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Abstract 

In studying complex queueing networks, one generally seeks to employ exact 

analytic solutions to reduce burden on computational resources. Barring the existence of 

an exact solution, the alternatives include approximation techniques and simulation. 

Approximation is the more attractive alternative from a time and effort perspective; 

however, cases exist that are not amiable to this technique. 

This work increases the flexibility of approximation techniques in obtaining 

estimates of congestion measures for complex, open queueing networks having several 

customer classes and class-dependent structures. We accomplish this by providing the 

procedure to aggregate multiple classes into a single class in order to apply an existing 

approximation technique. The resulting method is shown to yield good agreement with 

results obtained by simulation. 

The immediate application of this work is as a tool to focus a simulation study of 

multi-class queueing networks. For large networks, reasonable performance estimates 

can be obtained quickly. Once the basic input parameters are determined, different 

scenarios may be rapidly evaluated in a fraction of the time needed to modify a typical 

simulation model. This allows one to check ideas and determine where to invest time and 

funding when constructing a simulation model to obtain performance estimates on a by- 

class basis. 
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Executive Summary 

Overview 

In the study of complex queueing networks, one generally seeks to employ exact 

analytic solutions to reduce the burden on computational resources. Barring the existence 

of this solution, the alternatives include approximation techniques and simulation. 

Approximation is the more attractive alternative from a time and effort perspective; 

however, cases exist that are not amiable to this technique. 

The objective of this work is to increase the flexibility of approximation 

techniques in obtaining estimates of congestion measures for complex, open queueing 

networks. The focus of this study is on networks having several customer classes and 

class-dependent service times. In this case, the restrictions of the network prevent an 

exact solution and hamper existing approximation schemes. The conditions generally 

require using simulation to assess network performance. Thus, the goal is to provide a 

tool to easily obtain these estimates before building an intricate simulation model. 

In most simulation studies, you want to build a model having the least complexity 

necessary to accomplish the analysis tasks. You may be interested in collecting detailed 

information on different customer classes, but you only want this at nodes meeting some 

criteria (e.g., longest queue). To do this, you could build a basic model and add class 

distinctions as you learn more about how the network operates. However, this could 

become time consuming, particularly in verifying routing paths. 

The outcome of this effort is a methodology that allows you to quickly identify 

candidate locations requiring higher resolution results before building the simulation 
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model. We accomplished this by developing a procedure that aggregates multiple classes 

into a single class in order to apply an existing approximation technique. We found that 

the methodology results in good agreement with simulation models that explicitly 

represent multiple customer classes. The result is a tool that one can use to focus a 

simulation study. It provides easy evaluation of a particular network configuration, as 

well as rapid evaluation of alternative configurations. 

Research Overview and Findings 

The network models utilized in this effort are classic Jacksonian networks. These 

networks contain a finite number of unlimited capacity, single-server queue nodes 

connected in an arbitrary fashion. Routing between the queues is based on specified 

branching probabilities. The networks are open: customers enter from the outside world 

and all customers eventually depart. The service discipline at all queue nodes is first- 

come-first-serve (FCFS); however, the different customer classes may have different 

service distributions at any given node. The schematic below illustrates an example of 

one network structure studied. 

Pl2 

1 
PlO 

The external arrival rate is X0, and may represent many classes. The service rates 

are \i\ and ua for nodes 1 and 2, respectively, which may depend on class. A customer 

may depart after node 1 with probability pi0. All node 2 customers return to node 1. 
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A review of relevant literature did not identify an exact analytic solution for the 

case described. The use of FCFS queues with class-dependent service times prevents 

obtaining an exact solution. Specifically, networks constructed as given do not have a 

particular type of solution known as the product-form. However, we also found that 

product-form and exact solution are synonymous except in rare circumstances. Here, in 

rare circumstances, small networks may be solved using their global balance equations. 

For this, the practical limit is on the order of a two-node network, but even that size may 

become too complicated in some cases. 

Satisfied that an exact solution was unattainable, we reviewed various 

approximation techniques. For networks having service centers that are not continuously 

busy, decomposition algorithms provided reasonable estimates of network performance 

and afforded the greatest flexibility for modification. In particular, the algorithm for the 

Queueing Network Analyzer (QNA, [49]) was found suitable enough to serve as the basic 

structure for this study. For many networks, QNA can provide congestion measure 

estimates with errors not exceeding 10 percent relative to simulation values [50]. 

QNA allows for multiple customer classes with different service time 

distributions; however, the user has to specify the exact route of each class. For general 

routing, such as used here, QNA only permits one customer class. Therefore, the task 

became one of combining general routing and multiple classes. 

The author of QNA provided one concept of how to accomplish this combining 

task, and suggested equations that could be incorporated into the original QNA [51]. 

However, we found that we could not properly match simulation observations to the 

proposed equations. We observed the problem to be related to the effect of customers re- 
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circulating in a network (commonly called feedback). From the previous figure, note that 

a customer may visit node 1 more than once. The QNA algorithm appears to transform a 

network into a series of serially connected queues, whereas the simulation maintains a 

representation closer to the actual layout. The result is that the arrival, service, and 

departure measures found through simulation and calculated by QNA do not have an 

obvious mapping to each other. 

From simulation results used to evaluate the paper mentioned in the previous 

paragraph, we noted some basic relationships in the data appeared useful. We observed 

that the probability of a customer class at a given queue followed a simple form. The 

equation below shows the result for two customer classes having derived arrival rates, 

Xj;CX, at some node i for class x. The arrival rates for each class at each node are obtained 

by solving a system of equations using the external arrival rates and a matrix that 

specifies routing within the network. 

P(class_\\ÄUclAi,c2)-j-^ 

From conditional probability, we then observed that we could form the mean and 

variance for the aggregate service time of several customer classes having different 

individual service distributions at a given node. Using the result above and the expected 

service time given that a customer is of a particular classes, we obtain that the aggregate 

expected service time at a node is 

ETi =Pi,c\ETi,cl +Pi,c2ETi,c2   ■ 

In a similar manner, we also find the second moment of the service time, ETi 

(replace all ET; with the squared term in the above expression). Here, you use the 
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analytic expressions for the variance and mean of each class's service distribution in the 

identity ET2 = Var(T) + (ET)2 to form each component of the right hand side of the 

expression. For example, if the service times at node i for each class x are distributed 

exponentially with rate Ui;CX, then the expected service times and variance are 

ET i>cx = l/ui,cx and Var(T) = l/ja2ijCX, respectively. The terms on the right hand side 

become ET2 i;CX - 2/n\CK. This technique is valid for any continuous theoretical 

distribution, but you only want to use non-negative, or properly truncated, distributions 

since these are service times. Once we have ET; and ET2 for the aggregated customer 

class, we can employ our technique, as discussed next. 

We hypothesized that this information could be used in the QNA framework to 

represent multiple customer classes as a single composite class. One major assumption 

of QNA is that the mean and squared coefficient of variation (SCV) contain adequate 

information to represent arrival, service, and departure processes. Where a SCV is the 

variance divided by the square of the mean. The validity of this assumption was proven 

prior to the development of QNA. Therefore, the specific structure of QNA seeks to 

enhance estimates using the assumption. The accuracy of QNA is documented in [50]. 

Our procedure uses QNA to calculate the arrival and departure SCVs based on the 

input. Since QNA only views service processes in terms of the mean and SCV at some 

node, we simply replace single-class expected service times and SCVs with the values 

obtained by aggregating the class-dependent service processes. Using ET; and ETj 

shown previously, the expression for finding the service SCV, c , is obtained as 

Sl     (ET,f " 
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To evaluate whether the distribution of our composite customer class in QNA 

represented reality as viewed by the simulation, we constructed networks having explicit 

representation of customer classes. At worst, we found that our multi-class QNA was 

within the performance documented in [50]. At best, we noted that the multi-class QNA 

differed less than 1 percent from the simulation. This was an evaluation, not a formal test 

of the hypothesis. 

As an example, refer back to the network schematic previously shown. As given 

in [50], this specific network structure presents the greatest difficulty for the original 

QNA without multiple classes. We set up a scenario were two customer classes arrive to 

the network. For one case, each class has exponential service times, but they have 

different means at each node, as shown below. 

Node Class 1 Rate Class 2 Rate 
1 1 2 
2 3 1 

The input external arrival rates to node 1 and the derived internal arrival rates at 

each node are shown next. The internal arrival rates depend on the value for the 

probability of depart between nodes 1 and 2, which we selected as pio = 0.30. 

Node Aggregate Class 1 Rate Class 2 Rate 
External at 1 1/6 1/10 1/15 

1 1/1.8 1/3 1/4.5 
2 1/2.57 1/4.29 1/6.43 

The actual arrival and service rates observed in simulation will differ slightly. The 

probability for a customer being of class 1 is calculated at 0.60, which also may differ to 

a small extent. 
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The following table shows a comparison between the QNA results using the 

proposed methodology and a simulation that explicitly represents both customer classes. 

For notation by node, ENj is the expected number waiting in a queue, EWj is the 

associated expected wait, and ER is the expected response time for the network (average 

time in the network). 

Congestion 
Measures 

Simulation QNA 
50K Depart, 10 Reps 
Mean Std Error Mean 

ENi 0.387 0.002 0.3935 
EWi 0.697 0.004 0.7084 
EN2 0.087 0.000 0.0935 
EW2 0.225 0.001 0.2404 
ER 6.910 0.018 6.9888 

Even though this specific network is difficult for QNA, there is good agreement 

between the estimates. The largest discrepancy with respect to simulation is the expected 

number waiting at node 2. The error is approximately 7.5 percent if we accept the 

simulation as representing the true state with only 50,000 departures and 10 replications 

(runs). This is within the documented performance of the original QNA. 

We find that the upper limit of the individual 95 percent confidence intervals on 

the simulation estimates fall below the QNA values. There are two issues here, one of 

which relates to the length of the simulation runs. QNA is an estimator of long run, or 

steady state, performance. Therefore, the user must be aware that short-run simulation 

estimates may differ because of initial conditions. By increasing the length of the 

simulation runs, we find that the confidence intervals eventually cover the QNA 
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estimates. However, another issue impacts whether we actually reach convergence. That 

issue relates to the SCV calculations of the feedback stream. 

In the instances where we did not get an exact match between the simulation and 

the multi-class QNA, we found that QNA faithfully represented the performance trend 

and correct magnitude. For example, say that simulation yields an average of 14.65 

customers waiting in a given queue; the multi-class QNA may report 15.03. 

Inconsistencies in estimation generally fall into two categories: heavy traffic 

problems and departure SCV estimation. In any situation where a queue experiences 

heavy traffic, the simulation and QNA estimates will not likely agree. This is caused 

more by the initial conditions and the length of the simulation run than with the 

formulations contained in QNA. However, problems may also occur under moderate 

traffic if the simulation run is too short to eliminate the startup transient. 

We did note that departure SCVs calculated using our service SCVs (a procedure 

of the QNA algorithm) introduced actual bias into our results. This becomes particularly 

true when the network has feedback streams.   Although the bias is within the bounds 

noted, this is a problem area requiring modification in a manner suggested by [51]. The 

previous table contains bias in both columns due to short simulation run length for one 

and inaccuracies in arrival SCV calculations for QNA. 

As a tool to focus a simulation study of a complex network, the method performs 

well. For large networks, reasonable performance estimates can be obtained quickly. 

Once the basic input parameters are determined, different scenarios may be rapidly 

evaluated in a fraction of the time needed to modify a typical simulation model. This 
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allows one to check ideas and determine where to invest time and funding when 

constructing a simulation model to obtain performance estimates on a by-class basis. 

Limitations 

The methodology to admit multiple customer classes under probabilistic routing 

performs well in the QNA framework. Any number of classes may be combined into one 

composite class before applying the QNA algorithm. Moreover, the results are 

comparable (sometimes identical) to simulation estimates of congestion measures. 

However, we have not been able to later decompose the composite customer to give 

performance measures on a by-class basis. An apparent relationship to the probability of 

the class of a customer arriving at a queue was noted; however, a working theory did not 

evolve. 

The method to aggregate multiple customer classes may fail if the service rate of 

one class is significantly higher than other classes. This becomes apparent in calculating 

the composite service SCV when a negative value is returned. In simple terms, the class 

having a lower rate dominates the service distribution at that queue—the queue does not 

seem to exist for the higher rate class. Thus, we develop an apparent inconsistency best 

resolved by simulation. QNA cannot handle zero-time service centers in general. 

However, this does not preclude using composite rates that are large. We sought to avoid 

this situation since it provided no useful insight other than as a limitation. 

QNA only estimates long run, or steady state, network performance. Therefore, it 

is most useful for networks that operate for extended periods or those not having a 

notable startup transition phase. Additionally, we did not include the estimates of 
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variability provided within the QNA formulation. Given the stated focus, that was 

deemed unnecessary. 

QNA does not permit queueing disciplines other than FCFS. However, due to the 

abundance of work on product-form solutions, most other disciplines of practical interest 

have an exact solution. Additionally, QNA is currently restricted to infinite capacity 

queues. 

As part of the scope of this effort, we restricted the study only to Poisson arrivals. 

Thus, the effectiveness of the class aggregation technique was not verified for general 

arrival distributions. QNA was developed to permit arrival distributions other than 

Poisson [1; 48; 49; 50], and is based on work extending back at least to Kelly [25]. 

Given that arrival SCVs combine in the same manner as service SCVs, the assumption 

that the procedure works for general arrival and service distributions is not unfounded. 

Recommendations 

Obtaining greater accuracy for the congestion measure estimates appears to be 

possible by improving the departure approximations for the queues. This is the subject of 

[51]; however, simulation observations are not consistent with that methodology. 

Understanding that methodology and incorporating it within the QNA framework is the 

next logical step of this work. 

Parallel to improving the methodology of including multiple classes is 

development of the methodology to obtain congestion measure estimates by class. We 

observed that there appears to be a connection to the probability of a particular class 

being at a given queue. However, we could not identify the actual relationship. If one 
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could solve this problem, simulation studies to obtain these measures would not be 

necessary. That is, assuming one is content with approximations of long run performance 

to guide the development of a simulation study. 

Originally, we desired to incorporate capacitated queueing (blocking with loss) 

simultaneously with class-dependent service time distributions at FCFS queues. 

However, it quickly became clear that the task of incorporating class dependencies 

overshadowed that feature. Thus, one direction of future research would be to 

incorporate this capability. Although not included in the literature review, we looked at 

several works in the area of capacitated queueing networks. However, most involved 

other forms of blocking mechanisms (e.g., repetitive service for a blocked customer). We 

did uncover some literature that a future researcher might begin with [4; 35; 36; 44]. 
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ANALYSIS OF A NON-TRIVIAL QUEUEING NETWORK 

I. Introduction 

The objective of this thesis is to increase the flexibility of approximation 

techniques in obtaining estimates of congestion measures for complex, open queueing 

networks. That is, to easily obtain these estimates, before building an intricate simulation 

model, on networks having several customer (job) classes and class-dependent structures. 

This thesis accomplishes this by providing the procedure to aggregate multiple classes 

into a single class in order to apply an existing approximation technique, and illustrating 

the comparability of the results obtained by simulation.   The immediate application of 

this work is as a tool to focus a simulation study of a multi-class queueing network. For 

example, by identifying potential bottlenecks in the presence of classes, the analyst 

knows where the simulation model requires increased fidelity to obtain class-dependent 

congestion measures. However, with further expansion of the theoretical framework, we 

believe that one can extend this approach to obtain class-dependent congestion measures 

from the approximation. 

Background 

Queueing networks exist, literally, everywhere with the most commonly cited 

examples being computer and communications systems. Analytical models, as opposed 

to simulation, are preferred to obtain measures of system utilization, throughput, response 

time, and queue lengths. This preference is motivated by the fact that simulation models 



generate estimates of these measures, which requires application of statistical procedures 

to obtain a statement of confidence in the results. Analytic solutions, on the other hand, 

are mathematically exact (accepting that the model assumptions are congruent with the 

system under study). This, in turn, creates a perception of a lower cost relative to 

simulation analysis, as well as one of greater validity over simulation. 

However, with rare exception, the characteristics that make complicated networks 

interesting, or challenging, to study also render them analytically intractable. One 

problem is that the number of system states becomes too unwieldy to manage 

computationally. Alternately, as will be discussed later, the problem is because these 

networks tend to violate conditions necessary to an exact analytic solution. 

To contend with this problem of intractability, researchers developed 

approximation techniques to obtain congestion estimates. Without getting into detail 

here, these techniques are generally classified as decomposition (aggregation) or 

diffusion methods. The choice of which technique to use depends on the characteristics 

of the system under study, such as loading (i.e., for systems with continuously busy 

servers, diffusion approximations provide better estimates [28: 217] ). 

While approximation techniques provide greater flexibility over sometimes- 

insoluble analytic solutions, they too have limitations. Most obvious is that they are 

approximations...sometimes they over-estimate, under-estimate, or fail spectacularly. 

However, these techniques can provide good estimates when properly used. 

Another problem that exists in approximation techniques is the ability to handle 

multiple classes of customers (jobs) in a general context. Of particular interest to this 

effort are networks involving probabilistic routing with class-dependent service rates and 



multiple visits to a service center with overtaking permitted (a latter arrival may pass an 

earlier arrival). A review of the published works reveals that these networks are 

problematic to approximation techniques because of the class dependencies, and that this 

area requires further development. 

Actually, no published works found on approximations allow for general routing 

with class-dependent service rates. Thus, the objective of this work is to increase the 

flexibility of approximation techniques in providing estimates of congestion measures in 

a general queueing network under the presence of multiple customer (job) classes and 

class-dependent service rates. 

Scope 

The network model utilized in this effort is, in appearance, the classic Jacksonian 

network [20; 21]. Our network contains a finite number of single-server, infinite 

capacity, queue nodes (waiting line and server combination) connected in an arbitrary 

fashion. Routing between the queues is based on specified branching probabilities, and 

customers may visit a node any number of times. The network is open: customers (jobs) 

enter from the outside world and all customers eventually depart. 

While any number of distinct customer classes may enter the network, we use 

only two for this effort. The external arrival processes for each class are taken separately 

to be Poisson, but this is not a hard requirement.   For our purposes, entry to the network 

is restricted to a single node; however, this is for convenience since the capability exists 

to allow entry at all nodes. In general, customers may depart the network after 

completing service at any node. 



The service discipline at all queue nodes is first-come, first-serve (FCFS). 

However, the different customer classes may have different service distributions at a 

given node. We use the exponential distribution with differing class-dependent rates. 

For other service disciplines (i.e., last-come, first-serve; processor sharing), exact analytic 

solutions exist under this condition. However, for the particular combination of FCFS 

with different service rates, an exact analytic solution does not exist [40: 72-75]. And, as 

mentioned previously, none of the approximations permit this condition, either. 

