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AFIT/GOA/ENS/99M-05 

Abstract 

Battle damage assessment (BDA) is critical to success in any air campaign. 

However, Desert Storm highlighted numerous deficiencies in the BDA process, and 

operations since Desert Storm continue to point out weaknesses. We present a review of 

the Phase I BDA decision, or physical damage assessment, and model the decision 

process using a Bayesian belief network. Through subject matter expert (i.e., the 

targeteers) elicitation sessions, imagery was found to be critically important to the BDA 

process yet this information is generally not retained. This use of "perfect information" 

is delineated in the BDA process models. We proposed a methodology based on 

Bayesian belief networks for incorporating this perfect information. We demonstrate the 

Bayesian belief network's capability to update conditional probability distributions using 

data generated in real world operations. This capability allows the network's conditional 

distributions to evolve, increasing model accuracy and reducing uncertainty in the 

decision. 

vn 



A BAYESIAN DECISION MODEL FOR BATTLE DAMAGE ASSESSMENT 

CHAPTER 1 

The research documented in this thesis is sponsored by the Air Force Command 

and Control Battlelab (C2B) located at Hurlburt Field, Florida. The C2B was established 

".. .to identify innovations in command and control and battle management operations 

concepts and measure their potential to advance Air Force core competencies and joint 

warfighting" (AF/XOR, 1998). Toward that end, the C2B sought to investigate ways to 

automate or speed up the battle damage assessment (BDA) process, and enlisted AFIT to 

spearhead a research effort. 

Our goal in this effort is threefold. First, we present a detailed description of the 

BDA process, drawing on guidelines and regulations as well as interviews with 

targeteers. This description represents a significant portion of the value of this research, 

acting as an outsider's perspective and encouraging discussion about the decision 

process. Second, we construct a model of Phase I BDA, or physical damage assessment. 

Finally, we present a methodology for implementing this model and improving it through 

historical data. This model can serve as the basis of an eventual automated decision tool 

for BDA. 

The remainder of this thesis is devoted to the BDA decision model, from the 

foundations on which it is built to the future directions it may take. Chapter 2 is 

formatted as a stand-alone article suitable for submission to an academic journal. 
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Chapter 3 outlines possible improvements and extensions of this work. Appendix A 

contains the complete Bayesian models presented in Chapter 2. Appendix B describes 

the motivation behind the choice of the Bayesian belief network methodology over other 

methodologies frequently used in decision modeling and analysis. 

This research initiated as an attempt to build a decision matrix for BDA—a 

simple, spreadsheet-style way for targeteers to make a quick assessment of damage given 

various pieces of evidence. However, our research shows the number of variables in the 

BDA problem and the number of potential states they may take on would make such a 

matrix or spreadsheet intractably large. In other words, the paradigm implicit in a 

decision matrix model is simply not suited to the BDA problem. However, the Bayesian 

belief network model offers two possible substitutes for a decision matrix. The first 

pseudo-decision matrix is provided in the form of the conditional probability 

distributions. The conditional distributions, shown in numerous tables in this work, 

provide an indicator for the likelihood of assessing a particular damage level given the 

evidence. This converts easily to a decision matrix by simply choosing, in all cases, to 

assess the damage level with the highest number. A second possible way to reach quick 

decisions is simply to query the network directly. Many Bayesian network software 

packages offer easy ways to enter evidence and query nodes for their distribution. Using 

this capability, we can set the evidence nodes to the appropriate state and determine 

which damage level is most likely to result in an accurate assessment. The same method 

can serve as a rough way to conduct sensitivity analysis. Bayesian networks do allow for 

some sensitivity analysis, but this capability has not been incorporated into a software 



application at this time. The reader is referred to Jensen, 1996 and Cozman, 1998 for 

more information on sensitivity analysis in Bayesian networks. 



CHAPTER 2 

2.1 Introduction and Overview 

The effective prosecution of an air war demands efficient and effective use of 

airpower assets against important enemy targets. Battle damage assessment (BDA) is a 

crucial part of combat assessment (CA), which in turn is an essential element of the 

targeting cycle. During BDA, intelligence specialists known as targeteers attempt to 

determine how much damage friendly forces have inflicted on struck targets. The 

ultimate decision is whether airpower forces achieved their target damage objective, or 

further strikes against the target are necessary. BDA is of critical importance to any 

military campaign. However, recent military operations have highlighted a need to 

improve the BDA process. During Desert Storm, U.S. and allied forces found themselves 

severely in need of faster and more accurate BDA. The advent of precision-guided 

munitions led to pinpoint strikes that often left little visible damage on the target, making 

the damage assessment more difficult. Additionally, the widespread use of precision- 

guided munitions resulted in a dramatic increase in the need for damage assessments. 

The two effects combined to outstrip the abilities of the BDA system. Since Desert 

Storm, few significant technological developments have appeared to help remedy the 

problem. In numerous operations below the level of war, BDA has been an essential 

factor from both the operational and media-relations perspectives. 



2.1.1 Problem Statement. 

Because BDA directly affects restrike decisions, it affects the entire targeting 

cycle, so accurate and timely BDA is an absolute must. However, during Desert Storm 

and in operations below the level of war since 1991, commanders and operators alike 

have pointed out a need for better BDA tools. The official Department of Defense (DoD) 

review of the Gulf war viewed the BDA process as taxed beyond its ability (DoD, 1992). 

Numerous studies conducted since the conclusion of Desert Storm have also been critical 

of the BDA process and pointed out several areas for improvement (Hallion, 1992; 

Smith, 1993; Sweigart, 1993). Operation Desert Fox, conducted in 1998 against targets 

in Iraq, as well as the ensuing series of engagements with Iraqi forces, also highlighted 

the need for faster BDA. In some instances, the United States was uncertain as to the 

need for further strikes for a significant period of time, sometimes several days. 

Similarly, the DoD significantly upgraded its official estimates of damage to sites 

targeted during Desert Fox following an extensive review of all the information available. 

Clearly, there is a need to improve many aspects of the BDA process, especially 

timeliness and accuracy. 

2.1.2 Background of Effort. 

This effort seeks to improve the BDA portion of the targeting cycle by developing 

the methodology for, and a prototype of, a decision tool to assist the targeteer in 

determining whether target damage objectives were met. This research has three goals. 

First, we develop an accurate model of the targeteer's decision to facilitate learning about 

the BDA decision process itself. Second, we demonstrate this model's utility as a tool to 



improve targeteer decision timeliness. Finally, we demonstrate an approach wherein the 

model incorporates historical data to continually improve. Our focus is not the entire 

BDA process, nor all the different assessments that make up BDA. We focus primarily 

on the first stage of BDA, and demonstrate a modeling technique that is applicable to the 

other facets of the BDA process. 

2.1.3 Research /Literature Review. 

Despite wide awareness of the problem throughout the military community, there 

has been little work in the area of BDA decision support, and really only one effort to 

improve the BDA process through modeling and simulation. The Air Force Research 

Laboratory (AFRL) at Rome, New York created a BDA model entitled BDASIM 

beginning in 1994 (Rome Laboratory, 1996). However, the BDASIM effort focused on 

the intelligence structure architecture in an attempt to speed up the BDA process. The 

base task in the AFRL study was to develop a comprehensive end-to-end model of the 

BDA process. Once the base task was completed, the AFRL intended to study potential 

alternatives to the traditional BDA architecture and select a subset for further study. 

Finally, the BDASIM team intended to generate a high-fidelity end-to-end BDA model, 

seeking improvement in areas such as data fusion, decision accuracy, and processing 

techniques. However, only the base-level task of modeling the current BDA architecture 

was completed. Further, the AFRL effort looks for general solutions and improvements 

in BDA information architecture, rather than the specific decision model and support 

application sought in this effort. 



2.1.4 Overview of Methodology. 

The goal of this research effort is to prove the viability and utility of a Bayesian 

belief network model as an aid to the targeteer making BDA decisions. This is done by 

researching the BDA decision process and constructing a Bayesian belief network to 

model the decision of interest. The Bayesian belief network methodology involves 

identifying and modeling the various factors important in the targeteer's decision, and 

determining the range of values for these factors and the probabilities of these values 

occurring. Secondly, we demonstrate a significant strength of the Bayesian belief 

network model—its ability to combine an elicited expert knowledge base with data to 

improve its ability to model the real world. We illustrate this capacity through a 

constructed, representative (albeit notional) scenario and demonstrate the increased 

accuracy of the model after incorporating the data generated. The scenario consists of an 

air strike operation common enough to represent a typical BDA problem, yet complex 

enough to yield a variety of results and damage levels. 

The BDA process is both large and complex. As a proof of concept, we focus 

primarily on the initial, or Phase I, BDA decision. This decision consists of the physical 

damage assessment, defined as "the quantitative extent of physical damage (through 

munition blast, fragmentation, and/or fire damage effects) to a target resulting from the 

application of military force" (DIA, 1996). Additionally, we limit the scope of the model 

to include only a portion of the many types of potential targets U.S. forces may face. 

Although limited, this model is sufficient to demonstrate the validity of the concept. We 

recognize that any final product based on these methods must incorporate a larger pool of 

expert knowledge and apply to more realistic, complex scenarios. 



2.2 BDA Decision Model 

2.2.1 Background. 

The targeting cycle is an iterative process consisting of six phases: Objectives and 

Guidance, Target Development, Weaponeering, Force Application, Execution Planning / 

Force Execution, and Combat Assessment (see Figure 1). During the Objectives and 

Guidance phase, commanders determine attack goals and under what conditions to act. 

These objectives and rules must be understandable, achievable, and measurable in order 

to facilitate assessment at the end of the cycle. 

The Target Development phase involves the examination of enemy military, 

political, or economic systems to identify critical targets and aimpoints. During Target 

Development, targeteers assess the level of physical and functional damage necessary to 

achieve the specified command objectives. This provides the targeteer with crucial 

information necessary to assess damage, such as target construction or functional layout. 

The Weaponeering phase matches weapon characteristics to target vulnerabilities, 

taking into account secondary objectives such as minimizing collateral damage. The 

Weaponeering goal is to select the optimal weapon and delivery platform to achieve the 

necessary level of damage. This information is also crucial to BDA, allowing the 

targeteer to anticipate weapons effects and target response. 



Figure 1. The Targeting Cycle (DIA, 1996) 

Force Application matches available weapons and delivery platforms to the 

selected target aimpoints. This phase considers the realities of the operational world, 

such as the availability or delivery accuracy of specific weapons or platforms. 

The Execution Planning and Force Execution phase generates mission-specific 

operational data. Targeteers finalize the specific numbers and types of weapons and 

delivery platforms, as well as time on target (TOT). This information helps targeteers 

plan for intelligence collection and future BDA following mission execution. Following 

the completion of the Execution Planning phase, the targeteer has a complete list of all 



the targets in the strike, the aircraft performing the strike, and the weapons on the aircraft 

to execute the strike. 

The final phase of the targeting cycle is Combat Assessment (CA) which closes 

the loop and allows commanders to prepare for the next iteration of the cycle. As the 

BDA Quick Guide states, "The goal of CA is to determine the overall effectiveness of 

force employment during military operations and to recommend future courses of 

actions" (DIA, 1996). 

