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Abstract 

Meta-heuristics have been deployed to solve many hard combinatorial and 

optimization problems. Parameterization of meta-heuristics is an important challenging 

aspect of meta-heuristic use since many of the features of these algorithms can not be 

explained theoretically. Experiences with Genetic Algorithms (GA) applied to 

Multidimensional Knapsack Problems (MKP) have shown that this class of algorithm is 

very sensitive to parameterization. Many studies use standard test problems, which 

provide a firm basis for study comparisons but ignore the effect of problem correlation 

structure. 

This thesis applies GA to MKP. A new random repair operator, which projects 

infeasible solutions into feasiblity, is proposed. This GA application is tested with 

synthetic test problems, which map possible correlation structures as well as possible 

slackness settings. Effect of correlation structure on solution quality found both 

statistically and practically significant. Depending on the Response Surface Methodology 

design, proposed is a GA parameter setting which is robust in both solution quality and 

computation time. 

Vll 



A COMPARISON OF GENETIC ALGORITHMS' 
PARAMETERIZATION ON 

SYNTHETIC OPTIMIZATION PROBLEMS 

Chapter 1. Motivation and Outlines 

Meta-heuristics have been used to solve many hard combinatorial and 

optimization problems. Parameterizations of meta-heuristics are an important and 

challenging aspect of meta-heuristic use since many of the features of these algorithms 

can not be explained theoretically. Deficiencies in analytic approaches mean empirical 

studies are conducted to examine parameterization of meta-heuristics. This emerging 

"empirical science" is addressed in Hooker (1994). 

Experience with Genetic Algorithms (GA) has shown that this class of algorithm 

is very sensitive to parameterization. This has been true in GA studies applied to 

Multidimensional Knapsack Problems (MKP), for instance Theil and Voss (1994). Many 

studies use standard test problems which provide a firm basis for study comparisons but 

ignore the effect of problem correlation structure. Freville and Plateau (1996) and Hill 

(1997) infer heuristic and enumerative algorithm performance when correlation exists in 

test problems. This research extends Hill's results to a GA empirical study. 

We develop a GA which inherits its operators from GALib®. We exploit results 

from previous studies, but define an operator to repair infeasible solutions both within 

the initial population and in subsequent populations. Hill's (1997) test problems are used 

in the empirical study. 



The main body of this thesis follows the format of a stand-alone article. This is 

provided in Chapter Two. Chapter Three outlines future avenues that we find necessary 

to complete and improve upon this study. Details, which are excluded from the article, 

are found in Appendices. Appendix A includes a detailed review of past studies. Detailed 

analysis of data that is generated in our study can be found in Appendix B. Finally, 

Appendix C includes source code for the GA we implemented. 



Chapter.2. ARTICLE 

1. Introduction. 

1.1. Purpose of This Study 

Among the heuristic solution techniques for 0-1 Multi-Dimensional Knapsack 

Problems, Genetic Algorithms (GA) are important due to their speed and high quality 

solutions. As in many other heuristic techniques, selection of algorithm parameters plays 

a significant factor in GA performance. However, there is not a general theorem that 

explains why GA's have the features that they have (Beasly, et al. 1993). This lack of 

proven theoretical knowledge encourages empirical studies addressing GA 

parameterization. 

This paper is an empirical study of GA's applied to the Two-dimensional 

Knapsack Problem (2KP). Hill and Reilly's (1997) test problems are used for the study. 

These problems vary problem correlation structure and right hand side ratios (i.e., 

constraint tightness). We seek robust GA parameter settings for these problems. 

Furthermore, these GA parameters are used to examine the effect of problem correlation 

structure and slackness. 

1.2. Multi-Dimensional Knapsack Problems 

In a knapsack problem, we seek the subset of items which maximize the profit 

while not exceeding the resource constraint. There are a variety of knapsack problems. In 

0-1 Knapsack Problems (0-1 KP) each item is selected once. In Bounded Knapsack 

Problems (BDP) each item is selected a limited number of times. In Multiple Knapsack 



Problems more than one knapsack is filled simultaneously (Bjorndal, 1995). Details on 

knapsack problems are found in Martello and Toth (1990). 

Another type of knapsack problem is called 0-1 Multidimensional Knapsack 

Problem (MKP). In MKP, variables take values of 0 or 1 and must satisfy more than one 

constraint. This type of problem is formulated as follows: 

max 

n 
EG) c.-x 

J  J 

j=l 
subject to 

n 
Ea. .x <b. i = {i,2..m} (2) 

i»j   J       ' 

j=l X   ={0,1} 
J J 
where 

c>0,a   .>0,and   atleastone      a    >Q for each j. 
J i.J i»J 

Cutting stock, resource allocation and capital budgeting problems are among the real 

world applications of 0-1 MKP. Freville and Plateau (1996) provide a comprehensive 

overview of MKP applications. 

MKP is a NP-hard problem (Frieze and Clark, 1984), so heuristics are a favorable 

means of solving MKP instances. 

1.3. Genetic Algorithms 

In 1975 Holland introduced the basis of Genetic Algorithms (GA). The principles 

he presented were sufficient to create optimization algorithms based on a genetics 

analogy. 



In nature, "survival of the fittest" means highly adapted species are selected to 

produce subsequent generations. It is expected that the average fitness or adaptation of 

each generation improves over that of the current generation, because each generation 

inherits good features from the current generation. Conceptually, this means we would 

expect to eventually achieve a population composed of identical individuals. However, 

mutation occurs and introduces diversification in the population and prevents this 

homogenous situation. 

Analogously, GA solves optimization problems by simulating nature's generation 

paradigm. A typical GA starts with an initial population consisting of random solutions or 

individual chromosomes. The fitness of each chromosome is evaluated by an appropriate 

measure, such as an objective function value for an optimization problem. These 

chromosomes mate based on their fitness in the population. This mating produces an 

offspring (new solution) inheriting features from each parent's chromosome. The bits 

within this chromosome mutate based on a small probability to ensure diversity. These 

offspring replace older chromosomes in the population that are not as fit as the offspring. 

In a given generation, this mating and replacement process is carried out until the number 

of replacements desired in the population is achieved. The number of generations 

simulated determines when the heuristic terminates. 

Each generation produced during the evolution of a GA is expected to contain 

fitter chromosomes or solutions than past generations. For optimization applications, 

these are improved objective function values. This is aided by selecting the fittest 

chromosomes to mate. This selection criterion encourages retaining the good features of 



chromosomes in new chromosomes. Beasley et al (1993) claim that a properly designed 

GA will converge to the global optimality. 

GA terminology is consistent with natural genetics. The Chromosome is the main 

object. Each chromosome represents a possible solution to the given problem. Genes are 

the small units comprising chromosomes and may be the bit stream of the solution. 

Location of each gene is called loci and genes may have a set of values, which are called 

alleles. Mating is accomplished using crossover; in one point crossover an offspring 

chromosome is derived with the first part from parent 1 and the second part from parent 

2. The parts are determined by the crossover point. 

A typical GA follows the following procedure: 

Initialize; 
Generate initial population 
Calculate the fitness and relative fitness of 
initial chromosomes 

Evolve while termination criterion is not satisfied; 
Reproduce until population is replaced by desired 
amount 

Select parents according to their relative 
fitness. 
Crossover parents at random points with 
desired probability 
Mutate at given probability 

Evaluate fitness and calculate relative fitness of 
offspring 
Replace offspring with the selected ancestors 

End. 

Chromosome formatting is decided based on the tpe of coding. Binary coding 

using 0 or 1 value bits is analogous to natural genetics and is commonly used but has 

some drawbacks if the chromosome length is long. Gray and integer coding are also used. 

Gray coding is invented to lessen the distance gaps between phenotype and genotype of a 

chromosome. For example, in a 4-bit chromosome, phenotypes 16 and 15 are adjacent to 



each other but in genotype space they are away from each other (1111 and 1110). In gray 

coding genotype for 16 and 15 can be mapped by one byte difference (1000 and 1001, 

respectively). Although gray coding helps to reduce distance between genotypes, there is 

no simple algorithm for decoding gray coding into phenotypes (Reeves, 1993). 

Furthermore, they are not critical in combinatorial optimization applications of GA. 

Integer coding is used when the binary coding operators are not applicable to the 

solution of problem (for instance, Traveling Salesman Problem). Each gene can take 

integer values varying from 1 to the chromosome length. Different strategies can be 

followed to transfer a chromosome into a solution. Integer coding introduces new 

crossover and mutation operators that are different from binary operators. 

Population initialization is either random or seeded. Random populations consists 

of randomly generated chromosomes. Seeding uses auxiliary algorithms to generate good 

feasible solutions which are included in the initial population. Both techniques have 

advantages and disadvantages. In random initialization, the entire solution space is 

considered. This diversifies the population causing a longer time to converge to an 

optimal solution but this may avoid local optima traps. On the other hand, seeding an 

initial populations with some well known chromosomes or solutions can accelerate 

convergence but may also cause premature convergence, returning local versus global 

optima (Reeves, 1993; Davis, 1991). 

The fitness function assigns a value to each chromosome to represent the 

chromosome's goodness or quality. In unconstrained function optimization, this is the 

function value. Unfortunately, in constrained optimization problems this requires 



strategies to incorporate feasibility into the fitness value and rules guiding if infeasible 

solutions are allowed in a population. 

Selection for mating is performed in many different ways. A common 

characteristic of these different techniques is that the number of times a chromosome is 

selected is proportional to its relative fitness value. A simple selection allocates 

probability to each chromosome by using a roulette wheel with slot sizes proportional to 

the relative fitness value of the chromosome. This is the probability that the chromosome 

is selected as a parent. Selection occurs as many times as required to select enough 

parents to generate the next generation. Tournament selection randomly indexes 

chromosomes with numbers 1 through population size (P). Two randomly chosen parents 

are compared and the best one is selected as the candidate for mating. Again selection 

continues until the required numbers of parents are selected. 

Crossover is an operator that guarantees different offspring from their parents. 

One-point, two-point and uniform crossovers are illustrated in (Figures 1-3). In one-point 

crossover, a random loci is selected and genes located to the right hand of this loci are 

interchanged with the genes of the other parent. The result is two new different 

chromosomes which inherit some genes from each parent. In two-point crossover two 

locis are randomly selected and the part of the chromosome located between these locis 

are interchanged. Crossovers based on more than two points can be devised extending 

this same procedure. 

Uniform crossover is a multipoint crossover strategy. A string of binary genes is 

randomly produced the same length as the chromosome length and if the binary number 

is 0, the corresponding gene value for the child is inherited from the first parent; 



otherwise, it comes from the second parent To produce a second child, reverse the roles 

of 0 and 1 in the gene selection process. Crossover details for the MKP are in Section 4. 

ONE-POINT CROSSOVER 

PARENT l       OO#OOD#O#O       OOIOOIOOO CHILD 1 

PARENT2        lOIIO^OOOl IO#IOO«OIO CHILD2 

Figure 1. Onepoint Crossover 

PARENT 1 O O 

PARENT 2 

o o o 

TWO-POINT CROSSOVER 

O • O OOIIOOIOIO CHILD 1 

O• DOO •        lOiOOOOOO 

Figure 2. Two-point Crossover 

CHILD 2 

UNIFORM CROSSOVER 

PARENT 1 OOIOOOIOIO 

RANDOM 0   10  0   1     10   10   1 

PARENT2        lOIIOIOOOi 

O O • O O 

•OIIOOOOOO 

Figure 3. Uniform Crossover 

CHILD 
1 

CHILD 2 

The mutation operator serves to diversify the population by changing genes of a 

new chromosome according to a probability of mutation. Mutation helps explore 

unvisited regions of the solution space (i.e, diversification). 

GA effectiveness has been best explained with the building block hypothesis and 

the schema theorem both of which are related to schema. A schema is a string of values 

{0,1,*}. Schema explores the similarities between chromosomes. A schema represents all 



strings, which match it on all positions other than the genes with allele (*) (Michalewicz, 

1992). The order of a schema is defined by the number of ones in its structure. The 

defining length is the distance between the outermost * elements or genes. 

The schema theorem says that short low-order, above-average schemata will 

produce with probability that increases exponentially with the generation number. This 

guarantees that chromosomes with well schema produce more often. Building blocks are 

short defined length of schemata that work good when combined together into a 

chromosome. This hypothesis requires that related genes must be close together in a 

chromosome and interaction between genes must be very low. However, finding 

chromosomes bearing these two properties is not always possible. 

2. Combinatorial Optimization and Heuristics. 

2.1.    Combinatorial Problems and Optimization 

Combinatorial problems consist of arrangements of objects (scarce resources) to 

meet some desired objectives. Integrality is a characteristic of these objects. Thus, the 

number of possible arrangements is finite. The travelling salesman problem (TSP), 

parallel machine scheduling, the knapsack problem (KP), portfolio selection, capital 

budgeting, facility location, design and production of VLSI circuits, political districting, 

set covering and assignment problems are classes of combinatorial optimization problem 

(Karla, 1996; Nemhauser, 1988). 

Parker (1988) defines four categories of combinatorial problems depending on the 

approach in answering the questions: 

10 



1. Existence, are there specific arrangements? 

2. Evaluation, how good are arrangements? 

3. Enumeration, how many arrangements exist? 

4. Extremization, is there a best arrangement? 

Combinatorial optimization (CO) seeks an optimal arrangement among the finite 

alternatives. When the problem size is small, even simple enumeration tools can find 

optimal solutions in acceptable time. However, the computational effort required to 

identify the optimal arrangement from among these finite alternatives grows 

exponentially with the number of variables. For example, a problem of 100 binary 

variables has 1.2 x 1030 possible solutions. This number doubles with each additional 

variable introduced into the problem. For even moderate size problems, enumeration 

techniques are not computationally efficient. 

Problem solving techniques for these problems can be classified into the 

following four categories: 

1. Enumeration.   As stated earlier, small instances of problems can be solved by 

enumerating all possible solutions. However, it is computationally intensive for even 

moderate size problems. Branch and Bound algorithms are the most common 

enumeration type of technique. 

2. Relaxation and Decomposition Techniques. Besides the LP relaxation of an 

integer problem, another relaxation of the integer programming problem can be 

achieved by integrating some or all of constraints into the objective function. This 

type of relaxation, Lagrangian Relaxation, provides tighter bounds than the LP 

solution to the same problem (Hoffman, 1996). Decomposition techniques divide a 

11 



main problem into easy separate problem subsets and combine the solution of subsets 

to obtain a solution for the main problem. 

3.   Cutting Plane Algorithms. These algorithms are devised to solve an IP using an 

LP relaxation but suffer from slow convergence. The algorithm can be summarized as 

follows. First, find an LP optimum of the relaxed IP. Second, pick a constraint which 

cuts the LP optimum out of the solution space but does not eliminate feasible integer 

solutions. Add this cutting constraint to the problem a cutting constraint. Solve the 

new problem by dual simplex. If integer solutions are found any time in the algorithm 

flow, the algorithm stops with the optimal solution. 

4.   Heuristic Techniques. While the above techniques seek an optimal solution, heuristic 

techniques merely seek good solutions. Increased computing speed and improved 

heuristic algorithms have made these techniques increasingly popular in research and 

application. 

2.2.    Heuristics 

The word "heuristics" is derived from the Greek word "heuriskein" meaning 

"to discover." In this sense, heuristics (also called approximation algorithm or inexact 

solution) are described in Barr, et al (1995) as: 

" a well defined set of steps for quickly identifying a high-quality solution for 
a given problem where a solution is a set of values for the problem unknowns and 
quality is defined by a stated evaluation metric or criterion ." 

Another definition of heuristics is Reeves' (1993): 

"... a technique which seeks good (i.e. near optimal) solutions at a reasonable 
computational cost without being able to guarantee either feasibility or optimality, or 
even in many cases to state how close to optimality a particular feasible solution is." 