Regarding estimates of the congestion measures obtained from approximation, 

these are for long-run operation of the network. Transient, or startup, behavior is not 

addressed. Since our objective is to produce a tool to focus a simulation study, this does 

not pose a problem. However, for networks that cannot realize long-run performance, the 

estimates have limitations similar to those of exact analytic solutions. 

As a final note on the scope of this effort, the reader is asked to remember that 

this is a groundwork effort in an area for which no published works were found. That 

being said, this effort is not a demonstration of mathematical prowess. Additionally, it is 

not a simulation study, nor a sensitivity analysis. Rather, it is the development and 

demonstration of a practical tool for the analyst. 



Overview of Methodology 

The below list outlines the general methodology. Specific details are presented 

later in the chapter on development. 

• Determine the state of current research 

• Validations of approximation and simulation models 

• Extend simulation to more general model 

• Demonstrate how approximation can be used to guide a simulation study 

Organization of this Report 

Chapter 2 contains a review of relevant literature. Chapter 3 presents the 

development and findings, and ends with a demonstration of how one could use the 

results of this effort to focus a simulation study. Chapter 4 discusses further research 

suggestions with the conclusion. 



II. Literature Review 

The intent of this chapter is to survey works relevant to the objective. While 

completeness is desirable, we omit sources that focused on closed networks and those 

that failed to provide additional insight. The first section covers the history of exact 

analytic solutions, ending with conditions necessary to achieve a solution. Then, we 

address approximation techniques developed to analyze cases where no exact solution 

exists or where the solution is computationally intensive. In the final section, we look at 

some additional issues related to class-dependent structures in a queueing network. 

Exact Analytic Solutions 

The formal study of queueing networks is quite young, although the development 

of Queueing Theory began in 1909, when A. K. Erlang published "The Theory of 

Probabilities and Telephone Conversations." From this, and later works, Erlang spawned 

the concept of stationary equilibrium, which is an assumption inherent and necessary to 

most analytic solutions (we will return to this point near the end of this section). In brief, 

the assumption is that the probability distribution of the system state has a steady state, or 

limiting, form [17: 52; 39: 546]. While this is not the only assumption needed for an 

analytic solution, it plays a significant role. Consequently, in these works, Erlang laid the 

groundwork for obtaining analytical solutions to queueing systems [17: 10-11]. 

Over the 50 years following Erlang's first paper, research centered mainly on 

characterizing a single queue node (the waiting line and server) operating in isolation. 

While the results were necessary to fundamental understanding, no preeminent works 



existed for networks of queues; although in 1954, J. R. Jackson first considered two 

queues connected in series [32: 232]. In 1957, however, Jackson presented a paper 

entitled "Networks of Waiting Lines," which many regard as the seminal work in the 

study of queueing networks. 

In his paper [20: 518], Jackson presented a model for the departments of a 

machine shop. Here, each department contained different machine types (one or many), 

and waiting lines formed to gain entrance to each department. Additionally, the 

workload at each department could come from another department or from outside the 

shop. Routing between the departments, or out of the shop from a department, was 

probabilistic. 

Keeping with the previous citation, but generalizing the terminology: Jackson 

studied a network containing a finite number of first-come-first-serve (FCFS) queue 

nodes, where each has a finite number of servers working at the same rates. As noted, 

routing between the queues is by specified branching probabilities, and the queue lengths 

have no limit. However, Jackson stipulated that external arrival be governed by a 

Poisson process, and that the service times be exponentially distributed. (Aside: It is 

apparent that our model, as discussed in the first chapter, bears a strong resemblance to 

the Jacksonian construct.) 

In analyzing his model, Jackson found that the steady state distribution of the 

system state is the product of the distributions for each department. That is, the 

distributions of each department behaved as though they were operating independently 

from one another [20: 518, 520]. Thus, you can study each department in isolation, and 



form the joint distribution from the product of each. In addition, it is instructive to note 

that Jackson appealed to the concept of stationary equilibrium in developing his solution. 

This short, four-page presentation by Jackson provides the basic framework 

needed to obtain analytic solutions. While details of a specific network may vary, 

analytically obtaining measures of congestion begins by determining the product-form 

solution of the system state distribution under the assumption of stationary equilibrium. 

"With few exceptions, networks that are analytically tractable are product-form 

networks.. .that admit an invariant distribution...[, and t]here are relatively few results 

known to hold for general non product-form networks... [47: 545, 569]." Though 

somewhat understated, this observation is vastly significant to this effort and in general. 

Extensions to Jackson's original work are many. In fact, Jackson himself added 

state-dependent external arrival rates and service rates to maintain a steady flow in the 

network [21]. However, it was not until 1975 that the second evolution in queueing 

network theory occurred. Up to this point, the solutions allowed only for a single class of 

customers, and no method existed to permit distinction. For greater utility, a technique 

was needed that allowed multiple classes having different arrival rates and different 

service rates at a given queue node, as well as an allowance for different queueing 

disciplines. 

Baskett, Chandy, Muntz, and Palacious provided such a technique, which also 

produces the product-form. In fact, Jackson's result is a special case of the class of 

problems now referred to as BCMP queueing networks (Baskett and co-author initials). 

"The paper of Baskett et al is, perhaps, the most widely cited paper in the field and may 



be viewed as the main archival reference for equilibrium results on product-form 

queueing networks [11: 32]." 

What did BCMP give us? This work showed that product-form solutions exist for 

multi-class Jacksonian-like queueing networks. Class-dependent service rates were 

possible for three of the queueing disciplines presented. Additionally, through the 

existence of a class-switching feature, one could model a variety of routing schemes, as 

opposed to just probabilistic. Taking these features together, it is possible to model 

general networks using this method—with some restrictions. 

One restriction, for all queuing disciplines, is that the service time distributions 

must have a rational Laplace transform to attain a solution [3: 251]. With that, the set of 

queueing disciplines allowing flexibility in class-dependent features were processor 

sharing (PS), preemptive-resume last-come-first-served (PRLCFS), and infinite server 

(IS). Though the requirement for the transform sounds strict, the disciplines listed allow 

general service time distributions. 

Flexibility aside, the FCFS queueing discipline (single server is implied here and 

from now on) did not garner the same generality as the other disciplines. Stated in the 

abstract, we have: "At first-come-first-served-type service centers, the service time 

distributions must be identical and exponential for all classes of customers [3: 248]." 

This begs the question: Was this for convenience, or was it an absolute? 

In the case of the FCFS discipline with class-dependent service rates, there is an 

implication that a solution does not exist unless all classes have exponentially distributed 

service times with the same mean. Although not given a proof, Basket et al couch the 

discussion in terms of a property called balance, which relates to the rate of flow into and 



out of a given system state [3: 251-253]. The relevance of this is that the existence of 

global balance (for the network) is a necessary condition to obtain the product-form 

solution [32: 238]. In the work, BCMP indicate that it may not be possible to actually 

obtain the solution to the global balance equations in this particular situation. That is 

because the independent balance equations (pertaining to the mutually exclusive possible 

state changes of a queue) are inconsistent. Therefore, even when this case has global 

balance, we may not be able to solve the equations or produce a product-form solution. 

Although BCMP does not explicitly show the lack of a solution to the global 

balance equations, one reaches the supposition that no solution exists for FCFS queues 

unless all classes have equal exponential service times. Indeed, many authors lead you to 

this same belief in their review of BCMP (e.g., Noetzel [34: 791]). However, it must be 

clear that BCMP did not explicitly make this statement as a finding in the body of the 

paper. Rather, the restriction on FCFS service distributions is given as part of the scope 

of their work. (Hold our supposition in memory—we return to it shortly.) 

Irrespective of this, another generalization to Jackson's network appeared in 1975 

written by F. P. Kelly. This research also admits multiple classes of customers; however, 

he represents the queueing disciplines in highly generalized manner [22: 542]. In the 

end, Kelly produces the same marginal state distributions for the disciplines considered in 

BCMP [11: 32]. Then again, Kelly's formulation achieves this by tracking the customer 

class in each position of the queue for all queues [22: 547]. BCMP present the marginal 

distributions using only the number of each class at a given queue—the state description 

for FCFS requires the same detail as Kelly's work, but not the marginal distribution [3: 

254-256]. 

10 



Nonetheless, Gross and Harris state that Kelly's results allow the customer classes 

to have different service time distributions at a queue when the queueing discipline is 

FCFS [17: 246]. This would mean an even greater generality in the study of networks, 

but it appears to contradict the supposition previously given in the BCMP findings. 

While it now appears that we have the capability to analyze any network, the 

undertakings of Kelly "give a more theoretical exposition... [than] explicit results on 

state-distributions of practical interest [11: 32]." Additionally, Kelly's abstract contains a 

worrisome statement: "The type of a customer is allowed to influence his choice of path 

through the network, and, under certain conditions, his service time distribution at each 

queue. The model assumed will usually cause each service time distribution to be of a 

form related to the negative exponential distribution [22: 542]." However, Kelly does not 

clarify this, nor does the work provide the means to support the assertion of Gross and 

Harris. 

Following Kelly's paper, two papers co-authored by Chandy provide an in-depth 

look at the concept of local balance and the product-form. The first paper introduces the 

additional concept of station balance, which relates the rate of flow into and out of a 

given position within an individual queue. This is a finer resolution than that of local 

balance (state changes of the queue), and also requires tracking the customer class in each 

position of the queue. Recalling the four queueing disciplines (FCFC, PS, PRLCFS, and 

IS), station balance is satisfied only if a new customer begins service immediately, which 

cannot occur with FCFS [8: 256]. This is an intermediate point, not the conclusion. 

The principle result of the work is summarized best in their own words, "[The] 

product form exists if and only if either the discipline satisfies station balance or all 
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service time distributions are negative exponential with the same mean [8: 257]." We 

already have that FCFS is not station balancing, and class-dependent service rates violate 

the second condition. Accordingly, we see that there is a basis for the supposition made 

regarding the BCMP paper. 

An intervening paper by Noetzel places the BCMP disciplines (FCFC, PS, 

PRLCFS, and IS) into a category he calls last-batch-processor-sharing. These disciplines 

are of a super-class of symmetric queueing disciplines [34: 781]. Symmetry requires that 

all customers in the queue receive equal shares of the server's time. What we learn from 

this work is that the product-form exists when the queueing discipline is symmetric. It 

appears that Noetzel purports that classes must have the same exponentially distributed 

service times under FCFS to satisfy his requirement of symmetry [34: 791]. 

Following Noetzel's work, Chandy co-authored a second paper on the product- 

form. Here, they derive the state balance equations using a differential equation approach 

they credit to a 1978 work by Kobayashi [10: 287]. This work contains the same 

conclusion: Classes must have the same exponentially distributed service times under 

FCFS to have a product-form solution [10: 297]. 

Is there an alternative to the product-form solution? Recalling an earlier 

discussion, we mentioned that BCMP discusses the concept of balance. In addition, we 

pointed out that balance is necessary to a solution. One alternative is to solve the balance 

equations numerically to obtain the state distributions, hence congestion measures. 

Another method is to use recursive techniques to obtain probabilities for a few states, and 

then obtain queue length distributions [9: 287]. However, necessary to these solutions is 
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stationary equilibrium, which means that the system state distribution converges to a 

limiting distribution (i.e., time invariant). 

There is another method called Operational Analysis published by Denning and 

Buzen in 1978 [12]. This method obtains performance measures from a practical 

standpoint using directly measurable quantities instead of fitted distributions. For 

example, the arrival rate is the number of arrivals during a. particular observation period 

divided by the length of the period. While this sounds like the classical definition, the 

quantity has a single value specific to each observation period. Quantities obtained in 

this manner are then used to give familiar congestion measures (e.g., utilization). 

The motivation for this work derives from the simple fact that "an analyst can 

never be certain that an equation derived from a stochastic model can be correctly applied 

to the observable behavior of a real system [12: 227]." In other words, a system does not 

always reach stationary equilibrium. The method is given to have three major areas of 

application: performance calculation, consistency checking, and performance prediction. 

However, the focus is on a specific period, as opposed to a general characterization of a 

network. Lazowska et al provides a complete text on this topic [30]. 

We close this section by providing the assumptions embedded in the product-form 

and the conditions necessary to a solution. This is the Product-Form Theorem as given 

by Chandy and Martin (shown on next page). Also, many texts take the time to illustrate 

the steps of finding a solution using the product-form. Some good examples using 

Jackson's construct are Kobayashi [24: 161-167], Schwartz [41: 219-222], and Medhi 

[32: 237-244]. Medhi spends considerable effort on illustration of the balance equations, 

global and independent, as well as local. 
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Product-Form Theorem [10: 296-297] 

Framework Assumptions: 

(1) The service discipline depends on only on the number of customers of 
each distinguished class. 

(2) Arrivals from outside the network are generated by a Poisson process. 

(3) The routing probabilities... are constant, independent of system 
loading. 

(4) The service time distributions are differentiable. 

Product-Form Theorem: For a queueing system in the framework given 
above, the steady state [probability distribution function] for that system 
satisfies product form... if and only if the discipline is balanced and for 
each distinguished class-k queue either 

(i) the service times of all customers ofthat distinguished class have the 
same exponential density, or 

(ii) the discipline is station balancing for distinguished class k, 

or both (i) and (ii) hold... 

FCFS is not a station-balancing discipline and so cannot have product 
form with nonexponential service times. 

14 



Approximation Techniques 

Though not discussed prior to now, the results of the previous section depend 

upon the concepts of Markov chains, embedded Markov processes, and reversibility [47: 

545-560]. Without belaboring the point, a Markov process has the property that the next 

state of the system depends only upon its current state, not the past [39: 304]. 

Reversibility says that the system has the same joint distribution for the state when the 

process operates in reverse time [27: 312]. This is a sufficient condition for the existence 

of the product form solutions. Also included here is the concept of stationary 

equilibrium. We point these out for additional insight, and as a reminder that analytic 

solutions are geared toward the long-run, or equilibrium, state of a particular system. 

When constructing networks, the use of Poisson arrivals and identically 

distributed exponential service times is an example of a Markovian queueing network. 

Networks of this type create independence among the queue nodes crucial to the success 

of the product-form [39: 546]. For this example, this owes to the memoryless property of 

the exponential distribution, which permits independence from the past events, or states 

[28: 45-47; or any suitable Statistics text]. 

However, if we allow generally distributed service times, or even exponential 

with class-dependent means, at a FCFS queue, we destroy the Markovian property and no 

longer have a product-form solution. This is so because the remaining service time of a 

customer in service impacts the waiting time of a queued customer in a manner that 

cannot be accounted for in the product-form [40: 75]. Chandy and Sauer provide a 

similar version of this discussion [9: 281-289]. 
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To contend with this, we turn to approximation methods to estimate the 

congestion measures. Generally, these fall into two categories: decomposition 

(aggregation) and diffusion. The decomposition approach views the network as a set of 

isolated queues—like an extended product-form solution, but with fewer restrictions. 

Diffusion, on the other hand, models the network analogous to a physical process having 

a continuous flow (e.g. an electrical circuit or a river) [32: 382]. 

Decomposition. In 1976, Kühn published what appears to be the first 

comprehensive work on an algorithm for approximation by decomposition [25]. In 

reality, this may be the second work, but we defer this point to later. The objective of his 

effort is to provide an approximation method for Jackson's network with general arrival 

and general service distributions. Also, the technique allows arbitrary queueing 

disciplines; however, only one customer class can exist. 

To accomplish this generalization, you decompose a network into its component 

pieces (i.e., the indvidual queue/server pairs). The purpose of this decomposition is to 

apply analytic equations obtained for queues operating in isolation to each piece of the 

original network (for example, see [17], who discusses many exact and approximate 

results for isolated queues). One then aggregates the results of these individual 

calculations to obtain the overall network performance. 

However, the queues do not operate in isolation—the departures from one may 

actually become arrivals to another. Relating findings of his peers [25: 236-1 - 236-2], 

Kühn points out that product-form networks decompose exactly under particular 

assumptions concerning the arrival processes. Indeed, that was Jackson's principal 
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finding. Thus, Kühn's approach was to apply decomposition to general networks 

through special consideration of the arrival and departure processes at each node. 

Appropriate representation of the arrival and departure processes is the heart of 

this technique [25: 236-2]. This is because these processes are the interactions between 

the queue nodes. Yet, the model looks at each queue as operating in isolation. Thus, a 

necessary assumption is that you can represent the arrival process to each queue as an 

independent, stationary renewal process. 

Definition-wise, "If the [time between arrivals] are statistically independent 

random variables, each of which has the same probability distribution function, then the 

arrival process is called a renewal process [28: 46]." All we are actually saying here is 

that the arrival stream need not be Poisson to be a renewal process. For the strong-willed, 

Chapter 8-9 of Kulkarni [27] and Chapter 7 of Ross [39] discuss this in-depth. 

From R. L. Disney et al [13], we have that, for a serially connected network, little 

reason exists to reject assuming a renewal process for the arrivals to each queue. 

However, if a customer may immediately return to the queue from which it just 

completed service, then the arrival stream is no longer independent and the process is not 

renewal. That is to say, unless all arrivals are Poisson and all service times are 

exponential, which maintains the renewal property. (Note: Kühn could not possibly 

know of the work we have cited because of its date; however, he indicates awareness of 

the problem.) 

This re-circulation is a situation known as feedback, and it poses problems for the 

renewal assumption [25: 236-4]. One solution is elegant in its simplicity: eliminate 

feedback. Under feedback, the expected number of visits by a customer follows the 
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geometric distribution. Thus, by giving each customer the total expected service time on 

the first pass through the queue, you can eliminate the feedback path. 

Although you eliminate feedback, the original process is still non-renewal. What 

you gain is a masking effect that helps to produce a better estimation. Kühn relates that 

this is based on a proof given by L. Tackäs in a 1963 article [25: 236-8]. For additional 

assurance, Kühn notes that this modification produces results closer to simulation values 

than without the modification. 

Now that we have covered the renewal assumption, we reach the second major 

assumption: that you only need two parameters to represent the arrival, departure, and 

service processes. Actually, this is the third assumption since the first is that you can 

apply the decomposition method to a general network. The idea here is that the mean and 

the squared coefficient of variation (SCV, variance divided by square of the mean) 

contain enough information to represent the processes. 

Using this assumption, Kühn now has the means to decompose the network, 

while retaining information concerning the interactions. This is information comes from 

an equation relating the departure SCV to the arrival and service SCV given by K. T. 

Marshall in 1968 [31]. Additionally, this assumption allows Kühn to apply an 

approximation due to Krämer and Langenbach-Belz for the expected wait at a queue [25: 

236-2- 236-3]. 

Summarizing up to this point, we first assume that you can decompose a general, 

non-Markovian, network (that is why this is an approximation). Next, we separate the 

queues and say that the arrival process to each queue shall be renewal. If feedback exists, 

which causes the process to be non-renewal, take steps to eliminate the feedback. Then, 
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obtain the departure SCVs and solve for the arrival process to each queue. Finally, 

estimate the congestion measures using other approximation equations. 