Combat Assessment really consists of three interrelated processes: BDA, 

Munitions Effectiveness Assessment (MEA), and Reattack Recommendation. MEA 

evaluates the effectiveness of weapon systems and identifies possible deficiencies in 

weapon system performance or combat tactics. This information is useful in future 

weaponeering. By evaluating whether the weapons used performed as expected and were 

appropriate for the situation, targeteers can make a more informed choice of weapons and 

tactics. BDA, on the other hand, determines the effectiveness against the objective— 

whether the mission achieved its goal. Reattack Recommendation, using both BDA and 

MEA, makes a determination of what should be done next with respect to specific targets. 

The commander receives recommendations from the targeteers on reattack options, new 

targets to attack, or the use of different munitions or tactics. 

The BDA process is composed of three distinct phases. Our focus here, Initial 

BDA or Phase I BDA, is an initial analysis and estimate of damage based primarily on 

visual observation of the target. Information usually comes from a few sources, such as 

aircrew mission reports (MISREPs), still imagery, or weapon system video. Phase II, 

Supplemental BDA, amplifies the initial analysis and evaluates functional damage to a 

10 



target to estimate strike impact on the target system. Phase II sources include signals 

intelligence (SIGINT), imagery intelligence (MINT), and measurement and signature 

intelligence (MASINT). Finally, Phase III BDA uses all supplemental BDA and the 

experience of subject matter experts to assess the remaining capacity of the overall target 

system. In this phase, "The bottom-line question is 'How successful have our efforts 

been to degrade or deprive the enemy's warfighting capabilities?'" (DAF, 1996). After 

resolving this question, targeteers provide a reattack recommendation to the commander. 

The Phase I BDA is a complex, demanding problem. The targeteer must weigh 

numerous sources of information and make a quick, accurate decision. The decision is 

literally a matter of life and death, since the targeteer's assessment can influence the 

targets assigned for the next round of strikes. Since assessment of battle damage is a 

favorite media topic during any military strike operation, the targeteer's assessment could 

potentially appear on broadcasts around the world. Moreover, the targeteer at a busy Air 

Operations Center can potentially make dozens of these assessments during a single shift. 

In assessing battle damage, the targeteer combines prior expert knowledge, 

database information, and new information (i.e., intelligence) to arrive at a decision. The 

targeteer has some information available even before the first aircraft in the strike 

package takes off. For example, the targeteer knows the weapons and aircraft involved in 

the strike. In addition, the targeteer has a thorough knowledge of the different weapons 

and platforms and their strengths and weaknesses against various types of targets. 

Further, the targeteer is familiar with the targets in the strike and how heavy target area 

defenses are. All this information drives the targeteer to form a basic assessment of the 

chance of success of each aircraft/weapon combination against its assigned target. 

11 



During and after the strike, the targeteer receives more information. Pilots provide in- 

flight reports (INFLTREPs) as to whether they were able to engage and successfully hit 

the target. After returning to their bases, aircrews provide mission reports (MISREPs) 

with their assessment of the damage to the target. Some weapon systems provide 

videotape of the approach to the target. Analysis of such weapon system video can be 

very valuable to the BDA targeteer. Unfortunately, not all weapon systems provide such 

information. For example, the Tomahawk Land Attack Missile (TLAM), which has seen 

increasing use since Desert Storm, is unmanned, with no video capability, providing the 

targeteers less evidence on which to base their conclusions. 

In Phase I BDA, the targeteer must combine expert knowledge with the available 

evidence to estimate a level of damage inflicted on the target. In general, damage is 

assessed as one of five levels: No Damage, Light, Moderate, Severe, or Destroyed, 

although other damage levels are employed for certain target types such as railroads or 

runways (DIA, 1996). Each of the five damage levels is clearly defined for each target 

type. For example: 

Satellite Dishes: 
NO DAMAGE: No apparent/observable damage. 
LIGHT DAMAGE: A few reflective panels blown off. 
MODERATE DAMAGE: Less than 25 percent of dish reflective panels 
blown off plus damage to dish support structure and/or damage to 
feedhorn. 
SEVERE DAMAGE: 25 to 60 percent of reflective panels blown off plus 
some deformation of the dish and/or the dish's structural components. 
Antenna pointing changed. 
DESTROYED: Feedhorn is destroyed, and/or greater than 60 percent of 
reflective panels blown off, and/or extensive structural deformation of the 
dish, and/or dish knocked off its base. (DIA, 1996) 

12 



The targeteer makes an assessment of the likely damage inflicted, and can then compare 

the assessed damage level to the objective level defined in the Target Development 

phase. If the assessed damage level does not meet the objective, the targeteer then 

considers making a recommendation to restrike the target. 

2.2.2 Targeteers' Description of the Phase IBDA Decision. 

Elicitation sessions with targeteers from the 608th and 609th Air Intelligence 

Squadrons provided insight into the Phase I BDA decision. While discussing the BDA 

problem, some of the published guidelines regarding BDA were found somewhat 

flexible, and other unwritten rules or policies came to the forefront. These elicitation 

sessions yielded the structure of the decision model, which sources of information to 

include in the model, and the way in which these sources interact. 

In making the physical damage assessment, targeteers rely on very few sources of 

information. This is due in large part to the extreme importance of time in the targeting 

cycle. Targeteers feel they do not have sufficient time to wait for multiple sources of 

information on which to base damage assessments. Further, targeteers view still imagery 

as the most important source, to the extent of treating still imagery analysis as perfect 

information (Curry, 1999; Killefer, 1999; Zwenger, 1999). Such still imagery may come 

from satellites or tactical reconnaissance aircraft. In any case, still imagery analysis 

requires several hours to obtain. 

This time lag presents an opportunity for targeteers to employ other information 

available to them to make a predictive assessment, which can then be compared against 

the "perfect" information provided through imagery analysis. Improving predictive, pre- 

13 



imagery assessments is the goal of this research, and could provide several benefits. 

Targeteers can save a significant amount of time if they can make an accurate assessment 

of physical damage without waiting for imagery. Further, the ability to assess damage 

without imagery facilitates more efficient use of imagery resources. If a targeteer does 

not require an image to assess damage, that imagery asset can be assigned to targets that 

are more difficult to assess. 

To make a predictive, pre-imagery assessment, targeteers must rely on the other 

information available. This information falls into two categories: information available 

before the strike and information available just after the strike. Before the strike occurs, 

targeteers already know much about the strike package, including what weapons and 

platforms are included. The targets are carefully identified and developed during the 

early stages of the targeting cycle. Further, during the weaponeering phase, planners 

consider the target, objective damage level, and available resources, and select the 

weapon platform, weapon system, and tactics to employ the weapon. This is done using 

the Joint Munitions Effectiveness Manual (JMEM) Air-to-Surface Weaponeering 

Software, or JAWS. JAWS allows strike planners to adjust different parameters to 

achieve a desired probability of damage, or PD. The JAWS PD, expressed as a number 

between zero and one, provides the targeteer with a rough proxy measure of how a strike 

is likely to damage a particular target. Against softer targets, a PD of 0.3 may be enough 

to result in moderate damage, while hardened targets are usually weaponeered to a much 

higher PD, such as 0.6 to 0.7. The targeteer combines the JAWS PD with prior 

knowledge about the target to form a rough assessment of the most likely damage level. 

14 



Another information source available to the targeteers before the strike is the 

weather forecast. With the advent of high technology and precision guided munitions, 

weather can significantly affect strike performance. Advanced technology allows the 

aircraft to fly through bad weather to reach the target, but the high cost of a laser-guided 

bomb may preclude its use if the target is obscured by clouds (Zwenger, 1999). Weather 

is also a factor in the use of unguided or "dumb" bombs, but to a lesser extent. The only 

weapons not affected by weather are those guided by the Global Positioning System, or 

GPS. Such weapons, including Tomahawk missiles and the Joint Direct Attack Munition 

(JDAM), rely on satellite transmissions to guide them to specific coordinates on the 

earth's surface, and so are relatively impervious to weather (Zwenger, 1999; Clancy, 

1995). The targeteers can combine knowledge of the guidance systems the strike 

package will employ with the weather forecast for the target area to adjust their pre-strike 

damage assessment level. 

Once the strike occurs, the targeteer can obtain additional information prior to 

receiving still imagery analysis. For certain weapons platforms, the targeteer can access 

the aircrew's MISREP. This report is filed within thirty minutes of the aircraft's return to 

base following the strike (Killefer, 1999). Similarly, certain weapons or platforms 

include the capacity to videotape the strike from weapon release to impact. Such 

videotape can be a valuable tool for BDA (Smith, 1993). Although targeteers consider 

weapon system videotape a less reliable information source for BDA than still imagery, 

such tapes are available for analysis immediately upon the aircraft's return to base 

(Killefer, 1999). While awaiting still imagery, the targeteers use this post-strike 

information to update their assessment of the damage inflicted on the target. 
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2.2.3 Influence Diagram ofBDA Decision. 

Influence diagrams provide a simple, graphical representation of a decision 

(Clemen, 1995). Influence diagrams are especially useful for representing decisions 

made under uncertainty. In an influence diagram, rectangles represent decisions and 

ovals represent chance events. A rounded rectangle represents a mathematical 

computation or constant value. In an influence diagram, these three symbols are nodes. 

Arrows, or arcs, are used to join the different nodes, and can signify either sequence or 

relevance. Arcs leading to chance nodes or computation nodes show relevance. The 

predecessor, or source of the arc, influences the outcome of the chance or value node. 

For example, an arc from a decision node to a chance node means the outcome of the 

chance node depends on the course chosen in the decision node. On the other hand, arcs 

leading into a decision node indicate only sequence. An arc from a chance node into a 

decision node implies only that the state of the chance node is known at the time the 

decision is made. The influence diagram may reflect the sequence of events reading from 

the left of the diagram to the right. Nodes resolved early in the timeline appear on the left 

of the diagram. Although the format of influence diagrams is simple, they are a powerful 

decision-modeling tool. 

Figure 2 is an influence diagram model of the Phase IBDA decision process 

incorporating information elicited from the subject matter experts, the targeteers. 

Imagery, available at the end of Phase I, is "perfect" information. The various sources of 

information previously discussed appear in the influence diagram as chance or decision 

nodes as appropriate. The final outcome of the targeteer's assessment is the accuracy, 

meaning the difference between the targeteer's assessment of the damage level and the 
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actual damage level reflected in the imagery. Because the damage is assessed at one of 

five levels, the maximum possible error is a four-level difference. Additionally, the 

targeteer's assessment is either cautious or aggressive. For example, if the targeteer 

made a pre-imagery assessment of Light Damage and subsequent imagery showed the 

damage to be Severe, the targeteer's initial assessment is cautious by two levels. On the 

other hand, a pre-imagery assessment of Moderate Damage is aggressive by one level if 

subsequent imagery suggests Light Damage. By incorporating the accuracy of the 

targeteer's assessment into the model, we can use the influence diagram to produce a 

decision policy guideline. 

The targeteer makes a pre-strike assessment based on knowledge of the strike 

package, the weaponeering, and the weather forecast. As Figure 2 depicts, the true state 

of weather over the target, and the extent of the weather's effects, are resolved after the 

targeteer's initial assessment. Weapons guided by GPS are influenced by the number of 

satellites in view over the target and by any enemy jamming capability, neither of which 

the targeteer can predict. Consequently, these nodes influence the actual damage 

inflicted on the target, but not the targeteer's assessment. Imagery is affected by the 

actual target damage. Since imagery is treated as perfect information, the targeteer can 

calculate the accuracy of the pre-strike assessment by comparing it against the imagery 

report. 

