
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1999

A Comparison of Genetic Algorithm Parametrization on Synthetic A Comparison of Genetic Algorithm Parametrization on Synthetic

Optimization Problems Optimization Problems

Mehmet Eravsar

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Eravsar, Mehmet, "A Comparison of Genetic Algorithm Parametrization on Synthetic Optimization
Problems" (1999). Theses and Dissertations. 5298.
https://scholar.afit.edu/etd/5298

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F5298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5298?utm_source=scholar.afit.edu%2Fetd%2F5298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GOR/ENS/99M - 05

A COMPARISON OF GENETIC ALGORITHM
PARAMETRIZATION ON

SYNTHETIC OPTIMIZATION PROBLEMS

THESIS

Mehmet Eravsar, LieutenantTUAF

AFIT/ENS/99M - 05

Approved for public release; distribution unlimited

19990409 038
PTXC QUALITY IHSPEGTEDJ^

AFIT/GOR/ENS/99M - 05

Disclaimer

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense, the US Government or

Turkish Air Force.

AFIT/GOR/ENS/99M - 05

A COMPARISON OF GENETIC ALGORITHM

PARAMETRIZATION ON

SYNTHETIC OPTIMIZATION PROBLEMS

THESIS

Presented to the Faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

N Master of Science in Operations Research

Mehmet Eravsar

Lieutenant, TUAF

March 1998

Approved for public release; distribution unlimited

AFIT/GOR/ENS/99M - 05

A COMPARISON OF GENETIC ALGORITHM

PARAMETRIZATION ON

SYNTHETIC OPTIMIZATION PROBLEMS

Mehmet Eravsar

Lieutenant, TUAF

Approved:

vlaior Raymond R. Hill Jr.

Advisor

r^< d^L^
James T. Moore, Ph.D

Reader

A3 M^t 97
Date

/n? A- ??
Date

Acknowledgements

First of all, I would like to thank the Turkish People whose taxes paid for my top

of the line OR education and let me meet high caliber officers and friends at AFIT.

A Turkish proverb says, "Volunteer to be a slave for forty years for someone who

teaches even a single letter." Without exaggeration, this proverb is not even close to

describe my feelings and wishes for the faculty who worked hard to teach and stood as a

vivid example of professionalism. Among the faculty special thanks to my advisors,

Maj. Hill and Dr. Moore, who not only helped me with their expertise in OR but with

their never ending thoughtfulness and friendliness. Maj Hill, despite his "already full

white-board," was very generous and thoughtful to offer a worthwhile thesis topic.

His assistance was vital to my graduating.

Finally, among all the wonderful people I met, I want to thank the one who really

sacrificed the most, my wife Esra. We got married the day I left Turkey to come to

AFIT. Since then she allowed me to spend the most valuable days of our lives at AFIT

while she was alone and separated from me. There is nothing I can do to make up for the

lost time, but I promise I will try.

My next project is to construct a real-world model which will remember all these

wonderful people and their efforts to work for peace, humanity and friendship. This will

keep me busy to the last day of my life.

11

Table of Contents

Acknowledgements ii

List of Figures v

List of Tables vi

Abstract vii

Chapter 1. Motivation and Outlines 1

Chapter.2. ARTICLE. 3

1. Introduction 3

1.1. Purpose of This Study 3

1.2. Multi-Dimensional Knapsack Problems 3

1.3. Genetic Algorithms 4

2. Combinatorial Optimization and Heuristics 10

2.1. Combinatorial Problem and Optimization 10

2.2. Heuristics 12

3. Past 0-1 MKP Heuristics 15

3.1. Greedy Heuristics 15

3.2. Meta-Heuristics 16
3.2.1. GA and MKP 16
3.2.2. Tabu Search and 0-1 MKP 20
3.2.3. Simulated Annealing 24

3.3. Comparison of Heuristics 25

3.4. Test Problems 27

4. GA FOR MKP 28

4.1. Why one more paper on parameterization? 28

4.2. GA Operators and Parameters for 0-1 MKP 29
4.2.1. Representation 29
4.2.2. Initialization 29
4.2.3. Scaling. 29
4.2.4. Fitness Function 30
4.2.5. Selection 30
4.2.6. Crossover. 31
4.2.7. Population Size 31
4.2.8. Mutation and Probability of Mutation 32
4.2.9. Steady State or Generational Replacement 32

4.3. Coding 32

4.4. Experimental Design 33

5. TEST RESULTS 35

in

5.1. Penalty Function Versus Repair Operator. 35

5.2. Robust Parameters for GA 36

5.3. Convergence 40

5.4. Effects of Problem Structure on Solution Quality 44

6. CONCLUSION 46

Chapter 3. Future Avenues 48

APPENDIX.A 49

Appendix A.l Heuristics And Reduction Methods For Multiple Constraints 0-1 Linear
Programming Problems 49

Appendix A.2 A Heuristic For General Integer Programming 51

Appendix A.3 An Approximate Algorithm For Multidimensional Zero-One Knapsack
Problems - A Parametric Approach 52

Appendix A.4 A Heuristics Algorithm For Multidimensional Knapsack Problem 54

APPENDIX B 55

Appendix B.l Comparison Of Design Settings With Student's t Test 55

Appendix B.2 Tukey- Kramer Multiple Comparison 57

Appendix B.3 Ranking and Selection 60

APPENDIX C Genetic Algorithm In C++ 61

Bibliography 67

VITA 71

IV

List of Figures

Figure 1. Onepoint Crossover ii

Figure 2. Two-point Crossover ii

Figure 3. Uniform Crossover 9

Figure 4. Repair and Penalty Methods (Problem 665) 35

Figure 5. Confidence Intervals For REL ii

Figure 6. Effects of GA Parameters on Solution Quality 38

Figure 7 Problem 544 (0, 0, 0, 0.3, 0.3) 41

Figure 8 Problem 31 (0.49887, 0.49887, 0.99752, 0.7, 0.3) 41

Figure 9 Problem 746 (-0.49887, 0.99752, -049887, 0.3, 0.7) 42

Figure 10 Problem 171 (0.49887, 0.49887, 0.49887, 0.7, 0.3) 42

Figure 11 Problem 254 (0, 0, 0.49887, 0.7, 0.3) 43

Figure 12 Problem 121 (-0.49887, -0.49887, 0.99752, 0.3, 0.3) 43

Figure 13 Correlation Structure Effects 44

Figure 14 Slackness Effect 45

List of Tables

Table 1. 26'lw Fractional Factorial Design 34

Table 2 Improved Solutions 36

Table 3 Test Results 39

Table 4 Student's t Test 55

Table 5 Tukey-Kramer Multiple Comparison 57

Table 6 Ranking and Selection 60

VI

Abstract

Meta-heuristics have been deployed to solve many hard combinatorial and

optimization problems. Parameterization of meta-heuristics is an important challenging

aspect of meta-heuristic use since many of the features of these algorithms can not be

explained theoretically. Experiences with Genetic Algorithms (GA) applied to

Multidimensional Knapsack Problems (MKP) have shown that this class of algorithm is

very sensitive to parameterization. Many studies use standard test problems, which

provide a firm basis for study comparisons but ignore the effect of problem correlation

structure.

This thesis applies GA to MKP. A new random repair operator, which projects

infeasible solutions into feasiblity, is proposed. This GA application is tested with

synthetic test problems, which map possible correlation structures as well as possible

slackness settings. Effect of correlation structure on solution quality found both

statistically and practically significant. Depending on the Response Surface Methodology

design, proposed is a GA parameter setting which is robust in both solution quality and

computation time.

Vll

A COMPARISON OF GENETIC ALGORITHMS'
PARAMETERIZATION ON

SYNTHETIC OPTIMIZATION PROBLEMS

Chapter 1. Motivation and Outlines

Meta-heuristics have been used to solve many hard combinatorial and

optimization problems. Parameterizations of meta-heuristics are an important and

challenging aspect of meta-heuristic use since many of the features of these algorithms

can not be explained theoretically. Deficiencies in analytic approaches mean empirical

studies are conducted to examine parameterization of meta-heuristics. This emerging

"empirical science" is addressed in Hooker (1994).

Experience with Genetic Algorithms (GA) has shown that this class of algorithm

is very sensitive to parameterization. This has been true in GA studies applied to

Multidimensional Knapsack Problems (MKP), for instance Theil and Voss (1994). Many

studies use standard test problems which provide a firm basis for study comparisons but

ignore the effect of problem correlation structure. Freville and Plateau (1996) and Hill

(1997) infer heuristic and enumerative algorithm performance when correlation exists in

test problems. This research extends Hill's results to a GA empirical study.

We develop a GA which inherits its operators from GALib®. We exploit results

from previous studies, but define an operator to repair infeasible solutions both within

the initial population and in subsequent populations. Hill's (1997) test problems are used

in the empirical study.

The main body of this thesis follows the format of a stand-alone article. This is

provided in Chapter Two. Chapter Three outlines future avenues that we find necessary

to complete and improve upon this study. Details, which are excluded from the article,

are found in Appendices. Appendix A includes a detailed review of past studies. Detailed

analysis of data that is generated in our study can be found in Appendix B. Finally,

Appendix C includes source code for the GA we implemented.

Chapter.2. ARTICLE

1. Introduction.

1.1. Purpose of This Study

Among the heuristic solution techniques for 0-1 Multi-Dimensional Knapsack

Problems, Genetic Algorithms (GA) are important due to their speed and high quality

solutions. As in many other heuristic techniques, selection of algorithm parameters plays

a significant factor in GA performance. However, there is not a general theorem that

explains why GA's have the features that they have (Beasly, et al. 1993). This lack of

proven theoretical knowledge encourages empirical studies addressing GA

parameterization.

This paper is an empirical study of GA's applied to the Two-dimensional

Knapsack Problem (2KP). Hill and Reilly's (1997) test problems are used for the study.

These problems vary problem correlation structure and right hand side ratios (i.e.,

constraint tightness). We seek robust GA parameter settings for these problems.

Furthermore, these GA parameters are used to examine the effect of problem correlation

structure and slackness.

1.2. Multi-Dimensional Knapsack Problems

In a knapsack problem, we seek the subset of items which maximize the profit

while not exceeding the resource constraint. There are a variety of knapsack problems. In

0-1 Knapsack Problems (0-1 KP) each item is selected once. In Bounded Knapsack

Problems (BDP) each item is selected a limited number of times. In Multiple Knapsack

Problems more than one knapsack is filled simultaneously (Bjorndal, 1995). Details on

knapsack problems are found in Martello and Toth (1990).

Another type of knapsack problem is called 0-1 Multidimensional Knapsack

Problem (MKP). In MKP, variables take values of 0 or 1 and must satisfy more than one

constraint. This type of problem is formulated as follows:

max

n
EG) c.-x

J J

j=l
subject to

n
Ea. .x <b. i = {i,2..m} (2)

i»j J '

j=l X ={0,1}
J J
where

c>0,a .>0,and atleastone a >Q for each j.
J i.J i»J

Cutting stock, resource allocation and capital budgeting problems are among the real

world applications of 0-1 MKP. Freville and Plateau (1996) provide a comprehensive

overview of MKP applications.

MKP is a NP-hard problem (Frieze and Clark, 1984), so heuristics are a favorable

means of solving MKP instances.

1.3. Genetic Algorithms

In 1975 Holland introduced the basis of Genetic Algorithms (GA). The principles

he presented were sufficient to create optimization algorithms based on a genetics

analogy.

In nature, "survival of the fittest" means highly adapted species are selected to

produce subsequent generations. It is expected that the average fitness or adaptation of

each generation improves over that of the current generation, because each generation

inherits good features from the current generation. Conceptually, this means we would

expect to eventually achieve a population composed of identical individuals. However,

mutation occurs and introduces diversification in the population and prevents this

homogenous situation.

Analogously, GA solves optimization problems by simulating nature's generation

paradigm. A typical GA starts with an initial population consisting of random solutions or

individual chromosomes. The fitness of each chromosome is evaluated by an appropriate

measure, such as an objective function value for an optimization problem. These

chromosomes mate based on their fitness in the population. This mating produces an

offspring (new solution) inheriting features from each parent's chromosome. The bits

within this chromosome mutate based on a small probability to ensure diversity. These

offspring replace older chromosomes in the population that are not as fit as the offspring.

In a given generation, this mating and replacement process is carried out until the number

of replacements desired in the population is achieved. The number of generations

simulated determines when the heuristic terminates.

Each generation produced during the evolution of a GA is expected to contain

fitter chromosomes or solutions than past generations. For optimization applications,

these are improved objective function values. This is aided by selecting the fittest

chromosomes to mate. This selection criterion encourages retaining the good features of

chromosomes in new chromosomes. Beasley et al (1993) claim that a properly designed

GA will converge to the global optimality.

GA terminology is consistent with natural genetics. The Chromosome is the main

object. Each chromosome represents a possible solution to the given problem. Genes are

the small units comprising chromosomes and may be the bit stream of the solution.

Location of each gene is called loci and genes may have a set of values, which are called

alleles. Mating is accomplished using crossover; in one point crossover an offspring

chromosome is derived with the first part from parent 1 and the second part from parent

2. The parts are determined by the crossover point.

A typical GA follows the following procedure:

Initialize;
Generate initial population
Calculate the fitness and relative fitness of
initial chromosomes

Evolve while termination criterion is not satisfied;
Reproduce until population is replaced by desired
amount

Select parents according to their relative
fitness.
Crossover parents at random points with
desired probability
Mutate at given probability

Evaluate fitness and calculate relative fitness of
offspring
Replace offspring with the selected ancestors

End.

Chromosome formatting is decided based on the tpe of coding. Binary coding

using 0 or 1 value bits is analogous to natural genetics and is commonly used but has

some drawbacks if the chromosome length is long. Gray and integer coding are also used.

Gray coding is invented to lessen the distance gaps between phenotype and genotype of a

chromosome. For example, in a 4-bit chromosome, phenotypes 16 and 15 are adjacent to

each other but in genotype space they are away from each other (1111 and 1110). In gray

coding genotype for 16 and 15 can be mapped by one byte difference (1000 and 1001,

respectively). Although gray coding helps to reduce distance between genotypes, there is

no simple algorithm for decoding gray coding into phenotypes (Reeves, 1993).

Furthermore, they are not critical in combinatorial optimization applications of GA.

Integer coding is used when the binary coding operators are not applicable to the

solution of problem (for instance, Traveling Salesman Problem). Each gene can take

integer values varying from 1 to the chromosome length. Different strategies can be

followed to transfer a chromosome into a solution. Integer coding introduces new

crossover and mutation operators that are different from binary operators.

Population initialization is either random or seeded. Random populations consists

of randomly generated chromosomes. Seeding uses auxiliary algorithms to generate good

feasible solutions which are included in the initial population. Both techniques have

advantages and disadvantages. In random initialization, the entire solution space is

considered. This diversifies the population causing a longer time to converge to an

optimal solution but this may avoid local optima traps. On the other hand, seeding an

initial populations with some well known chromosomes or solutions can accelerate

convergence but may also cause premature convergence, returning local versus global

optima (Reeves, 1993; Davis, 1991).

The fitness function assigns a value to each chromosome to represent the

chromosome's goodness or quality. In unconstrained function optimization, this is the

function value. Unfortunately, in constrained optimization problems this requires

strategies to incorporate feasibility into the fitness value and rules guiding if infeasible

solutions are allowed in a population.

Selection for mating is performed in many different ways. A common

characteristic of these different techniques is that the number of times a chromosome is

selected is proportional to its relative fitness value. A simple selection allocates

probability to each chromosome by using a roulette wheel with slot sizes proportional to

the relative fitness value of the chromosome. This is the probability that the chromosome

is selected as a parent. Selection occurs as many times as required to select enough

parents to generate the next generation. Tournament selection randomly indexes

chromosomes with numbers 1 through population size (P). Two randomly chosen parents

are compared and the best one is selected as the candidate for mating. Again selection

continues until the required numbers of parents are selected.

Crossover is an operator that guarantees different offspring from their parents.

One-point, two-point and uniform crossovers are illustrated in (Figures 1-3). In one-point

crossover, a random loci is selected and genes located to the right hand of this loci are

interchanged with the genes of the other parent. The result is two new different

chromosomes which inherit some genes from each parent. In two-point crossover two

locis are randomly selected and the part of the chromosome located between these locis

are interchanged. Crossovers based on more than two points can be devised extending

this same procedure.

Uniform crossover is a multipoint crossover strategy. A string of binary genes is

randomly produced the same length as the chromosome length and if the binary number

is 0, the corresponding gene value for the child is inherited from the first parent;

otherwise, it comes from the second parent To produce a second child, reverse the roles

of 0 and 1 in the gene selection process. Crossover details for the MKP are in Section 4.

