot Flow for the HiFive Unmatched with Keystone SM

modifications required to implement Keystone SM on the Unmatched test platform.

After OpenSBI is configured on the Kubuntu host to include the SM, Keystone

build scripts leverage the RISC-V GNU Toolchain to generate the modified fw_dynamic.bin

OpenSBI platform configuration binary used to build U-Boot proper. Development

proceeds by using the U-Boot repository build processes to generate the u-boot.itb

Image Tree Blob (ITB) and u-boot-spl.bin Secondary Program Loader (SPL) bi-

nary files from the fw_dynamic.bin file created by the Keystone SDK. These two files

are generated from the U-Boot working directory and comprise the U-Boot bootloader

that is later flashed onto the microSD card for testing, which is described in Chap-
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ter IV. U-Boot make commands are executed in the U-Boot build directory and are

included below:

CROSS_COMPILE=riscv64-unknown-linux-gnu- make sifive_unmatched_defconfig

CROSS_COMPILE=riscv64-unknown-linux-gnu- make -j N

(N represents the number of jobs created to complete the make request and should be

implemented according to unique development hardware support.)

3.4.2 Kernel Modifications

As alluded to in the opening paragraph of Section 3.4, source code is not avail-

able for RISC-V builds of the Ubuntu Distribution Linux Kernel. Indeed, distribution

Linux kernels (such as the RISC-V specific Ubuntu kernels required by this effort) are

maintained independently by their respective publishers. Distribution Linux kernels

serve as downstream derivatives of The Linux Kernel mainline (maintained by Linus

Torvalds) that incorporate distribution-specific features. (One pertinent example is

support for Snap packages, a software packaging and distribution platform developed

by Canonical). Rather than abandoning the kernel modifications implemented by

the Keystone Enclave build process, development continues by applying and cross-

compiling Keystone SM and SiFive patches to available RISC-V supported builds of

The Linux Kernel (Version 5.13.0-19.19) for future RV64GC hardware targets and

alternative open-source distributions. By default, the Keystone kernel build process

produces the Image.gz Linux Kernel for the OpenEmbedded distribution; this is an

artifact of existing hardware support for the discontinued HiFive Unleashed develop-

ment platform. Completing this build stage leverages existing makefile scripts to

generate the hifive-unmatched-a00.dtb Device Tree Blob (DTB). This firmware

component contains the specific board hardware descriptors needed to boot the ex-

perimental OpenSBI + Keystone SM build. For this research, all performance char-
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acterizations utilize unmodified Ubuntu Distribution Linux Kernels. Appropriately,

conducted Linux Kernel modifications support Keystone Enclave; however, they re-

main unused by this work and are provided for future development.

3.4.3 Bootable Image Preparation

Lastly, development concludes by creating a bootable image file and flashing it

to the microSD card. To build modified Ubuntu disk images, begin by flashing the

desired prebuilt server image to the microSD card. Once this process completes,

utilize the dd tool to overwrite the ITB and DTB boot partitions with the modified

U-Boot bootloader. These commands overwrite the two U-Boot partitions with the

OpenSBI + Keystone SM enabled implementation:

sudo dd if=u-boot-spl.bin of=/dev/sdX∗ seek=34

sudo dd if=u-boot.itb of=/dev/sdX seek=2082

*X represents a place holder for the appropriate mount point.

Finally, repeat the dd commands to overwrite the U-Boot partitions on the mi-

croSD card for each Ubuntu release selected for testing. Bring up the system by

inserting the modified bootable microSD card into the HiFive Unmatched and press-

ing the PoR button. Upon booting the device, observe the serial console output to

verify successful U-Boot modifications. Once the device boots, set the U_BOOT_ROOT

environment variable as described in Section 3.3.3 to use the preconfigured NVMe

drive with the Ubuntu OS. Figure 8 shows the standard serial console output of

the unmodified Ubuntu 22.04 LTS system, while Figure 9 substantiates the modified

U-Boot SPL build. Figure 10 captures the Ubuntu terminal upon system login.
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3.5 Summary

Chapter III provides a synopsis describing the hardware selection criteria used to

guide Keystone platform portability efforts. This chapter also conveys experimental

development procedures by outlining a broad, repeatable framework for modifying

and configuring bootloader firmware for the Unmatched platform. By physically

isolating development to the microSD card, relevant boot-flow elements are extended

and integrated into the Unmatched platform without modifications to the Ubuntu OS.

Critically, chartered development exposes the need for Linux distribution publishers

to integrate novel RISC-V ISA Linux kernels into existing open-source distribution

kernel repositories. If Linux distribution publishers were to support TEEs mechanisms

directly, Confidential Computing principles are more likely to propagate throughout

the RISC-V hardware, firmware, and software industries.
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Figure 8. U-Boot SPL Version: 2021.07+dfsg-0ubuntu10
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Figure 9. U-Boot SPL Version: 2022.01-rc4+keystonesm
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Figure 10. Ubuntu 22.04 (Jammy Jellyfish) Terminal Output
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IV. Design of Experiments & Testing Methodology

4.1 Overview

Chapter IV exhibits the design of experiments and testing methodology used to

construct performance characterizations for the HiFive Unmatched development plat-

form. To evaluate the Unmatched as a hardware candidate for TEE supplementation,

a thorough understanding of system performance in relation to application require-

ments must be determined. Unavoidably, the addition of TEEs will impact compute

system performance [5]. Therefore, it remains imperative to quantify the performance

overheads imposed by Keystone Enclave and its constituent components. Pointedly,

this research seeks to investigate the passive impacts Keystone SM has on synthetic

benchmarking performance and kernel boot times for the HiFive Unmatched. Per-

formance characterization assessments consist of three independent case studies, each

containing two experiments. Experiment I measures synthetic benchmarking per-

formance and Experiment II measures distribution kernel boot times. Performance

characterizations are derived from these experiments and are analyzed in Chapter V.

Resulting benchmark scores and boot times are then interpreted to characterize the

overall system performance of the HiFive Unmatched as both a native RISC-V work-

station and as a candidate hardware platform for TEE augmentation.

4.2 Experiment Objectives

To characterize the performance of HiFive Unmatched development platform,

three unique case studies are constructed to run two distinct experiments. In direct

support of the characterization and benchmarking objectives outlined in Section 1.3,

the following ancillary objectives are defined:
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• Assign performance scores to the HiFive Unmatched system, using the Stress-

NG benchmarking suite for each of the six experimental configurations.

• Assess distribution kernel boot times, using timestamps reported by internal

system logs.

Collectively, the results from these experiments form a substantive base to evaluate

the HiFive Unmatched as a hardware platform target for future Keystone Enclave

integration.

4.3 System Under Test

Figure 11 captures the functional block diagram for the SUT and Component Un-

der Test (CUT). Control Parameters are not depicted; however, precise configuration

specifications are detailed in Section 4.8. All conducted experiments for each of the

three case studies utilize the same SUT. Case study configurations are presented in

Tables 5, 6, and 7.

Figure 11. Functional Block Diagram - SUT: HiFive Unmatched
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4.4 Assumptions

Previous work by [5] evaluates Keystone Enclave performance on RISC-V In-

tellectual Property (IP) softcore processors, instantiated on FPGA hardware. An

ASIC Keystone Enclave implementation is assessed by [1], leveraging the HiFive Un-

leashed development platform during testing. Benchmarking results and performance

characterizations from [1] and [5] indicate that the primary contributors to perfor-

mance overhead are enclave creation, Eapp raw binary size, and Eryie RT boot opera-

tions –assuming single-threaded binary execution without context switching and that

the particular hardware implementation used maintains similar memory Read/Write

speeds between enclave disk storage and OS disk storage.