12 



Fisher, et al. (1983) sees the 1950s as the flourishing and attractive years of 

heuristics, the 1960s as the return of exact optimization algorithms and the 1970s as the 

disappointment years of the exact algorithm studies since computational complexity 

studies proved that many of the algorithms devised were inefficient when used to solve 

hard problems. Since the 1980s, intellectual energy has been invested primarily on the 

heuristics studies. 

Many tutorials try to explain the reasons for implementing heuristics as they 

become more popular tools in optimization. Two of the most detailed ones are Zanakis 

and Evans (1981) and Silver, et al. (1980). Their findings can be summarized as follows: 

• Problems may have neither an analytical nor an iterative solution 
procedure. 

• Although an exact algorithm exists, one may not be able to afford time and 
storage requirements. 

• Inexact or limited data used to estimate model parameters might inherently 
contain errors much larger than the near optimality (sub-optimality) of a 
good heuristic. 

• An exact algorithm is not available due to its cost or hardware limitations. 
• As a starting point for the other exact or inexact algorithms. Sometimes 

heuristics are used to alleviate the burdens on another algorithm even 
during the operation of that algorithm. 

• They are simple and understandable when compared with the other 
algorithms. 

These reasons do not preclude the use of exact algorithms. If an exact algorithm is 

available, resources can be allocated for its use. However, in large-scale problems, small 

deviations from the optimal solution may be practically insignificant. In such cases, other 

merits of both exact algorithms and heuristics must be compared to make a decision 

about which one to use. 

13 



Many heuristics are documented in the literature. Although, most of them are 

problem specific, they can be classified according to the philosophy used in their 

structure. Silver et al. (1980) classifies the heuristics as: 

• Decomposition methods. The main problem is broken into small parts and 
each small part is solved separately. 

• Inductive Methods. In these methods, solution of a smaller or simpler 
problem is generalized for bigger or harder ones. Properties of the solution 
for simpler cases may be used to develop a heuristic for the more general 
case. 

• Feature Extraction Methods. First, the optimal solutions to several 
numerical cases under consideration are obtained and then the common 
characteristics of these solutions are extracted (reduced) and assumed to 
hold in general. 

• Methods Involving Model Manipulation. The nature of the problem is 
perturbed in some way to expedite the solution and then the solution of the 
revised problem is used as a representative of the solution of the real 
problem. Good examples of manipulation include modification of the 
objective function, relaxation of certain constraints, and aggregation of 
variables. 

• Constructive Methods. The main idea of these methods is to construct a 
single feasible solution, often in a deterministic sequential fashion. Greedy 
algorithms are of this class. These algorithms suffer from their myopic 
viewpoint of only considering the very next point. 

• Local Improvement Methods. These methods are the most used ones among 
the listed method structures. In contrast with constructive methods, this 
method starts with a feasible solution and iteratively improves it. Meta- 
heuristics tend to be local improvement methods. 

Modern heuristics or meta-heuristics have evolved in parallel with the 

improvements in computer hardware technology since 1970s. These relatively new 

methods are efficient approximation solution techniques for the problems that are found 

difficult or inefficient to solve with the earlier heuristics. Osman and Kelly (1996) defines 

meta-heuristics as 

" an iterative generation process which guides a subordinate heuristic by 
combining intelligently different concepts for exploring and exploiting the search spaces 
using learning strategies to structure information in order to find efficient near-optimal 
solutions" 

14 



Meta-heuristics are derived from many different areas such as classical heuristics, 

biology, metallurgy, artificial intelligence and neural networks. Nowadays, they are used 

extensively for cracking the hard problems efficiently at less computational cost. Some of 

the meta-heuristics that are developed and used in many areas are: genetic algorithms, 

simulated annealing, tabu search, GRASP (greedy random adaptive search procedure), 

problem-space search, neural networks, threshold algorithms and hybrids of these 

heuristics. 

A limitation of meta-heuristics is their parameterization. When a heuristic is 

selected to solve a specific problem, poor heuristic parameterization can lead to local 

optima or poor solutions. Pilot runs may be needed to find a good parameter set for these 

meta-heuristics, but such runs may be costly and require too much time to conduct. 

Most of the interesting papers on heuristics address parameterization. Chu and 

Beasely (1998), Theil and Voss (1993), Hoff, et cd. (1998), Syswerda (1994), Hanafi and 

Freville (1998) and Schaffer, et al. (1994) are a few examples. 

3.  Past 0-1 MKP Heuristics 

3.1.     Greedy Heuristics 

0-1 MKP greedy heuristics can be classified into two main groups as dual 

heuristics or primal heuristics. This classification is based on how they start searching for 

the solution, either infeasible or feasible, respectively. For MKP, a dual heuristic starts by 

selecting all items providing an infeasible solution while primal heuristics build a 

solution from no items selected. Senju and Toyoda (1968) and Magazine and Oguz 

15 



(1984) studied dual methods. Senju and Toyoda calculated an effective gradient for each 

element to evaluate each element's utility and deselected items until feasibility is 

obtained. Magazine and Oguz combine the Senju and Toyoda heuristic with Everett's 

Lagrange Multipliers to improve heuristic performance. 

Primal Effective Gradient Method (PEGM) defined in Toyoda (1975) is a primal 

greedy algorithm which finds good approximate solutions to 0-1 programming problems. 

The method does not use enumeration at all. Instead, each variable's preferability was 

measured by an effective gradient. Variables are added to the solution according to their 

sorted effective gradient values until no further variables can be added. 

To account for unbalanced resource usage in the constraints, Toyoda introduces 

origin moving. Origin moving increases resource usage penalties in the gradient function 

according to each constraint's resource availability. Origin moving was found efficient 

when the amount of resources used (constraint coefficients) were unbalanced. 

Lee and Guignard (1988), Kochenberger, et dl. (1974) and Loulou and Michalides 

(1979) modify the gradient calculations of Toyoda (1975) in an effort to improve 

heuristic performance. 

3.2.    Meta-Heuristics. 

3.2.1. GAandMKP 
Chu and Beasley (1998) proposed an algorithm that incorporates problem specific 

knowledge into a GA for solving 0-1 MKP. They generated synthetic test problems to 

test their algorithm. 

Solutions are represented with binary genes. Tournament selection was used to 

pick parents and uniform crossover and flip mutation were used to generate new 
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chromosomes. They report that GA performance is insensitive to these operators and 

recommend random selection of these operators. Their population size was set to 100, 

with single replacement each generation and two bit mutation was used. 

The objective function value was used to calculate fitness value and they used a 

heuristic to fix infeasible chromosomes. Their ADD/DROP heuristic operator fixes 

infeasible chromosomes, using a pseudo-utility ratio for knapsack problems calculated as 

the ratio of objective function coefficients (aj) to the coefficients of the single knapsack 

constraint (c j). Borrowing the surrogate duality approach of Pirkul (1987), they combine 

constraints to form a single constraint. Dual variables of the LP relaxation of the original 

problem are used as the surrogate multipliers. 

Their ADD/DROP heuristic resembles the Senju and Toyoda (1968) approach. 

Items are dropped to make solutions feasible, and then some items are added back to 

improve the feasible solution if possible. 

Chu and Beasly solved two different sets of problems to evaluate their algorithm 

performance. The first set, consisting of 55 problems, was taken from literature. These 

problems vary in number of variables (6-105), and number of constraints (2-30). Hill 

(1998) examines the correlation structure of these problems, and found the ranges of 

feasible correlation structures limited. 

The second problem set was generated randomly and is available via the internet. 

They adopted the generation procedure of Freville and Plateau (1990). Thirty problems of 

each combination of constraint (5,10 and 30) and variables (100, 250 and 500) were 

generated, yielding 270 total test problems. 
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Optimal values for most of these problems are not known. Thus, the authors 

computed the solution quality by using the LP relaxation of each problem. Chu and 

Beasley found that GA is very effective in solving these MKP problems. However, they 

note that the larger the chromosome length and the smaller the slackness ratios, the less 

effective the GA. GA was stopped when 106 chromosomes were generated. They 

compare results with heuristics by Magazine and Oguz (1984) and Volgenant and Zoon 

(1990) and report that their GA dominates each. 

Theil and Voss (1993) studied four different GA techniques. The first technique 

penalized the fitness function according to the level of feasibility and found that the 

degree to which the fitness of infeasible chromosomes are penalized is important. Too 

restrictive a penalty function and GA converges to sub-optimal values while too loose a 

penalty function allows infeasible solutions to dominate. Their penalty function had three 

parts, which evaluated the chromosome according to both their relative fitness value and 

their distance from feasibility. If the solution was feasible, the chromosome was not 

penalized. If the infeasible chromosome's fitness value was less than the population mean 

it was considered very poor solution and a fitness value 1.0 was assigned. If the fitness 

value exceeded the population average, then it was penalized by the infeasibility distance 

measure. 

Their second technique was devised in Dammayer and Voss (1992). They used 

an ADD/DROP operator, which calculates the pseudo utilities according to criterions for 

handling more than one constraint. 

The third technique is a filter operator and drops items from the knapsack until 

feasibility is reached. Items are selected randomly to maintain diversification. 
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The fourth and the most robust technique is the tabu operator. This operator is 

devised to improve either any randomly selected chromosome or the best chromosome in 

the population. With this operator, authors aim to avoid local optimums and provide 

improved chromosomes for GA. Since only feasible chromosomes are considered by the 

tabu operator, the filter operator is processed before the tabu operator to make the 

chromosomes feasible. The authors adopted the parameters defined in Dammayer and 

Voss (1993) for the tabu operator. 

For GA parameters, the authors used one-point crossover, roulette wheel selection 

and flip mutation. The probability of crossover was set to 0.9 and the mutation 

probability was 0.009. Their initial population was random of size 50 but members were 

always fixed to achieve feasibility. 

Their penalty operator yielded disappointing results, as the penalty function was 

too restrictive. The solution performance was improved by applying the ADD/DROP and 

Filter operators. A significant finding was that if the initial population was set up by an 

ADD/DROP heuristic, the simple GA was able to improve the performance of this 

heuristic by only 0.5% by using filter and ADD/ DROP operator. 

The tabu operator proved to be the best operator. Optimal solutions were found 

for in most of the problems, but computing time increased. Selecting strings (solutions) 

based on the highest fitness value was better than randomly selected strings. 

Another study that focuses on the parameterization of GA was by Hoff, et al. 

(1997). They started with recommended parameters from the literature but they did not 

cover all possible settings providing framework rather than a complete study. First,they 

used a population size of 50, one-point crossover, steady state generation with 
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replacement of the two worst chromosomes, random feasible initialization and 30,000 

generations. 

Inverted mutation was found to be most efficient with mutation probability 1/N, 

where N was equal to the chromosome length. They found that population size equal to 

5*N yielded better solutions and burst crossover, a multi-point crossover was dominant in 

solution quality. 

Having decided upon the parameters, 57 problems from the literature are solved 

using GA coded in C++. The average deviation from the optimum reported was 0.16% 

which is not significant. Hoff, et al. compared their findings with Theil and Voss and 

observed that the GA-TS operator algorithm performed slightly better than the random 

DROP/ADD operator of themselves. 

3.2.2. Tabu Search and 0-1 MKP 
Tabu Search (TS) developed by Glover in 1970 has proven robust and efficient in 

finding good solutions to optimization problems. 

In TS, intensification guides the search into attractive regions. In contrast, 

diversification leads the search into new unexplored regions. Hanafi and Freville (1998) 

defined a new approach based on strategic oscillation and surrogate constraint 

information that provides a balance between intensification and diversification strategies. 

Strategic oscillation is the frequency at which the critical levels are crossed in 

different directions. The authors define feasible solutions lying on or near the feasible 

region as critical levels. Those solutions that comply with this definition and stay 

infeasible are also considered critical levels. A promising zone is constructed by 

including all the critical solutions. Information deduced from the surrogate constraints is 
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used both in crossing and intensive exploration of the promising zone. These paths are 

formed by implementing constructive and destructive phases, depending on the current 

solution. In this context, the authors defined five different operators inheriting the 

characteristics of ADD and DROP heuristics and incorporating surrogate constraints to 

calculate pseudo utilities. Two aspiration criteria are applied in these operators. In the 

first one, when a move leads to new feasible solution better than the current best, the tabu 

status of the move is skipped. The second aspiration criterion is used if all the ones in the 

current solution are in tabu list when destructive heuristics are summoned. 

The authors acknowledge that it is difficult to find a parameter setting at which 

the TS operates at optimum performance. The author's choice of oscillation parameters 

differ in intensification and diversification phases. In the intensification case, if the 

promising zone is reached from the feasible region, the search is focused on the feasible 

neighborhood of the current solution. Symmetrically, if the promising zone is reached 

from the infeasible side, the infeasible neighborhood of the current solution is searched. 

In diversification, the amplitude of the oscillation is given by the depth and near-feasible 

parameters that are user defined. On the infeasible side, the feasibility decision is studied 

with respect to three different constraint types: surrogate constraint, violated constraint 

and least saturated constraint. Along with the feasible side, these three constraint types 

are tested in order to observe the oscillation behavior. Findings have shown that the 

feasible side and infeasible side with surrogate constraint approach have a more regular 

oscillation than other constraints. Tabu status of a potential move is determined based on 

recency based and frequency based information. 
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Two different sets of problems are used to test the designed TS algorithm. The 

first set consists of 54 instances (Freville and Plateu, 1982) and optimal solutions are 

found for each of these problems. The second set is designed by Glover and 

Kochenberger (1995) and consists of 24 instances. Optimal solutions are not known for 

the last seven instances of this set. 

Glover and Lokketangen (1998) described a TS approach for solving 0-1 Mixed 

Integer Programming (MIP) problems. Their study used two phases. In the first phase a 

basic, "first level", TS is explored. In the second phase, depending on the knowledge 

acquired from first phase, probabilistic deterministic measures for move selection and 

tabu tenure are explored. 

Candidate list strategy is important to TS to guide the search to the next extreme 

point. In their algorithm, the trade-off between objective function value and integer 

infeasibility is used to select this element. In this context, two different approaches are 

used: a choice rule mechanism derived from surrogate constraints and a weighted sum of 

the two measures. 

There are four types of defined moves in identifying a preferred extreme point; 

I. Decreasing both integer infeasibility and profit. 

II. Increasing both integer infeasibility and profit. 

HI.       Nonincreasing integer infeasibility and nondecreasing profit. 

IV.      Decreasing profit and nondecreasing integer infeasibility. 

The authors defined four different types of rules to evaluate these moves; 

weighted sum, ratio test, weighted sum but sorted within each group and ratio test but 

move type I and II. They study these rules in detail. 
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Recency and frequency based information are used to establish tabu status. 

Aspiration by integer infeasibility, by objective function value and by new best-detected 

solution are proposed aspiration criterion. 

Probabilistic TS constitutes the second phase of this study. What is generally 

regarded as the Probabilistic TS (PTS) is usually applied to the move acceptance 

function. After tabu restrictions and aspiration criterion, PTS collects the evaluated 

moves in a candidate list and uses a biased probability to select from the list. The 

probability is biased to favor the better moves and this bias decreases exponentially. Two 

strategic oscillation schemes are recommended: strategic oscillation by parametric 

evaluation and by altered choice rules. Frequency based memory is used in 

diversification. They found that diversification depending on the inclusion of promising 

variables was found to be successful when compared with diversification depending on 

time spent in the basis. 

Target analysis was used to efficiently identify the proper relationship between 

ratio test move parameters and to identify a better decision rule when diversification by 

penalizing time spent in the basis fails. In ratio test move analysis, they found that the 

relative ranking of move types I and II are important. Also, it is observed that changes in 

p, exponent component of integer feasibility for any particular solution, shifts moves to 

different move types. 

