
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1999

Modeling and Analysis of Aerial Port Operations Modeling and Analysis of Aerial Port Operations

Timothy W. Albrecht

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Albrecht, Timothy W., "Modeling and Analysis of Aerial Port Operations" (1999). Theses and Dissertations.
5296.
https://scholar.afit.edu/etd/5296

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F5296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5296?utm_source=scholar.afit.edu%2Fetd%2F5296&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GOR/ENS/99M-1

MODELING AND ANALYSIS
OF AERIAL PORT OPERATIONS

THESIS

Timothy W. Albrecht, Captain, USAF

AFIT/GOR/ENS/99M-1

Approved for public release, distribution unlimited.

19990409 030

The views expressed in this thesis are those of the author
and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

AFIT/GOR/ENS/99M-1

MODELING AND ANALYSIS
OF AERIAL PORT OPERATIONS

Timothy W. Albrecht, B.S.
Captain, USAF

Approved:

3/// /ff
Chairman date

3/1/ft
date

11

AFIT/GOR/ENS/99M-1

MODELING AND ANALYSIS
OF AERIAL PORT OPERATIONS

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Operations Research)

Timothy W. Albrecht, B. S.

Captain, USAF

March 1999

Approved for public release, distribution unlimited.

Acknowledgments

The construction of my thesis was buttressed with the support, guidance,

and instruction of several people. To Dr. Ken Bauer, my thesis advisor, and Lt

Col J.O. Miller, my thesis reader I owe a debt of gratitude for sharing their time,

experience, and nurturing academic environment. To Maj Robert Brigantic, the

sponsor of my thesis, I owe my appreciation for allowing latitude in my

approach to this thesis, for providing timely response to any questions I had, and

for financially supporting my pursuit of the best product. Finally, I wish to say,

"Thank you" to my wife, Amy, for her patience and understanding in the midst

of wedding planning, long hours of homework, and thesis drudgery.

Timothy W. Albrecht

111

Table of Contents

Acknowledgments iii

Table of Contents iv

List of Figures vi

List of Tables vii

Abstract viii

MODELING AND ANALYSIS OF AERIAL PORT OPERATIONS 1

I. Introduction 1
II. Literature Review 3
III. Methodology 6

Problem Formulation 6
Project Plan 6
Model Conceptualization 14
Data Collection 22
Model Translation 22
Verification 30
Validation 33

IV. Findings and Analysis 36
V. Conclusions 39

Appendix A: Aerial Port Operations Model User's Guide 41

Model Background 41
Graphical Layout 41
Animation 44
Parameter Input 46
Data Output 48

Appendix B: APOM Structure and Functional Organization 50

Structure 50
Simulation Run-Through 51

Setup 51
Aircraft Arrivals 52
Aircraft Servicing 54
Loading Dock Management 59

iv

Transportation Network 59

Appendix C: APOM Code 61

Aircraft Modules (Definition and Implementation) 61
Airfield Modules (Definition and Implementation) 71
Cargo Modules (Definition and Implementation) 94
Global Modules (Definition and Implementation) 100
Graphics Modules (Definition and Implementation) 103
Main Module 119

Bibliography 122

Vita 125

List of Figures

Figure 1 Simulation Study Flowchart 7

Figure 2 Airfield Capacity Display 20

Figure 3 Service MOG Display 21

Figure 4 APOM Graphical Layout 42

Figure 5 Ramp Detail 44

Figure 6 Airfield Parameters Input 46

Figure 7 Cargo and Fuel Input 47

Figure 8 Transportation Input 47

Figure 9 Aircraft Parameters 48

Figure 10 Model Statistics 49

Figure 11 Destination Statistics 49

VI

List of Tables

Table 1 BRACE Model Limitations 12

Table 2 ACE Model Limitations 13

Table 3 Simulation Statistics 23

Table 4 Airfield Object Fields 24

Table 5 Airfield Object Methods 25

Table 6 Aircraft Object Fields 26

Table 7 Aircraft Object Methods 27

Table 8 Cargo Module 28

Table 9 Graphics Module 29

Table 10 Design Settings 31

Table 11 Airfield Capacity Effects Screening 32

Table 12 APOM Input 35

Table 13 ACE Input 35

Table 14 Divert Effects Screening 36

Table 15 Service MOG Effects Screening 38

Vll

AFIT/GOR/ENS/99M-1

Abstract

The focus of this thesis effort is gaining useful insight into aerial port

operations by employing an animated simulation. Understanding airfield

capacity, resources, and functioning allows greater accuracy and efficiency in

both planning for future force structures and matching mobility assets with

commanders' objectives. Two current simulations, ACE (Airfield Capacity

Estimator) and BRACE (Base Resource Allocation and Capabilities Estimator),

model mobility activities at the base level with some deficiencies. The model

proposed by this thesis, APOM (Aerial Port Operations Model), will provide the

mobility analyst an animated simulation with two, new measures of aerial port

operations; a real-time estimate of airfield capacity subject to changing levels of

airfield resources, and an instantaneous count of serviced aircraft (service MOG).

Additionally, APOM will offer an expanded utility to the mobility analyst by

modeling a ground transportation network associated with the aerial port.

Vlll

MODELING AND ANALYSIS OF AERIAL PORT
OPERATIONS

I. Introduction

The advantages gained by improving strategic mobility analyses are

straightforward. One can maximize the objective of movement of force by

improving the accuracy and efficiency of mobility planning. But, what steps can

be taken to improve mobility planning?

At the root of strategic mobility planning is an understanding of the

operation of an air mobility base. Once the functioning of an airbase can be

understood with sufficient fidelity and flexibility, a set of them can be brought

together to form a transportation network overwhich a planner can route cargo

flow. Capabilities of the transportation network constrained by mobility base

resource levels can then be studied.

The topic of this thesis evolved from a need to develop a useful base-level

mobility model while recognizing the existence of two such models, BRACE and

ACE. This thesis proposes to introduce an additional modeling capability to the

BRACE simulation; that of cargo hand-off from airbase material handling

equipment (MHE) to ground transport. Further, the airbase will be modeled as a

source of a transportation network leading to cargo end nodes. By incorporating

a transition between airbase cargo handling and a ground-based transportation

network the applicability of the model will be expanded.

1

In addition to the incorporation of a transportation network, the model

will include meaningful output functions related to mobility study such as a

dynamic plot of airfield capacity and an airfield service measurement. Animation

of the aerial port will allow the user to follow the activities at the airfield, to

change resource levels, and to observe the impact of new resource levels.

Creating a model built on the capabilities and deficiencies of previous

models requires a disciplined approach and an understanding of the user's

needs. The methodology used in developing APOM was drawn from the

literature on classic simulation study and constitutes the bulk of this thesis effort.

And the author understands that there is no defensible justification for the

development of a simulation model if it is not ultimately used and usable by the

decision maker (Shannon, 1975).

II. Literature Review

Research for this study revolved around several different issues. First, the

background supporting mobility studies was explored. Second, the framework

and techniques of simulation studies was learned. And third, the details of

model translation were researched.

The reference material gathered for this study concerning mobility studies

aided in understanding the function of mobility bases and the importance

mobility planning has in US force projection. Primary sources were RAND

studies providing airfield operation overview (Stucker, 1998), mobility modeling

and analysis (Schänk, 1991), and application of mobility modeling analysis

(Killingsworth, 1997).

The second area of research yielded an understanding of simulation

studies. One quotation from a simulation expert shows that time has not

influenced the basic process of modeling:

The process of model development may be usefully viewed as a
process of enrichment or elaboration. One begins with very simple models,
quite distinct from reality, and attempts to move in evolutionary fashion
toward more elaborate models which more nearly reflect the complexity of
the actual management situation. (Morris, 1967)

This area of research revealed a method in conducting a simulation

study. Guidance in following the steps of this method from problem

formulation, to model translation, to verification and validation were essential in

focusing the thesis. Secrets of Successful Simulation Studies (Law, 1990)

3

provided the best information on the subject, but several other sources also

supported the topic. Among these were System Simulation (Gordon, 1969) and

Discrete-Event System Simulation (Banks, 1996).

The final area of interest was accurate and efficient translation of concepts

into a coded model. The model concept was developed from research on the

ACE and BRACE models and occurred in many stages starting with a very basic

air mobility process and ending with a detailed aerial port model.

Two parallel tracks were run in regard to model translation. First,

understanding of the ACE and BRACE models was needed. The BRACE model

code and user's guide revealed its structure and capability (Cusick, 1997). Since

the treatment of cargo was of primary concern, focus was centered on the

possibility of appending the BRACE code to include a cargo hand-off to a ground

transportation network. Study of the code showed BRACE treated cargo as a

counter that was incremented or decremented upon onload or offload. If a

ground network were added, cargo would need to be treated as an object to

facilitate data collection and simplify the code structure.

Information on the ACE model was found in the RAND study,

Understanding Airfield Capacity for Airlift Operations (Stucker, 1998). Gathered

in this study was a wealth of information on the ACE model covering its

structure, operation, and purpose.

Deficiencies in the ACE and BRACE models, outlined later in this thesis,

were illuminated in the thesis work of Maj David Williams (Williams, 1999). The

problems found with the ACE and BRACE models aided both the model

conceptualization and the model translation phases of APOM.

The second parallel track taken was learning object-oriented simulation

programming in MODSIM III. Invaluable resources in this effort were the

MODSIM reference manual, SimGraphics manual, and the MODSIM training

seminar. Areas of primary concern were resource management, trigger

mechanisms, graphical user interfaces, and animation issues.

HI. Methodology

The literature is rich with information on conducting a proper simulation

study and the benefits of following the prescribed steps. The following

subsections outline the course of the thesis simulation study with an

introductory paragraph explaining the purpose of each step. Figure 1 shows the

flowchart of a simulation study (Law, 1991).

Problem Formulation

The beginning of every simulation study is a clear statement of the study's

objectives. It is necessary to specify a clear goal and any issues that need to be

addressed.

The focus of the thesis effort is gaining useful insight into aerial port

operations beyond those provided by current simulations (ACE and BRACE) as

they relate to air mobility operations by appending the list of modeled processes

with a ground transportation network capability. Additionally, improving the

representation of airfield capacity measurement is desired.

Project Plan

The overall study should be planned in terms of the number of people, the

cost, and the time required for each aspect of the study (Law, 1991). In the case

of this thesis, the number of people directly involved was four (author, advisor,

Problem
formulation

Objectives and
plan

Model
conceptualization

Model
translation

No

Data collection

No

Experimental A
design

Yes

y r
h, Production runs

and analysis w

Yes
r—More IUILST^^

Figure 1 Simulation Study Flowchart

reader, and sponsor), the cost was minimal (less than $1000.00), and the time

required was under six months.

It is useful to divide the planning of this simulation study into three

stages: gaining a direction of study, understanding the capabilities and

limitations of the ACE and BRACE models, and determining the composition of

the thesis simulation, APOM.

Thesis Direction

This thesis began with the idea of adding the transition of cargo from an

aerial port onto a ground transportation system to the BRACE simulation. As it

stood, BRACE did not deal with cargo after it had been offloaded from an

aircraft. It was decided that adding this capability to BRACE would result in a

more robust model useful in planning force deployments beyond the mobility

base.

BRACE is written in an object-oriented simulation language owned by

CACI Inc. called MODSIM III. Implementing a new process would require a

familiarity with MODSIM III, and any changes to the code would require a

MODSIM III license. The thesis sponsor, HQ AMC/XPY, provided the author

with both a seat at a week-long MODSIM III training seminar and a MODSIM III

license.

With the necessary programming skills learned and a goal in mind, work

began on a proof of concept model to show BRACE could be altered to

incorporate a transition to a ground transportation network. As the proof of

concept code grew and difficulties with BRACE surfaced, it became evident that

the thesis simulation could be managed with greater dexterity than the original

BRACE code.

Model Backgrounds

The Base Resource Allocation and Capabilities Estimator (BRACE) is a

capacitated queuing network simulation written in MODSIM to model an

aircraft arrival stream, a mobility airfield's ground activities and resources, and

the relationship between resources and aircraft/cargo throughput.

The BRACE model is stochastic with variation found in the aircraft arrival

stream. The duration of all ground-based processes, except maintenance, are

deterministic and depend on aircraft parameters and resource availability.

BRACE was written by Travis Cusick at Washington University's (St.

Louis) Center for Optimization and Semantic Control under the sponsorship of

the Air Force's HQ AMC/XPY. The current version, 1.31, is dated 18 Dec 1997

(Cusick, 1997).

The activities modeled include aircraft type and arrival, parking, fueling,

maintenance, and departure, as well as cargo and passenger on/off loading.

Ground-based equipment modeled by BRACE includes fuel trucks, fuel pumps,

60k, 40k, and 25k loaders, forklifts, wide body elevators (WBELs), and ramp

spaces.

Aircraft arrival may be exponential, Erlang, or triangular distributed.

BRACE models C-130, C-17, C-5, C-141, KC-10, B-747, or DC-8 airframes each

with a default or user-defined payload, maintenance record, and fuel parameters.

BRACE also allows the user to restrict the operating hours of the airfield,

to determine aircraft divert protocol, and to define resource availability.

BRACE outputs information on throughput, resource utilization, delays,

activity times, and ground times.

The Airfield Capacity Estimator (ACE) is a spreadsheet model developed

by James Stucker and Ruth Berg at RAND's National Defense Research Institute

to estimate the capacity of an airfield. The current Microsoft Excel version, ACE

97, was completed on 1 November, 1998 (Stucker, 1998).

ACE inputs include airfield specific parameters, global parameters, and

mission specifications. The airfield specific parameters include information on

airfield layout, aircraft fueling parameters, and aircraft loading parameters.

Global parameters contain information on aircraft characteristics, ground

equipment, and global aircraft servicing times, loading parameters, and fuel

parameters. Mission specifications include number and type of aircraft, aircraft

10

configuration (cargo, passenger, or mixed), servicing profile (quick turn or full

service), fuel required, and passengers and cargo to be on-loaded and /or off-

loaded.

ACE can be run in one of two modes; expected-value mode or the Monte

Carlo mode. The expected-value mode is deterministic. The Monte Carlo mode

includes limited stochastic effects. Variability is introduced in determining

whether aircraft require repair, nitrogen servicing, oxygen servicing, and de-

icing, and the time required to accomplish these activities.

ACE determines the daily capacity of a particular airfield through a series

of mathematical calculations within various spreadsheets. ACE calculates the

average time required per aircraft per service activity (fueling, cargo

loading/offloading, and maintenance). Next, an average ground time is

determined which is then incorporated in a calculation of an average daily

capacity for each resource based on resource availability. The service capacity is

determined for each airfield service. The limiting service capacity determines the

airfield's overall capacity.

The use and limitations of the ACE and BRACE models are the focus of

fellow ENS student Major David Williams' thesis. The following tables of

limitations of the models were uncovered through his research effort (Williams,

1999).

11

Table 1 BRACE Model Limitations

Model Area Implication

AC delay time output

AC divert mechanism

AC serviced output

AC servicing order

Airfield capacity
measure

Forklift modeling

Fuel pit

Ramp space utilization

Run length

Termination

Input Parameters

Model Use

Calculated to be the difference between actual time on ground and
expected time on ground. Not defined as the time spent waiting for
service.

BRACE includes a diverted aircraft as one which has been serviced,
inflating the number of aircraft serviced, amount of cargo
loaded/offloaded, and fuel transferred.

BRACE reports any AC arrival as a serviced AC. For accuracy, a
departed AC should be counted as serviced.

BRACE allows nearly all servicing activities to occur simultaneously.
Erroneous representation of reality where fueling is performed
separately from other services.

BRACE lacks a direct measure of airfield capacity.

Simulation runs with no forklifts still show transfer of cargo.
Indications of error in modeling of forklifts.

Does not model hydrant servicing vehicles. Possible for aircraft to
land and wait the duration of the simulation for fueling.

Wide-body ramp space utilization calculations are erroneous.

BRACE requires user attention during run-time to ensure correct
termination (see below).

Once BRACE reaches the user-defined termination point, it continues
to run until the airfield is flushed of AC. This corrupts the data
collected.

BRACE input parameters are not readily available. Contributes to
lack of model use.

BRACE is not used for routine analysis for a variety of reasons.
Improvements to the model are needed.

Of the limitations listed in Table 1, several warrant restating. First, the

divert mechanism in BRACE treats diverted aircraft as if they had been serviced.

The simulation includes the cargo and fuel that would have been transferred in

its output, thus inflating throughput statistics. Second, the fueling of aircraft

12

should occur separately from any other service. Third, a proper termination of

the simulation is needed to aid analysis. And last, a direct measure of airfield

capacity is needed.

Table 2 ACE Model Limitations

Model Area Implication

Deterministic nature

Fuel Trucks

Variety of AC within
mission

Model Use

Uses expected values in calculations. Results are "optimistic" or
upper limit capacities.

ACE inaccurately models the use of fuel trucks. Use of fuel trucks
does not impact simulation results.

AC within a mission must have the same parameters (i.e. same
aircraft). Limits scope of ACE studies.

ACE is not used for routine mobility analysis.

The most significant problem with ACE is its modeling of fueling

operations. ACE allows the user to include fuel trucks and hydrant servicing

vehicles (HSV's) in its modeling of aircraft fueling. Through repeated trials the

number of fuel trucks made no difference in the average amount of time required

to fuel an aircraft, or to the airfield's capacity for fueling operations (Williams,

1999).

Thesis Simulation

The next step in the thesis process was deciding a direction for the thesis

simulation. The capabilities and shortcomings of the ACE and BRACE models

along with the idea of appending a ground transportation network provided a

13

recipe for a useful, first generation air mobility base simulation. It was decided

to evolve the code for the original proof of concept model by adding to it those

capabilities deemed useful in ACE and BRACE while avoiding those pitfalls

illuminated by Maj Williams' research. The new model would be structured and

documented to lend itself to future enhancements.

Following the logic above, the thesis simulation must model to a

reasonable level of detail both the flow of cargo into the aerial port and the

operation of the transportation network leading from the aerial port to final

destinations. Such details include accurate modeling of aircraft traffic flow,

passenger offload, aircraft fueling, aircraft maintenance, aerial port cargo

handling (bulk and rolling), and cargo flow over the transportation network. In

addition, the simulation should be animated, employ a concrete divert

mechanism, terminate succinctly, and include a direct measure of airfield

capacity.

Model Conceptualization

This step consists of distilling the complex system to be modeled to its

essential components and involves feedback from the perspective user during

the process. An additional consideration in this step is inclusion of those aspects

of the system that are relevant to the study objectives (Gordon, 1969).

14

Modeled Behavior

APOM models the flow of cargo through an airfield and into a specified

ground transportation network. This process can be broken down into three

parts: the arrival of aircraft, the handling of cargo, and the distribution of cargo.

The arrival times of aircraft are randomly generated according to an

exponential distribution with user-determined mean value. Two types of aircraft

are modeled, the C-17 and the C-5. Further enhancements to the model could

expand the choice of aircraft easily. A random draw determines the type of

aircraft arriving to the airfield according to a user-defined proportion of traffic

flow. At instantiation each aircraft is given a predetermined set of cargo,

passengers, and required fuel load depending on aircraft type.

An approach to the airfield is made when two conditions are met. First,

that the maximum allowed number of aircraft on the ground will not be

exceeded by landing the aircraft, and second, that the runway is not in use by

another aircraft. The maximum allowed number of aircraft on the ground is

defined by the user and includes all aircraft who landed, who are awaiting

service by the cargo handlers, who are currently being serviced by cargo

handlers, or are taxiing to takeoff. Not included are aircraft on their takeoff roll.

A divert occurs when the maximum allowed number of aircraft on the ground

denies the aircraft approach. In this way, the simulation avoids boundless

aggregation of aircraft should the airfield resources be insufficient to handle the

15

aircraft flow. If the runway is in use at the time of approach (departing aircraft is

taxiing across the runway) the approaching aircraft does not divert, but simply

orbits until the runway is available.

Once an aircraft has landed and taxied to a preset location, it awaits

assignment to a parking space. A parking space must be assigned before

servicing can be initiated. The number of parking spaces on the ramp is user-

defined and can be altered at any time during the simulation run.

After the aircraft is assigned a parking space it undergoes four processes:

passenger offload, cargo offload, refueling, and concurrent maintenance.

Passenger offload occurs first and is concurrent with cargo offloading and

maintenance. Refueling begins once all other processes are complete.

Both passenger and rolling cargo offload are simple processes incurring

delays proportional to the number of units offloaded. These processes involve

no airfield resources.