Without discussing how one actually calculates congestion estimates, the previous 

encapsulates the major aspects of Kühn's method. To illustrate the suitability of the 

assumptions of this method, Kühn provides several graphical comparisons to simulation 

output [25: 236-5 - 236-7]. As an extension, Kühn suggests adding customer classes; 

however, he envisions that each queue node must actually contain a separate waiting line 

for each class [25: 236-7]. 

Though long in presentation, we later need this understanding of Kühn's work. 

In 1979, Kühn published the work in the US under the surname of Kuehn and with a 

minor change in the title [26]. The only significant difference is the removal of some 

material from the appendix and addition to the bibliography. Oddly, Kühn fails to 

reference the 1976 version in any manner. He does improve notation, but the 

formulations remain unchanged. Disappointingly, he does not provide additional 

consideration for the case of multiple customer classes. 

The next stop along this route is to a paper published in 1982 by W. Whitt [48] 

and to a companion paper also in-work in 1982, but not published until 1984 by S. Albin 

[1]. The purpose of Whitt's paper is to provide a comparison between two methods of 

approximating an arrival process by use of renewal processes. Then, Albin's effort 

combines the two methods as a convex combination to provide a better approximation 

tool. 

Before discussing Whitt's two methods, we need to augment our discussions on 

Kühn's approximation of the arrival process. What we implied, but never really stated, is 
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that the arrival process to a queue may be the sum of external arrivals, as well as the 

departures from any queue. We already noted feedback that occurs immediately, but we 

did not discuss feedback delayed by loops or circuits within the network, which also 

creates dependence. Thus, Kühn's actual assumption is that the superposition (sum) of 

these arrival streams, under the possible presence of delayed feedback, gives an 

independent renewal process at each queue [25: 236-3 - 236-4]. 

Now, Whitt notes that Kühn's approach is an application of the stationary 

interval method [48: 126-127]. In this, you match the renewal approximation to the 

system behavior using a short time interval. However, the renewal intervals in Kühn's 

approximation are from a superposition process, which are not independent intervals. In 

1972 E. ginlar showed that, in order to have independence, the separate streams 

themselves must be Poisson for the superposition to be renewal [48: 138]. Therefore, the 

stationary interval method may not always provide the best results since you are looking 

at short interval in a process with dependencies. 

In order to account for the dependence, Whitt suggests exploring the asymptotic 

method [48: 125, 127]. In this method, you match the approximation using a large time 

interval. This actually means that you match the approximation using the asymptotic 

behavior over sums of successive intervals. 

How does one matches the approximations to the process? We again use only the 

mean and the SCV. Earlier, we discussed Kühn's rationale for selecting this approach; 

however, Whitt gives a more compelling reason. Namely, if you try to use more 

parameters to characterize the distribution of the arrival process (higher moments), then it 
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is possible to have inconsistency in these additional parameters [48: 134-135]. This 

inconsistency comes from approximating a renewal process by a superposition. 

Getting to the comparison, Whitt uses simulation to obtain estimates of error for 

the two methods separately [48: 143]. He indicates that for some scenarios, which he 

does not list, neither method performed well. However, when the SCV of the 

superposition is greater than one, the asymptotic method tends to overestimate the mean 

queue length, whereas the stationary interval method tends to underestimate. When the 

SCV is less than one, the two method reverse in estimation. 

In addition to those observations, Whitt relates some known properties of the two 

methods[48: 128]. From ginlar (1972) and Khintchine (1960), the stationary interval 

method is asymptotically correct as the number of arrival streams gets large. And, from 

Whitt's own work in 1979, the asymptotic method is asymptotically correct as the server 

utilization, or traffic intensity, approaches one. 

The above comparison and observations lead Whitt to the belief that a convex 

combination (hybrid approximation) of the two methods would work well. Here, Albin 

notes that the accuracy of the hybrid depends on the distribution type of processes you 

merge [1: 1153]. After developing the weighting scheme, she uses six different 

distributions sets to validate the approximation: 1) hyperexponential with balanced 

means, 2) lognormal, 3) half hyperexponential and half lognormal, 4) half exponential 

shifted by a constant and half gamma, 5) exponential shifted by a constant, and 6) 

gamma. However, she acknowledges that she could not assess quality under different 

arrival rates and different distributions. Notwithstanding, she gives that the average 

absolute error of the hybrid is less than 5 percent [1: 1137]. 
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Let us take a moment to reconsider what Whitt suggests. Earlier, we gave that the 

asymptotic method is asymptotically correct as the utilization, or traffic intensity, 

approaches one. And, relating to his 1979 work, Whitt notes that the asymptotic method 

is the heavy-traffic limit of the equivalent random method [48: 129]. Consequently, we 

see that Whitt recommends blending a decomposition approximation with a diffusion-like 

approximation (a decomposition approximation using asymptotic results). 

In 1983, Whitt does this in a paper entitled "The Queueing Network Analyzer" 

(QNA). This paper describes a parametric-decomposition method that blends Kiihn's 

efforts, the results of other's efforts (see [49]), and the hybrid approximation [49: 2783]. 

The result is a software tool built to provide approximate analysis of non-Markovian 

queueing networks. To our benefit, we discussed practically every aspect of QNA in 

getting to this point. Nevertheless, there are a few additional notes to make. 

First, Whitt is quick to note that the heuristic approximation of the asymptotic 

method is not the same as heavy-traffic limit theorem and actual diffusion 

approximations—those are more complicated [49: 2783]. However, Whitt uses 16 pages 

to explain this and present the related, non-intuitive equations [49: 2792-2807]. Needless 

to say, we refer the reader to the published work. 

Earlier, we noted that Kühn used an approximation due to Krämer and 

Langenbach-Belz for the expected wait at a queue. QNA supplements this by explicitly 

using the form due to K. T. Marshall [31]. In actuality, they differ only by an extra term, 

which Marshall omits. However, Whitt notes that the extra term reduces accuracy when 

the arrival SCV is less than one [49: 2802]. 
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While QNA permits most of the generalities Kühn allows, it does take one step 

back. Specifically, QNA only handles the FCFS queueing discipline. Though Whitt does 

not cite direct causality, we find that the traffic equations (equations that relate the arrival 

and departure processes) in QNA have a simpler form. However, this does limit QNA's 

scope of applicability. 

Here is a small bonus: QNA does permit multiple customer classes, and each class 

may have its own service time distribution at a given queue. Furthermore, the 

distribution can be different for each visit to a particular queue. However, the class 

routing is deterministic, and the user must specify the complete path of each class [49: 

2789]. 

As before, we do not want to go into the particulars of calculating estimates of the 

congestion measures. The procedure is as before: decompose the network, eliminate 

feedback, estimate the arrival process to each queue, and aggregate the results. The 

primary difference here is that this is done using systems of linear equations [49: 2786]. 

To eliminate the nonlinear terms in Kiihn's application of the stationary interval method, 

Whitt makes a further assumption that the superposition is a Poisson process [49: 2797- 

2798]. 

In a separate 1983 paper, Whitt presents the performance of QNA. Referring to 

Kiihn's 9-node example, the results are indistinguishable from the graphical 

representation [50: 2833-2834]. However, Whitt notes that, for situations where a queue 

accepts arrivals from another queue and sends its departure to that same queue, QNA 

may yield incorrect results [50: 2829]. The interested reader should consult the actual 

paper to get a better feel for the numerous cases presented. 
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Although QNA was written as a software product, obtaining a copy appears 

difficult if not impossible. While the above papers discuss the first version, it is known 

that Purdue University holds version 3.0 . However, AT&T Laboratories declined our 

request to obtain a copy from Purdue [52]. 

Up to now, we concentrated our discussion on decomposition methods. However, 

we did not explicitly discuss three efforts, but we wish to note them for documentation 

purposes. Specifically, we omitted works by Sevcik et al [43], another by Chandy and 

Sauer [9], and one by Shanthikumar and Buzacott [44]. However, we do not feel any 

information is lost since these works take us in the direction of increasing complexity 

(i.e., integrals and nonlinear equations), or are contained in [1; 48; 49]. 

Diffusion. Prior to the works of Kühn, those mentioned in the previous 

paragraph, and Whitt; Reiser and Kobayashi present a diffusion approximation for 

queueing networks in 1974 [38]. Though given as a diffusion approximation, this work 

also uses the two-parameter assumption (mean and SCV contain adequate information to 

represent the process). Given Whitt's admonishment, we see that this could be the first 

work on the decomposition approximations. But, in the 1976 paper, it is not clear that 

Kühn is aware of this work. Given that Reiser and Kobayashi's title is "Accuracy of the 

Diffusion Approximation for Some Queueing Systems," we will simply say that the two 

approaches developed in parallel. 

We already described the diffusion approximation as a fluid-type model used 

when the utilization, or traffic intensity, approaches one. Actually, the expression for the 

expected waiting time at a queue derived from the heavy-traffic limit theorem is the strict 

upper bound when arrivals and services are general [32: 377]. In other words, we see 
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that this category of approximations represent an extreme side. Decomposition methods, 

on the other hand, tend to be middle-of-the-road with respect to upper and lower bounds 

on the expected waiting time for general queueing networks. 

Multi-class constructs also exist for the diffusion approximations. Gelenbe and 

Mitrani present a discussion on possible extensions in 1980 [15]. In 1993, Kelly and 

Laws published a work on the virtues of dynamic routing over deterministic routing, 

which QNA uses. In their use of dynamic routing, the customer chooses its route based 

on conditions in the network. However, they indicate additional work is required to 

support generalization [23: 84]. 

In competition with QNA, we found software by Harrison and Nguyen called 

QNET. This software is self-described as an approximating Brownian system model that 

is better than QNA [18: 1-2]. However, three years afterward in 1993, a second paper by 

Harrison and Nguyen appeared indicating that the "QNET approximation scheme is 

generally not valid [19: 6]." They note that mutli-class, FCFS queueing networks with 

feedback present the majority of the problems for their formulation [19:7]. 

After some revisions to the QNET approximation, two numerical examples show 

the average error to be under 10 percent for determining the distribution of the system 

response time [19: 33-39]. However, graphical illustrations indicate that convergence to 

simulation values of response time does not occur until traffic intensity exceeds 0.80 [19: 

38-39]. The status of this particular method and the software are unknown. 

Because of the upper-limit nature, diffusion methods come with their own class of 

problems. In general, you cannot obtain information about queues in light traffic because 

the waiting times are set to zero [16]. Because of this, there may be large errors in the 
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remaining estimates [28: 218]. Browne and Whitt present a more enlightened and 

optimistic view on the use of diffusion approximations. In particular, they believe that 

diffusion processes are elementary and should be the first candidate in any queueing 

application [5: 463]. 

Summary. Reviewing this section, for the decomposition methods, we first 

assume that you can decompose a general, non-Markovian, network. Then, you separate 

the queues and say that the arrival process to each queue shall be renewal. If feedback 

exists, which causes the process to be non-renewal, take steps to eliminate the feedback. 

Then, obtain the departure SCVs and solve for the arrival process to each queue. After 

all that, estimate the congestion measures using other approximation equations. 

However, if all nodes in the network are under heavy traffic, a diffusion 

approximation may produce better results. These methods view the network as a 

continuum, rather than isolated queues. But, in some cases, the steps in a diffusion 

algorithm parallel the decomposition method, which avoids some of the complicated 

mathematics. 
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Multiple Customer Class Considerations 

In the approximation methods just covered, we found that they admitted multiple 

customer classes under some restrictive rules. For example, QNA requires complete 

specification of the itinerary of each class. Kelly and Laws discuss dynamic routing, but 

there are some implementation issues. Lacking in the works found was any mention of 

probabilistic routing. 

Regardless of the routing method, we did see a consistency in how each 

represented the flow of customers between nodes. Specifically, we saw prevalence of the 

two-parameter method: use the mean and the squared coefficient of variation (SCV, 

variance divided by square of the mean) to represent arrival, service, and departure 

processes. This was presented by K. T. Marshall in 1968 [31], with some changes 

allowed in later forms. However, there seems to be a general dilemma for multiple 

classes. 

The concentrated study of output processes actually began around 1956 with 

Burke's analysis of two queues in series [6]. Though there were some slight problems 

[7], the work inspired Jackson's effort, which eventually lead to the decomposition 

algorithm by Kühn. 

Regarding the assumption that arrivals to a queue node can be assumed renewal 

for a network of arbitrarily connected queues, significant disquiet existed as to whether or 

not one should make this assumption [13]. Addressing Kiihn's handling of immediate 

feedback, Disney et al generally accept the technique, but note without being specific that 

it would not be acceptable for determining anything other than queue lengths [13: 637- 

638]. 
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Having the benefit of hindsight, we are not terribly concerned with that specific 

observation. However, we are concerned with the restatement of Tackäs' proof. In 

illustrating why the assumption is acceptable, Disney et al state, "...since customers are 

indistinguishable... [13: 637]." Clearly, if one plans to include multiple classes, this 

could be an area of extreme concern—the classes are not indistinguishable. 

Previously, we also talked to difficulties related to issues of independence in the 

superposition of feedback, in general. We simply noted that independence is lost when a 

customer returns to a previously visited node. Melamed gives an expanded explanation 

for the case of multiple classes. Basically, if one customer class can get in line ahead of 

(pass) another customer class that is returning for additional service, then a dependency 

exists that is difficult to accommodate [33: 223]. 

In a work that predates QNA, Melamed presents a multi-class decomposition 

method that allows different service distributions. However, he accomplishes this by 

conditioning on the customers' itinerary [33: 226]. This sounds similar to the method 

used to allow classes in QNA. Additionally, the method is such that it excludes FCFS 

because of the possibility of passing [33: 239]. Indeed, we omitted several works 

because of this restriction on passing. 

Returning to our general discussion on superposition, we offer one additional 

observation. Disney and Kiessler, in a text devoted entirely to the study of traffic 

process, comment on the simplifying assumption in QNA (though not aimed specifically 

at QNA) that leads to the linear form of the hybrid approximation. They say, ".. .the 

conclusion that the nodes in these networks have Poisson input processes is not 

justifiable. Nor can we conclude that the several input processes to one node or to any 
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collection of nodes are independent processes [14: 6]." Furthermore, "...these networks 

with loops and with FCFS discipline never have renewal departures except in the case of 

exponentially distributed service times [14: 7]. 

Do not construe this as a specific criticism of QNA, but as a criticism of 

approximation methods in general. What we are getting at here is that significant theory 

weighs against including multiple customer classes in a general framework. 

Regardless of these observations, Whitt published "Towards Better Multi-Class 

Parametric-Decomposition Approximations for Open Queueing Networks" in 1994 [51]. 

This method attempts to extend Marshall's 1968 result [31] to include multiple classes. 

Without mincing words, "Methods are developed for approximately characterizing the 

departure process of each customer class from a multi-class single-server queue with 

unlimited waiting space and the first-in-first-out service discipline. The model is 

[general] with ä non-Poisson renewal arrival process and a non-exponential service-time 

distribution for each class. The methods provide a basis for improving parametric- 

decomposition approximations for analyzing non-Markovian open queuing networks with 

multiple classes [51: 221]." 

To the best of our knowledge, this presents a reasonable portrayal of the past. In 

addition, to the best of our ability, faithfully represents the current state of affairs. 
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III. Development and Findings 

Here we present the incremental findings towards satisfying the objective. After 

briefly reviewing the objective and scope, we give an expanded statement of the general 

methodology. Following that, we begin a review of significant findings for each task. 

We combine the development of any necessary relationships with the review. At the end 

of the chapter, we show how one could apply the results of this effort to focus a 

simulation study. 

Review of Objective 

The objective of this thesis is to increase the flexibility of approximation 

techniques in obtaining estimates of congestion measures for complex, open queueing 

networks. That is, to easily obtain these estimates, before building an intricate simulation 

model, for networks having several customer classes and class-dependent structures. 

That sounds great, but let us look a little deeper into the motivation before going 

further. For large network models having a complex solution or without an exact 

solution, simulation is likely to be the best tool to characterize the general behavior. If 

you have simulation software with a graphical interface, it is generally easy to quickly 

create a model and obtain summary statistics. Of course, this is relative to the complexity 

of the model. 

However, ease of use diminishes as you add class-dependent structures (e.g., 

service times) and endeavor to obtain more detailed statistics (e.g., the actual waiting 

time of each class at a queue instead of the aggregate time). This decrease is the result of 
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complexity due to additional overhead the user must incorporate to handle class 

dependencies. More overhead means more time spent building the simulation model. 

Plus, you have increased opportunity for mistakes as the level of detail increases. 

What if you are only interested in adding that level of detail for queues meeting 

some criteria, like longest average queue length or shortest wait based on customer class? 

This modeling approach would certainly decrease the amount of time spent building the 

simulation model, but structure of the network model may not readily indicate where this 

will occur. What one needs is a tool that shows where to focus effort in constructing the 

simulation model. This takes us back to the stated objective. 

Summary of Scope 

We conduct the study on an open network having a finite number of arbitrarily 

connected queues. The external arrivals consist of different classes of customers that 

may have different service time distributions at any queue. In addition, all queues are 

single-server, first-come-first-serve (FCFS) with unlimited capacity. Routing between 

the queues is based on specified branching probabilities, and customers may visit a node 

any number of times. For this work, entry to the network is restricted to a single node, 

but customers may depart the network after completing service at any node. Figures 1 

and 3, introduced later, schematically illustrate different realizations of this description. 

This effort seeks to find a procedure to estimate performance of a network 

involving multiple customer classes. Or, if a procedure is not readily apparent, provide 

groundwork on development towards that end. To make the task manageable, we 

estimate long-run congestion measures. We do not address transient (startup) behavior. 
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Overview of Methodology 

• Conduct literature review of exact solution techniques to verify inability to 
accommodate the objectives of this effort. 

• Conduct literature review of approximation techniques to determine state 
of current research (i.e., has someone solved this problem). 

• Obtain an existing, or develop a new, approximation algorithm for 
queueing networks. 

• Construct a queueing network model having an exact analytic solution 
(base case). 

• Construct and verify a simulation model of the base case. 

• Verify the estimates of the approximation algorithm for the base case. 

• Introduce class-dependent service rates in the simulation model. 

• Observe the congruency of the approximation algorithm and note any 
failures. 

• Increase the complexity of the network model, obtain estimates from the 
approximation algorithm, and check agreement with simulation model. 

• Illustrate use of approximation as a precursor to simulation. 

Highlights of Literature Review 

The class of queueing networks we desire to analyze does not have an exact 

analytic solution. The works co-authored by Chandy [8; 10; 40] repeatedly show that 

networks containing FCFS queues with class-dependent service time distributions are 

intractable. If this is not true and a solution actually does exist, the current state of 

queueing theory is not advanced enough to reveal the form. 