The authors tested their findings with 57 problems from the literature. The 

problems are the same problems used in Chu and Beasley (1997), Theil and Voss (1993), 

Hoff, et al. (1998), Hanafi and Freville( 1998) and Drexl (1988). More on the 

characteristics of these problems is introduced in the next section. 
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Results of the experiments show that aspiration by objective function value levels 

worked well. This aspiration forces the moves toward the feasible region. For the first 

phase heuristic, the ratio test method, was found superior. For the second phase heuristic 

PTS, the threshold probability of move selection between 0.3 and 0.5 was best. Use of 

probabilistic measures for the move selection improved the average solution quality. In 

contrast, use of probabilistic tabu tenure yielded the same results as the first phase 

approach. PTS without the tabu memory converged to 'good' solutions the fastest but 

once that point was reached, this method could not improve the solution. 

3.2.3. Simulated Annealing 
Drexl's (1988) Probabilistic Exchange Algorithm (PROEXC) used simulated 

annealing (S A) to solve MKP. Simulated annealing is a random local search, allowing 

non-improving moves with probability t called the temperature. After r repetitions at 

temperature t, the temperature is reduced by a factor cp and repetitions are increased by a 

factor p. S A uses annealing of metalsas its basis. For initial cases, the author calculated t 

with 

t = a ß (3) 

where    a = max {CJ I Vj}-min{Cj I Vj} 

and found that PROEXC works best at ß = 0.5 , cp = 0.6 . In all these cases, r and p were 

equal to the number of variables and 1.1, respectively. Later experiments found n was a 

good value for r, but 1.2 better value for p. 
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The author tested PROEXC with 57 problems from the literature. PROEXC's 

overall computation time is reported as very fast when compared to other heuristics, with 

good solution quality. 

3.3. Comparison of Heuristics. 

When a new heuristic is published in the computational and mathematical 

sciences literature, its contributions should be evaluated scientifically and reported in an 

objective manner (Barr, et al., 1995). In this context, many new heuristics are tested by 

using standard or synthetic test problems. 

Zanakis (1977) examines the performance of three heuristics (Senju-Toyoda, 

Kochenberger et al. and Hillier) applied to 0-1 integer programming problems. Using a 

designed experiment, three factors were considered: number of variables (15,30,45), 

number of constraints (10,20,30) and degree of constraint slackness (0.3,0.5,0.9). CPU 

time, error and relative error were measured for each problem. Synthetic test problems 

were generated randomly from a uniform distribution and 5 replications were used. 

Analysis of variance and stepwise regression were used to study the effects of these 

factors. 

Hill and Reilly (1997) investigate the effects of correlation structure and 

constraint slackness settings on the performance of solution procedures on synthetic two 

dimensional knapsack problems. They investigated how the performance of branch-and- 

bound (CPLEX) techniques and Toyoda's heuristic are affected by problem structure. A 

total of 45 feasible correlation structures were examined. The size of the problems was 

fixed to be 100 variables and each constraint's slackness was set to the values 0.3 and 
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0.7. They used the Pearson product-moment correlation induction method and the 

Spearman rank correlation-based correlation induction method in defining correlation 

between the objective function and constraint coefficients. Depending on these 

parameters, they produced five random problems for each point of their factorial design 

generating 2240 problems. Two non-parametric statistical tests are used to analyze the 

data from the experiment. They tested correlation structure influence, individual 

correlation term influence, constraint slackness influence and interaction of the last two. 

They found that problem correlation structure affects the solution quality 

Lokkatengen (1997) compares TS and GA performance on solutions of MKP. The 

GA algorithm (Hoff et al. 1997) and TS algorithm (Lokkatengen and Glover, 1997), 

reviewed above were used to solve the 57 standard test problems. Each algorithm was set 

up with the findings of past studies. The author compared these two algorithms by how 

many times they found the optimum solutions for test problems. The results favored the 

GA since it was able to find 56 out of 57optimal solutions. The basic TS performed 

poorly and was able to find only 39 optimal solutions. However, when the more advanced 

TS mechanisms of strategic oscillation, diversification and intensification were applied, 

all of the problems were solved within 20*N iterations. Thus, Lokkatengen recommends 

a hybrid algorithm as proposed by Theil and Voss (1993). 

Hanafi, et al. (1996) compared variants of the Simple Multistage Algorithm 

(SMA) and variants of TS algorithms. SMA incorporates different local search strategies 

in a "flexible fashion." SMA starts with diversification by generating random solutions in 

addition to primal and dual solutions. These solutions were used as initial start points for 

neighborhood searches. Feasibility was maintained during the whole process by 
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projecting infeasible solutions into the feasible domain by using the Senju and Toyoda's 

(1968) dual algorithm. 

Three local search algorithms were used in SMA. The first one was SA described 

in Drexl (1988). The second local search, Threshold Accepting (TA), accepts any 

solution within an infeasible threshold. The third technique is a relatively new concept 

that introduces noise to the data to overcome local optimality. Noising Method (NM) 

introduces noise into solutions to diversify the search, reducing the noise introduced as 

the search converges. 

The TS algorithms compared were: Reactive Tabu Search (RTS), Reverse 

Elimination Method (REM), TS using Balas and Martin (1980) as a subroutine, Critical 

Event TS, and two other TS approaches. 

The algorithms above were tested with 54 standard problems. Test of SMA with 

different local search approaches and AGNES algorithm of Freville and Plateau (1990) 

proved that SMA worked best with TA. The solution quality for SMA was not better than 

any other algorithms in the literature. However authors defined their SMA as simple to 

implement and fast in solution. AGNES solved most of the problems at their optimums 

and was the best when compared with SMA applications. TS comparisons showed that 

TS defined in Glover and Kochenberger (1995) and the infeasible version of the author's 

TS were the best as they found optimal solutions for each of the problems. 

3.4.     Test Problems. 

The effectiveness of any proposed methodology for solving a given class of 

problems can be demonstrated by theoretical analysis and empirical studies (Barr, et al. 

1995). Analytical studies may not always be possible (Hooker, 1994). In this case, 
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empirical studies are the only tools to assess the effectiveness of an algorithm. Empirical 

studies can be conducted on either real-world problems or synthetic test problems. 

Synthetic test problems generally may not resemble the real-world problems, they 

simulate (Hooker, 1995). However, synthetic test problems can fully vary the problem 

parameters yielding more information about algorithm performance. 

Computational experiments with algorithms are usually undertaken (1) to 

compare the performance of different algorithms for the same class of problems or (2) to 

characterize or describe an algorithm's performance (Barr et al. 1995). As in many other 

sciences, error and variation may be present in computational experiments. Hill (1998) 

addresses one of these errors as "oversight error". This error occurs when a potentially 

significant factor is missed in testing. Since correlation structure affects solution 

procedure performance, the unaccounted effect of correlation in a test problem can 

potentially bias analytical results. Hill (1998) examines the correlation structure of 

standard MKP problems and believes the structure may in fact influence the solution 

procedure performance. 

4.  GA FOR MKP 

4.1.     Why one more paper on parameterization ? 

There is not any theorem that explains why GAvs have the characteristics that 

they have (Beasley, et al., 1993). Thus, we can not analytically predict which parameter 

settings are appropriate for a particular problem set. Schaffer, et al. (1994) has shown 

that the optimal parameter settings in GAs differ with the problem type solved. In fact, 

the time and resources required to find optimal parameters for a problem domain are 
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often orders of magnitude greater than the time one plans to spend solving problems in 

the domain (Davis, 1991). For these reasons, many papers seek robust parameter settings 

that work for a class of problems. This study seeks robust settings for problems that 

explicitly vary correlation structure. 

4.2. GA Operators and Parameters for 0-1 MKP 

4.2.1. Representation. 
The most intuitive way to represent a 0-1 optimization problem is using binary 

representation and setting a variable to its corresponding gene alele, either 0 or 1. Theil 

and Voss (1993) found this representation better than alternative representations. 

4.2.2. Initialization. 
Initial GA population may be seeded or random. Since population seeding may 

cause early convergence to local optimal solutions, we generated the initial population 

randomly. Based on Hill and Reilly's (1997) study, we set at 35% the probability used to 

create the initial population and corrected infeasible solutions. Primal and dual 

initialization techniques were examined and discontinued as not promising because of 

slow convergence and poor solution quality 

4.2.3. Scaling. 
Scaling has two important features in GA. First, it prevents the dominance of 

super individuals in the early stages of evolution. This feature helps to overcome 

premature convergence, which is the least desired characteristic in an optimization 

heuristic. Second, scaling helps as the average fitness of population approaches the 

population maximum, when selection schemes may bog down. Maximum score and the 

average score may have the same chance of being selected. In this case, scaling may help. 
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Initial tests compared three different scaling schemes, and the no scaling option. 

Signed rank test statistics showed that sigma truncation scaling provided better solution 

quality. The formula for sigma truncation scaling is: 

F = obj_value - (obj_ave - c * obj_dev) where c is 2; (4) 

4.2.4. Fitness Function. 
A fitness function must incorporate constraints into the function to reflect the 

feasibility of chromosomes. There are three ways to handle infeasibility. First, infeasible 

solutions can be penalized, reducing the attractiveness of infeasible chromosomes. 

Second, repair operators can transform infeasible solutions, into feasible ones. Third, any 

infeasible chromosome can be killed and reproduction repeated until feasible solutions 

remain. 

In pilot studies, we implemented the penalty functions available in the literature 

and found that they were not efficient for MKP. We then designed a penalty function that 

considers the distance ratio of feasibility to the current solution. After numerous pilot 

runs, this penalty function did not seem promising either. 

We then devised and employed a repair operator, which randomly starts from a 

loci and drops items until feasibility is reached. The algorithm then tries to add as many 

items back as possible before violating any constraint. This strategy was devised to avoid 

the epistasis problem. Discussions in Hoff, et al. (1998), Theil and Voss (1993) and 

Michalewicz (1992) can be related to epistasis. 

4.2.5. Selection. 
Exploration and exploitation are two phases that an algorithm uses to reach a 

global optimum. Exploration guides the search into unvisited parts of the search space 
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while exploitation helps the search to remember the knowledge acquired in previous 

visits to find better solutions. The balance between these two phases plays an important 

role in tuning the search to find global optimality. GAs possess both phases. Whitley 

(1994) reports that there are two important factors in GA: population diversity and 

selective pressure. He advises increasing the selective pressure to cause exploitation and 

decreasing it to cause exploration. 

In our implementation a tournament selection scheme applies more selective 

pressure than does roulette wheel selection. Therefore, we tested both of them to learn 

about the effects of selective pressure in solution quality. 

4.2.6. Crossover. 
The empirical results are divided on the best type of crossover and the best value 

for the probability of crossover. 

Based on these discussions, we included crossover type in our experimental 

design, specifically uniform and two-point crossovers. The probability of crossover 

values of 0.85 and 0.95 are also included in the test design. 

4.2.7. Population Size 
Population size is one of the most important parameters in the GA. Population 

size influences both population diversity and selection pressure. A small population size 

may result in premature convergence; if it is large, computing time may be wasted 

without any significant return. Trial runs suggested we employ the Theil and Voss (1993) 

recommended population size of between 50 and 100. 
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4.2.8. Mutation and Probability of Mutation. 
Mutation operator helps diversify the population and search. Schaffer, et al. 

(1989) found that the mutation rate is sensitive to population size. Based on our 

population size, we tested probability of mutation between 0.01 and 0.03. 

4.2.9. Steady State or Generational Replacement 
In each generation, some individuals are excluded from the population while 

offspring are included. The ratio at which this replacement takes place defines the type of 

GA. If the number of replacements is just one or two, this type of GA is called Steady 

State GA (SSGA). If the whole population is replaced as recommended by Goldberg 

(1989), it is called Generational Replacement GA. 

The advantages of SSGA include (1) schema fitness versus percentage in the 

population works out properly as the fixed point of the system; (2) good members of the 

population float to the top of list where they remain and (3) poor individuals leave the 

population (Syswerda, 1994). We decided to test SSGA with the replacement of 25 

individuals in each generation. 

4.3. Coding 

Galib® version 2.4.3 by Wall (1998) was used to implement our GA. We used 

binary string genome (chromosome) to implement the GA and changed some of the 

statistics objects to fit our analysis requirements. 

32 



4.4. Experimental Design. 

There were six factors assumed significant in GA performance. These are 

crossover type, selection scheme, population size, probability of crossover, probability of 

mutation and number replaced. For six factors, a full factorial design requires 64 runs, 

which is computationally very expensive. We used a fractional factorial design to screen 

out effects and selected 26"Vi fractional factorial requiring 32 runs (Tablel). 

The test problem set of Hill and Reilly (1997) includes optimal or best-known 

integer solutions so GA solution quality measured as a relative error was the primary 

measures of effectiveness. The formula for relative error is given below. 

Zip     : Optimum or best known solution 
ZCUR : Current solution 

„™      ,™ (
Z

IP ~ Z
CUR) (5) REL := 100 •- - 

Zjp 

GAs actually offer two performance measures of solution quality: online average 

and offline average. Online average is the average performance of all structures tested 

during the search. Offlineaverage uses the best structure value for each evaluation in the 

average. Online average penalizes the search if poor solutions are created by operators, 

where offline average does not. 
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Table 12 V Fractional Factorial Design 

Design 
Setting 

Crossover Selection 
Population 
Size 

Prob. 
Crossover 

Prob. 
Mutation 

Number 
Replaced 

1 Uniform Tournament 50 0.85 0.01 2 
2 Two-point Tournament 50 0.85 0.01 25 
3 Uniform Roulette 50 0.85 0.01 25 
4 Two-point Roulette 50 0.85 0.01 2 
5 Uniform Tournament 100 0.85 0.01 25 
6 Two-point Tournament 100 0.85 0.01 2 
7 Uniform Roulette 100 0.85 0.01 2 
8 Two-point Roulette 100 0.85 0.01 25 
9 Uniform Tournament 50 0.95 0.01 25 
10 Two-point Tournament 50 0.95 0.01 2 
11 Uniform Roulette 50 0.95 0.01 2 
12 Two-point Roulette 50 0.95 0.01 25 
13 Uniform Tournament 100 0.95 0.01 2 
14 Two-point Tournament 100 0.95 0.01 25 
15 Uniform Roulette 100 0.95 0.01 25 
16 Two-point Roulette 100 0.95 0.01 2 
17 Uniform Tournament 50 0.85 0.03 25 
18 Two-point Tournament 50 0.85 0.03 2 
19 Uniform Roulette 50 0.85 0.03 2 
20 Two-point Roulette 50 0.85 0.03 25 
21 Uniform Tournament 100 0.85 0.03 2 
22 Two-point Tournament 100 0.85 0.03 25 
23 Uniform Roulette 100 0.85 0.03 25 
24 Two-point Roulette 100 0.85 0.03 2 
25 Uniform Tournament 50 0.95 0.03 2 
26 Two-point Tournament 50 0.95 0.03 25 
27 Uniform Roulette 50 0.95 0.03 25 
28 Two-point Roulette 50 0.95 0.03 2 
29 Uniform Tournament 100 0.95 0.03 25 
30 Two-point Tournament 100 0.95 0.03 2 
31 Uniform Roulette 100 0.95 0.03 2 
32 Two-point Roulette 100 0.95 0.03 25 
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5.  TEST RESULTS 

5.1. Penalty Function Versus Repair Operator 

We devised and tested a penalty function penalizing infeasible solutions 

according to proportion of constraint violation. We found it difficult to define one 

penalty function adequate for all test problems in the data set. We then tested a repair 

operator. Figure4 is a comparison of repair operator and penalty function 

performance. Figure 4 compares performance on one test problem but represents the 

repair operator dominance observed in all cases. The repair operator is used in the rest 

of the analysis. 