The post-strike assessment, depicted in Figure 3, is virtually identical to the pre- 

strike assessment, but incorporates the additional information available to the targeteer, 

specifically the aircrew's MISREP and the weapon system videotape. With these 
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additional pieces of information, the targeteer forms a post-strike assessment, which is 

also compared to imagery received later to determine accuracy. 

Figure 2. Phase IBDA Influence Diagram (Pre-Strike) 

Accuracy 

Imagery 

2.2.4 Bayesian Belief Network Model of BDA Decision. 

Bayesian belief networks are an increasingly popular tool for decision modeling. 

Recent advances in theory and computer capability have reduced many obstacles to the 

use of Bayesian belief networks, also known as belief networks or Bayesian nets (Jensen, 

1996). A Bayesian belief network is an efficient way to encode the joint probability 

distribution for a set of variables using an easily understood graphical format 

(Heckerman, 1995). Although Bayesian belief networks resemble influence diagrams in 

appearance, they do not convey the same information. 
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Post-Strike 
Assessment 

Accuracy 
I            ) 

Target 

Weapon 

Figure 3. Phase IBDA Influence Diagram (Post-Strike) 

Bayesian networks encode the joint probability distribution for a set of variables 

in a graphical format. Each variable in the decision of interest is represented as a node, 

as in an influence diagram, and arcs depicting dependencies connect nodes. Each node 

consists of a finite number of mutually exclusive and collectively exhaustive states and 

fully contains the conditional probability distributions for each of those states (Jensen, 

1996). Thus, nodes with dependence arcs leading into them will reflect the conditional 

distribution of that variable. The overall network, including all nodes and conditional 

distributions, therefore encodes the joint probability distribution for all the variables in 

the problem of interest. 

The keys to understanding Bayesian networks are the concepts of conditional 

probability distributions and probability calculus. Most people intuitively understand the 

way one event can affect the probable outcome of another event. Mathematically, this is 
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referred to as the conditional probability. If the outcome of event B is influenced by 

Event A, then we speak of the probability of B given A, denoted p(5IA). Probability 

calculus employs two key axioms to help calculate conditional probabilities. The first is 

the definition of conditional probability: p(AI5) = p(A and B) x p(B). When A and B are 

mutually exclusive, p(A and fi) = p(A) + p(J5). This leads directly to Bayes' Rule: 

p(SIA) = p(Alß) p(A) / p(5), which allows us to reverse the conditional probability. 

These conditional probability calculations are simple in theory, but can quickly grow to 

be intractable in even moderately complex problems (Jensen, 1996). The Bayesian belief 

network provides a compact method to encode the different variables in a problem of 

interest, as well as dependencies between variables and the inherent conditional 

probabilities. 

The characteristic that makes Bayesian networks such a powerful tool is the 

capability to perform inference given evidence. In other words, Bayesian networks 

provide the capacity to update the probability of any node of interest when specific 

knowledge is available as to the state of a particular variable. This enables the user to 

enter evidence into the network and query the network for the probability distribution of 

any of the nodes in the network. Inferences are performed through repeated applications 

of Bayes' Rule. Thus, by taking some initial amount of evidence in conjunction with the 

previously assessed, or prior, conditional distributions, the user can obtain a posterior 

probability distribution for the variable of interest. This posterior distribution can be used 

to make probability statements as credibility intervals, as a point estimate, or to predict 

future data (Ramoni and Sebastiani, 1998b). 
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Figures 4 and 5 are the pre-strike and post-strike Bayesian belief networks, 

respectively, corresponding to the influence diagrams of Figures 2 and 3. We consider 

the pre-strike model and the post-strike model separately to focus on improving the 

accuracy of each assessment once perfect information becomes available. 

Both Bayesian network models closely resemble their influence diagram 

counterparts, but the differences merit discussion. Some nodes of the influence diagram 

are collapsed into nodes in the Bayesian belief network model without affecting the 

accuracy of the model. The Weapon and Target decision nodes'are collapsed into the 

JAWS PD node because the JMEM Air-to-Surface model takes the weapon, target type, 

and weapon guidance into account. We also remove the influence from the Guidance 

node to the JAWS PD node. 
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For a useful Bayesian belief network, we must clearly define each node and 

determine all its possible states (Heckerman and Wellman, 1995). Additionally, each 

node requires a conditional probability distribution for each possible state. This initial 

model is based largely on the expert knowledge of U.S. Air Force targeteers. Elicitation 

of this information was conducted using standard multi-objective decision analysis 

(MODA) techniques, as outlined in Clemen (1995). We elicited the factors most 

important to the targeteers in making damage assessments, as well as the factors' possible 

states. For the probability distributions, the reference lottery technique (Clemen, 1995) 

was used to determine the expert's subjective assessment of different probabilities with 

two notable exceptions as described below. Tables 1 and 2 show the different nodes and 

possible states in the pre-strike and post-strike Bayesian network models, respectively. 

Appendix A contains the complete conditional probability distribution information for 

both models. 

Table 1. Nodes and Possible States (Pre-Strike Network) 

Node Name Possible States 
Weather Forecast Socked In Clouds Clear 

JAWS PD Light Moderate Severe 
Guidance GPS Laser Unguided 

Pre-Strike Assessment Light Moderate Severe 
True Weather Socked In Cloudy Clear 

Wx Effect No Effect Clear Mixed Obscured 
GPS Accuracy No Effect Poor Nominal Good 
GPS Jamming No Effect Yes No 
True Damage No Damage Light Moderate Severe      Destroyed 
Pre-Strike Ace Cautious Three Cautious_Two Cautious One Exact     Aggress_One Aggress_Two Aggress_Three 
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Table 2. Nodes and Possible States (Post-Strike Network) 

Node Name Possible States 

Weather Forecast Socked In Clouds Clear 

JAWS PD Light Moderate Severe 

Guidance GPS Laser Unquided 
Pre-Strike Assessment Liqht Moderate Severe 

True Weather Socked tn Cloudy Clear 

Wx Effect No Effect Clear Mixed Obscured 

GPS Accuracy No Effect Poor Nominal Good 

GPS Jamminq No Effect Yes No 
True Damaqe No Damaqe Liqht Moderate Severe Destroyed 

MISREP No Damaqe Liqht Moderate Severe Destroyed 

Weapon System Video No Damaqe Liqht Moderate Severe Destroyed 

Post-Strike Assessment No Damaqe Liqht Moderate Severe Destroyed 

Post-Strike Ace Cautious_Four Cautious Three Cautious_Two Cautious One Exact Aqqress One Aqqress_Two Aqqress_Three Aqqress_Four 

The first exception was determining the conditional probabilities to assign to 

damage assessments. In the pre-strike model, two nodes influence the pre-strike damage 

assessment—the JAWS PD and the weather forecast. Elicitation revealed the targeteers 

view the JAWS PD as falling into one of three categories: Light, Moderate, or Severe 

Damage. In other words, although the JAWS software application provides a numerical 

PD between zero and one, the targeteers treat this as a proxy measure and mentally 

translate this number into a likely damage level given the target type. Similarly, although 

the weather (and by extension, the weather forecast) can take on a wide range of potential 

values, targeteers view weather forecasts as falling into one of three levels: Clear, 

Cloudy, and Socked In. Finally, although there are five potential damage levels, 

targeteers will not make pre-strike assessments of No Damage or Destroyed. This limits 

the range of possible damage levels for the Pre-Strike Assessment node to Light, 

Moderate, and Severe Damage. Combine these three states with the three states possible 

in each of the two influencing nodes and the Pre-Strike Assessment node requires 27 

conditional probabilities. 
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As depicted in Figure 5, the Post-Strike Assessment node is influenced by the Pre- 

Strike Assessment node along with the MISREP and Weapon System Video nodes. 

While the Pre-Strike Assessment node has three possible states, the other three nodes 

contain all five damage levels. Therefore, the Post-Strike Assessment node encodes 375 

conditional probabilities. 

Eliciting the information for the Pre-Strike and Post-Strike Assessment nodes, 

while feasible, was not practical due to real-world circumstances. Consequently, we 

developed an alternative method to approximate these initial conditional probabilities. 

These approximations, while not perfect, make sense given the information elicited from 

the experts. 

2.2.5 Derivation of Initial Conditional Distributions. 

Through elicitation sessions, we determined the targeteers' views on the 

implications of their assessments. As stated earlier, the targeteers greatly prefer to err on 

the side of caution. They would rather underestimate than overestimate the damage 

expectancy. This stems from a desire to avoid aircrew losses from threats assessed as 

knocked out. The targeteers felt that overestimating the damage to a target is twice as 

bad as underestimating damage. Further, they felt that the penalty for incorrect 

assessments grows quadratically as the error increases. In other words, the penalty for 

incorrect assessments should grow as the square of the error. This penalty function 

implies an assessment that is off by two damage levels receives four times the penalty of 

an assessment that is off by one. These two factors yield a penalty function for incorrect 

assessments which depends on whether the assessment is cautious or aggressive: 
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\2-{A-lf   if(A-I) > 0 
Penalty(A,I) = { ' (1) 

[(A-I)        otherwise 

where A is the assessed damage level on a scale from 1 to 5 and I is the damage level 

indicated by imagery. The penalty function reflects the higher penalty for aggressive 

assessments. Exact assessments receive a penalty of zero. 

Using decision analysis software to enumerate all potential outcomes, we 

obtained an expected penalty score for each possible assessment in all possible situations. 

For any given situation, the damage level with the lowest expected penalty score is the 

assessment the targeteer is most likely to make. We assume an indirect relationship 

between probability and penalty score to derive an initial estimate of the conditional 

probability distribution. 

As an example, consider a notional case in which the expected penalty scores for 

the five possible damage levels are 20, 6,2, 18, and 54. Calculating the ratio of each 

penalty score to the minimum score, we get ratios of 10, 3,1,9, and 27. Because the 

lowest expected penalty option is the most attractive and likely choice, it should have the 

highest probability. The ratio scores are re-scaled so larger is better, yielding 5, 50/3, 50, 

50/9, and 50/27, and normalized, yielding pseudo-probabilities (or proxy measures) of 

0.063, 0.211, 0.632, 0.070, and 0.023, respectively. Table 3 illustrates this process. 

By calculating and presenting the pseudo-probabilities in this format, we 

accomplish several goals. First, we avoid making the blanket statement that in a given 

situation, a targeteer will always assess a certain damage level. Second, and more 

importantly, presenting the data in this fashion conveys a sense of relative preference 

among the potential damage assessment levels. If the probability mass function for the 
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conditional probabilities reflects a large portion of the probability assigned to one damage 

level, this conveys that the decision is relatively clear-cut. The targeteer can choose the 

damage level with the highest pseudo-probability and feel confident that it is the correct 

assessment. However, if two or more damage levels have approximately equal 

likelihoods of assessment, this indicates a more difficult decision situation. Such a 

situation usually occurs in cases where there are conflicting pieces of evidence. In this 

situation, a targeteer may wish to seek further information before making an assessment, 

or assess a range of values rather than a specific damage level. Tables 4 and 5 show the 

conditional pseudo-probability distributions for the Pre-Strike Assessment and Post- 

Strike Assessment nodes, respectively. 