As discussed in Section 3.3.3, the Read/Write speeds for the microSD card (where

the U-Boot bootloader and modified OpenSBI + Keystone SM reside) are dramati-

cally slower than the Read/Write speeds for the M.2 NVMe SSD (where the distri-

bution Linux Kernel and OS are stored). Although complete enclave testing has not

yet been implemented nor evaluated, prospective evaluators must consider the un-

derlying memory technology that supports TEE configurations. Anticipated enclave

performance for the Unmatched is expected to result in substantially greater aver-

age system response times when compared to operations performed without enclave

support. Because development work for this effort is limited to porting Keystone

SM (and thus, does not evaluate benchmarking performance within enclaves), the ex-

pected performance differences between unmodified and modified boot-flows should

be negligible for system bring-up procedures. These experimental assumptions are

asserted prior to conducting performance characterizations:

• Keystone SM function calls are inaccessible without kernel support; their passive

impact to performance is intertwined with distinct OpenSBI revisions. Perfor-

mance variations, if any, are presumed to result from differences in OpenSBI
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implementations, more so than from specific Keystone SM modifications.

• Successive benchmarking runs are interpreted as independent events.

• A sample size of 30 is suitable for applying the Central Limit Theorem (CLT).

• Self-reported distribution kernel timestamps are trustworthy.

• Security mechanisms, such as encryption, built into Keystone SM are not as-

sessed.

4.5 Control Parameters

The hardware configuration identified in Section 3.3.3 and Section 3.4 is held

constant for both characterization studies. Table 2 lists the control parameters and

summarizes the tested hardware configuration.

Table 2. Control Parameters

Parameter Description

Processor SiFive RISC-V (4 Cores)
Motherboard SiFive HiFive Unmatched A00
Memory 16GB
Disk Samsung SSD 980 PRO 500GB + 32GB SD32G
Chipset SiFive FU740-C000 RISC-V SoC
File-System ext4

4.6 Independent Variables

Preinstalled server images for each Ubuntu release contain constituent distribu-

tion kernels, bootloaders, and compilers. Experiments within each case study are

purposefully restricted to testing across equivalent Ubuntu releases (e.g. the same

OS release number, such as 22.04). The U-Boot SPL boot-flow layer contains the

OpenSBI firmware where Keystone SM modifications are integrated into the system.
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Therefore, to isolate otherwise confounding variables, only the U-Boot bootloader is

altered between configurations within individual case studies. Importantly, not all

distribution kernels, U-Boot revisions, and compiler versions are compatible with ev-

ery major OS release. Consequently, firmware variations between different Ubuntu

releases necessarily contain differing independent variable values; however, these dis-

tinctions are separated through the use of case studies and should not be compared

directly. To glean insight about system performance across case studies, further

testing is required. Tables 5, 6, and 7 in Section 4.8 describe precise case study con-

figurations. With the notable exception of benchmarking, independent variables for

Experiment I and Experiment II and are identical and are captured in Table 3.

Table 3. Independent Variables

Variable Value Description

OS 21.04, 21.10, 22.04 LTS Ubuntu Distribution Release
Kernel 5.11.0.1007-generic, 5.13.0-1004-

generic, 5.13.0.1007-generic
Ubuntu Distribution Linux Kernel

Bootloader 2021.01+dfsg-3ubuntu9,
2021.07+dfsg-0ubuntu8,
2021.07+dfsg-0ubuntu10,
2022.01-rc4+keystonesm

U-Boot SPL Revision

Compiler GCC 10.3.0, GCC 11.2.0 Compiler Name & Version
Benchmark # 1, 2, 3, ... 20 Compatible Benchmarks from

Stress-NG Benchmarking Suite

4.7 Response Variables

Response variables for Experiment I include synthetic benchmarking scores for

each of the 20 compatible benchmarks selected from the Stress-NG benchmarking

suite and are described in Table 9 [20]. Experiment II response variables capture

distribution kernel boot times for each of the six testing configurations. Table 4

highlights the response variables for each experiment.
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Table 4. Response Variables

Variable Units Description

Benchmark
Score

Numerical Value Measured in Bogus Operations per Second
(Bogo OPs/s)

Boot Time Time Distribution Kernel Boot Time, Measured
in Seconds

4.8 Experiment Design

Three case studies are explored to evaluate the passive impact Keystone SM may

have on HiFive Unmatched system performance. For each case study, two experi-

ments are conducted: Experiment I - Synthetic Benchmarking; and Experiment II -

Distribution Kernel Boot Time. Tables 5, 6, and 7 reflect the case study arrangements

and capture the precise configurations used for each experiment. To ease the devel-

opmental burden, the same OpenSBI + Keystone SM bootloader implementation is

integrated into the U-Boot SPL for each of the three modified configurations.

4.8.1 Experiment I - Synthetic Benchmarking

The first experiment leverages the Phoronix Test Suite (PTS) (described in Sec-

tion 4.9.2) to download, install, manage, and operate the Stress-NG benchmarking

suite. Once configured on the SUT, 20 compatible tests are performed 30 times each,

for both configurations within each case study. Iterative benchmarking runs are first

performed on the Unmatched platform (as configured in Section 3.3) running stan-

dard Ubuntu preinstalled server images. Once the unmodified benchmarking scores

are tabulated as a baseline, testing progresses by repeating benchmarking runs across

the modified Ubuntu releases –with each configuration prepared as described in Sec-

tion 3.4.
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4.8.1.1 Synthetic Benchmarking Procedure

The procedure for Experiment I is performed by executing the following steps

using Secure Shell (SSH) to interact with the SUT:

1. After initial Ubuntu logon, download the PTS *.deb package using the wget

command [21].

2. Install PTS using sudo dpkg -i *.deb.

3. Install PTS dependencies using sudo apt --fix-broken install.

4. Launch PTS using the phoronix-test-suite command.

5. Connect PTS to OpenBenchmarking.org by logging in with

phoronix-test-suite openbenchmarking-login.

(Requires a free OpenBenchmarking.org account; not required for testing, but

useful for automated logging.)

6. Install the Stress-NG benchmarking suite with

phoronix-test-suite install stress-ng.

7. Install Stress-NG dependencies with

phoronix-test-suite install-dependencies stress-ng.

8. Execute export FORCE_TIMES_TO_RUN=30 to set the environment variable that

controls the number of runs per benchmark to 30. (The default value is dynamic,

starting with three runs and increases based upon standard deviation.)

9. Begin benchmarking with phoronix-test-suite benchmark stress-ng.

10. Enter the requested reporting data for result uploads and select all compatible

tests for testing.
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11. Wait for each benchmark within the Stress-NG suite to perform 30 runs,

sequentially for benchmarks #1, 2, 3 ... through 20.

12. Upon test completion, indicate Y to upload relevant configuration information,

system logs, and benchmark results to OpenBenchmarking.org [22].

13. Repeat this procedure for each of the six configurations.

4.8.2 Experiment II - Distribution Kernel Boot Time

The second experiment measures distribution kernel boot times at system start-up

by logging stdout from the serial console. Kernel boot time measurements are self-

reported by the SUT and begin when the Starting Kernel ... and [0.000000]

timestamp messages print to the screen. Distribution kernel boot time measurements

conclude by recording the timestamp reported by stdout that immediately precedes

the Welcome to Ubuntu console message. Because initial timestamps are always

zero, the difference of these two measurements reflects the distribution kernel boot

time. To restrict start-up measurements to only the kernel boot-flow layer, the time

taken by the system to initialize the OS and present the login prompt is excluded

from evaluation. For each case study, testing begins with the standard configuration

described in Section 3.3 and ends with the modified configuration detailed in Sec-

tion 3.4. Distribution kernel boot time measurements are only taken from the CUT

following graceful shutdowns; boot performance after faults have not been examined.