The palletized cargo offloading process begins with the aircraft awaiting

the service of the airfield's cargo handlers. Once assigned cargo handlers, the

service icon is colored yellow. Cargo handlers are assigned to aircraft according

to the following rule. If there are more cargo handlers available than the aircraft

requires for a single-run-offload (defined as the number of cargo handlers

required to remove all palletized cargo without returning to aircraft), then the

aircraft is assigned its full compliment of cargo handlers. If the aircraft requires

16

more cargo handlers than the airfield has available it will grab those cargo

handlers which are available.

Once assigned a number of cargo handlers the aircraft will retain

possession of that number until its palletized cargo has been offloaded. The

assigned team of cargo handlers travels to the parked aircraft (a delay is incurred

as a function of aircraft location), queue at the aircraft, and offload the pallets at a

user defined rate. The team of cargo handlers travels back to the loading dock,

awaits assistance from available forklifts, and places the pallets onto the dock.

At the time of offload, the simulation instantiates a cargo object with a

birth time, a cargo type (pallet, rolling, or passenger), and a final destination. The

birth time is used to track the time in system of each piece of cargo. The final

destination of each piece of cargo is determined randomly according to a user-

defined distribution. The default setting is for equi-probable destinations.

Aircraft maintenance is determined by user-defined data defining

probability of breakdown and duration of repair. Once maintenance and cargo

offloading have been completed, the aircraft prepares to be refueled.

Aircraft refueling can take place by fuel pit or fuel truck depending on the

availability of fuel pits. If a fuel pit is available, fuel is transferred at a user-

defined rate until the aircraft is filled. If a fuel pit is not available, fuel trucks

must be assigned to refuel the aircraft. Once assigned to an aircraft a fuel truck

17

will deliver its fuel at a user-defined rate until it is empty (returns to loading

dock to refill) or the aircraft is filled.

The simulation also includes a non-concurrent maintenance feature that

determines whether an aircraft will require repair and the duration of the repair

(both user-defined). Maintenance is carried out after the aircraft has offloaded its

cargo and been refueled.

After being offloaded from the aircraft, the cargo are sorted according to

destination and type and placed in a FIFO queuing system. Once the number of

cargo heading to a particular destination reaches a user defined level a call is

placed for a transport to haul the cargo.

There are a user-defined number of transports available at the airfield. If

one is available, it is dispatched. If one is not available, the cargo waits in a FIFO

manner until one becomes available. With a transport available the cargo are

loaded by forklift and the transport departs for its respective destination. After

an offload delay, the transport returns to the loading dock for further use.

Graphical Layout

The features of the airfield layout include: two runways (one takeoff and

one landing), one ramp for aircraft parking, an aerial port facility, and a simple

ground transportation network with four end nodes.

18

There are several simulation meters displaying pertinent simulation data

at run time. These meters are grouped into three areas of the simulation board:

the bottom display, the aerial port display, and the chart area. The bottom

display contains the simulation clock and a divert counter.

The aerial port contains four counters that display the number of cargo

handlers available, the number of fuel trucks available, the number of forklifts

available, and the number of trucks available in the motorpool. Additionally, a

parking space queue meter is located on the ramp and displays the number of

aircraft awaiting ramp space assignment. The aerial port area also contains a

dynamic, loading dock operations chart showing the current levels of cargo on

the dock organized by cargo type.

The chart area contains three dynamic displays. The first is an aircraft

time-in-system histogram. The second is a real-time estimate of airfield capacity.

And, the third is a capacity measure called service MOG.

The airfield capacity display allows the user to see the progression of

airfield capacity estimates as the simulation runs. With each aircraft departure,

the display is updated with a new estimate of airfield capacity. The new capacity

is determined according to the following equation:

C(0 = —-1440

19

where C(t) is the estimated airfield capacity at time t measured in aircraft per

day, D (t) is the aggregate number of aircraft departures at time t, t is the

simulation time measured in minutes, and 1440 is the number of minutes in one

day.

Figure 2 Airfield Capacity Display

The service MOG display shows the user the number of aircraft on the

ground in service at one time. The graph updates whenever a service state

change occurs and can never be greater than the number of ramp spaces

available at the airfield. The model reports the service MOG according to the

following equation:

SMOG**) = ACpark(t) n ACser(t)

where ACpark(0 and ACser(0 are the number of aircraft parked and the number of

aircraft in service at time t, respectively.

The menu bar provides the user with flexible control of the simulation.

There are four choices at the menu bar; the control button, the settings button, the

window button, and the info button.

20

Figure 3 Service MOG Display

The control button gives the user start/stop options. Start simulation will

begin the flow of aircraft into the airfield according to the default parameters or

those specified by the user. Stop simulation halts the simulation and provides the

user with the summary statistics before exiting the simulation.

The settings button allows the user to change parameters in four areas:

airfield, aircraft, cargo, and transportation network. Choosing the airfield button

opens a dialog box through which the user can change the simulation parameters

such as aircraft interarrival time, airfield resource levels, simulation end time,

and simulation speed. The aircraft parameter dialog box allows the user to define

the amount of cargo carried on each aircraft as well as maintenance descriptors.

The cargo parameter dialog box allows the user to define the distribution of

cargo, the capacity of the cargo handlers, and the time to unload cargo. The

transportation network parameter dialog box allows the user to define the

distance to each of the four cargo destinations as well as the amount of cargo

carried by a single truck.

21

The window button allows the user to select either airfield statistics or

destination statistics. The statistics kept by the simulation are detailed below.

Destination statistics outline the type/amount of cargo at each of the four cargo

destinations.

The info button calls a brief message regarding the origin of the simulation

to the screen.

Data Collection

The simulation reports on various statistics throughout a run. The

statistics are grouped into three areas: airfield statistics, cargo statistics, and

ground transport statistics. Table 3 lists the simulation statistics.

The research on the ACE and BRACE models revealed the importance of

several types of output data. Resource utilization statistics, aircraft arrival,

departure, and divert, and a direct measure of airfield capacity were specifically

cited as necessary output statistics.

Model Translation

Model translation refers to the technical process of converting a

conceptual model into a functioning simulation.

APOM was written using MODSIM III for PC's by CACI Inc. The code is

broken up into six modules. The three primary modules describe the airfield, the

aircraft, and the cargo. Two functional modules handle global variables and the

22

graphics employed by the simulation. The final module, the main module,

initializes the simulation.

Table 3 Simulation Statistics

Airfield

Aircraft arrivals

Aircraft departures

Aircraft diverts

Aircraft breakdowns

Aircraft time in system

Airfield capacity

Number available

Output file

Service MOG

Queue/Resource statistics

Number available

Number available

Loading Dock Display

Cargo offloaded

the number of aircraft having landed at the airfield

the number of aircraft having left the airfield

the number of aircraft diverting from the airfield (violation of the
max on the ground parameter)

the number of aircraft experiencing a maintenance problem

dynamic histogram showing the number of aircraft experiencing
a given time in system (from landing to takeoff)

dynamic chart showing the current estimate of airfield capacity
(aircraft serviced in 24 hr period)

real-time display of fuel trucks available

APOM writes airfield capacity data to an output file, "output.txt"

dynamic chart showing the number of aircraft in service

mean and max length of parking space queue, mean wait time for
parking space, utilization of parking space, cargo handler,
forklift, and fuel truck resources

Cargo

real-time display of forklifts available

real-time display of cargo handlers available

dynamic chart showing current amount of cargo on the loading
dock by cargo type

counter for total cargo offloaded from aircraft by cargo type

Ground Transport

Number available

Destination information

Utilization Rate

run-time display of available ground transport units

table of cargo at destinations 1-4 by type

utilization rate for motorpool resource

23

There are three principal objects in the simulation code. The first is the

airfield object. In the airfield object resources related to the operation of the

airfield are created and managed (e.g. ramp spaces, runways, ground transports,

and cargo handlers). The airfield also controls the arrival of aircraft, the servicing

of the aircraft, and the operation of the ground transports.

Table 4 Airfield Object Fields

Field Function

Cargo queues

CargoHandler

Forklifts

FuelTrucks

LoadingDock

MotorPool

Parking space queue

Runway

12 queues used to hold cargo at the loading dock. Organized by
type and destination.

Airfield cargo handler resource object

Airfield forklift resource object

Airfield fuel truck resource object

Airfield ramp space resource object

Airfield ground transport resource object

Queue of parking space objects. Used to keep track of ramp space
status

Resource object used to deconflict taxiing aircraft and landing
aircraft

Table 4 lists the fields of the airfield object. Only one airfield object is

instantiated at the beginning of the simulation. Along with the airfield object

come its various resources such as cargo handlers, forklifts, transport trucks, and

fuel trucks. Each of these is a resource object and has a structure defined by

MODSIM III allowing simple employment and built in statistic gathering.

24

Table 5 Airfield Object Methods

Method Function

Decrement

DoAircraftMx

DriveTruck

FuelAircraft

GenerateArrivals

Increment

ManageLoadingDock

NextParkingSpace

Objlnit

ProcessCargo

SendTruck

UnloadCargo

UnloadPassengers

UnloadRollingCargo

UpdateParkingSpace

Series of methods used to decrement airfield resources according
to user input.

Performs concurrent maintenance on aircraft.

Graphical method called to show a truck being driven to/from a
destination

Fuels aircraft by either pit or truck.

Controls arrival of aircraft. Instantiates aircraft objects

Series of methods used to increment airfield resources according
to user input.

Places cargo into cargo queues. Calls for transport.

Returns the location of the nearest available ramp space.

Instantiates airfield object. Creates airfield resources and queues.

Second step in unloading palletized cargo. Instantiates
individual cargo handler objects.

Called inside manageLoadingDock method. Requests transport
for a load of cargo.

First step in unloading palletized cargo. Assigns cargo handlers.

Unloads passengers from aircraft.

Unloads rolling cargo from aircraft.

Manages the status of a ramp space.

The second object is the aircraft object. The fields of the aircraft object

contain information about the amount of cargo, fuel capacity, and maintenance

record for each type of aircraft. The aircraft object also carries out the graphical

mechanics of landing, taxiing, parking, and taking off.

25

Table 6 Aircraft Object Fields

Field Function

Finish Boolean variable indicating whether the aircraft object has
completed the specified service.

Fuel Real value of aircraft's fuel capacity.

FuelRate Aircraft's max fuel take-on rate.

Icon The five graphical icons indicating the status of aircraft servicing.

Location The integer value of the ramp space occupied by the aircraft
object.

MaxFuelers Max number of fuel trucks hook-ups

Mx/prob/dur Probabilities and duration for both concurrent and non-concurrent
maintenance.

Pallet/rolling/passenger Integer value of aircraft's cargo capacity.
Cargo

Trigger Fuel trigger fires when aircraft is ready to be fueled. Finished
Trigger fires when aircraft is completely serviced.

WaitTime Captures the begin and end time for each aircraft object. Used to
determine aircraft time in system (histogram).

The main method of the aircraft object is the land method. Once the

airfield object instantiates an aircraft object, the aircraft object is asked to carryout

its land method. The land method oversees the activities of the aircraft object

from touchdown to takeoff. Inside the land method, control is passed back to the

airfield object for servicing of the aircraft. Once the airfield is finished servicing

the aircraft, a trigger object fires allowing the aircraft object to taxi from its ramp

space and prepare to takeoff.

26

Table 7 Aircraft Object Methods

Method Function

Begin/endlcon

CheckForCompletion

DecCargo

Initlcons

Land

Repair Aircraft

Set/ GetLocation

SetWaitTime

TakeOff

Updates the service icons by coloring them according to status.

Prior to disembarking the ramp space this method is called to
make sure all services are complete.

Decrements specified type of cargo from aircraft object.

Draws the five icons representing the five services performed on
the aircraft. Initializes them to "red" signifying they've yet to
begin.

Draws the aircraft object Directs the aircraft object throughout its
stay at the airfield.

Performs non-concurrent maintenance on the aircraft object.

Assigns and retrieves integer value location of aircraft object.

Sets the begin and end wait time used in calculating the aircraft
object's time in system.

Graphically represents aircraft takeoff. Disposes of the aircraft
object.

The third object is the cargo object. The cargo object is a relatively simple

object whose primary function is easing the capture of vital information on the

cargo transition process. Although the cargo object is simple in structure, its

presence is a departure from the manner in which BRACE modeled cargo

handling. BRACE treated cargo as a simple counter, not as an object. The proof

of concept model that was the origin of APOM sought to create cargo objects and

pass them from aircraft, to material handling equipment, to loading dock, to a

ground transport, and finally to a destination point.

27

In addition to the cargo object, the cargo module contains the cargo

handler object. It functions as an individual cargo handler such as a 60k-loader.

Table 8 Cargo Module

Object Field/Method Function

Cargo Destination (f) Integer value of the cargo object's destination

IncrementCargoOnDock (m) Used in parallel with airfield object's
manageLoadingDock to measure levels of
cargo at the loading dock.

Objlnit (m) Instantiates cargo object.

SetCargoDestination (m) Sets the destination for the cargo object.

SetCargoType (m) Defines cargo object type.

TypeOfCargo (f) Integer value of the cargo object's type: (1)
pallet, (2) rolling, (3) passenger.

CargoHandler UnloadAircraft (m) Manages individual cargo handlers in the
process of moving palletized cargo from
aircraft objects to the loading dock.

The graphics module is home to the code allowing user-simulation

interaction. The menu bar object contains the fields and methods that constitute

the framework of communication between the user and the simulation. The

menu bar recognizes which GUI the user requests, pauses the simulation, and

allows the transfer of information. This module also draws the simulation board

and updates the various statistical displays.

28

Table 9 Graphics Module

Field/Method Function

BeSelected (m)

Button (f)

ChangeParameters (m)

DialogBox (f)

Meter (f)

SetUpSimBoard (m)

ShowDestinations (m)

ShowStatistics (m)

Start/stopltem (f)

Update (m)

Pauses simulation and calls the corresponding GUI when a menu
item has been clicked.

Generic graphical object inside a dialog box. Usually either "ok" or
"cancel" button.

Several methods using GUI's to change simulation parameters.

Generic GUI used as a basis for all user/simulation interaction
windows.

Used to display changing simulation information: number of
aircraft diverts, ramp space queue, motorpool availability, cargo
handler availability, forklift availability, and fuel truck availability.

Draws the airfield, menu board, and display meters at the
beginning of the simulation.

Called when the user clicks on the "destination statistics" button.
Draws the dialog box with each destination's cargo tallies.

Called when the user clicks on the "airfield statistics" button.
Draws the dialog box with the current airfield statistics.

Graphical menu items used to start and stop the simulation.

Updates a specified display meter with a new value.

The global variable module holds vital simulation variables that must be

accessible to procedures in other modules at various points in the simulation.

The technique of grouping global variables in one module was taught at the

MODSIM III training seminar and eliminates troublesome fractured variable

structure.

29

Verification

Verification requires confirmation that the simulation program is

functioning properly.

APOM was programmed in an object-oriented fashion over the course of

several stages of increasing model fidelity. At each stage, the model was

debugged and its output was measured against the intuitive expectations of the

thesis committee. Careful attention was paid to the documentation and structure

of the code to enable easy identification of model functions. Additionally, the

animation of the simulation allowed simple verification of the modeled

processes.

The aircraft arrival process of the model matched the intended function of

the conceptualization phase. Arrivals were random and the divert mechanism

worked properly.

The service icons and the resource meters allowed simple verification of

the aircraft service processes. The concept of operations for aircraft servicing

was effectively translated to the model.

The handling of cargo was more difficult to verify. Several steps were

taken to ensure accurate handling of this important modeling function. First,

code was implemented to hard-wire the amount, type, and destination of cargo

an aircraft carried. In this manner, careful accounting could be kept of the cargo

as it moved from the aircraft to the loading dock and finally to its destination.

30

The simulation time scale was also altered to slow down the animation and aid

in the verification of cargo handling. After the process was verified, the code

was changed back to its full fidelity (randomness) and the process was

rechecked.

As a further means to verify the model, a designed experiment was run to

determine the factors that effect airfield capacity. Seven factors were chosen for

the designed experiment influencing the output measure, airfield capacity. A 27-

2 fractional factorial design was employed in the 32-run study. Table 10 lists the

design settings for the seven factors. Additionally, each run was terminated at

60.0 hours, the airflow was comprised of 25% C-5s and 75% C-17s, and aircraft

were diverted if there were 15 aircraft on the ground.

Table 10 Design Settings

Factors Hign Low

20 minutes

4

10

5

1

4

2

AC interarrival time 10 minutes

Ramp Space 8

Cargo Handlers 20

Forklifts 10

Fuel Pits 4

Fuel Trucks 8

Transports 4

The results of the 32 runs were input to SAS JMP for analysis. A factor

screening process revealed which main and factorial effects were significant.

31

Table 11 Airfield Capacity Effects Screening

Entered Parameter Estimate DF SS F Ratio Prob>F

X Intercept 76.0375 1 0 0.000 1.0000

X Interarrival 7.3625 4 3084.54 8.237 0.0003

X Ramp Space 8.1125 2 3123.01 16.679 0.0000

X Interarrival*Ramp Space 5.6375 1 1017.005 10.863 0.0033

X Cargo Handlers 3.0375 2 438.05 2.339 0.1199

X Interarrival*Cargo Handlers 2.1125 1 142.805 1.525 0.2298

_ Ramp Space*Cargo Handlers 7 1 68.445 0.722 0.4051

X Fuel Pits 5.2125 3 1847.615 6.578 0.0024

X Interarrival*Fuel Pits 2.4375 1 190.125 2.031 0.1682

_ Ramp Space*Fuel Pits ? 1 45.125 0.470 0.5003

_ Cargo Handlers*Fuel Pits ? 1 51.005 0.533 0.4733

X Fuel Trucks 4.0125 2 1303.25 6.960 0.0045

 Interarrival*Fuel Trucks ? 1 85.805 0.913 0.3502

_ Ramp Space*Fuel Trucks ? 1 34.445 0.357 0.5565

_ Cargo Handlers*Fuel Trucks ? 1 117.045 1.265 0.2734

X Fuel Pits*Fuel Trucks -4.9625 1 788.045 8.417 0.0083

 Trucks ? 1 59.405 0.624 0.4385

 Interarrival*Trucks ? 2 97.25 0.496 0.6165

 Ramp SpaceTrucks ? 2 185.81 0.992 0.3885

_ Cargo Handlers*Trucks 7 2 110.41 0.566 0.5764

 Fuel PitsTrucks 7 2 108.41 0.556 0.5823

- Fuel TrucksTrucks 7 2 179.53 0.955 0.4017

The results of the effects screening show Ramp Space as the term with the

greatest effect. The interaction term Interarrival*Ramp Space had the next

greatest effect. Logically, if an airfield had more ramp space and a greater

aircraft arrival rate, the expected airfield capacity would be greater.

32

Of the remaining effects, Fuel Pits, Fuel Trucks, and their interaction term

had the most significant impact on airfield capacity. Aircraft fueling was

modeled as an independent process from other airfield activities. If fueling

resources were increased, the airfield capacity was expected to increase. The

negatively-valued interaction term indicates that low values of both fuel pits and

fuel trucks would significantly reduce airfield capacity.

Cargo Handlers, Trucks, and Forklifts did not play a significant role in

determining airfield capacity. Indeed, APOM modeled trucks as the means to

move cargo from the aerial port to their final destinations. In no way could

trucks impact airfield capacity. If, however, a limit were placed on the cargo

capacity of the loading dock, then the inability to move cargo away from the

aerial port would result in aircraft diverts. Forklifts were underutilized in every

scenario of the experiment, but their only role is assisting the movement of

palletized cargo from cargo handlers, to the loading dock, and onto transport

trucks.

The results of the effect screening were not surprising. They followed the

expectations of the thesis committee and serve to verify the function of APOM.

Validation

Validation of the model ensures that the model accurately represents the

real system. The thesis study validates the APOM model by using similar

simulation inputs to compare output with ACE.

33

An attempt was made to match inputs between ACE and APOM.

Discrepancies occurred in the modeling of ground servicing of aircraft by ACE.

ACE models several services beyond cargo transfer, fueling, and maintenance.

The inclusion of these services increased the ground time per aircraft, and, as a

result, the estimate of airfield capacity was lowered.

APOM's aircraft interarrival rate was continuously lowered until the

airfield resources were saturated. Saturation was achieved when ramp space

utilization went above 90% and aircraft diverts became frequent.

ACE was used in its expected value mode, and, with the reported inputs,

estimated the airfield capacity at 67 aircraft. The limiting resource was aircraft

servicing. APOM was run for 60 hours. After removing the first 10 hours due to

transient effects and employing a batch mean technique to the remaining 50

hours, the estimated airfield capacity was approximately 69 aircraft. The

similarity in capacity measures suggests the mobility activities of arrival, offload,

fueling, and maintenance were modeled correctly.