Figure 4. Repair and Penalty Methods (Problem 665) 

Since a GA is stochastic, each problem is solved five times, for each experimental 

design setting. The GA ran for 5000 generations. This value was selected based on trial 

run experience. Since optimal values for some problems were unknown, termination 
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before 5000 generations was not considered. Our results improved the best known values 

for the four test problems without a known optimal solution value. This is summarized in 

Table 2. 

Table 2 Improved Solutions 

Problem 
Number 

LP 
Solution 

Best 
Known 

GA 

1027 1731 1724 1725 
1029 3859 3849 3850 
1061 2562.7 3549 3551 
1116 3868.3 3865 3866 

5.2. Robust Parameters for GA 

As seen in Table 3 the most robust design setting was design point 31 

(uniform, roulette-wheel, 100, 0.95, 0.03, 2). The overall relative error was 0.0239% with 

standard deviation 0.0599%. Further, the optimal solution was found for 848 of 1120 

problems (76%). Figure 5 plots the mean relative error and 95% confidence bound for the 

32 design points. The main effect which changes at design point 16 was probability of 

mutation. It was observed that relative error was significantly reduced from this point on. 

Complying with this observation, we tested probability of mutation values 0.04 and 0.06 

and found reduced solution quality for number of generation 5000. 

Design setting 19 (uniform, roulette wheel, 50, 0.95, 0.03, 2) performed best 

within the settings with population size 50. Student's t test, Tukey's Multiple Comparison 

tests and Ranking and Selection concluded that design settings 31 and 19 are different 

significantly. More details on comparisons can be found in Appendix B. 

Next, we analyzed the data by using statistical tools to learn more about the 

effects of GA parameters on solution quality. Normality and constant variance 
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assumptions were checked and found that they were not met. Thus, we transformed the 

data by using square root and natural logarithm and ran a stepwise regression. The 

resulting effect plots are in shown Figure Ö.Deviation from a level plot indicate a 

potentially significant effect. The number of replacements and probability of crossover 

effects were insignificant. However, the number of replacements drives up computation 

time. Despite its longer computation time, replacing 25 offspring in each iteration was 

not as good as replacing 2 at a time. Thus replacing 2 at a time is best in both 

computation time and solution quality. 
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Figure 5. Confidence Intervals For REL 

Uniform crossover, roulette wheel selection, 0.03 probability of mutation and 

population size 100 performed better than their rival settings. Selection plot favored 

roulette-wheel selection, which does not have the selective pressure of tournament 
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selection. This choice supported exploration more than exploitation. 0.03 probability of 

mutation was better than 0.01. 
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Figure 6. Effects of GA Parameters on Solution Quality 

For further investigation of robust parameters, we tested probability of mutation 

values of 0.04 and 0.06, and population size 30. Results were evidence of the fact that 

further increasing probability of mutation degrades the solution quality. Decreasing 

population size did not help GA performance either. 
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Table 3 Test Results 

Design 
Setting 

Crossover Selection Pop. 
Size 

Prob. 
Crossover 

Prob. 
Mutation 

Number 
Replaced 

Mean 
REL 

Number 
of 
Optimal 

1 Uniform Tournament 50 0.85 0.01 2 0.003158 221 
2 Two-point Tournament 50 0.85 0.01 25 0.003749 184 
3 Uniform Roulette 50 0.85 0.01 25 0.002359 291 
4 Two-point Roulette 50 0.85 0.01 2 0.003213 212 
5 Uniform Tournament 100 0.85 0.01 25 0.002114 341 
6 Two-point Tournament 100 0.85 0.01 2 0.002826 260 
7 Uniform Roulette 100 0.85 0.01 2 0.00154 328 
8 Two-point Roulette 100 0.85 0.01 25 0.002282 307 
9 Uniform Tournament 50 0.95 0.01 25 0.002875 244 
10 Two-point Tournament 50 0.95 0.01 2 0.003573 190 
11 Uniform Roulette 50 0.95 0.01 2 0.001993 332 
12 Two-point Roulette 50 0.95 0.01 25 0.00306 230 
13 Uniform Tournament 100 0.95 0.01 2 0.001798 369 
14 Two-point Tournament 100 0.95 0.01 25 0.002819 245 
15 Uniform Roulette 100 0.95 0.01 25 0.001313 498 
16 Two-point Roulette 100 0.95 0.01 2 0.002141 324 
17 Uniform Tournament 50 0.85 0.03 25 0.001087 623 
18 Two-point Tournament 50 0.85 0.03 2 0.000723 593 
19 Uniform Roulette 50 0.85 0.03 2 0.000509 674 
20 Two-point Roulette 50 0.85 0.03 25 0.000662 596 
21 Uniform Tournament 100 0.85 0.03 2 0.000366 779 
22 Two-point Tournament 100 0.85 0.03 25 0.00041 736 
23 Uniform Roulette 100 0.85 0.03 25 0.001194 825 
24 Two-point Roulette 100 0.85 0.03 2 0.000369 748 
25 Uniform Tournament 50 0.95 0.03 2 0.000595 638 
26 Two-point Tournament 50 0.95 0.03 25 0.00112 601 
27 Uniform Roulette 50 0.95 0.03 25 0.00048 694 
28 Two-point Roulette 50 0.95 0.03 2 0.000635 608 
29 Uniform Tournament 100 0.95 0.03 25 0.000317 810 
30 Two-point Tournament 100 0.95 0.03 2 0.000394 774 
31 Uniform Roulette 100 0.95 0.03 2 0.000239 848 
32 Two-point Roulette 100 0.95 0.03 25 0.000822 772 
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5.3. Convergence 

Our next concern was to examine the convergence trend of attractive parameter 

settings. Design settings 31 (uniform, roulette wheel, 0.95,0.03,100,2) and 19 (uniform, 

roulette wheel, 0.85,0.03, 50,2) offer the best solution qualities but they differ in 

average computation time (approximately 3.8 and 5.2 sec respectively). Investigating 

their convergence trend can give us some clues about the trade-off that we can give up 

between solution quality and computation time. Furthermore, we have observed that the 

parameter settings with 0.01 probability of mutation were worse in solution quality. At 

this point we can suspect the premature convergence and a convergence graph may reveal 

the facts about their inefficiency. Thus, we included design setting 11 (uniform, roulette 

wheel, 0.95, 0.01, 50, 2) which is the best among settings with probability of mutation 

0.01. We have chosen six problem instances, which favor different combinations of these 

three GA parameter settings. Figure 7-12 display the convergence trend of three 

parameter settings. 

Our initial populations are very good: all solutions are feasible with many items in 

the knapsack. We observe that less diversification causes converge to near optimal 

solutions quicker. However, once a solution close to optimal is reached, improvement 

disappears. This may be evidence of the fact that exploration halted due to less 

probability of mutation in a small population. With increased diversification, 

convergence is slower initially but continue to an improved final solution 
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Figure 7 Problem 544 (0,0,0,0.3,0.3) 
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Figure 9 Problem 746 (-0.49887,0.99752, -049887,0.3,0.7) 
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Competition between design settings 19 and 31 re-visits in the plots above. In 

early evolution ages, population with small size has more tendencies to reach optimal 

quicker than population with bigger size. After some point in the evolution bigger 

population sized GA catches small sized and it is hard to describe which one is attractive 

from this point on. So, we can again conclude that design point 19 is more favorable due 

to less computation time. 

5.4. Effects of Problem Structure on Solution Quality 

To investigate the effects of problem structure, we selected two GA parameter 

settings: the most robust setting (31) and the least robust setting (2). Then we solved Hill 

and Reilly's (1997) problem set and averaged the five relative error values for each 

problem structure setting. Hence, we had response values for all 224 problem structures. 
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Figures 13a-13c show the effect of correlation on solution quality. For Figures 

13a-and 13b, correlation between objective function and first constraint, and correlation 

between objective function and second constraint respectively, these effects are 

statistically significant at 95% confidence (a = 0.05). Solution quality starts to degenerate 

as the correlation gets greater than 0 and either stays there at 0.499 or drops afterward. 

Thus, we can conclude that regardless of GA parameters used, the performance of the GA 

is affected by correlation among objective function coefficients and the constraint 

coefficients and appears worst within a correlation range of 0.0 and 0.5. 

Hill (1998) found the test set of Chu and Beasley (1998) have correlation values 

in this 0.0 to 0.5 range. However, our problems have only two constraints while their 

problems vary the number of constraints among 5,10 and 30. Resolving the Beasley and 

Chu test set with our GA is worthy of research. 

Figures 14a and 14b display the constraint slackness effect on GA performance. 

Both constraint slackness effects, SI and S2, are statistically significant and as in many 

other heuristics, GA favors higher slackness value. As in many past studies, tighter 

constraints yielded harder problems. 
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6.  CONCLUSION 

In this paper we have studied the effects of problem structures to find the most 

robust parameter settings for GAs used to solve the MKP. Our study differed from 

previous ones in the way that we repaired infeasible chromosomes with a random 

operator and examined a different synthetic test problem set. 

A random repair operator is efficient in the sense that it does not require 

calculation or exploitation of any problem specific knowledge. Moreover, this operator 

can easily be implemented and computing time consumed by this operator is minimal. 

The most confusing part of analysis was in terminating the GA. Our default 

termination counted generations and did not take number of evaluations into account. 

Actually this confusion revealed an important experience in our research. Under this 

termination rule apparently the design with 25 replacements had more chances to produce 

and evaluate than 2 replacements. The expected result would be to have design points 

with 25 replacements dominate the others. However, our first macro runs showed 

otherwise and we were firmly satisfied with that replacing 2 chromosomes is better for 

the MKP. In addition results of our alternative termination rule, which terminates after 

certain number of evaluations and compensates for different replacements numbers, 

validated our findings about GA type. 

The most robust design point was 31 and ranking and selection, confidence 

interval, Mann -Whitney rank-sum and Student's t tests validated this result. This setting 

includes population size 100. As we discussed earlier, increasing population size may 
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cause wasting computing time without any significant return. Non-parametric rank sum 

tests have shown that design points 31 and 19, best with population size 100 and 50, 

respectively, were statistically different. Furthermore, computation times are increased 

approximately 1.5 times when population size is 100. Henceforth, if we notice that the 

solution quality of both design points is practically insignificant, design point 19 with 

probability of crossover increased to 0.95 may be more attractive in cases where 

computation time is a critical concern. 

As with any empirical study our findings will not always be true. However, we 

applied a systematic approach on test problem instances with a range of correlation 

structures and slackness settings. 

There are other avenues to extend this work. For instance, we used a random 

repair operator. Another study might examine purely random populations with penalty 

functions. Future studies should examine problems with varied correlation structures and 

more constraints, and compare these to solutions on the Beasley and Chu data set. 

Finally, another study might re-examine the GA parameters proposed in the literature 

with those proposed here. 
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Chapter 3. Future Avenues 

This thesis shed a light on the valid empirical parameterization of GA with a 

special repair operator. Test problems were diversified enough to cover all possible 

correlation and slackness settings in 0-1 Bi-dimensional Knapack Problem. 

There are a few things which need to be done to complete the findings of this 

thesis. One can implement and study a hybrid operator in GA which projects infeasible 

solutions onto the feasible region in a systematic way. Findings of such study can be 

compared with the research presented here to learn more about the behavior's of 

operators 

Another research may investigate the effect of problem size on GA performance. 

Our study focused on two constraints. A real world application of MKP might have more 

constraints. This kind of research may provide the information about trends in GA when 

compared with ours. 

Finally, another open and interesting research area may exist in creating test 

problems which counts for "epistasis". Correlation measures the relations between rows 

and is found to have significant effect on solution quality. If one can achieve to create test 

problems which varies interaction degrees of variables and keeps a targeted correlation 

structure, we can be more confident about the findings of any study especially related to 

GAs. 
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APPENDIX.A 

Appendix A.l Heuristics And Reduction Methods For Multiple Constraints 0-1 

Linear Programming Problems 

Freville and Plateu (1986) described an "automatic code" which reduces the size 

of any multiple inequality constraint 0-1 linear programming problem. Upon this context, 

the authors defined two greedy algorithms (AGNES I and AGNES II) that determined 

lower bounds for the optimal solutions by bringing into play the concepts of surrogate 

relaxation, oscillating assignment and strongly determined variables. These algorithms 

are inserted into a reduction frame which reduced the constraints and variables with the 

help of Lagrangean and surrogate relaxation. 

In the first phase of their algorithm, three methods were followed to calculate 

surrogate multipliers: The surrogate problem and its relaxation was then solved by the 

NKR and FPK 79 algorithms of Plateau. The solution produced by the NKR algorithm 

was fixed by AGNES I and AGNES II which differs in the way that they assign 0 or 1 

value to some free variables. After these value assignments, a simple procedure was 

followed to reduce the size of current problems in order to generate a well-stated 

problem. 

The authors tested their methods with 20 standard problems from the literature 

and 30 random test problem generated by themselves. They used randomly generated test 

problems to compare their algorithm with the other well-known algorithms. Results of 

their tests shown that AGNES' accuracy is at least as good as Balas and Martin (1980) 

but with increased computation time. 

49 



Authors compared efficiency of their reduction algorithm by solving reduced 

problems with Shih's (1979) algorithm and concluded that as the problem size gets 

larger, their reduction technique promised less computation time. Exclusively, they 

reported an algorithm which bounds on the sum of the number of variables equal to 1 at 

optimum. 

50 



Appendix A.2 A Heuristic For General Integer Programming 

Kochenberger, et al (1974) devised an algorithm, which adopted the 0-1 algorithm of 

Senju and Toyoda to solve general integer programming problems. They started with all 

variables equal to zero and added items one at time according to the amount of objective 

function increase they would produce. Their algorithm did not restrict variables to be 

binary. Problem coefficients were not restricted to be nonnegative. However, the authors 

did not guarantee the feasibility of solutions when the problems with the negative 

cioefficients would be solved with this algorithm. The authors generated some test 

problems which proved this fact about negative coefficients and recommended 

backtracking in case of infeasible solutions. 

Their algorithm can be applied to 0-1 problems by introducing constraints which 

forbid the procedure from introducing more than one unit. 
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Appendix A.3 An Approximate Algorithm For Multidimensional Zero-One 

Knapsack Problems - A Parametric Approach 

Lee and Guignard (1988) proposed an approximate algorithm consisting of 

finding a feasible solution with Toyodas'(1975) primal algorithm, fixing variables and 

complementing certain variables with triple complementing technique of Balas and 

Martin (1980). Proposed modification to Toyoda's primal method consisted of selecting 

as many variables as possible at each iteration, as long as feasibility is guaranteed, instead 

of selecting one at a time. Although solution quality of Toyoda's technique was better, 

modification reduced the computation time significantly. 

The authors' procedure embodied two phases. PHASE I implements a modified 

version of Toyoda's primal technique to find a good feasible solution. Then problem size 

is reduced by fixing a certain set of variables using the reduced costs from LP relaxation. 

The LP relaxation of the problem is solved using the simplex algorithm. The simplex 

algorithm was seeded by using the variables from the modified Toyoda algorithm. Phase 

II aims to improve the solutions derived in PHASE I by the triple complementing 

procedure defined in Balas and Martin (1980). In triple complementing, complements of 

a triplet of variables ( one at 0, one at 1 and one at 0 orl) is searched to find better 

solutions. 

Their procedure comprises three parameters: k,r,p. Parameter k is the trade of 

between solution quality and computation time in PHASE I. Parameter r determines if the 

complementing must be carried out in a certain iterations, because complementing was 
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computationally expensive and not promising most of the time. Finally parameer p 

influences the trade-off between solution quality and time in PHASE n. 