Case studies are explored sequentially with 30 independent boot time measurements

performed before switching test configurations.

4.8.2.1 Distribution Kernel Boot Time Procedure

Experiment II requires a serial console connection between the CUT and the

host development workstation via the JTAG protocol over USB. The procedure for
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Experiment II consists of the following steps:

1. For each configuration, after initial Ubuntu logon, power down the system with

sudo shutdown -h now.

2. Establish a new serial connection from the CUT to the SUT development host.

(PuTTY is used to connect and log stdout with the Windows OS; however this

procedure can also be accomplished using other native Linux tools.)

3. Configure PuTTY to capture stdout using session logging features and open

the serial connection.

4. From off, press the PWR ON button to bring-up the CUT.

5. Capture stdout messages to store the Starting Kernel ... and

Welcome to Ubuntu timestamps.

6. Once the system completes booting, logon and power down the CUT to prepare

it for the next testing run using sudo shutdown -h now.

7. Save and close the PuTTY session to record logs for further analysis.

8. Repeat this procedure 30 times for each of the two configurations within the

three case studies.

4.8.3 Case Study A: Ubuntu 21.04 - Hirsute Hippo

Case Study A assesses performance for the CUT running Ubuntu 21.04, Hirsute

Hippo. Released on 22 April 2021, Ubuntu 21.04 represents the oldest Ubuntu release

officially available for the Unmatched platform. As of January 2022, Ubuntu 21.04

is the only tested release that has reached End of Life (EOL) and no longer receives

standard support by Canonical [23]. Accordingly, the Ubuntu Distribution Kernel
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used by Case Study A differs by a major version number (5.11.0- vs. 5.13.0-).

Uniquely, configurations in Case Study A rely upon an older major version of the

GNU Compiler Collection (GCC) compiler (10.3.- vs 11.2.-). Notably, the U-Boot

bootloader used by the Standard A configuration (major revision 2021.01-) lacks full

support for graceful shutdowns. Due to the rapid pace of OS version releases for the

Unmatched, this bug will not be retroactively fixed for older firmware; instead users of

Ubuntu Release 21.04 will need to physically hold down the PWR ON button after the

sudo shutdown -h now command is issued and completed. Table 5 contrasts the

modified Keystone SM configuration with the standard Ubuntu 21.04 preinstalled

server image configuration provided by Canonical [17]. Firmware implementation

differences are emphasized with red text.

Table 5. Case Study A Configurations: Ubuntu 21.04 (Hirsute Hippo)

Configuration: Standard A Modified A

Processor SiFive RISC-V (4 Cores) SiFive RISC-V (4 Cores)
Motherboard SiFive HiFive Unmatched A00 SiFive HiFive Unmatched A00
Memory 16GB 16GB
Disk Samsung SSD 980 PRO 500GB + 32GB

SD32G
Samsung SSD 980 PRO 500GB + 32GB
SD32G

Chipset SiFive FU740-C000 RISC-V SoC SiFive FU740-C000 RISC-V SoC
OS Ubuntu 21.04 Ubuntu 21.04
Kernel 5.11.0-1007-generic (riscv64) 5.11.0-1007-generic (riscv64)
Bootloader U-Boot SPL 2021.01+dfsg-3ubuntu9 U-Boot SPL 2022.01-rc4+keystonesm
Compiler GCC 10.3.0 GCC 10.3.0
File-System ext4 ext4

4.8.4 Case Study B: Ubuntu 21.10 - Impish Indri

Case Study B assesses performance for the CUT running Ubuntu 21.10, Impish

Indri (Beta). Released on 14 October 2021, Ubuntu 21.10 represents another interim

Ubuntu release. With only nine months of Standard Support, Ubuntu 21.10 is ex-

pected to reach EOL in July 2022 [23]. Unlike Hirsute Hippo, Impish Indri shares

major version implementations of the Ubuntu Distribution Linux Kernel (5.13.0-),

the GCC compiler (11.2.-), and U-Boot SPL (2021.07-) with Ubuntu 22.04, Jammy
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Jellyfish. Testing release 21.10 narrows the U-Boot SPL development time gap be-

tween the Standard B and the Modified B configuration firmware implementation

dates. Table 6 contrasts the modified Keystone SM configuration with the standard

Ubuntu 21.10 preinstalled server image configuration provided by Canonical [18].

Firmware implementation differences are emphasized with green text.

Table 6. Case Study B Configurations: Ubuntu 21.10 (Impish Indri)

Configuration: Standard B Modified B

Processor SiFive RISC-V (4 Cores) SiFive RISC-V (4 Cores)
Motherboard SiFive HiFive Unmatched A00 SiFive HiFive Unmatched A00
Memory 16GB 16GB
Disk Samsung SSD 980 PRO 500GB + 32GB

SD32G
Samsung SSD 980 PRO 500GB + 32GB
SD32G

Chipset SiFive FU740-C000 RISC-V SoC SiFive FU740-C000 RISC-V SoC
OS Ubuntu 21.10 Ubuntu 21.10
Kernel 5.13.0-1004-generic (riscv64) 5.13.0-1004-generic (riscv64)
Bootloader U-Boot SPL 2021.07+dfsg-0ubuntu8 U-Boot SPL 2022.01-rc4+keystonesm
Compiler GCC 11.2.0 GCC 11.2.0
File-System ext4 ext4

4.8.5 Case Study C: Ubuntu 22.04 - Jammy Jellyfish

Case Study C assesses performance for the CUT running Ubuntu 22.04 LTS,

Jammy Jellyfish (Development Branch). Ubuntu 22.04 is currently under active de-

velopment and is categorized under the Development Branch moniker. Accordingly,

Canonical has not yet elevated the release to beta status. Jammy Jellyfish represents

the only distribution OS tested that has five years of promised hardware and main-

tenance upgrades as well as ten years of promised Extended Security Maintenance

(ESM) [23]. From the developers’ perspective, Ubuntu 22.04 LTS makes the most

sense as a foundation for expanding TEE firmware support. Table 7 contrasts the

modified Keystone SM configuration against the standard Ubuntu 22.04 preinstalled

server image configuration provided by Canonical [19]. Firmware implementation

differences are emphasized with blue text.
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Table 7. Case Study C Configurations: Ubuntu 22.04 (Jammy Jellyfish)

Configuration: Standard C Modified C

Processor SiFive RISC-V (4 Cores) SiFive RISC-V (4 Cores)
Motherboard SiFive HiFive Unmatched A00 SiFive HiFive Unmatched A00
Memory 16GB 16GB
Disk Samsung SSD 980 PRO 500GB + 32GB

SD32G
Samsung SSD 980 PRO 500GB + 32GB
SD32G

Chipset SiFive FU740-C000 RISC-V SoC SiFive FU740-C000 RISC-V SoC
OS Ubuntu 22.04 Ubuntu 22.04
Kernel 5.13.0-1007-generic (riscv64) 5.13.0-1007-generic (riscv64)
Bootloader U-Boot SPL 2021.07+dfsg-0ubuntu10 U-Boot SPL 2022.01-rc4+keystonesm
Compiler GCC 11.2.0 GCC 11.2.0
File-System ext4 ext4

4.9 Data Collection & Analysis Tools

To perform experimentation, several free and open-source resources are used; Ta-

ble 8 captures the software tools and services leveraged to conduct testing.