Table 3. Conversion of Penalty Scores to Pseudo-Probabilities 

Assessment 
Option 

Penalty 
Score (Score 

Ratio 
/ Min Score) Sum / Ratio 

Pseudo- 
Probability 

No Damage 
Light Damage 
Moderate Dmg 
Severe Damage 
Destroyed 

20 
6 
2 
18 
54 

10 
3 
1 
9 

27 

50/10 = 5.00 
50/3 =16.67 
50/1 =50.00 
50/9  = 5.56 
50/27= 1.85 

5/79.08 = 0.063 
16.67/79.08 = 0.211 

50/79.08 = 0.632 
5.56/79.08 = 0.070 
1.85/79.08 = 0.023 

Sum — 50 79.08 1 

Because the above calculations are based on a penalty function that may vary 

from one targeteer to the next, the resulting pseudo-probability distributions are not 

unique—another reason we have described them as likelihood indicators or pseudo- 

probabilities. However, we can insert these pseudo-probabilities into the Bayesian belief 

network model as an initial guess. By gathering data, and using that data to update the 
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conditional probability distributions, we get convergence to accurate conditional 

distributions. When sufficient data is available, the pseudo-probabilities will converge to 

the true probabilities and the two distributions will be identical. Until sufficient data is 

available, the likelihood indicators serve as a proxy measure used by the targeteer to help 

assess a particular damage level. 

Table 4. Pre-Strike Assessment Conditional Distributions Before Data Learning 

JAWS PD Weather 
Forecast 

Pseudo-Probability of Assessed Damage Level 
Category Light                Moderate Severe 

Light 
Socked In 

Cloudy 
Clear 

0.773                    0.165 
0.773                    0.169 
0.752                     0.187 

0.062 
0.058 
0.061 

Moderate 
Socked In 

Cloudy 
Clear 

0.678                     0.231 
0.528                     0.349 
0.384                     0.467 

0.091 
0.124 
0.149 

Severe 
Socked In 

Cloudy 
Clear 

0.531                     0.321 
0.341                     0.418 
0.228                     0.436 

0.149 
0.241 
0.336 
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Table 5a. Post-Strike Assessment Conditional Distributions Before Data Learning, Light 
Pre-Strike Assessment 

Pseudo-Probability of Assessed Damage Level 
PreStrike         Video           MISREP No Damage     Light     Moderate    Severe    Destroyed 

Light No Damage 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Light Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.097 0.843 0.043 0.012 0.005 
0.068 0.886 0.033 0.009 0.004 
0.052 0.912 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

Light Moderate 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.079 0.326 0.494 0.076 0.025 
0.032 0.126 0.775 0.052 0.015 
0.013 0.052 0.902 0.026 0.007 

Light Severe 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.099 0.424 0.381 0.070 0.025 
0.033 0.076 0.294 0.516 0.081 
0.015 0.033 0.114 0.775 0.063 

Light Destroyed 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.013 0.052 0.902 0.026 0.007 
0.033 0.073 0.252 0.544 0.098 
0.023 0.044 0.107 0.449 0.376 
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Table 5b. Post-Strike Assessment Conditional Distributions Before Data Learning, 
Moderate Pre-Strike Assessment 

Pseudo-Probability of Assessed Damage Level 
PreStrike         Video           MISREP No Damage       Light       Moderate     Severe     Destroyed 

Moderate No Damage 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Moderate Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.117 0.814 0.050 0.014 0.006 
0.076 0.874 0.036 0.009 0.004 
0.053 0.911 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

Moderate Moderate 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.032 0.124 0.778 0.052 0.014 
0.017 0.066 0.877 0.032 0.008 
0.013 0.052 0.902 0.026 0.007 

Moderate Severe 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.043 0.169 0.708 0.063 0.018 
0.029 0.067 0.262 0.565 0.077 
0.018 0.039 0.128 0.723 0.092 

Moderate Destroyed 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.014 0.052 0.901 0.026 0.007 
0.034 0.070 0.206 0.553 0.137 
0.016 0.029 0.067 0.274 0.614 
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Table 5c. Post-Strike Assessment Conditional Distributions Before Data Learning, 
Severe Pre-Strike Assessment 

Pseudo-Probability of Assessed Damage Level 
PreStrike         Video           MISREP No Damage      Light       Moderate     Severe     Destroyed 

Severe No Damage 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.002 0.001 0.001 
0.986 0.010 0.003 0.001 .0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Severe Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 •  0.001 
0.214 0.683 0.071 0.021 0.010 
0.118 0.811 0.050 0.014 0.006 
0.053 0.911 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

Severe Moderate 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.032 0.124 0.778 0.052 0.014 
0.017 0.066 0.877 0.032 0.008 
0.013 0.052 0.902 0.026 0.007 

Severe Severe 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 
0.043 0.169 0.708 0.063 0.018 
0.013 0.029 0.111 0.793 0.054 
0.020 0.041 0.119 0.681 0.140 

Severe Destroyed 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.013 0.052 0.902 0.026 0.007 
0.025 0.048 0.125 0.551 0.251 
0.009 0.017 0.039 0.157 0.778 

2.3 Distribution Learning Capability 

One of the most powerful capabilities inherent in a Bayesian belief network is its 

capability to evolve probability distributions and even network structure through data 

(Heckerman, 1995; Ramoni and Sebastiani, 1998b). After assuming a particular 

distribution for the prior probabilities, incorporation of data facilitates updating of the 

distribution parameters resulting in different probabilities for each of the possible states 

of a node. We describe a notional airstrike scenario used to generate realistic data. The 
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scenario data is then employed through the data learning capability to support the elicited 

expert knowledge, and improve the accuracy of the Phase IBDA model. 

2.3.1 Background on Distribution Learning. 

Bayesian belief networks are powerful modeling tools not only for their ability to 

provide inference based on available evidence, but also for their inherent ability to learn 

from data. Once we have constructed a Bayesian model of a given problem, we can use 

data about the problem to improve the accuracy of the conditional probability 

distributions within the model. This allows the initial model, with conditional 

probabilities based on subjective opinion, to adapt and learn from data gained through 

repeated trials. In this way, we can model the human approach to probabilistic thinking. 

As an example, consider the case of a coin toss where we wish the outcome to be heads. 

Initially, we may assume the coin is fair and assign the subjective probability of heads to 

be 0.5. However, if we then conduct 20 trials in which every toss comes up tails, we will 

likely update our probability based on what we have learned through these trials. In a 

similar manner, we can use data gained through repeated trials to update the conditional 

probability distributions in a Bayesian belief network. To relate to the BDA problem, we 

want to incorporate target intelligence into the process to improve the targeteers' 

assessment accuracy. 

To understand the data learning capability, we must examine the nature of the 

Bayesian network more closely. The conditional probability we wish to update is the 

probability of an outcome occurring given prior information and the available data. The 

true probability of the outcome is uncertain. However, we can choose a probability 
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distribution for the possible values of the true probability, and use the data to update the 

parameters of that distribution. We continue with the coin-tossing example suggested by 

Heckerman (Heckerman, 1995). 

We have assigned an initial probability distribution, known as the prior 

distribution, for the possible states. In other words, we have assessed that each possible 

state i occurs with probability p(*,) where i = 1 to r and r possible states exist. In the 

coin-toss example, only two states are possible, heads and tails, and the probability of 

tails is simply (l-p(heads)). We have subjectively determined a prior distribution for the 

probability of heads and, by extension, tails, based on our knowledge of the situation. 

However, this assigned prior distribution may be different from the true probability 

distribution, and the data reflects that true probability distribution. What we seek to do is 

update the prior distribution so that the various probabilities p(x,) more closely model the 

probabilities exhibited in the data. 

We begin by choosing a known distribution for the initial probabilities. The 

binomial nature of the coin toss leads us to select the beta distribution in our example. 

By choosing a beta distribution to model the prior, we ensure that the posterior 

distribution is also a beta distribution. This is because the beta distribution is a conjugate 

family of distributions for binomial sampling, such as we have in this case (Heckerman, 

1995). Thus, the number of heads and tails in the data translate to the two parameters of 

the beta distribution. In cases with more than two possible states, data are sampled from 

a multinomial distribution, and so other distributions may be more appropriate 

(Heckerman, 1995). However, this example serves to illustrate the working of the 

distribution learning mechanism. For more detailed discussions of distribution learning, 
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the reader is referred to Heckerman (Heckerman, 1995) or Ramoni and Sebastiani 

(Ramoni and Sebastiani, 1998b). 

The shape of the beta distribution depends on two parameters and we choose the 

values of these parameters in order to match our prior distribution and confidence in our 

knowledge. Then, applying Bayes' rule and using the data available, we can update the 

parameters of the beta distribution to form the new, or posterior, distribution. The 

posterior distribution is still a beta distribution, but a different beta distribution. The 

probability of each possible state p(x,) can then be determined using the posterior 

distribution. 

For the coin-tossing example, we initially assume the coin is fair and assign a 

probability of 0.5 to heads. However, since we do not have a great deal of knowledge 

about the coin, we equate this prior knowledge with only six trials, a relatively small 

number. We adjust the parameters of the beta distribution so that the first parameter 

reflects the imagined number of trials yielding heads, and the second parameter reflects 

the number of imagined trials yielding tails (Heckerman, 1995). This results in a 

beta (3,3) distribution, shown in Figure 6, for the possible true probability of heads. 

Clearly, the expected value of the probability of heads is 0.5, which accurately reflects 

our belief that the coin is fair. However, this distribution exhibits a wide variance, 

reflecting our relative uncertainty about the possible true probability of heads. 
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dbeta(x,3,3)     5 ~ 

Figure 6. Prior Distribution—Beta (3,3) 

Now we conduct the trials and obtain the data to update the probability 

distribution. As outlined in Heckerman (1995), the parameters of the updated probability 

distribution will simply be the imagined number of heads (or tails) plus the number seen 

in the trials. Therefore, if we conduct twenty trials and obtain only five heads, the 

posterior distribution becomes beta (8,18), as shown in Figure 7. This distribution 

exhibits smaller variance, because we now have data in addition to our prior knowledge, 

and also reflects the decreasing likelihood that the coin is fair. This is shown by the 

expected value of the distribution, which serves as our best estimate of the true 

probability of heads and is plainly less than 0.5 (Heckerman, 1995). 
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Figure 7. Posterior Distribution—Beta (8,18) 

Suppose we received no heads at all in twenty trials, as hypothesized. The 

posterior distribution in this case would be beta (3,23), shown in Figure 8. This extreme 

example would lead to a significant drop in our estimate of the probability of heads. 

Additionally, the large proportion of trials yielding the same outcome greatly decreases 

the variance, of the posterior distribution. 

As a final illustration, let us now suppose the coin truly is fair, and in twenty trials 

we observe ten heads and ten tails. In this case the posterior distribution is beta (13,13), 

shown in Figure 9. The expected value of this distribution, our posterior probability of 

heads, is 0.5, exactly what we started with. However, the variance of the posterior 

distribution is significantly smaller than that of the prior distribution. Clearly, the 

observed data has reduced the uncertainty in our estimate of the true probability of heads, 

although the estimate itself has not changed. 
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Figure 8. Posterior Distribution—Beta (3,23) 

10 

dbeta(x,13,13)     5 

Figure 9. Posterior Distribution—Beta (13,13) 

This simple example illustrates how Bayesian networks can update conditional 

distributions based on data. While we have used the beta distribution in this example, 

other distributions can be used to implement data learning and may be more appropriate 

for multinomial sampling (Heckerman, 1995). We use this updating capability to 

combine data with elicited expert knowledge to increase model accuracy. 
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2.3.2 BDA Scenario and Data. 

To illustrate the distribution learning capability of the decision tool, we 

demonstrate its use with a notional attack scenario that is both realistic and representative 

of the type of BDA decisions targeteers routinely face. This scenario is not as complex 

as real-world situations but sufficient for demonstration purposes. 