It is generally true that one can make simplifying assumptions that allow you to 

use an exact solution. However, this may be undesirable since you must alter the 
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network to fit the framework of an exact solution. The decision as to whether or not this 

is acceptable is left to the user. In our case, the only possible simplification appears to be 

forcing equal service times under the exponential distribution. But, which is better, an 

exact solution to an approximate model, or an approximate solution to a more exact 

model [49]? This lead us to the approximation techniques. 

For cases where the servers of the entire network are continuously busy, diffusion 

approximations seem appropriate. These techniques may be suitable if you only need to 

identify bottleneck locations. However, we choose to exclude heavy-traffic situations 

from this research effort. 

The greatest flexibility comes with decomposition methods, where the network is 

viewed and analyzed as being composed of isolated queues. There appear to be several 

proposed techniques; however, all seem to be variations on a theme with no one being 

clearly better than another in terms of accuracy. 

Selection of Approximation Algorithm 

We decided to use the algorithm of the Queueing Network Analyzer (QNA) for 

this effort. This choice is based upon ease of implementation in a computational 

environment. During the review, we found that most published works generalized the 

content beyond the point of being able to readily construct a working application from 

them. However, we found that the paper on QNA [49] contains enough information to 

reconstruct the algorithm rapidly in a symbolic environment (e.g., Mathcad®), or code the 

method in your favorite high-level language (e.g., FORTRAN). Additionally, it is easy 

for the user to modify the algorithm to test different assumptions. For example, you can 
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remove the existing equations that relate arrivals to one queue to departures from the 

another, and replace them with other approximations. Thus, the QNA algorithm does not 

bind you to its internal approximations, as long as your new approximations are linear. 

Again, QNA is not the only answer, but it does eliminate the need for us to 

attempt building an approximation from scratch. There are commercial applications 

created to analyze communication networks; although, we did not use them for this 

effort. It may be possible to modify these for our needs, but they appear too specialized 

for the general network studied here. 

If you recall, QNA does support multiple customer classes, although, the 

implementation is more restrictive since you must prescribe routes for each class. Thus, 

our goal is to further generalize this decomposition algorithm with probabilistic routing. 

A Trial-Size Network (Base Case) 

Selecting a Network. Once we add class-dependent structures to our 

decomposition algorithm, we need to know if it produces reasonable congestion measure 

estimates. We will use simulation to provide comparisons since the scenario is 

analytically intractable. Therefore, the simulation becomes our indicator of the true state 

after introducing class-dependent structures. 

To anchor the validity of the comparisons, we start at a common reference 

point—a base case network with a known solution. This allows us to determine whether 

we reconstructed the approximation algorithm correctly, and provides a check for 

estimation biases in our simulation. 
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Figure 1 shows the base case network. The external arrivals are Poisson at rate A,0 

and enter at node 1. By superposition of Poisson processes, this arrival stream can 

represent any number of classes. Node 1 represents an FCFS queue with a single server 

working at rate (ii (later we use only a circle to represent this combination). For the base 

case, the service time distributions are exponential with the same mean for all classes. 

From node 1, customers depart the network with probability pi0, or proceed to node 2 

with probability pi2. Node 2 is the same as node 1, but with service rate \x2. All 

customers completing service at node 2 return immediately to node 1. The returning 

stream must merge with the external arrival stream—this is delayed feedback. 

Figure 1. Two-Node Network [46: 412] 

As long as all classes have the same service time distribution at a given node, this 

network has a product-form solution. Letting nj denoted the number in the queue at node 

i, we have that the joint probability distribution is given by 

P(nl,n2) = (l-p1)p1 ni.(i-P2)P2«2   ; (1) 

where P; - Xj / JULI is the traffic intensity at node i (same as server utilization). 
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Using this equation and all possible values for the numbers at each queue, we can 

calculate the congestion measures. Pursuing the solution in that fashion is difficult even 

with this small example. Instead, using results in examples given by Trivedi [46: 412- 

417], we obtain equations that allow us to calculate the congestion measures. As an 

example, the expected response time (average time spent in the network) is given by 

E[R] = \^- + 1^- .—  . (2) 

Setting Up a Scenario. For our base case scenario, we begin with two customer 

classes arriving to node 1 at different rates. Keep in mind that we do not distinguish 

between the two classes in terms of their service requirements at this time, but we want 

the architecture in place for later use. For class 1, A,ci = 1/10, and for class 2, Xc2 = 1/15. 

From the theory of superposition, the external arrival rate, A,„, is just the sum of these two 

since both are Poisson. We selected unequal service rates for the queue nodes. Node 1 

has ui = 2, and node 2 has u^ = 3. This means that node 2 processes slightly faster than 

node 1. Then, we set the probability that a customer departs the network after completing 

service a node 1 at pio = 0.30. 

Appendix A illustrates our solution for this network. We will refer to this as our 

exact solution, and we remind the reader that this is so only as long as the arrivals are 

Poisson and the service times have class-independent exponential distributions. After 

some math to calculate the internal arrival rates, we get that the traffic intensity at node 1 

is pi = 0.2778, and is p2 = 0.1296 at node 2. This gives an expected response time of 

3.2013 units; we show the other results later. 
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Simulation Model for the Base Case 

Model Building. After choosing our base case and obtaining the solution, we 

create a high-resolution simulation model and then calibrate the simulation performance 

against the base case. We want to include all simulation features needed to track multiple 

customer classes (high resolution) before running the model to match the base case 

solution (calibrate). This is because seemingly minor changes to the simulation model, 

later, may cause changes in the results not related to the customer classes. 

To put the complexity differences in perspective, note that Figure 1 contains two 

components (server and queue count as one) and four arcs. The simulation model (shown 

in Appendix B) contains 131 components and 172 arcs to represent the same network and 

account for the movements of only two customer classes. Granted, there are structures in 

our simulation model (90 components and 41 arcs) that you only need for this study (e.g., 

arrival and departure time intervals). However, you need the remainder to capture 

congestion measure information by customer class. Building in all overhead at the 

beginning allows us to check the model coding so we can develop our ideas and test them 

using a tool that we verified as properly built. 

We will not present a tutorial on our simulation software (AweSim®, [37]), but 

we should briefly describe the structure of the model. The next paragraph generally 

describes the schematic, and then we return to the discussion. Ignore the specifics of the 

schematic in Appendix B, but get a flavor for how the simulation model size can vary 

based on the level of information you desire. 

Figure 2 shows two of the symbols used in the simulation model. Every node 

shown on the simulation schematic has a rectangular tag giving the node name, and the 
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names are descriptive where important. The model begins at two create nodes for two 

types of customer having some time between creation that is exponentially distributed, 

which is held in an attribute. After creation, each class is assigned their birth type before 

passing through a series of nodes that collect information on the arrival process. Just 

before reaching a queue node, each class is assigned its service time for the given queue. 

We do this in this manner so that you can differentiate between classes. Later, we collect 

service time information, which occurs immediately after the server in another series of 

nodes. The arc leaving the queue node represents the server. After service at the first 

queue, we leave the network or go on to the second queue based on some probability. 

EXPONcio, n 

EXPONOO, 1)      ATEIB[1] 

Create Class 1 

External Arrivals 

j , ATHE121 ^ 

Ql 0    0 
The Queue The Server 

Figure 2. Simulation Representation of Nodes 

Output Analysis. Next, we determine if our simulation output matches the exact 

analytical results. This involves application of output analysis covered in simulation 

texts and literature [2; 29]. We need to properly consider this area, but without turning 

this into a simulation study. The question is: What do we need to do to be comfortable 

with the simulation output? 

For our output analysis, we first consider that the estimates are for long run 

performance so we do not have an identifiable stopping point in time. The alternative 
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solution to this is to have a stopping point based on the number of departures from the 

system. This led us to look at departures ranging from 10,000 to 200,000 for comparison 

against the base case. 

To assign statistical significance to the simulation output, we consider conducting 

multiple replications and average the means of each run, or parsing the output from one 

long run into sections (batch means) and average the batches [2; 29]. We found that 

short runs tend to be biased, and we need upwards of 25 replications to get reasonable 

estimates with low standard error. A single long run converges to the same mean 

performance as the replications; however, we found that the logical batch points (where 

all servers are idle) are not regularly spaced. This creates some difficulty because we 

need to parse the run so that the batch means are not correlated. After attempting to batch 

a very short run (1000 departures), we decided that the method was not practical here. 

For the class-dependent work later, we just want to run the simulation to a point 

where the means resemble steady state values. We use only a single long run for these 

comparisons because we also want the variability estimates from the run itself. This is a 

valid as long as the system is not in heavy traffic, but we will not calculate a confidence 

interval for measures from these runs. For instances where we need to substantiate a line 

of reasoning, we use replication of the shorter runs to estimate a confidence interval for 

the means. 

Referring back to the base case discussed in the last section, we found the 

expected response time for the base case was 3.2013 units. For the simulation, we found 

that we could only obtain 3.185 (no confidence interval, we are only looking at the 

observed mean). Believing this to be initialization bias caused by starting from an empty 
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and idle condition, we attempted to correct the problem. We looked at deleting the 

startup period, starting the run with the queues containing the expected number of 

customers (actually, just over the expected number), and a combination of both. Since 

we are not under heavy traffic, no method works well because the system often returns to 

an empty and idle condition. The conclusion here is that we need to run the simulation 

beyond 200,000 departures and possibly alter the starting conditions to reduce the bias. 

Using the technique of ensemble averages (replicate long runs, batch each run 

with equal batch intervals, and average batches across replications), we might obtain an 

estimate of how much longer we need to make the run and how to account for the 

initialization bias. However, doing so becomes self-defeating at this stage because the 

time required overshadows any benefit derived from forcing the estimates to be exactly 

equal. Again, we stop at 200,000 departures for most comparisons and acknowledge the 

apparent bias. At the end of the next section, we have one more point to make regarding 

bias. 

After that discussion, one might point out that we could replicate the long runs. 

There are two problems with this: run time and length of random number streams. For 

this simple, two-node network, a Pentium II™ 200 requires approximately 18 minutes to 

process a single replication with 200,000 departures. During each replication of the base 

case, the first queue node will process on the order of 660,000 entities and the second will 

process approximately 460,000 entities. Although we attempted to space the random 

number streams to allow replication, we run the risk of overlapping both of the service 

time and the branching streams after three replications. 
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We want to present all three estimates of congestion at the same time. The next 

section contains the base case congestion measures for the exact solution, the simulation, 

and QNA. At this point, we note that the simulation has good face-validity. 

Comparison of Estimates for the Base Case 

The previous section discussed the effort directed toward verifying that we 

constructed the simulation model correctly. Additionally, since we specified the base 

case model that we are trying to embody with our simulation model, we were also    ' 

validating that we constructed the correct simulation model. This section presents the 

results ofthat effort below. Additionally, we extend the validation effort by discussing 

and illustrating two problem areas that hold in general beyond the base case. 

Before we present the comparison, we quickly discuss building QNA. Recreating 

QNA at the level of a simple tool is straightforward using the published work [49]. In 

fact, we basically copied the equations directly into Mathcad®, but we did not include the 

variability estimates given in the paper. By simple, we mean that the reconstruction does 

not provide the error checking and automatic reconfiguration (eliminate feedback) 

features of the actual software [42]. It is possible that using the actual code could have 

provided additional insight to our task. However, obtaining a copy of the code is difficult 

since this was not production software 

Verification and Validation Results. Table 1 contains a summary of the results 

obtained for the base case after determining the most reasonable operating conditions for 

the simulation. This is a comparison between all three methods. For the simulation, we 

show the averages for 25 replications of a short run (10,000 departures) and a single long 
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run (200,000 departures). The abbreviations are as follows: EN; for the expected number 

at node i, EWj for the expected wait at node i, and ER for the expected response time of 

the network. 

Table 1: Base Case Results 

Congestion 
Measures 

Exact 
Simulation 

QNA 
10K Depart, 25 Reps 200K Depart 

Mean Mean Std Error Mean Mean 
ENi 0.1068 0.106 0.001 0.106 0.1068 
EWi 0.1923 0.191 0.002 0.192 0.1923 
EN2 0.0193 0.019 0.000 0.019 0.0193 
EW2 0.0496 0.049 0.000 0.050 0.0496 
ER 3.2013 3.185 0.012 3.185 3.2013 

Note that individual 95 percent confidence intervals on the replication values 

capture the exact solution equivalent. Additionally, the single 200,000 departure 

simulation run converges to near equality with the replication. These results are 

sufficient to establish validity of the simulation model under the base case. Appendix C 

contains the AweSim output summarized in this table. 

The exact solution and QNA match for the base case, as they should if we 

reconstructed the algorithm correctly [49]. Therefore, this also provides initial validation 

for QNA. Appendix D contains an example of how one can recreate QNA. 

Feedback. Along with showing good agreement in the estimates, the structure of 

our base case network allows us to look at problems related to feedback. In the literature 

review, we included a discussion on immediate feedback, where the routing structure 

allows a customer to immediately re-queue at the same node after completing service. 

There we noted that you should restructure the network and remove this form of feedback 

to improve the quality of the estimation [49: 2792]. 
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If your routing structure produces a subset of nodes resembling Figure 1, your 

network has delayed feedback. This situation degenerates to near-immediate feedback if 

the service rate at the second node is significantly higher than the first. Here, the nodes 

become tightly coupled, and customers return almost immediately to the first queue [50]. 

We checked our base case for consequences due to this by ranging the node 2 

service time over values approaching zero and comparing the results from simulation and 

QNA. Recall that QNA and the exact solution are identical for the base case, regardless 

of the service rates. Additionally, the estimates for node 1 will remain unchanged 

because the nodes are mathematically independent.   We found no significant impact— 

the bias in the simulation remains relatively constant, as it should in a Markovian 

network. 

For such networks, which decompose exactly, the effect of feedback (delayed or 

immediate) will not likely be apparent. There may be some disagreement with the QNA 

estimates because of the starting conditions for the simulation and the run length. We see 

in Table 1 that 95 percent confidence intervals on the replication values capture the exact 

results. Ranging the level of feedback did not greatly affect the relative accuracy shown 

in Table 1, but we did note some change in the simulation performance. 

In further examination of QNA and the simulation, we found that the actual 

problem with feedback lies in how arrival variability affects the queue lengths and 

response time. The exact solution is true for the long run, but the shorter-running 

simulation is sensitive to variability in the feedback stream. This also may lead to bias in 

the simulation, along with run length. Furthermore, for service distributions other than 

exponential, the exact solution no longer holds because dependencies exist in the 
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network. Then, the arrival variability is not just an artifice of simulation sensitivity, 

rather it represents an actual coupling between service times and arrival rates at paired 

nodes. 

Although QNA attempts to capture these dependencies in the non-exact case, the 

algorithm may tend to overestimate the number waiting at the nodes seeing near- 

immediate feedback. Whitt suggests a procedure to address this situation, but the results 

are mixed [50: 2827-2832]. For immediate feedback, you can restructure the network 

and eliminate possible discrepancies due to differences in arrival variability 

representation between QNA and the simulation. 

Heavy Traffic. Returning to the base case, the impact of feedback is compounded 

when we simultaneously place the first queue in heavy traffic. In any situation with 

heavy traffic, simulation will tend to underestimate the expected number waiting at a 

congested node, as compared to QNA. This is because QNA uses the exact solution for 

the expected number waiting, p2 / (1- p), which goes to positive infinity as p goes to one. 

The above expression derives directly from the product-form (Equation (1)) using a 

modified geometric distribution [46: 368-369]. However, this is an asymptotic limit that 

we will not likely realize without excessively long simulations. Note that, for the non- 

exact case, QNA multiplies the term by measures of the service and arrival variability. 

Results under Feedback and Heavy Traffic. We discuss feedback and heavy 

traffic together because we encounter similar difficulties: possible underestimation of the 

expected number waiting and response time given by simulation. Table 2 shows a 

comparison using u.i = 0.56 and p.2 = 35.0, but with the same arrival rates used for Table 

1. Here, the difference is primarily due to heavy traffic at node 1 (p = 0.991). 
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Table 2: Tightly-Coupled with Heavy Traffic 

Congestion 
Measures 

Simulation QNA 
100K Depart, 25 Reps 

Mean Std Error Mean 
ENi 91.805 6.470 124.0079 
EWi 165.314 11.804 223.2143 
EN2 0.000 0.000 0.0001 
EW2 0.000 0.000 0.0003 
ER 556.252 39.383 750.0674 

For the base case network, the difference between the simulation and exact 

solution will increase as we move toward heavy traffic at any queue node. Therefore, we 

avoid heavy traffic. Once we include class-dependent service times in QNA, we must 

also be wary of network structures that lead to tightly coupled nodes. Near-immediate 

feedback may affect the quality of the approximations; however, for the base case, it does 

not. This does not mean that you will not be able to use the technique for nodes that have 

long queue lengths (heavy traffic) or unresolved feedback. It means that we must remain 

aware of these issues. Even if we are not interested in asymptotic performance, note that 

the exact solution from QNA in Table 2 shows us the correct trend information. 

Including Customer Classes, I 

Introduction. The purpose behind the work that went into the base case was to 

gain a greater understanding of the internal processes and illustrate possible problem 

areas. Plus, it gave us confidence in the validity of the simulation model under light to 

moderate traffic. We found that the largest error was in the estimation of the number 

waiting at node 2. That was at 1.6 percent below the exact value; however, the other 

values were less than 1 percent below. 
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As we add class-dependent service rates to the simulation, we retain confidence in 

the output. The output will change, but that is because the service order of customers 

may shuffle and they may experience different delays. For example, if we assign the 

service rate at node 2 to be 4.5 for one class and 1.5 for the other, the average service rate 

at the node is still three if the probability of seeing each class is equal. However, the first 

class now takes more time, on average, to complete service. Since the external arrivals 

are exactly the same as in the base case, we have a possibility that a returning customer of 

the first class (feedback stream) now finds a different customer ahead of him. This will 

induce changes in the variability of the arrival processes and waiting times, but the mean 

values will remain essentially unchanged. Additionally, the service variance at the node 

will no longer be that of the exponential distribution, even if the individual service times 

are exponentially distributed for each class. 

Possible Internal Modifications to QNA. The QNA approximation uses the 

assumption that the mean and squared coefficient of variation (SCV, variance divided by 

square of mean) contain enough information to represent the arrival, service, and 

departure processes. This information is used to relate the dependencies that exist within 

the network under general service distributions. For example, with c2 being the SCV for 

arrival (subscript a) and service (subscript s), we have one of the approximation equations 

for the expected wait in the queue being 

u * ll-J* EW ■ 
H     W-p) 

( 3- , „2 \ 
(3) 

V 
2 
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The node arrival SCV is based upon external and internal input streams, and the service 

SCV is based on the overall service. However, the SCV does not provide information 

regarding the class of customer. As you can see, both c2 values are class-independent. 