Table 8. Data Collection and Analysis Tools

Name Version Description

OpenBenchmarking.org - Cross-Platform, Open-Source, Automated,
Centralized Testing Ecosystem

PTS 10.8.0 Open-Source, Automated Benchmarking
Platform

PuTTY 0.76 Free SSH and telnet client for Windows
R 4.1.1 The R Project for Statistical Computing
RStudio 1.4.1717 Integrated Development Environment

(IDE) for R
Stress-NG 0.13.02 Linux stress tool developed by Colin King

of Canonical
Stress-NG for PTS 1.4.0 eXtensible Markup Language (XML) and

install.sh setup scripts to configure Stress-
NG for PTS

4.9.1 OpenBenchmarking.org

OpenBenchmarking.org is an open-source, cross-platform, centralized testing ecosys-

tem that offers a collaborative, open test platform with standardized testing profiles

and suite management system tools for distributing and standardizing benchmarks

47



[22]. Synthetic benchmark results from this research are made available online at

OpenBenchmarking.org and are discussed in Chapter V [24, 25, 26, 27, 28, 29].

4.9.2 Phoronix Test Suite

The PTS is an open-source, automated benchmarking platform offering compre-

hensive testing capabilities to facilitate effective, reproducible, and automated bench-

marking [30]. From the Linux terminal, PTS provides an extensible framework for

adding benchmark tests with integrated remote management systems to schedule,

install, and archive system test data, results, and installation logs. Benchmarking

results are optionally configured to automatically record to OpenBenchmarking.org

where they are stored for further analysis, explored in Chapter V.

4.9.3 Stress-NG

The Stress-NG benchmarking suite is an open-source Linux stress tool, developed

by Colin King of Canonical. Stress-NG contains over 270 stress tests intended to

exercise the various physical subsystems of a computer and various OS kernel in-

terfaces [20]. Selected tests from the upstream Stress-NG Git repository (Version

0.13.02) have been incorporated into the PTS implementation of Stress-NG (Ver-

sion 1.4.0) using XML and bash scripts for configuration. Stress-NG benchmark

scores are recorded in Bogo OPs/s, with higher scores indicating better performance.

Table 9 itemizes and describes the specific benchmarks used by this experiment.

4.10 Summary

Chapter IV expresses the experimental design and testing methodologies imple-

mented that assess the HiFive Unmatched development platform as a potential hard-

ware candidate for complete Keystone Enclave integration. Three case studies are
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Table 9. Compatible Benchmarks from Stress-NG 1.4.0

# Benchmark Description

1 MMAP Memory Map
2 NUMA Non-Uniform Memory Access
3 MEMFD Anonymous Kernel Memory Management
4 Atomic Atomic Operations
5 Crypto MD5, SHA-256, SHA-512, scrypt, NT, yescrypt
6 Malloc Memory Allocation
7 Forking CPU Forking
8 IO uring Asynchronous Input/Output
9 SENDFILE Read/Write
10 CPU Cache Cache Thrashing
11 CPU Stress Integer, Multiply, Floating Point, and Double Precision
12 Semaphores Shared Resources
13 Matrix Math Two- and Three-Dimensional Matrix Operations
14 Vector Math 128-bit Vector Operations
15 Memory Copying memcpy() Method Operation
16 Socket Activity IPv4, TCP Congestion Control
17 Context Switching Memory Clobbering
18 Glibc C String Functions Copying, Concatenating, Comparing, & Searching Strings
19 Glibc Qsort Functions Quick Sort Method
20 System V Message Passing Kernel Level System Calls

explored, each with two distinct experiments, to evaluate synthetic benchmark per-

formance and distribution kernel boot times for the Unmatched system running vari-

ous Ubuntu OS releases both with and without Keystone SM firmware modifications.

From these experiments, a substantive performance characterization is formed in

Chapter V in support of future TEE development and the permeation of Confidential

Computing principles.
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V. Observations & Analysis

5.1 Overview

Chapter V evaluates the results produced by experimentation conducted in Chap-

ter IV and provides informative performance characterizations of the HiFive Un-

matched system running the Ubuntu OS, both with and without bootloader support

for Keystone SM firmware. Observations, results, and analysis are organized accord-

ing to the particular case study under investigation and present findings for each of

the two conducted experiments. This chapter also addresses research difficulties asso-

ciated with directly comparing results across disparate case studies. Research discov-

eries presented in this chapter aid future work, discussed in Chapter VI, by proposing

recommendations for continued Keystone SM integration onto new hardware and for

the broader promotion of Confidential Computing practices by all stakeholders.

5.2 Performance Characterizations

Performance characterizations for the Unmatched begin by exploring each of the

three case studies proposed in Chapter IV. For each case study, synthetic benchmark-

ing experiments are investigated first, followed by an analysis of distribution kernel

boot times. To evaluate the statistical significance of these findings, the One-Way

ANOVA Test is performed. The application of the ANOVA test necessitates that

the underlying data comprises a normal distribution and that the variances of data

are equal. For all statistically significant findings presented in Chapter V, quantile-

quantile plots for each benchmark in Experiment I and for reported boot times in

Experiment II are shown as paired-observation differences in relation to the theoretical

normal distribution line. All normal distribution probability plots and comparative

box plots are provided in Appendices A, B, and C for Case Studies A, B, and C,
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respectively. With the ANOVA assumptions satisfied, the reminder of this chapter

discusses the testing hypotheses, significant observations, and comparative analyses

for each case study.

5.3 Testing Hypotheses

5.3.1 Experiment I - ANOVA Hypotheses

The hypotheses for the One-Way ANOVA Tests remain consistent across case

studies and for all benchmarks evaluated within Experiment I. Recall that Stress-

NG benchmark scores are recorded in Bogo OPs/s; higher scores indicate better

performance. The null and alternate hypotheses for all synthetic benchmarking tests

are provided below:

• HI
0 : There is no significant synthetic benchmarking performance∗ difference

between the Standard and Modified configurations.

• HI
1 : Synthetic benchmarking performance differs significantly between the Stan-

dard and Modified configurations.

5.3.2 Experiment II - ANOVA Hypotheses

The Hypotheses for the One-Way ANOVA Tests remain consistent across case

studies and for all boot observations within Experiment II. Distribution kernel boot

times are measured in seconds; lower scores indicate better performance. The null

and alternate hypotheses for distribution kernel boot time tests are as follows:

• HII
0 : There is no significant difference in distribution kernel boot times∗∗ be-

tween the Standard and Modified configurations.

• HII
1 : Distribution kernel boot times differ significantly between the Standard

and Modified configurations.
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5.4 Case Study A: Ubuntu 21.04 - Hirsute Hippo

Described in Section 4.8.3, Case Study A investigates the Standard A configuration

compared against the Modified A configuration as detailed in Sections 3.3 and 3.4.

5.4.1 Case Study A, Experiment I:

Synthetic Benchmarking Performance

Upon initial observation, the mean Stress-NG Benchmark Scores for Ubuntu 21.04

(found in Appendix A, Table 16) appear to indicate a difference in performance.

With the exceptions of NUMA, MEMFD, Crypto, and Malloc, the other 16 mean

benchmark scores for the Modified A configuration outperform those of the Standard

A configuration. To narrow the exploration space, the ratio of mean execution scores

are taken for each of the 20 benchmarks. The six benchmark tests with the greatest

normalized score difference are listed below, with red text indicating higher mean

scores for the Modified A configuration, and black text representing the Standard A

configuration:

1. Benchmark #4 - Atomic: Modified A +44.40%

2. Benchmark #17 - Context Switching: Modified A +29.67%

3. Benchmark #6 - Malloc: Standard A +21.03%

4. Benchmark #14 - Vector Math: Modified +19.63%

5. Benchmark #18 - Glibc C String Functions: Modified +19.51%

6. Benchmark #13 - Matrix Math: Modified +19.28%

Figure 12 contains box plots for the six previously identified tests with the greatest

normalized score differences. To characterize performance for the Stress-NG Bench-

mark Suite as a whole, Figure 13 showcases the box plots of the geometric means
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for each test replication. The Modified A configuration is contrasted against the

Standard A configuration through the use of red plots.