34

Table 12 APOM Input

Area Variable Value

Aircraft (C-17)

Airfield

Mean Interarrival Rate

Pallet Cargo

Rolling Cargo

Passengers

Fuel

Con. MX (Prob, Duration)

Non-con MX (Prob, Duration)

Cargo Handlers (num, cap)

Forklifts

Fuel Pits (num, rate)

Fuel Truck (num, cap, rate)

Motorpool (num, cap pal/rol/pas)

Ramp space

15 min

10

2

40

150,000 lbs

0.075,60 min

0.025, 60 min

15, 2 pallets per

10

1, 750 gal/min

10,5000 gal, 500 gal/min

3,10,2,50

6

Table 13 ACE Input

Area Variable Value

Aircraft (C-17)

Airfield

Mission

Pallet Cargo

Passengers

MX (prob, duration)

Fuel

Cargo Handlers (type, num)

Fuel Pits (num, rate)

Fuel Trucks (type, num, rate)

Bus (num, cap)

Quick-turn, Offload only

9

40

0.1, 60

150,000 lbs

40k loader, 15

1, 750 gal/min

R-9,10,550

6,40 passengers

35

IV. Findings and Analysis

An experiment similar to the airfield capacity effects screening was run to

better understand aircraft diverts. The experimental design mirrored the earlier

experiment with the exception that aircraft diverts were measured instead of

airfield capacity.

Table 14 Divert Effects Screening

Entered Parameter Estimate DF SS F Ratio Prob>F

X Intercept 78.28125 1 0 0.000 1.0000

X Interarrival 71.21875 4 172004.6 71.995 0.0000

X Ramp Space -19.28125 2 19186.81 16.062 0.0001

X Interarrival*Ramp Space -15.09375 1 7290.281 12.206 0.0021

X Cargo Handlers -7.59375 2 2780.563 2.328 0.1211

X Interarrival*Cargo Handlers -5.40625 1 935.2813 1.566 0.2239

_ Ramp Space*Cargo Handlers ? 1 399.0313 0.658 0.4265

X Fuel Pits -11.84375 3 10123.59 5.650 0.0050

X Interarrival*Fuel Pits -6.78125 1 1471.531 2.464 0.1308

_ Ramp Space*Fuel Pits ? 1 318.7813 0.522 0.4779

_ Cargo Handlers*Fuel Pits ? 1 357.7813 0.588 0.4518

X Fuel Trucks -9.34375 2 6957.063 5.824 0.0093

_ Interarrival*Fuel Trucks ? 1 731.5313 1.238 0.2784

_ Ramp Space*Fuel Trucks ? 1 148.7813 0.240 0.6289

_ Cargo Handlers *Fuel Trucks ? 1 675.2813 1.138 0.2983

X Fuel Pits*Fuel Trucks 11.40625 1 4163.281 6.970 0.0150

 Trucks ? 1 385.0313 0.634 0.4348

 Interarrival*Trucks ? 2 632.5625 0.506 0.6106

_ Ramp SpaceTrucks ? 2 1195.063 1.000 0.3854

_ Cargo Handlers*Trucks ? 2 857.8125 0.698 0.5091

 Fuel PitsTrucks ? 2 667.0625 0.535 0.5939

- Fuel TrucksTrucks ? 2 1060.313 0.878 0.4311

36

Results of the experiment showed the main effect, aircraft Interarrival,

had the most significant effect. The magnitude of its significance was much

greater than in the airfield capacity experiment (F-ratio 71.995 compared to 8.237)

which suggests a much stronger link between aircraft arrival rate and aircraft

diverts than aircraft arrival rate and airfield capacity. The remaining effects for

aircraft diverts followed the same trend airfield capacity effects followed. Fuel

Pits, Fuel Trucks, and their interaction term were all significant factors.

The effects screening for service MOG was drawn from the same

experimental setup as the effects screening for aircraft diverts. The results

showed Interarrival, Ramp Space, and their interaction term to be the most

significant factors. These factors impact the number of aircraft parked at the

airfield. When looking at service resource factors, it is interesting to note that

Fuel Pits, Fuel Trucks, and their interaction terms with Ramp Space all show a

negative influence on service MOG. If one or more of these factors were at a low

(negative) setting, the service MOG would be positively influenced. Aircraft

servicing would take longer, raising the time-averaged number of aircraft in

service.

37

Table 15 Service MOG Effects Screening

Entered Parameter Estimate DF SS F Ratio Prob>F

X Intercept 4.478125 1 0 0.000 1.0000

X Interarrival 0.471875 3 13.33094 19.258 0.0000

X Ramp Space 1.009375 4 43.09125 46.687 0.0000

X Interarrival*Ramp Space 0.428125 1 5.865312 25.419 0.0000

_ Cargo Handlers 7 1 0.137812 0.587 0.4519

_ Interarrival*Cargo Handlers 7 2 0.438125 0.945 0.4047

_ Ramp Space*Cargo Handlers 7 2 0.250625 0.520 0.6017

X Fuel Pits -0.284375 2 4.845625 10.500 0.0006

 Interarrival*Fuel Pits 7 1 0.227812 0.987 0.3313

X Ramp Space*Fuel Pits -0.265625 1 2.257812 9.785 0.0047

 Cargo Handlers*Fuel Pits 7 2 0.163125 0.333 0.7205

X Fuel Trucks -0.290625 3 5.408438 7.813 0.0009

X InterarrivaPFuel Trucks 0.103125 1 0.340312 1.475 0.2369

X Ramp Space*Fuel Trucks -0.271875 1 2.365313 10.251 0.0040

_ Cargo Handlers*Fuel Trucks 7 2 0.303125 0.636 0.5393

 Fuel Pits*Fuel Trucks 7 1 0.165313 0.707 0.4094

_ Trucks 7 1 0.112812 0.478 0.4967

_ Interarrival*Trucks 7 2 0.308125 0.647 0.5336

_ Ramp SpaceTrucks 7 2 0.203125 0.418 0.6638

 Cargo Handlers*Trucks 7 3 0.550937 0.772 0.5231

 Fuel PitsTrucks 7 2 0.150625 0.307 0.7391

— Fuel TrucksTrucks 7 2 0.375625 0.800 0.4627

Verification and validation of APOM revealed no discrepancies with the

model or its results. Indeed, the verification of APOM provided a means to test

its usefulness in understanding the interplay of airfield resources and measures

in a structured experiment. The measures of airfield capacity and service MOG

provided by APOM were useful in the analysis of airfield operations.

38

V. Conclusions

In the search for a more useful tool in mobility planning and analysis,

APOM offers the user several advantages over the ACE and BRACE models

currently in the AMC inventory. The careful development of APOM enabled the

author to avoid the problems associated with ACE and BRACE while including

beneficial features of both.

APOM provides the user with an accurate, animated model of an air

mobility base's operation and includes the added feature of a ground

transportation network leading from the aerial port to four destinations. APOM

also attempts to define airfield capacity with two displays. The first estimates

capacity by calculating the rate of aircraft departure and extrapolating to a 24

hour time period. The airfield capacity display gives the user a run-time

estimate of airfield capacity subject to user-defined parameters. The second

display shows the number of aircraft in service on the ground at any given

moment. By time-averaging this plot, the user can determine the average number

of aircraft in service on the ground. With a service MOG less than the number of

ramp space, the user can conclude resources are limiting the airfield capacity.

With a service MOG near the number of ramp space, the user can conclude ramp

space is limiting the airfield capacity. Both measures of capacity are unique to

APOM.

39

With future tuning and added capabilities, APOM's utility in the field of

mobility analysis will increase. Areas of future interest include:

• Greater fidelity in modeling the passenger and rolling cargo offload
processes

• Capability to input an aircraft arrival pattern from the MASS model

• Expanding the transportation network to reflect a real-world network

• Using the model to test the feasibility of a planned deployment

40

Appendix A: Aerial Port Operations Model User's
Guide

The APOM user's guide is divided into five areas: model background,

graphical layout, animation explanation, parameter input, and data output.

Model Background

APOM was written in the MODSIM III simulation language developed by

CACI Inc. The simulation code was written using MODSIM Ill's PC /Windows

environment and, after compilation, yielded the executable file that runs the

simulation. Requirements needed to execute the simulation are limited to 5 files:

the .exe executable file, the .txt input file, the .sg2 graphics file, the .dll dynamic

linked library file, and the .bmp bitmap file. All five files must be contained in

the same folder. It is not necessary for the user to own a MODSIM III license in

order to run the simulation. Any future adaptations to the model, however,

would require recompilation and, hence, a MODSIM III license.

Graphical Layout

The features of the airfield layout include: two runways (one takeoff and

one landing), one ramp for aircraft parking, an aerial port facility, and a simple

ground transportation network with four end nodes.

41

There are several simulation meters displaying pertinent simulation data

at run time. These meters are grouped into three areas of the simulation board:

the bottom display, the aerial port display, and the chart area.

The bottom display contains the simulation clock (showing hours and

minutes) and a divert counter (showing number of aircraft diverts).

ill Aerial Port Operations Model

Q; Window Into
H

Loading Dock
210t

Aircraft TIS Histogram

«..* i < Ü f

■hi ÜIIF11H
1

0 100 200
Time In System

Motorpool 0

Service MOG

Sim Time (hr/min) 841

Figure 4 APOM Graphical Layout

The aerial port contains four counters showing the availability of the

following airfield resources: fuel trucks, cargo handlers, forklifts, and transport

trucks. Additionally, a ramp space queue meter is located on the ramp. The

aerial port area also contains a dynamic, loading dock operations chart showing

42

the current levels of cargo on the dock organized by cargo type (1, palletized

cargo; 2, rolling cargo; and 3, passengers).

The chart area contains three dynamic displays. The first is an aircraft

time-in-system histogram. The second is a real-time estimate of airfield capacity

measured in aircraft per 24 hours. The third display is a measure of the number

of aircraft in service at a given time. This is called "service MOG (maximum on

the ground)."

The menu bar at the top of the simulation window provides the user with

flexible control of the simulation. There are four choices at the menu bar; the

control button, the settings button, the window button, and the info button.

The control button gives the user start/stop options. Start simulation will

begin the flow of aircraft into the airfield according to the default parameters or

those specified by the user. Stop simulation halts the simulation and provides the

user with the summary statistics before exiting the simulation.

The settings button allows the user to change parameters in four areas:

airfield, aircraft, cargo, and transportation network. These options will be dealt

with in detail later in the user's guide.

The window button allows the user to select either airfield statistics or

destination statistics. The statistics kept by the simulation will be detailed later in

the user's guide.

43

The info button calls a brief message regarding the origin of the simulation

to the screen.

Animation

Once the user is satisfied with the initial conditions of the airfield and

selects the start button APOM initiates the incoming flow of aircraft to the

airfield. Aircraft appear as they approach and land on the runway. When an

aircraft reaches the end of the runway it turns and taxis to a preset location to

await assignment of ramp space. If no space is available, the aircraft remains at

the preset location and the queue meter increments to indicate the number of

aircraft awaiting parking. If ramp space is available, the aircraft taxis to the

nearest available space to await servicing.

Three processes are performed on aircraft while

parked on the ramp. The first process, unloading cargo, can

be subdivided into three categories; palletized cargo, rolling

cargo, and passengers. The second process is concurrent

maintenance (maintenance performed simultaneously with

cargo offloading). The third process is aircraft fueling.

Five icons appear behind each aircraft upon

arriving at a ramp space to inform the user of the status of Figure 5 Ramp Detail

each process. The character string "mFprP" serves to remind the user which

service corresponds to which icon, "m" is concurrent maintenance. "F" is aircraft

44

fueling, "p" is palletized cargo, "r" is rolling cargo. "P" is passengers. A red icon

indicates the process has not yet begun. A yellow icon indicates the process has

begun but has not been completed. A green icon indicates the process has been

completed.

A second type of maintenance has been incorporated into APOM. Non-

concurrent maintenance occurs independently of any other aircraft service.

Should an aircraft require non-concurrent maintenance after completing its

normal servicing it taxis to an unoccupied area of the ramp and completes its

maintenance there.

As an aircraft is serviced several displays will update the availability of

resources and levels of cargo at the aerial port. Fuel trucks are used to fuel

aircraft parked at ramp spaces without an available fuel pit. Cargo handlers are

used to offload palletized cargo. Forklifts are used to transfer cargo from cargo

handlers to the loading dock and then to transport trucks. The motorpool is used

to transfer cargo to their final destination. Additionally, upon departure from

the airfield each aircraft will trigger an update of the two dynamic charts; the

aircraft time-in-system histogram (reflecting each aircraft's time on the ground)

and the airfield capacity estimator (reflecting an estimate of the airfield's 24-hour

capacity).

As cargo accrues on the loading dock, the motorpool of trucks is called

into action to transport the cargo to their final destination. A truck carrying

45

palletized cargo will be colored brown and green. A truck carrying rolling cargo

will be colored black. A truck carrying passengers will be colored orange.

Parameter Input

There are four graphical user interfaces (GUI) through which a user can

select APOM settings. The GUIs can be accessed by clicking the settings button

on the main menu. Additionally, the user can reset the default settings by

changing the parameter values in the input.txt file.

The first GUI allows the user to set airfield and simulation parameters.

Stop time allows the user to set the length of the simulation. Time scale allows

the user to set the animation speed. The

user can specify the mean of the

interarrival distribution as well as the

maximum allowed number of aircraft on

the ground before diverting incoming

aircraft. Further, the user can specify the

levels of six airfield resources. Any of

these inputs may be changed mid-

simulation to allow the user real-time

{Airfield Parameters p:

Stop Tim« b Hours J50

Tims Seäsfl -998 toes fasterthan wliroe) Voa

1 nteratfival time* it* exponential with mean * minutes

Max AC €ln Ground f^
Airfield Resources

Ramp Spaces

Foil Jill'.

Cargo Handlers

1-
rr-

Truoks (motarpool) !J

Fuel Pit* F~
!R"~ Fuel Try.;! 5 1 ■'

[7 reset resource statistics

ÜÜl Cafißftl j

Figure 6 Airfield Parameters Input

impact analysis. The checkbox labeled "reset resource statistics" allows the user

to control whether or not to reset the utilization statistics related to the airfield

resources. Checking the box will reset the statistics.

46

iCaigo/Fuel Par a meteis Ü'l
OisfeEihuliori of cargo dominations

to D estinatiüri 1 J0 25 firrv= to unload sin gje pallet F
to De*tifiaJion2 JO 25 Pallet* per Cargo Handler r
toOeainatJortS |Ö 25

to Destination4 |o 25

Fuel Rate (Pit) fTsF g-äi/rmn

fuel Rate ff<ucfc) J550" g^l.'frrfi'.

Fuel Capacity (TiucKS F" Stt»

jOKj Cancel |

The second GUI allows the user the set cargo and fuel parameters. By

changing the distribution of cargo the user can alter network flow. Other cargo

parameters include the delay incurred

when offloading a single pallet of cargo

and the number of cargo pallets a single

cargo handler can carry. By changing

the pallets per cargo handler parameter

the user can define the "type" of cargo

handler being employed at the airfield

(25k, 40k, or 60k loaders). The three fuel parameters allow the user to define fuel

transfer rates for fuel pits and fuel trucks as well as the capacity of fuel trucks.

The third GUI deals with the transportation

of cargo from the aerial port across the simple

network leading to the final destination. The user

can set the distances to the final destinations to

reflect realistic transportation network delays.

Figure 7 Cargo and Fuel Input

Through this GUI the user defines the amount

1 Transportation Network Param...Bf

Distance to Destinations

1 [2Ö~~ 2 faT"

3 | JO 4 |äö

Pate par Tjuck
p_

FMirtg Cafgo per Tfuck F~
Passengers pe* Tiuck |20 I

jösf Cancel |

Figure 8 Transportation Input
of cargo which can be carried by a single

transport truck. Here, it assumed that the motorpool is comprised of utility

trucks that can be used to transport any type of cargo.

47

The final GUI allows the user to see aircraft parameters according to

aircraft type. At the time of thesis publication, aircraft parameters were hard-

coded into the simulation and not subject to change by the user. Future

improvement to the model may add the capability for user-manipulated aircraft

data.

iC-17 Parameters Hi
Aircraft Loading» Fuel

Capacity

Ma* tetnel rate

Max «umber Fgelers

Mon-concurrent M?

Probability

Duration

Ml

Palletised Cargo I100 f::4nn gaiicnv

Rolling Cargo i20 |850 gaBorv/iHniil?

intenance Concurrent Maintenance

Probability JO.0750 JO.0250

|iÖ mirwtes Duration jGO twnute*

Figure 9 Aircraft Parameters

Data Output

Airfield and destination statistics can be queried at any time during the

simulation run by clicking the windows button on the main menu. The airfield

dialog box shows current levels of various statistics including the number of

aircraft landed, departed, diverted, and encountered non-concurrent

maintenance. Also contained in the dialog box are the utilization rates for five

airfield resources.

48

The destination statistic dialog box presents the current amount of cargo

at each destination organized by cargo type. This information can be used to

1 Current Model Statistics HHHB
T otal P Cargo Ö fteaded

Total R Cargo Qlfoarfed

Total Passengers Offloaded

Average Ramp o^ueue length

Max Flanqp queue length

Average Ramp war 'ir.w

Est Airfield tapaeil}»

lime-Averatjed Service MOS

Number of AC Landed J31 J41G

|83

)1309

Nuute of AC Departed

N amber of Diverts

J24

!-
Number of Breakdowns |o

Ramp Space Utilization % |?1.2 I"
Molorpool Utilization % J85 1 J4 0

Cargo Handlers Utifeafion X J49.0 (81 ' '

forkift Utilization X J19.0

fuel Truck Utilization^ |G9.G

Ok]

1,64.9

(3.7

Figure 10 Model Statistics

determine a cutoff point to simulate the completion of a deployment of a specific

amount of cargo to a specific destination.

APOM creates an output file, output.txt, containing airfield capacity data.

A row of data is generated when an aircraft

departs the airfield. The first column is the

estimated airfield capacity (aircraft/day)

and the second column is the simulation

time of the aircraft departure (minutes).

| Destination Info HMH
■ Destination Bulk Rolling

pi ||

(22

PAX Total

1111111111 jno

J120

J320 |454

lllllllllll J3G0

J3G0

J340

J497

lllllllll J500

j'47'2 llllllll J110

Figure 11 Destination Statistics

49

Appendix B: APOM Structure and Functional
Organization

Structure

The simulation was written using MODSIM III for PC's by CACI Inc. The

code is broken up into six modules. The three primary modules describe the

airfield, the aircraft, and the cargo. Two functional modules handle variables

used throughout the simulation and the graphics employed by the simulation.

The final module, the main module, initializes the simulation.

There are three principal objects in the simulation code. The first is the

airfield object. In the airfield object resources related to the operation of the

airfield are created and managed (e.g. parking spaces, runways, ground

transports, and cargo handlers). The airfield object also controls the arrival of

aircraft, the servicing of aircraft, and the operation of the ground transports.

The second object is the aircraft object. The aircraft object determines the

amount of cargo carried in each aircraft. The aircraft object also carries out the

graphical mechanics of landing and taking off as well as acquiring a parking

space.

The third object is the cargo object. The cargo object is a relatively simple

object whose primary function is easing the capture of vital information on the

cargo transition process.

50

The graphics module is home to the code allowing user-simulation

interaction. This module also provides the link between simulation statistics and

their graphical presentation.

The global variable module holds vital simulation variables that must be

accessible to procedures in other modules at various points in the simulation.

This centralized source of global variables eliminates troublesome fractured

variable structure.

Simulation Run-Through

Setup

The initial phase of the simulation is the graphical setup of the model.

Once the model executable file has been called the simulation instantiates a main

menu object and asks it to setUpSimBoard. This function, located in the graphics

module, loads and draws the graphical objects that make up the simulation

board. Included in this process are: menu items, the airfield image, and various

meters, charts and graphs.

At this time the simulation also instantiates an airfield object. The

initialization of the airfield object creates various resource objects (ramp space,

cargo handlers, forklifts, fuel trucks etc.) as well as the infrastructure for

handling cargo at the aerial port.

51

After the setup is completed the simulation awaits the user go-ahead to

begin aircraft arrivals. During this waiting period the user may make changes to

the simulation parameters. The process of changing parameters is accomplished

through the graphics module. Clicking on a menu item will open a dialog box.

The simulation will present the user with the current parameter values. The user

may then change any of the values. The simulation will recognize any change in

parameters and save the changes in the associated global variables before closing

the dialog box.

Aircraft Arrivals

The simulation will tell the airfield object to generateArrivals when the start

simulation button is clicked. This method generates aircraft objects at random

intervals based on a user-defined mean interarrival time and continues to be

called throughout the simulation until the current simulation time exceeds the

user-defined simulation run length. This method will also determine if a divert

occurs by checking the number of aircraft currently on the ground and

comparing it to the user-defined maximum allowed number of aircraft on the

ground.