In QNA, you obtain the node arrival SCVs by solving a system of linear equations 

that relate node departures to arrival and service rates across the network. The simplest 

departure relation at the node level has the following form: 

c2
d=p2c2

s+(\-p2)c2
a   . (4) 

An equation similar to this, albeit more complex, is imbedded in the traffic variability 

equations of our reconstructed QNA (Appendix D). 

Now, the task is to find a method that permits us to obtain information from 

equations like (3) using an equation like (4) that solves the traffic variability equations on 

a by-class basis. The work presented by Whitt [51] contains several alternatives to (4) for 

just this purpose. If you know the probability of one class at a node, pi, one choice is to 

replace the departure SCV as a combination the arrival SCV of two classes. 

c2a=P\C2a\+Q-P\)c2a2   ■ (5) 

Equations such as (5) are then used to obtain forms that express the departure 

SCV in terms of class 1. The paper offers alternative equations that involve different 

levels of complexity, as well as some that address different arrival models (e.g., bulk 

arrivals). These expressions use the arrival and service SCV for any number of classes at 

a given node to obtain the results. Once you have the departure SVC expressed by-class, 

one should be able to use that within QNA to obtain a congestion measure for each 
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individual class. According to the paper, the purpose was to provide increased flexibility 

forQNA[51:221]. 

So that we could choose the best departure approximation to incorporate into our 

version of QNA, a significant portion of our simulation model contains structures to 

measure arrival, service, and departure processes. However, from the simplest to most 

complex, the approximations do not match what we observe in the simulation. Table 3 

shows a portion of the output from a run where the service rate of class 1 is uijCi = 1 and 

is Hi,c2 = 2 for class 2. The other parameters are unchanged (Appendix E, Case 1). 

Table 3 : Queue 1 Arrival Process 

Time Between Arrivals Mean Std Dev SCV 
For Both Classes 1.809 3.2155 3.1594 

for Class 1 3.0156 5.7451 3.6296 
for Class 2 4.5210 9.5232 4.4370 

Proportion Class 1 0.599 0.0000 

Referring back to Equation (5), the left hand side should match the first SCV 

entry in the table when the last two entries are used on the right side with the probability 

of a class 1 customer being the proportion. The equation does not hold—the left does not 

equal the right. For this case, the only way to get a solution is to have pi = 1.583, which 

is nonsensical. 

Even if we look at the equivalent information from the base case (Appendix C), 

where we did not differentiate class service times, we find again that the equation does 

not hold. There, the only way to have a solution to (5) for the arrival process at node 1 is 

for pi = 2.59. Since the proportion is an estimator of the probability that a customer is of 

class 1, we see that there is fundamental problem when using (5). 
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We turned to some of the more complicated approximations of [51] in hopes of 

finding a resolution to this dilemma. Unfortunately, we encounter the same outcome 

repeatedly—the approximations do not work in general. Additionally, we offer the 

following observation: If you have the tools available to obtain the information needed to 

use the approximations in [51], you do not need to be using this method because you 

already have the ability to obtain whatever performance estimates you desire. 

What causes the departure approximations not to match? In a word, feedback. 

The SCV values obtained from the simulation contain the effects due to the feedback 

stream. By removing the feedback stream and having the network appear as serially 

connected, we get good agreement. Thus, there appears to be some modification required 

in order to use these departure approximations. Without a direct way to map the 

simulation SCVs under feedback into the framework of QNA, we cannot use the results 

of[51]. 

Including Customer Classes, II 

However, the effort spent examining the SCV relationships is not a total loss. 

One thing we noticed relates to the probability, or proportion, of a customer class at a 

given node. In retrospect, it is common sense, and we get to why this is important after 

some discussion. If XijCi denotes the arrival rate of class 1 customers to node i, and X^ is 

the rate for class 2, we find that there is an invariant relationship for the proportion. 

Namely, 

i.(cte_l|l,<:1,2,.,,2) = ^r  . (6) 

49 



Yes, the values for the arrival rates for each class at a given node are known. If you refer 

to Appendix A, where we illustrate calculation of the internal arrival rates for the base 

case, you will see that those calculations hold independently for each class. To check 

this, obtain the X values for each class in isolation and then add them. The result is the 

correct arrival rate for the particular node. If you desire to check this against simulation 

output, use the reciprocals of the mean values on the lines labeled as arrival processes. 

To verify Equation (6), we ran 11 arrival combinations that caused the probability 

of being class 1 to vary from zero to one. Then, we varied the probability of departing 

the network from 0.30 to 0.70 for the 11 combinations. Finally, we checked for effects 

due to different service rates for each class. Recall that the simulation model is only 

structured for two classes. The worst single-run error noted was 0.8 percent. 

The base case network is simple with respect to Equation (6) because we only 

admit customers at the leading node. However, the method generalizes to allow external 

arrivals at any node. Note that the procedure to obtain the internal traffic rates in 

Appendix A is equivalent to that of QNA in Appendix D, but QNA uses a matrix form. 

In a roundabout manner, because difficulty arises in keeping the classes identified in the 

matrix, we can inject different classes at different nodes without the other classes present 

to get individual rates at each node. Then when we include all classes together, we can 

still track the proportion of each class. 

Next, we need to get to why this is important, but we first give some notes on 

authorship. Although developed independently here, we belatedly discovered that 

Glenenbe and Mitrani proposed this exact method in their procedure to admit multiple 

classes to their diffusion approximation [15: 144-148]. Ours is a simplification of theirs 
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since they also employ the class-switching feature noted in BCMP [3]. Additionally, 

they deal with the problem of indicating which class enters which queue by multiplying 

the external arrival vector (see Appendix D) with a matrix that gives the probability that a 

particular class enters a given queue. However, this introduces complications because of 

how we built our representation of QNA so we have yet to incorporate the technique. 

Hoping to take advantage of this finding, we looked at how Glenenbe and Mitrani 

dealt with obtaining congestion measure estimates. Their methodology follows what we 

envisioned, but one assumption used to get congestion measures by class is not true in 

general. In the text they state, ".. .a customer's waiting time at each queue does not 

depend on its class... [15: 149]," and from this observation they obtain estimates based on 

customer class. For heavy traffic, simulation shows this is a plausible assumption, but 

this is not true for moderate traffic as shown in Table 4 (Appendix E, Case la). 

Table 4: Waiting Time by Class 

Wait in Queue 1 Mean Std Dev Std Error 
for Both Classes 0.681 0.024 0.007 

for Class 1 0.718 0.032 0.010 
for Class 2 0.625 0.012 0.004 

There are only ten replications here, but a paired-t test on the class 1 and 2 wait says that 

we reject they are the same (p-value = 0). The only assumption here is normality. 

Without even bothering to bring conditional expectation into the discussion, you 

probably could guess that the wait at a queue is the weighted average of each customer 

class' wait. For node i with customer classes of proportion pi;CX, the expected wait in the 

queue is found to be 
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EWt = PiAEWiA + pUc2EWUc2  . (7) 

If we can determine the waiting time of each class without simulation, we will be able to 

estimate all other congestion measures. For example, the number waiting at each node is 

found by multiplying (7) by the total arrival rate to the node, and the components of (7) 

become the length of the queue given by class. 

Including Customer Classes, III 

By knowing the probability, or proportion, of the classes at a queue, we know 

how the congestion measures are related to the waiting time of each class. We can get 

that level of detail from the simulation, but not from the approximation. Before 

addressing that, however, we must consider how to incorporate multiple classes into 

QNA under probabilistic routing. 

What we want to do here is show that you can aggregate several classes into one 

generic customer class and still use QNA to provide congestion estimates. The user 

provides as input to QNA the means and the SCVs of all external arrival processes and all 

service processes. For this effort, we only use Poisson arrivals, which gives an SCV of 

one regardless of the number of classes contained in a stream. Therefore, we turn our 

attention to the service distributions. 

QNA is structured to process only one class having probabilistic routing. 

Although, it allows the class to have any service time distribution, which is represented 

only by the mean and the SCV. Notice that a combination of customer classes having 

different service time distributions will have some generic mean service time and a 

corresponding SCV. 
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For each node i, the expected value of the service time, T, is given by 

ETi=PiAETUcX+pUc2ETUc2  . (8) 

This is just the conditional expectation given the average service time for each class. For 

our two-node base case, we used p.; = 1 / ET; as the input to QNA. 

Continuing with conditional probability as the basis for combining the customer 

classes at a node, we have that the SCV, c2, of service is calculated as 

cl=ä?-1 (9) 

where 

ET?= Pi,clET^cl + pi>c2ET^c2  . (10) 

Again, this is just conditional expectation, but with a provincial method of 

notation. Here, you use the analytic expressions for the mean and variance of each 

class's service distribution in the identity ET2 = Var(T) + (ET)2 to form each component 

of the right hand side of the expression. For example, if the service times at node i for 

each class x are distributed exponentially with rate Uj>cx, then the expected service times 

and variance are ET ijCX = l/ui,cx and Var(T) = l/u^cx, respectively. The terms on the right 

hand side become ET2 jjCX = 2/p2i;CX. This technique is valid for any continuous theoretical 

distribution, but you only want to use non-negative, or properly truncated, distributions 

since these are service times. 
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As a check of the equations, we obtained the analytic result for (9) for the 

combination of a normal and an exponential distribution. We then used a portion of our 

simulation to generate observations from such an unlikely mix and checked against (9). 

For all practical purposes, the congruence was exact. We exclude that output from this 

work to preclude confusion due to the implied use of negative service times, but one can 

perform a similar check using Excel®. 

Including Customer Classes, IV 

Using Equations (8)-(10), we should be able to take any number of classes and 

express them as one class for use in QNA. In the previous section, we presented the 

method for finding the service time requirement at each node. However, QNA accepts 

external arrival SCVs in the same manner as service SCVs—as input. The same 

procedure applies to calculating the arrival SCVs if other than Poisson arrivals are used. 

For internal arrival, QNA calculates coefficients in the traffic variability equations 

(Appendix D) using the external arrival and the service SCVs. 

Table 5 shows a portion of the output from a run where the service rate for class 1 

is (O-i^ci = 1 and is |_iijC2 = 2 for class 2. The other parameters are unchanged from the base 

case (the output was mentioned earlier and is in Appendix E, Case 1). 

Table 5 : Queue 1 Service Process 

Service Time Mean Std Dev SCV 
for Both Classes 0.8008 0.8731 1.1887 

for Class 1 1.0006 1.0016 1.0019 
for Class 2 0.5012 0.5014 1.0110 

Proportion Class 1 0.5999 0.0000 
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Although the rates are different for the two classes, both have service times from 

exponential distributions. Note that the SCV values are near one for each class, but the 

SCV for the combination is not. 

Using Equations (8)-(10), we get that m = 1.25 and that c2 = 1.1875 for the 

service of two classes through node one of our two-node network. This is calculated 

assuming that the proportion of class 1 is exactly 0.60. These values differ by 0.10 

percent of the simulation values. 

Using the calculated values in QNA, we can compare our estimates from 

simulation and approximation. This is shown in Table 6 reusing the 10 replications 

discussed earlier (Appendix E, Case la). 

Table 6: Different Service Rates at Node 1 

Congestion 
Measures 

Simulation QNA 
1 OK Depart, 10 Reps 
Mean Std Error Mean 

ENi 0.377 0.004 0.391 
EWi 0.681 0.007 0.7038 
EN2 0.020 0.000 0.0196 
EW2 0.052 0.001 0.0505 
ER 5.810 0.032 5.9081 

Notice that node 1, the node in feedback, has the largest discrepancy with respect to the 

simulation (approximately 3.7 percent). However, the expected response time only 

differs by 1.6 percent. 

Modifying the previous example, let us now add different rates at node 2. The 

service rate of class 1 is p2fii = 3 and is u.2,c2 = 1 for class 2. Using the same procedi lure, 
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we get that (i2 = 1.667 and that c2 = 1.5926. The results are shown in Table 7 for the 

output in Appendix E, Case 2 (note that we increased the number of departures). 

Table 7: Different Service Rates at Both Nodes 

Congestion 
Measures 

Simulation QNA 
50K Depart, 10 Reps 
Mean Std Error Mean 

ENi 0.387 0.002 0.3935 
EWi 0.697 0.004 0.7084 
EN2 0.087 0.000 0.0935 
EW2 0.225 0.001 0.2404 
ER 6.910 0.018 6.9888 

Referring to Table 7, notice now that node 2, the downstream node of Figure 1, 

has the largest discrepancy with respect to the simulation (approximately 7.5 percent). 

Now, the expected response time differs by only 1.1 percent (a minor improvement with 

a higher number of departures). 

Most of the discrepancies lie in the calculation of internal arrival SCVs. We 

discussed modifying those calculations in the section entitled Including Customer 

Classes, I. There, we noted that the methods of [51] showed no correspondence to the 

observed simulation output. Therefore, we elected to use the alternate method just 

illustrated. It is key to note that the errors observed in our multi-class QNA are 

consistent with the findings of the single-class product as given in [50]. 

Going Over the Main Points 

For a multiple class queueing network having FCFS queues and class dependent 

service rates, an exact analytical solution does not exist. We found that QNA afforded us 
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the greatest flexibility in a decomposition-approximation algorithm for inclusion of a 

multi-class methodology. 

The creator of QNA proposed a method of including multiple class. However, we 

found that we could not incorporate the changes due to an inability to reconcile the 

method with observed simulation measures. 

By observing relationships regarding the flow of customers through the network, 

Equation (6), we developed a procedure to admit multiple classes, Equations (8)-(10). 

This procedure reduces many classes into one class, with the proper parameters, to work 

with the existing QNA framework. The observed results are consistent with the original 

performance of QNA. 

To verify our findings, we constructed a base case network known to be 

problematic to QNA, but known to have an exact solution with one customer class. In 

addition, we constructed a high-resolution simulation model and compared it against the 

base case over a wide range of system loading. Using the simulation as our indicator of 

the true state after including class-dependent service times, we then evaluated the 

performance of QNA using our procedure. 

To date, however, we can only obtain estimates of the network congestion for the 

composite customer class. Referring to Equation (7), we noted that we need to identify 

the waiting times of each class in order to provide estimates on a by-class basis. This 

task is beyond the time limitations provided for this research. 

Therefore, we offer our procedure as a tool to assist in developing a simulation 

study for a complex queueing network. The next section illustrates this methodology on 

a larger network. 
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Using the Procedure to Focus a Simulation Study 

Discussion. In most simulation studies, you want to build a model having the 

least complexity necessary to accomplish the task. You may be interested in collecting 

detailed information on different customer classes, but you only want this at nodes 

meeting some criteria (e.g., longest queue). To do this, you could build a basic model 

and add class distinctions as you learn more about the how the network operates. 

However, this could become time consuming, particularly in verifying routing paths. 

What if you could quickly identify candidate locations before building the simulation 

model? 

Whether existing or planned, you need a schematic representation of your 

network to build a simulation model or to apply any other analysis technique. Figure 3 

shows the schematic of the network studied here. 

Secondary Processing 

Figure 3: Evaluation Network 
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Referring to Figure 3, the numbered components represent single-server queues 

with FCFS discipline. They are the same as those in Figure 1, but without the explicit 

representation of the queue. Routing in the network is probabilistic, and arrows that do 

not end on a node indicate a departure point. All customers enter through node 1, and 

they may be from any number of classes. Notice that the upper and lower branches are 

identical in layout, but customers may transfer from the primary to the secondary legs. 

Notice, also, that nodes 6 and 14 have immediate feedback. However, there are currently 

no instances of delayed feedback. 

For simulation, Appendix F (Basic Model) shows the minimum structure needed 

to begin a study of this network (node numbers shown in the queue symbol). You can 

measure average queue lengths, waiting times, and traffic intensities. Plus, the simulation 

model includes features to capture average response times and to count the number of 

customers passing through certain points. However, this model does not allow you to 

have class-dependent service times, nor does it allow you to capture any information 

peculiar to a class. 

Say, for instance, it is important to know how many customers of a class x are 

contained in the average queue length of node i. This is given exactly by 

ENUcx=lUcxEWUcx  . (11) 

This is a direct consequence of Equation (7), and is known as Little's Law [17]. 

However, you can only apply this equation if you include the necessary structure in the 

simulation model. That is what the proposed method is about—providing a tool that 

helps identify where to add complex, multi-class structure to the simulation model. 
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Development. In order to use our decomposition approximation, we must have an 

explicit representation of the routing matrix (Table 8). Recalling our reconstruction of 

QNA, as shown in Appendix D, one could replace that routing matrix with a larger one. 

However, it is just as simple to read a flat file generated from a spreadsheet, which 

simplifies adding or deleting nodes. 

Table 8: Routing Matrix 

node 1  2 3 4 5  6  7  8  9  10 11 12 13 14 15 16 17 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.3 0.4 
1 

1 
0.3 0.3 0.4 

0.3 0.3 0.4 
0.4 0.3 0.3 

0.5 0.5 
0.5 0.5 

0.5 
1 

1 
0.5 0.5 

0.5 0.5 
0.5 0.5 

1 
1 

The matrix will always be wen (17x17 here), which is one reason to number the 

nodes. Notice that you do not include the probability of departure to the outside world; 

thus, rows may sum to less than one. Contrary to a simulation model, you can quickly 

add and remove paths, as well as nodes (change matrix, save, check results). This alone 

allows rapid exploration of scenarios. 

For external arrivals, let us say there are 85 customer classes arriving to node 1. 

The first class, class 1, has an arrival rate of A,ci = 5. For the sake of sanity, we assume 
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that the other 84 classes are similar enough to be identical. Their aggregate arrival rate is 

Xc2 = 8.4 (each has an individual rate of 0.10). This gives the total external arrival rate as 

X0 =13.4. All arrival processes are Poisson. 

The service time distributions are exponential. Node 1 has a high service rate 

since it feeds both legs, ui = 50, and is equal for both classes. The rates at other nodes 

are class-dependent, but for now let them be 20 for both classes. However, say the 

service rates are actually n14>cl = 10 and ui4,C2 = 20 for the two classes at node 14. Do we 

need to augment the simulation model at this node? 

This service process has a weighted average rate of \iu = 14.56 and a SCV of 

c = 1.2481. Here, we have used Equation (6) to calculate the probability of being class 1 

as 0.373 (we only have input at node 1 so this holds for all nodes in this case), and then 

we used Equations (8)-(10) to obtain the aggregate mean service time and SCV. 

On the same spreadsheet that contains the routing matrix, we create four column 

vectors to contain the external arrival and service information. Table 9, on the next page, 

illustrates what we need for this example. Here, we also included the node names. 

Again, if you are using a product like Mathcad®, you could change our sample (Appendix 

D) to read the vectors from a file. 