Figure 12. Case Study A, Experiment I: Stress-NG, Selected Box Plots

Figure 13. Case Study A, Experiment I: Stress-NG Geometric Mean Box Plot

To holistically characterize the overall synthetic benchmarking performance for

Case Study A, the geometric mean of all benchmark scores are taken to determine

if the difference between the Standard A and Modified A configurations are statis-

tically significant. To evaluate the hypothesis for Experiment I, the ANOVA test is
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performed for the six previously identified benchmarks and for the geometric mean

composite score. Table 10 summarizes the six test results and the geometric mean

composite score for all benchmarks. If the null hypothesis HI
0 is rejected, red text

signifies better performance for the Modified A configuration, while black text indi-

cates better performance for the Standard A configuration. If the null hypothesis HI
0

fails to reject, there is no meaning ascribed to the text color. For Case Study A,

Experiment I, the null hypothesis HI
0 is rejected, meaning that there is a statistically

significant performance difference (p < 0.01) between the two configurations. The

Modified A configuration –with its updated platform-specific, Keystone SM enabled,

OpenSBI reference implementation– outperforms the Standard A configuration.

Table 10. Case Study A, Experiment I: Selected & Composite ANOVA Results

# Benchmark F-Value P-Value Significance (P < 0.01)

4 Atomic 10069 2.2e−16 Reject HI
0

17 Context Switching 145.9 2.2e−16 Reject HI
0

6 Malloc 708.37 2.2e−16 Reject HI
0

14 Vector Math 2672950 2.2e−16 Reject HI
0

18 Glibc C String Functions 43454 2.2e−16 Reject HI
0

13 Matrix Math 205317 2.2e−16 Reject HI
0

- Geometric Mean 962.43 2.2e−16 Reject HI
0

5.4.2 Case Study A, Experiment II:

Distribution Kernel Boot Time

Again, the distribution kernel boot time box plots (shown in Figure 14) appear to

indicate a difference in distribution kernel boot times for Case Study A. To confirm

the visual suspicions, the ANOVA test is performed as shown in Table 11.

Table 11. Case Study A, Experiment II: Distribution Kernel Boot Time ANOVA
Results

Benchmark F-Value P-Value Significance (P < 0.01)

Distribution Kernel Boot Time 4096.7 2.2e−16 Reject HII
0

For Case Study A, Experiment II, the null hypothesis HII
0 is rejected; the distri-
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Figure 14. Case Study A, Experiment II: Distro Kernel Boot Time Box Plot
(Lower is Better)

bution kernel boot time for the Modified A configuration is significantly faster than

the boot time for the Standard A configuration (p < 0.01). By applying the geometric

mean across the 30 test replicates, the Modified A configuration is shown to reduce

distribution kernel boot times by 2.88 seconds per boot –a 9.28% improvement over

the Standard A configuration.

5.5 Case Study B: Ubuntu 21.10 - Impish Indri

Defined in Section 4.8.4, Case Study B examines the Modified B configuration as

it compares to the Standard B configuration detailed in Sections 3.3 and 3.4.

5.5.1 Case Study B, Experiment I:

Synthetic Benchmarking Performance

In contrast to Case Study A, the mean Stress-NG Benchmark Scores for Ubuntu

21.10 (found in Appendix B, Table 18) do not appear to indicate a difference in

performance. Again, the exploration space is reduced by taking the ratio of mean

execution scores for each of the 20 benchmarks. Noticeably, these normalized score
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differences appear much smaller than those found in Case Study A. The six bench-

mark tests with the greatest normalized score difference are listed below, with green

text indicating higher mean scores for the Modified B configuration, and black text

representing the Standard B configuration:

1. Benchmark #8 - IO uring: Standard B +3.28%

2. Benchmark #9 - SENDFILE: Modified B +1.90%

3. Benchmark #10 - CPU Cache: Modified B +1.39%

4. Benchmark #17 - Context Switching: Standard B +1.26%

5. Benchmark #20 - System V Message Passing: Standard B +1.09%

6. Benchmark #3 - MEMFD: Standard B +0.68%

Figure 15 contains box plots for the six previously identified tests with the greatest

normalized score differences. To capture performance across the entire Stress-NG

benchmarking suite, Figure 16 showcases the box plot of the geometric means for each

test replication. The Modified B configuration is differentiated from the Standard B

configuration through the use of green plots.

To sufficiently characterize the performance of Case Study B for the Stress-NG

benchmarking suite, the geometric mean of all benchmark scores are taken to de-

termine if the difference between the Standard B and Modified B configurations are

statistically significant. To evaluate the hypothesis for Experiment I, the ANOVA

test is performed for the six previously identified benchmarks and for the geometric

mean composite score. Table 12 summarizes these seven test results. If the null

hypothesis HI
0 is rejected, green text signifies better performance for the Modified

B configuration, while black text indicates better performance for the Standard B

configuration. If the null hypothesis HI
0 fails to reject, there is no meaning assigned
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Figure 15. Case Study B, Experiment I: Stress-NG, Selected Box Plots

to the text color. For Case Study B, Experiment I, the null hypothesis HI
0 fails to re-

ject; therefore, there is not a statistically significant performance difference (p < 0.01)

between the Standard B and Modified B configurations. When comparing synthetic

benchmark performance between U-Boot SPL revision 2021.07+dfsg-0ubuntu8 and

revision 2022.01-rc4+keystonesm, it is concluded that the addition of Keystone SM

firmware modifications do not passively impact performance when compared to the

Standard B configuration. In other words, adding the Keystone SM firmware has

little to no impact on the Stress-NG Benchmark scores.

Table 12. Case Study B, Experiment I: Selected & Composite ANOVA Results

# Benchmark F-Value P-Value Significance (P < 0.01)

8 IO uring 1.1591 0.2861 Fail to Reject HI
0

9 SENDFILE 238.63 2.2e−16 Reject HI
0

10 CPU Cache 0.7686 0.3843 Fail to Reject HI
0

17 Context Switching 1.1076 0.297 Fail to Reject HI
0

20 System V Message Pass-
ing

0.7684 0.3843 Fail to Reject HI
0

3 MEMFD 9.7126 0.002845 Reject HI
0

- Geometric Mean 0.7257 0.3978 Fail to Reject HI
0
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Figure 16. Case Study B, Experiment I: Stress-NG Geometric Mean Box Plot

5.5.2 Case Study B, Experiment II:

Distribution Kernel Boot Time

Upon review of the distribution kernel boot time box plots (shown in Figure 17),

the mean boot times suggest that there may be a significant difference in distribution

kernel boot times for Case Study B. Further investigation is warranted; to prove

significance, the ANOVA test is performed as shown in Table 13.

Figure 17. Case Study B, Experiment II: Distro Kernel Boot Time Box Plot
(Lower is Better)
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Table 13. Case Study B, Experiment II: Distribution Kernel Boot Time ANOVA
Results

Benchmark F-Value P-Value Significance (P < 0.01)

Distribution Kernel Boot Time 38.224 6.803e−8 Reject HII
0

For Case Study B, Experiment II, the null hypothesis HII
0 is rejected; the dis-

tribution kernel boot time for the Modified B configuration significantly differs from

the Standard B configuration (p < 0.01). In contrast to Experiment I, Experiment

II concludes that the addition of Keystone SM firmware passively affect distribution

kernel boot times significantly. The Modified B configuration is shown to increase

distribution kernel boot times by 0.11 seconds per boot –a 1.00% reduction compared

to the Standard B configuration.