The scenario developed is a U.S. raid on an enemy airfield and was selected for 

several reasons. Airfields are a common target. Because airfields are large, complex 

systems, they offer a large variety of targets and target types. Atypical airfield can 

contain as many as one hundred separate point targets, referred to as Desired Mean Points 

of Impact or DMPIs (Killefer, 1999). Airfield targets include both point targets, such as 

buildings, and area targets, such as runways or parking aprons. Further, airfields are 

usually very high priority targets in any air campaign. One of the initial goals of any air 

campaign is to gain and maintain air superiority and knocking out enemy airfields is 

essential to achieving that goal. Targeteers are routinely faced with assessing battle 

damage inflicted on enemy airfields. 

Clancy Field is a notional enemy airfield located in a fictional country, developed 

with the help of several Air Force targeteers (Curry, 1999; Killefer, 1999; Zwenger, 

1999). The targeteers provided information about the target facilities as well as the strike 

packages through a series of elicitation and consultation interviews. During these 

interviews, we sought to develop a notional yet realistic scenario that would provide 

enough sufficiently useful data to evaluate the utility of the Bayesian network model. 

Clancy Field is a small airfield located in an enemy country, used as a backup 

facility for aircraft operations. Figure 10 shows a diagram of Clancy Field's layout, not 
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to scale. The field has two runways, configured in parallel, as well as an aircraft parking 

apron. Precision approach radar beacons and other navigational equipment are located at 

either end of the runways. The field contains several hardened aircraft shelters for 

protecting aircraft while not in operation. The field has a control tower for monitoring 

base flight operations, a two-bay aircraft maintenance hangar, plus aircrew barracks and 

dining facilities and a few other base infrastructure buildings. As a military airfield, 

Clancy Field boasts significant facilities for ammunition and weapons storage and 

loading, as well as facilities for petroleum, oil, and lubricant (POL) storage and pumping. 

A few mobile surface-to-air missile batteries are set up around the airfield for protection 

and they change location periodically to make any attack more difficult. In addition, a 

hardened shelter exists near the control tower to keep essential personnel safe in case of 

an enemy attack. Finally, the enemy country has built a hardened underground command 

post deep under the airfield to maintain command and control even in the event of an 

attack on the airfield. This command bunker is considered a very hard target, constructed 

of many layers of concrete and buried deep below the surface. 

2.3.3 Striking the Airfield. 

Striking Clancy Field is a complicated endeavor. The command objectives of 

gaining and maintaining air superiority require doing as much damage to the airfield and 

its associated systems and subsystems as possible. The targeteers have set the existing 

aircraft and runways as their highest priority targets. Next on the priority list are the 

maintenance facility and the aircrew housing. Aircrews have been directed to strike the 

POL or ammunition storage or loading facilities if they feel a weak link exists. For 
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example, if the POL storage tanks are widely distributed, but only a few trucks are 

available to load the fuel into aircraft, those trucks are excellent targets for an air strike. 

The precision navigation aids at the ends of the runways are also useful targets, 

depending on the type of aircraft located at the field and the local climate. If the weather 

is frequently inclement, the navigational aids play a larger role in aircraft operations from 

the airfield. In this case, the navigational equipment does not play an overly significant 

role in sustained air operations. The mobile SAM batteries providing air defense for the 

field are also important targets, as they affect the ability to strike the airfield. 
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Figure 10. Clancy Field Layout 

Targeteers have a variety of options available in planning a strike against an 

airfield. They can choose any of a number of different aircraft, each with a different 

specialty in the combat arena. Additionally, they can choose from an even wider array of 

potential weapons from simple gravity-guided dumb bombs to laser-guided, rocket- 
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assisted munitions. Planners may even choose to employ unmanned weapon systems 

such as the TLAM or Conventional Air-Launched Cruise Missile (CALCM). Finally, 

once they have chosen the appropriate weapons and platforms during the Weaponeering 

phase of the targeting cycle, the planners build the strike package by determining the 

TOTs for each of the different weapons. 

For this particular strike, the planners have selected a variety of weapons and 

platforms. The strike begins with TLAMs launched against the SAM locations protecting 

the airfield. Removing the SAM threat improves subsequent strike aircraft effectiveness. 

The Tomahawks are closely followed by F-16CJ aircraft performing a suppression of 

enemy air defense (SEAD) mission. These aircraft use electronic weaponry to jam the 

SAM sites, and high-speed anti-radiation missiles (HARMs) to destroy any SAM sites 

activating their radar systems. The two weapons should combine to effectively negate 

the threat from SAMs to the other aircraft in the strike. The F-16CJ aircraft carry 

unguided bombs to crater the runways of the airfield once the SAM threat is suppressed. 

The next phase of the strike begins about ten minutes after the TLAMs have 

impacted their targets. F-15E Strike Eagles using laser-guided GBU-24 bombs attack the 

point targets located around the airfield. Six Strike Eagles, configured in two-ship flights 

with one-minute separation, attack the targets. The Strike Eagles' targets include the 

POL and ammunition facilities, the maintenance hangar, the hardened personnel shelter, 

and the precision navigation systems. 

The final phase of the strike involves two B-1B Lancer aircraft using the Joint 

Direct Attack Munition (JDAM) against the hardened aircraft shelters located on the 

airfield. The JDAM is a Mark-84 general purpose bomb coupled with an inertial 
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guidance system and a GPS receiver (Clancy, 1995). The B-lBs fly over the airfield and 

drop the JDAMs through the roof of each aircraft shelter, destroying everything inside 

and eliminating the airfield's capacity for aircraft storage. The B-ls reach the target 

approximately 90 seconds after the last F-15E completes its raid. The entire strike lasts 

less than fifteen minutes. 

Conducting BDA on such a strike is a complicated endeavor, much like the strike 

itself, although the targeteer has numerous pieces of information available before the first 

TLAM is launched. From the Air Tasking Order, or ATO, the targeteer knows the 

location and description of each target. Further, the targeteer knows which weapons 

platforms are assigned to the various targets and what weapons they will employ against 

those targets. Most importantly, the targeteer knows the PD obtained during 

weaponeering from JAWS. As described earlier, this number provides a rough estimate 

of the planned damage level. The final piece of information available in the pre-strike 

time frame is the weather forecast for the target area. For this scenario, the weather is 

forecast as clear. 

After the strike is conducted, some of the aircrews provide mission reports 

(MISREPs) and weapon system video. These additional pieces of evidence factor 

strongly in the targeteer's assessment of the most likely damage level and can also be 

inserted into the Bayesian belief network of the post-strike decision. The data for this 

scenario are shown in Tables 6 and 7. Table 6 presents the data for the weapon systems 

that do not provide a meaningful mission report or a video capability, while Table 7 

contains the data for those platforms that provide MISREP and video. This additional 
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data is useful in the post-strike decision model, but the pre-strike model has no capacity 

to use the extra information. 

2.3.4 Illustration of Distribution Learning. 

Using the data shown in Tables 6 and 7, we can demonstrate the capacity of the 

Bayesian network model to evolve the conditional probability distributions from data. 

The learning capacity is implemented using the Bayesian Knowledge Discoverer (BKD) 

software in conjunction with the distribution updating scheme outlined earlier (Ramoni 

and Sebastiani, 1998a). Within the BKD software, this is done by simply selecting the 

appropriate database and letting the software quantify the network. 

We highlight two important points about the use of data to update the Bayesian 

belief network. First, the data must specify one of the possible states for all the nodes in 

the belief network. Any gaps in the data where a value is not specified will result in an 

error and the network will not update properly. Second, conditional distributions will 

only change for those cases for which data exists. This implies that some of the 

conditional distributions will probably never update at all, because they represent 

situations that are highly unlikely to occur. As an example, consider a case in which the 

aircrew's MISREP states Destroyed, but the weapon system video shows No Damage. 

Although our influence-diagram-based decision model allowed us to compute pseudo- 

probabilities for damage assessments in this case, such a situation is highly improbable in 

the real world. Consequently, data for such a situation is unlikely to arise and the 

conditional distribution will probably never update. A second consequence of the same 

fact is that in order to see the results of data from the notional scenario described above, 
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we need only examine those cases for which we have data. For the pre-strike assessment 

model, those data points are all easily located in the conditional distribution of the Pre- 

Strike Assessment node. This distribution is shown as Table 8. The original conditional 

distributions (Table 4) are included for comparison. A bold border highlights those 

conditional probabilities changing through data learning. 

Table 6. Pre-Strike Scenario Data 

Guidance Wx Forecast  Jaws_Pd True_Weather Prestrike_Assmt Wx_Effec Gps_Accuracy Gps_Jamming True_Damage Prestrike_Acc 
GPS Clear Severe Clear Moderate NoEftect Nominal No Severe Cautious_One 

GPS Clear Severe Clear Moderate NoEffect Nominal No Severe Cautious_One 

GPS Clear Severe Clear Moderate NoEffect Nominal No Moderate Exact 
GPS Clear Severe Clear Moderate NoEffect Nominal No Destroyed Cautious_Two 

GPS Clear Severe Clear Moderate NoEffect Nominal No NoDamage Aggress_Two 
GPS Clear Severe Clear Moderate NoEffect Nominal No Moderate Exact 
Unguided Clear Moderate Clear Moderate Clear NoEffect NoEffect NoDamage Aggress_Two 
Unguided Clear Moderate Clear Moderate Clear NoEffect NoEffect Light Aggress_One 
Unguided Clear Moderate Clear Moderate Clear NoEffect NoEffect NoDamage Aggress_Two 
Unguided Clear Moderate Clear Moderate Clear NoEffect NoEffect Moderate Exact 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Nodamage Aggress_Two 
Laser Clear Severe Clear Severe Clear NoEffect NoEffect Destroyed Cautious_One 
Laser Clear Moderate Clear Light Clear NoEffect NoEffect Severe CautiousJTvra 
Laser Clear Moderate Clear Light Clear NoEffect NoEffect Moderate Cautious_One 
Laser Clear Moderate Clear Light Clear NoEffect NoEffect Moderate Cautious_One 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Severe Cautious_One 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Destroyed Cautious_Two 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Severe Cautious_One 
Laser Clear Light Clear Light Clear NoEffect NoEffect Destroyed Cautious_Three 
Laser Clear Moderate Clear Light Clear NoEffect NoEffect Moderate Cautious_One 
GPS Clear Severe Clear Moderate NoEffect Nominal No Severe Exact 
GPS Clear Severe Clear Moderate NoEffect Nominal No Severe Exact 
GPS Clear Severe Clear Moderate NoEffect Nominal No Destroyed Cautious_One 
GPS Clear Severe Clear Moderate NoEffect Nominal No Severe Cautious_One 
GPS Clea Severe Clear Moderate NoEffect Nominal No Severe Cautious_One 
GPS Clea Severe Clear Moderate NoEffect Nominal No Moderate Exact 
GPS Clea Severe Clear Moderate NoEffect Nominal No Moderate Exact 
GPS Clea Severe Clear Moderate NoEffect Nominal No Moderate Exact 
GPS Clea Severe Clear Moderate NoEffect Nominal No Severe Cautious_One 
GPS Clea Severe Clear Moderate NoEffect Nominal No Severe Cautious_One 
GPS Clea Moderate Clear Moderate NoEffect Nominal No Severe Cautious_One 
GPS Clea Moderate Clear Moderate NoEffect Nominal No Moderate Exact 