After the airfield method generateArrivals instantiates an aircraft object, it

tells the aircraft object to land. The aircraft object has been initialized with the

characteristics of a user-defined aircraft type (amounts of cargo, fuel capacity,

fueling rate, and maintenance probabilities) and prepares to land at the airfield.

52

The aircraft object waits until the runway is free of obstructions, and then renders

itself on the simulation board and rolls-out to the end of the runway.

The aircraft object taxis to a preset location and enters the ramp queue. If

all ramp spaces are in use, the ramp queue display is incremented. Once a ramp

space is available, the aircraft object is assigned an instance of that resource and

taxis to its assigned location.

MODSIM III does not allow the programmer to determine which

particular instance of a resource is assigned, only that one has been assigned.

Normally this shortfall is of no concern, but in APOM's case a graphical sense of

which instance of a resource becomes important. The aircraft object needs to

know where the available ramp space is.

To circumvent this problem a parallel construct was implemented. In

addition to the ramp space resource, a queue of parkingSpace objects is

maintained by the airfield object. The list of parkingSpace objects contains the

same number of objects as there are ramp spaces. Each parkingSpace object

contains a field that describes its location and status. The airfield object method

nextParkingSpace searches the queue of parkingSpace objects for the first available

parking space.

53

Aircraft Servicing

The aircraft object is now sitting at its assigned ramp space and control of

the simulation is passed back to the airfield object to service the aircraft.

Graphical icons are drawn near the aircraft object to indicate the status of these

services. The airfield object will perform three services on the aircraft object; cargo

offload, aircraft maintenance, and aircraft fueling. Of these services, cargo

offload and aircraft maintenance may take place simultaneously. Aircraft fueling

begins when all other services are complete.

Cargo Offloading

The offloading of cargo is separated into three functions; unloadPassengers,

unloadCargo, and unloadRollingCargo. All three functions may occur

simultaneously and are carried out by the airfield object on the aircraft object.

The unloadPassengers method is relatively straightforward. A simple delay

is incurred each time a passenger is removed from the aircraft. The number of

passengers on an aircraft object is contained in the passengerCargo field. Each pass

through a simple WHILE loop accomplishes three tasks. First, a cargo object is

instantiated. Next, the cargo object is declared to be of passenger type and is

given a final destination. And finally, the cargo object is passed to the loading

dock via the method manageLoadingDock, where it is placed in a cargo queue

awaiting transport to its final destination. When the aircraft is emptied of its

54

passengers, its icon color is changed and a status check is run to determine if all

servicing is complete.

The offloading of rolling cargo mirrors that of passengers. A simple delay

is incurred each time rolling cargo is removed from the aircraft. The number of

rolling cargo aboard an aircraft object is contained in the rollingCargo field of the

aircraft object. The same tasks are accomplished in the WHILE loop for rolling

cargo as were for passengers. And again, when the aircraft is emptied of its

rolling cargo, its icon color is changed and a status check is run to determine if all

servicing is complete.

The offloading of pallet cargo is a much more complicated process

involving two airfield resources; cargo handlers and forklifts. The first step is the

assignment of cargo handler resources to the aircraft object. The code for this

action is contained in the unloadCargo method. This method will determine how

many cargo handlers are needed to offload the palletized cargo from the aircraft

and compare that number of cargo handlers to the number available at that time.

Three possible outcomes of the comparison are accounted for in the code. The

first case occurs when the number available is greater than or equal to the

number required. In this case, the aircraft object is assigned the required number

of cargo handlers. The second possible outcome occurs when the number

available is less than the number required. In this case, the aircraft object is

assigned the available cargo handlers. The third possibility is no available cargo

55

handlers. In this case, the aircraft object waits for cargo handlers to be released

by the aircraft object occupying the first place on the allocation list of the cargo

handler resource (i.e. the aircraft object that has held cargo handlers the longest).

The second step in the process is to remove palletized cargo from the

aircraft object. This activity is covered by two methods: processCargo (airfield

object) and unloadAircraft (cargoHandler object). ProcessCargo method creates a

team of cargoHandler objects based on the number of cargo handlers assigned in

the unloadCargo method. Each cargoHandler object is instructed to unloadAircraft

until the aircraft object is emptied of its palletized cargo. The unloadAircraft

method allows accurate modeling of the cargo offload procedure including

details such as travel time to the aircraft, queuing the cargo handlers at the

aircraft to allow offloading by a single handler at a time, and travel time to the

loading dock. The unloadAircraft method also accomplishes the instantiation of

cargo objects and defines their type and destination.

The final step is transferring the cargo objects from the cargoHandler

objects to the loading dock. This task is accomplished by the unloadAircraft

method and involves the airfield resource, forklifts. When the last pallet of cargo

is removed from the aircraft, its service icon color is changed and a status check

is run to determine if all servicing is complete.

56

Maintenance

Two types of maintenance are modeled by APOM; concurrent and non-

concurrent maintenance. Concurrent maintenance can be accomplished at the

same time as cargo offloading. Non-concurrent maintenance is performed on the

aircraft after all other servicing is complete. The method doAircraftMX runs the

concurrent maintenance on aircraft objects. A simple random draw is compared

to the probability of concurrent maintenance field of the aircraft object to

determine if a maintenance problem exists. If a problem exists, a simple delay of

random duration based on the duration of concurrent maintenance field of the

aircraft object is incurred. After completion, the process icon is changed to green

and a status check is run to determine if all processes have been completed.

A simple random number draw determines whether non-concurrent

maintenance is needed after the airfield has completed servicing the aircraft. If a

non-concurrent maintenance problem exists, the aircraft taxis to an unoccupied

area of the ramp and incurs a delay based on a random number draw. After the

maintenance is completed the aircraft re-enters the taxi pattern and departs the

airfield.

Fueling

Aircraft fueling is initiated when the cargo offload and aircraft concurrent

maintenance have been completed. There are two aircraft fueling methods,

fuelAircraftByPit and fuelAircraftByTruck, both of which are triggered to begin

57

when cargo offloading and concurrent maintenance procedures finish. Which

fueling method operates on an aircraft object depends on the location of the

aircraft object. If the aircraft object occupies a ramp space serviced by a fuel pit,

the fuelAircraftByPit method is called. If the aircraft object occupies a ramp space

not serviced by a fuel pit, the fuelAircraftByTruck method is called.

Fueling an aircraft by pit requires knowledge of three variables: the fuel

transfer rate of the fuel pit, the maximum fuel take-on rate of the aircraft, and the

fuel capacity of the aircraft. A simple delay is incurred according to the

relationship of these three variables. After fueling is completed, the aircraft

performs a status check and leaves the ramp space. The ramp space resource is

returned to the airfield object and the availability of the parking space is changed

in the parkingSpaceQueue.

Fueling an aircraft by fuel truck requires knowledge of six variables: the

fuel transfer rate of a fuel truck (both on and off), the number of fuel hook-ups on

the aircraft, the maximum fuel take-on rate of the aircraft, the capacity of a fuel

truck, the fuel capacity of the aircraft, and the number of fuel trucks assigned to

the aircraft.

The departure of an aircraft object from the airfield triggers two graphical

outputs to change. The first is the aircraft time in system histogram. A

calculation is made resulting in the RDataPt aircraftTIS. Upon departure, the

dynamic histogram is updated with the new RDataPt. The second graphical

58

output to change is the airfield capacity estimator. In the aircraft object method,

takeOff, a calculation of airfield capacity is made using the number of

departures, the current simulation time, and extrapolating to find the estimated

number of aircraft serviced in 24 hours. This new data point is then incorporated

into the dynamic graph.

Loading Dock Management

The cargo on the loading dock is managed with two methods: the airfield

object method manageLoadingDock and the cargo object method

incrementCargoOnDock. Both methods are called sequentially during the offload

of the three types of cargo. The method incrementCargoOnDock keeps a count of

the current levels of cargo on the loading dock and is linked to the loading dock

dynamic graphical display. The method manageLoadingDock places cargo objects

into various queues based on their type and destination. When levels of cargo

heading to a specific destination reach a user-defined point a transport method is

invoked to take the cargo to their destination.

Transportation Network

The airfield object governs the movement of cargo over the transportation

network by employing the sendTruck method. When the amount of any type of

cargo headed to a specific destination reaches a user-defined level (the truck

capacity of that type of cargo) the sendTruck method is called. The sendTruck

method encompasses all activities from loading of cargo onboard the truck, to

59

graphically driving the truck to its destination, to unloading the cargo at the final

destination, to returning the truck to the airfield motorpool.

The first step is acquiring a truck from the airfield object's motorpool

resource. Next, cargo objects are placed into a queue representing the hold of the

truck. The animation of the truck is carried out in the driveTruckTo (and

driveTruckFrom) method. Finally, the cargo is offloaded from the trucks, the

destination statistics are updated, and the truck is driven back to the airfield for

further service.

60

Appendix C: APOM Code

Aircraft Modules (Definition and Implementation)

DEFINITION MODULE aircraftMod;

FROM globalMod

FROM SimMod
FROM Animate
FROM Image
FROM Graph
FROM GTypes
FROM MäthMod

IMPORT airfield,
library,
window,
mainMenu,
chartl,
chart2,
chart4,

numberOfFuelPits,

maxWaitingTime,
totalArrivals,
totalDepartures,
totalBreakdowns,
totalWaitingTime,
totalWaits,

mog,
service,
timeAvg,
outputstream,

currentOnGround,
numlnQueue,

stream2,
stream3;

IMPORT SimTime, TriggerObj;
IMPORT DynlmageObj;
IMPORT ImageObj;
IMPORT RDataPt, RDataPtMObj, IDataPt, IDataPtMObj;
IMPORT ALL ColorType;
IMPORT ATAN2;

TYPE
aircraftObj = OBJECT (DynlmageObj)

beginWaitTime REAL ;
endWaitTime REAL ;
aircraftTIS RDataPt
palletCargo INTEGER
rollingCargo INTEGER
pas sengerCargo INTEGER
fuel REAL ;
fuelRate REAL ;
maxFuelers INTEGER

61

concurMXprob
nonConMXprob
concurMXdur
nonConMXdur

location,
oldState,
newState
fuelBegin,
palletBegin,
rollingBegin,
passengerBegin,
mxBegin,
fuelFinish,
palletFinish,
rollingFinish,
passengerFinish,
mxFinish
fuellcon,
palletlcon,
rollinglcon,
passengerIcon,
mxlcon
finishedTrigger,
fuelTrigger

REAL
REAL
REAL
REAL

INTEGER;

BOOLEAN;

ImageObj;

TriggerObj;

ASK METHOD decPalletCargo;
ASK METHOD decrementFuel (IN amount : REAL);
ASK METHOD decPassengerCargo;
ASK METHOD getPalletCargo : INTEGER;
ASK METHOD decRollingCargo;
ASK METHOD setLocation (IN number : INTEGER);
ASK METHOD getLocation : REAL;
ASK METHOD setBeginWaitTime;
ASK METHOD setEndWaitTime;
ASK METHOD initlcons;
ASK METHOD beginlcon (IN which : INTEGER);
ASK METHOD endlcon (IN which : INTEGER);
ASK METHOD checkForCompletion;
TELL METHOD land;
TELL METHOD takeOff;
TELL METHOD repairAircraft;

OVERRIDE
ASK METHOD Objlnit;

END OBJECT;

END MODULE.

62

IMPLEMENTATION MODULE aircraftMod;

OBJECT aircraftObj;

ASK METHOD Objlnit;
VAR

temp : INTEGER;

BEGIN

INHERITED Objlnit;

temp := stream2.Uniformlnt(1,100) ;

CASE temp
WHEN 1..75:

palletCargo := 10;
rollingCargo := 2;
passengerCargo := 40;
fuel := 22400.0;{gallons}
fuelRate := 850.0; {gal/min}
maxFuelers := 2;
concurMXprob := 0.075;
nonConMXprob := 0.025;
concurMXdur := 60.0;
nonConMXdur := 60.0;

WHEN 76..100:
palletCargo := 30;
rollingCargo := 6;
passengerCargo := 60;
fuel := 49500.0;
fuelRate := 850.0;
maxFuelers := 2;
concurMXprob := 0.3;
nonConMXprob := 0.1;
concurMXdur := 100.0;
nonConMXdur := 100.0;

END CASE;

NEW (finishedTrigger);
NEW (fuelTrigger);

END METHOD;

ASK METHOD decPalletCargo;
BEGIN

palletCargo := palletCargo - 1;
END METHOD;

ASK METHOD decrementFuel (IN amount : REAL)
BEGIN

fuel := fuel - amount;
END METHOD;

ASK METHOD decPassengerCargo;
BEGIN

63

passengerCargo := passengerCargo - 1;
END METHOD;

ASK METHOD decRollingCargo;
BEGIN

rollingCargo := rollingCargo - 1;
END METHOD;

ASK METHOD getPalletCargo : INTEGER;

VAR
amount : INTEGER;

BEGIN
amount := palletCargo;
RETURN amount;

END METHOD;

TELL METHOD land;

BEGIN

WAIT FOR airfield.runway TO Give (SELF,1);

INC (totalArrivals);
INC (currentOnGround);
LoadFromLibrary (library, "plane");
ASK window TO AddGraphic (SELF);
DisplayAt(1.32,0.33) ;

SetSpeed (400.0/60.0);
WAIT FOR SELF TO MoveTo (1.25,3.36);
END WAIT;
SetSpeed (150.0/60.0);
WAIT FOR SELF TO MoveTo (1.25,6.0);
END WAIT;
SetSpeed (30.0/60.0);
WAIT FOR SELF TO MoveTo (1.25,6.33);
END WAIT;
SetRotationSpeed (-1.3);
WAIT FOR SELF TO RotateTo (-1.57);
END WAIT;

ASK airfield.runway TO TakeBack (SELF,1);
END WAIT;

SetSpeed (15.0/60.0) ;
WAIT FOR SELF TO MoveTo (2.55,6.33);
END WAIT;

INC (numlnQueue);
ASK mainMenu TO updateQueue;
setBeginWaitTime;

WAIT FOR airfield.loadingDock TO Give (SELF,1);
setEndWaitTime;
totalWaitingTime := totalWaitingTime + endWaitTime

beginWaitTime;

64

INC (totalWaits);

DEC (numlnQueue);
ASK mainMenu TO updateQueue;

setLocation(airfield.nextParkingSpace);

IF location > 1
WAIT FOR SELF TO RotateTo (-1.57-

(ATAN2((getLocation-1.0)*0.3,0.95))) ;
END WAIT;

END IF;

WAIT FOR SELF TO MoveTo (3.5, 6.63 -
(getLocation*0.3));

END WAIT;

IF location > 1
ASK SELF TO SetRotationSpeed (1.3);
WAIT FOR SELF TO RotateTo (-1.57);
END WAIT;

END IF;

initlcons;

TELL airfield TO unloadPassengers (SELF);

TELL airfield TO unloadCargo (SELF);

TELL airfield TO unloadRollingCargo (SELF);

TELL airfield TO doAircraftMX(SELF);

WAIT FOR fuelTrigger TO Fire;
END WAIT;

IF location <= TRUNC(numberOfFuelPits)
TELL airfield TO fuelAircraftByPit (SELF);

ELSE
TELL airfield TO fuelAircraftByTruck (SELF);

END IF;

WAIT FOR finishedTrigger TO Fire;
END WAIT;

DISPOSE (fuellcon);
DISPOSE (palletlcon);
DISPOSE (rollinglcon);
DISPOSE (passengerlcon);
DISPOSE (mxlcon);

WAIT FOR SELF TO MoveTo (3.0, 6.63 -
(getLocation*0.3));

END WAIT;
ASK SELF TO SetRotationSpeed (-1.3);
WAIT FOR SELF TO RotateTo (-3.1415);
END WAIT;

65

ASK airfield TO updateParkingSpace (location);

ASK airfield.loadingDock TO TakeBack (SELF,1);
END WAIT;

IF stream3.UniformReal(0.0,1.0) < nonConMXprob
INC (totalBreakdowns);
WAIT FOR SELF TO repairAircraft;
END WAIT;

ELSE
END IF;

WAIT FOR SELF TO takeOff;

aircraftTIS := SimTime - beginWaitTime;

DISPOSE (SELF);

END WAIT;

END METHOD;

TELL METHOD takeOff;

BEGIN
WAIT FOR SELF TO MoveTo (3.0,3.20);
END WAIT;
WAIT FOR SELF TO RotateTo (-4.712);
END WAIT;
WAIT FOR SELF TO MoveTo (1.68,3.20);
END WAIT;

WAIT FOR airfield.runway TO Give (SELF,1);

WAIT FOR SELF TO MoveTo (0.38,3.20);
END WAIT;

ASK airfield, runway TO TakeBack (SELF, IK-
END WAIT;

DEC (currentOnGround);

WAIT FOR SELF TO RotateTo (0.0);
END WAIT;
SetSpeed (150.0/60.0);
WAIT FOR SELF TO MoveTo (0.38,4.10);
END WAIT;
SetSpeed (400.0/60.0);
WAIT FOR SELF TO MoveTo (0.38,9.85);
END WAIT;

INC (totalDepartures);

mog := FLOAT(totalDepartures)*(1440.0/SimTime);
ASK GETMONITOR (mog, RDataPtMObj) TO SetGraph(chart4);

66

ASK outputStream TO WriteReal (mog, 10, 3);
ASK outputStream TO WriteReal (SimTime, 10, 3);
ASK outputStream TO WriteLn;

END METHOD;

TELL METHOD repairAircraft;

BEGIN

WAIT FOR SELF TO MoveTo (3.0,4.0);
END WAIT;
WAIT FOR SELF TO RotateTo (-4.712);
END WAIT;
WAIT FOR SELF TO MoveTo (2.55,4.0);
END WAIT;

WAIT DURATION (stream3.Exponential(nonConMXdur))
END WAIT;

WAIT FOR SELF TO RotateTo (-1.57);
END WAIT;
WAIT FOR SELF TO MoveTo (3.0,4.0);
END WAIT;
WAIT FOR SELF TO RotateTo (-3.1415);
END WAIT;

END METHOD;

ASK METHOD setLocation (IN number : INTEGER);

BEGIN
location := number;

END METHOD;

ASK METHOD getLocation : REAL;

VAR
temp : REAL;

BEGIN
temp := FLOAT (location);
RETURN temp;

END METHOD;

ASK METHOD setBeginWaitTime;
BEGIN

beginWaitTime := SimTime;
END METHOD;

ASK METHOD setEndWaitTime;
BEGIN

endWaitTime := SimTime;
END METHOD;

ASK METHOD initlcons;

67

BEGIN

NEW(fuellcon);
ASK fuellcon TO LoadFromLibrary (library, "icon");
ASK window TO AddGraphic (fuellcon);
ASK fuellcon TO SetColor (Red);
ASK fuellcon TO DisplayAt (3.02, 6.65 - (getLocation*0.3);

NEW(palletlcon);
ASK palletlcon TO LoadFromLibrary (library, "icon");
ASK window TO AddGraphic (palletlcon);
ASK palletlcon TO SetColor (Red);
ASK palletlcon TO DisplayAt (3.1, 6.65 -

(getLocation* 0.3));

NEW(rollinglcon);
ASK rollinglcon TO LoadFromLibrary (library, "icon");
ASK window TO AddGraphic (rollinglcon);
ASK rollinglcon TO SetColor (Red);
ASK rollinglcon TO DisplayAt (3.18, 6.65 -

(getLocation*0.3));

NEW(passengerlcon);
ASK passengerlcon TO LoadFromLibrary (library, "icon");
ASK window TO AddGraphic (passengerlcon);
ASK passengerlcon TO SetColor (Red);
ASK passengerlcon TO DisplayAt (3.27, 6.65 -

(getLocation*0.3));

NEW(mxIcon);
ASK mxlcon TO LoadFromLibrary (library, "icon");
ASK window TO AddGraphic (mxlcon);
ASK mxlcon TO SetColor (Green);
ASK mxlcon TO DisplayAt (2.93, 6.65 - (getLocation*0.3));

END METHOD;

ASK METHOD beginlcon (IN which : INTEGER);

BEGIN
CASE which

WHEN 1:
fuelBegin := TRUE;
ASK fuellcon TO SetColor (Yellow);
ASK fuellcon TO Draw;

WHEN 2:
palletBegin := TRUE;
ASK palletlcon TO SetColor (Yellow);
ASK palletlcon TO Draw;

WHEN 3:
rollingBegin := TRUE;
ASK rollinglcon TO SetColor (Yellow);
ASK rollinglcon TO Draw;

WHEN 4:
passengerBegin := TRUE;
ASK passengerlcon TO SetColor (Yellow);
ASK passengerlcon TO Draw;

68

WHEN 5:
mxBegin := TRUE;
ASK mxlcon TO SetColor (Yellow);
ASK mxlcon TO Draw;

END CASE;
END METHOD;

ASK METHOD endlcon (IN which : INTEGER);

BEGIN
CASE which

WHEN 1:
fuelFinish := TRUE;
fuelBegin := FALSE;
ASK fuellcon TO SetColor (Green);
ASK fuellcon TO Draw;

WHEN 2:
palletFinish := TRUE;
palletBegin := FALSE;
ASK palletlcon TO SetColor (Green);
ASK palletlcon TO Draw;

WHEN 3:
rollingFinish := TRUE;
rollingBegin := FALSE;
ASK rollinglcon TO SetColor (Green);
ASK rollinglcon TO Draw;

WHEN 4:
passengerFinish := TRUE;
passengerBegin := FALSE;
ASK passengerlcon TO SetColor (Green);
ASK passengerlcon TO Draw;

WHEN 5:
mxFinish := TRUE;
mxBegin := FALSE;
ASK mxlcon TO SetColor (Green);
ASK mxlcon TO Draw;

END CASE;
END METHOD;

ASK METHOD checkForCompletion;

BEGIN
IF

((palletFinish)AND(rollingFinish)AND(passengerFinish)AND(fuelFinish)AND
(mxFinish))

ASK finishedTrigger TO Release;
ELSIF

((palletFinish)AND(rollingFinish)AND(passengerFinish)AND(mxFinish))
ASK fuelTrigger TO Release;

END IF;

IF
((palletBegin)OR(rollingBegin)OR(passengerBegin)OR(fuelBegin)OR(mxBegin
))

newState := 1;
ELSE

newState := 0;

69

END IF;

IF oldState < newState
INC(service);
INC(timeAvg);

ELSIF oldState > newState
DEC(service);
DEC(timeAvg);

ELSE
END IF;
ASK GETMONITOR (service, IDataPtMObj) TO SetGraph(chart2);
oldState := newState;

END METHOD;

END OBJECT;
END MODULE.