5.6 Case Study C: Ubuntu 22.04 - Jammy Jellyfish

Specified in Section 4.8.5, Case Study C explores performance differences between

the Standard C configuration and the Modified C configuration detailed in Sections 3.3

and 3.4.

5.6.1 Case Study C, Experiment I:

Synthetic Benchmarking Performance

Similar to Case Study B, the mean Stress-NG Benchmark Scores for Ubuntu 22.04

(found in Appendix C, Table 20) do not appear to indicate a performance difference

between testing configurations. Analysis begins with a reduction to the exploration

space by taking the ratio of mean execution scores for all 20 benchmarks. The six

benchmarks with the greatest normalized score difference are summarized below, with

blue text representing higher mean scores for the Modified C configuration and black

text for the Standard C configuration:

1. Benchmark #13 - Matrix Math: Standard C +2.02%
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2. Benchmark #7 - Forking: Standard C +1.35%

3. Benchmark #10 - CPU Cache: Modified C +1.23%

4. Benchmark #3 - MEMFD: Standard C +0.82%

5. Benchmark #1 - MMAP: Modified C +0.65%

6. Benchmark #8 - IO uring: Modified C +0.64%

Figure 18 contains box plots for the six selected benchmarks with the greatest

normalized score differences. To express performance across the entire Stress-NG

benchmarking suite, Figure 19 compares the box plots of the geometric means for

each test replication. The Modified C configuration are represented with blue plots.

Figure 18. Case Study C, Experiment I: Stress-NG, Selected Box Plots

For Case Study C, performance characterizations are achieved by evaluating com-

patible tests within the Stress-NG benchmarking suite. To assess the passive impact

Keystone SM may have on performance, the geometric mean of all benchmark scores

are taken to determine if differences between the Standard C and Modified C con-

figurations are statistically significant. To evaluate the hypothesis for Experiment I,
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Figure 19. Case Study C, Experiment I: Stress-NG Geometric Mean Box Plot

the ANOVA test is performed for the six previously identified benchmarks and for

the geometric mean composite score. Table 14 summarizes these seven test results.

If the null hypothesis HI
0 is rejected, blue text signifies better performance for the

Modified C configuration, while black text indicates better performance for the Stan-

dard C configuration. If the null hypothesis HI
0 fails to reject, there is no meaning

attributed to the text color. For Case Study C, Experiment I, the null hypothesis

HI
0 fails to reject. As found for Case Study B, there is not a statistically significant

performance difference (p < 0.01) between the Standard C and Modified C config-

urations. When comparing synthetic benchmark performance between U-Boot SPL

revision 2021.07+dfsg-0ubuntu10 and revision 2022.01-rc4+keystonesm, it is con-

cluded that the introduction of Keystone SM firmware modifications do not passively

impact performance when compared against the Standard C configuration.
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Table 14. Case Study C, Experiment I: Selected & Composite ANOVA Results

# Benchmark F-Value P-Value Significance (P < 0.01)

13 Matrix Math 2.6027 0.1121 Fail to Reject HI
0

7 Forking 14.996 0.0002761 Reject HI
0

10 CPU Cache 0.8007 0.3746 Fail to Reject HI
0

3 MEMFD 24.079 7.859e−6 Reject HI
0

1 MMAP 0.1154 0.7353 Fail to Reject HI
0

8 IO uring 20.171 3.426e−5 Reject HI
0

- Geometric Mean 0.7707 0.3836 Fail to Reject HI
0

5.6.2 Case Study C, Experiment II:

Distribution Kernel Boot Time

After examining the distribution kernel boot time box plots (shown in Figure 20),

there are no immediate indicators that suggest a significant difference in distribu-

tion kernel boot times. Notably, three outliers are discovered in the Standard C

configuration; however, their scale is dwarfed by the sole outlier for the Modified

C configuration. Nevertheless, without these outliers, the box plot boxes remain

noticeably flat. Upon investigation into the serial console log files, the outlying

boot time for the Modified C configuration occurs in test Replicate Ten, where the

random: crng init done step is added to the kernel start-up procedure. This ad-

ditional kernel task is automatically scheduled based upon myriad factors, and con-

figures the kernel’s random number generator [31]. To convey differences, Figure 21

displays Replicate Nine from the Modified C configuration on the top, contrasted

against Replicate Ten shown on the bottom. Replicate Ten for the Modified C config-

uration is the only test that experiences this system-wide, random number generation

anomaly. To prove significance, the ANOVA test is performed as shown in Table 15.

Table 15. Case Study C, Experiment II: Distribution Kernel Boot Time ANOVA
Results

Benchmark F-Value P-Value Significance (P < 0.01)

Distribution Kernel Boot Time 0.3307 0.5674 Fail to Reject HII
0

For Case Study C, Experiment II, the null hypothesis HII
0 fails to reject; the
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Figure 20. Case Study C, Experiment II: Distro Kernel Boot Time Box Plot
(Lower is Better)

distribution kernel boot time for the Modified C configuration does not significantly

differ than that of the Standard C configuration (p < 0.01). Finally, Experiment

II, concludes that the addition of Keystone SM firmware does not significantly affect

distribution kernel boot times.

5.7 Comparing Data Across Case Studies

The temptation to directly compare performance results across disparate case

studies is not easily satiated. Without experimental design constraints imposed

to limit the interactions between independent variables, –and perhaps most impor-

tantly, the inherent constraint imposed by firmware incompatibilities between each

OS release– evaluating relative performance across case studies risks overlooking the

delicate interactions buried within low-level firmware. OpenSBI, for example, is not

listed as an independent variable in Table 3. Nevertheless, the particular OpenSBI

implementations used by this work rely upon specific U-Boot SPL revisions, which

may or may not be suitable for integrating Keystone SM into the OpenSBI boot-flow

layer. Understandably, previous research by [5] premises analysis on the assumption
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Figure 21. Case Study C, Experiment I, Modified C, Replicate Ten: Outlier Anomaly

that the passive impact to synthetic benchmarking performance caused by the intro-

duction of Keystone SM is ineffectual. This work has corroborated that underlying

assumption, but only so long as the particular firmware implementation used remains

otherwise unchanged. In practice, supplementing unsupported hardware with TEEs

necessitates low-level bootloader modifications, often requiring different or modified

versions of firmware for each boot-flow layer –many of which are not readily compat-

ible. This challenge is not easily overcome by the individual developer; yet could be

overcome by Linux distribution publishers directly.
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5.8 Summary

The observations, results, and analysis showcased in Chapter V substantiate as-

sumptions made by prior research [1, 5]. Although Case Studies B and C did not find

a statistically significant difference between their respective synthetic benchmarking

performance characterizations, Case Study B, Experiment II exposes the potential

for performance consequences with respect to distribution kernel boot times. It is

speculated that the relatively minimal difference in development time between their

U-boot SPL revisions is responsible for similar performance between configurations

in Case Study C; however, as the development time between U-Boot SPL revisions

increases, the possibility for degraded boot performance is revealed.