Table 7. Post-Strike Scenario Data 

Guidanc e Wx_Forecas1 Jaws_Pd True JrVeather Prestrike_Assmt Wx_Eftect Gps_Accuracy Gps_Jamminc True_Damage Misrep Video Poststrike_Assmt Poststrike_Acc 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Nodamage Nodamage Nodamage Nodamage Exact 
Laser Clear Severe Clear Severe Clear NoEffect NoEffect Destroyed Destroyed Destroyed Severe Cautious_One 
Laser Clear Moderate Clear Ught Clear NoEffect NoEffect Severe Destroyed Destroyed Severe Exact 
Laser Clear Moderate Clear Ught Clear NoEffect NoEffect Moderate Moderate Severe Moderate Exact 
Laser Clear Moderate Clear üght Clear NoEffect NoEffect Moderate Severe Moderate Moderate Exact 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Severe Severe Severe Severe Exact 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Destroyed Destroyed Destroyed Destroyed Exact 
Laser Clear Severe Clear Moderate Clear NoEffect NoEffect Severe Destroyed Destroyed Destroyed Aggress_One 
Laser Clear Light Clear üght Clear NoEffect NoEffect Destroyed Destroyed Destroyed Severe Cautious_One 
Laser Clear Moderate Clear Ught Clear NoEffect NoEffect Moderate Moderate Moderate Moderate Exact 
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Table 8. Pre-Strike Assessment Conditional Distributions Before and After Data 
Learning 

JAWS PD Forecast 

Original conditional distributions 
Pseudo-Probability of Assessed Damage Level 

Light                Moderate               Severe 

Light 
Socked In 

Cloudy 
Clear 

0.773                     0.165                     0.062 
0.773                     0.169                     0.058 
0.752                     0.187                     0.061 

Moderate 
Socked In 

Cloudy 
Clear 

0.678                    0.231                     0.091 
0.528                     0.349                     0.124 
0.384                     0.467                     0.149 

Severe 
Socked In 

Cloudy 
Clear 

0.531                     0.321                      0.149 
0.341                     0.418                     0.241 
0.228                     0.436                     0.336 

JAWS PD Forecast 

After data learning 
Pseudo-Probability of Assessed Damage Level 

Light                 Moderate               Severe 

Light 
Socked In 

Cloudy 
Clear 

0.773                     0.165                     0.062 
0.773                     0.169                     0.058 
0.772                     0.172                     0.056 

Moderate 
Socked In 

Cloudy 
Clear 

0.678                     0.231                      0.091 
0.527                     0.349                     0.124 
0.392                     0.530                     0.078 

Severe 
Socked In 

Cloudy 
Clear 

0.530                     0.321                      0.149 
0.341                     0.418                     0.241 
0.079                     0.774                     0.147 

Table 8 shows the effects of distribution learning although, as stated above, 

learning only occurs for cases where data exists. For example, in the case where the 

weaponeering indicates severe damage and the weather forecast is clear, the pseudo- 

probability of assessing moderate damage increases from 0.436 to 0.774. This shows 

how the model's relatively uncertain recommendation of assessing moderate damage is 
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reinforced by the targeteers' application of expert knowledge. The same effect can be 

seen in the other two cases for which data exists, although not as strongly. 

The effects of data learning are more evident in the case of the post-strike 

assessment node. The post-strike assessment node conditional distributions after the 

implementation of data learning are shown in Table 9. Since data is available for only a 

small number of the possible cases, only a few of the conditional distributions change. 

Entries demonstrating a change are highlighted using a larger font size and a bold border. 

Table 9a. Post-Strike Assessment Conditional Distributions After Data Learning, Light 
Pre-Strike Assessment 

Pseudo-Probability of Assessed Damage Level 
PreStrike           Video               MISREP No Damage      Light      Moderate    Severe    Destroyed 

Light No Damage 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 

0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Light Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.097 0.843 0.043 0.012 0.005 
0.068 0.886 0.033 0.009 0.004 
0.052 0.912 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

No Damage 
Light 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

Light Moderate Moderate 0.045 0.186 0.711 0.043 0.014 
Light Moderate Severe 0.018 0.072 0.871 0.030 0.009 

Destroyed 0.013 0.052 0.902 0.026 0.007 
No Damage 

Light 
0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

Light Severe Moderate 0.057 0.243 0.647 0.040 0.014 
Severe 

Destroyed 
0.033 0.076 0.294 0.516 0.081 

0.015 0.033 0.114 0.775 0.063 

Light Destroyed 

No Damage 
Light 

Moderate 
Severe 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.013 0.052 0.902 0.026 0.007 
0.033 0.073 0.252 0.544 0.098 

Light Destroyed Destroyed 0.009 0.018 0.043 0.780 0.151 
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Table 9b. Post-Strike Assessment Conditional Distributions After Data Learning, 
Moderate Pre-Strike Assessment 

Pseudo-Probability of Assessed Damaqe Level 

PreStrike              Video                 MISREP No Damaqe       Light       Moderate     Severe      Destroyed 

Moderate No Damage No Damage 0.990 0.006 0.002 0.001 0.001 

Moderate No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Moderate Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.117 0.814 0.050 0.014 0.006 
0.076 0.874 0.036 0.009 0.004 
0.053 0.911 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

Moderate Moderate 

No Damage 
Light 

Moderate 

Severe 
Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

0.032 0.124 0.778 0.052 0.014 

0.017 0.066 0.877 0.032 0.008 

0.013 0.052 0.902 0.026 0.007 

Moderate Severe 

No Damage 
Light 

Moderate 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

0.043 0.169 0.708 0.063 0.018 

Moderate Severe Severe 0.017 0.038 0.150 0.751 0.044 
Destroyed 0.018 0.039 0.128 0.723 0.092 

Moderate Destroyed 

No Damage 
Light 

Moderate 
Severe 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.014 0.052 0.901 0.026 0.007 
0.034 0.070 0.206 0.553 0.137 

Moderate Destroyed Destroyed 0.006 0.012 0.027 0.110 0.846 
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Table 9c. Post-Strike Assessment Conditional Distributions After Data Learning, Severe 
Pre-Strike Assessment 

PreStrike Video MISREP 
Pseudo-Probability of Assessed Damage Level 

No Damage Light Moderate Severe Destroyed 

Severe No Damage 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.002 0.001 0.001 

0.986 0.010 0.003 0.001 0.001 
0.986 0.010 0.003 0.001 0.001 
0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 

Severe Light 

No Damage 
Light 

Moderate 
Severe 

Destroyed 

0.986 0.010 0.003 0.001 0.001 
0.214 0.683 0.071 0.021 0.010 
0.118 0.811 0.050 0.014 0.006 
0.053 0.911 0.026 0.007 0.003 
0.156 0.293 0.312 0.161 0.078 

Severe Moderate 

No Damage 
Light 

Moderate 

Severe 
Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

0.032 0.124 0.778 0.052 0.014 

0.017 0.066 0.877 0.032 0.008 

0.013 0.052 0.902 0.026 0.007 

Severe Severe 

No Damage 
Light 

Moderate 

Severe 
Destroyed 

0.156 0.293 0.312 0.161 0.078 
0.053 0.911 0.026 0.007 0.003 

0.043 0.169 0.708 0.063 0.018 

0.013 0.029 0.111 0.793 0.054 

0.020 0.041 0.119 0.681 0.140 

Severe Destroyed 

No Damage 
Light 

Moderate 
Severe 

0.156 0.293 0.312 0.161 0.078 
0.156 0.293 0.312 0.161 0.078 
0.013 0.052 0.902 0.026 0.007 
0.025 0.048 0.125 0.551 0.251 

Severe Destroyed Destroyed 0.005 0.010 0.022 0.518 0.445 

As in the pre-strike assessment node, the trend is to reinforce the initial likelihood 

indicators derived from the targeteers' expert knowledge. In all cases, the assessment 

level with the highest initial likelihood number exhibits an increase. The other damage 

levels' likelihood indicators all see a decrease. In this way, the data serves to reduce the 

uncertainty in the damage assessment process. As more and more data is gathered, the 

assessment decision becomes increasingly clear-cut. 
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The distribution learning capability offers numerous advantages to the user and 

benefits to the decision model. First, as more and more data is incorporated into the 

model, the conditional probability distributions begin modeling the true probabilities with 

increasing accuracy. The subjective probabilities on which the initial model was built 

become less important in the face of mounting real-world trials. Secondly, the 

distribution learning capability allows targeteers to make the most of the very expensive 

data generated through airstrikes. Currently, such information is not used in any 

statistical analysis although many resources exist for storing and maintaining information 

from airstrikes. This learning capability might also be used to identify trends or problem 

areas depending on how the Bayesian models are implemented. For example, targeteers 

in a theater of operations may notice that their local area data shows different trends from 

the data incorporated into the model from different areas. This could drive the local 

targeteers to re-examine weapons or tactics to understand the disparity. Perhaps the 

largest and most obvious benefit of the data learning capability, though, is facilitation of 

more efficient use of imagery resources. As highlighted above, the data learning 

capability reduces the uncertainty in the damage assessment decision. With enough data 

in certain situations, targeteers may eventually feel comfortable in assessing damage 

levels even without imagery. In turn, this would free up imagery resources to apply to 

other sites whose assessments are more difficult. There is also the benefit of reducing the 

time required to provide a damage assessment, since imagery may not be required. 
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2.4 Applications to Existing Systems 

The Bayesian network decision model examined here could easily be incorporated 

into the Air Force's next generation of battle management tools. The Air Force is in the 

process of switching over to the Theater Battle Management Core System, or TBMCS. 

TBMCS is already set to include much of the information the Bayesian decision model 

would require as part of the Combat Intelligence System, or CIS. The CIS is designed to 

make rapid use of intelligence data and automate its processing as much as possible 

(Frey, 1998). TBMCS also contains a Targeting and Weaponeering Module (TWM) 

designed to replace the numerous database- or spreadsheet-based applications targeteers 

have developed over the years to track BDA information and assessments (Killefer, 

1999). To incorporate the Bayesian model would thus require only adding a Bayesian 

belief net application into TBMCS and providing a link to the Military Intelligence Data 

Base, or MIDB. Targeteers could then use the TWM in conjunction with the Bayesian 

decision model to view information about a target, make decisions, and record damage 

assessments. This data would then be stored in the MIDB. Periodically, based either on 

passage of time or entry of data, the Bayesian network model could update the 

conditional distributions internally, as described above. In this way, the targeteers could 

reap the benefits of data analysis listed earlier. 

Another potential area of application for the Bayesian network methodology is in 

the Phase II and Phase III BDA decisions. These decisions, much like Phase I BDA, 

require combining information from a number of sources with expert opinion and 

judgment, and Bayesian belief networks are extremely useful for modeling such 

problems. The Air Force is already attempting to move away from BDA based primarily 
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on imagery. In January 1999, the Air Force won approval to conduct an advanced 

concept technology demonstration (ACTD) of BDA in the Joint Targeting Toolbox 

(JTT). BDA for JTT is designed to yield software sufficient to give theater commanders 

the capability for automated BDA. Further, these damage assessments will be based on 

interrelationships of targets and their vulnerabilities and strengths rather than observed 

physical damage. Also, some functional damage may be inferred rather than observed. 

As pointed out throughout this paper, a Bayesian belief network is particularly well suited 

to performing inference based on evidence and to learning from data. These 

characteristics imply Bayesian belief networks show promise as a potential methodology 

for the BDA for JTT ACTD effort. 