The authors tested their procedure with 48 problems. They reported that their 

algorithm yields better solutions than Toyoda (1975) and Magazine and Oguz ( 1984) but 

it was outperformed by Balas and Martin (1980). 
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Appendix A.4 A Heuristics Algorithm For Multidimensional Knapsack Problem. 

Magazine and Oguz(1984) devised an approximate algorithm which combines the 

techniques in Senju and Toyoda (1968) with Everett's Generalized Lagrange (EGL) 

multiplier approach. Authors found LP relaxation solution of the problems useful as they 

represent a bound for the possible solution. All the variables are set to 1 at the start in 

their dual algorithm. Then feasibility was reached by dropping the variables using some 

greedy rules. These rules included one coefficient, which is perturbed until finding only 

one variable that violates one constraint. Then this variable was set to 0. 

They produced 75 random problems to test their algorithm. In these problems, 

objective function and constraint coefficients were derived from uniform distribution. 

Both variable size and constraint size varied from 20 to 1000. 

They reported that their algortihm performed sligthly worse than the algorithm of 

Kochenberger, et al (1974) in solution quality. However, their algorithm performed 

remarkably better in terms of computation time. 

54 



M 
X 
Q 

OH 
OH 

c« 

H 

ud
en

t's
 

tl
y 

di
ff

e JA 

c 

t» 

.a a l—1 

0) 

>*- wo 
* 
A 
H 

•" W 
■*J o» -a 
cc 2 
C -M 
OX) <*) 
•B g a» a 
Q g 
EM C5 
w O 
S fj O U 
Cfl 'rm 
•r" W 
£ ft 
& £ S I o x 
Ü " en 
iH 1» 

^ * ► 
13 o> 
Ö t <u '£ 
a © 
< fc 

u> 

CO 
CM 
O 
O 
d 

•ir- 

CM 
O 
o 
d 

00 

o 
o 
d 

o 
o 
d 

CD 

O 
o 
d 

■<fr 
v- 
o 
o 
d 

o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

N 
O 
O 
O 
d 

O 
o 
o 
d 

in 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

in 
o 
o 
o 
d 

in 
o 
o 
o 
d 

in 
o 
o 
o 
d 

CD 
O 
O 
O 
d 

o 
o 
o 
d 

N 
O 
O 
O 
d 

OO 
o 
o 
o 
d 

00 
o 
o 
o 
d 

00 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

N. 

CM 
O 
O 
d 

o 
o 
d 

m 
o 
o 
d 
o 
o 
d 
o 
o 
d 

CM 

o 
o 
d 

CM 

o 
o 
d 

o 
o 
d 

h- o 
o 
o 
d 

co 
o 
o 
o 
d 

in 
o 
o 
o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

00 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
d 

CM 

o 
o 
d 

co 

CO 

o 
o 
d 

CD 

o 
o 
d 

co 
o 
o 
d 

CM 

o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
cp 

o 
o 
o 
d 

o 
o 
o 
d 

in 
o 
o 
o 
d 

m 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

00 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

T— 

o 
o 
d 

CM 

o 
o 
d 

CM 

O 
O 
d 

co 
o 
o 
d 

co 
o 
o 
d 

co 
o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

- 

CD 
i— 
o 
o 
d 

O 
o 
d 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

I-- 
o 
o 
o 
d 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
cp 

o 
o 
o 
d 

co 
o 
o 
o 
d 

LO 
o 
o 
o 
d 

I-- 
o 
o 
o 
d 

o 
o 
o 
d 

00 
o 
o 
o 
d 

o 
o 
o 
d 
o 
o 
d 

CM 

o 
o 
d 

CM 

o 
o 
d 

co 
o 
o 
d 

CO 

o 
o 
d 

•<* 
f— 
o 
o 
d 

•>* 
o 
o 
d 

in 

o 
o 
d 

in 

o 
o 
d 

m 
o 
o 
d 

in 

o 
o 
d 

CD 

o 
o 
d 

in 

in 

o 
o 
d 

CO 
v- 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

00 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
o 

o 
o 
o 
CD 

o 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

CO 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

CM 

o 
o 
d 

co 
o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

m 
o 
o 
d 

CD 
I- 

o 
o 
d 

CD 

5 
o 
d 

CD 

o 
o 
d 

CD 

o 
o 
d 

o 
o 
d 
o 
o 
d 

<o 

m 
o 
o 
d 

co 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

00 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

co 
o 
o 
o 
d 

in 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

m 
o 
o 
o 
d 

o 
o 
o 
d 

00 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

CM 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

in 

o 
o 
d 

CD 

o 
o 
d 

CD 

o 
o 
d 

CD 

o 
o 
d 

CD 

o 
o 
d 

o 
o 
d 

CO 

o 
o 
d 

oo 

CO 

o 
o 
d 

CM 
i— 
o 
o 
d 

00 
o 
o 
o 
d 

r-- o 
o 
o 
d 

CD 
o 
o 
o 
d 

m 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
C3 

o 
o 
o 
o 
d 

o 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
d 

co 
o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

in 

o 
o 
d 

co 
o 
o 
d 

to 

o 
o 
d 

o 
o 
d 

o 
o 
d 

00 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

CO 
i— 
o 
o 
d 

en 
o 
o 
d 

CO 

co 
o 
o 
d 

o 
o 
d 

o 
o 
o 
d 

r-- 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

s o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
cp' 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
d 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

en 
o 
o 
d 

en 
o 
o 
d 

en 
o 
o 
d 

o 
CM 
o 
o 
d 

^, 
00 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

m 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
d 

5 
o 
d 

in 

o 
o 
d 

CD 

o 
o 
d 

co 
o 
o 
d 

en 
o 
o 
d 

o 
CM 
o 
o 
d 

o 
CM 
o 
o 
d 

o 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

CM 
CM 
O 
O 
d 

co 
CM 
o 
o 
d 

CO 
CM 
O 
O 
d 

CO 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

CO 

00 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

v- 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

CD 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

r-- 
o 
o 
o 
d 

en 
o 
o 
o 
d 

CM 

o 
o 
d 

o 
o 
d 

m 
o 
o 
d 

CD 

O 
o 
d 

CD 

O 
O 
d 

en 
o 
o 
d 

o 
CM 
O 
o 
d 

o 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
CM 
O 
o 
d 

CM 
CM 
O 
O 
d 

CO 
CM 
o 
o 
d 

CO 
CM 
O 
O 
d 

co 
CM 
o 
o 
d 

CO 
CM 
O 
o 
d 

CM 
O 
o 
d 

in 
CM 
o 
o 
d 

O) 