Empirically, it is reasonable to craft an experiment that isolates Keystone SM

modifications from respective underlying OpenSBI reference implementations to defini-

tively conclude where performance is affected within the boot-flow. Regrettably, such

an approach yields little practical relevance. Ultimately, Keystone SM implementa-

tion complexities add significant development costs and are time intensive to con-

struct. Subsequently, characterizing the performance of the system with boot-flow

modifications and without added Keystone SM function calls does not realistically

represent a typical use case –either the system is used without TEE modifications,

or it is modified to add TEE security features. Consequently, as new bootloader

firmware is developed, Keystone SM will need to be purpose-built for future firmware

and hardware compatibility to ensure system performance is maintained. Case Study

A demonstrates the significant impact to performance imparted by low-level firmware,

beneath the Linux Kernel, and within only one year of development. If Confidential

Computing principles and practices are to flourish, TEE implementation development

must keep pace with the rapidly evolving RISC-V ecosystem.
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VI. Conclusion

6.1 Overview

Chapter VI provides a distilled synopsis of this research effort, covering achieved

goals, explored hypotheses, and TEE implementation recommendations. Grounded

by developmental experience, this work calls upon industry stakeholders to intention-

ally promote Confidential Computing through open collaboration and by investing

development resources into the adoption of TEE capabilities as inherent requirements

for future Linux Distribution OS builds. This work closes by proposing related future

research topics that further the actualization of Confidential Computing principles to

secure data in use.

6.2 Research Contributions

Of the research contributions listed in Section 1.6, each of the following items are

successfully demonstrated by this work to the benefit of the Cyber Security, Computer

Networking, and Confidential Computing domains:

• Demonstrated device portability claims of an open-source TEE project, by sup-

plementing the HiFive Unmatched development platform with Keystone SM.

• Verified performance ramifications for three distinct Ubuntu Distribution Kernel

releases on an ASIC RISC-V system.

• Implemented a platform evaluation framework to assess RISC-V workstation

suitability and configurations for TEE augmentation.

• Assessed performance characterizations constructed by examining synthetic bench-

marking performance and by measuring distribution kernel boot times.
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• Identified the need for Linux distribution publishers to provide RISC-V com-

patible, Distribution Linux Kernel source code to directly support Confidential

Computing projects.

• Proposed Confidential Computing policy and implementation recommendations

–such as having distribution publishers integrate TEE capabilities directly into

mainline firmware– for relevant communities, industries, and agencies.

6.3 Future Work

In addition to the research explored by this effort, several related efforts are identi-

fied for future investigation. The topics listed below represent ancillary functionality

supported by the HiFive Unmatched platform, and enhanced Keystone Enclave com-

ponents with supporting development tools:

• This research did not attempt to explore the capabilities of the fifth, S7 monitor

core, present within the Freedom U740 SoC. Because all five hardware threads

(harts) share a common L2 cache, opportunities may exist to directly observe

Keystone processor operations within secure enclaves to better understand fu-

ture implementation best practices.

• The PCIe slot on the Unmatched supports various AMD graphics cards. Key-

stone Enclave impacts to graphical performance remain unexplored.

• Support for flashing Unmatched bootloader firmware directly to on-board ROM

via the Quad-SPI interface would improve the underlying memory speeds for

Keystone enclaves. Additional performance characterizations could model var-

ious implementations to evaluate speedup and security enhancements.

• Keystone Enclave version 1.0.0, does not fully support context switching and

multi-threaded operations. These limitations will inherently hinder system per-
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formance. As Keystone itself is developed, continued performance characteri-

zations could examine the performance disparities across multi-threaded versus

single-threaded applications.

• Comparative performance analysis from within enclaves remains contingent

upon the development of compatible Keystone-Linux driver modules and open-

source distribution kernels. Without the source code for RISC-V compatible

Ubuntu Distribution Kernels, performance characterizations within enclaves are

currently only achievable by switching to an alternate Debian-based Linux dis-

tribution. While not officially supported, development for The Linux Kernel

anticipates adding platform-specific RISC-V support in upcoming releases.

• With complete Keystone Enclave integration, security mechanisms may be

tested and enclave performance for the Unmatched may be more deeply char-

acterized through the development of new Eapps.

6.4 Summary

In contrast to the Trusted Computing paradigm, the Confidential Computing Con-

sortium promotes TEEs as a security mechanism for protecting data in use through

open collaboration, open specifications, and open-source code implementations [4].

While there are significant benefits to this open approach, current offerings are lim-

ited in scope and have not yet achieved wide-spread adoption. Keystone Enclave, for

example, only officially supports one RISC-V hardware platform (which has subse-

quently been discontinued). Based upon this work, the portability of Keystone En-

clave to new hardware will require broader support from Linux distribution publishers

directly. For Keystone Enclave to establish itself as the default TEE implementation

for the RISC-V ISA, it must rival its Trusted Computing counterparts in popularity
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and capabilities, while also providing broad platform support. To realize this goal,

Keystone Enclave would be best implemented as an inherent attribute within pre-

configured bootable disk images –with Eapp development support baked directly into

existing IDE tools. Only then could Keystone supplant the existing TPM approach

for attributing trust in contemporary RISC-V compute systems. Ultimately, the suc-

cessful integration of these new computing paradigms directly into the RISC-V ISA

and onto new hardware platforms relies upon dedicated open-source contributors in

collaboration with distribution publishers to convince stakeholders of the benefits

that Confidential Computing principles offer.

From the onset of this research, official hardware support by Canonical for the

Unmatched platform has been paramount –with OpenEmbedded providing the only

other officially supported Linux distribution OS. Unsurprisingly, developmental in-

vestments are required to build and incorporate platform-specific firmware and TEE

software features into existing Linux distribution releases. Therefore, for Ubuntu dis-

tribution publishers to maximize their return on investment, TEE development needs

to prioritize Keystone Enclave integration for Ubuntu LTS releases, which support

an estimated 95% of Ubuntu users [23].

In addition to concerns regarding Linux distribution support, there are also con-

cerns regarding the long term support of specific hardware devices. The HiFive Un-

matched is a hardware product sold by SiFive, which is a relative newcomer to the

industry. While initial fervor surrounding their RISC-V products appear promis-

ing, SiFive has not publicly committed to any long-term hardware support plans.

Launched on 1 February 2018, the previous generation HiFive Unleashed platform

has been discontinued and supplanted by the Unmatched platform on 29 October

2020. As a direct consequence of the rapid growth and adoption seen by RISC-V

ISA, hardware platform manufacturers have elected to move onto newer, more ambi-
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tious projects, rather than prioritize support for older hardware. Unfortunately, the

Unmatched platform falls victim to these same business strategy decisions as is re-

ported by Phil Dworsky, the Global Head of Strategic Alliances for SiFive, Inc: “With

such great ecosystem adoption, demand has exceeded our already high expectations,

and we’re close to selling out our production inventory. Given the challenge of supply

chain issues that we overcame for the first run of these boards (issues that we continue

to face), we’ve decided to focus on the next generation SiFive HiFive development

systems rather than trying to put together another build of the HiFive Unmatched

platform in 2022” [32]. As a business, this decision by SiFive appears financially jus-

tifiable; however, to champion Confidential Computing paradigms, SiFive ought to

provide product owners with some level of support assurance for existing platforms

in the long-term.

The RISC-V ISA is new; it does not yet rival the market prevalence of the

AMD/Intel x86 64 or ARM ISAs. In the midst of this research effort, on 4 Decem-

ber 2021, the privileged ISA specification was officially ratified, with few compatible

hardware optimized applications or devices in existence. Nevertheless, experimenta-

tion with RISC-V hardware, firmware, and software demonstrates a renewed interest

in ISA development. As RISC-V matures and the need for TEEs expand, firmware

implementation compatibility will need to be resolved by device manufactures and

distribution publishers to provide TEEs as an intrinsic system capability –enforced

by device hardware, supported by platform firmware, and configured through readily

available software applications. Necessarily, the status quo of proprietary computer

architectures with undisclosed security mechanisms will no longer suffice for tomor-

row’s data security needs. Subsequently, this work aims to promote Confidential

Computing as an open-source alternative to the Trusted Computing paradigm, con-

tributing innovative solutions for securing data in use.
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Appendix A. Case Study A - Performance Results

All test data for Case Study A, Experiment I is hosted by OpenBenchmarking.org

and made publicly available at [24] and at [25].