2.5 Summary and Conclusions 

We have closely examined the BDA process in general and the Phase I BDA 

decision process in particular. We presented two models of Phase I BDA decisions. One 

model is based on influence diagrams and the other implements a Bayesian belief 

network. We have demonstrated the usefulness of the Bayesian belief network as a 

decision model. Further, we highlighted the powerful capability to evolve conditional 

probability distributions from data which allows a Bayesian belief network to grow 

increasingly accurate. Through a representative scenario, we generated notional data 

which was used to demonstrate the learning capability. We then pointed out numerous 

benefits of employing this learning capability through the Bayesian belief network model 

as well as ways in which the Bayesian model could serve as a substitute for a decision 
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matrix. Finally, we pointed out how the Bayesian decision model could be incorporated 

into two technological efforts the Air Force is undertaking. 

Although Bayesian belief networks have only recently come into vogue as 

decision-modeling tools, they are very powerful and easy to use. We have shown in this 

research the applicability of Bayesian belief networks to a complex, real-world problem, 

the Phase IBDA decision. Further, we have shown how the distribution learning 

capability allows the Bayesian belief network to reduce uncertainty and model true 

probabilities with increasing accuracy. The Bayesian belief model offers several 

improvements over the current BDA process. First, the Bayesian model makes use of the 

"perfect" information the current process discards. Second, the Bayesian model allows 

for the use of data to reduce uncertainty about the BDA decision and identify trends. 

Finally, the Bayesian model offers the potential to eventually make BDA decisions 

without waiting for the "perfect" information of still imagery. The Air Force has already 

announced its intention to conduct research toward this end, and the Bayesian belief 

network methodology has the potential to serve as the foundation ofthat research 

(Hebert, 1999). Clearly, Bayesian belief networks are a powerful tool that can greatly 

advance understanding of BDA and make the decision process faster and more accurate. 
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CHAPTER 3 

While the Bayesian belief network model is a valuable tool in its own right, future 

work could increase that value by improving and extending the model. The single largest 

area for improvement is the knowledge base on which the model is based. Due to real 

world constraints, access to targeteers was limited during the time frame of this research. 

Consequently, the decision model is based on the expert knowledge of only two 

targeteers. Interviewing additional targeteers would serve to validate the existing model, 

and might highlight other variables or probability distributions to fold into the model. 

The probability distributions in the model are another area for improvement. As 

with all other parts of the model, the initial probability distributions for the JAWS PD, 

Guidance, and True Weather nodes were based on subjective information elicited from 

two targeteers. Because these nodes are independent, their distributions are not 

conditional. However, these nodes' probability distributions play a role in the calculation 

of penalty scores, which in turn affect the initial conditional distributions for the damage 

assessments. Real world historical data offers the potential to improve the accuracy of 

the probability distributions of these nodes. By mining past data, we can better 

approximate the proportion of strikes that are weaponeered to the various damage levels 

or the probability that a strike aircraft will employ a certain guidance system. 

Similarly, the True Weather node currently contains a notional distribution for the 

possible weather over the target. While past data for the entire world will probably not 

prove useful in updating this distribution, data could still contribute to increasing its 
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accuracy. By making the True Weather node dependent on a Region or Climate node, 

then gathering weather data for the various regions or climates of the'world, we can 

increase the model's ability to accurately model the true weather. 

One additional area for future study is determining the correct influence of expert 

knowledge. Given the Bayesian belief network's capability to learn from data, we must 

determine the correct balance to strike between prior expert knowledge and future data. 

In this research, we have set the weight of the elicited expert knowledge to highlight the 

model's data learning capability. However, as more targeteers are incorporated into the 

knowledge base, the respective importance of expert knowledge and data will require 

adjustment. 

We applied the Bayesian belief network methodology to the Phase IBDA 

decision in this study. However, the Phase II and Phase III BDA decisions are very 

similar to Phase I. Currently, experts make these decisions by coupling their knowledge 

with information from a number of independent sources to reach a decision. Bayesian 

belief networks are excellent tools for modeling such expert decisions. Applying the 

Bayesian methodology to all phases of the BDA process could yield significant benefits 

in both speed and accuracy, especially if coupled with an automated data processing 

system such as TBMCS. 
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Appendix A: Probability Distributions 

This appendix contains the complete probability distributions for all nodes of the 

Pre-Strike and Post-Strike Bayesian belief network before implementation of data 

learning. The distributions reflect the expert opinions of targeteers elicited through 

interviews, as detailed in Chapter 2. For example, the distributions of the MISREP and 

Video nodes reflect two assumptions. First, the weapon system video is more accurate 

than the aircrew's MISREP. Second, both these information sources will very rarely 

underestimate the actual damage to the target, although they may overestimate the 

damage. The other nodes reflect the targeteers' opinions in similar fashion. 

Cases that are not possible do not appear in these tables in order to reduce 

complexity. For example, the True Damage node does not list probabilities for cases 

where both weather and the GPS environment (jamming and accuracy) have an effect. 

Due to the nature of the weapon guidance, only one of the two factors will have an effect. 
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Independent Nodes 

Node True Weather 
States Socked In Clouds Clear 

Probabilities 0.333 0.333 0.334 

Node JAWS PD 
States Light Moderate Severe 

Probabilities 0.2 0.4 0.4 

Node Guidance 
States GPS Laser Unguided 

Probabilities 0.4 0.4 0.2 

Dependent Nodes 

Node WX Forecast 
Parents States and Probabilities 

True Weather Socked In Cloudy Clear     - 
Socked In 0.8 0.1 0 

Clouds 0.2 0.8 0.2 
Clear 0 0.1 0.8 

Node WX Effect 
Parents States and Probabilities 

True Weather Guidance No Effect Clear Mixed Blocked 
Socked In GPS 1 0 0 0 
Socked In Laser 0 0 0 1 
Socked In Unguided 0 0 0.7 0.3 

Clouds GPS 1 0 0 0 
Clouds Laser 0 0.1 0.8 0.1 
Clouds Unguided 0 0.25 0.7 0.05 
Clear GPS 1 0 0 0 
Clear Laser 0 1 0 0 
Clear Unguided 0 1 0 0 

Node GPS Accuracy 
Parent Sfafes and Probabilities 

Guidance Poor Nominal Good No Effect 
GPS 0.333 0.333 0.333 0 
Laser 0 0 0 1 

Unguided 0 0 0 1 

Node GPS Jamming 
Parent States and Probabilities 

Guidance Yes No No Effect 
GPS 0.02 0.98 0 
Laser 0 0 1 

Unguided 0 0 1 

Node Pre-Strike Assessmt 
Parents Sfafes and Probabilities 

JAWS PD WX Forecast Light Moderate Severe 
Light Socked In 0.773 0.165 0.062 
Light Cloudy 0.773 0.169 0.058 
Light Clear 0.752 0.187 0.061 

Moderate Socked In 0.678 0.231 0.091 
Moderate Cloudy 0.528 0.349 0.124 
Moderate Clear 0.384 0.467 0.149 
Severe Socked In 0.531 0.321 0.149 
Severe Cloudy 0.341 0.418 0.241 
Severe Clear 0.228 0.436 0.336 
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Node True Damage 
Parents Sfafes and Probabilities 

JAWS PD WX Effect GPS Accuracy GPS Jamminq No Damage Light Moderate Severe Destroyed 

Liqht No Effect Poor Yes 0.7 0.25 0.05 0 0 

Liqht No Effect Poor No 0.25 0.68 0.05' 0.02 0 

Light No Effect Nominal Yes 0.5 0.44 0.05 0.01 0 

Light No Effect Nominal No 0.18 0.68 0.08 0.05 0.01 

Light No Effect Good Yes 0.3 0.65 0.05 0 0 

Light No Effect Good No 0.15 0.7 0.1 0.04 0.01 

Light Clear No Effect No Effect 0.18 0.68 0.08 0.05 0.01 

Liqht Mixed No Effect No Effect 0.25 0.65 0.08 0.02 0 

Liqht Blocked No Effect No Effect 0.5 0.45 0.05 0 0 

Moderate No Effect Poor Yes 0.7 0.1 0.15 0.05 0 

Moderate No Effect Poor No 0.15 0.1 0.68 0.05 0.02 

Moderate No Effect Nominal Yes 0.5 0.44 0.05 0.01 0 

Moderate No Effect Nominal No 0.1 0.09 0.68 0.09 0.04 

Moderate No Effect Good Yes 0.3 0.05 0.6 0.05 0 

Moderate No Effect Good No 0.1 0.09 0.7 0.09 0.02 

Moderate Clear No Effect No Effect 0.1 0.09 0.68 0.09 0.04 

Moderate Mixed No Effect No Effect 0.25 0.09 0.6 0.05 0.01 

Moderate Blocked No Effect No Effect 0.5 0.2 0.28 0.02 0 

Severe No Effect Poor Yes 0.7 0.05 0.05 0.15 0.05 

Severe No Effect Poor No 0.15 0.03 0.07 0.68 0.07 

Severe No Effect Nominal Yes 0.5 0.08 0.12 0.28 0.02 

Severe No Effect Nominal No 0.1 0.04 0.09 0.68 0.09 

Severe No Effect Good Yes 0.3 0 0.05 0.6 0.05 

Severe No Effect Good No 0.1 0.03 0.07 0.7 0.1 

Severe Clear No Effect No Effect 0.1 0.04 0.09 0.68 0.09 

Severe Mixed No Effect No Effect 0.25 0.03 0.08 0.6 0.04 

Severe Blocked No Effect No Effect 0.5 0.08 0.15 0.25 0.02 

Node Prestrike Ace 
Parents States and Probabilities 

True Damaqe PreStrike Assessmt Cautious Three Cautious Two Cautious One Exact Aqqress One Aqqress Two Aggress Three 

No Damaqe Liqht 0 0 0 0 1 0 0 
No Damaqe Moderate 0 0 0 0 0 1 0 
No Damaqe Severe 0 0 0 0 0 0 1 

Liqht Liqht 0 0 0 1 0 0 0 
Liqht Moderate 0 0 0 0 1 0 0 

Liqht Severe 0 0 0 0 0 1 0 
Moderate Liqht 0 0 1 0 0 0 0 
Moderate Moderate 0 0 0 1 0 0 0 
Moderate Severe 0 0 0 0 1 0 0 
Severe Liqht 0 1 0 0 0 0 0 
Severe Moderate 0 0 1 0 0 0 0 
Severe Severe 0 0 0 1 0 0 0 

Destroyed Light 1 0 0 0 0 0 0 
Destroyed Moderate 0 1 0 0 0 0 0 
Destroyed Severe 0 0 1 0 0 0 0 

Node MISREP 
Parent States and Probabilities 

True Damaqe No Damage Liqht Moderate Severe Destroyed 
No Damaqe 0.75 0.2 0.05 0 0 

Liqht 0 0.55 0.4 0.05 0 
Moderate 0 0 0.55 0.4 0.05 
Severe 0 0 0 0.6 0.4 

Destroyed 0 0 0 0.1 0.9 

Node Video 
Parent Slates and Probabilities 

True Damaqe No Damaqe Light Moderate Severe Destroyed 
No Damage 0.9 0.1 0 0 0 

Light 0 0.8 0.15 0.05 0 
Moderate 0 0 0.8 0.15 0.05 
Severe 0 0 0 0.8 0.2 

Destroyed 0 0 0 0.05 0.95 
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Node PostStrikeAcc 
Patents Stales and Probabilities 