ONE-POINT CROSSOVER

PARENT l OO#OOD#O#O OOIOOIOOO CHILD 1

PARENT2 lOIIO^OOOl IO#IOO«OIO CHILD2

Figure 1. Onepoint Crossover

PARENT 1 O O

PARENT 2

o o o

TWO-POINT CROSSOVER

O • O OOIIOOIOIO CHILD 1

O• DOO • lOiOOOOOO

Figure 2. Two-point Crossover

CHILD 2

UNIFORM CROSSOVER

PARENT 1 OOIOOOIOIO

RANDOM 0 10 0 1 10 10 1

PARENT2 lOIIOIOOOi

O O • O O

•OIIOOOOOO

Figure 3. Uniform Crossover

CHILD
1

CHILD 2

The mutation operator serves to diversify the population by changing genes of a

new chromosome according to a probability of mutation. Mutation helps explore

unvisited regions of the solution space (i.e, diversification).

GA effectiveness has been best explained with the building block hypothesis and

the schema theorem both of which are related to schema. A schema is a string of values

{0,1,*}. Schema explores the similarities between chromosomes. A schema represents all

strings, which match it on all positions other than the genes with allele (*) (Michalewicz,

1992). The order of a schema is defined by the number of ones in its structure. The

defining length is the distance between the outermost * elements or genes.

The schema theorem says that short low-order, above-average schemata will

produce with probability that increases exponentially with the generation number. This

guarantees that chromosomes with well schema produce more often. Building blocks are

short defined length of schemata that work good when combined together into a

chromosome. This hypothesis requires that related genes must be close together in a

chromosome and interaction between genes must be very low. However, finding

chromosomes bearing these two properties is not always possible.

2. Combinatorial Optimization and Heuristics.

2.1. Combinatorial Problems and Optimization

Combinatorial problems consist of arrangements of objects (scarce resources) to

meet some desired objectives. Integrality is a characteristic of these objects. Thus, the

number of possible arrangements is finite. The travelling salesman problem (TSP),

parallel machine scheduling, the knapsack problem (KP), portfolio selection, capital

budgeting, facility location, design and production of VLSI circuits, political districting,

set covering and assignment problems are classes of combinatorial optimization problem

(Karla, 1996; Nemhauser, 1988).

Parker (1988) defines four categories of combinatorial problems depending on the

approach in answering the questions:

10

1. Existence, are there specific arrangements?

2. Evaluation, how good are arrangements?

3. Enumeration, how many arrangements exist?

4. Extremization, is there a best arrangement?

Combinatorial optimization (CO) seeks an optimal arrangement among the finite

alternatives. When the problem size is small, even simple enumeration tools can find

optimal solutions in acceptable time. However, the computational effort required to

identify the optimal arrangement from among these finite alternatives grows

exponentially with the number of variables. For example, a problem of 100 binary

variables has 1.2 x 1030 possible solutions. This number doubles with each additional

variable introduced into the problem. For even moderate size problems, enumeration

techniques are not computationally efficient.

Problem solving techniques for these problems can be classified into the

following four categories:

1. Enumeration. As stated earlier, small instances of problems can be solved by

enumerating all possible solutions. However, it is computationally intensive for even

moderate size problems. Branch and Bound algorithms are the most common

enumeration type of technique.

2. Relaxation and Decomposition Techniques. Besides the LP relaxation of an

integer problem, another relaxation of the integer programming problem can be

achieved by integrating some or all of constraints into the objective function. This

type of relaxation, Lagrangian Relaxation, provides tighter bounds than the LP

solution to the same problem (Hoffman, 1996). Decomposition techniques divide a

11

main problem into easy separate problem subsets and combine the solution of subsets

to obtain a solution for the main problem.

3. Cutting Plane Algorithms. These algorithms are devised to solve an IP using an

LP relaxation but suffer from slow convergence. The algorithm can be summarized as

follows. First, find an LP optimum of the relaxed IP. Second, pick a constraint which

cuts the LP optimum out of the solution space but does not eliminate feasible integer

solutions. Add this cutting constraint to the problem a cutting constraint. Solve the

new problem by dual simplex. If integer solutions are found any time in the algorithm

flow, the algorithm stops with the optimal solution.

4. Heuristic Techniques. While the above techniques seek an optimal solution, heuristic

techniques merely seek good solutions. Increased computing speed and improved

heuristic algorithms have made these techniques increasingly popular in research and

application.

2.2. Heuristics

The word "heuristics" is derived from the Greek word "heuriskein" meaning

"to discover." In this sense, heuristics (also called approximation algorithm or inexact

solution) are described in Barr, et al (1995) as:

" a well defined set of steps for quickly identifying a high-quality solution for
a given problem where a solution is a set of values for the problem unknowns and
quality is defined by a stated evaluation metric or criterion ."

Another definition of heuristics is Reeves' (1993):

"... a technique which seeks good (i.e. near optimal) solutions at a reasonable
computational cost without being able to guarantee either feasibility or optimality, or
even in many cases to state how close to optimality a particular feasible solution is."

12

Fisher, et al. (1983) sees the 1950s as the flourishing and attractive years of

heuristics, the 1960s as the return of exact optimization algorithms and the 1970s as the

disappointment years of the exact algorithm studies since computational complexity

studies proved that many of the algorithms devised were inefficient when used to solve

hard problems. Since the 1980s, intellectual energy has been invested primarily on the

heuristics studies.

Many tutorials try to explain the reasons for implementing heuristics as they

become more popular tools in optimization. Two of the most detailed ones are Zanakis

and Evans (1981) and Silver, et al. (1980). Their findings can be summarized as follows:

• Problems may have neither an analytical nor an iterative solution
procedure.

• Although an exact algorithm exists, one may not be able to afford time and
storage requirements.

• Inexact or limited data used to estimate model parameters might inherently
contain errors much larger than the near optimality (sub-optimality) of a
good heuristic.

• An exact algorithm is not available due to its cost or hardware limitations.
• As a starting point for the other exact or inexact algorithms. Sometimes

heuristics are used to alleviate the burdens on another algorithm even
during the operation of that algorithm.

• They are simple and understandable when compared with the other
algorithms.

These reasons do not preclude the use of exact algorithms. If an exact algorithm is

available, resources can be allocated for its use. However, in large-scale problems, small

deviations from the optimal solution may be practically insignificant. In such cases, other

merits of both exact algorithms and heuristics must be compared to make a decision

about which one to use.

13

Many heuristics are documented in the literature. Although, most of them are

problem specific, they can be classified according to the philosophy used in their

structure. Silver et al. (1980) classifies the heuristics as:

• Decomposition methods. The main problem is broken into small parts and
each small part is solved separately.

• Inductive Methods. In these methods, solution of a smaller or simpler
problem is generalized for bigger or harder ones. Properties of the solution
for simpler cases may be used to develop a heuristic for the more general
case.

• Feature Extraction Methods. First, the optimal solutions to several
numerical cases under consideration are obtained and then the common
characteristics of these solutions are extracted (reduced) and assumed to
hold in general.

• Methods Involving Model Manipulation. The nature of the problem is
perturbed in some way to expedite the solution and then the solution of the
revised problem is used as a representative of the solution of the real
problem. Good examples of manipulation include modification of the
objective function, relaxation of certain constraints, and aggregation of
variables.

• Constructive Methods. The main idea of these methods is to construct a
single feasible solution, often in a deterministic sequential fashion. Greedy
algorithms are of this class. These algorithms suffer from their myopic
viewpoint of only considering the very next point.

• Local Improvement Methods. These methods are the most used ones among
the listed method structures. In contrast with constructive methods, this
method starts with a feasible solution and iteratively improves it. Meta-
heuristics tend to be local improvement methods.

Modern heuristics or meta-heuristics have evolved in parallel with the

improvements in computer hardware technology since 1970s. These relatively new

methods are efficient approximation solution techniques for the problems that are found

difficult or inefficient to solve with the earlier heuristics. Osman and Kelly (1996) defines

meta-heuristics as

" an iterative generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and exploiting the search spaces
using learning strategies to structure information in order to find efficient near-optimal
solutions"

14

Meta-heuristics are derived from many different areas such as classical heuristics,

biology, metallurgy, artificial intelligence and neural networks. Nowadays, they are used

extensively for cracking the hard problems efficiently at less computational cost. Some of

the meta-heuristics that are developed and used in many areas are: genetic algorithms,

simulated annealing, tabu search, GRASP (greedy random adaptive search procedure),

problem-space search, neural networks, threshold algorithms and hybrids of these

heuristics.

A limitation of meta-heuristics is their parameterization. When a heuristic is

selected to solve a specific problem, poor heuristic parameterization can lead to local

optima or poor solutions. Pilot runs may be needed to find a good parameter set for these

meta-heuristics, but such runs may be costly and require too much time to conduct.

Most of the interesting papers on heuristics address parameterization. Chu and

Beasely (1998), Theil and Voss (1993), Hoff, et cd. (1998), Syswerda (1994), Hanafi and

Freville (1998) and Schaffer, et al. (1994) are a few examples.

3. Past 0-1 MKP Heuristics

3.1. Greedy Heuristics

0-1 MKP greedy heuristics can be classified into two main groups as dual

heuristics or primal heuristics. This classification is based on how they start searching for

the solution, either infeasible or feasible, respectively. For MKP, a dual heuristic starts by

selecting all items providing an infeasible solution while primal heuristics build a

solution from no items selected. Senju and Toyoda (1968) and Magazine and Oguz

15

(1984) studied dual methods. Senju and Toyoda calculated an effective gradient for each

element to evaluate each element's utility and deselected items until feasibility is

obtained. Magazine and Oguz combine the Senju and Toyoda heuristic with Everett's

Lagrange Multipliers to improve heuristic performance.

Primal Effective Gradient Method (PEGM) defined in Toyoda (1975) is a primal

greedy algorithm which finds good approximate solutions to 0-1 programming problems.

The method does not use enumeration at all. Instead, each variable's preferability was

measured by an effective gradient. Variables are added to the solution according to their

sorted effective gradient values until no further variables can be added.

To account for unbalanced resource usage in the constraints, Toyoda introduces

origin moving. Origin moving increases resource usage penalties in the gradient function

according to each constraint's resource availability. Origin moving was found efficient

when the amount of resources used (constraint coefficients) were unbalanced.

Lee and Guignard (1988), Kochenberger, et dl. (1974) and Loulou and Michalides

(1979) modify the gradient calculations of Toyoda (1975) in an effort to improve

heuristic performance.

3.2. Meta-Heuristics.

3.2.1. GAandMKP
Chu and Beasley (1998) proposed an algorithm that incorporates problem specific

knowledge into a GA for solving 0-1 MKP. They generated synthetic test problems to

test their algorithm.

Solutions are represented with binary genes. Tournament selection was used to

pick parents and uniform crossover and flip mutation were used to generate new

16

chromosomes. They report that GA performance is insensitive to these operators and

recommend random selection of these operators. Their population size was set to 100,

with single replacement each generation and two bit mutation was used.

The objective function value was used to calculate fitness value and they used a

heuristic to fix infeasible chromosomes. Their ADD/DROP heuristic operator fixes

infeasible chromosomes, using a pseudo-utility ratio for knapsack problems calculated as

the ratio of objective function coefficients (aj) to the coefficients of the single knapsack

constraint (c j). Borrowing the surrogate duality approach of Pirkul (1987), they combine

constraints to form a single constraint. Dual variables of the LP relaxation of the original

problem are used as the surrogate multipliers.

Their ADD/DROP heuristic resembles the Senju and Toyoda (1968) approach.

Items are dropped to make solutions feasible, and then some items are added back to

improve the feasible solution if possible.

Chu and Beasly solved two different sets of problems to evaluate their algorithm

performance. The first set, consisting of 55 problems, was taken from literature. These

problems vary in number of variables (6-105), and number of constraints (2-30). Hill

(1998) examines the correlation structure of these problems, and found the ranges of

feasible correlation structures limited.

The second problem set was generated randomly and is available via the internet.

They adopted the generation procedure of Freville and Plateau (1990). Thirty problems of

each combination of constraint (5,10 and 30) and variables (100, 250 and 500) were

generated, yielding 270 total test problems.

17

Optimal values for most of these problems are not known. Thus, the authors

computed the solution quality by using the LP relaxation of each problem. Chu and

Beasley found that GA is very effective in solving these MKP problems. However, they

note that the larger the chromosome length and the smaller the slackness ratios, the less

effective the GA. GA was stopped when 106 chromosomes were generated. They

compare results with heuristics by Magazine and Oguz (1984) and Volgenant and Zoon

(1990) and report that their GA dominates each.

Theil and Voss (1993) studied four different GA techniques. The first technique

penalized the fitness function according to the level of feasibility and found that the

degree to which the fitness of infeasible chromosomes are penalized is important. Too

restrictive a penalty function and GA converges to sub-optimal values while too loose a

penalty function allows infeasible solutions to dominate. Their penalty function had three

parts, which evaluated the chromosome according to both their relative fitness value and

their distance from feasibility. If the solution was feasible, the chromosome was not

penalized. If the infeasible chromosome's fitness value was less than the population mean

it was considered very poor solution and a fitness value 1.0 was assigned. If the fitness

value exceeded the population average, then it was penalized by the infeasibility distance

measure.

Their second technique was devised in Dammayer and Voss (1992). They used

an ADD/DROP operator, which calculates the pseudo utilities according to criterions for

handling more than one constraint.

The third technique is a filter operator and drops items from the knapsack until

feasibility is reached. Items are selected randomly to maintain diversification.

18

The fourth and the most robust technique is the tabu operator. This operator is

devised to improve either any randomly selected chromosome or the best chromosome in

the population. With this operator, authors aim to avoid local optimums and provide

improved chromosomes for GA. Since only feasible chromosomes are considered by the

tabu operator, the filter operator is processed before the tabu operator to make the

chromosomes feasible. The authors adopted the parameters defined in Dammayer and

Voss (1993) for the tabu operator.

For GA parameters, the authors used one-point crossover, roulette wheel selection

and flip mutation. The probability of crossover was set to 0.9 and the mutation

probability was 0.009. Their initial population was random of size 50 but members were

always fixed to achieve feasibility.

Their penalty operator yielded disappointing results, as the penalty function was

too restrictive. The solution performance was improved by applying the ADD/DROP and

Filter operators. A significant finding was that if the initial population was set up by an

ADD/DROP heuristic, the simple GA was able to improve the performance of this

heuristic by only 0.5% by using filter and ADD/ DROP operator.

The tabu operator proved to be the best operator. Optimal solutions were found

for in most of the problems, but computing time increased. Selecting strings (solutions)

based on the highest fitness value was better than randomly selected strings.

Another study that focuses on the parameterization of GA was by Hoff, et al.

(1997). They started with recommended parameters from the literature but they did not

cover all possible settings providing framework rather than a complete study. First,they

used a population size of 50, one-point crossover, steady state generation with

19

replacement of the two worst chromosomes, random feasible initialization and 30,000

generations.

Inverted mutation was found to be most efficient with mutation probability 1/N,

where N was equal to the chromosome length. They found that population size equal to

5*N yielded better solutions and burst crossover, a multi-point crossover was dominant in

solution quality.

Having decided upon the parameters, 57 problems from the literature are solved

using GA coded in C++. The average deviation from the optimum reported was 0.16%

which is not significant. Hoff, et al. compared their findings with Theil and Voss and

observed that the GA-TS operator algorithm performed slightly better than the random

DROP/ADD operator of themselves.

3.2.2. Tabu Search and 0-1 MKP
Tabu Search (TS) developed by Glover in 1970 has proven robust and efficient in

finding good solutions to optimization problems.

In TS, intensification guides the search into attractive regions. In contrast,

diversification leads the search into new unexplored regions. Hanafi and Freville (1998)

defined a new approach based on strategic oscillation and surrogate constraint

information that provides a balance between intensification and diversification strategies.

Strategic oscillation is the frequency at which the critical levels are crossed in

different directions. The authors define feasible solutions lying on or near the feasible

region as critical levels. Those solutions that comply with this definition and stay

infeasible are also considered critical levels. A promising zone is constructed by

including all the critical solutions. Information deduced from the surrogate constraints is

20

used both in crossing and intensive exploration of the promising zone. These paths are

formed by implementing constructive and destructive phases, depending on the current

solution. In this context, the authors defined five different operators inheriting the

characteristics of ADD and DROP heuristics and incorporating surrogate constraints to

calculate pseudo utilities. Two aspiration criteria are applied in these operators. In the

first one, when a move leads to new feasible solution better than the current best, the tabu

status of the move is skipped. The second aspiration criterion is used if all the ones in the

current solution are in tabu list when destructive heuristics are summoned.