o 
o 
o 
d 

CD 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
CD 

o 
o 
o 
d 

in 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

CM 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

CD 

o 
o 
d 

N 
o 
o 
d 

en 
o 
o 
d 

o 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
O 
O 
d 

CM 
o 
o 
d 

CM 
CM 
O 
o 
d 

co 
CM 
o 
o 
d 

co 
CM 
o 
o 
d 

co 
CM 
o 
o 
d 

CM 
O 
o 
d 

CM 
O 
O 
d 

CM 
o 
o 
d 

LO 
CM 
o 
o 
d 

CM 

CD 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

CD 
O 
O 
o 
d 

to 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
d 

o 
o 
d 

CD 

o 
o 
d 

r- 
o 
o 
d 

00 

o 
o 
d 

CO 

o 
o 
d 

CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

CO 
CM 
O 
O 
d 

co 
CM 
o 
o 
d 

co 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

in 
CM 
o 
o 
d 

in 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM 
O 
o 
d 

CM 
o 
o 
d 

- 

in 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 

o 
o 
o 
o 
d 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

CM 

o 
o 
d 

in 

o 
o 
d 

r-- 
o 
o 
d 

00 

o 
o 
d 

en 
o 
o 
d 

en 
o 
o 
d 

CM 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
O 
O 
d 

CM 
O 
O 
d 

■»t 
CM 
O 
O 
d 

m 
CM 
o 
o 
d 

m 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CM 
O 
O 
d 

CM 
O 
O 
d 

CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

t 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

00 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
d 

CO 

o 
o 
d 

in 

o 
o 
d 

CO 

o 
o 
d 

en 
o 
o 
d 

o 
CM 
o 
o 
d 

o 
CM 
O 
O 
d 

co 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
O 
O 
d 

CM 
o 
o 
d 

in 
CM 
o 
o 
d 

co 
CM 
o 
o 
d 

CD 
CM 
O 
O 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
O 
O 
d 

r-- 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

O 

o 
o 
o 
o 
d 

o 
o 
o 
d 

CM 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CD 
o 
o 
o 
d 

o 
o 
d 

CM 

o 
o 
d 

co 
o 
o 
d 

co 
o 
o 
d 

o 
o 
d 

CD 

o 
o 
d 

en 
o 
o 
d 

CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
O 
o 
d 

co 
CM 
o 
o 
d 

CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

en 
CM 
o 
o 
d 

o 
CO 
o 
o 
d 

o 
CO 
o 
o 
d 

o 
CO 
o 
o 
d 

CO 
o 
o 
d 

CO 
o 
o 
d 

CO 
o 
o 
d 

CM 
CO 
o 
o 
d 

CM 

o 
o 
o 
d 

o 
o 
o 
o 
d 

t o 
o 
o 
d 

m 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

00 
o 
o 
o 
d 

00 
o 
o 
o 
d 

co 
o 
o 
d 

co 
o 
o 
d 

in 

o 
o 
d 

in 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

CM 
o 
o 
d 

CO 
CM 
O 
O 
d 

CM 
o 
o 
d 

m 
CM 
o 
o 
d 

m 
CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

en 
CM 
o 
o 
d 

o 
co 
o 
o 
d 

o 
CO 
o 
o 
d 

o 
CO 
o 
o 
d 

CO 
o 
o 
d 

CO 
o 
o 
d 

CM 
CO 
o 
o 
d 

CM 
CO 
o 
o 
d 

CM 
CO 
o 
o 
d 

CM 
co 
o 
o 
d 

co 
CO 
o 
o 
d 

CO 
o 
o 
d 

C 
Ö 
OL 
C 
at 

'in 
o a 

CM o q- *- CM O) CO *■ CO co CD m ^ CO i^ m CO CM 
co 
CM 

i^ CM 
CO 

oo o 
CM 

oo 
CM 

in 
CM 

at 
CM 

CM 
CM 
o 
CO 
t 
CM CM 

en 
CM m 

55 



CO 

CO o o 
d 

CM 
CO 
O 
O 

d 

co 
CM o o 
d 

CO 
CM o o 
d 

CM 
o 
o 
d 

in 
CM o o 
d 

m 
CM 
O o 
d 

CM 
O o 
d 

o 
CM 
O 
O 

d 

en 
o 
o 
d 

oo 
o 
o 
d 

o 
o 
d 

CO 

o o 
d 
o 
o 
d 

CM 

O 
O 

d 

en 
o 
o 
o 
d 

00 o 
o o 
d 

h- o o o 
d 

o o o 
d 

o o o 
d 

CO o o o 
d 

CO o o o 
d 

CO o o o 
d 

CM 
O 
O o 
d 

o 
o o 
d 

r— 
o 
o o 
d 

O o o o 
d 

O o o o 
d 

o o o o 
d 

O o o o 
d 

O o o 
CD 

o o o 
d 

CM 

CO 
CO o o 
ö 

CO o o 
d 

CO 
CM o o 
d 

CM o o 
d 

co 
CM o o 
d 

CM o 
o 
d 

CM 
O 
O 

d 

CM 
O 
O 

d 
o 
o 
d 

co 
o 
o 
d 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

CO 

o 
o 
d 
o 
o 
d 

en 
o 
o 
o 
d 

o o o 
d 

r-. o o o 
d 

CD o o o 
d 

o o o 
d 

CO o o o 
d 

CM o 
o o 
d 

CM o 
o o 
d 

o o 
o 
d 

T— 
o o 
o 
d 

o o o o 
d 

o o o o 
d 

o o 
o 
d 

o o 
o 
d 

o o 
o 
d 

i— 
o o 
o 
d 

o o o 
d 

i 

CM 

CM 
CO o o 
Ö 

CO o o 
d 

1"- 
CM 
o o 
d 

CM o 
o 
d 

CD 
CM o 
o 
d 

CM o 
o 
d 

CO 
CM o o 
d 

CO 
CM o o 
d 

o> 

o 
o 
d 

co 

o 
o 
d 

CO 
i— 
o o 
d 

CD 
i— 
o o 
d 

in 
■i— 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
o 
d 

CO o o 
o 
d 

o o 
o 
d 

CD 
o o o 
d 

CO 
o 
o 
o 
d 

CO o 
o o 
d 

CM o 
o o 
d 

CM o 
o o 
d 

o 
o o 
d 

o o 
o 
d 

o o o 
o 
d 

o o o 
o 
d 

o o 
o 
Ö 

o o o 
Ö 

o o o 
d 

i— 
o 
o o 
d 

■i— 

o 
o o 
d 

o o 
o o 
d 

CM 

CM 
CO o o 
d 

T— 
CO o 
o 
d 

CM 
o o 
d 

CM o 
o 
d 

CD 
CM o o 
d 

CM o o 
d 

CO 
CM o o 
d 

CO 
CM 
O o 
d 

en 

o 
o 
d 

CO 

o o 
d 

CD 

o o 
d 

CD 

o o 
d 

in 

o o 
d 

CO 
v— 
o 
o 
d 

o 
o 
o 
d 

CO 
o 
o 
o 
d 

r- o o o 
d 

CD o o o 
d 

co 
o 
o 
o 
d 

CO o o o 
d 

CM o 
o o 
d 

CM o 
o o 
d 

o 
o o 
d 

o o 
o 
d 

o o o 
o 
d 

o o o 
o 
d 

T— 
o 
o o 
d 

1— 

o 
o o 
d 

o o 
o 
d 

o o 
o 
d 

o o 
o 
o 

o o 
o o 
d 

O 
CO 

CM 
CO o o 
d 

o 
CO o o 
d 

[-- 
CM o o 
d 

CO 
CM o o 
d 

in 
CM o o 
d 

CO 
CM o o 
d 

CO 
CM o o 
d 

CO 
CM o o 
d 

CO 

o 
o 
d 

CD 

o o 
d 

CD 

o o 
d 

CD 

o o 
d 

m 
o o 
d 

CO 

o o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

o o o 
d 

CO o 
o o 
d 

CO o o o 
d 

CO o o o 
d 

CM o o o 
d 

o o o 
d 

1— 
o o o 
d 

i— 
o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

o o o 
o 

o o o 
CD 

o 
o o 
d 

o 
o o 
d 

o o o o 
d 

CM 
CM 

<M 
CO o o 
d 

o 
CO o o 
d 

CM o o 
d 

CD 
CM o o 
d 

m 
CM o 
o 
d 

CO 
CM o 
o 
d 

CO 
CM o o 
d 

CO 
CM o o 
d 

oo 
o 
o 
d 

o o 
d 

CO 

o o 
d 

CO 

o o 
d 
o o 
d 

CO 

o o 
d 

o 
o 
o 
d 

oo 
o 
o 
o 
d 

CO o 
o o 
d 

CD o o 
o 
d 

in o o 
o 
d 

CO o o o 
d 

CM o o o 
d 

T— 
o o o 
d 

o o o 
d 

o o o 
d 

o o 
o o 
d 

o o o 
d 

i— 
o o o 
o 

T— 
o o o 
o 

o o o 
d 

o o o 
d 

o o o 
o 
d 

o o o 
o 
d 

CM 

CO o o 
d 

o 
CO o o 
d 

CO 
CM o o 
d 

in 
CM o o 
d 

CM o o 
d 

CO 
CM o o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 
o 
o 
d 

o o 
d 

in 

o o 
d 

in 

o o 
d 
o o 
d 

CM 

o o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

CO 
o 
o 
o 
d 

m o o o 
d 

m o o o 
d 

CM o o o 
d 

o o o 
d 

o o o o 
d 

o o o o 
d 

o o o o 
d 

1— 
o o o 
d 

o o o 
ö 

o o o 
d 

o o o 
o 

o o o o 
d 

o o 
o o 
d 

o o 
o o 
d 

o o o 
d 

0> 
CO o o 
d 

CM o o 
d 

CD 
CM o o 
d 

in 
CM o o 
d 

CM o o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 
o 
o 
d 

CD 

o 
o 
d 

in 

o o 
d 

in 

o o 
d 

CO 

o o 
d 

CM 

o 
o 
d 

en 
o 
o 
o 
d 

h- o o o 
d 

co 
o 
o 
o 
d 

in o o o 
d 

o o o 
d 

CM o o o 
d 

o o o 
d 

o o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

o o o o 
d 

o o o o 
d 

o o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

CM 

o 
CO 
o 
o 
d 

CO 
CM o o 
d 

in 
CM o o 
d 

CM o o 
d 

CO 
CM o o 
d 

CM o o 
d 

CM o o 
d 

CM o o 
d 

CO 

o o 
d 

co 
i— 
o o 
d 
o o 
d 
o o 
d 

CO 

o o 
d 
o 
o 
d 

CO 
o o o 
d 

CO o o o 
d 

in o o o 
d 

o 
o o 
d 

o 
o o 
d 

o 
o o 
d 

o o o 
o 
d 

o o 
o 
d 

o o o 
ö 

o o o 
d 

o o o 
o 

o o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

CM o o o 
d 

CO 
CM 

o 
co 
o 
o 
d 

CO 
CM 
o o 
d 

CM o 
o 
d 

CM o o 
d 

CO 
CM o o 
d 

CM o o 
d 

CM o o 
d 

o 
CM o o 
d 

CO 

o o 
d 

in 

o o 
d 
o o 
d 

CO 

o o 
d 

CM 

o o 
d 

o 
o 
o 
d 

CO 
o o o 
d 

m o 
o o 
d 

■>* o o o 
d 

CO o 
o o 
d 

CO 
o 
o 
o 
d 

T— 
o o 
o 
d 

T— 
o o 
o 
o 

i— 
o o 
o 
o 

o o 
o 
d 

o o o 
d 

o o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

CM o o o 
d 

CO o o o 
d 

O 
CM 

o 
co 
o 
o 
d 

CO 
CM o o 
d 

CM o o 
d 

CM 
o 
o 
d 

CO 
CM o o 
d 

CM o o 
d 

o 
CM o o 
d 

o 
CM o o 
d 

CD 

o o 
d 

m 
o o 
d 

CO 

o o 
d 

CO 

o o 
d 

CM 

o 
o 
d 

o 
o 
o 
d 

o o o 
d 

m o o o 
d 

o o o 
d 

CO o o o 
d 

co 
o 
o 
o 
d 

o o o o 
d 

o o o 
d 

1— 
o o o 
d 

o o o 
d 

o o o 
CD 

o o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

CM o o o 
d 

CM o o o 
d 

CM o o o 
d 

CO o o o 
d 

co 

en 
CM 
o 
o 
d 

1^- 
CM o o 
d 

CM 
o 
o 
d 

co 
CM o o 
d 

CM 
CM o o 
d 

o 
CM o o 
d 

o 
CM 
o 
o 
d 

o 
CM 
o 
o 
d 

in 

o o 
d 
o o 
d 

CO 

o o 
d 

CO 

o o 
d 
o 
o 
d 

en 
o 
o 
o 
d 

o o o 
d 

in o o o 
d 

CO o o o 
d 

CO o o o 
d 

CM o o o 
d 

o o o o 
d 

o o o 
o 

o o o 
o 

o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

CM o o o 
d 

CM o o o 
d 

CM o o o 
d 

CM o o o 
d 

CO o o o 
d 

CO o o o 
d 

CM 
CO 

co 
CM o o 
d 

CD 
CM o o 
d 

co 
CM o o 
d 

CM 
CM 
o 
o 
d 

CM 
o 
o 
d 

o 
o 
d 

o> 
o 
o 
d 

en 
o 
o 
d 

■<* 

o 
o 
d 

CO 

o 
o 
d 

CM 

o 
o 
d 

CM 

o 
o 
d 

o 
o 
o 
d 

CO o o 
o 
d 

CD o o o 
d 

■<* o o 
o 
d 

CM o o o 
d 

CM o o o 
d 

o o o 
d 

o 
o o 
d 

o o o o 
d 

o o o o 
d 

o o o 
d 

o o o 
d 

CM o o o 
d 

CM o o o 
d 

CO o o o 
d 

CO o o o 
d 

CO o o o 
d 

CO 
o 
o 
o 
d 

o o o 
d 

o o o 
d 

N 

m 
CM o o 
d 

CM o o 
d 

o 
CM o o 
d 

en 
o 
o 
d 

co 
o 
o 
d 

o o 
d 

CO 

o o 
d 

CO 

o o 
d 
o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

oo 
o 
o 
o 
d 

CD 
o o o 
d 

CO o 
o o 
d 

o 
o o 
d 

o 
o o o 
d 

o o o 
ö 

o 
o o 
o 

o 
o o 
d 

CM o 
o o 
d 

CO o o 
o 
d 

CO o o 
o 
d 

o o 
o 
d 

o o 
o 
d 

m o 
o o 
d 

m o o 
o 
d 

CD o o 
o 
d 

CO o o 
o 
d 

co 
o 
o 
o 
d 

CD o o 
o 
d 

o o 
o 
d 

CO 
CM 

m 
CM o o 
d 

CO 
CM o o 
d 

o 
CM o o 
d 

en 
o 
o 
d 

co 
o 
o 
d 

CO 

o o 
d 

CO 

o o 
d 

CO 

o o 
d 
o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

r-- 
o 
o 
o 
d 

in o o o 
d 

CO o o o 
d 

o o o 
d 

i— 
o 
o 
o 
d 

i— 
o o o 
d 

T— 
o o o 
o 

CM o o o 
d 

CO o o o 
d 

CO o o o 
d 

CO 
o 
o 
o 
d 

■<* o o o 
d 

m o o o 
d 

m o o o 
d 

CO 
o o o 
d 

CO 
o o o 
d 

CO o o o 
d 

CD 
o o o 
d 

o o o 
d 

o o o 
d 

CO 
CM 

"3- 
CM o o 
d 

CM 
CM o o 
d 

05 

o o 
d 

co 
o 
o 
d 

r-- 
o 
o 
d 

in 

o o 
d 

in 

o o 
d 

m 
o o 
d 

o 
o 
o 
d 

o 
o 
o 
d 

oo 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

m o o o 
d 

CM 
o 
o 
o 
d 

o o o o 
d 

o 
o 
o 
d 

o o 
o 
o 

o o o 
o 
d 

CM o o o 
d 

CO o o 
o 
d 

o o o 
d 

o 
o 
o 
d 

m o o 
o 
d 

CO o o o 
d 

CO o o o 
d 

CO o o 
o 
d 

r-- o o o 
d 

r-- o o o 
d 

o o o 
d 

o o o 
d 

CO o o o 
d 

c 
"5 
a. 
c 

■<« o a 

CM o 1— * ̂  CM en CO Y- co oo 
CO m i— co i^ in co CM 

CO 
CM 

i^ CM 
CO 

co o 
CM 

oo 
CM CM 

O) 
CM 

CM 
CM 
o 
CO CM CM 

0> 
CM co 

56 



c 
01 
s- 
Ä SM s 
a o 
-o 1/3 

^ S- 

*J n. 
ri s a 
© u o 
X ss u 
u Ö Ot 

ft 
OX) •** ft 

s VI -M 
0> o L. s 

U 2 
ft J3 01 

■*J 
-M ti 

S 
»a a Id 

§ O) w 
s 
CM o 

rt 3 
t. t. H W rt i—i 

tk ft &> 
o> if X! 
^ o « 
3 JS H H 
fM 01 

PQ 
J3 
73 x > 

T3 0) 
B > 
cu *J 
ft 
ft o 
•< CLH 

CM 
CM 
O 
O 
Ö 

O 
CM 
O 
O 
d 

CO 

o o 
d 

CD 
i— 
O o 
d 

in 

o 
o 
d 

CO 

o 
o 
d 

CO 

o o 
d 

CM 

O 
O 
d 

co 
o 
o 
o 
d 

O 
O 
O 
d 

CO 
o 
o o 
d 

m 
o 
o 
o 
d 

o o o 
d 

CM 
O 
O 
O 
d 

O 
o o o 
d 

CO o o o 
d 

o o o 
o 

O 
o o 
d 

o 
o o 
o 
d 

CM 
O 
O 
O 
d 

CO o o o 
d 

o o o 
d 

o o o 
d 

m 
o 
o 
o 
d 

in 
o 
o 
o 
d 

CD 
o 
o o 
d 

CD 
O 
O 
O 
d 

O 
o 
o 
d 

o 
o 
o 
d 

O 
o 
o 
d 

O 
O 
O 
d 

co 
o 
o 
o 
d 

N 
o o 
d 

00 

o 
o 
d 

1— 
o 
o 
d 
o 
o 
d 

CO 

o 
o 
d 

T— 

o 
o 
d 

o 
o o 
d 

o 
o 
o 
d 

CO 
o o 
o 
d 

m o o 
o 
d 

CO o o 
o 
d 

CO 
o o 
o 
d 

CM 
o o o 
d 

o 
o o o 
d 

CO o 
o o 
d 

o o o 
o 
d 

o o 
o 
d 

CM o o 
o 
d 

CM 
O 
O 
O 
d 

in 
o o 
o 
d 

CO 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

oo 
o 
o 
o 
d 

CO 
o o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o o 
d 

o 

o 
o 
d 

CO o o 
d 

m 
o o 
d 

CM 

o o 
d 
o o 
d 

o 
o o 
d 

oo 
o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CO o o o 
d 

CM o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

CO o 
o o 
d 

o o o 
o 
d 

CM o o o 
d 

CO o o o 
d 

o o o 
d 

in 
o o o 
d 

h- 
o 
o 
o 
d 

oo 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o o 
d 
o o 
d 
o 
o 
d 
o o 
d 