Table 10 gives the output from QNA using the routing of Table 8 and the columns 

from 9. Referring back to the routing matrix, note that 30 percent of all arrivals exit the 

system at node 1 and 30 percent go to the primary processing leg. However, notice that 

the expected number at node 14 (secondary leg) is 32 times larger than at any of the 

preceding nodes. Clearly, we need to add detail to the simulation model at this node (we 

could check other nodes also). 
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Table 9: Arrival and Service Information 

Node Node 
Name 

External 
Arrivals 

Arrival 
SCV 

Service 
Rates 

Service 
SCV 

1 SCO 13.4 50 1 
2 SC1A 0 20 1 
3 SC2A 0 20 1 
4 SC3A 0 20 1 
5 SC4A 0 20 1 
6 SC5A 0 20 1 
7 SC6A 0 20 

■ !■ 

1 
8 SC7A V      . 0 •: 20 1 
9 SC8A 0 ?:■ 20 1 
10 SC1B 0 20 1 
11 SC2B 0 20 1 
12 SC3B 0 20 1 
13 SC4B 0 20 1 
14 SC5B 0 14.56 1.2481 
15 SC6B 0 20 1 
16 SC7B 0 20 1 
17 SC8B 0 20 1 

Table 10: QNA Congestion Estimates 

Node Node 
Name 

EN 
(QNA) 

EW 
(QNA) 

1 SCO 0.098 0.007 
2 SC1A 0.051 0.013 
3 SC2A 0.051 0.013 
4 SC3A 0.051 0.013 
5 SC4A 0.004 0.003 
6 SC5A 0.020 0.008 
7 SC6A 0.000 0.001 
8 SC7A 0.002 0.003 
9 SC8A 0.001 0.001 
10 SC1B 0.098 0.018 
11 SC2B 0.098 0.018 
12 SC3B 0.186 0.027 
13 SC4B 0.049 0.012 
14 SC5B 5.957 0.477 
15 SC6B 0.013 0.006 
16 SC7B 0.363 0.041 
17 SC8B 0.389 0.043 

Expect Response Time 
0.861 
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Comparison to a Single Simulation Run. Assume that we are satisfied that node 

14 is the problem node, and now we want to build the simulation model. Appendix F 

contains a section at the end called Modifications. This section shows the changes 

needed convert the basic simulation model to capture useful information at node 14 by- 

class. What is not shown, however, are the other node pointer changes that you must 

perform in order to ensure all routes now reference the node that assigns the class- 

dependent service times for node 14. We do not want to add or move structures like this 

ad hoc because there are many opportunities for error, which is why the proposed method 

is beneficial. Table 11 compares our previous finding to the altered simulation model 

(Appendix G, Case 1). 

Table 11: QNA Congestion i Estimates Compared to Simulation 

Node Node 
Name 

EN 
(QNA) 

EW 
(QNA) 

EN 
(Sim) 

EW 
(Sim) 

1 SCO 0.098 0.007 0.099 0.007 
2 SC1A 0.051 0.013 0.049 0.012 
3 SC2A 0.051 0.013 0.050 0.013 
4 SC3A 0.051 0.013 0.050 0.012 
5 SC4A 0.004 0.003 0.004 0.003 
6 SC5A 0.020 0.008 0.018 0.007 
7 SC6A 0.000 0.001 0.000 0.001 
8 SC7A 0.002 0.003 0.002 0.002 
9 SC8A 0.001 0.001 0.001 0.001 
10 SC1B 0.098 0.018 0.099 0.019 
11 SC2B 0.098 0.018 0.099 0.019 
12 SC3B 0.186 0.027 0.188 0.027 
13 SC4B 0.049 0.012 0.049 0.012 
14 SC5B 5.957 0.477 5.899 0.476 
15 SC6B 0.013 0.006 0.013 0.006 
16 SC7B 0.363 0.041 0.379 0.043 
17 SC8B 0.389 0.043 0.389 0.043 

Expect Response Time Expect Response Time 
0.861 0.858 
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Note that the estimate of the expected number at node 14 only differs from the 

simulation by 0.98 percent, although node 14 is now in heavy traffic (p14 = 0.8584 from 

QNA and 0.854 from simulation) and has immediate feedback. The worst estimate is at 

node 6(11 percent), which also is in immediate feedback. Note that these comparisons 

are based on a single, long simulation run. We will discuss replications shortly. 

What we are seeing at these nodes are effects due to variability as observed in the 

simulation. At node 6, QNA still views the node as having an exact solution because we 

did not include class-dependencies at, or prior, to the node (SCV of arrival process is 

one). However, the simulation captures some variability in the arrival process due to the 

structure of the network. The effect is moderated at node 14 because we explicitly 

included an SCV differing from one for the service process. This then factors into the 

arrival SCV calculation at node 14. 

Since we modified our simulation model to capture class-specific information at 

node 14, let us present part ofthat in Table 12 (Appendix G, Case 1). 

Table 12: Node 14 Expected Wait 

Expected Wait Time Mean 
for Both Classes 0.476 

for Class 1 0.491 
for Class 2 0.467 

Proportion Class 1 0.375 

In Table 12, we see that the proportion of class one customers is actually 0.375 at node 

14. This is less than 1 percent from our estimate of 0.373, and is an effect of the short- 

term variability the model is seeing. The observed simulation arrival rate to node 14 is 

12.38 instead of the long run value of 12.50—number of arrivals is slightly low. 
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For class 1, we have that the observed arrival rate is 4.65 (theoretical value is 5). 

Using this observed value in Equation (11) along with the expected wait for class 1, we 

find that there are 2.28 class 1 customers waiting at node 14 on average. The balance of 

the 5.899 belong to class 2 (approximately 61 percent). Interestingly, the percentages for 

the expected number of each class always seem to lie close to the proportion of each 

class. However, the two quantities differ by some parameter not yet identified. 

How accurate was our procedure to combine the service rates of the classes, 

Equations (8)-(10)? Recall that we used a service SCV of c2 = 1.248 and a mean rate of 

Ui4 = 14.56 in QNA, and we modeled this in the simulation by explicitly assigning 

different rates to the two classes. Table 13 shows that the mean (1/14.56 = 0.0687) and 

SCV match extremely well. Note that the SCV must be checked using the standard 

deviation of a run and not a replication summary output. 

Table 13: Node 14 Service Times 

Service Time Mean Std Dev SCV 
for Both Classes 0.069 0.077 1.245 

for Class 1 0.100 0.101 1.020 
for Class 2 0.050 .050 1.000 

Comparison to a Replication. To compare the estimates to the QNA values, we 

need to have a longer run to alleviate the arrival variability. We still could not obtain 

confidence intervals using batch-means on a single run because properly parsing a long 

run remains problematic. To obtain a statement of confidence, we need replication. In 

our previous study of the two-node network, we used the technique of common random 

numbers. This was necessary to compare changes on an equal footing. In other words, 

we fixed the starting point of the random number streams so that we only observed 
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changes due to parameters and not changes due to different random number draws. 

However, that limited our ability to replicate long simulation runs. For this network, we 

did not use that technique so replication is appropriate. Table 14 shows this information. 

Here, we have increased the number of departures to 250,000, and we replicate 

the run 10 times (Appendix G, Case 2). The left-hand columns are from Table 10. 

Table 14: Congestion Estimates under Replication 

Node Node 
Name ::. EN 

(QNA) 
EW 

(QNA) 
EN 

(Replication) 
StdErr 

(Replication) 
EW 

(Replication) 
1 SCO 0.098 0.007 0.099 0 0.007 
2 SC1A 0.051 0.013 0.051 0 0.013 
3 SC2A 0.051 0.013 0.051 0 0.013 
4 SC3A 0.051 0.013 0.051 0 0.013 
5 SC4A 0.004 0.003 0.004 0 0.003 
6 SC5A 0.020 0.008 0.020 0 0.007 
7 SC6A 0.000 0.001 0.000 0 0.001 
8 SC7A 0.002 0.003 0.002 0 0.003 
9 SC8A 0.001 0.001 0.001 0 0.001 
10 SC1B 0.098 0.018 0.098 0.001 0.018 
11 SC2B 0.098 0.018 0.098 0 0.018 
12 SC3B 0.186 0.027 0.187 0.001 0.027 
13 SC4B 0.049 0.012 0.049 0 0.012 
14 SC5B 5.957 0.477 5.808 0.079 0.465 
15 SC6B 0.013 0.006 0.013 0 0.006 
16 SC7B 0.363 0.041 0.375 0.003 0.042 
17 SC8B 0.389 0.043 0.400 0.002 0.044 

Expect Response Time Expect Response Time 
0.861 0.852 

Note that most values now compare identically to QNA in the mean. We see that 

node 14 still does not agree, but recall that it is in heavy traffic. However, note that a 95 

percent confidence interval at node 14 still includes the QNA value. This indicates that 

we may need to try starting the simulation with some customers present to correct this 

bias. The same is not true for nodes 16 and 17; the 95 percent intervals do not capture the 
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QNA estimate. To correct this, we need to further develop the departure SCV 

approximations to account for classes. This relates to the work of Whitt in [51]. 

For the expected waiting time at node 14, we have the replication values overall 

and by class in Table 15. The aggregate waiting time is less than the QNA value, but we 

see that a 95 percent confidence interval captures the QNA estimate. The class- 

dependent estimates are not independent from each other; therefore, we use a paired-t test 

to assess whether the class 1 wait statistically differs from the class 2 wait. Using the 

data from the individual runs (this portion is included in the appendix), we find that the 

waiting times of the two classes are different (p-value = 0). 

Table 15: Node 14 Expected Wait 

Expected Wait Time Mean StdErr 
for Both Classes 0.465 0.006 

for Class 1 0.477 0.006 
for Class 2 0.457 0.006 

Proportion Class 1 0.373 0.001 

It is interesting to note that class 1 has a longer wait although class 2 customers 

are processed twice as fast. Checking the expected number waiting at node 14, Equation 

(11) shows that there are 3.59 class 2 customers and 2.21 class 1 customers. Using 

information such as this, we have evidence indicating that the class with the larger arrival 

rate has a shorter average wait because the other class finds that it must wait at a queue 

already occupied (or, some similar comparison). Regarding service, the SCV under 

replication is 1.246 with a standard error of 0.002 (not part of the summary output). This 

compares extremely well with our input SCV of 1.248. 
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Adding Delayed Feedback. What happens if we include delayed feedback? What 

if we change the routing matrix to have 25 percent (or more appropriately, a probability 

of 0.25) of all customers completing node 9 return to node 1 and start the process again? 

Table 16 gives the QNA response compared to the case shown in Table 10. 

Table 16: Congestion Estimates under Delayed Feedback 

Node Node 
Name 

EN EW EN 
(Table 10) 

EW 
(Table 10) 

1 SCO 0.100 0.007 0.098 0.007 
2 SC1A 0.052 0.013 0.051 0.013 
3 SC2A 0.052 0.013 0.051 0.013 
4 SC3A 0.052 0.013 0.051 0.013 
5 SC4A 0.004 0.003 0.004 0.003 
6 SC5A 0.020 0.008 0.020 0.008 
7 SC6A 0.000 0.001 0.000 0.001 
8 SC7A 0.002 0.003 0.002 0.003 
9 SC8A 0.001 0.001 0.001 0.001 
10 SC1B 0.100 0.019 0.098 0.018 
11 SC2B 0.100 0.019 0.098 0.018 
12 SC3B 0.191 0.027 0.186 0.027 
13 SC4B 0.050 0.013 0.049 0.012 
14 SC5B 6.423 0.509 5.957 0.477 
15 SC6B 0.013 0.006 0.013 0.006 
16 SC7B 0.372 0.041 0.363 0.041 
17 SC8B 0.400 0.043 0.389 0.043 

Expect Response Time Expect Response Time 
0.909 0.861 

Note that the difference between the two scenarios is negligible. In fact they are 

similar enough that we would not bother changing the simulation to check this unless it 

was an essential piece of information. 

Many of the discrepancies we have seen relate to transient behavior remaining in 

the simulation, without replication. The proposed modification to QNA admits multiple 

customer classes, and can serve as a useful tool to focus a simulation study. 
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Methodology Flowchart 

Figure 4, originally from Law and Kelton, illustrates the choices generally 

available in the analysis of any system [29: 4]. We have modified the illustration to 

properly include approximation techniques as a choice. Additionally, we show 

approximation as an alternate path to reach simulation from the mathematical model 

formulation, which represents our methodology as applied to queueing networks. Figure 

5 then shows the process representation along this path to employ our methodology. 

Experiment 
with the actual 

system 

Experiment with 
a model of the 

system 

* A >4 
Physical 
Model 
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Figure 4: Ways to Study a System 
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Figure 5: Flowchart of Methodology Process 
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IV. Conclusion 

Summary 

In the study of complex queueing networks, one generally seeks to employ exact 

analytic solutions to reduce the burden on computational resources. Barring the existence 

of an exact solution, the alternatives include approximation techniques and simulation. 

Approximation is the more attractive alternative from a time and effort perspective; 

however, cases exist that are not amiable to this technique. 

The objective of this thesis was to increase the flexibility of approximation 

techniques in obtaining estimates of congestion measures for complex, open queueing 

networks. The focus being on networks having several customer classes and class- 

dependent service times, but not having an exact solution. The associated goal was to 

provide a tool to easily obtain these estimates before building an intricate simulation 

model. 

In most simulation studies, you want to build a model having the least complexity 

necessary to accomplish the analysis task. You may be interested in collecting detailed 

information on different customer classes, but you only want this at nodes meeting some 

criteria (e.g., longest queue). To do this, you could build a basic model and add class 

distinctions as you learn more about how the network operates. However, this could 

become time consuming, particularly in verifying routing paths. 

The outcome of this effort is a methodology that allows you to quickly identify 

candidate locations requiring higher resolution results before building the simulation 

model. We accomplished this by developing a procedure that aggregates multiple classes 
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into a single class in order to apply an existing approximation technique. The result is a 

tool that one can use to focus a simulation study. We found that the methodology results 

in good agreement with simulation models that explicitly represent multiple customer 

classes. The result is a tool that one can use to focus a simulation study. It provides easy 

evaluation of a particular network configuration, as well as rapid evaluation of alternative 

configurations. 

Research Overview and Findings 

The network models utilized in this effort were classic Jacksonian networks. 

They contained a finite number of unlimited capacity, single-server queue nodes 

connected in an arbitrary fashion. Routing between the queues was based on specified 

branching probabilities. The networks were open: customers enter from the outside 

world and all customers eventually depart. The service discipline at all queue nodes was 

first-come-first-serve (FCFS); however, the different customer classes could have 

different service distributions at any given node. 

A review of relevant literature did not identify an exact analytic solution for the 

case described. The use of FCFS queues with class-dependent service times prevented 

obtaining an exact solution. Specifically, networks constructed as given do not have a 

particular type of solution known as the product-form. However, we also found that 

product-form and exact solution are synonymous except in rare circumstances. Here, in 

rare circumstances, small networks may be solved using their global balance equations. 

For this, the practical limit is on the order of a two-node network, but even that size may 

become too complicated in some cases. 
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Satisfied that an exact solution was unattainable, we reviewed various 

approximation techniques. For networks having service centers that are not continuously 

busy, decomposition algorithms provided reasonable estimates of network performance 

and afforded the greatest flexibility for modification. In particular, the algorithm for the 

Queueing Network Analyzer (QNA, [49]) was found suitable enough to serve as the basic 

structure for this study. For many networks, QNA could provide congestion measure 

estimates with errors not exceeding 10 percent relative to simulation values [50]. 

QNA allows for multiple customer classes with different service time 

distributions; however, the user must specify the exact route of each class. For general 

routing, such as used here, QNA only permits one customer class. Therefore, the task 

became one of combining general routing and multiple classes. 

The author of QNA provided one concept of how to accomplish this combining 

task, and suggested equations that could be incorporated into the original QNA [51]. 

However, we found that we could not properly match simulation observations to the 

proposed equations. We observed the problem to be related to the effect of customers re- 

circulating in a network (feedback). The QNA algorithm appears to transform a network 

into a series of serially connected queues, whereas the simulation maintains a 

representation closer to the actual layout. The result is that the arrival, service, and 

departure measures found through simulation and calculated by QNA do not have an 

obvious mapping to each other. 

From simulation results used to evaluate the paper mentioned in the previous 

paragraph, we noted some basic relationships in the data appeared useful. We observed 

that the probability of a customer class at a given queue followed a simple form. From 
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conditional probability, we then observed that we could form the mean and variance for 

the aggregate service time of several customer classes having different individual service 

distributions. 

We then hypothesized that this information could be used in the QNA framework 

to represent multiple customer classes as a single composite class. One major assumption 

of QNA is that the mean and squared coefficient of variation (SCV) contain adequate 

information to represent arrival, service, and departure processes. Where SCV is 

variance divided by the square of the mean. The validity of this assumption was proven 

prior to the development of QNA Therefore, the specific structure of QNA seeks to 

enhance estimates using the assumption. The accuracy of QNA is documented in [50]. 

To evaluate whether the distribution of our composite customer class in QNA 

represented reality as viewed by the simulation, we constructed two networks having 

explicit representation of customer classes. At worst, we found that our multi-class QNA 

was within the performance documented in [50]. At best, we noted that the multi-class 

QNA differed less than 1 percent from the simulation. This was an evaluation, not a 

formal test of the hypothesis. 

In the instances where we did not get an exact match between the simulation and 

the multi-class QNA, we found that QNA faithfully represented the performance trend 

and correct magnitude. For example, say that simulation yields an average of 14.65 

customers waiting in a given queue; the multi-class QNA may report 15.03. 

Inconsistencies in estimation generally fall into two categories: heavy traffic 

problems and departure SCV estimation. In any situation where a queue experiences 

heavy traffic, the simulation and QNA estimates will not likely agree. This was caused 
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more by the initial conditions and the length of the simulation run than with the 

formulations contained in QNA. However, problems also occurred under moderate 

traffic if the simulation run is too short to eliminate the startup transient. 

We did note that departure SCVs calculated using our service SCVs (a procedure 

of the QNA algorithm) introduced actual bias into our results. This becomes particularly 

true when the network has feedback streams. Although the bias is within the bounds 

noted, this is a problem area requiring modification in a manner suggested by [51]. 

As a tool to focus a simulation study of a complex network, the method performs 

well. For large networks, reasonable performance estimates can be obtained quickly. 

Once the basic input parameters are determined, different scenarios may be rapidly 

evaluated in a fraction of the time needed to modify a typical simulation model. This 

allows one to check ideas and determine where to invest time and funding when 

constructing a simulation model to obtain performance estimates on a by-class basis. 

Limitations 

The methodology to admit multiple customer classes under probabilistic routing 

performs well in the QNA framework. Any number of classes may be combined into one 

composite class before applying the QNA algorithm. Moreover, the results are 

comparable (sometimes identical) to simulation estimates of congestion measures. 