Table 16. Case Study A, Experiment I: Mean Stress-NG Benchmark Scores

# Benchmark Standard A Modified A

1 MMAP 1.38 1.60
2 NUMA 14.36 13.58
3 MEMFD 6.77 5.87
4 Atomic 46857.45 67660.51
5 Crypto 75.12 66.61
6 Malloc 1409525.71 1164625.24
7 Forking 2323.14 2383.93
8 IO uring 2362.79 2457.60
9 SENDFILE 5657.93 6155.78
10 CPU Cache 12.93 14.83
11 CPU Stress 169.48 201.75
12 Semaphores 108462.91 114693.97
13 Matrix Math 516.16 615.70
14 Vector Math 367.28 439.39
15 Memory Copying 35.65 39.15
16 Socket Activity 158.04 175.52
17 Context Switching 104485.05 135486.47
18 Glibc C String Functions 14548.96 17387.27
19 Glibc Qsort Functions 4.80 5.67
20 System V Message Passing 268451.33 319548.71
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Figure 22. Case Study A, Experiment I: Stress-NG Normality Plots
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Figure 23. Case Study A, Experiment I: Stress-NG Box Plots
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Figure 24. Case Study A, Experiment I: Geometric Mean Normality Plot

Figure 25. Case Study A, Experiment II: Distro Kernel Boot Time Normality Plot
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Table 17. Case Study A, Experiment II: Distro Kernel Boot Times

Trial Standard A Modified A

1 30.963945 28.229685
2 30.965997 28.085595
3 30.922420 28.159412
4 31.149824 28.228413
5 30.922848 28.133499
6 31.078958 28.153457
7 30.919152 28.147347
8 30.912270 28.157276
9 31.009178 28.143392
10 30.931176 28.109970
11 31.008353 28.165040
12 30.924798 28.320418
13 30.947571 28.061136
14 30.988063 28.100808
15 31.867709 28.108550
16 31.077997 28.170307
17 31.086902 28.094023
18 30.906151 28.169525
19 31.009128 28.176449
20 30.930963 28.299135
21 30.961724 28.129820
22 31.064020 28.056050
23 30.929987 28.081011
24 30.924806 28.272892
25 31.884534 28.123794
26 30.951201 28.028366
27 30.944342 28.180584
28 31.011210 28.277500
29 31.065896 28.170315
30 30.946964 28.208300
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Appendix B. Case Study B - Performance Results

All test data for Case Study B, Experiment I is hosted by OpenBenchmarking.org

and made publicly available at [26] and at [27].

Table 18. Case Study B, Experiment I: Mean Stress-NG Benchmark Scores

# Benchmark Standard B Modified B

1 MMAP 1.55 1.54
2 NUMA 12.55 12.57
3 MEMFD 7.43 7.38
4 Atomic 55509.75 55461.9
5 Crypto 90.62 90.6
6 Malloc 1564134.87 1564485.64
7 Forking 3116.55 3102.47
8 IO uring 1715.76 1661.34
9 SENDFILE 7232.24 7369.45
10 CPU Cache 15.86 16.08
11 CPU Stress 207.69 207.72
12 Semaphores 118148.88 118670.48
13 Matrix Math 616.51 615.54
14 Vector Math 438.9 439.55
15 Memory Copying 40.61 40.56
16 Socket Activity 178.98 178.05
17 Context Switching 142523.18 140756.09
18 Glibc C String Functions 18678.23 18706.07
19 Glibc Qsort Functions 5.65 5.65
20 System V Message Passing 419487.61 414944.87
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Figure 26. Case Study B, Experiment I: Stress-NG Normality Plots
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Figure 27. Case Study B, Experiment I: Stress-NG Box Plots
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Figure 28. Case Study B, Experiment I: Geometric Mean Normality Plot

Figure 29. Case Study B, Experiment II: Distro Kernel Boot Time Normality Plot
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Table 19. Case Study B, Experiment II: Distro Kernel Boot Times

Trial Standard B Modified B

1 32.972553 33.113763
2 32.893361 33.131111
3 32.928561 33.000038
4 32.902336 32.993266
5 32.828423 32.916931
6 32.900896 33.020891
7 32.914856 32.983640
8 32.903442 33.072295
9 32.922985 32.995531
10 32.748880 32.924180
11 32.954572 32.952664
12 32.827139 32.952531
13 32.827101 33.023415
14 33.092525 32.955567
15 32.871654 33.023595
16 32.975677 33.017077
17 32.859157 33.175979
18 32.963886 32.996045
19 33.007617 33.194733
20 32.971142 33.021102
21 32.909000 32.939591
22 32.920174 33.016104
23 32.875623 32.965158
24 32.910672 33.038942
25 32.907581 33.129157
26 32.941582 33.046832
27 32.730712 32.995161
28 32.917820 33.023413
29 32.851740 32.964779
30 32.908949 32.961315
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Appendix C. Case Study C - Performance Results

All test data for Case Study C, Experiment I is hosted by OpenBenchmarking.org

and made publicly available at [28] and at [29].

Table 20. Case Study C, Experiment I: Mean Stress-NG Benchmark Scores

# Benchmark Standard C Modified C

1 MMAP 1.54 1.55
2 NUMA 12.55 12.57
3 MEMFD 7.4 7.34
4 Atomic 55481.43 55442.68
5 Crypto 91.11 91.23
6 Malloc 1560492.94 1561792.31
7 Forking 3102.26 3060.98
8 IO uring 2417.09 2432.63
9 SENDFILE 7060.47 7052.38
10 CPU Cache 16.29 16.49
11 CPU Stress 207.65 207.52
12 Semaphores 118998.2 119280.52
13 Matrix Math 615.37 603.19
14 Vector Math 439.44 439.4
15 Memory Copying 40.44 40.41
16 Socket Activity 177.26 178.09
17 Context Switching 140637.39 140386.74
18 Glibc C String Functions 18696.99 18656.71
19 Glibc Qsort Functions 5.67 5.67
20 System V Message Passing 365319.82 364639.1
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Figure 30. Case Study C, Experiment I: Stress-NG Normality Plots
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Figure 31. Case Study C, Experiment I: Stress-NG Box Plots
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Figure 32. Case Study C, Experiment I: Geometric Mean Normality Plot

Figure 33. Case Study C, Experiment II: Distro Kernel Boot Time Normality Plot
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Table 21. Case Study C, Experiment II: Distro Kernel Boot Times

Trial Standard C Modified C

1 33.558727 33.367219
2 33.552439 33.495271
3 33.563576 33.388498
4 33.494949 33.472340
5 33.600749 33.460749
6 33.515780 33.479305
7 33.531073 33.666528
8 33.525829 33.410226
9 33.425846 33.491427
10 33.492501 214.088714
11 33.506480 33.398014
12 33.550357 33.414981
13 33.511719 33.453451
14 42.954706 33.381126
15 33.448077 33.380998
16 33.434992 33.396855
17 33.499800 33.406144
18 33.490950 33.411460
19 61.453072 33.476956
20 33.538023 33.401841
21 33.580878 33.470354
22 33.507777 33.625561
23 33.563844 33.467020
24 67.503070 33.343182
25 33.607811 33.474277
26 33.536188 33.462070
27 33.491140 33.436515
28 33.590006 33.469924
29 33.458395 33.323981
30 33.488426 33.364029
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