The authors acknowledge that it is difficult to find a parameter setting at which

the TS operates at optimum performance. The author's choice of oscillation parameters

differ in intensification and diversification phases. In the intensification case, if the

promising zone is reached from the feasible region, the search is focused on the feasible

neighborhood of the current solution. Symmetrically, if the promising zone is reached

from the infeasible side, the infeasible neighborhood of the current solution is searched.

In diversification, the amplitude of the oscillation is given by the depth and near-feasible

parameters that are user defined. On the infeasible side, the feasibility decision is studied

with respect to three different constraint types: surrogate constraint, violated constraint

and least saturated constraint. Along with the feasible side, these three constraint types

are tested in order to observe the oscillation behavior. Findings have shown that the

feasible side and infeasible side with surrogate constraint approach have a more regular

oscillation than other constraints. Tabu status of a potential move is determined based on

recency based and frequency based information.

21

Two different sets of problems are used to test the designed TS algorithm. The

first set consists of 54 instances (Freville and Plateu, 1982) and optimal solutions are

found for each of these problems. The second set is designed by Glover and

Kochenberger (1995) and consists of 24 instances. Optimal solutions are not known for

the last seven instances of this set.

Glover and Lokketangen (1998) described a TS approach for solving 0-1 Mixed

Integer Programming (MIP) problems. Their study used two phases. In the first phase a

basic, "first level", TS is explored. In the second phase, depending on the knowledge

acquired from first phase, probabilistic deterministic measures for move selection and

tabu tenure are explored.

Candidate list strategy is important to TS to guide the search to the next extreme

point. In their algorithm, the trade-off between objective function value and integer

infeasibility is used to select this element. In this context, two different approaches are

used: a choice rule mechanism derived from surrogate constraints and a weighted sum of

the two measures.

There are four types of defined moves in identifying a preferred extreme point;

I. Decreasing both integer infeasibility and profit.

II. Increasing both integer infeasibility and profit.

HI. Nonincreasing integer infeasibility and nondecreasing profit.

IV. Decreasing profit and nondecreasing integer infeasibility.

The authors defined four different types of rules to evaluate these moves;

weighted sum, ratio test, weighted sum but sorted within each group and ratio test but

move type I and II. They study these rules in detail.

22

Recency and frequency based information are used to establish tabu status.

Aspiration by integer infeasibility, by objective function value and by new best-detected

solution are proposed aspiration criterion.

Probabilistic TS constitutes the second phase of this study. What is generally

regarded as the Probabilistic TS (PTS) is usually applied to the move acceptance

function. After tabu restrictions and aspiration criterion, PTS collects the evaluated

moves in a candidate list and uses a biased probability to select from the list. The

probability is biased to favor the better moves and this bias decreases exponentially. Two

strategic oscillation schemes are recommended: strategic oscillation by parametric

evaluation and by altered choice rules. Frequency based memory is used in

diversification. They found that diversification depending on the inclusion of promising

variables was found to be successful when compared with diversification depending on

time spent in the basis.

Target analysis was used to efficiently identify the proper relationship between

ratio test move parameters and to identify a better decision rule when diversification by

penalizing time spent in the basis fails. In ratio test move analysis, they found that the

relative ranking of move types I and II are important. Also, it is observed that changes in

p, exponent component of integer feasibility for any particular solution, shifts moves to

different move types.

The authors tested their findings with 57 problems from the literature. The

problems are the same problems used in Chu and Beasley (1997), Theil and Voss (1993),

Hoff, et al. (1998), Hanafi and Freville(1998) and Drexl (1988). More on the

characteristics of these problems is introduced in the next section.

23

Results of the experiments show that aspiration by objective function value levels

worked well. This aspiration forces the moves toward the feasible region. For the first

phase heuristic, the ratio test method, was found superior. For the second phase heuristic

PTS, the threshold probability of move selection between 0.3 and 0.5 was best. Use of

probabilistic measures for the move selection improved the average solution quality. In

contrast, use of probabilistic tabu tenure yielded the same results as the first phase

approach. PTS without the tabu memory converged to 'good' solutions the fastest but

once that point was reached, this method could not improve the solution.

3.2.3. Simulated Annealing
Drexl's (1988) Probabilistic Exchange Algorithm (PROEXC) used simulated

annealing (S A) to solve MKP. Simulated annealing is a random local search, allowing

non-improving moves with probability t called the temperature. After r repetitions at

temperature t, the temperature is reduced by a factor cp and repetitions are increased by a

factor p. S A uses annealing of metalsas its basis. For initial cases, the author calculated t

with

t = a ß (3)

where a = max {CJ I Vj}-min{Cj I Vj}

and found that PROEXC works best at ß = 0.5 , cp = 0.6 . In all these cases, r and p were

equal to the number of variables and 1.1, respectively. Later experiments found n was a

good value for r, but 1.2 better value for p.

24

The author tested PROEXC with 57 problems from the literature. PROEXC's

overall computation time is reported as very fast when compared to other heuristics, with

good solution quality.

3.3. Comparison of Heuristics.

When a new heuristic is published in the computational and mathematical

sciences literature, its contributions should be evaluated scientifically and reported in an

objective manner (Barr, et al., 1995). In this context, many new heuristics are tested by

using standard or synthetic test problems.

Zanakis (1977) examines the performance of three heuristics (Senju-Toyoda,

Kochenberger et al. and Hillier) applied to 0-1 integer programming problems. Using a

designed experiment, three factors were considered: number of variables (15,30,45),

number of constraints (10,20,30) and degree of constraint slackness (0.3,0.5,0.9). CPU

time, error and relative error were measured for each problem. Synthetic test problems

were generated randomly from a uniform distribution and 5 replications were used.

Analysis of variance and stepwise regression were used to study the effects of these

factors.

Hill and Reilly (1997) investigate the effects of correlation structure and

constraint slackness settings on the performance of solution procedures on synthetic two

dimensional knapsack problems. They investigated how the performance of branch-and-

bound (CPLEX) techniques and Toyoda's heuristic are affected by problem structure. A

total of 45 feasible correlation structures were examined. The size of the problems was

fixed to be 100 variables and each constraint's slackness was set to the values 0.3 and

25

0.7. They used the Pearson product-moment correlation induction method and the

Spearman rank correlation-based correlation induction method in defining correlation

between the objective function and constraint coefficients. Depending on these

parameters, they produced five random problems for each point of their factorial design

generating 2240 problems. Two non-parametric statistical tests are used to analyze the

data from the experiment. They tested correlation structure influence, individual

correlation term influence, constraint slackness influence and interaction of the last two.

They found that problem correlation structure affects the solution quality

Lokkatengen (1997) compares TS and GA performance on solutions of MKP. The

GA algorithm (Hoff et al. 1997) and TS algorithm (Lokkatengen and Glover, 1997),

reviewed above were used to solve the 57 standard test problems. Each algorithm was set

up with the findings of past studies. The author compared these two algorithms by how

many times they found the optimum solutions for test problems. The results favored the

GA since it was able to find 56 out of 57optimal solutions. The basic TS performed

poorly and was able to find only 39 optimal solutions. However, when the more advanced

TS mechanisms of strategic oscillation, diversification and intensification were applied,

all of the problems were solved within 20*N iterations. Thus, Lokkatengen recommends

a hybrid algorithm as proposed by Theil and Voss (1993).

Hanafi, et al. (1996) compared variants of the Simple Multistage Algorithm

(SMA) and variants of TS algorithms. SMA incorporates different local search strategies

in a "flexible fashion." SMA starts with diversification by generating random solutions in

addition to primal and dual solutions. These solutions were used as initial start points for

neighborhood searches. Feasibility was maintained during the whole process by

26

projecting infeasible solutions into the feasible domain by using the Senju and Toyoda's

(1968) dual algorithm.

Three local search algorithms were used in SMA. The first one was SA described

in Drexl (1988). The second local search, Threshold Accepting (TA), accepts any

solution within an infeasible threshold. The third technique is a relatively new concept

that introduces noise to the data to overcome local optimality. Noising Method (NM)

introduces noise into solutions to diversify the search, reducing the noise introduced as

the search converges.

The TS algorithms compared were: Reactive Tabu Search (RTS), Reverse

Elimination Method (REM), TS using Balas and Martin (1980) as a subroutine, Critical

Event TS, and two other TS approaches.

The algorithms above were tested with 54 standard problems. Test of SMA with

different local search approaches and AGNES algorithm of Freville and Plateau (1990)

proved that SMA worked best with TA. The solution quality for SMA was not better than

any other algorithms in the literature. However authors defined their SMA as simple to

implement and fast in solution. AGNES solved most of the problems at their optimums

and was the best when compared with SMA applications. TS comparisons showed that

TS defined in Glover and Kochenberger (1995) and the infeasible version of the author's

TS were the best as they found optimal solutions for each of the problems.

3.4. Test Problems.

The effectiveness of any proposed methodology for solving a given class of

problems can be demonstrated by theoretical analysis and empirical studies (Barr, et al.

1995). Analytical studies may not always be possible (Hooker, 1994). In this case,

27

empirical studies are the only tools to assess the effectiveness of an algorithm. Empirical

studies can be conducted on either real-world problems or synthetic test problems.

Synthetic test problems generally may not resemble the real-world problems, they

simulate (Hooker, 1995). However, synthetic test problems can fully vary the problem

parameters yielding more information about algorithm performance.

Computational experiments with algorithms are usually undertaken (1) to

compare the performance of different algorithms for the same class of problems or (2) to

characterize or describe an algorithm's performance (Barr et al. 1995). As in many other

sciences, error and variation may be present in computational experiments. Hill (1998)

addresses one of these errors as "oversight error". This error occurs when a potentially

significant factor is missed in testing. Since correlation structure affects solution

procedure performance, the unaccounted effect of correlation in a test problem can

potentially bias analytical results. Hill (1998) examines the correlation structure of

standard MKP problems and believes the structure may in fact influence the solution

procedure performance.

4. GA FOR MKP

4.1. Why one more paper on parameterization ?

There is not any theorem that explains why GAvs have the characteristics that

they have (Beasley, et al., 1993). Thus, we can not analytically predict which parameter

settings are appropriate for a particular problem set. Schaffer, et al. (1994) has shown

that the optimal parameter settings in GAs differ with the problem type solved. In fact,

the time and resources required to find optimal parameters for a problem domain are

28

often orders of magnitude greater than the time one plans to spend solving problems in

the domain (Davis, 1991). For these reasons, many papers seek robust parameter settings

that work for a class of problems. This study seeks robust settings for problems that

explicitly vary correlation structure.

4.2. GA Operators and Parameters for 0-1 MKP

4.2.1. Representation.
The most intuitive way to represent a 0-1 optimization problem is using binary

representation and setting a variable to its corresponding gene alele, either 0 or 1. Theil

and Voss (1993) found this representation better than alternative representations.

4.2.2. Initialization.
Initial GA population may be seeded or random. Since population seeding may

cause early convergence to local optimal solutions, we generated the initial population

randomly. Based on Hill and Reilly's (1997) study, we set at 35% the probability used to

create the initial population and corrected infeasible solutions. Primal and dual

initialization techniques were examined and discontinued as not promising because of

slow convergence and poor solution quality

4.2.3. Scaling.
Scaling has two important features in GA. First, it prevents the dominance of

super individuals in the early stages of evolution. This feature helps to overcome

premature convergence, which is the least desired characteristic in an optimization

heuristic. Second, scaling helps as the average fitness of population approaches the

population maximum, when selection schemes may bog down. Maximum score and the

average score may have the same chance of being selected. In this case, scaling may help.

29

Initial tests compared three different scaling schemes, and the no scaling option.

Signed rank test statistics showed that sigma truncation scaling provided better solution

quality. The formula for sigma truncation scaling is:

F = obj_value - (obj_ave - c * obj_dev) where c is 2; (4)

4.2.4. Fitness Function.
A fitness function must incorporate constraints into the function to reflect the

feasibility of chromosomes. There are three ways to handle infeasibility. First, infeasible

solutions can be penalized, reducing the attractiveness of infeasible chromosomes.

Second, repair operators can transform infeasible solutions, into feasible ones. Third, any

infeasible chromosome can be killed and reproduction repeated until feasible solutions

remain.

In pilot studies, we implemented the penalty functions available in the literature

and found that they were not efficient for MKP. We then designed a penalty function that

considers the distance ratio of feasibility to the current solution. After numerous pilot

runs, this penalty function did not seem promising either.

We then devised and employed a repair operator, which randomly starts from a

loci and drops items until feasibility is reached. The algorithm then tries to add as many

items back as possible before violating any constraint. This strategy was devised to avoid

the epistasis problem. Discussions in Hoff, et al. (1998), Theil and Voss (1993) and

Michalewicz (1992) can be related to epistasis.

4.2.5. Selection.
Exploration and exploitation are two phases that an algorithm uses to reach a

global optimum. Exploration guides the search into unvisited parts of the search space

30

while exploitation helps the search to remember the knowledge acquired in previous

visits to find better solutions. The balance between these two phases plays an important

role in tuning the search to find global optimality. GAs possess both phases. Whitley

(1994) reports that there are two important factors in GA: population diversity and

selective pressure. He advises increasing the selective pressure to cause exploitation and

decreasing it to cause exploration.

In our implementation a tournament selection scheme applies more selective

pressure than does roulette wheel selection. Therefore, we tested both of them to learn

about the effects of selective pressure in solution quality.

4.2.6. Crossover.
The empirical results are divided on the best type of crossover and the best value

for the probability of crossover.

Based on these discussions, we included crossover type in our experimental

design, specifically uniform and two-point crossovers. The probability of crossover

values of 0.85 and 0.95 are also included in the test design.

4.2.7. Population Size
Population size is one of the most important parameters in the GA. Population

size influences both population diversity and selection pressure. A small population size

may result in premature convergence; if it is large, computing time may be wasted

without any significant return. Trial runs suggested we employ the Theil and Voss (1993)

recommended population size of between 50 and 100.

31

4.2.8. Mutation and Probability of Mutation.
Mutation operator helps diversify the population and search. Schaffer, et al.

(1989) found that the mutation rate is sensitive to population size. Based on our

population size, we tested probability of mutation between 0.01 and 0.03.

4.2.9. Steady State or Generational Replacement
In each generation, some individuals are excluded from the population while

offspring are included. The ratio at which this replacement takes place defines the type of

GA. If the number of replacements is just one or two, this type of GA is called Steady

State GA (SSGA). If the whole population is replaced as recommended by Goldberg

(1989), it is called Generational Replacement GA.

The advantages of SSGA include (1) schema fitness versus percentage in the

population works out properly as the fixed point of the system; (2) good members of the

population float to the top of list where they remain and (3) poor individuals leave the

population (Syswerda, 1994). We decided to test SSGA with the replacement of 25

individuals in each generation.

4.3. Coding

Galib® version 2.4.3 by Wall (1998) was used to implement our GA. We used

binary string genome (chromosome) to implement the GA and changed some of the

statistics objects to fit our analysis requirements.

32

4.4. Experimental Design.

There were six factors assumed significant in GA performance. These are

crossover type, selection scheme, population size, probability of crossover, probability of

mutation and number replaced. For six factors, a full factorial design requires 64 runs,

which is computationally very expensive. We used a fractional factorial design to screen

out effects and selected 26"Vi fractional factorial requiring 32 runs (Tablel).

The test problem set of Hill and Reilly (1997) includes optimal or best-known

integer solutions so GA solution quality measured as a relative error was the primary

measures of effectiveness. The formula for relative error is given below.

Zip : Optimum or best known solution
ZCUR : Current solution

„™ ,™ (
Z

IP ~ Z
CUR) (5) REL := 100 •- -

Zjp

GAs actually offer two performance measures of solution quality: online average

and offline average. Online average is the average performance of all structures tested

during the search. Offlineaverage uses the best structure value for each evaluation in the

average. Online average penalizes the search if poor solutions are created by operators,

where offline average does not.