However, we have not been able to later decompose the composite customer to give 

performance measures on a by-class basis. An apparent relationship to the probability of 

the class of a customer arriving at a queue was noted; however, a working theory did not 

evolve. 
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The method to aggregate multiple customer classes may fail if the service rate of 

one class is significantly higher than other classes. This becomes apparent in calculating 

the composite service SCV when a negative value is returned. In simple terms, the class 

having a lower rate dominates the service distribution at that queue—the queue does not 

seem to exist for the higher rate class. Thus, we develop an apparent inconsistency best 

resolved by simulation. QNA cannot handle zero-time service centers in general. 

However, this does not preclude using composite rates that are large. We sought to avoid 

this situation since it provided no useful insight other than as a limitation. 

QNA only estimates long run, or steady state, network performance. Therefore, it 

is most useful for networks that operate for extended periods or those not having a 

notable startup transition phase. Additionally, we did not include the estimates of 

variability provided within the QNA formulation. Given the stated focus, that was 

deemed unnecessary. 

QNA does not permit queueing disciplines other than FCFS. However, due to the 

abundance of work on product-form solutions, most other disciplines of practical interest 

have an exact solution. Additionally, QNA is currently restricted to infinite capacity 

queues. 

As part of the scope of this effort, we restricted the study only to Poisson arrivals. 

Thus, the effectiveness of the class aggregation technique was not verified for general 

arrival distributions. QNA was developed to permit arrival distributions other than 

Poisson [1; 48; 49; 50], and is based on work extending back at least to Kelly [25]. 

Given that arrival SCVs combine in the same manner as service SCVs, the assumption 

that the procedure works for general arrival and service distributions is not unfounded. 
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Recommendations 

Obtaining greater accuracy for the congestion measure estimates appears to be 

possible by improving the departure approximations for the queues. This is the subject of 

[51]; however, simulation observations are not consistent with that methodology. 

Understanding that methodology and incorporating it within the QNA framework is the 

next logical step of this work. 

Parallel to improving the methodology of including multiple classes is 

development of the methodology to obtain congestion measure estimates by class. We 

observed that there appears to be a connection to the probability of a particular class 

being at a given queue. However, we could not identify the actual relationship. If one 

could solve this problem, simulation studies to obtain these measures would not be 

necessary. That is, assuming one is content with approximations of long run performance 

to guide the development of a simulation study. 

Originally, we desired to incorporate capacitated queueing (blocking with loss) 

simultaneously with class-dependent service time distributions at FCFS queues. 

However, it quickly became clear that the task of incorporating class dependencies 

overshadowed that feature. Thus, one direction of future research would be to 

incorporate this capability. Although not included in the literature review, we looked at 

several works in the area of capacitated queueing networks. However, most involved 

other forms of blocking mechanisms (e.g., repetitive service for a blocked customer). We 

did uncover some literature that a future researcher might begin with [4; 35; 36; 44]. 
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Appendix A: Exact Solution for Base Case 

^0 

Pl2 

PlO 

Let X be the superposition of two classes having Poisson arrivals with means interarrival 
times of 15 and 10. For each class, let both service distributions be exponential with rates 
of 2 and 3, respectively, with FCFS disciplines. 

Then, 

l:= — +—    ,or X= 0.1667     ,with        u. := 2 
15    10 ' *1 

and        n  := 3 

Also, let the probability that a customer departs after completion at the first server, pig, 
be 0.30. 

As defined, this network has a product-form solution. Specifically, 

1 i 
p^Wi-p,)^,)  -(I-P2)-(P2) 

Where the nj are the number of customers at each node, and the p[ are the traffic 
intensities at each node. 
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However, we can use the simple results for two queues in tandem to find the expected 
queue lengths and system response time at steady state. This is accomplished by noting 
that the arrival rate to each queue is found by simultaneous solution of two simple 
equations. From there, the traffic intensity at each queue is found, which eventually leads 
to the desired measures [45: 412-417]. The solution are as follows: 

IjSl + Äj and ^2=VP12 

Thus, 

L= =— and L=  
J-Pl2   PlO PlO 

where 

p10:=0.30 and P12 == 1 - PI0 

Since the traffic intensity, p, is defined as the ratio of the arrival to the service rate, we 
have 

p j :=  or p j = 0.2778 

PlO^l 

and 

V\2l 

p2:=  or p2= 0.1296 
PlO'^2 

From these, we have that the expect number in each queue is 

ENj:=A_i_ or EN. = 0.1068 
1 - Pi 

and 

EN2 := —^ or EN, = 0.0193 
!-P? 
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The expected waiting time at each queue is 

EW, := —WENj + p,) or EWj = 0.1923 

and 

EW2 := — f (EN2 + P 2) or EW2 = 0.0496 

Finally, the expected system response time is given by 

pi        P2  \ 1 
ER:= +  ._ or ER = 3.2013 

1-p,    l-p,/X 
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Appendix B: Two-Node Network Simulation Model 
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Appendix C: Two-Node Base Case Simulation Output 

Case 1: Base Case Simulation (10,000 Departures with Replication) 

** AweSim! MULTIPLE RUN SUMMARY REPORT ** 

Simulation Project : Thesis, Two Node Test Net 
Modeler : Scott Bellamy 
Date : 06 DEC 98 
Scenario: TWONODE 
Number of runs 25 

** OBSERVED STATISTICS for scenario TWONODE ** 

Label Mean Standard Standard Minimum Maximum 
Value Deviation Error Average 

Value 
Average 
Value 

Net Arv Proc 6.004 0.062 0.012 5.821 6.099 
Cl Net Arv Proc 9.972 0.141 0.028 9.553 10.239 
C2 Net Arv Proc 15.090 0.226 0.045 14.627 15.495 
Ql Arv Proc 1.807 0.017 0.003 1.770 1.838 
Cl Ql Arv Proc 2.999 0.048 0.010 2.885 3.072 
C2 Ql Arv Proc 4.551 0.092 0.018 4.362 4.727 
Ql Serv T 0.500 0.002 0.000 0.495 0.504 
Cl Ql Serv T 0.500 0.002 0.000 0.494 0.505 
C2 Ql Serv T 0.501 0.005 0.001 0.492 0.511 
Ql Wait T 0.191 0.009 0.002 0.175 0.206 
Cl Ql Wait T 0.191 0.008 0.002 0.176 0.203 
C2 Ql Wait T 0.191 0.011 0.002 0.174 0.213 
Ql Dpt Proc 1.807 0.017 0.003 1.770 1.838 
Cl Ql Dpt Proc 2.999 0.048 0.010 2.885 3.072 
C2 Ql Dpt Proc 4.551 0.092 0.018 4.362 4.727 
Q2 Arv Proc 2.586 0.030 0.006 2.521 2.645 
Cl Q2 Arv Proc 4.288 0.081 0.016 4.095 4.409 
C2 Q2 Arv Proc 6.516 0.168 0.034 6.172 6.807 
Q2 Serv T 0.333 0.002 0.000 0.329 0.337 
Cl Q2 Serv T 0.333 0.002 0.000 0.329 0.336 
C2 Q2 Serv T 0.334 0.004 0.001 0.328 0.340 
Q2 Wait T 0.049 0.002 0.000 0.045 0.053 
Cl Q2 Wait T 0.049 0.003 0.001 0.045 0.054 
C2 Q2 Wait T 0.050 0.003 0.001 0.045 0.056 
Q2 Dpt Proc 2.586 0.030 0.006 2.521 2.645 
Cl Q2 Dpt Proc 4.288 0.081 0.016 4.095 4.409 
C2 Q2 Dpt Proc 6.517 0.168 0.034 6.172 6.807 
Net Dpt Proc 6.004 0.062 0.012 5.821 6.098 
Cl Net Dpt Proc 9.972 0.141 0.028 9.554 10.239 
C2 Net Dpt Proc 15.091 0.227 0.045 14.622 15.497 

0.000 0.000 0.000 0.000 0.000 
ResponseTime 3.185 0.059 0.012 3.057 3.289 
RespT Cl 3.186 0.063 0.013 3.071 3.285 
RespT C2 3.184 0.088 0.018 3.035 3.343 
Prob Cl Ql 0.603 0.007 0.001 0.592 0.619 
Prob Cl Q2 0.603 0.009 0.002 0.588 0.624 
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** FILE STATISTICS for scenario TWONODE ** 

File 
Number 

Label or 
Input Location 

Average 
Length 

Standard 
Deviation 

Standard 
Error 

Maximum 
Average 
Length 

1 
2 

QUEUE    Ql 
QUEUE    Q2 

0.106 
0.019 

0.005 
0.001 

0.001 
0.000 

0.115 
0.021 

File 
Number 

Average 
Wait Time 

1 
2 

0.191 
0.049 

** SERVICE ACTIVITY STATISTICS for scenario TWONODE ** 

Activity    Label or     Server   Average   Standard   Standard 
Number  Input Location Capacity Utilization Deviation    Error 

1 Ql 
2 Q2 

1 0.277 0.003 0.001 
1 0.129 0.001 0.000 
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Case 2: Base Case Simulation (200,000 Departures, One Run) 

** AweSim SUMMARY REPORT ** 

Simulation Project : Thesis, Two Node Test Net 
Modeler : Scott Bellamy 
Date : 06 DEC 98 
Scenario : TWONODE 

Run number 1 of 1 
Current simulation time    : 1199988.269244 
Statistics cleared at time : 0.000000 

OBSERVED STATISTICS REPORT for scenario TWONODE ** 

Label 

Net Arv Proc 
Cl Net Arv Proc 
C2 Net Arv Proc 
Ql Arv Proc 
Cl Ql Arv Proc 
C2 Ql Arv Proc 
Ql Serv T 
Cl Ql Serv T 
C2 Ql Serv T 
Ql Wait T 
Cl Ql Wait T 
C2 Ql Wait T 
Ql Dpt Proc 
Cl Ql Dpt Proc 
C2 Ql Dpt Proc 
Q2 Arv Proc 
Cl Q2 Arv Proc 
C2 Q2 Arv Proc 
Q2 Serv T 
Cl Q2 Serv T 
C2 Q2 Serv T 
Q2 Wait T 
Cl Q2 Wait T 
C2 Q2 Wait T 
Q2 Dpt Proc 
Cl Q2 Dpt Proc 
C2 Q2 Dpt Proc 
Net Dpt Proc 
Cl Net Dpt Proc 
C2 Net Dpt Proc 

ResponseTime 
RespT_Cl 
RespT_C2 
Prob_Cl_Ql 
Prob Cl Q2 

Mean Standard Number of Minimum Maximum 
Value Deviation Observations Value Value 

6.000 6.021 199999 0.000 84.567 
9.971 10.015 120342 0.000 112.029 

15.063 15.024 79656 0.000 164.381 
1.809 3.520 663326 0.000 78.780 
3.018 6.297 397663 0.000 104.171 
4.517 9.803 265662 0.000 153.202 
0.501 0.501 663327 0.000 6.569 
0.501 0.501 397664 0.000 6.025 
0.501 0.501 265663 0.000 6.569 
0.192 0.477 663327 -0.000 8.606 
0.191 0.475 397664 -0.000 8.606 
0.193 0.479 265663 -0.000 7.981 
1.809 3.521 663326 0.000 80.164 
3.018 6.297 397663 0.000 104.339 
4.517 9.805 265662 0.000 152.020 
2.590 5.290 463326 0.000 104.708 
4.327 9.320 277320 0.000 168.858 
6.451 14.418 186005 0.000 228.394 
0.333 0.334 463327 0.000 4.265 
0.333 0.333 277321 0.000 4.265 
0.334 0.335 186006 0.000 3.642 
0.050 0.189 463327 -0.000 4.079 
0.050 0.189 277321 -0.000 4.079 
0.049 0.188 186006 -0.000 3.631 
2.590 5.290 463326 0.000 104.821 
4.327 9.320 277320 0.000 168.620 
6.451 14.419 186005 0.000 228.009 
6.000 6.017 199999 0.000 80.164 
9.971 10.012 120342 0.000 108.220 

15.064 15.015 79656 0.000 157.084 
0.000 0.000 1 0.000 0.000 
3.185 3.469 200000 0.000 52.783 
3.168 3.440 120343 0.000 48.741 
3.210 3.512 79657 0.000 52.783 
0.599 0.000 1 0.599 0.599 
0.599 0.000 1 0.599 0.599 
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FILE STATISTICS REPORT for scenario TWONODE ** 

File 
umber 

Label or 
Input Location 

Average 
Length 

Standard 
Deviation 

1 
2 
0 

QUEUE   Ql 
QUEUE    Q2 
Event Calendar 

0.106 
0.019 
3.406 

0.419 
0.157 
0.559 

Maximum Current 
Length  Length 

9 0 
6 0 
5       3 

Average 
Wait Time 

0.192 
0.050 
3.080 

SERVICE ACTIVITY STATISTICS REPORT for scenario TWONODE ** 

Activity    Label or     Server   Entity     Average   Standard 
Number  Input Location Capacity   Count   Utilization Deviation 

1 Ql 
2 Q2 

1 663327 0.277 0.447 
1 463327 0.129 0.335 
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Appendix D: Reconstruction of Queueing Network Analyzer (ONA) 

Required Input: 
ORIGIN := 1 

Number of Queue Nodes: n:=2 

External Arrival Rate at Node j: 

Multiple Streams or Classes 
Entering Node j: E:= 

" 1 1 

10 15 

0 0 . 

Aggregated External Rates 
for Node j: k := 1.. rows(E) 

cols(E) 

Ao= 

'01 

l02 

Squared Coefficient of Variation (SCV) 
of External Arrival Processes, Co: Co 

(Note: Superscript 2 omitted due to 
Mathcad problematics, interpret as C 2) 

(Note: For multiple classes, or non-Poisson 
arrivals, these need not be one.) 

Routing Matrix (Node i to j): 
Q:= 

0 0.7 

1 0 
Q- 

lll   1l2 

121   <*22 
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Service Rate at Node j: 

(Note: For Class-dependent service rates, 
this needs to be the weighted rate. ) 

Squared Coefficient of Variation (SCV) 
of Service Processes, Cs: 

Cs 

(Note: Superscript 2 omitted due to 
Mathcad problematics, interpret as C 2) 

(Note: For Class-dependent service rates, 
this needs to be a properly weighted value. ) 

Create Identity Matrix for Later Use: I := identity n) 
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Traffic Rate Equations: 

Internal Arrival Rate 
at Node j: 

A:= A0
T-(I-Q)_1 

iT 

93 

0.5556 

0.3889 
A= 

h 

Arc Rates (itoj): 1:= 1.. coIs(Q) 

Aii,!BVQk,l ^if^ilij 

0 0.3889 

0.3889   0 

Internal Proportions Arriving at Node j 
(perspective is to j from i): X 

k,r Pii=— y 
j 

o     1 

0.7   0 

External Proportions Arriving 
at Node j: Po:=  — 

A / 

Po = 
0.3 

0 

Stacked Matrix of Proportions: P := stacklPo  , P 

Traffic Intensity at Node j: 



Traffic Variability Equations: 

Weighting Functions:        j := l.. n 

V 

n+1 

E c,: 
i=i 

H^f-'jjri 

v=1+\ W-1)^ pi.i-[(1-Qi.i) + Qi.j-(pi)S 
i=l 

i := 1.. n 

b    :=(D-P.   Q   • 
i,J      J   i,J vi,J 

1-   p 

Interim Results: 1.7241 

1 

0.3983 

1 

0.7259 

0.354 
b = 

0 0.646 

0.2741   0 

Estimated Internal Arrival SCV 
at Node j: Ca:=[(a)T-(I-b)_1] 

Ca: 

(Note: Superscript 2 omitted due to 
Mathcad problematics, interpret as C 2) 
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Congestion Measures: 

Expected Waiting Time at Node j: 

Expected Number of Visits: 

Expected Response Time: 

Pj Caj + Cs. 
EW. := —^—r-i-J i 

Expected Number Waiting at Node j: EN := (AEW) 

Expected Number of Visits to Node j: 

Total External Arrival Rate: 

v= =   S   \ 
i=l 

V 0.1667 

EV: = J-.A 
*0 

ER, = EV- f-i + EWj 

n 

ER: = Z ERi 
i=l 
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QNA Summary: 

Number of Queue Nodes: n= 2 

Input External Arrival Rate 
andSCVatNodej: 

' 0.1667' 
Co = 

r 
L °  J 0 

Routing Matrix (node i to j): 
Q = 

0 0.7 

1 0 

Internal Arrival Rate and 
Estimated SCV at Node j: 

' 0.5556 
Ca = 

' f 
[ 0.3889J 1 

Input Service Rate and SCV 
at Nodej: 

Traffic Intensity at Node j: 

n = 
' 2 

3 
Cs = 

' r 
1 

" 0.2778' 
p = 

0.1296 

Expected Number at Node j: EN = 
0.1068 

0.0193 

Expected Waiting Time at Node j: 

EW = 
0.1923 

0.0496 

Expected Number of Visits to Node j: 
EV = 

3.3333 

2.3333 

Expected Response Time: ER= 3.2013 
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Appendix E; Two-Node Class-Dependent Simulation Output 

Case 1: Different Service Rates at Queue 1 (200,000 Departures) 

** AweSim SUMMARY REPORT ** 

Simulation Project : Thesis, Two Node Test Net 
Modeler : Scott Bellamy 
Date : 06 DEC 98 
Scenario : TWONODE, Case 2 

Run number 1 of 1 
Current simulation time    : 1199988.296267 
Statistics cleared at time : 0.000000 

** OBSERVED STATISTICS REPORT for scenario TWONODE ** 

Label Mean 
Value 

Net Arv Proc 6.000 
Cl Net Arv Proc 9.971 
C2 Net Arv Proc 15.063 
Ql Arv Proc 1.809 
Cl Ql Arv Proc 3.016 
C2 Ql Arv Proc 4.521 
Ql Serv T 0.801 
Cl Ql Serv T 1.001 
C2 Ql Serv T 0.501 
Ql Wait T 0.682 
Cl Ql Wait T 0.719 
C2 Ql Wait T 0.626 
Ql Dpt Proc 1.809 
Cl Ql Dpt Proc 3.016 
C2 Ql Dpt Proc 4.521 
Q2 Arv Proc 2.590 
Cl Q2 Arv Proc 4.323 
C2 Q2 Arv Proc 6.460 
Q2 Serv T 0.333 
Cl Q2 Serv T 0.333 
C2 Q2 Serv T 0.334 
Q2 Wait T 0.052 
Cl Q2 Wait T 0.045 
C2 Q2 Wait T 0.063 
Q2 Dpt Proc 2.590 
Cl Q2 Dpt Proc 4.323 
C2 Q2 Dpt Proc 6.460 
Net Dpt Proc 6.000 
Cl Net Dpt Proc 9.971 
C2 Net Dpt Proc 15.064 