70

Airfield Modules (Definition and Implementation)

DEFINITION MODULE airfieldMod;

FROM globalMod IMPORT cargo,

passengersAtDestA,

passengersAtDestB,

passengersAtDestC,

passengersAtDestD,

palletsHeadedToA,
palletsHeadedToB,
palletsHeadedToC,
palletsHeadedToD,

rollingHeadedToA,
rollingHeadedToB,
rollingHeadedToC,
rollingHeadedToD,

passengersHeadedToA,
passengersHeadedToB,
passengersHeadedToC,
passengersHeadedToD,

palletsOnDock,
rollingOnDock,
passengersOnDock,

cargoAtDestA, rollingAtDestA,

cargoAtDestB, rollingAtDestB,

cargoAtDestC, rollingAtDestC,

cargoAtDestD, rollingAtDestD,

totalAtDestA,
totalAtDestB,
totalAtDestC,
totalAtDestD,

meanlnterArrTime,
totalPalletCargo,
totalRollingCargo,
totalPassengers,
numberOfLoadingDocks,
numberOfTrucks,
numberOfCargoHandlers,
numberOfForklifts,
numberOfFuelTrucks,

cargoTimeToUnloadPallet,
cargoPalletsPerHandler,
fuelRatePit,
fuelRateTruck,
fuelTruckCapac i ty,

71

palletPerTruck,
rollingPerTruck,
passengerPerTruck,
netDistanceToA,
netDistanceToB,
netDistanceToC,
netDistanceToD,

incLDocks,
decLDocks,
incTrucks,
decTrucks,
incHandlers,
decHandlers,
incForklifts,
decForklifts,
incFuelTrucks,
decFuelTrucks,

currentOnGround,
maxOnGround,
cargoCounter,
totalDiverts,
runLength,

mainMenu,
chartl,
chart3,
window,
library,
timeAvgStats,
timeAvg,

streaml,
stream3;

FROM aircraftMod IMPORT aircraftObj;
FROM cargoMod IMPORT cargoObj, cargoHandlerObj;
FROM ResMod IMPORT ResourceObj, EntryObj;
FROM GrpMod IMPORT StatQueueObj;
FROM SimMod IMPORT SimTime, StopSimulation;
FROM Graph IMPORT RDataPtMObj, RDataPt;
FROM MathMod IMPORT CEIL;
FROM GTypes IMPORT ALL ColorType;
FROM Animate IMPORT DynlmageObj;

TYPE
airfieldObj = OBJECT

loadingDock
motorPool
cargoHandler
forklifts
runway
fuelTrucks
palletQueueA,

ResourceObj;
ResourceObj;
ResourceObj;
ResourceObj;
ResourceObj;
ResourceObj;

72

palletQueueB,
palletQueueC,
palletQueueD,
rollingQueueA,
rollingQueueB,
rollingQueueC,
rollingQueueD,
pas s engerQueueA,
passengerQueueB,
passengerQueueC,
passengerQueueD,
parkingQueue
parkingSpace

StatQueueObj;
parkingSpaceObj;

aircraftObj);
: aircraftObj; IN

ASK METHOD Objlnit;
TELL METHOD generateArrivals;
TELL METHOD unloadCargo (IN plane :
TELL METHOD processCargo (IN plane

handlers : INTEGER);
TELL METHOD manageLoadingDock (IN pieceOfCargo : cargoObj)
TELL METHOD unloadPassengers (IN plane : aircraftObj);
TELL METHOD unloadRollingCargo (IN plane : aircraftObj);
TELL METHOD fuelAircraftByPit (IN plane : aircraftObj);
TELL METHOD fuelAircraftByTruck (IN plane
TELL METHOD refillFuelTrucks (IN amount

INTEGER; IN plane : aircraftObj);
TELL METHOD doAircraftMX (IN plane : aircraftObj);
TELL METHOD sendTruck (IN where : INTEGER; IN whatType

aircraftObj);
REAL; IN number

INTEGER);

INTEGER);
TELL METHOD driveTruckTo (IN where : INTEGER; IN whatType

TELL METHOD driveTruckFrom (IN where : INTEGER);
ASK METHOD incrementLDocks (IN number : REAL);
TELL METHOD decrementLDocks (IN number : REAL);
ASK METHOD incrementTrucks (IN number : REAL);
TELL METHOD decrementTrucks (IN number : REAL);
ASK METHOD incrementHandlers (IN number : REAL);
TELL METHOD decrementHandlers (IN number : REAL);
ASK METHOD incrementForklifts (IN number : REAL);
TELL METHOD decrementForklifts (IN number : REAL);
ASK METHOD incrementFuelTrucks (IN number : REAL);
TELL METHOD decrementFuelTrucks (IN number : REAL);
ASK METHOD nextParkingSpace : INTEGER;
ASK METHOD updateParkingSpace (IN number : INTEGER);
ASK METHOD incrementParkingSpace (IN number : INTEGER);
TELL METHOD decrementParkingSpace (IN number : INTEGER);

END OBJECT;

parkingSpaceObj OBJECT

id
inUse

INTEGER;
BOOLEAN;

ASK METHOD setld (IN number : INTEGER);
ASK METHOD getld : INTEGER;
ASK METHOD setlnUse (IN use : BOOLEAN);

73

END OBJECT;

END MODULE.

74

IMPLEMENTATION MODULE airfieldMod;

OBJECT airfieldObj;

ASK METHOD Objlnit;

VAR
i : INTEGER;

BEGIN

NEW (loadingDock);
ASK loadingDock TO Create (TRUNC(numberOfLoadingDocks));
ASK loadingDock TO SetPendStats (TRUE);
ASK loadingDock TO SetAllocationStats (TRUE);

NEW (motorPool);
ASK motorPool TO Create (TRUNC(numberOfTrucks));
ASK motorPool TO SetPendStats (TRUE);
ASK motorPool TO SetAllocationStats (TRUE);

NEW (cargoHandler);
ASK cargoHandler TO Create (TRUNC(numberOfCargoHandlers)
ASK cargoHandler TO SetPendStats (TRUE);
ASK cargoHandler TO SetAllocationStats (TRUE);

NEW (forklifts);
ASK forklifts TO Create (TRUNC(numberOfForklifts));
ASK forklifts TO SetPendStats (TRUE);
ASK forklifts TO SetAllocationStats (TRUE);

NEW (fuelTrucks);
ASK fuelTrucks TO Create (TRUNC(numberOfFuelTrucks));
ASK fuelTrucks TO SetPendStats (TRUE);
ASK fuelTrucks TO SetAllocationStats (TRUE);

NEW (runway);
ASK runway TO Create (1) ;

NEW (palletQueueA); NEW (rollingQueueA); NEW
(passengerQueueA);

NEW (palletQueueB); NEW (rollingQueueB); NEW
(passengerQueueB);

NEW (palletQueueC); NEW (rollingQueueC); NEW
(passengerQueueC);

NEW (palletQueueD); NEW (rollingQueueD); NEW
(passengerQueueD);

NEW (parkingQueue);

FOR i := 1 TO TRUNC(numberOfLoadingDocks)
NEW (parkingSpace);
ASK parkingSpace TO setld (i) ;
ASK parkingSpace TO setlnUse (FALSE);
ASK parkingQueue TO Add (parkingSpace);

END FOR;

75

END METHOD;

TELL METHOD generateArrivals;

VAR
aircraft : aircraftObj;
interArrTime : REAL;

BEGIN
NEW (timeAvgStats);
ADDMONITOR (timeAvg, timeAvgStats);

WHILE SimTime < runLength*60.0
ASK mainMenu TO updateTrucks;
ASK mainMenu TO updateHandlers;
ASK mainMenu TO updateForklifts;
ASK mainMenu TO updateFuelTrucks;

interArrTime := streaml.Exponential
(meanlnterArrTime);

IF SimTime + interArrTime > runLength*60.0
WAIT DURATION (runLength*60.0 - SimTime);
END WAIT;
ASK mainMenu TO showStatistics;
REMOVEMONITOR (timeAvg, timeAvgStats);
HALT ;

ELSE
END IF;

WAIT DURATION (interArrTime);

IF FLOAT(currentOnGround) >= maxOnGround {AC
divert logic}

ASK mainMenu TO updateDiverts;
ELSE

NEW (aircraft);
TELL aircraft TO land;
ASK GETMONITOR (aircraft.aircraftTIS,

RDataPtMObj) TO SetGraph (chartl);
ASK GETMONITOR (aircraft.aircraftTIS,

RDataPtMObj) TO SetHistMode (TRUE);
END IF;

END WAIT;
END WHILE;
ASK mainMenu TO showStatistics;
REMOVEMONITOR (timeAvg, timeAvgStats);
HALT ;

END METHOD;

TELL METHOD unloadPassengers (IN plane : aircraftObj);
VAR

cargo : cargoObj;

BEGIN
ASK plane TO beginIcon(4);
ASK plane TO checkForCompletion;

76

WHILE plane.passengerCargo > 0
ASK plane TO decPassengerCargo;
NEW(cargo);
INC(totalPassengers);
ASK cargo TO setCargoType(3);
ASK cargo TO setCargoDestination;
ASK cargo TO incrementCargoOnDock;
manageLoadingDock(cargo);
WAIT DURATION (0.5);
END WAIT;

END WHILE;

ASK plane TO endIcon(4);
ASK plane TO checkForCompletion;

END METHOD;

TELL METHOD fuelAircraftByPit (IN plane : aircraftObj);

BEGIN
ASK plane TO beginlcon (1);
ASK plane TO checkForCompletion;
WAIT DURATION (plane.fuel/fuelRatePit);
END WAIT;
ASK plane TO endlcon (1) ;
ASK plane TO checkForCompletion;

END METHOD;

TELL METHOD fuelAircraftByTruck (IN plane : aircraftObj);
VAR

temp : EntryObj;
attachedTrucks : INTEGER;
fuelRate : REAL;

BEGIN
attachedTrucks := 0;
WHILE plane.fuel > 0.0

IF fuelTrucks.Resources < plane.maxFuelers
WAIT FOR fuelTrucks TO Give (plane, 1);
END WAIT;
INC (attachedTrucks);
fuelRate := fuelRateTruck;
ASK plane TO beginlcon (1);
ASK plane TO checkForCompletion;
ASK mainMenu TO updateFuelTrucks;

ELSE
WAIT FOR fuelTrucks TO Give (plane,

plane.maxFuelers);
END WAIT;
attachedTrucks := plane.maxFuelers;
fuelRate := FLOAT(plane.maxFuelers)*fuelRateTruck;
ASK plane TO beginlcon (1);
ASK plane TO checkForCompletion;
ASK mainMenu TO updateFuelTrucks;

END IF;

77

IF plane.fuel >=
fuelTruckCapacity*FLOAT(attachedTrucks)

IF fuelRate <= plane.fuelRate
WAIT DURATION

(fuelTruckCapacity*FLOAT(attachedTrucks)/fuelRate);
END WAIT;

ELSE
WAIT DURATION

(fuelTruckCapacity*FLOAT(attachedTrucks)/plane.fuelRate);
END WAIT;

END IF;
ASK plane TO

decrementFuel(fuelTruckCapacity*FLOAT(attachedTrucks));

refillFuelTrucks(fuelTruckCapacity,attachedTrucks,plane);
attachedTrucks := 0;

ELSE
IF fuelRate <= plane.fuelRate

WAIT DURATION (plane.fuel/fuelRate);
END WAIT;

ELSE
WAIT DURATION (plane.fuel/plane.fuelRate);
END WAIT;

END IF;
refillFuelTrucks(plane.fuel,attachedTrucks, plane);
ASK plane TO decrementFuel(plane.fuel);
attachedTrucks := 0;

END IF;
END WHILE;

ASK plane TO endlcon (1);
ASK plane TO checkForCompletion;

END METHOD;

TELL METHOD refillFuelTrucks (IN amount : REAL; IN number :
INTEGER; IN plane : aircraftObj);

BEGIN
WAIT DURATION (amount/ 5 0 0 . 0) ;
END WAIT;
ASK fuelTrucks TO TakeBack (plane, number);
ASK mainMenu TO updateFuelTrucks;

END METHOD;

TELL METHOD doAircraftMX (IN plane : aircraftObj);

BEGIN
IF stream3.UniformReal(0.0,1.0) < plane.concurMXprob

ASK plane TO beginlcon (5);
ASK plane TO checkForCompletion;
WAIT DURATION (stream3.Exponential(plane.concurMXdur));
END WAIT;
ASK plane TO endlcon (5);

ELSE
ASK plane TO endlcon (5);

END IF;

78

ASK plane TO checkForCompletion;
END METHOD;

TELL METHOD unloadRollingCargo (IN plane : aircraftObj);
VAR

cargo : cargoObj;

BEGIN
ASK plane TO beginlcon (3);
ASK plane TO checkForCompletion;
WHILE plane.rollingCargo > 0

ASK plane TO decRollingCargo;
NEW(cargo);
INC(totalRollingCargo);
ASK cargo TO setCargoType(2);
ASK cargo TO setCargoDestination;
ASK cargo TO incrementCargoOnDock;
manageLoadingDock(cargo) ;
WAIT DURATION (2.0);
END WAIT;

END WHILE;
ASK plane TO endlcon (3);
ASK plane TO checkForCompletion;

END METHOD;

TELL METHOD unloadCargo (IN plane : aircraftObj);
VAR

temp : EntryObj;
need : INTEGER;

BEGIN

need :=
CEIL(FLOAT(plane.palletCargo)/cargoPalletsPerHandler);

WHILE (cargoHandler.Resources > 0) AND
(cargoHandler.NumberAllocatedTo(plane)

< need)
WAIT FOR cargoHandler TO Give (plane, 1);
END WAIT;

END WHILE;

IF cargoHandler.NumberAllocatedTo(plane) = 0
temp := cargoHandler.AllocationList.First;
IF need <= temp.Number

WAIT FOR cargoHandler TO Give (plane, need);
END WAIT;

ELSE
WAIT FOR cargoHandler TO Give (plane, temp.Number);
END WAIT;

END IF;
END IF;

ASK mainMenu TO updateHandlers;

WAIT FOR SELF TO processCargo (plane,
cargoHandler.NumberAllocatedTo(plane));

END WAIT;

79

END METHOD;

TELL METHOD processCargo (IN plane : aircraftObj; IN handlers :
INTEGER);

VAR
kLoader
cargoTeam
loadingPriority

cargoHandlerObj;
ResourceObj;
ResourceObj;

BEGIN
NEW (cargoTeam);
ASK cargoTeam TO Create (handlers);
NEW (loadingPriority) ;
ASK loadingPriority TO Create (1) ;

ASK plane TO beginlcon(2);
ASK plane TO checkForCompletion;

WHILE plane.getPalletCargo > 0
WAIT FOR cargoTeam TO Give (plane, 1);

NEW (kLoader);
TELL kLoader TO unloadAircraft (plane, cargoTeam,

loadingPriority);
END WAIT;

END WHILE;

ASK plane TO endIcon(2);
ASK plane TO checkForCompletion;

ASK cargoHandler TO TakeBack (plane, handlers);
ASK mainMenu TO updateHandlers;

END METHOD;

TELL METHOD manageLoadingDock(IN pieceOfCargo : cargoObj);

BEGIN

CASE pieceOfCargo.destination
WHEN 1:

CASE pieceOfCargo.typeOfCargo
WHEN 1:

ASK palletQueueA TO Add (pieceOfCargo);
IF palletsHeadedToA >=

TRUNC(palletPerTruck)

TRUNC(palletPerTruck) ;

TRUNC(rollingPerTruck)

TRUNC(rollingPerTruck)

sendTruck(1,1);
palletsHeadedToA := palletsHeadedToA -

END IF;
WHEN 2:

ASK rollingQueueA TO Add (pieceOfCargo);
IF rollingHeadedToA >=

sendTruck(1,2);
rollingHeadedToA := rollingHeadedToA -

80

END IF;
WHEN 3:

ASK passengerQueueA TO Add (pieceOfCargo);
IF passengersHeadedToA >=

TRUNC(passengerPerTruck)
sendTruck(l,3);
passengersHeadedToA :=

passengersHeadedToA - TRUNC(passengerPerTruck);
END IF;

END CASE;
WHEN 2:

CASE pieceOfCargo.typeOfCargo
WHEN 1:

ASK palletQueueB TO Add (pieceOfCargo);
IF palletsHeadedToB >=

TRUNC(palletPerTruck)
sendTruck(2,1);
palletsHeadedToB := palletsHeadedToB -

TRUNC(palletPerTruck);
END IF;

WHEN 2:
ASK rollingQueueB TO Add (pieceOfCargo);
IF rollingHeadedToB >=

TRUNC(rollingPerTruck)
sendTruck(2,2);
rollingHeadedToB := rollingHeadedToB -

TRUNC(rollingPerTruck);
END IF;

WHEN 3:
ASK passengerQueueB TO Add (pieceOfCargo);
IF passengersHeadedToB >=

TRUNC(passengerPerTruck)
sendTruck(2,3);
passengersHeadedToB :=

passengersHeadedToB - TRUNC(passengerPerTruck);
END IF;

END CASE;
WHEN 3:

CASE pieceOfCargo.typeOfCargo
WHEN 1:

ASK palletQueueC TO Add (pieceOfCargo);
IF palletsHeadedToC >=

TRUNC(palletPerTruck)
sendTruck(3,1);
palletsHeadedToC := palletsHeadedToC -

TRUNC(palletPerTruck);
END IF;

WHEN 2:
ASK rollingQueueC TO Add (pieceOfCargo);
IF rollingHeadedToC >=

TRUNC(rollingPerTruck)
sendTruck(3,2);
rollingHeadedToC := rollingHeadedToC -

TRUNC(rollingPerTruck);
END IF;

WHEN 3:
ASK passengerQueueC TO Add (pieceOfCargo);

81

IF passengersHeadedToC >=
TRUNC(passengerPerTruck)

sendTruck(3, 3) ;
passengersHeadedToC :=

passengersHeadedToC - TRUNC(passengerPerTruck);
END IF;

END CASE;
WHEN 4:

CASE pieceOfCargo.typeOfCargo
WHEN 1:

ASK palletQueueD TO Add (pieceOfCargo);
IF palletsHeadedToD >=

TRUNC(palletPerTruck)

TRUNC(palletPerTruck);

TRUNC(rollingPerTruck)

TRUNC(rollingPerTruck)

sendTruck(4,1);
palletsHeadedToD := palletsHeadedToD

END IF;
WHEN 2:

ASK rollingQueueD TO Add (pieceOfCargo);
IF rollingHeadedToD >=

sendTruck(4,2);
rollingHeadedToD := rollingHeadedToD

END IF;
WHEN 3:

ASK passengerQueueD TO Add (pieceOfCargo);
IF passengersHeadedToD >=

TRUNC(passengerPerTruck)
sendTruck(4,3);
passengersHeadedToD :=

passengersHeadedToD - TRUNC(passengerPerTruck);
END IF;

END CASE;
END CASE;

END METHOD;

TELL METHOD sendTruck (IN where : INTEGER; IN whatType :
INTEGER);

VAR
tempA,
tempB,
tempC,
tempD : cargoObj;
i, n : INTEGER;

BEGIN
WAIT FOR motorPool TO Give (SELF, 1);

ASK mainMenu TO updateTrucks;

CASE where
WHEN 1:

CASE whatType
WHEN 1:

FOR i := 1 TO TRUNC(palletPerTruck)
WAIT FOR forklifts TO Give (SELF,

1)

82

1)

TRUNC(passengerPerTruck)

END WAIT;
WAIT DURATION (0.5);
END WAIT;
palletsOnDock:= palletsOnDock - 1;
ASK mainMenu TO updateForklifts;
ASK forklifts TO TakeBack (SELF,

END FOR;

WAIT FOR SELF TO driveTruckTo(1,1);
END WAIT;

FOR n := 1 TO TRUNC(palletPerTruck)
tempA := palletQueueA.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (cargoAtDestA);
INC (totalAtDestA);

END FOR;

WAIT FOR SELF TO driveTruckFrom(l);
END WAIT;

WHEN 2:
FOR i := 1 TO TRUNC(rollingPerTruck)

WAIT DURATION (0.5);
END WAIT;
rollingOnDock := rollingOnDock - 1;

END FOR;

WAIT FOR SELF TO driveTruckTo(1,2);
END WAIT;

FOR n := 1 TO TRUNC(rollingPerTruck)
tempA := rollingQueueA.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (rollingAtDestA);
INC (totalAtDestA);

END FOR;

WAIT FOR SELF TO driveTruckFrom(1);
END WAIT;

WHEN 3:
WAIT DURATION(passengerPerTruck/20.0);
END WAIT;

passengersOnDock := passengersOnDock -

WAIT FOR SELF TO driveTruckTo(1,3);
END WAIT;

FOR n := 1 TO TRUNC(passengerPerTruck)
tempA := passengerQueueA.Remove();
INC (passengersAtDestA);
INC (totalAtDestA);

END FOR;

83

1);

1) ;

WAIT DURATION (passengerPerTruck/20.0);
END WAIT;

WAIT FOR SELF TO driveTruckFrom(1);
END WAIT;

END CASE;
WHEN 2:

CASE whatType
WHEN 1:

FOR i := 1 TO TRUNC(palletPerTruck)
WAIT FOR forklifts TO Give (SELF,

END WAIT;
WAIT DURATION (0.5);
END WAIT;
palletsOnDock:= palletsOnDock - 1;
ASK mainMenu TO updateForklifts;
ASK forklifts TO TakeBack (SELF,

END FOR;

WAIT FOR SELF TO driveTruckTo(2,1);
END WAIT;

FOR n := 1 TO TRUNC(palletPerTruck)
tempA := palletQueueB.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (cargoAtDestB);
INC (totalAtDestB);

END FOR;

WAIT FOR SELF TO driveTruckFrom(2);
END WAIT;

WHEN 2:
FOR i := 1 TO TRUNC(rollingPerTruck)

WAIT DURATION (0.5);
END WAIT;
rollingOnDock := rollingOnDock - 1;

END FOR;

WAIT FOR SELF TO driveTruckTo(2,2);
END WAIT;

FOR n := 1 TO TRUNC(rollingPerTruck)
tempA := rollingQueueB.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (rollingAtDestB);
INC (totalAtDestB);

END FOR;

WAIT FOR SELF TO driveTruckFrom(2);
END WAIT;

WHEN 3:
WAIT DURATION (passengerPerTruck/20.0);
END WAIT;

84

passengersOnDock := passengersOnDock
TRUNC(passengerPerTruck);

1);

1) ;

WAIT FOR SELF TO driveTruckTo(2,3);
END WAIT;

FOR n := 1 TO TRUNC(passengerPerTruck)
tempA := passengerQueueB.Remove();
INC (passengersAtDestB);
INC (totalAtDestB);

END FOR;
WAIT DURATION (passengerPerTruck/20.0) ;
END WAIT;

WAIT FOR SELF TO driveTruckFrom(2);
END WAIT;

END CASE;
WHEN 3:

CASE whatType
WHEN 1:

FOR i := 1 TO TRUNC(palletPerTruck)
WAIT FOR forklifts TO Give (SELF,

END WAIT;
WAIT DURATION (0.5);
END WAIT;
palletsOnDock:= palletsOnDock - 1;
ASK mainMenu TO updateForklifts;
ASK forklifts TO TakeBack (SELF,

END FOR;

WAIT FOR SELF TO driveTruckTo(3,1);
END WAIT;

FOR n := 1 TO TRUNC(palletPerTruck)
tempA := palletQueueC.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (cargoAtDestC);
INC (totalAtDestC);

END FOR;

WAIT FOR SELF TO driveTruckFrom(3);
END WAIT;

WHEN 2:
FOR i := 1 TO TRUNC(rollingPerTruck)

WAIT DURATION (0.5) ;
END WAIT;
rollingOnDock:= rollingOnDock - 1;

END FOR;

WAIT FOR SELF TO driveTruckTo(3,2);
END WAIT;

FOR n := 1 TO TRUNC(rollingPerTruck)

85

tempA := rollingQueueC.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (rollingAtDestC);
INC (totalAtDestC);

END FOR;

WAIT FOR SELF TO driveTruckFrom(3);
END WAIT;

WHEN 3:
WAIT DURATION (passengerPerTruck/2 0.0);
END WAIT;

passengersOnDock := passengersOnDock -
TRUNC(passengerPerTruck)

1) ;

WAIT FOR SELF TO driveTruckTo(3,3);
END WAIT;

FOR n := 1 TO TRUNC(passengerPerTruck)
tempA := passengerQueueC.Remove();
INC (passengersAtDestC);
INC (totalAtDestC);

END FOR;
WAIT DURATION (passengerPerTruck/20.0);
END WAIT;

WAIT FOR SELF TO driveTruckFrom(3);
END WAIT;

END CASE;
WHEN 4:

CASE whatType
WHEN 1:

FOR i := 1 TO TRUNC(palletPerTruck)
WAIT FOR forklifts TO Give (SELF,

END WAIT;
WAIT DURATION (0.5);
END WAIT;
palletsOnDock:= palletsOnDock - 1;
ASK mainMenu TO updateForklifts;
ASK forklifts TO TakeBack (SELF,

END FOR;

WAIT FOR SELF TO driveTruckTo(4,1);
END WAIT;

FOR n := 1 TO TRUNC(palletPerTruck)
tempA := palletQueueD.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (cargoAtDestD);
INC (totalAtDestD);

END FOR;

WAIT FOR SELF TO driveTruckFrom(4);

86

END WAIT;
WHEN 2:

FOR i := 1 TO TRUNC(rollingPerTruck)
WAIT DURATION (0.5);
END WAIT;
rollingOnDock:= rollingOnDock - 1;

END FOR;

WAIT FOR SELF TO driveTruckTo(4,2);
END WAIT;

FOR n := 1 TO TRUNC(rollingPerTruck)
tempA := rollingQueueD.Remove();
WAIT DURATION (0.5);
END WAIT;
INC (rollingAtDestD);
INC (totalAtDestD);

END FOR;

WAIT FOR SELF TO driveTruckFrom(4);
END WAIT;

WHEN 3:
WAIT DURATION (passengerPerTruck/20.0);
END WAIT;

passengersOnDock := passengersOnDock -
TRUNC(passengerPerTruck)

WAIT FOR SELF TO driveTruckTo(4,3);
END WAIT;

FOR n := 1 TO TRUNC(passengerPerTruck)
tempA := passengerQueueD.Remove();
INC (passengersAtDestD);
INC (totalAtDestD);

END FOR;
WAIT DURATION (passengerPerTruck/20.0);
END WAIT;

WAIT FOR SELF TO driveTruckFrom(4);
END WAIT;

END CASE;
END CASE;

ASK motorPool TO TakeBack (SELF, 1);
ASK mainMenu TO updateTrucks;
ASK mainMenu TO updateForklifts;

END WAIT;

END METHOD;

ASK METHOD incrementLDocks (IN number : REAL);
BEGIN

ASK loadingDock TO IncrementResourcesBy (TRUNC(number));
END METHOD;

TELL METHOD decrementLDocks (IN number : REAL);

87

BEGIN
TELL loadingDock TO DecrementResourcesBy (TRUNC(number));

END METHOD;

ASK METHOD incrementTrucks (IN number : REAL);
BEGIN

ASK motorPool TO IncrementResourcesBy (TRUNC(number));
END METHOD;

TELL METHOD decrementTrucks (IN number : REAL);
BEGIN

TELL motorPool TO DecrementResourcesBy (TRUNC(number));
END METHOD;

ASK METHOD incrementHandlers (IN number : REAL);
BEGIN

ASK cargoHandler TO IncrementResourcesBy (TRUNC(number));
END METHOD;

TELL METHOD decrementHandlers (IN number : REAL);
BEGIN

TELL cargoHandler TO DecrementResourcesBy (TRUNC(number))
END METHOD;

ASK METHOD incrementForklifts (IN number : REAL);
BEGIN

ASK forklifts TO IncrementResourcesBy (TRUNC(number));
END METHOD;

TELL METHOD decrementForklifts (IN number : REAL);
BEGIN

TELL forklifts TO DecrementResourcesBy (TRUNC(number));
END METHOD;

ASK METHOD incrementFuelTrucks (IN number : REAL);
BEGIN

ASK fuelTrucks TO IncrementResourcesBy (TRUNC(number));
END METHOD;

TELL METHOD decrementFuelTrucks (IN number : REAL);
BEGIN

TELL fuelTrucks TO DecrementResourcesBy (TRUNC(number));
END METHOD;

ASK METHOD nextParkingSpace : INTEGER;
VAR

number : INTEGER;
lowNumber: INTEGER;
temp : parkingSpaceObj;

BEGIN
lowNumber := parkingQueue.numberIn;

FOREACH temp IN parkingQueue
IF NOT(temp.inUse)

number := temp.getld;
IF number < lowNumber

lowNumber := number;

88

END IF;
END IF;

END FOREACH;

FOREACH temp IN parkingQueue
IF temp.id = lowNumber

ASK parkingQueue TO RemoveThis (temp);
NEW (temp);
ASK temp TO setld (lowNumber);
ASK temp TO setlnUse (TRUE);
ASK parkingQueue TO Add (temp);

END IF;
END FOREACH;

RETURN lowNumber;
END METHOD;

ASK METHOD updateParkingSpace (IN number : INTEGER);

VAR
temp : parkingSpaceObj;

BEGIN
FOREACH temp IN parkingQueue

IF temp.id = number
ASK parkingQueue TO RemoveThis (temp);
NEW (temp);
ASK temp TO setlnUse (FALSE);
ASK temp TO setld (number);
ASK parkingQueue TO Add (temp);

END IF;
END FOREACH;

END METHOD;

ASK METHOD incrementParkingSpace (IN number : INTEGER);

VAR
temp : parkingSpaceObj;

BEGIN
WHILE number > 0

NEW (temp);
ASK temp TO setld (parkingQueue.numberln + 1);
ASK temp TO setlnUse (FALSE);
ASK parkingQueue TO Add (temp);
number := number - 1;

END WHILE;
END METHOD;

TELL METHOD decrementParkingSpace (IN number : INTEGER)

VAR
temp : parkingSpaceObj;

BEGIN
WHILE number > 0

temp := parkingQueue.First;
WHILE temp.id <> parkingQueue.numberln

temp := parkingQueue.Next(temp);
END WHILE;

89

ASK parkingQueue TO RemoveThis (temp);
number := number - 1;

END WHILE;
END METHOD;

TELL METHOD driveTruckTo(IN where : INTEGER; IN whatType
INTEGER);

VAR
truck : DynlmageObj;

BEGIN
NEW (truck);
ASK truck TO LoadFromLibrary (library, "truck");
ASK window TO AddGraphic (truck);

CASE whatType
WHEN 2:

ASK truck TO SetColor (Black);
WHEN 3:

ASK truck TO SetColor (Orange);
OTHERWISE;

END CASE;

ASK truck TO DisplayAt (4.30,8.06);
ASK truck TO SetSpeed (2.0);

WAIT FOR truck TO MoveTo (4.30,8.57)
END WAIT;

CASE where

WHEN 1:
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (1.57);
END WAIT;
WAIT FOR truck TO MoveTo (1.79,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (0.0);
END WAIT;
WAIT FOR truck TO MoveTo (1.79,9.48);
END WAIT;
DISPOSE (truck);

WHEN 2:
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (1.57);
END WAIT;
WAIT FOR truck TO MoveTo (4.13,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (0.0);
END WAIT;
WAIT FOR truck TO MoveTo (4.13,9.48);
END WAIT;
DISPOSE (truck);

WHEN 3:

90

ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (-1.57);
END WAIT;
WAIT FOR truck TO MoveTo (6.51,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (0.0);
END WAIT;
WAIT FOR truck TO MoveTo (6.51,9.48);
END WAIT;
DISPOSE (truck);

WHEN 4:
ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (-1.57);
END WAIT;
WAIT FOR truck TO MoveTo (8.72,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (0.0);
END WAIT;
WAIT FOR truck TO MoveTo (8.72,9.48);
END WAIT;
DISPOSE (truck);

END CASE;

END METHOD;

TELL METHOD driveTruckFrom (IN where : INTEGER);

VAR
truck : DynlmageObj;

BEGIN
NEW (truck);
ASK truck TO LoadFromLibrary (library, "truck");
ASK window TO AddGraphic (truck);
ASK truck TO SetRotation (3.1415);
ASK truck TO SetSpeed (2.0);

CASE where
WHEN 1:

ASK truck TO DisplayAt (1.79,9.48);
WAIT FOR truck TO MoveTo (1.79,8.57);
END WAIT;
ASK truck TO SetRotationSpeed(2.0);
WAIT FOR truck TO RotateTo (-1.57);
END WAIT;
WAIT FOR truck TO MoveTo (4.30,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (-3.1415);
END WAIT;

WHEN 2:
ASK truck TO DisplayAt (4.13,9.48);
WAIT FOR truck TO MoveTo (4.13,8.57);
END WAIT;
ASK truck TO SetRotationSpeed(2.0);
WAIT FOR truck TO RotateTo (-1.57);

91

END WAIT;
WAIT FOR truck TO MoveTo (4.30,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (-2.0);
WAIT FOR truck TO RotateTo (-3.1415);
END WAIT;

WHEN 3:
ASK truck TO DisplayAt (6.51,9.48);
WAIT FOR truck TO MoveTo (6.51,8.57);
END WAIT;
ASK truck TO SetRotationSpeed(-2.0);
WAIT FOR truck TO RotateTo (-4.712);
END WAIT;
WAIT FOR truck TO MoveTo (4.30,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (-3.1415);
END WAIT;

WHEN 4:
ASK truck TO DisplayAt (8.72,9.48);
WAIT FOR truck TO MoveTo (8.72,8.57);
END WAIT;
ASK truck TO SetRotationSpeed(-2.0);
WAIT FOR truck TO RotateTo (-4.712);
END WAIT;
WAIT FOR truck TO MoveTo (4.30,8.57);
END WAIT;
ASK truck TO SetRotationSpeed (2.0);
WAIT FOR truck TO RotateTo (-3.1415);
END WAIT;

END CASE;

WAIT FOR truck TO MoveTo (4.30,8.06);
END WAIT;

DISPOSE (truck);

END METHOD;

END OBJECT;

OBJECT parkingSpaceObj;

ASK METHOD setld (IN number : INTEGER);

BEGIN
id := number;

END METHOD;

ASK METHOD setlnUse (IN use : BOOLEAN);

BEGIN
inUse := use;

END METHOD;

ASK METHOD getld : INTEGER;
VAR

92

number : INTEGER;
BEGIN

number := id;
RETURN number;

END METHOD;

END OBJECT;

END MODULE.

93

Cargo Modules (Definition and Implementation)

DEFINITION MODULE cargoMod;

FROM globalMod IMPORT totalPalletCargo,
totalRollingCargo,

palletsHeadedToA,
palletsHeadedToB,
palletsHeadedToC,
palletsHeadedToD,

rollingHeadedToA,
rollingHeadedToB,
rollingHeadedToC,
rollingHeadedToD,

pas sengersHeadedToA,
passengersHeadedToB,
passengersHeadedToC,
passengersHeadedToD,

palletsOnDock,
rollingOnDock,
passengersOnDock,

cargoProbToA,
cargoProbToB,
cargoProbToC,
cargoProbToD,

mainMenu,
airfield,

chart3,

stream3;

FROM aircraftMod IMPORT aircraftObj;

FROM SimMod IMPORT SimTime;
FROM Graph IMPORT IDataPtMObj;
FROM GrpMod IMPORT StatQueueObj;
FROM ResMod IMPORT ResourceObj;

TYPE

cargoObj = OBJECT

typeOfCargo : INTEGER;
destination : INTEGER;
beginWaitTime : REAL;

ASK METHOD Objlnit;

94

ASK METHOD setCargoType (IN type : INTEGER);
ASK METHOD setCargoDestination;
ASK METHOD incrementCargoOnDock;

END OBJECT;

cargoHandlerObj = OBJECT

TELL METHOD unloadAircraft (IN plane : aircraftObj; IN team
: ResourceObj; IN loadingPriority : ResourceObj);

END OBJECT;

END MODULE.

95

IMPLEMENTATION MODULE cargoMod;

OBJECT cargoObj;.

ASK METHOD Objlnit;
BEGIN

beginWaitTime := SimTime;
END METHOD;

ASK METHOD setCargoType (IN type : INTEGER);
BEGIN

CASE type
WHEN 1:

typeOfCargo := 1;
WHEN 2:

typeOfCargo := 2;
WHEN 3:

typeOfCargo := 3;
END CASE;

END METHOD;

ASK METHOD setCargoDestination;

VAR
temp,
tempToA,
tempToB,
tempToC,
tempToD : INTEGER;

BEGIN
temp := stream3.Uniformlnt (1,100);

tempToA
tempToB
tempToC
tempToD

= TRUNC (100.0*cargoProbToA);
= TRUNC (100.0*cargoProbToB) + tempToA
= TRUNC (100.0*cargoProbToC) + tempToB
= TRUNC (100.0*cargoProbToD) + tempToC

IF temp < tempToA
destination := 1;

ELSIF temp < tempToB
destination := 2;

ELSIF temp < tempToC
destination := 3;

ELSIF temp < tempToD
destination := 4;

ELSE
destination := 4;

END IF;

END METHOD;

ASK METHOD incrementCargoOnDock;

BEGIN

96

CASE destination
WHEN 1:

CASE typeOfCargo
WHEN 1:

INC(palletsHeadedToA);
INC(palletsOnDock);

WHEN 2:
INC(rollingHeadedToA);
INC(rollingOnDock);

WHEN 3:
INC(passengersHeadedToA);
INC(passengersOnDock) ;

END CASE;
WHEN 2:

CASE typeOfCargo
WHEN 1:

INC(palletsHeadedToB) ;
INC(palletsOnDock) ;

WHEN 2:
INC(rollingHeadedToB);
INC(rollingOnDock) ;

WHEN 3:
INC(passengersHeadedToB);
INC (passengersOnDock);

END CASE;
WHEN 3:

CASE typeOfCargo
WHEN 1:

INC(palletsHeadedToC);
INC(palletsOnDock) ;

WHEN 2:
INC(rollingHeadedToC);
INC(rollingOnDock) ;

WHEN 3:
INC(passengersHeadedToC);
INC(passengersOnDock);

END CASE;
WHEN 4:

CASE typeOfCargo
WHEN 1:

INC(palletsHeadedToD);
INC(palletsOnDock) ;

WHEN 2:
INC(rollingHeadedToD);
INC(rollingOnDock) ;

WHEN 3:
INC(passengersHeadedToD);
INC(passengersOnDock);

END CASE;
END CASE;

ASK GETMONITOR (palletsOnDock, IDataPtMObj) TO SetGraph
(chart3);

ASK GETMONITOR (palletsOnDock, IDataPtMObj) TO SetElement
(0);

ASK GETMONITOR (rollingOnDock, IDataPtMObj) TO SetGraph
(chart3);

97

ASK GETMONITOR (rollingOnDock, IDataPtMObj) TO SetElement
(1);

ASK GETMONITOR (passengersOnDock, IDataPtMObj) TO SetGraph
(chart3);

ASK GETMONITOR (passengersOnDock, IDataPtMObj) TO
SetElement (2) ;

END METHOD;

END OBJECT;

OBJECT cargoHandlerObj;

TELL METHOD unloadAircraft (IN plane : aircraftObj; IN team :
ResourceObj; IN loadingPriority : ResourceObj);

VAR
temp : REAL;
cargoQueue : StatQueueObj;
cargo : cargoObj;

BEGIN
temp := cargoPalletsPerHandler;
NEW (cargoQueue);

WAIT DURATION (plane.getLocation*0.5);
END WAIT;

WAIT FOR loadingPriority TO Give (SELF,1);
END WAIT;

WHILE (plane.getPalletCargo > 0) AND (temp > 0.0)
ASK plane TO decPalletCargo;

WAIT DURATION (cargoTimeToUnloadPallet);
END WAIT;

NEW (cargo);
ASK cargo TO setCargoDestination;
ASK cargo TO setCargoType(1);

ASK cargoQueue TO Add (cargo);
temp := temp - 1.0;

END WHILE;

ASK loadingPriority TO TakeBack (SELF, 1);

WAIT DURATION (plane.getLocation*0.5);
END WAIT;

WAIT FOR airfield.forklifts TO Give
(SELF,cargoQueue.numberln);

ASK mainMenu TO updateForklifts;
WAIT DURATION (cargoTimeToUnloadPallet);
END WAIT;

FOREACH cargo IN cargoQueue

98

INC(totalPalletCargo) ;
ASK cargo TO incrementCargoOnDock;
TELL airfield TO manageLoadingDock(cargo);
ASK airfield.forklifts TO TakeBack (SELF,1)
ASK mainMenu TO updateForklifts;
ASK cargoQueue TO RemoveThis (cargo);

END FOREACH;
END WAIT;

ASK team TO TakeBack (plane,1);
ASK mainMenu TO updateHandlers;

END METHOD;

END OBJECT;

END MODULE.