33

Table 12 V Fractional Factorial Design

Design
Setting

Crossover Selection
Population
Size

Prob.
Crossover

Prob.
Mutation

Number
Replaced

1 Uniform Tournament 50 0.85 0.01 2
2 Two-point Tournament 50 0.85 0.01 25
3 Uniform Roulette 50 0.85 0.01 25
4 Two-point Roulette 50 0.85 0.01 2
5 Uniform Tournament 100 0.85 0.01 25
6 Two-point Tournament 100 0.85 0.01 2
7 Uniform Roulette 100 0.85 0.01 2
8 Two-point Roulette 100 0.85 0.01 25
9 Uniform Tournament 50 0.95 0.01 25
10 Two-point Tournament 50 0.95 0.01 2
11 Uniform Roulette 50 0.95 0.01 2
12 Two-point Roulette 50 0.95 0.01 25
13 Uniform Tournament 100 0.95 0.01 2
14 Two-point Tournament 100 0.95 0.01 25
15 Uniform Roulette 100 0.95 0.01 25
16 Two-point Roulette 100 0.95 0.01 2
17 Uniform Tournament 50 0.85 0.03 25
18 Two-point Tournament 50 0.85 0.03 2
19 Uniform Roulette 50 0.85 0.03 2
20 Two-point Roulette 50 0.85 0.03 25
21 Uniform Tournament 100 0.85 0.03 2
22 Two-point Tournament 100 0.85 0.03 25
23 Uniform Roulette 100 0.85 0.03 25
24 Two-point Roulette 100 0.85 0.03 2
25 Uniform Tournament 50 0.95 0.03 2
26 Two-point Tournament 50 0.95 0.03 25
27 Uniform Roulette 50 0.95 0.03 25
28 Two-point Roulette 50 0.95 0.03 2
29 Uniform Tournament 100 0.95 0.03 25
30 Two-point Tournament 100 0.95 0.03 2
31 Uniform Roulette 100 0.95 0.03 2
32 Two-point Roulette 100 0.95 0.03 25

34

5. TEST RESULTS

5.1. Penalty Function Versus Repair Operator

We devised and tested a penalty function penalizing infeasible solutions

according to proportion of constraint violation. We found it difficult to define one

penalty function adequate for all test problems in the data set. We then tested a repair

operator. Figure4 is a comparison of repair operator and penalty function

performance. Figure 4 compares performance on one test problem but represents the

repair operator dominance observed in all cases. The repair operator is used in the rest

of the analysis.

Figure 4. Repair and Penalty Methods (Problem 665)

Since a GA is stochastic, each problem is solved five times, for each experimental

design setting. The GA ran for 5000 generations. This value was selected based on trial

run experience. Since optimal values for some problems were unknown, termination

35

before 5000 generations was not considered. Our results improved the best known values

for the four test problems without a known optimal solution value. This is summarized in

Table 2.

Table 2 Improved Solutions

Problem
Number

LP
Solution

Best
Known

GA

1027 1731 1724 1725
1029 3859 3849 3850
1061 2562.7 3549 3551
1116 3868.3 3865 3866

5.2. Robust Parameters for GA

As seen in Table 3 the most robust design setting was design point 31

(uniform, roulette-wheel, 100, 0.95, 0.03, 2). The overall relative error was 0.0239% with

standard deviation 0.0599%. Further, the optimal solution was found for 848 of 1120

problems (76%). Figure 5 plots the mean relative error and 95% confidence bound for the

32 design points. The main effect which changes at design point 16 was probability of

mutation. It was observed that relative error was significantly reduced from this point on.

Complying with this observation, we tested probability of mutation values 0.04 and 0.06

and found reduced solution quality for number of generation 5000.

Design setting 19 (uniform, roulette wheel, 50, 0.95, 0.03, 2) performed best

within the settings with population size 50. Student's t test, Tukey's Multiple Comparison

tests and Ranking and Selection concluded that design settings 31 and 19 are different

significantly. More details on comparisons can be found in Appendix B.

Next, we analyzed the data by using statistical tools to learn more about the

effects of GA parameters on solution quality. Normality and constant variance

36

assumptions were checked and found that they were not met. Thus, we transformed the

data by using square root and natural logarithm and ran a stepwise regression. The

resulting effect plots are in shown Figure Ö.Deviation from a level plot indicate a

potentially significant effect. The number of replacements and probability of crossover

effects were insignificant. However, the number of replacements drives up computation

time. Despite its longer computation time, replacing 25 offspring in each iteration was

not as good as replacing 2 at a time. Thus replacing 2 at a time is best in both

computation time and solution quality.

0.0045 -

0.004 -

Lil
cc

0.0035 i

0.003

0.0025

0.002

0.0015

0.001

0.0005

''.'■' I I
I

1 I I I * I I T I

ro LO r-~ en r-O LO

Design Point

Figure 5. Confidence Intervals For REL

Uniform crossover, roulette wheel selection, 0.03 probability of mutation and

population size 100 performed better than their rival settings. Selection plot favored

roulette-wheel selection, which does not have the selective pressure of tournament

37

selection. This choice supported exploration more than exploitation. 0.03 probability of

mutation was better than 0.01.

0.0040 " 0.0040 ~

0.0030 - 0.0030 "

EL
 L

SM
ea

ns

d

 d

o

 o

o

 o

1

 1

1

 1

EL
 L

SM
ea

ns

o

 o

d

 d

o

 o

o

 o

or -

0.0000 U.000U 1 1

uniform two-point -tournament roulette

Crossover Selection

a. b.

0.0040 0.0040
- -

0.0030 " 0.0030

EL
 L

SM
ea

ns

o

 o

d

 d

o

 p

o

 o

■
 I
I
I

EL
 L

SM
ea

ns

o

 o

d

 d

o

 o

o

 o

DC et

0.0000 U.0000 1 i
50 100 0.01 0.03

Population Pmutation

C. d.

0.0040 " 0.0040

n nnrm -

R
EL

 L
SM

ea
ns

o

 o

 o

d

 b

d

o

 o

o

-«•

 r
o

 c

o
o

 o

 o

I

I

 1

1

 1

 1

R
EL

 L
SM

ea
ns

o

 o

d

 d

o

 o

o

 o

 ♦

0.0000 i I 0.0000 i
0.85 0.95 2 25

Pcrossover Nreplacement

e. f.

Figure 6. Effects of GA Parameters on Solution Quality

For further investigation of robust parameters, we tested probability of mutation

values of 0.04 and 0.06, and population size 30. Results were evidence of the fact that

further increasing probability of mutation degrades the solution quality. Decreasing

population size did not help GA performance either.

38

Table 3 Test Results

Design
Setting

Crossover Selection Pop.
Size

Prob.
Crossover

Prob.
Mutation

Number
Replaced

Mean
REL

Number
of
Optimal

1 Uniform Tournament 50 0.85 0.01 2 0.003158 221
2 Two-point Tournament 50 0.85 0.01 25 0.003749 184
3 Uniform Roulette 50 0.85 0.01 25 0.002359 291
4 Two-point Roulette 50 0.85 0.01 2 0.003213 212
5 Uniform Tournament 100 0.85 0.01 25 0.002114 341
6 Two-point Tournament 100 0.85 0.01 2 0.002826 260
7 Uniform Roulette 100 0.85 0.01 2 0.00154 328
8 Two-point Roulette 100 0.85 0.01 25 0.002282 307
9 Uniform Tournament 50 0.95 0.01 25 0.002875 244
10 Two-point Tournament 50 0.95 0.01 2 0.003573 190
11 Uniform Roulette 50 0.95 0.01 2 0.001993 332
12 Two-point Roulette 50 0.95 0.01 25 0.00306 230
13 Uniform Tournament 100 0.95 0.01 2 0.001798 369
14 Two-point Tournament 100 0.95 0.01 25 0.002819 245
15 Uniform Roulette 100 0.95 0.01 25 0.001313 498
16 Two-point Roulette 100 0.95 0.01 2 0.002141 324
17 Uniform Tournament 50 0.85 0.03 25 0.001087 623
18 Two-point Tournament 50 0.85 0.03 2 0.000723 593
19 Uniform Roulette 50 0.85 0.03 2 0.000509 674
20 Two-point Roulette 50 0.85 0.03 25 0.000662 596
21 Uniform Tournament 100 0.85 0.03 2 0.000366 779
22 Two-point Tournament 100 0.85 0.03 25 0.00041 736
23 Uniform Roulette 100 0.85 0.03 25 0.001194 825
24 Two-point Roulette 100 0.85 0.03 2 0.000369 748
25 Uniform Tournament 50 0.95 0.03 2 0.000595 638
26 Two-point Tournament 50 0.95 0.03 25 0.00112 601
27 Uniform Roulette 50 0.95 0.03 25 0.00048 694
28 Two-point Roulette 50 0.95 0.03 2 0.000635 608
29 Uniform Tournament 100 0.95 0.03 25 0.000317 810
30 Two-point Tournament 100 0.95 0.03 2 0.000394 774
31 Uniform Roulette 100 0.95 0.03 2 0.000239 848
32 Two-point Roulette 100 0.95 0.03 25 0.000822 772

39

5.3. Convergence

Our next concern was to examine the convergence trend of attractive parameter

settings. Design settings 31 (uniform, roulette wheel, 0.95,0.03,100,2) and 19 (uniform,

roulette wheel, 0.85,0.03, 50,2) offer the best solution qualities but they differ in

average computation time (approximately 3.8 and 5.2 sec respectively). Investigating

their convergence trend can give us some clues about the trade-off that we can give up

between solution quality and computation time. Furthermore, we have observed that the

parameter settings with 0.01 probability of mutation were worse in solution quality. At

this point we can suspect the premature convergence and a convergence graph may reveal

the facts about their inefficiency. Thus, we included design setting 11 (uniform, roulette

wheel, 0.95, 0.01, 50, 2) which is the best among settings with probability of mutation

0.01. We have chosen six problem instances, which favor different combinations of these

three GA parameter settings. Figure 7-12 display the convergence trend of three

parameter settings.

Our initial populations are very good: all solutions are feasible with many items in

the knapsack. We observe that less diversification causes converge to near optimal

solutions quicker. However, once a solution close to optimal is reached, improvement

disappears. This may be evidence of the fact that exploration halted due to less

probability of mutation in a small population. With increased diversification,

convergence is slower initially but continue to an improved final solution

40

Figure 7 Problem 544 (0,0,0,0.3,0.3)

¥E¥&MftVB$9&

,---' J
<D r~^ K&

o f /-~*
c / ifmfflw*

o '/ iswwxJP

O) I v. '(*
<D 1 IF
> .1 $

C 1 ^

o \tstM

Ü

%

11
19
31

Evolution

Figure 8 Problem 31 (0.49887,0.49887,0.99752,0.7,0.3)

41

Figure 9 Problem 746 (-0.49887,0.99752, -049887,0.3,0.7)

^...ySVHWflWlW^

0) o c
0)
O)
1_

> c
o o

11
19
31

Evolution

Figure 10 Problem 171 (0.49887,0.49887,0.49887,0.7,0.3)

42

s ■

7~
/ ' r/

. / „y

v.- y

p
0) 1 <

■7/ 1 ,

ü
c
0 - 11
im \\ 1 9
(0 f ? > c
o ; 3 1

ü

(

Evolution

Figure 11 Problem 254 (0,0,0.49887,0.7,0.3)

~iü»!kv«vA^ ■'•■^«?i^-fla«iS, ̂ S.JW(.,'5,^>««*'*™.™WS-.SVJ.«W8«

/"" ^ v^v^™™^-.™™/

n^r^ ,.„J

o u ,Up
c 'U <D if

ö)
im.

> c ,1

o
ü f

)

*

Evolution

11
19
31

Figure 12 Problem 121 (-0.49887, -0.49887,0.99752,0.3,0.3)

43

Competition between design settings 19 and 31 re-visits in the plots above. In

early evolution ages, population with small size has more tendencies to reach optimal

quicker than population with bigger size. After some point in the evolution bigger

population sized GA catches small sized and it is hard to describe which one is attractive

from this point on. So, we can again conclude that design point 19 is more favorable due

to less computation time.

5.4. Effects of Problem Structure on Solution Quality

To investigate the effects of problem structure, we selected two GA parameter

settings: the most robust setting (31) and the least robust setting (2). Then we solved Hill

and Reilly's (1997) problem set and averaged the five relative error values for each

problem structure setting. Hence, we had response values for all 224 problem structures.

0.0014 -

0.0010 -
<o —

I 0.0006 -
en
^ 0.0002 -
O

£g -0.0002
LU >
LU

T 1 1 r
-0.99997 0 0.49999

-0.49999 RH01 0.99997

O
cc

LU >
LU

_T ! (r

95773 D 0. + 9 BB7

-0. +9BB7 RH02 0,99773

0.0014 -

0.0010 -

I 0.0006 -
s

^ 0.0002 - +-
o -
ft -0.0002 -*
£1 -0.99752

3
LU

1 1 1 1
0 0.49876

•0.49876 RH03 0.99752

C.

Figure 13 Correlation Structure Effects

44

Figures 13a-13c show the effect of correlation on solution quality. For Figures

13a-and 13b, correlation between objective function and first constraint, and correlation

between objective function and second constraint respectively, these effects are

statistically significant at 95% confidence (a = 0.05). Solution quality starts to degenerate

as the correlation gets greater than 0 and either stays there at 0.499 or drops afterward.

Thus, we can conclude that regardless of GA parameters used, the performance of the GA

is affected by correlation among objective function coefficients and the constraint

coefficients and appears worst within a correlation range of 0.0 and 0.5.

Hill (1998) found the test set of Chu and Beasley (1998) have correlation values

in this 0.0 to 0.5 range. However, our problems have only two constraints while their

problems vary the number of constraints among 5,10 and 30. Resolving the Beasley and

Chu test set with our GA is worthy of research.

Figures 14a and 14b display the constraint slackness effect on GA performance.

Both constraint slackness effects, SI and S2, are statistically significant and as in many

other heuristics, GA favors higher slackness value. As in many past studies, tighter

constraints yielded harder problems.

1

D.D01D -

<u D. DDDB - >. m
XT D. ODD2 - ^
O ™" '—

fr- TT

ill 1

3
Lll

o.oou -

O.0D1O -

o

Figure 14 Slackness Effect

45

6. CONCLUSION

In this paper we have studied the effects of problem structures to find the most

robust parameter settings for GAs used to solve the MKP. Our study differed from

previous ones in the way that we repaired infeasible chromosomes with a random

operator and examined a different synthetic test problem set.

A random repair operator is efficient in the sense that it does not require

calculation or exploitation of any problem specific knowledge. Moreover, this operator

can easily be implemented and computing time consumed by this operator is minimal.

The most confusing part of analysis was in terminating the GA. Our default

termination counted generations and did not take number of evaluations into account.

Actually this confusion revealed an important experience in our research. Under this

termination rule apparently the design with 25 replacements had more chances to produce

and evaluate than 2 replacements. The expected result would be to have design points

with 25 replacements dominate the others. However, our first macro runs showed

otherwise and we were firmly satisfied with that replacing 2 chromosomes is better for

the MKP. In addition results of our alternative termination rule, which terminates after

certain number of evaluations and compensates for different replacements numbers,

validated our findings about GA type.

The most robust design point was 31 and ranking and selection, confidence

interval, Mann -Whitney rank-sum and Student's t tests validated this result. This setting

includes population size 100. As we discussed earlier, increasing population size may

46

cause wasting computing time without any significant return. Non-parametric rank sum

tests have shown that design points 31 and 19, best with population size 100 and 50,

respectively, were statistically different. Furthermore, computation times are increased

approximately 1.5 times when population size is 100. Henceforth, if we notice that the

solution quality of both design points is practically insignificant, design point 19 with

probability of crossover increased to 0.95 may be more attractive in cases where

computation time is a critical concern.

As with any empirical study our findings will not always be true. However, we

applied a systematic approach on test problem instances with a range of correlation

structures and slackness settings.

There are other avenues to extend this work. For instance, we used a random

repair operator. Another study might examine purely random populations with penalty

functions. Future studies should examine problems with varied correlation structures and

more constraints, and compare these to solutions on the Beasley and Chu data set.

Finally, another study might re-examine the GA parameters proposed in the literature

with those proposed here.

47

Chapter 3. Future Avenues

This thesis shed a light on the valid empirical parameterization of GA with a

special repair operator. Test problems were diversified enough to cover all possible

correlation and slackness settings in 0-1 Bi-dimensional Knapack Problem.

There are a few things which need to be done to complete the findings of this

thesis. One can implement and study a hybrid operator in GA which projects infeasible

solutions onto the feasible region in a systematic way. Findings of such study can be

compared with the research presented here to learn more about the behavior's of

operators

Another research may investigate the effect of problem size on GA performance.

Our study focused on two constraints. A real world application of MKP might have more

constraints. This kind of research may provide the information about trends in GA when

compared with ours.

Finally, another open and interesting research area may exist in creating test

problems which counts for "epistasis". Correlation measures the relations between rows

and is found to have significant effect on solution quality. If one can achieve to create test

problems which varies interaction degrees of variables and keeps a targeted correlation

structure, we can be more confident about the findings of any study especially related to

GAs.

48

APPENDIX.A

Appendix A.l Heuristics And Reduction Methods For Multiple Constraints 0-1

Linear Programming Problems

Freville and Plateu (1986) described an "automatic code" which reduces the size

of any multiple inequality constraint 0-1 linear programming problem. Upon this context,

the authors defined two greedy algorithms (AGNES I and AGNES II) that determined

lower bounds for the optimal solutions by bringing into play the concepts of surrogate

relaxation, oscillating assignment and strongly determined variables. These algorithms

are inserted into a reduction frame which reduced the constraints and variables with the

help of Lagrangean and surrogate relaxation.