True Damaqe PostStrike Assessmt Cautious Four Cautious Three Cautious Two Cautious One Exact kqqress On Aqqress Two aqqress Three Aqqress Four 
No Damaqe No Damaqe 0 0 0 0 1 0 0 0 0 
No Damaqe Liqhl 0 0 0 0 0 1 0 0 0 
No Damaqe Moderate 0 0 0 0 0 0 1 0 0 
No Damaqe Severe 0 0 0 0 0 0 0 1 0 
No Damaqe Destroyed 0 0 0 0 0 0 0 1 1 

Liqhl No Damaqe 0 0 0 1 0 0 0 0 0 
Liqht Uoht 0 0 0 0 1 0 0 0 0 
Liqht Moderate 0 0 0 0 0 1 0 0 0 
Uqht Severe 0 0 0 0 0 0 1 0 0 
Lioht Destroyed 0 0 0 0 0 0 0 1 0 

Moderate No Damaqe 0 0 1 0 0 0 0 0 0 
Moderate Uqht 0 0 0 1 0 0 0 0 0 
Moderate Moderate 0 0 0 0 1 0 0 0 0 
Moderate Severe 0 0 0 0 0 1 0 0 0 

Moderate Destroyed 0 0 0 0 0 0 1 0 0 
Severe No Damaqe 0 1 0 0 0 0 0 0 0 
Severe Ltaht 0 0 1 0 0 0 0 0 0 
Severe Moderate 0 0 0 1 0 0 0 0 0 
Severe Severe 0 0 0 0 1 0 0 0 0 
Severe Destroyed 0 0 0 0 0 1 0 0 0 

Destroyed No Damaqe 1 0 0 0 0 0 0 0 0 
Destroyed Uoht 0 1 0 0 0 0 0 0 0 
Destroyed Moderate 0 0 1 0 0 0 0 0 0 
Destroyed Severe 0 0 0 1 0 0 0 0 0 
Destroyed Destroyed 0 0 0 0 1 0 0 0 0 
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Appendix B: Analysis of Alternate Methodologies 

Before selecting Bayesian belief networks as the methodology with which to 

implement the BDA decision model, we examined other potential approaches. 

Specifically, we investigated building the model using traditional multi-objective 

decision analysis (MODA) techniques and using an artificial neural network (ANN). 

Both methodologies could be applied to the BDA problem; however, each had a 

significant drawback. 

MODA techniques rely on interviews with decision makers to identify key factors 

and their relative importance. Using weighting schemes and probabilistic analysis, the 

best alternative in a given decision situation is identified. This approach would take 

maximum advantage of the targeteers' accumulated expert knowledge. However, the 

weighting schemes employed in MODA are static, meaning that the decision model 

would have no capacity to incorporate data. Further, the model would have no means to 

evolve along with technology and tactics. A Bayesian belief net can incorporate both 

expert knowledge and historical data, and has the capability to evolve over time. 

On the other hand, artificial neural nets make maximum use of data. Artificial 

neural nets rely solely on data, rather than a system of rules. The various sources of 

information to the problem act as inputs in a system based on the human nervous system. 

Different combinations of information result in different outcomes from the final node in 

the network. This methodology offers the ability to evolve the system over time, unlike 

the MODA approach, but has other clear faults. First, an ANN approach would discard 

the accumulated expert knowledge of targeteers who have performed BDA for years. 
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Second, an ANN requires significant amounts of data to build and train the network, plus 

an additional set of data to validate the model. Such data is not currently available and 

would require an extended period of heavy operations. The Bayesian belief network 

model can incorporate expert knowledge initially, then become more reliant on data over 

time. Additionally, the Bayesian model can be validated at any point without sacrificing 

valuable data. Validation is easily accomplished through a Turing test by presenting the 

model and a targeteer with the same set of inputs and comparing the resulting 

assessments. 

61 



Bibliography 

Almond, Russell G. Graphical Belief Modeling. London: Chapman and Hall, 1995. 

Berger, James O. Statistical Decision Theory and Bayesian Analysis, Second Edition. 
New York: Springer Verlag, 1985. 

Buede, Dennis M., Joseph A. Tatman, and Terry A. Bresnick. "Introduction to Bayesian 
Networks: A Tutorial for the 66th MORS Symposium." World Wide Web, 
http://systeng.gmu.edu, 1998. 

Clancy, Tom. Fighter Wing: A Guided Tour of an Air Force Combat Wing. New York: 
Berkley, 1995. 

Clemen, Robert T. Making Hard Decisions. Belmont: Duxbury Press, 1995. 

Cozman, Fabio G. "JavaBayes Version 0.34." Software and user's manual. World Wide 
Web, http://www.cs.cmu.edu/~javabayes. 13 Aug 98. 

Curry, Hugh, Major, USAF. Chief of Targets, 609th Air Intelligence Squadron. Personal 
interview. 12 Jan 99. 

Davis, Richard G. Decisive Force: Strategic Bombing in the Gulf War. Washington: 
GPO, 1996. 

Defense Intelligence Agency (DIA). Battle Damage Assessment (BDA) Quick Guide. 
Washington: Defense Intelligence Agency, February 1996. 

Department of Defense. Conduct of the Persian Gulf War. Washington: Department of 
Defense, unclassified version, April 1992. 

Department of the Air Force, Directorate for Operational Requirements (AF/XOR). 
"USAF Battlelab Home Page." World Wide Web, 
http://www.hq.af.mil/xo/afbattlelab/index.htm. Sep 1998. 

Department of the Air Force (DAF). The Joint Targeting Process. AFP AM 10-225, 
May 1996. 

"Execution Planning/Combat Assessment." Class handout, Combat Targeting Course. 
17th Training Wing, Goodfellow AFB TX, Aug 1996. 

Frey, Steven, Captain, USAF. "Time Critical Targeting in Theater Battle Management 
Core System (TBMCS)." Briefing slides. ESC/ACE, Hanscom AFB MA, Nov 
1998. 

62 



Green, Thomas K., Captain, USAF and David A. Roodhouse, Major, USAF. An Analysis 
of Optimal Airfield Attack Parameters. MS Thesis, AFIT/GST/OS/85M-4.    • 
School of Engineering, Air Force Institute of Technology (AU) Wright-Patterson 
AFB OH, March 1985 (AD-A155857). 

Hallion, Richard P. Storm Over Iraq. Washington: Smithsonian Institution Press, 1992. 

Hearst, Marti A. "Banter on Bayes: Debating the Usefulness of Bayesian Approaches to 
Solving Practical Problems." IEEE Expert and Intelligent Systems, 12: 18-25 
(November/December 1997). 

Hebert, Adam. "New Battle Damage Assessment ACTD Addresses BDA 
Shortcomings," Inside The Air Force, 22 January 1999: 6. 

Heckerman, David, and Michael P. Wellman. "Bayesian Networks." Communications of 
the ACM, 38: 27-30 (March 1995). 

Heckerman, David. A Tutorial on Learning with Bayesian Networks. Redmond: 
Microsoft Technical Report MSR-TR-95-06, 1995. 

Jensen, Finn V. An Introduction to Bayesian Networks. New York: Springer Verlag, 
1996. 

Keeney, Ralph L. "Using Values in Operations Research." Operations Research, 42: 
793-813 (September-October 1994). 

Keeney, Ralph L. Value-Focused Thinking: A Path to Creative Decisionmaking. 
Cambridge MA: Harvard University Press, 1992. 

Killefer, Robert, Captain, USAF. Chief of Targets, 608th Air Intelligence Squadron. 
Personal interviews. January 1999. 

Lehnert, Wendy G. The Process of Question Answering. Hillsdale NJ: Lawrence 
Erlbaum Associates Inc., 1978. 

Miglin, Robert N., Captain, USAF.  "AAPMOD," an Interactive Computer Model for 
Analysis of Conventional Weapons Effectiveness. MS Thesis, 
AFIT/GST/OS/84M-13. School of Engineering, Air Force Institute of 
Technology (AU) Wright-Patterson AFB OH, March 1984. 

Myers, Laura. "Mobile missiles difficult to hit," The Dayton Daily News, 1 January 
1999, sec A:5. 

63 



Needier, Mark S., LCDR, USN. Battle Damage Assessment Considerations for the 
Operational Commander. Naval War College paper. Newport: Naval War 
College, 1993 (AD-B173022). 

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. San Francisco: Morgan Kaufmann Publishers Inc., 1988. 

Ramoni, Marco, and Paola Sebastiani. "Bayesian Knowledge Discoverer Version 1.0." 
Software and online documentation. World Wide Web, 
http://kmi.open.ac.uk/projects/bkd, 1998a. 

 . Bayesian Methods for Intelligent Data Analysis. Milton Keynes: KMi Technical 
Report KMi-TR-67, 1998b. 

 . Learning Probabilities from Incomplete Data: An Experimental Comparison. 
Milton Keynes: KMi Technical Report KMi-TR-64, 1998c. 

Rome Laboratory/IRRE. Bomb Damage Assessment Study: Battle Damage Assessment 
Simulation (BDASIM). Rome NY: Rome Laboratory, February 1996. 

Smith, Kevin W. Cockpit Video: A Low Cost BDA Source. Maxwell AFB AL: Air 
University Press, 1993. 

Sweigart, Frank, CDR, USN. Desert Storm: A Commander's Perspective on the Naval 
Air Campaign. Naval War College paper. Newport: Naval War College, 1993 
(AD-B 174498). 

Zwenger, Patrick, MSgt, USAF. NCOIC, Targets, 608th Air Intelligence Squadron. 
Personal interviews. January 1999. 

64 



REPORT DOCUMENTATION PAGE 
■ 

Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, incluoing the time for reviewing instructions, searching existing data sources 
Mtherirfo?and maintalninfl the data needed, and completing and reviewing the collection of information.  Send comments regarding th« burden estimate or any other aspect of this 
Section Tin™mTö^umg suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports  1215 Jefferson 
Davis Htehway ISuit" 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pr0)ect (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

March 1999 

3.  REPORT TYPE AND DATES COVERED 

Master's Thesis 
4.  TITLE AND SUBTITLE 
A BAYESIAN DECISION MODEL FOR BATTLE DAMAGE ASSESSMENT 

5.  FUNDING NUMBERS 

6.  AUTHOR(S) 
Daniel W. Franzen, Captain, USAF 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology 
2950 P Street 
Wright-Patterson AFB, OH 45433 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GOA/ENS/99M-05 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Major Mike Deaton 
USAF Command & Control Battlelab (C2B) 
238 Harston Street 
Hurlburt Field, FL 32544-5200 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
Battle damage assessment (BDA) is critical to success in any air campaign. However, Desert Storm highlighted numerous 
deficiencies in the BDA process, and operations since Desert Storm continue to point out weaknesses. We present a review 
of the Phase I BDA decision, or physical damage assessment, and model the decision process using a Bayesian belief 
network. Through subject matter expert (i.e., the targeteers) elicitation sessions, imagery was found to be critically 
important to the BDA process yet this information is generally not retained. This use of "perfect information" is delineated in 
the BDA process models. We propose a methodology based on Bayesian belief networks for incorporating this perfect 
information. We demonstrate the Bayesian belief network's capability to update conditional probability distributions using 
data generated in real world operations. This capability allows the network's conditional distributions to evolve, increasing 

model accuracy and reducing uncertainty in the decision. 

14. SUBJECT TERMS 
Bayes Theorem, Bayesian belief networks, damage assessment, decision aids, decision analysis 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

75 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 


	A Bayesian Decision Model for Battle Damage Assessment
	Recommended Citation

	/tardir/tiffs/A361561.tiff