99

Global Modules (Definition and Implementation)

DEFINITION MODULE globalMod;

FROM airfieldMod IMPORT airfieldObj;
FROM cargoMod IMPORT cargoObj;
FROM RandMod IMPORT RandomObj;
FROM Chart IMPORT ChartObj;
FROM Graphic IMPORT GraphicLibObj;
FROM Graph IMPORT IDataPt, RDataPt;
FROM StatMod IMPORT ITimedStatObj;
FROM Window IMPORT WindowObj;
FROM graphicsMod IMPORT mainMenuObj;
FROM IOMod IMPORT StreamObj;

VAR
airfield
streaml
stream2
stream3
cargo
outputStream
inputStream

airfieldObj;
RandomObj ,
RandomObj ,
RandomObj ,
cargoObj;
StreamObj;
StreamObj;

chartl,
chart2,
chart3,
chart4
library
window
mainMenu

ChartObj;
GraphicLibObj;
WindowObj;
mainMenuObj;

totalArrivals
totalDepartures
totalDiverts
totalBreakdowns
currentOnGround
numlnQueue
maxWaitingTime
totalWaitingTime
totalWaits
totalPalletCargo
totalRollingCargo
totalPassengers
cargoCounter

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL ;
REAL ;
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

palletsHeadedToA
palletsHeadedToB
palletsHeadedToC
palletsHeadedToD

INTEGER
INTEGER
INTEGER
INTEGER

rollingHeadedToA,
rollingHeadedToB,
rollingHeadedToC,

100

ro11ingHeadedToD INTEGER;

pass engersHeadedToA,
passengersHeadedToB,
passengersHeadedToC,
passengersHeadedToD INTEGER;

palletsOnDock
rollingOnDock
passengersOnDock

IDataPt
IDataPt
IDataPt

mog
service
t imeAvg
timeAvgStats

RDataPt;
IDataPt;
LMONITORED INTEGER;
ITimedStatObj;

cargoAtDestA, rollingAtDestA, passengersAtDestA
cargoAtDestB, rollingAtDestB, passengersAtDestB
cargoAtDestC, rollingAtDestC, passengersAtDestC
cargoAtDestD, rollingAtDestD, passengersAtDestD

INTEGER
INTEGER
INTEGER
INTEGER

totalAtDestA,
totalAtDestB,
totalAtDestC,
totalAtDestD INTEGER;

numberOfLoadingDocks REAL
numberOfTrucks REAL
numberOfCargoHandlers REAL
numberOfForklifts REAL
numberOfFuelPits REAL
numberOfFuelTrucks REAL
runLength REAL
timeScale REAL
meanlnterArrTime REAL
maxOnGround REAL

{airfield parameters}

cargoProbToA,
cargoProbToB,
cargoProbToC,
cargoProbToD,
cargoTimeToUnloadPallet
cargoPalletsPerHandler
fuelRatePit,
fuelRateTruck,
fuelTruckCapacity

{cargo parameters }

REAL ;
REAL ;

REAL ;

netDistanceToA,
netDistanceToB,
netDistanceToC,
netDistanceToD,
palletPerTruck,
rollingPerTruck,
passengerPerTruck REAL ;

{network parameters }

incLDocks
decLDocks

REAL ;
REAL;

101

incTrucks : REAL ;
decTrucks : REAL;
incHandlers,
decHandlers : REAL;
incForklifts,
decForklifts : REAL;
incFuelTrucks,
decFuelTrucks : REAL;

END MODULE.

IMPLEMENTATION MODULE globalMod;

END MODULE.

102

Graphics Modules (Definition and Implementation)

DEFINITION MODULE graphicsMod;

FROM Animate IMPORT DynDClockObj;
FROM Form IMPORT DialogBoxObj;
FROM Button IMPORT ButtonObj;
FROM Value IMPORT ValueBoxObj;
FROM Check IMPORT CheckBoxObj;
FROM Image IMPORT ImageObj;
FROM GTypes IMPORT ALL ColorType;
FROM Menu IMPORT MenuBarObj, MenuItemObj;
FROM Meter IMPORT DigitalDisplayObj;
FROM Graph IMPORT RDataPtMObj, IDataPtMObj;

FROM SimMod IMPORT Startsimulation,
StopSimulation,
SimTime,
Timescale;

FROM Dynamic IMPORT RealTimeAnimation;

FROM globalMod IMPORT totalArrivals, {pulling in global variables }
totalDepartures, {will allow menu driven }
totalDiverts, {displays to show statistics }
numlnQueue, {and parameters held globally }
totalWaitingTime,
totalWaits,
totalBreakdowns,

totalPalletCargo,
totalRollingCargo,
totalPassengers,

cargoAtDestA, rollingAtDestA, passengersAtDestA,
cargoAtDestB, rollingAtDestB, passengersAtDestB,
cargoAtDestC, rollingAtDestC, passengersAtDestC,
cargoAtDestD, rollingAtDestD, passengersAtDestD,

totalAtDestA,
totalAtDestB,
totalAtDestC,
totalAtDestD,

runLength,
timeScale,
meanlnterArrTime,
numberOfLoadingDocks,
numberOfTrucks,
numberOfCargoHandlers,
numberOfForklifts,
numberOfFuelPits,
numberOfFuelTrucks,
maxOnGround,

{airfield parameters}

103

cargoProbToA, {cargo parameters }
cargoProbToB,
cargoProbToC,
cargoProbToD,
cargoTimeToUnloadPallet,
cargoPalletsPerHandler,
fuelRatePit,
fuelRateTruck,
fuelTruckCapacity,

netDistanceToA, {network parameters }
netDistanceToB,
netDistanceToC,
netDistanceToD,
palletPerTruck,
rollingPerTruck,
passengerPerTruck,

incLDocks,
decLDocks,
incTrucks,
decTrucks,
incHandlers,
decHandlers,
incForklifts,
decForklifts,
incFuelTrucks,
decFuelTrucks,

airfield,
mog,
service,
timeAvgStats,
outputStream,

chartl,
chart2,
chart3,
chart4,
library,
window;

TYPE
mainMenuObj = OBJECT (MenuBarObj)

dialogBox : DialogBoxObj;
button : ButtonObj;
startltem,
stopltem : MenuItemObj;
divertMeter,
gueueMeter,
trucksAvailMeter,
handlerMeter,
forkliftMeter,
fuelTruckMeter : DigitalDisplayObj;

104

ASK METHOD showStatistics;
ASK METHOD changeAirfieldParameters;
ASK METHOD aircraftParameters(IN type : INTEGER);
ASK METHOD changeCargoParameters;
ASK METHOD changeNetworkParameters;
ASK METHOD showDestinations;
ASK METHOD setUpSimBoard;
ASK METHOD updateDiverts;
ASK METHOD updateQueue;
ASK METHOD updateTrucks;
ASK METHOD updateHandlers;
ASK METHOD updateForklifts;
ASK METHOD updateFuelTrucks;

OVERRIDE
ASK METHOD BeSelected;

END OBJECT;

END MODULE.

105

IMPLEMENTATION MODULE graphicsMod;

OBJECT mainMenuObj;

ASK METHOD BeSelected;

VAR
picture : ImageObj;

BEGIN
CASE ASK LastPicked Id

WHEN 1:
ASK startltem TO Deactivate;
ASK stopltem TO Activate;
Startsimulation;

WHEN 2:
StopSimulation;
showStatistics;
ASK outputStream TO Close;
DISPOSE (outputStream);
HALT ;

WHEN 3:
showStatistics;

WHEN 4:
showDestinations;

WHEN 10:
changeAirfieldParameters;

WHEN 11:
aircraftParameters(1); {C-17}

WHEN 12:
changeCargoParameters;

WHEN 13:
changeNetworkParameters;

WHEN 14:
aircraftParameters(2); {C-5}

WHEN 99:
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary (library,

"AboutBox");
ASK window TO AddGraphic (dialogBox);
ASK dialogBox TO Draw;

NEW (picture);
ASK picture TO LoadFromLibrary (library, "bitmap");
ASK window TO AddGraphic (picture);
ASK picture TO Draw;

button := ASK dialogBox TO Acceptlnput();
DISPOSE (dialogBox);
DISPOSE (picture);

OTHERWISE;
END CASE;

END METHOD;

ASK METHOD changeAirfieldParameters;

VAR

106

10)

valStop,
valScale,
valMeanTime,
valNumDocks,
valNumTrucks,
valMOG,
valNumHandlers,
valNumForklifts,
valNumFuelPits,
valNumFuelTrucks : ValueBoxObj;
resetStats : CheckBoxObj;
tempLDocks,
tempTrucks,
tempHandlers,
tempForklifts,
tempFuelTrucks : REAL;

BEGIN
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary(library, "ParmBox");
ASK window TO AddGraphic (dialogBox);

valStop := ASK dialogBox Child ("stopTime", 1);
ASK valStop TO SetValue (runLength);

valScale := ASK dialogBox Child ("timeScale", 2);
ASK valScale TO SetValue (timeScale);

valMeanTime := ASK dialogBox Child ("mean", 3);
ASK valMeanTime TO SetValue (meanlnterArrTime);

valNumDocks := ASK dialogBox Child ("numLDocks", 4);
ASK valNumDocks TO SetValue (numberOfLoadingDocks);

valNumTrucks := ASK dialogBox Child ("numTrucks", 5);
ASK valNumTrucks TO SetValue (numberOfTrucks);

valMOG := ASK dialogBox Child ("maxOnGround", 6);
ASK valMOG TO SetValue (maxOnGround);

valNumHandlers := ASK dialogBox Child ("numHandlers", 7);
ASK valNumHandlers TO SetValue (numberOfCargoHandlers);

valNumForklifts : = ASK dialogBox Child ("numForklifts", 8);
ASK valNumForklifts TO SetValue (numberOfForklifts);

valNumFuelPits := ASK dialogBox Child ("numFuelPits", 9);
ASK valNumFuelPits TO SetValue (numberOfFuelPits);

valNumFuelTrucks := ASK dialogBox Child ("numFuelTrucks",

ASK valNumFuelTrucks TO SetValue (numberOfFuelTrucks);

resetStats := ASK dialogBox Child ("resetStats", 150);
ASK resetStats TO SetCheck (FALSE);

button := ASK dialogBox TO Acceptlnput();

107

IF ASK button ReferenceName = "Ok"

runLength := ASK valStop Value();
timeScale := ASK valScale Value();
Timescale := 60.O/timeScale;
meanlnterArrTime := ASK valMeanTime Value();
maxOnGround := ASK valMOG Value();
numberOfFuelPits := ASK valNumFuelPits Value();

tempLDocks := ASK valNumDocks Value();
IF tempLDocks < numberOfLoadingDocks

decLDocks := numberOfLoadingDocks - tempLDocks;
TELL airfield TO decrementLDocks(decLDocks);
TELL airfield TO

decrementParkingSpace(TRUNC(decLDocks)) ;
numberOfLoadingDocks := tempLDocks;

ELSIF tempLDocks > numberOfLoadingDocks
incLDocks := tempLDocks - numberOfLoadingDocks;
ASK airfield TO incrementLDocks(incLDocks);
ASK airfield TO

incrementParkingSpace(TRUNC(incLDocks));
numberOfLoadingDocks := tempLDocks;

ELSE numberOfLoadingDocks := tempLDocks;
END IF;

tempTrucks := ASK valNumTrucks Value();
IF tempTrucks < numberOfTrucks

decTrucks := numberOfTrucks - tempTrucks;
TELL airfield TO decrementTrucks(decTrucks);
numberOfTrucks := tempTrucks;
updateTrucks;

ELSIF tempTrucks > numberOfTrucks
incTrucks := tempTrucks - numberOfTrucks;
ASK airfield TO incrementTrucks(incTrucks);
numberOfTrucks := tempTrucks;
updateTrucks;

ELSE numberOfTrucks := tempTrucks;
END IF;

tempHandlers := ASK valNumHandlers Value();
IF tempHandlers < numberOfCargoHandlers

decHandlers := numberOfCargoHandlers -
tempHandlers;

TELL airfield TO decrementHandlers(decHandlers);
numberOfCargoHandlers := tempHandlers;
updateHandlers;

ELSIF tempHandlers > numberOfCargoHandlers
incHandlers := tempHandlers -

numberOfCargoHandlers;
ASK airfield TO incrementHandlers(incHandlers);
numberOfCargoHandlers := tempHandlers;
updateHandlers;

ELSE numberOfCargoHandlers := tempHandlers;
END IF;

tempForklifts := ASK valNumForklifts Value();

108

IF tempForklifts < numberOfForklifts
decForklifts := numberOfForklifts - tempForklifts;
TELL airfield TO decrementForklifts(decForklifts);
numberOfForklifts := tempForklifts;
updateForklifts;

ELSIF tempForklifts > numberOfForklifts
incForklifts := tempForklifts - numberOfForklifts;
ASK airfield TO incrementForklifts(incForklifts);
numberOfForklifts := tempForklifts;
updateForklifts ;

ELSE numberOfForklifts := tempForklifts;
END IF;

tempFuelTrucks := ASK valNumFuelTrucks Value();
IF tempFuelTrucks < numberOfFuelTrucks

decFuelTrucks := numberOfFuelTrucks -
tempFuelTrucks;

TELL airfield TO
decrementFuelTrucks(decFuelTrucks);

numberOfFuelTrucks := tempFuelTrucks;
updateFuelTrucks ;

ELSIF tempFuelTrucks > numberOfFuelTrucks
incFuelTrucks := tempFuelTrucks -

numberOfFuelTrucks;
ASK airfield TO incrementFuelTrucks(incFuelTrucks);
numberOfFuelTrucks := tempFuelTrucks;
updateFuelTrucks;

ELSE numberOfFuelTrucks := tempFuelTrucks;
END IF;

IF resetStats.Checked = TRUE
ASK airfield.loadingDock TO ResetAllocationStats;
ASK airfield.loadingDock TO ResetPendingStats;
ASK airfield.motorPool TO ResetAllocationStats;
ASK airfield.cargoHandler TO ResetAllocationStats;
ASK airfield.forklifts TO ResetAllocationStats;
ASK airfield.fuelTrucks TO ResetAllocationStats;

ELSE
END IF;

DISPOSE (dialogBox);

ELSE
DISPOSE (dialogBox);

END IF;

END METHOD;

ASK METHOD showStatistics ;

VAR
valBox : ValueBoxObj;

BEGIN
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary (library, "StatsBox");
ASK window TO AddGraphic (dialogBox);

109

valBox := ASK dialogBox Child ("numLand", 1);
ASK valBox TO SetValue (FLOAT (totalArrivals));

valBox := ASK dialogBox Child ("numDepart", 2);
ASK valBox TO SetValue (FLOAT (totalDepartures));

valBox := ASK dialogBox Child ("numDivert", 3);
ASK valBox TO SetValue (FLOAT (totalDiverts));

valBox := ASK dialogBox Child ("numBreakdown", 17);
ASK valBox TO SetValue (FLOAT (totalBreakdowns));

valBox := ASK dialogBox Child ("utilLD", 4);
ASK valBox TO SetValue

((airfield.loadingDock.AllocWtdMean()/numberOfLoadingDocks)*100.0);

valBox := ASK dialogBox Child ("utilMP", 5);
ASK valBox TO SetValue

((airfield.motorPool.AllocWtdMean()/numberOfTrucks)*100.0);

valBox := ASK dialogBox Child ("utilCH", 16);
ASK valBox TO SetValue

((airfield.cargoHandler.AllocWtdMean()/numberOfCargoHandlers)*100.0);

valBox := ASK dialogBox Child ("utilFork", 12);
ASK valBox TO SetValue

((airfield.forklifts.AllocWtdMean()/numberOfForklifts)*100.0);

valBox := ASK dialogBox Child ("utilFuel", 13);
ASK valBox TO SetValue

((airfield.fuelTrucks.AllocWtdMean()/numberOfFuelTrucks)*100.0);

valBox := ASK dialogBox Child ("lengthQ", 6);
ASK valBox TO SetValue

(airfield.loadingDock.PendWtdMean());

valBox := ASK dialogBox Child ("maxLengthQ", 7);
ASK valBox TO SetValue

(FLOAT(airfield.loadingDock.PendingMaximumO));

valBox := ASK dialogBox Child ("meanWaitQ", 8);
ASK valBox TO SetValue

(totalWaitingTime/FLOAT(totalWaits));

valBox := ASK dialogBox Child ("totPCargo", 9);
ASK valBox TO SetValue (FLOAT (totalPalletCargo));

valBox := ASK dialogBox Child ("totRCargo", 10);
ASK valBox TO SetValue (FLOAT (totalRollingCargo));

valBox := ASK dialogBox Child ("totalPass", 11);
ASK valBox TO SetValue (FLOAT (totalPassengers));

valBox := ASK dialogBox Child ("estAirfieldCap", 18);
ASK valBox TO SetValue

(FLOAT(totalDepartures)*(1440.0/SimTime));

110

valBox := ASK dialogBox Child ("serviceMOG", 19);
ASK valBox TO SetValue (timeAvgStats.Mean);

valBox := ASK dialogBox Child ("simTime", 20);
ASK valBox TO SetValue (SimTime/60.0);

ASK dialogBox TO Draw;

button := ASK dialogBox TO Acceptlnput ();
DISPOSE (dialogBox);

END METHOD;

ASK METHOD showDestinations;

VAR
valBox ValueBoxObj;

BEGIN
NEW(dialogBox);
ASK dialogBox TO LoadFromLibrary (library,

'destinationBox");
ASK window TO AddGraphic (dialogBox);

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

"bulkl", 1);
cargoAtDestA));

"bulk2", 2);
cargoAtDestB));

"bulk3", 3);
cargoAtDestC));

"bulk4", 4);
cargoAtDestD));

"rollingl", 5);
rollingAtDestA));

"rolling2", 6);
rollingAtDestB));

"rolling3", 7);
rollingAtDestC));

"rolling4", 8);
rollingAtDestD));

"passl", 9);
passengersAtDestA));

"pass2", 10);
passengersAtDestB));

"pass3", 11);
passengersAtDestC));

111

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

valBox := ASK dialogBox Child
ASK valBox TO SetValue (FLOAT

ASK dialogBox TO Draw;

"pass4", 12);
passengersAtDestD));

"totalAtA", 13);
totalAtDestA));

"totalAtB", 14);
totalAtDestB));

"totalAtC", 15);
totalAtDestC));

"totalAtD", 16) ;
totalAtDestD));

button := ASK dialogBox TO Acceptlnput ();
DISPOSE (dialogBox);

END METHOD;

ASK METHOD aircraftParameters(IN type : INTEGER);

VAR
valPallet,
valRolling,
valPass,
valFuelCap,
valFuelRate,
valFuelNum,
valConProb,
valConDur,
valNonProb,
valNonDur : ValueBoxObj;

BEGIN
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary(library, "acParamBox");

IF type = 1
ASK dialogBox TO SetLabel ("C-17 Parameters");

ELSE
ASK dialogBox TO SetLabel ("C-5 Parameters");