In the first phase of their algorithm, three methods were followed to calculate

surrogate multipliers: The surrogate problem and its relaxation was then solved by the

NKR and FPK 79 algorithms of Plateau. The solution produced by the NKR algorithm

was fixed by AGNES I and AGNES II which differs in the way that they assign 0 or 1

value to some free variables. After these value assignments, a simple procedure was

followed to reduce the size of current problems in order to generate a well-stated

problem.

The authors tested their methods with 20 standard problems from the literature

and 30 random test problem generated by themselves. They used randomly generated test

problems to compare their algorithm with the other well-known algorithms. Results of

their tests shown that AGNES' accuracy is at least as good as Balas and Martin (1980)

but with increased computation time.

49

Authors compared efficiency of their reduction algorithm by solving reduced

problems with Shih's (1979) algorithm and concluded that as the problem size gets

larger, their reduction technique promised less computation time. Exclusively, they

reported an algorithm which bounds on the sum of the number of variables equal to 1 at

optimum.

50

Appendix A.2 A Heuristic For General Integer Programming

Kochenberger, et al (1974) devised an algorithm, which adopted the 0-1 algorithm of

Senju and Toyoda to solve general integer programming problems. They started with all

variables equal to zero and added items one at time according to the amount of objective

function increase they would produce. Their algorithm did not restrict variables to be

binary. Problem coefficients were not restricted to be nonnegative. However, the authors

did not guarantee the feasibility of solutions when the problems with the negative

cioefficients would be solved with this algorithm. The authors generated some test

problems which proved this fact about negative coefficients and recommended

backtracking in case of infeasible solutions.

Their algorithm can be applied to 0-1 problems by introducing constraints which

forbid the procedure from introducing more than one unit.

51

Appendix A.3 An Approximate Algorithm For Multidimensional Zero-One

Knapsack Problems - A Parametric Approach

Lee and Guignard (1988) proposed an approximate algorithm consisting of

finding a feasible solution with Toyodas'(1975) primal algorithm, fixing variables and

complementing certain variables with triple complementing technique of Balas and

Martin (1980). Proposed modification to Toyoda's primal method consisted of selecting

as many variables as possible at each iteration, as long as feasibility is guaranteed, instead

of selecting one at a time. Although solution quality of Toyoda's technique was better,

modification reduced the computation time significantly.

The authors' procedure embodied two phases. PHASE I implements a modified

version of Toyoda's primal technique to find a good feasible solution. Then problem size

is reduced by fixing a certain set of variables using the reduced costs from LP relaxation.

The LP relaxation of the problem is solved using the simplex algorithm. The simplex

algorithm was seeded by using the variables from the modified Toyoda algorithm. Phase

II aims to improve the solutions derived in PHASE I by the triple complementing

procedure defined in Balas and Martin (1980). In triple complementing, complements of

a triplet of variables (one at 0, one at 1 and one at 0 orl) is searched to find better

solutions.

Their procedure comprises three parameters: k,r,p. Parameter k is the trade of

between solution quality and computation time in PHASE I. Parameter r determines if the

complementing must be carried out in a certain iterations, because complementing was

52

computationally expensive and not promising most of the time. Finally parameer p

influences the trade-off between solution quality and time in PHASE n.

The authors tested their procedure with 48 problems. They reported that their

algorithm yields better solutions than Toyoda (1975) and Magazine and Oguz (1984) but

it was outperformed by Balas and Martin (1980).

53

Appendix A.4 A Heuristics Algorithm For Multidimensional Knapsack Problem.

Magazine and Oguz(1984) devised an approximate algorithm which combines the

techniques in Senju and Toyoda (1968) with Everett's Generalized Lagrange (EGL)

multiplier approach. Authors found LP relaxation solution of the problems useful as they

represent a bound for the possible solution. All the variables are set to 1 at the start in

their dual algorithm. Then feasibility was reached by dropping the variables using some

greedy rules. These rules included one coefficient, which is perturbed until finding only

one variable that violates one constraint. Then this variable was set to 0.

They produced 75 random problems to test their algorithm. In these problems,

objective function and constraint coefficients were derived from uniform distribution.

Both variable size and constraint size varied from 20 to 1000.

They reported that their algortihm performed sligthly worse than the algorithm of

Kochenberger, et al (1974) in solution quality. However, their algorithm performed

remarkably better in terms of computation time.

54

M
X
Q

OH
OH

c«

H

ud
en

t's

tl
y

di
ff

e JA

c

t»

.a a l—1

0)

>*- wo
*
A
H

•" W
■*J o» -a
cc 2
C -M
OX) <*)
•B g a» a
Q g
EM C5
w O
S fj O U
Cfl 'rm
•r" W
£ ft
& £ S I o x
Ü " en
iH 1»

^ * ►
13 o>
Ö t <u '£
a ©
< fc

u>

CO
CM
O
O
d

•ir-

CM
O
o
d

00

o
o
d

o
o
d

CD

O
o
d

■<fr
v-
o
o
d

o
o
d

o
o
d

en
o
o
o
d

CO
o
o
o
d

N
O
O
O
d

O
o
o
d

in
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

in
o
o
o
d

in
o
o
o
d

in
o
o
o
d

CD
O
O
O
d

o
o
o
d

N
O
O
O
d

OO
o
o
o
d

00
o
o
o
d

00
o
o
o
d

CO
o
o
o
d

en
o
o
o
d

en
o
o
o
d

N.

CM
O
O
d

o
o
d

m
o
o
d
o
o
d
o
o
d

CM

o
o
d

CM

o
o
d

o
o
d

h- o
o
o
d

co
o
o
o
d

in
o
o
o
d

o
o
o
d

co
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

CM
o
o
o
d

CO
o
o
o
d

co
o
o
o
d

CD
o
o
o
d

o
o
o
d

o
o
o
d

00
o
o
o
d

CO
o
o
o
d

en
o
o
o
d

en
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
d

CM

o
o
d

co

CO

o
o
d

CD

o
o
d

co
o
o
d

CM

o
o
d

o
o
d

en
o
o
o
d

en
o
o
o
d

en
o
o
o
d

o
o
o
d

co
o
o
o
d

CM
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
cp

o
o
o
d

o
o
o
d

in
o
o
o
d

m
o
o
o
d

CD
o
o
o
d

00
o
o
o
d

en
o
o
o
d

o
o
o
d

o
o
o
d

T—

o
o
d

CM

o
o
d

CM

O
O
d

co
o
o
d

co
o
o
d

co
o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

-

CD
i—
o
o
d

O
o
d
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

I--
o
o
o
d

o
o
o
d

CM
o
o
o
d

CM
o
o
o
d

o
o
o
o
d

o
o
o
o
d

o
o
o
cp

o
o
o
d

co
o
o
o
d

LO
o
o
o
d

I--
o
o
o
d

o
o
o
d

00
o
o
o
d

o
o
o
d
o
o
d

CM

o
o
d

CM

o
o
d

co
o
o
d

CO

o
o
d

•<*
f—
o
o
d

•>*
o
o
d

in

o
o
d

in

o
o
d

m
o
o
d

in

o
o
d

CD

o
o
d

in

in

o
o
d

CO
v-
o
o
d

o
o
o
d

en
o
o
o
d

00
o
o
o
d

CO
o
o
o
d

co
o
o
o
d

co
o
o
o
d

o
o
o
d

o
o
o
o
d

o
o
o
o

o
o
o
CD

o
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

CO
o
o
o
d

en
o
o
o
d

en
o
o
o
d

CM

o
o
d

co
o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

in

o
o
d

m
o
o
d

CD
I-

o
o
d

CD

5
o
d

CD

o
o
d

CD

o
o
d

o
o
d
o
o
d

<o

m
o
o
d

co
o
o
d

en
o
o
o
d

en
o
o
o
d

00
o
o
o
d

CO
o
o
o
d

co
o
o
o
d

in
o
o
o
d

o
o
o
d

o
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
o
d

CM
o
o
o
d

m
o
o
o
d

o
o
o
d

00
o
o
o
d

en
o
o
o
d

en
o
o
o
d

CM

o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

o
o
d

in

o
o
d

in

o
o
d

CD

o
o
d

CD

o
o
d

CD

o
o
d

CD

o
o
d

o
o
d

CO

o
o
d

oo

CO

o
o
d

CM
i—
o
o
d

00
o
o
o
d

r-- o
o
o
d

CD
o
o
o
d

m
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
C3

o
o
o
o
d

o
o
o
o
d

CM
o
o
o
d

CO
o
o
o
d

CD
o
o
o
d

CO
o
o
o
d

o
o
o
d

o
o
o
d

o
o
d

co
o
o
d

o
o
d

in

o
o
d

in

o
o
d

co
o
o
d

to

o
o
d

o
o
d

o
o
d

00

o
o
d

CO

o
o
d

CO

o
o
d

CO
i—
o
o
d

en
o
o
d

CO

co
o
o
d

o
o
d

o
o
o
d

r--
o
o
o
d

CO
o
o
o
d

s o
o
d

co
o
o
o
d

co
o
o
o
d

o
o
o
cp'

o
o
o
d

o
o
o
d

o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

en
o
o
o
d

o
o
o
d

o
o
d

o
o
d

o
o
d

in

o
o
d

CO

o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

o
o
d

CO

o
o
d

CO

o
o
d

en
o
o
d

en
o
o
d

en
o
o
d

o
CM
o
o
d

^,
00
o
o
o
d

CO
o
o
o
d

co
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
o

CO
o
o
o
d

o
o
o
d

m
o
o
o
d

CD
o
o
o
d

o
o
o
d

en
o
o
o
d

o
o
d

5
o
d

in

o
o
d

CD

o
o
d

co
o
o
d

en
o
o
d

o
CM
o
o
d

o
CM
o
o
d

o
CM
o
o
d

CM
o
o
d

CM
CM
o
o
d

CM
CM
O
O
d

co
CM
o
o
d

CO
CM
O
O
d

CO
CM
o
o
d

CO
CM
o
o
d

CM
o
o
d

CM
o
o
d

CO

00
o
o
o
d

CD
o
o
o
d

CO
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

v-
o
o
o
d

co
o
o
o
d

o
o
o
d

CD
o
o
o
d

CD
o
o
o
d

r--
o
o
o
d

en
o
o
o
d

CM

o
o
d

o
o
d

m
o
o
d

CD

O
o
d

CD

O
O
d

en
o
o
d

o
CM
O
o
d

o
CM
o
o
d

CM
o
o
d

CM
o
o
d

CM
CM
O
o
d

CM
CM
O
O
d

CO
CM
o
o
d

CO
CM
O
O
d

co
CM
o
o
d

CO
CM
O
o
d

CM
O
o
d

in
CM
o
o
d

O)