CM 

o o 
d 

CM 

o o 
d 

CM 

o o 
d 

CO 

o o 
d 

^ 

in 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
o 
d 

en 
o 
o 
o 
d 

00 
o o 
o 
d 

CD 
o o 
o 
d 

CD 
o o o 
d 

CO 
o o o 
d 

o o 
o 
d 

o o o 
o 
d 

o o 
o 
d 

o o 
o 
o 

CO o o 
o 
d 

o o o 
d 

CM 
o o o 
d 

o o 
o 
d 

m o o 
o 
d 

CO 
o o 
o 
d 

CD 
o 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

o o 
d 
o 
o 
d 
o o 
d 

CM 

o o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

i— 
o 
o 
d 

T— 
o 
o 
d 
o 
o 
d 

in 

o 
o 
d 

IT) 
o o 
d 

CM 

o o 
d 

CO 
o o 
o 
d 

CO 
o o o 
d 

o o o 
d 

m 
o o o 
d 

in 
o o o 
d 

■<* 

o o o 
d 

o o 
o o 
d 

o o 
o 
d 

CM o o 
o 
d 

CO o o 
o 
d 

o o o 
d 

o o o 
d 

CO 
o o o 
d 

in 
o o o 
d 

o 
o o 
d 

o 
o o 
d 

oo 
o 
o 
o 
d 

o 
o o 
d 

T— 

o o 
d 

CM 

o o 
d 

CM 

o o 
d 

CO 

o o 
d 

CO 

o o 
d 
o o 
d 
o 
o 
d 

m 
i— 
o 
o 
d 

in 
i— 
o o 
d 

m 
■i— 

o o 
d 

in 

o o 
d 

CD 

O 
O 
d 

(0 

CO 

o o 
d 

CM 

o o 
d 

00 
o 
o o 
d 

CO 
o 
o o 
d 

o o 
o 
d 

in o o 
o 
d 

o o 
o 
d 

o o o 
d 

o 
o o o 
d 

o o o 
d 

CO o o o 
d 

CM o 
o o 
d 

o o 
o 
d 

o o 
o 
d 

CO o o 
o 
d 

CD 
o o o 
d 

o o o 
d 

oo 
o 
o 
o 
d 

oo 
o 
o 
o 
d 
o o 
d 

CM 

o o 
d 

CM 

o 
o 
d 

CM 

o 
o 
d 

CO 

o 
o 
d 
o 
o 
d 
o o 
d 

in 

o o 
d 

m 
o o 
d 

in 

o o 
d 

in 

o o 
d 

CO 

o 
o 
d 

CD 

o o 
d 

oo 

CM 
1— 
o o 
d 

o 
o o 
d 

o o o 
d 

CD 
o o o 
d 

in o o o 
d 

CO o o o 
d 

CO o o o 
d 

CO o o o 
d 

CM o o o 
d 

CO o o o 
d 

o o o 
d 

o o o 
d 

o 
o o o 
d 

CM 
o 
o 
o 
d 

in o o o 
d 

o o o 
d 

co 
o 
o 
o 
d 

en 
o 
o 
o 
d 

en 
o 
o 
o 
d 

CM 

o o 
d 

CO 

o o 
d 
o 
o 
d 

5 o 
d 
o o 
d 

in 

o o 
d 

in 

o o 
d 

CO 

o o 
d 

CD 

o o 
d 

r-- 
o o 
d 
o o 
d 
o 
o 
d 

00 

o 
o 
d 

co 
o o 
d 

o 
o o 
d 

CD o o o 
d 

m o o o 
d 

o o o 
d 

CO o o o 
d 

CM o o o 
d 

CM o o o 
d 

CO o o 
o 
d 

CM o o 
o 
d 

o 
o o o 
d 

o 
o o o 
d 

o o o 
d 

co 
o 
o 
o 
d 

CD o o o 
d 

CO o o o 
d 

en 
o 
o 
o 
d 

o 
o o 
d 

o 
o 
o 
d 

CO 

o 
o 
d 
o o 
d 
o 
o 
d 

in 

o 
o 
d 

m 
o o 
d 

CD 

o o 
d 

CD 

o o 
d 
o o 
d 
o o 
d 
o o 
d 
o o 
d 

co 
o 
o 
d 

en 
o 
o 
d 

h- o o o 
d 

m 
o o o 
d 

o o o 
d 

o 
o o 
d 

o o o 
o 
d 

CM o o 
o 
d 

i 

CO o o o 
d 

■ 

CO o o o 
d 

CM 
o o o 
d 

CO o o o 
d 

o o o 
d 

o o o 
d 

CO 
o o o 
d 

co 
o 
o 
o 
d 

o 
o 
o 
d 

CM 

o 
o 
d 
o 
o 
d 

i— 
o o 
d 

m 

o 
o 
d 

o o 
d 

CO 

o 
o 
d 

en 

o 
o 
d 

en 

o 
o 
d 

o 
CM o 
o 
d 

o 
CM o o 
d 

CM o 
o 
d 

CM o 
o 
d 

CM 
CM 
O 
O 
d 

CM 
CM 
O o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 

CO 
CM o o 
d 

<o 

r-- o o o 
d 

in 
o o o 
d 

o o 
o 
d 

o o o 
d 

o o o o 
d 

CM 
O 
O 
O 
d 

CO o o o 
d 

CO o o o 
o 

CM 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

o o o 
d 

in 
o o o 
d 

CD 
o o o 
d 

co 
o 
o 
o 
d 

o 
o o 
d 

CO 

o o 
d 

"3" 
O o 
d 
o o 
d 

m 
o 
o 
d 
o o 
d 

oo 
T— 
o 
o 
d 

en 

o 
o 
d 

en 

o 
o 
d 

o 
CM o o 
d 

CM o 
o 
d 

CM o o 
d 

CM 
CM o o 
d 

CM 
CM 
O o 
d 

CM 
CM 
O 
O 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 

CO 
CM o o 
d 

o> 

CD 
o o o 
d 

■<*■ o o o 
d 

o o o 
d 

o o o o 
d 

o o o 
d 

CO o o o 
d 

CM o o o 
d 

CM o o o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

in o o o 
d 

in 
o o o 
d 

CD o o o 
d 

00 o o o 
d 
o o 
d 

CO 

o o 
d 
o o 
d 

in 

o 
o 
d 

in 

o o 
d 

00 

o o 
d 

en 
o 
o 
d 

o 
CM o o 
d 

o 
CM o o 
d 

o 
CM o o 
d 

CM 
o 
o 
d 

i— 
CM 
O 
O 
d 

CM 
CM o o 
d 

CM 
CM 
O 
O 
d 

CM 
CM 
O 
O 
d 

CM 
CM o o 
d 

CO 
CM o o 
d 

"3- 
CM 
O 
O 
d 

CM 
o o 
o 
d 

CO o o 
o 
d 

o o 
o 
d 

CM o o o 
d 

co 
o 
o 
o 
o 

o o o 
o 

o o o o 
d 

o o o o 
d 

o 
o 
o 
d 

m 
o 
o 
o 
d 

o o o 
d 

o o o 
d 

CO 
o 
o 
o 
d 

o 
o 
o 
d 

CO 

o 
o 
d 

in 

o 
o 
d 

CD 

o 
o 
d 

o 
o 
d 

o o 
d 

o 
CM o o 
d 

CM o o 
d 

CM o o 
d 

CM 
CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

co 
CM o o 
d 

co 
CM o o 
d 

CM o o 
d 

CM o o 
d 

CM 
O 
O 
d 

CM o 
o 
d 

in 
CM o 
o 
d 

CD 
CM 
O 
O 
d 

^ 

CO 
o 
o 
o 
d 

CM o o o 
d 

CM o o o 
d 

CO o o o 
d 

CM o o o 
o 

o 
o o o 
d 

o o o 
d 

o o o 
d 

in 
o o o 
d 

CD 
o o o 
d 

oo 
o 
o 
o 
d 

oo 
o 
o 
o 
d 

en 
o 
o 
o 
d 
o o 
d 
o o 
d 

CD 

o 
o 
d 
o 
o 
d 

oo 
o 
o 
d 

co 
o 
o 
d 

CM o o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 

co 
CM 
o 
o 
d 

co 
CM o o 
d 

CM o o 
d 

CM o o 
d 

m 
CM o o 
d 

m 
CM o o 
d 

in 
CM o o 
d 

m 
CM o o 
d 

CD 
CM o o 
d 

CM o o 
d 

>* 

co 
o 
o 
o 
d 

o o o 
d 

CO o o o 
o 

CM 
O 
O 
O 
O 

o o o 
d 

o o o 
d 

o o o 
d 

o o o 
d 

CD 
o o o 
d 

h- o o o 
d 

CO 
o o o 
d 

CO 
o o o 
d 

o 
o 
o 
d 

CM 

5 
o 
d 
o 
o 
d 

CO 

o 
o 
d 

oo 
o 
o 
d 

co 
o 
o 
d 

o 
o 
d 

CM o o 
d 

CM 
CM o o 
d 

CO 
CM o o 
d 

co 
CM o o 
d 

CM o o 
d 

CM o o 
d 

m 
CM o o 
d 

in 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

CD 
CM o o 
d 

CM o o 
d 

o 
o o o 
d 

co 
o 
o 
o 
d 

o o 
o 
d 

CM 
O 
O 
O 
d 

CO 
o o o 
d 

o o 
o 
d 

m o o o 
d 

in 
o 
o 
o 
d 

o 
o o 
d 

o 
o o 
d 

CM 

o 
o 
d 

CM 

o o 
d 

CO 

o o 
d 

m 
o o 
d 

co 
o 
o 
d 

o 
CM o o 
d 

CM 
o 
o 
d 

CM 
CM o o 
d 

CM 
CM o o 
d 

in 
CM o o 
d 

CD 
CM o o 
d 

CM o o 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

00 
CM o o 
d 

CO 
CM o o 
d 

en 
CM o o 
d 

en 
CM o o 
d 

en 
CM o o 
d 

en 
CM o o 
d 

o 
CO o o 
d 

CO o o 
d 

CM 

CO o o o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o o o 
d 

CD 
o o o 
d 

o o o 
d 

o 
o 
o 
d 

o o 
d 

CM 

o o 
d 

co 
o 
o 
d 

■3- 
o o 
d 

in 

o o 
d 

r- 
o o 
d 

en 

o 
o 
d 

CM 
CM o o 
d 

co 
CM 
o 
o 
d 

CM o o 
d 

CM 
O 
O 
d 

CM 
O o 
d 

00 
CM o o 
d 

CO 
CM o 
o 
d 

en 
CM 
o 
o 
d 

en 
CM o o 
d 

o 
CO o o 
d 

o 
CO o o 
d 

CO o o 
d 

CO 
o 
o 
d 

CO o o 
d 

CO o o 
d 

CM 
CO 
o 
o 
d 

CM 
CO o o 
d 

c 
"5 
a. 
c 

'35 
a 

CM o ̂ - T~ CM en CO CO CO CO m ^ co N m co CM 
CO 
CM 

h» CM 
CO 

oo o 
CM 

co 
CM 
m 
CM 

0> 
CM 

CM 
CM 
o 
co CM CM 

en 
CM CO 

57 



CO 

CO 
CO 
o 
o 
d 

CO 
o 
o 
d 

1^- 
CM 
o 
o 
d 

CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
o 
o 
d 

CO 
CM 
O 
O 

d 

CO 
CM 
O 
O 

d 

en 

o 
o 
d 

CO 

o 
o 
d 

CD 

O 
O 

d 

CD 
T— 
o 
o 
d 

m 

o 
o 
d 

CO 

O 
o 
d 

o 

o 
o 
d 

co 
o 
o 
o 
d 

o o 
o 
d 

CO 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

CM 
O 
O 
O 

d 

CM 
O 
O 
O 

d 

1— 

o 
o 
o 
d 

o 
o 
o 
d 

8 
o 
o 
d 

o 
o 
o 
o 
d 

O 
O 
O 

O 

O 
o 
o 
o 

o 
o 
o 
d 

O 
o 
o 
CD 

CM 
O 
O 
O 

d 

CO 
o 
o 
o 
o 

O) 
CM 

CM 
CO 
o 
o 
d 

o 
CO 
o 
o 
d 

co 
CM 
o 
o 
d 

co 
CM o 
o 
d 

in 
CM o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
CM 
O 
O 

d 

CM 
CM 
O 
O 

d 

co 

o 
o 
d 

o 
o 
d 

CD 

O 
O 

d 

m 
o 
o 
d 

o 
o 
d 

CM 

o 
o 
d 

o 

o 
o 
d 

o 
o 
o 
d 

CD 
o 
o o 
d 

m 
o o 
o 
d 

in 
o o 
o 
d 

CM 
o o 
o 
d 

O o 
o 
d 

T— 
o 
o 
o 
d 

o o 
o 
d 

8 o 
o 
d 

o 
o 
o 
o 

o 
o 
o 
d 

CM 
O 
O 
O 

O 

CM 
O 
O 
O 

O 

CM 
o 
o 
o 
o 

CM 
O 
O 
O 

o 

CO 
o 
o o 
d 

CM 
O 
o o 
CD 

CM 

CO 
O 
o 
d 

en 
CM 
o 
o 
d 

(0 
CM 
o 
o 
d 

m 
CM 
o 
o 
d 

CM 
o o 
d 

CM 
CM o 
o 
d 

CM 
CM 
O 
O 

d 

CM 
CM 
O 
O 

d 

r-. 

o 
o 
d 

o 
o 
d 

in 

o 
o 
d 

m 
Y— 
o 
o 
d 

Y- 
o 
o 
d 

CM 
Y— 
o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

CD 
o 
o 
o 
d 

m o 
o 
o 
d 

in o 
o 
o 
d 

CM o 
o o 
d 

o o 
o 
d 

o 
o 
o 
o 
d 

o o o 
o 
d 

o o o 
o 
d 

o o 
o 
d 

CM 
o o 
o 
d 

CM 
O 
O 
O 

d 

CM 
O 
O 
O 

d 

co 
o 
o 
o 
d 

CO 
o o 
o 
d 

CM o 
o 
o 
CD 

i— 
o 
o 
o 
CD 

CM 

CO 
o 
o 
d 

en 
CM 
o 
o 
d 

CD 
CM 
o 
o 
d 

in 
CM 
o 
o 
d 

CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

CM 
CM 
O 
O 

d 

CM 
CM 
O 
O 

d 

o 
o 
d 

Y— 
o 
o 
d 

m 
o 
o 
d 

in 

o 
o 
d 

o 
o 
d 

CM 

o 
o 
d 

05 
O 
O 
o 
d 

o 
o 
o 
d 

CD 
o 
o 
o 
d 

in o 
o 
o 
d 

in 
o 
o 
o 
d 

CM o 
o 
o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

8 
o 
o 
d 

o 
o 
o 
o 
d 

i— 
o 
o 
o 
d 

i 

CM 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

CM 
o o 
o 
d 

1 

CO 
o 
o 
o 
d 

CO 
o o 
o 
d 

CM 
o o 
o 
d 

1 

O 
O 
O 

O 

O 
CO 

CO 
o 
o 
d 

en 
CM 
o 
o 
d 

CO 
CM o 
o 
d 

in 
CM 
o o 
d 

CM 
o 
o 
d 

CM 
CM 
o 
o 
d 

CM 
CM 
O 
O 

d 

CM 
CM 
o 
o 
d 

o 
o 
d 

CD 
T— 

o 
o 
d 

m 
o 
o 
d 

m 
o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

m 
o 
o o 
d 

in 
o 
o o 
d 

o 
o 
o 
d 

CM 
o 
o o 
d 

o 
o 
o 
d 

o 
o 
o 
o 
d 

o o 
o 
o 
d 

o 
o 
o 
d 

CM 
O 
O 
O 

d 
1 

CM 
O 
O 
O 

d 

CM 
O 
O 
O 

d 
1 

CO 
o 
o 
o 
d 

1 

CM 
O 
O 
O 

d 

CM 
O 
O 
O 

d 

CM 
o 
o 
o 
CD 

Y— 
o 
o o 
d 

CM 
CM 

cö 
o 
o 
d 

en 
CM 
o 
o 
d 

in 
CM o o 
d 

m 
CM 
O 
O 

d 

CM o 
o 
d 

CM 
CM o o 
d 

CM 
CM 
O 
O 

d 

CM 
O o 
d 

o 
o 
d 

o o 
d 

m 
Y— 
o o 
d 

i— 
o o 
d 

CO 
Y- 
o 
o 
d 

o o 
d 

en 
o 
o 
o 
d 

CD o 
o o 
d 

m o 
o o 
d 

o 
o o 
d 

o 
o 
o 
d 

CM o o 
o 
d 

o o 
o 
d 

o 
o 
o 
o 
d 

o o o 
o 
d 

o o o 
CD 

CM 
o o o 
CD 

CM 
o o o 
CD 

co 
o 
o 
o 
d 

CM o 
o o 
d 

CM o 
o o 
d 

CM o 
o o 
d 

CM 
O 
o o 
d 

i— 
o 
o o 
CD 

1- 
CM 

o 
CO 
o 
o 
d 

00 
CM 
o 
o 
d 

lO 
CM 
o o 
d 

-3- 
CM 
O 
O 

d 

CO 
CM 
o 
o 
d 

CM 
o o 
d 

CM 
o o 
d 

CM 
o o 
d 

<o 

o 
o 
d 

in 

o o 
d 

Y— 
o o 
d 

T— 
o 
o 
d 

co 
Y- 
o 
o 
d 

Y— 
o 
o 
d 

co 
o 
o 
o 
d 

CD 
o o 
o 
d 

in 
o 
o 
o 
d 

o o 
o 
d 

co 
o 
o 
o 
d 

o o 
o 
d 

o o o 
o 
d 

o 
o 
o 
ep 

o o 
o 
d 

CM 
O 
O 
O 

CD 

CM 
O 
O 
O 

CD 

CO 
o o o 
CD 

CM o o o 
d 

CM o 
o o 
d 

CM 
o 
o 
o 
ep 

CM o o o 
CD 

3 
o o 
d 

O 
O 
O 
O 

d 

O) 

o 
co 
o 
o 
d 

co 
CM 
O o 
d 

CM 
o o 
d 

CM 
o o 
d 

co 
CM 
o o 
d 

Y- 

CM 
o o 
d 

CM 
o o 
d 

o 
CM 
o o 
d 

co 

o 
o 
d 

m 
o o 
d 

o o 
d 

CO 

o o 
d 

CM 

o 
o 
d 

o 

o 
o 
d 

CO o o 
o 
d 

in o o 
o 
d 

o 
o 
o 
d 

"d- 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o o 
o 
d 

o o 
o 
d 

o 
o 
o 
d 

o o 
o 
CD 

CM 
O 
O 
O 

O 
i 

CO 
O 
O 
O 

CD 

CM 
O 
o o 
CD 

CM o 
o o 
o 

CM 
o o o 
o 

o 
o 
o 
CD 

o 
o o 
d 

o o o 
CD 

o o 
o o 
d 

in 
CM 

CM 
o 
o 
d 

CM 
o o 
d 

CM 
o 
o 
d 

CO 
CM 
o 
o 
d 

CM 
CM 
o o 
d 

o 
CM 
o o 
d 

o 
CM 
o 
o 
d 

o 
CM 
o 
o 
d 

m 

o 
o 
d 

o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

o o 
o 
d 

in 
o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CM o 
o 
o 
d 

o o 
o 
o 
d 

T— 

o o 
o 
d 

CM 
o o 
o 
d 

CM 
O 
O 
O 

CD 

CO o 
o 
o 
CD 

CM 
O 
O 
O 

d 

CM 
O 
O 
O 

CD 

T— 

o 
o 
o 
d 

o 
o o 
d 

O 
O 
O 
O 

d 

o o 
o 
o 
d 

o o 
o 
o 
d 

o 
o 
o 
d 

CO 
CM 

en 
CM 
o 
o 
d 

CM 
O 
O 

d 

co 
CM 
o 
o 
d 

co 
CM o 
o 
d 

CM 
CM o 
o 
d 

o 
CM o 
o 
d 

en 

o 
o 
d 

en 

o 
o 
d 

m 

o 
o 
d 

o 
o 
d 

CM 

O 
o 
d 

CM 

o 
o 
d 

o 
o 
d 

O) 
o 
o 
o 
d 

CD 
o o 
o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

CM o o 
o 
d 

CM o o 
o 
d 

o o o 
d 

CM o o o 
d 

CM 
o 
o 
o 
d 

CO 
O 
O 
O 

d 

CM 
O 
O 
O 

d 

o o o 
d 

O 
O 
O 

cp" 