END IF;

ASK window TO AddGraphic (dialogBox);

valPallet := ASK dialogBox Child ("amtPallet", 1);
valRolling := ASK dialogBox Child ("amtRolling", 2);
valPass := ASK dialogBox Child ("amtPass", 3);
valFuelCap := ASK dialogBox Child ("fuelCap", 4);
valFuelRate := ASK dialogBox Child ("fuelRate", 5);
valFuelNum := ASK dialogBox Child ("fuelNum", 6);
valConProb := ASK dialogBox Child ("cProb", 7);
valConDur := ASK dialogBox Child ("cDur", 8);

112

valNonProb := ASK dialogBox Child ("nProb", 9);
valNonDur := ASK dialogBox Child ("nDur", 10);

CASE type
WHEN 1:

ASK valPallet TO SetValue (10.0);
ASK valRolling TO SetValue (2.0);
ASK valPass TO SetValue (40.0);
ASK valFuelCap TO SetValue (22400.0);
ASK valFuelRate TO SetValue (850.0);
ASK valFuelNum TO SetValue (2.0);
ASK valConProb TO SetValue (0.075);
ASK valConDur TO SetValue (60.0);
ASK valNonProb TO SetValue (.025);
ASK valNonDur TO SetValue (60.0);

WHEN 2:
ASK valPallet TO SetValue (3 0.0);
ASK valRolling TO SetValue (6.0);
ASK valPass TO SetValue (60.0);
ASK valFuelCap TO SetValue (49500.0);
ASK valFuelRate TO SetValue (850.0);
ASK valFuelNum TO SetValue (2.0);
ASK valConProb TO SetValue (0.3);
ASK valConDur TO SetValue (100.0);
ASK valNonProb TO SetValue (.1);
ASK valNonDur TO SetValue (100.0);

END CASE;

button := ASK dialogBox TO Acceptlnput ();

DISPOSE (dialogBox);

END METHOD;

ASK METHOD changeCargoParameters;

VAR
valToA,
valToB,
valToC,
valToD,
valTimeUnload,
valPallets,
valFuelRatePit,
valFuelRateTruck,
valFuelCapTruck : ValueBoxObj;

BEGIN
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary(library, "cargoParamBox")
ASK window TO AddGraphic (dialogBox);

valToA := ASK dialogBox Child ("cargoDistA", 1);
ASK valToA TO SetValue (cargoProbToA);

valToB := ASK dialogBox Child ("cargoDistB", 2);
ASK valToB TO SetValue (cargoProbToB);

113

5)

valToC := ASK dialogBox Child ("cargoDistC", 3);
ASK valToC TO SetValue (cargoProbToC);

valToD := ASK dialogBox Child ("cargoDistD", 4);
ASK valToD TO SetValue (cargoProbToD);

valTimeUnload := ASK dialogBox Child ("timeUnloadPallet",

ASK valTimeUnload TO SetValue (cargoTimeToUnloadPallet);

valPallets := ASK dialogBox Child ("palletPerHandler", 6);
ASK valPallets TO SetValue (cargoPalletsPerHandler);

valFuelRatePit := ASK dialogBox Child ("fuelRatePit", 7);
ASK valFuelRatePit TO SetValue (fuelRatePit);

valFuelRateTruck := ASK dialogBox Child ("fuelRateTruck",

ASK valFuelRateTruck TO SetValue (fuelRateTruck);

valFuelCapTruck := ASK dialogBox Child ("fuelCapTruck",

ASK valFuelCapTruck TO SetValue (fuelTruckCapacity);

button := ASK dialogBox TO Acceptlnput ();

IF ASK button ReferenceName = "ok"

cargoProbToA := ASK valToA Value()
cargoProbToB := ASK valToB Value()
cargoProbToC := ASK valToC Value()
cargoProbToD := ASK valToD Value()
cargoTimeToUnloadPallet := ASK valTimeUnload Value();
cargoPalletsPerHandler := ASK valPallets Value();
fuelRatePit := ASK valFuelRatePit Value();
fuelRateTruck := ASK valFuelRateTruck Value();
fuelTruckCapacity := ASK valFuelCapTruck Value();

DISPOSE (dialogBox);
ELSE

DISPOSE (dialogBox);
END IF;

END METHOD;

ASK METHOD changeNetworkParameters;

VAR
valToA,
valToB,
valToC,
valToD,
valPalletPerTruck,
valRol1ingPerTruck,
valPassPerTruck : ValueBoxObj;

114

BEGIN
NEW (dialogBox);
ASK dialogBox TO LoadFromLibrary(library,

'networkParamBox");
ASK window TO AddGraphic (dialogBox);

valToA := ASK dialogBox Child ("distToA", 1);
ASK valToA TO SetValue (netDistanceToA);

valToB := ASK dialogBox Child ("distToB", 2);
ASK valToB TO SetValue (netDistanceToB);

valToC := ASK dialogBox Child ("distToC", 3);
ASK valToC TO SetValue (netDistanceToC);

valToD := ASK dialogBox Child ("distToD", 4);
ASK valToD TO SetValue (netDistanceToD);

5) ;
valPalletPerTruck := ASK dialogBox Child ("palletPerTruck"

ASK valPalletPerTruck TO SetValue (palletPerTruck);

valRollingPerTruck := ASK dialogBox Child
("rollingPerTruck", 6);

ASK valRollingPerTruck TO SetValue (rollingPerTruck);

valPassPerTruck := ASK dialogBox Child ("passPerTruck", 7);
ASK valPassPerTruck TO SetValue (passengerPerTruck);

button := ASK dialogBox TO Acceptlnput ();

IF ASK button ReferenceName = "ok"

netDistanceToA
netDistanceToB
netDistanceToC
netDistanceToD
palletPerTruck

= ASK valToA Value()
= ASK valToB Value()
= ASK valToC Value()
= ASK valToD Value()
= ASK valPalletPerTruck Value();

rollingPerTruck := ASK valRollingPerTruck Value();
passengerPerTruck := ASK valPassPerTruck Value();

DISPOSE (dialogBox);
ELSE

DISPOSE (dialogBox);
END IF;

END METHOD;

ASK METHOD setUpSimBoard;

VAR
airfield : ImageObj;
clock : DynDClockObj;

BEGIN

NEW (window);

115

ASK window TO SetTitle ("Aerial Port Operations Model");
ASK window TO SetSize(100.0,100.0);
ASK window TO ShowWorld(0.0,0.0,10.0,10.0);
ASK window TO SetColor(ForestGreen);

ASK window TO Draw;

NEW (library);
ASK library TO ReadFromFile ("graphics.sg2");

NEW (airfield);
ASK airfield TO LoadFromLibrary (library, "airfield");
ASK window TO AddGraphic (airfield);

NEW (clock);
ASK clock TO LoadFromLibrary (library, "clock");
ASK window TO AddGraphic (clock);
ASK clock TO SetTimeScale (1.0/60.0);
ASK clock TO SetTime (0,0,0);
Timescale := 60.0/timeScale;
ASK clock TO StartMotion;

ASK SELF TO LoadFromLibrary (library, "menubar");
ASK window TO AddGraphic (SELF);
startltem := ASK SELF Descendant ("Start", 1);
stopltem := ASK SELF Descendant ("Stop", 2);

NEW (chartl);
ASK chartl TO LoadFromLibrary (library, "ACTimeChart");
ASK window TO AddGraphic (chartl);

NEW (chart2);
ASK chart2 TO LoadFromLibrary (library, "mogChart");
ASK window TO AddGraphic (chart2);
ASK GETMONITOR (service, IDataPtMObj) TO SetGraph(chart2);

NEW (chart3);
ASK chart3 TO LoadFromLibrary (library, "LDockChart");
ASK window TO AddGraphic (chart3);

NEW (chart4);
ASK chart4 TO LoadFromLibrary (library, "capChart");
ASK window TO AddGraphic (chart4);
ASK GETMONITOR (mog, RDataPtMObj) TO SetGraph(chart4);

NEW (divertMeter);
ASK divertMeter TO LoadFromLibrary (library,

"divertMeter");
ASK window TO AddGraphic (divertMeter);

NEW (queueMeter);
ASK queueMeter TO LoadFromLibrary (library, "queueMeter");
ASK window TO AddGraphic (queueMeter);

NEW (trucksAvailMeter);
ASK trucksAvailMeter TO LoadFromLibrary (library,

"truckMeter");

116

ASK window TO AddGraphic (trucksAvailMeter);

NEW (handlerMeter);
ASK handlerMeter TO LoadFromLibrary (library,

"handlerMeter");
ASK window TO AddGraphic (handlerMeter);

NEW (forkliftMeter);
ASK forkliftMeter TO LoadFromLibrary (library,

"forkliftMeter");
ASK window TO AddGraphic (forkliftMeter);

NEW (fuelTruckMeter);
ASK fuelTruckMeter TO LoadFromLibrary (library,

"fuelTruckMeter");
ASK window TO AddGraphic (fuelTruckMeter);

ASK SELF TO Draw;
ASK airfield TO Draw;
ASK clock TO Draw;
ASK chart1 TO Draw;
ASK chart2 TO Draw;
ASK chart3 TO Draw;
ASK chart4 TO Draw;
ASK divertMeter TO Draw;
ASK queueMeter TO Draw;
ASK trucksAvailMeter TO Draw;
ASK handlerMeter TO Draw;
ASK forkliftMeter TO Draw;
ASK fuelTruckMeter TO Draw;

RealTimeAnimation := TRUE;

END METHOD;

ASK METHOD updateDiverts ;

BEGIN
INC (totalDiverts);
ASK divertMeter TO DisplayValue (FLOAT(totalDiverts));

END METHOD;

ASK METHOD updateQueue;

BEGIN
ASK queueMeter TO DisplayValue (FLOAT(numlnQueue));

END METHOD;

ASK METHOD updateTrucks;

BEGIN
ASK trucksAvailMeter TO DisplayValue

(FLOAT(airfield.motorPool.Resources)) ;
END METHOD;

ASK METHOD updateHandlers;

117

BEGIN
ASK handlerMeter TO DisplayValue

(FLOAT(airfield.cargoHandler.Resources)) ;
END METHOD;

ASK METHOD updateForklifts;

BEGIN
ASK forkliftMeter TO DisplayValue

(FLOAT(airfield.forklifts.Resources)) ;
END METHOD;

ASK METHOD updateFuelTrucks;

BEGIN
ASK fuelTruckMeter TO DisplayValue

(FLOAT(airfield.fuelTrucks.Resources));
END METHOD;

END OBJECT;

END MODULE.

118

Main Module

MAIN MODULE final;

FROM IOMod
FROM RandMod
FROM Menu
FROM globalMod
parameters}

IMPORT ALL FileUseType;
IMPORT FetchSeed;
IMPORT MenuItemObj;
IMPORT runLength,

timeScale,
meanlnterArrTime,
numberOfLoadingDocks,
numberOfTrucks,
numberOf Cargo-Handlers,
numberOfForklifts,
numberOfFuelPits,
numberOfFuelTrucks,
maxOnGround,

{airfield

cargoProbToA,
cargoProbToB,
cargoProbToC,
cargoProbToD,
cargoTimeToUnloadPallet,
cargoPalletsPerHandler,
fuelRatePit,
fuelRateTruck,
fuelTruckCapacity,

{cargo parameters}

netDistanceToA,
netDistanceToB,
netDistanceToC,
netDistanceToD,
palletPerTruck,
rollingPerTruck,
passengerPerTruck,

{network parameters}

mog,
outputstream,
inputStream,

mainMenu,
airfield,

streaml,
stream2,
stream3;

VAR
item :
parameter

MenuItemObj;
REAL ;

BEGIN

119

NEW (inputStream);
read}

ASK inputStream TO Open
}

' input.txt", Input)

}
ASK inputStream TO ReadReal (parameter
runLength := parameter;
ASK inputStream TO ReadReal (parameter
timeScale := parameter;
ASK inputStream TO ReadReal (parameter
meanlnterArrTime := parameter;
ASK inputStream TO ReadReal (parameter

parameters}
numberOfLoadingDocks := parameter;
ASK inputStream TO ReadReal (parameter
numberOfTrucks := parameter;
ASK inputStream TO ReadReal (parameter
numberOf Cargo-Handlers := parameter;
ASK inputStream TO ReadReal (parameter
numberOfForklifts := parameter;
ASK inputStream TO ReadReal (parameter
numberOfFuelPits := parameter;
ASK inputStream TO ReadReal (parameter
numberOfFuelTrucks := parameter;
ASK inputStream TO ReadReal (parameter
maxOnGround := parameter;
ASK inputStream TO ReadReal (parameter
mog := parameter;

ASK inputStream TO ReadReal (parameter
cargoProbToA := parameter;
ASK inputStream TO ReadReal (parameter
cargoProbToB := parameter;
ASK inputStream TO ReadReal (parameter

parameters}
cargoProbToC := parameter;
ASK inputStream TO ReadReal (parameter
cargoProbToD := parameter;
ASK inputStream TO ReadReal (parameter
cargoTimeToUnloadPallet := parameter;
ASK inputStream TO ReadReal (parameter
cargoPalletsPerHandler := parameter;
ASK inputStream TO ReadReal (parameter
fuelRatePit := parameter;
ASK inputStream TO ReadReal (parameter
fuelRateTruck := parameter;
ASK inputStream TO ReadReal (parameter
fuelTruckCapacity := parameter;

ASK inputStream
netDistanceToA
ASK inputStream
netDistanceToB
ASK inputStream
netDistanceToC
ASK inputStream

TO ReadReal (parameter
= parameter;
TO ReadReal (parameter
= parameter;
TO ReadReal (parameter
:= parameter;
TO ReadReal (parameter

{open 10 stream to

{initial parameters

{■from input.txt file

{sim/airfield

{cargo/fuel

{trans network }
{parameters }

120

netDistanceToD := parameter;
ASK inputStream TO ReadReal (parameter);
palletPerTruck := parameter;
'ASK inputStream TO ReadReal (parameter);
rollingPerTruck := parameter;
ASK inputStream TO ReadReal (parameter);
passengerPerTruck := parameter;

ASK inputStream TO Close;
DISPOSE (inputStream);

NEW (streaml); {rand num generators for }
NEW (stream2); {AC arrival, cargo amts, }
NEW (stream3); {and AC maintenance }

ASK stream2 TO SetSeed (FetchSeed (2)) ; {seed assignments }
ASK stream3 TO SetSeed (FetchSeed (3));

NEW (outputStream);
ASK outputStream TO Open ("output.txt", Output);

NEW (airfield);
TELL airfield TO generateArrivals;

NEW (mainMenu);
ASK mainMenu TO setUpSimBoard;

REPEAT
item := ASK mainMenu TO Acceptlnput();

UNTIL (ASK item ReferenceName = "Start");

END MODULE.

121

Bibliography

"A material handling solution for an air cargo facility/' Industrial Engineering,
24-25 (November 1992).

"JFK airport cargo system will be U.S. first/' Civil Engineering, 12-13 (May 1992).

Banks, Jerry, John S. Carson II, and Barry L. Nelson. Discrete-Event System
Simulation (Second Edition). New Jersey: Prentice-Hall, 1996.

Battaglioli, Victor J. Throughput Capacity Estimation. Army Command and
General Staff College, June 1975.

CACI Products Company. Modeling and Simulation with MODSIM III. Training
Seminar at Arlington VA: CACI Products Co., 3-7 August 1998.

CACI Products Company. MODSIM III Reference Manual. Lajolla CA: CACI
Products Co., August 1997.

CACI Products Company. SIMGRAPHICS II User's Manual. Lajolla CA: CACI
Products Co., July 1995.

Cusick, Travis. Base Resource and Capability Estimator User's Manual and
Model Code. Washington University, December 1997.

Department of the Air Force. Military Airlift Policy for Aerial Port Operations.
AMC Policy Directive 24-1, April 1995.

Department of the Air Force. Military Airlift Transportation. AMC Instruction
24-101, Vol 1, May 1995.

Department of the Air Force. Military Airlift: Aerial Port Aircraft Loading
Certification and Aircraft Load Planning and Loading Program. AMC
Instruction 24-101, Vol 7, January 1996.

Department of the Air Force. Military Airlift: Aerial Port Mobility Units and
Aerial Delivery Flights. AMC Instruction 24-101, Vol 18, May 1996.

122

Department of the Air Force. Military Airlift: Air Terminal Operations Center.
AMC Instruction 24-101, Vol 9, August 1996.

Department of the Air Force. Military Airlift: Cargo and Mail. AMC Instruction
24-101, Vol 11, March 1996.

Department of the Army. Strategic Mobility Sensitivity Analysis of Selected
Alternatives Tactical Wheeled Vehicle Fleet Study. Army Training and
Doctrine Command, Feb 1981.

Gordon, Geoffrey. System Simulation. New Jersey: Prentice-Hall, 1969.

Johnson, Randall G. A SLAM Airfield Model For Airlift Operations. MS thesis,
AFIT/GST/OS/84M-12. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1984 .

Killingsworth, Paul S. and Laura Melody. Should C-17s Be Used to Carry In-
Theater Cargo During Major Deployments?. RAND DB-171-AF/OSD,
1997.

Law, Averill M. and Michael G. McComas. "Secrets of Successful Simulation
Studies," Industrial Engineering, 22:47-48,51-53, 72 (May 1990).

Law, Averill M. and W. David Kelton. Simulation Modeling and Analysis
(Second Edition). New York: McGraw-Hill, 1991.

Mattock, Michael G. and others. New Capabilities for Strategic Mobility Analysis
Using Mathematical Programming. RAND MR-296-JS, 1995.

Mattock, Michael G. and others. New Capabilities for Strategic Mobility
Analysis: Executive Summary. RAND MR-294-JS, 1994.

McCanne, Randy. The Airlift Capabilities Estimation Prototype: A Case Study in
Model Validation. MS thesis, AFIT/GOR/ENS/93M-13. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, March 1993.

Morris, William T. "On the Art of Modeling," Management Science, 13:B707-B717
(August 1967).

123

Nickles, Keith E. Global Reach and Air Cargo Operations: A Study in Materials
Handling Equipment Requirements. Graduate Research Paper,
AFIT/GMO/LAL/96J-7. School of Logistics and Acquisition
Management, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, May 1996.

Nobert, Yves and Jacques Roy. "Freight handling personnel scheduling at air
cargo terminals," Transportation Science, 32:295-301 (August 1998).

Park, Chan S. and Yong Deok Noh. "A port simulation model for bulk cargo
operations," Simulation, 236-246 (Jun 1987).

Post, David C. Air Force Reserve Aerial Port Contingency Training. Graduate
Research Paper, AFIT/GMO/LAL/96N-12. School of Logistics and
Acquisition Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, November 1996.

Pritsker, A. Alan B. and others. Simulation with Visual SLAM and AweSim. New
York: John Wiley and Sons, 1997.

Schänk, John and others. A Review of Strategic Mobility Models and Analysis.
RAND R-3926-JS, 1991.

Shannon, Robert E. Systems Simulation: the Art and Science. New Jersey:
Prentice-Hall, 1975.

Stucker, James P. and Ruth T. Berg. Understanding Airfield Capacity for Airlift
Operations. RAND MR-700-AF/OSD, 1998.

Thompson, Tom E. Mobility Requirements Studies: Time for a New Approach.
USAWC Strategy Research Project, Army War College, February 1997.

Williams, David. Estimation of Airfield Capacity. MS thesis,
AFIT/GOA/ENS/99M-12. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1999.

124

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations aqd Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

MODELING AND ANALYSIS OF AERIAL PORT OPERATIONS

6. AUTHOR(S)

Timothy W. Albrecht, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/99M-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ AMC/XPY
402 Scott Drive Unit 3L3
Scott AFB IL 62225-5307

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The focus of this thesis effort is gaining useful insight into aerial port operations by employing an animated simulation.
Understanding airfield capacity, resources, and functioning allows greater accuracy and efficiency in both planning for future
force structures and matching mobility assets with commanders' objectives. Two current simulations, ACE (Airfield
Capacity Estimator) and BRACE (Base Resource Allocation and Capabilities Estimator), model mobility activities at the base
level with some deficiencies. The model proposed by this thesis, APOM (Aerial Port Operations Model), will provide the
mobility analyst an animated simulation with two, new measures of aerial port operations; a real-time estimate of airfield
capacity subject to changing levels of airfield resources, and an instantaneous count of serviced aircraft (service MOG).
Additionally, APOM will offer an expanded utility to the mobility analyst by modeling a ground transportation network
associated with the aerial port.

14. SUBJECT TERMS

Airlift Operations; Airlift; Simulation; Simulation Languages
15. NUMBER OF PAGES

133
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Modeling and Analysis of Aerial Port Operations
	Recommended Citation

	/tardir/tiffs/A361631.tiff