o
o
o
d

CD
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
CD

o
o
o
d

in
o
o
o
d

co
o
o
o
d

CD
o
o
o
d

o
o
o
d

en
o
o
o
d

CM

o
o
d

o
o
d

in

o
o
d

CD

o
o
d

N
o
o
d

en
o
o
d

o
CM
o
o
d

CM
o
o
d

CM
O
O
d

CM
o
o
d

CM
CM
O
o
d

co
CM
o
o
d

co
CM
o
o
d

co
CM
o
o
d

CM
O
o
d

CM
O
O
d

CM
o
o
d

LO
CM
o
o
d

CM

CD
o
o
o
d

o
o
o
d

o
o
o
o
d

o
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
d

CD
O
O
o
d

to
o
o
o
d

CO
o
o
o
d

CO
o
o
o
d

en
o
o
o
d

o
o
d

o
o
d

CD

o
o
d

r-
o
o
d

00

o
o
d

CO

o
o
d

CM
o
o
d

CM
CM
o
o
d

CO
CM
O
O
d

co
CM
o
o
d

co
CM
o
o
d

CM
o
o
d

CM
o
o
d

in
CM
o
o
d

in
CM
o
o
d

CD
CM
o
o
d

CD
CM
o
o
d

CD
CM
O
o
d

CM
o
o
d

-

in
o
o
o
d

co
o
o
o
d

o
o
o
d

o
o
o
o

o
o
o
o
d

o
o
o
d

CM
o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

en
o
o
o
d

en
o
o
o
d

o
o
o
d

CM

o
o
d

in

o
o
d

r--
o
o
d

00

o
o
d

en
o
o
d

en
o
o
d

CM
CM
o
o
d

CO
CM
o
o
d

CM
O
O
d

CM
O
O
d

■»t
CM
O
O
d

m
CM
o
o
d

m
CM
o
o
d

CD
CM
o
o
d

CD
CM
o
o
d

CM
O
O
d

CM
O
O
d

CM
o
o
d

CO
CM
o
o
d

t

o
o
o
d

CM
o
o
o
d

o
o
o
d

o
o
o
d

o
o
o
o
d

CM
o
o
o
d

co
o
o
o
d

CO
o
o
o
d

o
o
o
d

00
o
o
o
d

en
o
o
o
d

o
o
o
d

o
o
d

CO

o
o
d

in

o
o
d

CO

o
o
d

en
o
o
d

o
CM
o
o
d

o
CM
O
O
d

co
CM
o
o
d

CM
o
o
d

CM
O
O
d

CM
o
o
d

in
CM
o
o
d

co
CM
o
o
d

CD
CM
O
O
d

CM
o
o
d

CM
o
o
d

CM
O
O
d

r--
CM
o
o
d

CO
CM
o
o
d

CO
CM
o
o
d

O

o
o
o
o
d

o
o
o
d

CM
o
o
o
d

CO
o
o
o
d

o
o
o
d

co
o
o
o
d

co
o
o
o
d

CD
o
o
o
d

o
o
d

CM

o
o
d

co
o
o
d

co
o
o
d

o
o
d

CD

o
o
d

en
o
o
d

CM
o
o
d

CM
CM
o
o
d

CO
CM
o
o
d

CM
O
o
d

co
CM
o
o
d

CM
o
o
d

CO
CM
o
o
d

CO
CM
o
o
d

CO
CM
o
o
d

en
CM
o
o
d

o
CO
o
o
d

o
CO
o
o
d

o
CO
o
o
d

CO
o
o
d

CO
o
o
d

CO
o
o
d

CM
CO
o
o
d

CM

o
o
o
d

o
o
o
o
d

t o
o
o
d

m
o
o
o
d

CO
o
o
o
d

o
o
o
d

00
o
o
o
d

00
o
o
o
d

co
o
o
d

co
o
o
d

in

o
o
d

in

o
o
d

CO

o
o
d

CO

o
o
d

CM
o
o
d

CO
CM
O
O
d

CM
o
o
d

m
CM
o
o
d

m
CM
o
o
d

CO
CM
o
o
d

en
CM
o
o
d

o
co
o
o
d

o
CO
o
o
d

o
CO
o
o
d

CO
o
o
d

CO
o
o
d

CM
CO
o
o
d

CM
CO
o
o
d

CM
CO
o
o
d

CM
co
o
o
d

co
CO
o
o
d

CO
o
o
d

C
Ö
OL
C
at

'in
o a

CM o q- *- CM O) CO *■ CO co CD m ^ CO i^ m CO CM
co
CM

i^ CM
CO

oo o
CM

oo
CM

in
CM

at
CM

CM
CM
o
CO
t
CM CM

en
CM m

55

CO

CO o o
d

CM
CO
O
O

d

co
CM o o
d

CO
CM o o
d

CM
o
o
d

in
CM o o
d

m
CM
O o
d

CM
O o
d

o
CM
O
O

d

en
o
o
d

oo
o
o
d

o
o
d

CO

o o
d
o
o
d

CM

O
O

d

en
o
o
o
d

00 o
o o
d

h- o o o
d

o o o
d

o o o
d

CO o o o
d

CO o o o
d

CO o o o
d

CM
O
O o
d

o
o o
d

r—
o
o o
d

O o o o
d

O o o o
d

o o o o
d

O o o o
d

O o o
CD

o o o
d

CM

CO
CO o o
ö

CO o o
d

CO
CM o o
d

CM o o
d

co
CM o o
d

CM o
o
d

CM
O
O

d

CM
O
O

d
o
o
d

co
o
o
d

o
o
d

o
o
d

in

o
o
d

CO

o
o
d
o
o
d

en
o
o
o
d

o o o
d

r-. o o o
d

CD o o o
d

o o o
d

CO o o o
d

CM o
o o
d

CM o
o o
d

o o
o
d

T—
o o
o
d

o o o o
d

o o o o
d

o o
o
d

o o
o
d

o o
o
d

i—
o o
o
d

o o o
d

i

CM

CM
CO o o
Ö

CO o o
d

1"-
CM
o o
d

CM o
o
d

CD
CM o
o
d

CM o
o
d

CO
CM o o
d

CO
CM o o
d

o>

o
o
d

co

o
o
d

CO
i—
o o
d

CD
i—
o o
d

in
■i—

o
o
d

CO

o
o
d

o
o
o
d

CO o o
o
d

o o
o
d

CD
o o o
d

CO
o
o
o
d

CO o
o o
d

CM o
o o
d

CM o
o o
d

o
o o
d

o o
o
d

o o o
o
d

o o o
o
d

o o
o
Ö

o o o
Ö

o o o
d

i—
o
o o
d

■i—

o
o o
d

o o
o o
d

CM

CM
CO o o
d

T—
CO o
o
d

CM
o o
d

CM o
o
d

CD
CM o o
d

CM o o
d

CO
CM o o
d

CO
CM
O o
d

en

o
o
d

CO

o o
d

CD

o o
d

CD

o o
d

in

o o
d

CO
v—
o
o
d

o
o
o
d

CO
o
o
o
d

r- o o o
d

CD o o o
d

co
o
o
o
d

CO o o o
d

CM o
o o
d

CM o
o o
d

o
o o
d

o o
o
d

o o o
o
d

o o o
o
d

T—
o
o o
d

1—

o
o o
d

o o
o
d

o o
o
d

o o
o
o

o o
o o
d

O
CO

CM
CO o o
d

o
CO o o
d

[--
CM o o
d

CO
CM o o
d

in
CM o o
d

CO
CM o o
d

CO
CM o o
d

CO
CM o o
d

CO

o
o
d

CD

o o
d

CD

o o
d

CD

o o
d

m
o o
d

CO

o o
d

o
o
o
d

co
o
o
o
d

o o o
d

CO o
o o
d

CO o o o
d

CO o o o
d

CM o o o
d

o o o
d

1—
o o o
d

i—
o o o
d

o o o o
d

o o o
d

o o o
d

o o o
o

o o o
CD

o
o o
d

o
o o
d

o o o o
d

CM
CM

<M
CO o o
d

o
CO o o
d

CM o o
d

CD
CM o o
d

m
CM o
o
d

CO
CM o
o
d

CO
CM o o
d

CO
CM o o
d

oo
o
o
d

o o
d

CO

o o
d

CO

o o
d
o o
d

CO

o o
d

o
o
o
d

oo
o
o
o
d

CO o
o o
d

CD o o
o
d

in o o
o
d

CO o o o
d

CM o o o
d

T—
o o o
d

o o o
d

o o o
d

o o
o o
d

o o o
d

i—
o o o
o

T—
o o o
o

o o o
d

o o o
d

o o o
o
d

o o o
o
d

CM

CO o o
d

o
CO o o
d

CO
CM o o
d

in
CM o o
d

CM o o
d

CO
CM o o
d

CM
CM o o
d

CM
CM o o
d
o
o
d

o o
d

in

o o
d

in

o o
d
o o
d

CM

o o
d

en
o
o
o
d

o
o
o
d

CO
o
o
o
d

m o o o
d

m o o o
d

CM o o o
d

o o o
d

o o o o
d

o o o o
d

o o o o
d

1—
o o o
d

o o o
ö

o o o
d

o o o
o

o o o o
d

o o
o o
d

o o
o o
d

o o o
d

0>
CO o o
d

CM o o
d

CD
CM o o
d

in
CM o o
d

CM o o
d

CM
CM o o
d

CM
CM o o
d

CM
CM o o
d
o
o
d

CD

o
o
d

in

o o
d

in

o o
d

CO

o o
d

CM

o
o
d

en
o
o
o
d

h- o o o
d

co
o
o
o
d

in o o o
d

o o o
d

CM o o o
d

o o o
d

o o o o
d

o o o o
d

o o o
d

o o o
d

o o o
d

o o o o
d

o o o o
d

o o o o
d

o o o o
d

o o o
d

o o o
d

CM

o
CO
o
o
d

CO
CM o o
d

in
CM o o
d

CM o o
d

CO
CM o o
d

CM o o
d

CM o o
d

CM o o
d

CO

o o
d

co
i—
o o
d
o o
d
o o
d

CO

o o
d
o
o
d

CO
o o o
d

CO o o o
d

in o o o
d

o
o o
d

o
o o
d

o
o o
d

o o o
o
d

o o
o
d

o o o
ö

o o o
d

o o o
o

o o o o
d

o o o
d

o o o
d

o o o
d

o o o
d

o o o
d

CM o o o
d

CO
CM

o
co
o
o
d

CO
CM
o o
d

CM o
o
d

CM o o
d

CO
CM o o
d

CM o o
d

CM o o
d

o
CM o o
d

CO

o o
d

in

o o
d
o o
d

CO

o o
d

CM

o o
d

o
o
o
d

CO
o o o
d

m o
o o
d

■>* o o o
d

CO o
o o
d

CO
o
o
o
d

T—
o o
o
d

T—
o o
o
o

i—
o o
o
o

o o
o
d

o o o
d

o o o o
d

o o o o
d

o o o
d

o o o
d

o o o
d

o o o
d

CM o o o
d

CO o o o
d

O
CM

o
co
o
o
d

CO
CM o o
d

CM o o
d

CM
o
o
d

CO
CM o o
d

CM o o
d

o
CM o o
d

o
CM o o
d

CD

o o
d

m
o o
d

CO

o o
d

CO

o o
d

CM

o
o
d

o
o
o
d

o o o
d

m o o o
d

o o o
d

CO o o o
d

co
o
o
o
d

o o o o
d

o o o
d

1—
o o o
d

o o o
d

o o o
CD

o o o o
d

o o o o
d

o o o
d

o o o
d

CM o o o
d

CM o o o
d

CM o o o
d

CO o o o
d

co

en
CM
o
o
d

1^-
CM o o
d

CM
o
o
d

co
CM o o
d

CM
CM o o
d

o
CM o o
d

o
CM
o
o
d

o
CM
o
o
d

in

o o
d
o o
d

CO

o o
d

CO

o o
d
o
o
d

en
o
o
o
d

o o o
d

in o o o
d

CO o o o
d

CO o o o
d

CM o o o
d

o o o o
d

o o o
o

o o o
o

o o o
d

o o o o
d

o o o
d

o o o
d

CM o o o
d

CM o o o
d

CM o o o
d

CM o o o
d

CO o o o
d

CO o o o
d

CM
CO

co
CM o o
d

CD
CM o o
d

co
CM o o
d

CM
CM
o
o
d

CM
o
o
d

o
o
d

o>
o
o
d

en
o
o
d

■<*

o
o
d

CO

o
o
d

CM

o
o
d

CM

o
o
d

o
o
o
d

CO o o
o
d

CD o o o
d

■<* o o
o
d

CM o o o
d

CM o o o
d

o o o
d

o
o o
d

o o o o
d

o o o o
d

o o o
d

o o o
d

CM o o o
d

CM o o o
d

CO o o o
d

CO o o o
d

CO o o o
d

CO
o
o
o
d

o o o
d

o o o
d

N

m
CM o o
d

CM o o
d

o
CM o o
d

en
o
o
d

co
o
o
d

o o
d

CO

o o
d

CO

o o
d
o
o
d

o
o
d

en
o
o
o
d

en
o
o
o
d

oo
o
o
o
d

CD
o o o
d

CO o
o o
d

o
o o
d

o
o o o
d

o o o
ö

o
o o
o

o
o o
d

CM o
o o
d

CO o o
o
d

CO o o
o
d

o o
o
d

o o
o
d

m o
o o
d

m o o
o
d

CD o o
o
d

CO o o
o
d

co
o
o
o
d

CD o o
o
d

o o
o
d

CO
CM

m
CM o o
d

CO
CM o o
d

o
CM o o
d

en
o
o
d

co
o
o
d

CO

o o
d

CO

o o
d

CO

o o
d
o
o
d

o
o
o
d

en
o
o
o
d

en
o
o
o
d

r--
o
o
o
d

in o o o
d

CO o o o
d

o o o
d

i—
o
o
o
d

i—
o o o
d

T—
o o o
o

CM o o o
d

CO o o o
d

CO o o o
d

CO
o
o
o
d

■<* o o o
d

m o o o
d

m o o o
d

CO
o o o
d

CO
o o o
d

CO o o o
d

CD
o o o
d

o o o
d

o o o
d

CO
CM

"3-
CM o o
d

CM
CM o o
d

05

o o
d

co
o
o
d

r--
o
o
d

in

o o
d

in

o o
d

m
o o
d

o
o
o
d

o
o
o
d

oo
o
o
o
d

co
o
o
o
d

o
o
o
d

m o o o
d

CM
o
o
o
d

o o o o
d

o
o
o
d

o o
o
o

o o o
o
d

CM o o o
d

CO o o
o
d

o o o
d

o
o
o
d

m o o
o
d

CO o o o
d

CO o o o
d

CO o o
o
d

r-- o o o
d

r-- o o o
d

o o o
d

o o o
d

CO o o o
d

c
"5
a.
c

■<« o a

CM o 1— * ̂ CM en CO Y- co oo
CO m i— co i^ in co CM

CO
CM

i^ CM
CO

co o
CM

oo
CM CM

O)
CM

CM
CM
o
CO CM CM

0>
CM co

56

c
01
s-
Ä SM s
a o
-o 1/3

^ S-

*J n.
ri s a
© u o
X ss u
u Ö Ot

ft
OX) •** ft

s VI -M
0> o L. s

U 2
ft J3 01

■*J
-M ti

S
»a a Id

§ O) w
s
CM o

rt 3
t. t. H W rt i—i

tk ft &>
o> if X!
^ o «
3 JS H H
fM 01

PQ
J3
73 x >

T3 0)
B >
cu *J
ft
ft o
•< CLH

CM
CM
O
O
Ö

O
CM
O
O
d

CO

o o
d

CD
i—
O o
d

in

o
o
d

CO

o
o
d

CO

o o
d

CM

O
O
d

co
o
o
o
d

O
O
O
d

CO
o
o o
d

m
o
o
o
d

o o o
d

CM
O
O
O
d

O
o o o
d

CO o o o
d

o o o
o

O
o o
d

o
o o
o
d

CM
O
O
O
d

CO o o o
d

o o o
d

o o o
d

m
o
o
o
d

in
o
o
o
d

CD
o
o o
d

CD
O
O
O
d

O
o
o
d

o
o
o
d

O
o
o
d

O
O
O
d

co
o
o
o
d

N
o o
d

00

o
o
d

1—
o
o
d
o
o
d

CO

o
o
d

T—

o
o
d

o
o o
d

o
o
o
d

CO
o o
o
d

m o o
o
d

CO o o
o
d

CO
o o
o
d

CM
o o o
d

o
o o o
d

CO o
o o
d

o o o
o
d

o o
o
d

CM o o
o
d

CM
O
O
O
d

in
o o
o
d

CO
o
o
o
d

CO
o
o
o
d

CO
o
o
o
d

o
o
o
d

oo
o
o
o
d

CO
o o
o
d

en
o
o
o
d

en
o
o
o
d

en
o
o
o
d

en
o
o
o
d

o
o o
d

o

o
o
d

CO o o
d

m
o o
d

CM

o o
d
o o
d

o
o o
d

oo
o
o
o
d

co
o
o
o
d

co
o
o
o
d

CO o o o
d

CM o o o
d

o o o
d

o o o
d

o o o
d

CO o
o o
d

o o o
o
d

CM o o o
d

CO o o o
d

o o o
d

in
o o o
d

h-
o
o
o
d

oo
o
o
o
d

en
o
o
o
d

en
o
o
o
d

en
o
o
o
d

o
o o
d
o o
d
o
o
d
o o
d

CM

o o
d

CM

o o
d

CM

o o
d

CO

o o
d

^

in

o
o
d

CO

o
o
d

o
o
o
d

en
o
o
o
d

00
o o
o
d

CD
o o
o
d

CD
o o o
d

CO
o o o
d

o o
o
d

o o o
o
d

o o
o
d

o o
o
o

CO o o
o
d

o o o
d

CM
o o o
d

o o
o
d

m o o
o
d

CO
o o
o
d

CD
o
o
o
d

en
o
o
o
d

o
o
o
d

o o
d
o
o
d
o o
d

CM

o o
d

CO

o
o
d

CO

o
o
d

CO

o
o
d

i—
o
o
d

T—
o
o
d
o
o
d

in

o
o
d

IT)
o o
d

CM

o o
d

CO
o o
o
d

CO
o o o
d

o o o
d

m
o o o
d

in
o o o
d

■<*

o o o
d

o o
o o
d

o o
o
d

CM o o
o
d

CO o o
o
d

o o o
d

o o o
d

CO
o o o
d

in
o o o
d

o
o o
d

o
o o
d

oo
o
o
o
d

o
o o
d

T—

o o
d

CM

o o
d

CM

o o
d

CO

o o
d

CO

o o
d
o o
d
o
o
d

m
i—
o
o
d

in
i—
o o
d

m
■i—

o o
d

in

o o
d

CD

O
O
d

(0

CO

o o
d

CM

o o
d

00
o
o o
d

CO
o
o o
d

o o
o
d

in o o
o
d

o o
o
d

o o o
d

o
o o o
d

o o o
d

CO o o o
d

CM o
o o
d

o o
o
d

o o
o
d

CO o o
o
d

CD
o o o
d

o o o
d

oo
o
o
o
d

oo
o
o
o
d
o o
d

CM

o o
d

CM

o
o
d

CM

o
o
d

CO

o
o
d
o
o
d
o o
d

in

o o
d

m
o o
d

in

o o
d

in

o o
d

CO

o
o
d

CD

o o
d

oo

CM
1—
o o
d

o
o o
d

o o o
d

CD
o o o
d

in o o o
d

CO o o o
d

CO o o o
d

CO o o o
d

CM o o o
d

CO o o o
d

o o o
d

o o o
d

o
o o o
d

CM
o
o
o
d

in o o o
d

o o o
d

co
o
o
o
d

en
o
o
o
d

en
o
o
o
d

CM

o o
d

CO

o o
d
o
o
d

5 o
d
o o
d

in

o o
d

in

o o
d

CO

o o
d

CD

o o
d

r--
o o
d
o o
d
o
o
d

00

o
o
d

co
o o
d

o
o o
d

CD o o o
d

m o o o
d

o o o
d

CO o o o
d

CM o o o
d

CM o o o
d

CO o o
o
d

CM o o
o
d

o
o o o
d

o
o o o
d

o o o
d

co
o
o
o
d

CD o o o
d

CO o o o
d

en
o
o
o
d

o
o o
d

o
o
o
d

CO

o
o
d
o o
d
o
o
d

in

o
o
d

m
o o