o o o o 
d 

o o o o 
d 

o o o o 
d 

o o o o 
d 

o o o 
d 

o 
o o 
d 

O 
CM 

co 
CM 
o 
o 
d 

CM 
o 
o 
d 

co 
CM 
o o 
d 

CM 
CM 
o o 
d 

CM 
o o 
d 

o 
CM 
o 
o 
d 

en 

o 
o 
d 

en 

o 
o 
d 

O o 
d 

T— 

o 
o 
d 

CM 

o 
o 
d 

CM 

o o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

CD o o 
o 
d 

o 
o 
o 
d 

co 
o 
o 
o 
d 

CM o 
o o 
d 

CM o o 
o 
d 

o o 
o 
o 

CM 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CM o o 
o 
d 

CM 
O 
O 
O 

O 

o o 
o 
d 

O 
O 
O 

CD 

o o o 
o 
d 

o o o 
o 
d 

o o o 
o 
d 

o o o 
o 
d 

o o 
o 
d 

CM o o 
o 
d 

CO 

co 
CM o 
o 
d 

co 
CM o 
o 
d 

CM 
CM o 
o 
d 

CM 
CM o 
o 
d 

CM o 
o 
d 

en 

o 
o 
d 

co 

o 
o 
d 

co 

o 
o 
d 

o 
o 
d 

co 

o 
o 
d 

CM 

o 
o 
d 

Y— 

o 
o 
d 

o 

o 
o 
d 

co 
o 
o 
o 
d 

CD 
o o 
o 
d 

co 
o 
o 
o 
d 

CM 
o o 
o 
d 

Y— 
o o o 
d 

Y— 
o o 
o 
d 

CM 
O 
O 
O 

d 

co 
o 
o 
o 
o 

CM 
o 
o 
o 
d 

CM o 
o 
o 
CD 

o 
o o 
CD 

T— 

o o 
o 
d 

O 
O 
O 
O 

d 

o 
o 
o 
d 

o 
o 
CD 

d 

o 
o 
o 
d 

1— 

o 
o o 
d 

T— 

o o o 
d 

CM 
o 
o 
o 
d 

CM 
CO 

CM 
o 
o 
d 

m 
CM 
o o 
d 

CM 
o 
o 
d 

CM 
o 
o 
d 

o 
CM 
o o 
d 

oo 

o 
o 
d 

T— 

o o 
d 

o 
o 
d 

CO 

o 
o 
d 

CM 

O 
o 
d 

o 
o 
d 

o 

o 
o 
d 

en 
o 
o 
o 
d 

o 
o 
o 
d 

in o 
o o 
d 

CM 
O 
O o 
d 

o 
o o 
d 

o o 
o 
o 
d 

o o 
o o 
d 

co 
o 
o 
o 
d 

CM o 
o o 
d 

o 
o 
o 
ep 

T— 

o 
o o 
d 

1 

O 
O 
O 
O 

d 

o 
o o 
d 

o 
o o 
d 

CM 
O 
O 
O 

d 

CM o 
o 
o 
d 

CM o 
o o 
d 

CM 
O 
O 
o 
d 

CM o 
o o 
d 

co 
o 
o 
o 
d 

Y— 

CM 
O 
O 

d 

CM 
CM 
o o 
d 

en 

o 
o 
d 

co 

o 
o 
d 

o o 
d 

in 

o o 
d 

in 

o o 
d 

in 

o 
o 
d 

o 

o 
o 
d 

en 
o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

CD 
o o o 
d 

in 
o o o 
d 

CM 
o o o 
d 

o o o 
o 
d 

CM 
o o o 
d 

CM o o 
o 
o 

CO 
o o 
o 
o 

o 
o 
o 
o 
d 

o o 
o 
d 

CM o o 
o 
d 

CM o o 
o 
d 

CM o o 
o 
d 

CO 
o o 
o 
d 

CO 
o o 
o 
d 

■<* o o 
o 
d 

o o 
o 
d 

m o o 
o 
d 

in o o 
o 
d 

in o o 
o 
d 

CD 
o 
o 
o 
d 

CM 

CM o 
o 
d 

CM 
CM o 
o 
d 

CO 

o 
o 
d 

CO 

o 
o 
d 

o 
o 
d 

m 
o 
o 
d 

o 
o 
d 

o 
o 
d 

o 

o 
o 
d 

en 
o 
o 
o 
d 

00 o o 
o 
d 

o 
o 
o 
d 

CO o 
o o 
d 

o 
o o 
d 

CM o 
o o 
d 

o 
o o 
d 

CM 
o 
o 
o 
d 

CO o 
o o 
o 

CM 
O 
o o 
d 

o 
o 
o 
o 
d 

o 
o o 
d 

CM 
o 
o 
o 
d 

CM 
o 
o 
o 
d 

CO 
o 
o 
o 
d 

if o 
o 
o 
d 

o 
o 
o 
d 

■<* o 
o 
o 
d 

m o 
o 
o 
d 

m o 
o 
o 
d 

m o 
o 
o 
d 

in o 
o 
o 
d 

co 
o 
o 
o 
d 

CO 
CM 

CO 
CM o 
o 
d 

CM 
o 
o 
d 

00 

o 
o 
d 

o 
o 
d 

CD 

o 
o 
d 

o 
o 
d 

■■a- 
T— 

o 
o 
d 

o 
o 
d 

en 
o 
o 
o 
d 

co 
o 
o 
o 
d 

o 
o o 
d 

o 
o 
o 
d 

in o 
o o 
d 

CO 
o 
o 
o 
d 

T— 

o 
o 
o 
d 

Y— 
o 
o o 
CD 

co 
o 
o 
o 
Ö 

CM o 
o o 
d 

CM o 
o o 
d 

o 
o 
o 
d 

CM 
o o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

co 
o 
o 
o 
d 

■<* o o 
o 
d 

in 
o o 
o 
d 

m 
o o 
o 
d 

in o o 
o 
d 

CD 
O o 
o 
d 

CD 
o 
o o 
d 

CD 
o 
o o 
d 

o 
o 
o 
d 

C 

"5 
Q. 
c 
D> 

8 
P 

CM o f - CM o> CO CO co u> w r- CO f» in CO 
CM 

CO 
CM T" 

CM 
CO 

CO 
T— 

o 
CM 

CO 
CM 

m 
CM 

CO 
CM 

CM 
CM 

o 
CO CM CM CM CO 

58 



Appendix B.3 Ranking and Selection 

Table 6 Ranking and Selection 

Design 
Setting 

Crossover Selection Population 
Size 

Probability 
of 

Crossover 

Probability 
of Mutation 

Number 
Replaced 

P 

31 uniform roulette 100 0.95 0.03 2 0.1682497 

29 uniform tournament 100 0.95 0.03 25 0.124204 

21 uniform tournament 100 0.85 0.03 2 0.0906266 

24 two-point roulette 100 0.85 0.03 2 0.084916 

30 two-point tournament 100 0.95 0.03 2 0.0764209 

22 two-point tournament 100 0.85 0.03 25 0.0735273 

27 uniform roulette 50 0.95 0.03 25 0.0554826 

19 uniform roulette 50 0.85 0.03 2 0.0449968 

25 uniform tournament 50 0.95 0.03 2 0.0335378 

28 two-point roulette 50 0.95 0.03 2 0.0318686 

23 uniform roulette 100 0.85 0.03 25 0.0299966 

20 two-point roulette 50 0.85 0.03 25 0.0291113 

18 two-point tournament 50 0.85 0.03 2 0.0284038 

32 two-point roulette 100 0.95 0.03 25 0.0221866 

15 uniform roulette 100 0.95 0.01 25 0.0109189 

17 uniform tournament 50 0.85 0.03 25 0.0102421 

26 two-point tournament 50 0.95 0.03 25 0.0101765 

7 uniform roulette 100 0.85 0.01 2 0.0100477 

13 uniform tournament 100 0.95 0.01 2 0.0084658 

16 two-point roulette 100 0.95 0.01 2 0.007204 

11 uniform roulette 50 0.95 0.01 2 0.0069814 

8 two-point roulette 100 0.85 0.01 25 0.0059804 

5 uniform tournament 100 0.85 0.01 25 0.005803 

3 uniform roulette 50 0.85 0.01 25 0.004433 

6 two-point tournament 100 0.85 0.01 2 0.0042146 

1 uniform tournament 50 0.85 0.01 2 0.0037717 

4 two-point roulette 50 0.85 0.01 2 0.0036967 

9 uniform tournament 50 0.95 0.01 25 0.0035382 

14 two-point tournament 100 0.95 0.01 25 0.0034003 

10 two-point tournament 50 0.95 0.01 2 0.0028188 

12 two-point roulette 50 0.95 0.01 25 0.0026511 

2 two-point tournament 50 0.85 0.01 25 0.0021274 

Probability of Correctly Selection is greater than 0.95 
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APPENDIX C Genetic Algorithm In C++ 

/*   

RANDOM FEASIBLE  GENETIC ALGORITHM FOR MKP. 

 */ 
#include <stdio.h> 
#include <iostream.h> 
ttinclude <ctime> 
#include "GASState.h" 
#include "GAlDBinS.h" 
float Objective(GAGenome &);  // This is the declaration of our obj 
function. 

// The definition comes later in the file. 
#define NO_VAR 101 
#define MKP_FILE "grll20.txt"// Problem file 

float c[NO_VAR],al[NO_VAR],a2[NO_VAR]; 
float bl,b2,ZIP,Rho,Slackness; 
int  dropper,adder; 
// seed is optional but better use to have same results each time you 
run the code 
// Seeding is important in random search 
//int seed = 12321; 
int 
main() 
{ 

// opening data file 
ifstream in(MKP_FILE); 

char zipi[32] = "ALO.txt"; 
ofstream outfile ; 
outfile.open(zipi, (ios::out | ios::app )); 

for (int jy=l; jy<3  ; jy++) 

dropper=adder = 0; 

double dump; 
int prob; 

if(!in) { 
cerr « "could not read data file " « MKP_FILE « "\n"; 

exit(1); 
} 

// first rows of each problem is read to have parameters 
and RHS of problem 

//the parameters of the program, 
in » prob; 
in » dunk- 

el 



in » dump; 
in » ZIP; 
in » bl; 
in » b2; 
in » Rho; 
in » Slackness; 

in >> dump; 
in » dump; 
in » dump; 

cout « jy «  "\n"; 
int nvar = 0; 
do{ // reading obj. func. values 

in >> c[nvar]; 
nvar++; 

while(nvar<100); 
nvar = 0; 

do{ //reading first constraint 

in » al[nvar]; 
nvar++; 

while(nvar<100); 

nvar = 0; 
do{ //reading second constraint 

in » a2[nvar]; 
nvar++; 

while(nvar<100); 

if (in.eof(J) 
in.close(); 

if(nvar >= N0_VAR) { 
cerr « "data file contains more VARIABLES than 

allowed for in the fixed\n"; 
cerr << "arrays.  Recompile the program with larger 

arrays or try a\n"; 
cerr « "smaller problem.\n"; 
exit(1); 

} 
// Declare variables for the GA parameters and set them to 

some default values 
int length  = 100; 

int  flush = 5; 
int atama = 10000; 

int popsize  = 50; 
int ngen    = 10000; 
float pmut  = 0.03; 
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double pcross = 0.95; 

int best = 5; 
time_t     timel; 
timel=0; 
timel = clock(); 

GAlDBinaryStringGenome genome(length, Objective); 
GASteadyStateGA ga(genome); 
ga.initialize(); 

ga.populationSize(popsize); 
ga.nGenerations(ngen); 
ga.pMutation(pmut); 
ga.nReplacement(2); 
ga.pCrossover(pcross); 
ga.flushFrequency(flush); 
ga.scoreFrequency(atama); 
ga.scoreFilename("Graphicin.txt"); 

ga.crossover(GAlDBinaryStringGenome :: TwoPointCrossover); 
//ga.crossover(GAlDBinaryStringGenome :: 

OnePointCrossover); 
//ga.crossover(GAlDBinaryStringGenome :: 

EvenOddCrossover );*/ 
//ga.crossover(GAlDBinaryStringGenome :: 

StringtoChangeCrossover ); 
//    ga.crossover(GAlDBinaryStringGenome :: 

UniformCrossover ); 

//ga.terminator(GAGeneticAlgorithm::TerminateUponZipConvergence); 
//  ga.parameters("settings.txt"); 

// ga.parameters(arge,argv); 
GARouletteWheelSelector tournement; //RankSelector  ; 

RoulletteWheelSelector ; 
ga.selector(tournement)        ; 
GASigmaTruncationScaling sigma ; 
ga.scaling(sigma) ; 

ga.selectScores(2); 
// ga.statistics().write(outfile); 
//genome=ga.generation(); 
ga.evolve(); 

// genome = ; 

if (ga.done){ 
time_t time2; 
time2=0; 
time2 = clock(); 
cout « dropper « "\t" «adder« "\t" « 

ga.statistics().crossovers()« "\n"; 
outfile « difftime(time2,timel)/ CLOCKS_PER_SEC « 

"\t"; 
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//outfile « ga.statistics().online(); 
//cout « genome; 

} 
// GAParameterlist params ; 
// params.set(gaNscoreFilename, "out.dat") ; 

return 0;   } 

// Objective function. The most imoratant part. Basically a child is 
evaluated by this function before 
//getting into the population 

float 
Objective(GAGenome& g) { 

GAlDBinaryStringGenome & genome = (GAlDBinaryStringGenome 
&)g; 

//*char Zip[32] = "ONLINE.txt"; 
//    ofstream outfile ; 
//    outfile.open(Zip, (ios::out | ios::app)); 
//   outfile « genome <<"\n"; 

float score=0.0; 
float feasiblel=0.0;// left hand side of current first 

constraint 
float feasible2=0.0;// left hand side of  current second 

constraint 

//* First constraints are calculated to see if the 
reported solution is good! 

for(int i=0; i<genome.length(); i++) 
{ 

feasiblel += genome.gene(i)*al[i]; 
feasible2 += genome.gene(i)*a2[i]; 

} 

//* if the current solution is not good ( violated 
constraint(s) ), then DROP and ADD algorithms are 

// invoked to make child good for the feasible population. 
This is done by starting from a random point 

// in its chromosome '1' are excluded until they are 
feasible in terms of both constraints. 

if ((feasiblel>bl) || (feasible2>b2)){ 

dropper++ ; 
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if(genome.gene(q)){ 

int mdpnt = 
GARandomlnt(0,(genome.length()-1)); 

for (int q=mdpnt ; q<genome.length() ; 

q++){ 

genome.gene(q,0); 
feasiblel -= al[q]; 
feasible2 -= a2[q]; 

} 
if ((feasiblel<=bl) && (feasible2<=b2)) break; 

if ( q == (genome.length()-1)){ 

for (int j=0 ; j<mdpnt ; j++){ 

if(genome.gene(j)){ 

genome.gene(j , 0); 

feasiblel -= al[j]; 

feasible2 -= a2[j]; 

} 

if ((feasiblel<=bl) && (feasible2<=b2)) break;} 

} 

} 

} 
//* After DROP algortihm, ADD algorithm tries to improve the quality 

of chromosome by 
// adding feasible items »starting from a random byte. 

int addition = GARandomlnt(0,(genome.length()-1)); 
for (int t=addition; t<genome.length() ; t++){ 

if(((feasiblel +al[t])<=bl) && ((feasible2 + a2[t])<=b2) && 
(!(genome.gene(t)))){ 

adder++; 
genome.gene(t,1) ; 
feasiblel += al[t]; 
feasible2 += a2[t];} 

if ((feasiblel==bl) && (feasible2==b2)) break; 

if ( t == (genome.length()-1)){ 
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for (int j=0 ; j<addition ; j++){ 
if(((feasiblel +al[j])<=bl) && ((feasible2 + a2[j])<=b2) && 

(!(genome.gene(j)))){ 
adder++; 

genome.gene(j , 1) ; 
feasiblel += al[j]; 
feasible2 += a2[j];} 

if {(feasiblel==bl) && (feasible2==b2)) break;} 

for(int w=0; w<genome.length(); w++){ // Score of the child is returned 
score += genome.gene(w)* c[w];} 

return score; 
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