d

CD

o o
d

CD

o o
d
o o
d
o o
d
o o
d
o o
d

co
o
o
d

en
o
o
d

h- o o o
d

m
o o o
d

o o o
d

o
o o
d

o o o
o
d

CM o o
o
d

i

CO o o o
d

■

CO o o o
d

CM
o o o
d

CO o o o
d

o o o
d

o o o
d

CO
o o o
d

co
o
o
o
d

o
o
o
d

CM

o
o
d
o
o
d

i—
o o
d

m

o
o
d

o o
d

CO

o
o
d

en

o
o
d

en

o
o
d

o
CM o
o
d

o
CM o o
d

CM o
o
d

CM o
o
d

CM
CM
O
O
d

CM
CM
O o
d

CM
CM o o
d

CM
CM o o
d

CO
CM o o
d

<o

r-- o o o
d

in
o o o
d

o o
o
d

o o o
d

o o o o
d

CM
O
O
O
d

CO o o o
d

CO o o o
o

CM
o
o
o
d

CO
o
o
o
d

o o o
d

in
o o o
d

CD
o o o
d

co
o
o
o
d

o
o o
d

CO

o o
d

"3"
O o
d
o o
d

m
o
o
d
o o
d

oo
T—
o
o
d

en

o
o
d

en

o
o
d

o
CM o o
d

CM o
o
d

CM o o
d

CM
CM o o
d

CM
CM
O o
d

CM
CM
O
O
d

CM
CM o o
d

CM
CM o o
d

CO
CM o o
d

o>

CD
o o o
d

■<*■ o o o
d

o o o
d

o o o o
d

o o o
d

CO o o o
d

CM o o o
d

CM o o o
d

co
o
o
o
d

co
o
o
o
d

in o o o
d

in
o o o
d

CD o o o
d

00 o o o
d
o o
d

CO

o o
d
o o
d

in

o
o
d

in

o o
d

00

o o
d

en
o
o
d

o
CM o o
d

o
CM o o
d

o
CM o o
d

CM
o
o
d

i—
CM
O
O
d

CM
CM o o
d

CM
CM
O
O
d

CM
CM
O
O
d

CM
CM o o
d

CO
CM o o
d

"3-
CM
O
O
d

CM
o o
o
d

CO o o
o
d

o o
o
d

CM o o o
d

co
o
o
o
o

o o o
o

o o o o
d

o o o o
d

o
o
o
d

m
o
o
o
d

o o o
d

o o o
d

CO
o
o
o
d

o
o
o
d

CO

o
o
d

in

o
o
d

CD

o
o
d

o
o
d

o o
d

o
CM o o
d

CM o o
d

CM o o
d

CM
CM
o
o
d

CM
CM
o
o
d

co
CM o o
d

co
CM o o
d

CM o o
d

CM o o
d

CM
O
O
d

CM o
o
d

in
CM o
o
d

CD
CM
O
O
d

^

CO
o
o
o
d

CM o o o
d

CM o o o
d

CO o o o
d

CM o o o
o

o
o o o
d

o o o
d

o o o
d

in
o o o
d

CD
o o o
d

oo
o
o
o
d

oo
o
o
o
d

en
o
o
o
d
o o
d
o o
d

CD

o
o
d
o
o
d

oo
o
o
d

co
o
o
d

CM o o
d

CM
CM o o
d

CM
CM o o
d

co
CM
o
o
d

co
CM o o
d

CM o o
d

CM o o
d

m
CM o o
d

m
CM o o
d

in
CM o o
d

m
CM o o
d

CD
CM o o
d

CM o o
d

>*

co
o
o
o
d

o o o
d

CO o o o
o

CM
O
O
O
O

o o o
d

o o o
d

o o o
d

o o o
d

CD
o o o
d

h- o o o
d

CO
o o o
d

CO
o o o
d

o
o
o
d

CM

5
o
d
o
o
d

CO

o
o
d

oo
o
o
d

co
o
o
d

o
o
d

CM o o
d

CM
CM o o
d

CO
CM o o
d

co
CM o o
d

CM o o
d

CM o o
d

m
CM o o
d

in
CM
o
o
d

CD
CM
o
o
d

CD
CM
o
o
d

CD
CM
o
o
d

CD
CM o o
d

CM o o
d

o
o o o
d

co
o
o
o
d

o o
o
d

CM
O
O
O
d

CO
o o o
d

o o
o
d

m o o o
d

in
o
o
o
d

o
o o
d

o
o o
d

CM

o
o
d

CM

o o
d

CO

o o
d

m
o o
d

co
o
o
d

o
CM o o
d

CM
o
o
d

CM
CM o o
d

CM
CM o o
d

in
CM o o
d

CD
CM o o
d

CM o o
d

CM
o
o
d

CM
o
o
d

00
CM o o
d

CO
CM o o
d

en
CM o o
d

en
CM o o
d

en
CM o o
d

en
CM o o
d

o
CO o o
d

CO o o
d

CM

CO o o o
d

o
o
o
d

co
o
o
o
d

co
o
o
o
d

o o o
d

CD
o o o
d

o o o
d

o
o
o
d

o o
d

CM

o o
d

co
o
o
d

■3-
o o
d

in

o o
d

r-
o o
d

en

o
o
d

CM
CM o o
d

co
CM
o
o
d

CM o o
d

CM
O
O
d

CM
O o
d

00
CM o o
d

CO
CM o
o
d

en
CM
o
o
d

en
CM o o
d

o
CO o o
d

o
CO o o
d

CO o o
d

CO
o
o
d

CO o o
d

CO o o
d

CM
CO
o
o
d

CM
CO o o
d

c
"5
a.
c

'35
a

CM o ̂ - T~ CM en CO CO CO CO m ^ co N m co CM
CO
CM

h» CM
CO

oo o
CM

co
CM
m
CM

0>
CM

CM
CM
o
co CM CM

en
CM CO

57

CO

CO
CO
o
o
d

CO
o
o
d

1^-
CM
o
o
d

CM
o
o
d

CO
CM
o
o
d

CM
o
o
d

CO
CM
O
O

d

CO
CM
O
O

d

en

o
o
d

CO

o
o
d

CD

O
O

d

CD
T—
o
o
d

m

o
o
d

CO

O
o
d

o

o
o
d

co
o
o
o
d

o o
o
d

CO
o
o
o
d

CO
o
o
o
d

CO
o
o
o
d

CM
O
O
O

d

CM
O
O
O

d

1—

o
o
o
d

o
o
o
d

8
o
o
d

o
o
o
o
d

O
O
O

O

O
o
o
o

o
o
o
d

O
o
o
CD

CM
O
O
O

d

CO
o
o
o
o

O)
CM

CM
CO
o
o
d

o
CO
o
o
d

co
CM
o
o
d

co
CM o
o
d

in
CM o
o
d

CO
CM
o
o
d

CM
CM
O
O

d

CM
CM
O
O

d

co

o
o
d

o
o
d

CD

O
O

d

m
o
o
d

o
o
d

CM

o
o
d

o

o
o
d

o
o
o
d

CD
o
o o
d

m
o o
o
d

in
o o
o
d

CM
o o
o
d

O o
o
d

T—
o
o
o
d

o o
o
d

8 o
o
d

o
o
o
o

o
o
o
d

CM
O
O
O

O

CM
O
O
O

O

CM
o
o
o
o

CM
O
O
O

o

CO
o
o o
d

CM
O
o o
CD

CM

CO
O
o
d

en
CM
o
o
d

(0
CM
o
o
d

m
CM
o
o
d

CM
o o
d

CM
CM o
o
d

CM
CM
O
O

d

CM
CM
O
O

d

r-.

o
o
d

o
o
d

in

o
o
d

m
Y—
o
o
d

Y-
o
o
d

CM
Y—
o
o
d

en
o
o
o
d

o
o
o
d

CD
o
o
o
d

m o
o
o
d

in o
o
o
d

CM o
o o
d

o o
o
d

o
o
o
o
d

o o o
o
d

o o o
o
d

o o
o
d

CM
o o
o
d

CM
O
O
O

d

CM
O
O
O

d

co
o
o
o
d

CO
o o
o
d

CM o
o
o
CD

i—
o
o
o
CD

CM

CO
o
o
d

en
CM
o
o
d

CD
CM
o
o
d

in
CM
o
o
d

CM
o
o
d

CM
CM
o
o
d

CM
CM
O
O

d

CM
CM
O
O

d

o
o
d

Y—
o
o
d

m
o
o
d

in

o
o
d

o
o
d

CM

o
o
d

05
O
O
o
d

o
o
o
d

CD
o
o
o
d

in o
o
o
d

in
o
o
o
d

CM o
o
o
d

o
o
o
d

o
o
o
o
d

8
o
o
d

o
o
o
o
d

i—
o
o
o
d

i

CM
o
o
o
d

CM
o
o
o
d

CM
o o
o
d

1

CO
o
o
o
d

CO
o o
o
d

CM
o o
o
d

1

O
O
O

O

O
CO

CO
o
o
d

en
CM
o
o
d

CO
CM o
o
d

in
CM
o o
d

CM
o
o
d

CM
CM
o
o
d

CM
CM
O
O

d

CM
CM
o
o
d

o
o
d

CD
T—

o
o
d

m
o
o
d

m
o
o
d

CO

o
o
d

o
o
d

en
o
o
o
d

o
o
o
d

m
o
o o
d

in
o
o o
d

o
o
o
d

CM
o
o o
d

o
o
o
d

o
o
o
o
d

o o
o
o
d

o
o
o
d

CM
O
O
O

d
1

CM
O
O
O

d

CM
O
O
O

d
1

CO
o
o
o
d

1

CM
O
O
O

d

CM
O
O
O

d

CM
o
o
o
CD

Y—
o
o o
d

CM
CM

cö
o
o
d

en
CM
o
o
d

in
CM o o
d

m
CM
O
O

d

CM o
o
d

CM
CM o o
d

CM
CM
O
O

d

CM
O o
d

o
o
d

o o
d

m
Y—
o o
d

i—
o o
d

CO
Y-
o
o
d

o o
d

en
o
o
o
d

CD o
o o
d

m o
o o
d

o
o o
d

o
o
o
d

CM o o
o
d

o o
o
d

o
o
o
o
d

o o o
o
d

o o o
CD

CM
o o o
CD

CM
o o o
CD

co
o
o
o
d

CM o
o o
d

CM o
o o
d

CM o
o o
d

CM
O
o o
d

i—
o
o o
CD

1-
CM

o
CO
o
o
d

00
CM
o
o
d

lO
CM
o o
d

-3-
CM
O
O

d

CO
CM
o
o
d

CM
o o
d

CM
o o
d

CM
o o
d

<o

o
o
d

in

o o
d

Y—
o o
d

T—
o
o
d

co
Y-
o
o
d

Y—
o
o
d

co
o
o
o
d

CD
o o
o
d

in
o
o
o
d

o o
o
d

co
o
o
o
d

o o
o
d

o o o
o
d

o
o
o
ep

o o
o
d

CM
O
O
O

CD

CM
O
O
O

CD

CO
o o o
CD

CM o o o
d

CM o
o o
d

CM
o
o
o
ep

CM o o o
CD

3
o o
d

O
O
O
O

d

O)

o
co
o
o
d

co
CM
O o
d

CM
o o
d

CM
o o
d

co
CM
o o
d

Y-

CM
o o
d

CM
o o
d

o
CM
o o
d

co

o
o
d

m
o o
d

o o
d

CO

o o
d

CM

o
o
d

o

o
o
d

CO o o
o
d

in o o
o
d

o
o
o
d

"d-
o
o
o
d

co
o
o
o
d

o o
o
d

o o
o
d

o
o
o
d

o o
o
CD

CM
O
O
O

O
i

CO
O
O
O

CD

CM
O
o o
CD

CM o
o o
o

CM
o o o
o

o
o
o
CD

o
o o
d

o o o
CD

o o
o o
d

in
CM

CM
o
o
d

CM
o o
d

CM
o
o
d

CO
CM
o
o
d

CM
CM
o o
d

o
CM
o o
d

o
CM
o
o
d

o
CM
o
o
d

m

o
o
d

o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

en
o
o
o
d

o o
o
d

in
o
o
o
d

co
o
o
o
d

co
o
o
o
d

CM o
o
o
d

o o
o
o
d

T—

o o
o
d

CM
o o
o
d

CM
O
O
O

CD

CO o
o
o
CD

CM
O
O
O

d

CM
O
O
O

CD

T—

o
o
o
d

o
o o
d

O
O
O
O

d

o o
o
o
d

o o
o
o
d

o
o
o
d

CO
CM

en
CM
o
o
d

CM
O
O

d

co
CM
o
o
d

co
CM o
o
d

CM
CM o
o
d

o
CM o
o
d

en

o
o
d

en

o
o
d

m

o
o
d

o
o
d

CM

O
o
d

CM

o
o
d

o
o
d

O)
o
o
o
d

CD
o o
o
d

o
o
o
d

co
o
o
o
d

CM o o
o
d

CM o o
o
d

o o o
d

CM o o o
d

CM
o
o
o
d

CO
O
O
O

d

CM
O
O
O

d

o o o
d

O
O
O

cp"

o o o o
d

o o o o
d

o o o o
d

o o o o
d

o o o
d

o
o o
d

O
CM

co
CM
o
o
d

CM
o
o
d

co
CM
o o
d

CM
CM
o o
d

CM
o o
d

o
CM
o
o
d

en

o
o
d

en

o
o
d

O o
d

T—

o
o
d

CM

o
o
d

CM

o o
d

o
o
d

en
o
o
o
d

CD o o
o
d

o
o
o
d

co
o
o
o
d

CM o
o o
d

CM o o
o
d

o o
o
o

CM
o
o
o
d

co
o
o
o
d

CM o o
o
d

CM
O
O
O

O

o o
o
d

O
O
O

CD

o o o
o
d

o o o
o
d

o o o
o
d

o o o
o
d

o o
o
d

CM o o
o
d

CO

co
CM o
o
d

co
CM o
o
d

CM
CM o
o
d

CM
CM o
o
d

CM o
o
d

en

o
o
d

co

o
o
d

co

o
o
d

o
o
d

co

o
o
d

CM

o
o
d

Y—

o
o
d

o

o
o
d

co
o
o
o
d

CD
o o
o
d

co
o
o
o
d

CM
o o
o
d

Y—
o o o
d

Y—
o o
o
d

CM
O
O
O

d

co
o
o
o
o

CM
o
o
o
d

CM o
o
o
CD

o
o o
CD

T—

o o
o
d

O
O
O
O

d

o
o
o
d

o
o
CD

d

o
o
o
d

1—

o
o o
d

T—

o o o
d

CM
o
o
o
d

CM
CO

CM
o
o
d

m
CM
o o
d

CM
o
o
d

CM
o
o
d

o
CM
o o
d

oo

o
o
d

T—

o o
d

o
o
d

CO

o
o
d

CM

O
o
d

o
o
d

o

o
o
d

en
o
o
o
d

o
o
o
d

in o
o o
d

CM
O
O o
d

o
o o
d

o o
o
o
d

o o
o o
d

co
o
o
o
d

CM o
o o
d

o
o
o
ep

T—

o
o o
d

1

O
O
O
O

d

o
o o
d

o
o o
d

CM
O
O
O

d

CM o
o
o
d

CM o
o o
d

CM
O
O
o
d

CM o
o o
d

co
o
o
o
d

Y—

CM
O
O

d

CM
CM
o o
d

en

o
o
d

co

o
o
d

o o
d

in

o o
d

in

o o
d

in

o
o
d

o

o
o
d

en
o
o
o
d

co
o
o
o
d

co
o
o
o
d

CD
o o o
d

in
o o o
d

CM
o o o
d

o o o
o
d

CM
o o o
d

CM o o
o
o

CO
o o
o
o

o
o
o
o
d

o o
o
d

CM o o
o
d

CM o o
o
d

CM o o
o
d

CO
o o
o
d

CO
o o
o
d

■<* o o
o
d

o o
o
d

m o o
o
d

in o o
o
d

in o o
o
d

CD
o
o
o
d

CM

CM o
o
d

CM
CM o
o
d

CO

o
o
d

CO

o
o
d

o
o
d

m
o
o
d

o
o
d

o
o
d

o

o
o
d

en
o
o
o
d

00 o o
o
d

o
o
o
d

CO o
o o
d

o
o o
d

CM o
o o
d

o
o o
d

CM
o
o
o
d

CO o
o o
o

CM
O
o o
d

o
o
o
o
d

o
o o
d

CM
o
o
o
d

CM
o
o
o
d

CO
o
o
o
d

if o
o
o
d

o
o
o
d

■<* o
o
o
d

m o
o
o
d

m o
o
o
d

m o
o
o
d

in o
o
o
d

co
o
o
o
d

CO
CM

CO
CM o
o
d

CM
o
o
d

00

o
o
d

o
o
d

CD

o
o
d

o
o
d

■■a-
T—

o
o
d

o
o
d

en
o
o
o
d

co
o
o
o
d

o
o o
d

o
o
o
d

in o
o o
d

CO
o
o
o
d

T—

o
o
o
d

Y—
o
o o
CD

co
o
o
o
Ö

CM o
o o
d

CM o
o o
d

o
o
o
d

CM
o o
o
d

co
o
o
o
d

co
o
o
o
d

co
o
o
o
d

■<* o o
o
d

in
o o
o
d

m
o o
o
d

in o o
o
d

CD
O o
o
d

CD
o
o o
d

CD
o
o o
d

o
o
o
d

C

"5
Q.
c
D>

8
P

CM o f - CM o> CO CO co u> w r- CO f» in CO
CM

CO
CM T"

CM
CO

CO
T—

o
CM

CO
CM

m
CM

CO
CM

CM
CM

o
CO CM CM CM CO

58

Appendix B.3 Ranking and Selection

Table 6 Ranking and Selection

Design
Setting

Crossover Selection Population
Size

Probability
of

Crossover

Probability
of Mutation

Number
Replaced

P

31 uniform roulette 100 0.95 0.03 2 0.1682497

29 uniform tournament 100 0.95 0.03 25 0.124204

21 uniform tournament 100 0.85 0.03 2 0.0906266

24 two-point roulette 100 0.85 0.03 2 0.084916

30 two-point tournament 100 0.95 0.03 2 0.0764209

22 two-point tournament 100 0.85 0.03 25 0.0735273

27 uniform roulette 50 0.95 0.03 25 0.0554826

19 uniform roulette 50 0.85 0.03 2 0.0449968

25 uniform tournament 50 0.95 0.03 2 0.0335378

28 two-point roulette 50 0.95 0.03 2 0.0318686

23 uniform roulette 100 0.85 0.03 25 0.0299966

20 two-point roulette 50 0.85 0.03 25 0.0291113

18 two-point tournament 50 0.85 0.03 2 0.0284038

32 two-point roulette 100 0.95 0.03 25 0.0221866

15 uniform roulette 100 0.95 0.01 25 0.0109189

17 uniform tournament 50 0.85 0.03 25 0.0102421

26 two-point tournament 50 0.95 0.03 25 0.0101765

7 uniform roulette 100 0.85 0.01 2 0.0100477

13 uniform tournament 100 0.95 0.01 2 0.0084658

16 two-point roulette 100 0.95 0.01 2 0.007204

11 uniform roulette 50 0.95 0.01 2 0.0069814

8 two-point roulette 100 0.85 0.01 25 0.0059804

5 uniform tournament 100 0.85 0.01 25 0.005803

3 uniform roulette 50 0.85 0.01 25 0.004433

6 two-point tournament 100 0.85 0.01 2 0.0042146

1 uniform tournament 50 0.85 0.01 2 0.0037717

4 two-point roulette 50 0.85 0.01 2 0.0036967

9 uniform tournament 50 0.95 0.01 25 0.0035382

14 two-point tournament 100 0.95 0.01 25 0.0034003

10 two-point tournament 50 0.95 0.01 2 0.0028188

12 two-point roulette 50 0.95 0.01 25 0.0026511

2 two-point tournament 50 0.85 0.01 25 0.0021274

Probability of Correctly Selection is greater than 0.95

60

APPENDIX C Genetic Algorithm In C++

/*

RANDOM FEASIBLE GENETIC ALGORITHM FOR MKP.

 */
#include <stdio.h>
#include <iostream.h>
ttinclude <ctime>
#include "GASState.h"
#include "GAlDBinS.h"
float Objective(GAGenome &); // This is the declaration of our obj
function.

// The definition comes later in the file.
#define NO_VAR 101
#define MKP_FILE "grll20.txt"// Problem file

float c[NO_VAR],al[NO_VAR],a2[NO_VAR];
float bl,b2,ZIP,Rho,Slackness;
int dropper,adder;
// seed is optional but better use to have same results each time you
run the code
// Seeding is important in random search
//int seed = 12321;
int
main()
{

// opening data file
ifstream in(MKP_FILE);

char zipi[32] = "ALO.txt";
ofstream outfile ;
outfile.open(zipi, (ios::out | ios::app));

for (int jy=l; jy<3 ; jy++)

dropper=adder = 0;

double dump;
int prob;

if(!in) {
cerr « "could not read data file " « MKP_FILE « "\n";

exit(1);
}

// first rows of each problem is read to have parameters
and RHS of problem

//the parameters of the program,
in » prob;
in » dunk-

el

in » dump;
in » ZIP;
in » bl;
in » b2;
in » Rho;
in » Slackness;

in >> dump;
in » dump;
in » dump;

cout « jy « "\n";
int nvar = 0;
do{ // reading obj. func. values

in >> c[nvar];
nvar++;

while(nvar<100);
nvar = 0;

do{ //reading first constraint

in » al[nvar];
nvar++;

while(nvar<100);

nvar = 0;
do{ //reading second constraint

in » a2[nvar];
nvar++;

while(nvar<100);

if (in.eof(J)
in.close();

if(nvar >= N0_VAR) {
cerr « "data file contains more VARIABLES than

allowed for in the fixed\n";
cerr << "arrays. Recompile the program with larger

arrays or try a\n";
cerr « "smaller problem.\n";
exit(1);

}
// Declare variables for the GA parameters and set them to

some default values
int length = 100;

int flush = 5;
int atama = 10000;

int popsize = 50;
int ngen = 10000;
float pmut = 0.03;

62

double pcross = 0.95;

int best = 5;
time_t timel;
timel=0;
timel = clock();

GAlDBinaryStringGenome genome(length, Objective);
GASteadyStateGA ga(genome);
ga.initialize();

ga.populationSize(popsize);
ga.nGenerations(ngen);
ga.pMutation(pmut);
ga.nReplacement(2);
ga.pCrossover(pcross);
ga.flushFrequency(flush);
ga.scoreFrequency(atama);
ga.scoreFilename("Graphicin.txt");

ga.crossover(GAlDBinaryStringGenome :: TwoPointCrossover);
//ga.crossover(GAlDBinaryStringGenome ::

OnePointCrossover);
//ga.crossover(GAlDBinaryStringGenome ::

EvenOddCrossover);*/
//ga.crossover(GAlDBinaryStringGenome ::

StringtoChangeCrossover);
// ga.crossover(GAlDBinaryStringGenome ::

UniformCrossover);

//ga.terminator(GAGeneticAlgorithm::TerminateUponZipConvergence);
// ga.parameters("settings.txt");

// ga.parameters(arge,argv);
GARouletteWheelSelector tournement; //RankSelector ;

RoulletteWheelSelector ;
ga.selector(tournement) ;
GASigmaTruncationScaling sigma ;
ga.scaling(sigma) ;

ga.selectScores(2);
// ga.statistics().write(outfile);
//genome=ga.generation();
ga.evolve();

// genome = ;

if (ga.done){
time_t time2;
time2=0;
time2 = clock();
cout « dropper « "\t" «adder« "\t" «

ga.statistics().crossovers()« "\n";
outfile « difftime(time2,timel)/ CLOCKS_PER_SEC «

"\t";

63

//outfile « ga.statistics().online();
//cout « genome;

}
// GAParameterlist params ;
// params.set(gaNscoreFilename, "out.dat") ;

return 0; }

// Objective function. The most imoratant part. Basically a child is
evaluated by this function before
//getting into the population

float
Objective(GAGenome& g) {

GAlDBinaryStringGenome & genome = (GAlDBinaryStringGenome
&)g;

//*char Zip[32] = "ONLINE.txt";
// ofstream outfile ;
// outfile.open(Zip, (ios::out | ios::app));
// outfile « genome <<"\n";

float score=0.0;
float feasiblel=0.0;// left hand side of current first

constraint
float feasible2=0.0;// left hand side of current second

constraint

//* First constraints are calculated to see if the
reported solution is good!

for(int i=0; i<genome.length(); i++)
{

feasiblel += genome.gene(i)*al[i];
feasible2 += genome.gene(i)*a2[i];

}

//* if the current solution is not good (violated
constraint(s)), then DROP and ADD algorithms are

// invoked to make child good for the feasible population.
This is done by starting from a random point

// in its chromosome '1' are excluded until they are
feasible in terms of both constraints.

if ((feasiblel>bl) || (feasible2>b2)){

dropper++ ;

64

if(genome.gene(q)){

int mdpnt =
GARandomlnt(0,(genome.length()-1));

for (int q=mdpnt ; q<genome.length() ;

q++){

genome.gene(q,0);
feasiblel -= al[q];
feasible2 -= a2[q];

}
if ((feasiblel<=bl) && (feasible2<=b2)) break;

if (q == (genome.length()-1)){

for (int j=0 ; j<mdpnt ; j++){

if(genome.gene(j)){

genome.gene(j , 0);

feasiblel -= al[j];

feasible2 -= a2[j];

}

if ((feasiblel<=bl) && (feasible2<=b2)) break;}

}

}

}
//* After DROP algortihm, ADD algorithm tries to improve the quality

of chromosome by
// adding feasible items »starting from a random byte.

int addition = GARandomlnt(0,(genome.length()-1));
for (int t=addition; t<genome.length() ; t++){

if(((feasiblel +al[t])<=bl) && ((feasible2 + a2[t])<=b2) &&
(!(genome.gene(t)))){

adder++;
genome.gene(t,1) ;
feasiblel += al[t];
feasible2 += a2[t];}

if ((feasiblel==bl) && (feasible2==b2)) break;

if (t == (genome.length()-1)){

65

for (int j=0 ; j<addition ; j++){
if(((feasiblel +al[j])<=bl) && ((feasible2 + a2[j])<=b2) &&

(!(genome.gene(j)))){
adder++;

genome.gene(j , 1) ;
feasiblel += al[j];
feasible2 += a2[j];}

if {(feasiblel==bl) && (feasible2==b2)) break;}

for(int w=0; w<genome.length(); w++){ // Score of the child is returned
score += genome.gene(w)* c[w];}

return score;

66

Bibliography

Balas, Egon. "An Additive Algorithm for Solving Linear Programs with Zero-one
Variables," Operations Research. 13: 517-546 (1965).

Balas, E and Martin, C.H. "Pivot and Complement - A heuristic for 0-1 Programming,"
Management Science, 26(1): 86-96(1980).

Barr, R.S., J.P. Kelly, B.L. Golden, M.G.C. Resende and W.R. Steward Jr. "Designing
and Reporting on Computational Experiments with Heuristic Methods," Journal of
Heuristics. 1(1): 9-32 (1995).

Beasley, J.E., D.R. Bull, R.R. Martin. "An Overview of Genetic Algorithms:
fundamentals and research topics," University Computing, 15: 58-69 and 170-181
(1993).

Bjorndal, M.H, A. Caprara, P.I. Cowling, Delia Croce, H. Lourencho, F. Malucelli, A.J.
Orman, D. Pisinger, C. Rego, J.J. Salazar. " Some Thoughts on Combinatorial
Optimization," European Journal of Operational Sciences, 83: 253-270 (1995).

Chu, P.C and J.E. Beasley. "A Genetic Algorithm for the Multiconsraint Knapsack
Problem," The Management School, Imperial College, Working Paper
http:\mscmga.ms.ic.ac.uk/pchu/pchu.html, September 1998.

Dammayer, F. and S. Voss. "Dynamic tabu list management using reverse elimination
method,' Annals of Operations Research, 41: 31-46 (1993).

Davis, Lawrence. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold,
1991.

Drexl, A. "A Simulated Annealing Approach to the Multiconstraint Zero-One Knapsack
problem," Computing.40: 1-8 (1988).

Fisher, M., H.G. Alexander and Kan Rinnkoy. "The Design, Analysis and
Implementation of Heuristics," Management Sciences, 34(3): 263-265 (1988).

Frieze, A. M. and M. R. B. Clarke. "Approximation algorithms for the m-dimensional 0-1
Knapsack Problem: Worst-case and probabilistic analyses," European Journal of
Operations Research. 15: 100-109 (1984).

Goldberg, David. Genetic Algorithms in Search, optimization and machine Learning.
Mass. :Addison-Wesley, 1989.

67

Hanafi, S, A. Freville and A. El Abedellaoui."Comparison of Heuristics for the 0-1
Multidimensional Knapsack Problem," In : Meta-heuristics: theory and Applications.
Boston: Kluwer Academics, 1996.

Hanafi ,S. and A. Freville. "An Efficient Tabu Search for the Multiconstraint Zero-One
Knapsack Problem," European Journal of Operational Research, 106: 659-675 (1998).

Hill, R.R. and C.H Reilly. "The Effects of Coefficient Correlation Structure in Two-
Dimensional Knapsack Problems on Solution Procedure Performance," Working Paper,
Air Force Institute of Technology, W.P.AFB, Dayton, Ohio, U.S.A., 1997.

Hill, R. "An Analytical Comparison of Optimization Problem Generation
Methodologies." Proceeding of the 1998 Winter Simulation Conference. 609-615.
Washington DC: Institude of Electrical and Electronics Engineers, 1998

Hoff, Arrild, Arne Lokketangen and Ingvar Mittet. "Genetic Algorithms for 0/1
Multidimensional Knapsack Problems," Working Paper, Molde College, Britveien 2,
6400 Molde, Norway, 1998.

Hoffman, Karla L. and Manfred Padberg."Combinatorial and Integer Programming," In:
Encyclopedia of Operations Research and Management Science. Gauss, Saul and Carl L.
Harris. Norwell: Kluwer Academic Publishers, 1996.

Hooker, J.N. "Needed: An Empirical Science of Algorithms," Operations Research,
42(2): 201-212 (1994).

Kochenberger,Gary, B.A. McCarl and F.P. Wymann. "A Heuristic for General Integer
Programming," Decision Science,5: 36-44 (1974).

Lee, J.S and M. Guignard. "An Approximate Algorithm for Multidimensional Zero-One
Knapsack Problems- a Parametric Approach," Management Science,34: 402-410 (1988).

Lokketangen, Arne. "A Comparison of a Genetic and Tabu Search Method for 0/1
Multidimensional Knapsack Problems". Working Paper, Molde College, Britveien 2,
6400 Molde, Norway. 1997.

Lokketangen, A. and F. Glover."Solving Zero-One Mixed Integer Programming
Problems Using Tabu Search," European Journal of Heuristics, 106: 624-658 (1998).

Loulou, R. and E. Michalides. "New Greedy Heuristics for 0-1 Multidimensional 0-1
Knapsack Problem," Operations Research, 27 (6): 1101-1114 (1979).

Magazine, M.J. and O. Oguz."A heuristics Algorithm for the Multidimensional Zero-One
Knapsack Problem," European Journal of Heuristics, 16: 319-326 (1984).

68

Martello, S. and P. Toth. Knapsack Problems: algorithms and computer
implementations. New York: J.Wiley & Sons, 1990.

Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution
Pro grams .New York: Springer-Verlag, 1992.

Nemhauser, G. and Laurence W.A. Integer and Combinatorial Optimization.
John Wiley& Sons Inc. 1988

Osman, I. and J. Kelly. Meta-Heuristics : theory & applications. Boston: Kluwer
Academics, 1996.

Parker, gary R. and Ronald L. Rardin. Discrete Optimization. Boston: Academic Press
Inc., 1988.

Reeves, Colin R. Modern Heuristic Techniques for Combinatorial Problems. New York:
John Wiley & Sons, 1993

Reingold, Edward,M. and others, Combinatorial Algorithms: Theory and Applications,
New Jersey : Prentince-Hall Inc. 1977

Petersen, Clifford. "Computational Experience with Variants of the Balas Algorithm
Applied to the Selection of R&D Projects," Management Science, 13: 736-745 (1967).

Schaffer, J.David, Richard A. Caruana, Larry J. Eshelman and Rajarshi Das."A Study of
Control Parameters Affecting Online performance of Genetic Algorithms for Function
Optimization," In: Proceedings of the Third International Conference on Genetic
Algorithms. Schaffer, D.A and others. San Mateo: George Mason University, 1994.

Senju, S. and Y. Toyoda. "An approach to linear programming with 0-1 variables,"
Management Sciences, 15: 196-207 (1968).

Shih, W. "A branch and bound method for multiconstraint zero-one knapsack problem,"
Journal of the Operational Research Society, 30: 369-378 (1979).

Silver, Edward, R.V.V. Vidal and Dominique de Werra. "A tutorial on Heuristic
methods," European Journal of Operational Research, 5: 153-162 (1980).

Syswerda, G. "Uniform Crossover in genetic Algorithms," In: Proceedings of the Third
International Conference on Genetic Algorithms. Schaffer, D.A and others. San Mateo:
George Mason University, 1994.

Theil, J. and Voss, S. "Some Experiences on Solving Multiconstraint 0-1 Knapsack
problems with Genetic Algorithms," Computing.32: 226-242 (December 1993).

69

Toyoda, Y. "A simplified algorithm for obtaining approximate solutions to zero-one
programming problems," Management Sciences, 21: 1417-1427 (1975).

Whitley, Darrell. "The GENITOR Algorithm and Selection Pressure: Why Rank-Based
Allocation of Reproductive Trials is Best," In: Proceedings of the Third International
Conference on Genetic Algorithms. Schaffer, D.A and others. San Mateo: George Mason
University, 1994.

Zanakis, S. and J. Evans. "Heuristic optimization: Why, When and How to Use It,"
Interfaces.il: 75-82 (October 1981).

Zanakis, Stelios. "Heuristic 0-1 Linear Programming: An experimental Comparison of
Three Methods," Management Science. 24: 91-104 (1977).

70

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

A COMPARISON OF GENETIC ALGORITHMS' PARAMETERIZATION ON
SYNTHETIC OPTIMIZATION PROBLEMS

6. AUTHOR(S)

Mehmet Eravsar, Lieutenant, TUAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/99M-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Raymond R. Hill, Major, USAF

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Meta-heuristics have been deployed to solve many hard combinatorial and optimization problems. Parameterization of
meta-heuristics is an important challenging aspect of meta-heuristic use since many of the features of these algorithms can not
be explained theoretically. Experiences with Genetic Algorithms (GA) applied to Multidimensional Knapsack Problems
(MKP) have shown that this class of algorithm is very sensitive to parameterization. Many studies use standard test problems,
which provide a firm basis for study comparisons but ignore the effect of problem correlation structure.

This thesis applies GA to MKP. A new random repair operator, which projects infeasible solutions into feasible region,
is proposed. This GA application is tested with synthetic test problems, which map possible correlation structures as well as
possible slackness settings. Effect of correlation structure on solution quality found both statistically and practically
significant. Depending on the Response Surface Methodology design, proposed is a GA parameter setting which is robust in
both solution quality and computation time.

14. SUBJECT TERMS
Heuristics, Meta-heuristics, Genetic Algorithms, Knapsack Problems, Multidimensional
Knapsack Problems

15. NUMBER OF PAGES

78
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	A Comparison of Genetic Algorithm Parametrization on Synthetic Optimization Problems
	Recommended Citation

	/tardir/tiffs/A361725.tiff