0.000 
ResponseTime 5.811 
RespT_Cl 6.559 
RespT C2 4.681 
Prob Cl Ql 0.600 
Prob Cl Q2 0.599 

dard Number of Minimum Maximum 
ation Observations Value Value 

6.021 199999 0.000 84.567 
10.015 120342 0.000 112.029 
15.024 79656 0.000 164.381 
3.215 663326 0.000 74.043 
5.745 397922 0.000 102.488 
9.523 265403 0.000 149.279 
0.873 663327 0.000 12.050 
1.002 397923 0.000 12.050 
0.501 265404 0.000 6.569 
1.314 663327 -0.000 17.531 
1.347 397923 -0.000 17.531 
1.261 265404 -0.000 16.690 
3.229 663326 0.000 76.022 
5.733 397922 0.000 102.295 
9.566 265403 0.000 148.098 
4.900 463326 0.000 97.329 
8.640 277579 0.000 166.798 

14.153 185746 0.000 228.394 
0.334 463327 0.000 4.265 
0.333 277580 0.000 4.265 
0.334 185747 0.000 3.642 
0.194 463327 -0.000 4.163 
0.179 277580 -0.000 4.163 
0.213 185747 -0.000 3.486 
4.899 463326 0.000 97.442 
8.638 277579 0.000 166.210 

14.155 185746 0.000 228.009 
6.057 199999 0.000 79.502 
9.964 120342 0.000 108.106 

15.133 79656 0.000 153.161 
0.000 1 0.000 0.000 
6.923 200000 0.000 135.953 
7.491 120343 0.000 135.953 
5.782 79657 0.000 117.319 
0.000 1 0.600 0.600 
0.000 1 0.599 0.599 
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** FILE STATISTICS REPORT for scenario TWONODE ** 

File      Label or      Average   Standard  Maximum Current   Average 
Number  Input Location   Length    Deviation  Length  Length  Wait Time 

1 QUEUE   Ql 0.377       0.941       14        0      0.682 
2 QUEUE   Q2 0.020      0.162        6       0      0.052 
0 Event Calendar        3.571      0.598       5       3      3.230 

** SERVICE ACTIVITY STATISTICS REPORT for scenario TWONODE ** 

Activity    Label or     Server   Entity     Average   Standard 
Number  Input Location Capacity   Count   Utilization Deviation 

1 Ql 
2 Q2 

1 663327 0.443 0.497 
1 463327 0.129 0.335 
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Case la: Different Service Rates at Queue 1 (10,000 Departures, 10 Replications) 

** AweSim! MULTIPLE RUN SUMMARY REPORT ** 

Simulation Project : Thesis, Two Node Test Net 
Modeler : Scott Bellamy 
Date : 06 DEC 98 
Scenario: TWONODE 
Number of runs 10 

OBSERVED STATISTICS for scenario TWONODE ** 

Label Mean Standard Standard Minimum Maximum 
Value Deviation Error Average 

Value 
Average 
Value 

Net Arv Proc 6.000 0.037 0.012 5.908 6.030 
Cl Net Arv Proc 9.972 0.107 0.034 9.735 10.094 
C2 Net Arv Proc 15.066 0.170 0.054 14.815 15.408 
Ql Arv Proc 1.809 0.014 0.004 1.786 1.830 
Cl Ql Arv Proc 3.012 0.038 0.012 2.948 3.074 
C2 Ql Arv Proc 4.531 0.066 0.021 4.446 4.637 
Ql Serv T 0.801 0.003 0.001 0.797 0.807 
Cl Ql Serv T 1.000 0.006 0.002 0.988 1.009 
C2 Ql Serv T 0.501 0.002 0.001 0.495 0.505 
Ql Wait T 0.681 0.024 0.007 0.652 0.721 
Cl Ql Wait T 0.718 0.032 0.010 0.680 0.770 
C2 Ql Wait T 0.625 0.012 0.004 0.609 0.648 
Ql Dpt Proc 1.809 0.014 0.004 1.786 1.830 
Cl Ql Dpt Proc 3.012 0.038 0.012 2.948 3.074 
C2 Ql Dpt Proc 4.531 0.066 0.021 4.446 4.637 
Q2 Arv Proc 2.590 0.025 0.008 2.560 2.627 
Cl Q2 Arv Proc 4.315 0.063 0.020 4.229 4.420 
C2 Q2 Arv Proc 6.480 0.113 0.036 6.344 6.681 
Q2 Serv T 0.333 0.001 0.000 0.332 0.335 
Cl Q2 Serv T 0.333 0.002 0.001 0.331 0.336 
C2 Q2 Serv T 0.334 0.002 0.001 0.330 0.337 
Q2 Wait T 0.052 0.001 0.000 0.051 0.053 
Cl Q2 Wait T 0.045 0.001 0.000 0.043 0.047 
C2 Q2 Wait T 0.063 0.001 0.000 ■ 0.061 0.066 
Q2 Dpt Proc 2.590 0.025 0.008 2.560 2.627 
Cl Q2 Dpt Proc 4.315 0.063 0.020 4.229 4.419 
C2 Q2 Dpt Proc 6.480 0.113 0.036 6.344 6.681 
Net Dpt Proc 6.000 0.037 0.012 5.908 6.030 
Cl Net Dpt Proc 9.972 0.106 0.034 9.735 10.094 
C2 Net Dpt Proc 15.067 0.172 0.054 14.815 15.413 

0.000 0.000 0.000 0.000 0.000 
ResponseTime 5.810 0.100 0.032 5.677 5.982 
RespT Cl 6.564 0.147 0.047 6.372 6.835 
RespT C2 4.670 0.068 0.021 4.594 4.790 
Prob_Cl_Ql 0.601 0.005 0.002 0.592 0.608 
Prob Cl Q2 0.600 0.006 0.002 0.591 0.610 
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** FILE STATISTICS for scenario TWONODE ** 

File Label or Average Standard Standard Maximum 
Number Input Location Length Deviation Error Average 

Length 

1 QUEUE    Ql 0.377 0.013 0.004 0.400 
2 QUEUE    Q2 0.020 0.000 0.000 0.021 

File Average 
Number Wait Time 

1 0.681 
2 0.052 

** SERVICE ACTIVITY STATISTICS for scenario TWONODE ** 

Activity    Label or     Server   Average   Standard   Standard 
Number  Input Location Capacity Utilization Deviation    Error 

1 Ql 
2 Q2 

1 0.443 0.004 0.001 
1 0.129 0.001 0.000 
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Case 2: Different Service Rates at Both Queues (50,000 Departures, 10 Replications) 

** AweSim! MULTIPLE RUN SUMMARY REPORT ** 

Simulation Project : Thesis, Two Node Test Net 
Modeler : Scott Bellamy 
Date : 06 DEC 98 
Scenario: TWONODE 
Number of runs 10 

OBSERVED STATISTICS for scenario TWONODE ** 

Label Mean Standard Standard Minimum Maximum 
Value Deviation Error Average 

Value 
Average 
Value 

Net Arv Proc 5.999 0.018 0.006 5.964 6.021 
Cl Net Arv Proc 9.988 0.042 0.013 9.914 10.057 
C2 Net Arv Proc 15.024 0.117 0.037 14.841 15.191 
Ql Arv Proc 1.802 0.007 0.002 1.790 1.814 
Cl Ql Arv Proc 2.999 0.020 0.006 2.970 3.032 
C2 Ql Arv Proc 4.516 0.034 0.011 4.442 4.563 
Ql Serv T 0.801 0.002 0.000 0.798 0.803 
Cl Ql Serv T 1.001 0.003 0.001 0.996 1.005 
C2 Ql Serv T 0.501 0.002 0.001 0.497 0.503 
Ql Wait T 0.697 0.012 0.004 0.683 0.714 
Cl Ql Wait T 0.759 0.015 0.005 0.738 0.777 
C2 Ql Wait T 0.605 0.013 0.004 0.583 0.624 
Ql Dpt Proc 1.802 0.007 0.002 1.790 1.814 
Cl Ql Dpt Proc 2.999 0.020 0.006 2.971 3.032 
C2 Ql Dpt Proc 4.516 0.034 0.011 4.442 4.563 
Q2 Arv Proc 2.576 0.014 0.004 2.553 2.596 
Cl Q2 Arv Proc 4.286 0.037 0.012 4.231 4.343 
C2 Q2 Arv Proc 6.456 0.053 0.017 6.340 6.521 
Q2 Serv T 0.600 0.003 0.001 0.594 0.605 
Cl Q2 Serv T 0.333 0.001 0.000 0.332 0.334 
C2 Q2 Serv T 1.002 0.003 0.001 0.996 1.005 
Q2 Wait T 0.225 0.003 0.001 0.221 0.230 
Cl Q2 Wait T 0.191 0.003 0.001 0.186 0.196 
C2 Q2 Wait T 0.276 0.004 0.001 0.266 0.281 
Q2 Dpt Proc 2.576 0.014 0.004 2.553 2.595 
Cl Q2 Dpt Proc 4.286 0.037 0.012 4.231 4.343 
C2 Q2 Dpt Proc 6.456 0.052 0.017 6.340 6.521 
Net Dpt Proc 5.999 0.018 0.006 5.964 6.021 
Cl Net Dpt Proc 9.988 0.042 0.013 9.914 10.056 
C2 Net Dpt Proc 15.024 

0.000 
0.117 
0.000 

0.037 14.841 15.191 
0.000 0.000 0.000 

ResponseTime 6.910 0.058 0.018 6.839 7.014 
RespT Cl 7.081 0.081 0.026 6.973 7.217 
RespT C2 6.652 0.050 0.016 6.573 6.719 
Prob_Cl_Ql 0.601 0.003 0.001 0.595 0.605 
Prob_Cl Q2 0.601 0.003 0.001 0.595 0.606 
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FILE STATISTICS for scenario TWONODE ** 

File Label or Average Standard Standard Maximum 
Number Input Location Length Deviation Error Average 

Length 

1 QUEUE    Ql 0.387 0.007 0.002 0.398 
2 QUEUE   Q2 0.087 0.001 0.000 0.089 

File Average 
Number Wait Time 

1 0.698 
2 0.225 

** SERVICE ACTIVITY STATISTICS for scenario TWONODE ** 

Activity    Label or     Server   Average   Standard   Standard 
Number  Input Location Capacity Utilization Deviation    Error 

1 Ql 
2 Q2 

0.445 
0.233 

0.002 
0.001 

0.001 
0.000 
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Appendix F: Evaluation Network Simulation Model 

Basic Model 

Cuctomcr Clan Cr*ation 
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I Type2 
-|w] 
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Secondary Procejjine; Network 
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Additional Stats Collection 

(HH 3 *"^Ü NNOTIXI01) 

2 I NoProc 

"Nnm Not Proc" n (»-urn "Num Kill SCO" E>-H: 

(NH NNCNK103)    •Mum to Prime"     1 l) ^"(NNCKKIO-1)    "NumloSond"     M ^J "CompPrime' 

(NN NNCNTdOOO)    "Num Done Prime" !"    lj ^-(NN NNCN1X1001)    "Num Done Send" D- 
I CompPüim* I CompScncby 

$ NNCNTOOSJ/NNCNTCU) "FracClatSCBB" 7) H^ 
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Modifications 

(ATHB[2]    "SCBBServT     l) '"V TOOW-ATHB^l-ATTIBIS] 

Q,gnffE==2 

(ATHB[21    "ClSC5BS.rvr    l) »»/B {■IHOW-ATHB[2]-ATnB[3I 'CI SCBBW.it" 

(ATRIB[2)    "C2SCBBS.rvT     M ^Ul •lTNOW-ATKIB[2]-ATFIB[3] 
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Appendix G: Evaluation Network Simulation Output 

Case 1: 200,000 Departures 

** AweSim SUMMARY REPORT ** 

Simulation Project : Thesis, Net 2b 
Modeler : Scott Bellamy 
Date : 23 DEC 98 
Scenario : NET2 

Run number 1 of 1 
Current simulation time    : 14953.345466 
Statistics cleared at time : 0.000000 

** OBSERVED STATISTICS REPORT for scenario NET2 ** 

Label 

Num Arrivals 
Num Not Proc 
Num Kill SCO 
Num to Prime 
Num to Send 
Num Done Prime 
Num Done Send 

TimeFinSCOKill 
TimeFinPrime 
TimeFinScnd 
OverallSysTime 

SC5B Serv T 
Cl SC5B Serv T 
C2 SC5B Serv T 

SC5B Wait 
Cl SC5B Wait 
C2 SC5B Wait 

Frac Cl at SC5B 

OverallNumlnSys 

Mean Standard Number of Minimum Maximum 
Value Deviation Observations   Value Value 

200014.000 0.000 1 200014.000 200014.000 
0.000 0.000 1 0.000 0.000 

60316.000 0.000 1 60316.000 60316.000 
59810.000 0.000 1 59810.000 59810.000 
79887.000 0.000 1 79887.000 79887.000 
3630.000 0.000 1 3630.000 3630.000 

136054.000 0.000 1 136054.000 136054.000 
0.000 0.000 1 0.000 0.000 
0.027 0.027 60316 0.000 0.299 
0.427 0.169 3630 0.076 1.473 
1.237 1.387 136054 0.081 37.008 
0.858 1.272 200000 0.000 37.008 
0.000 0.000 1 0.000 0.000 
0.069 0.077 185430 0.000 1.018 
0.100 0.101 69615 0.000 1.018 
0.050 0.050 115815 0.000 0.580 
0.000 0.000 1 0.000 0.000 
0.476 0.595 185430 -0.000 5.939 
0.491 0.604 69615 0.000 5.939 
0.467 0.589 115815 -0.000 5.739 
0.000 0.000 1 0.000 0.000 
0.375 0.000 1 0.375 0.375 

11.473 8.298 0.000 80.000 14953.345 
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** FILE STATISTICS REPORT for scenario NET2 ** 

File Label or Average 
Number Input Location Length 

1 QUEUE SCO 0.099 
2 QUEUE SC1A 0.049 
3 QUEUE SC2A 0.050 
4 QUEUE SC3A 0.050 
5 QUEUE SC4A 0.004 
6 QUEUE SC5A 0.018 
7 QUEUE SC6A 0.000 
8 QUEUE SC7A 0.002 
9 QUEUE SC8A 0.001 

10 QUEUE SC1B 0.099 
11 QUEUE SC2B 0.099 
12 QUEUE SC3B 0.188 
13 QUEUE SC4B 0.049 
14 QUEUE SC5B 5.899 
15 QUEUE SC6B 0.013 
16 QUEUE SC7B 0.379 
17 QUEUE SC8B 0.389 
0 Event Calendar 7.085 

Standard  Maximum Current   Average 
Deviation  Length  Length  Wait Time 

0.404 
0.265 
0.268 
0.269 
0.066 
0.151 
0.017 
0.051 
0.024 
0.403 
0.401 
0.595 
0.268 
7.734 
0.125 
0.952 
0.959 
1.556 

10 
7 
6 
6 
3 
4 
1 
3 
2 
7 
7 
9 
6 

74 
4 

14 
14 
15 

0.007 
0.012 
0.013 
0.012 
0.003 
0.007 
0.001 
0.002 
0.001 
0.019 
0.019 
0.027 
0.012 
0.476 
0.006 
0.043 
0.043 
0.072 

SERVICE ACTIVITY STATISTICS REPORT for scenario NET2 ** 

Activity    Label or     Server 
Number  Input Location Capacity 

1 SCO 
2 SC1A 
3 SC2A 
4 SC3A 
5 SC4A 
6 SC5A 
7 SC6A 
8 SC7A 
9 SC8A 

10 SC1B 
11 SC2B 
12 SC3B 
13 SC4B 
14 SC5B 
15 SC6B 
16 SC7B 
17 SC8B 

Entity Average Standard 
y Count Utilization Deviation 

1 200013 0.268 0.443 
1 59809 0.200 0.400 
1 59808 0.201 0.400 
1 59808 0.200 0.400 
1 17590 0.059 0.235 
1 38661 0.129 0.335 
1 5294 0.018 0.132 
1 14371 0.048 0.213 
1 7249 0.024 0.153 
1 79887 0.268 0.443 
1 79887 0.267 0.443 
1 104031 0.348 0.476 
1 58875 0.197 0.398 
1 185430 0.854 0.353 
1 32185 0.108 0.310 
1 132435 0.444 0.497 
1 136054 0.455 0.498 
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Case 2: 250,000 Departures with 10 Replications 

** AweSim! MULTIPLE RUN SUMMARY REPORT ** 

Simulation Project : Thesis, Net 2b 
Modeler : Scott Bellamy 
Date : 23 DEC 98 
Scenario: NET2 
Number of runs 10 

OBSERVED STATISTICS for scenario NET2 ** 

Label 

Num Arrivals 
Num Not Proc 
Num Kill SCO 
Num to Prime 
Num to Send 
Num Done Prime 
Num Done Send 

TimeFinSCOKill 
TimeFinPrime 
TimeFinScnd 
OverallSysTime 

SC5B Serv T 
Cl SC5B Serv T 
C2 SC5B Serv T 

SC5B Wait 
Cl SC5B Wait 
C2 SC5B Wait 

Frac Cl at SC5B 

Mean Standard 
Value Deviation 

250011.600 8.235 
0.000 0.000 

75000.800 245.572 
75018.000 260.383 
99992.400 198.329 
4515.700 40.376 

170483.500 256.540 
0.000 0.000 
0.027 0.000 
0.426 0.003 
1.226 0.029 
0.852 0.020 
0.000 0.000 
0.069 0.000 
0.100 0.000 
0.050 0.000 
0.000 0.000 
0.465 0.020 
0.477 0.020 
0.457 0.020 
0.000 0.000 
0.373 0.002 

Standard 
Error 

2.604 
0.000 

77.657 
82.340 
62.717 
12.768 
81.125 
0.000 
0.000 
0.001 
0.009 
0.006 
0.000 
0.000 
0.000 
0.000 
0.000 
0.006 
0.006 
0.006 
0.000 
0.001 

Minimum 
Average 
Value 

250003.000 
0.000 

74518.000 
74660.000 
99698.000 
4445.000 

170082.000 
0.000 
0.027 
0.422 
1.188 
0.826 
0.000 
0.068 
0.099 
0.050 
0.000 
0.439 
0.455 
0.429 
0.000 
0.370 

Maximum 
Average 
Value 

250031.000 
0.000 

75360.000 
75303.000 

100278.000 
4564.000 

170962.000 
0.000 
0.028 
0.432 
1.281 
0.890 
0.000 
0.069 
0.100 
0.050 
0.000 
0.502 
0.518 
0.492 
0.000 
0.376 

OverallNumlnSys 11.409 0.263 0.083 11.022 11.935 

109 



** FILE STATISTICS for scenario NET2 ** 

File Label or Average Standard Standard Maximum 
Number Input Location Length Deviation Error Average 

Length 

1 QUEUE SCO 0.099 0.001 0.000 0.100 
2 QUEUE SC1A 0.051 0.001 0.000 0.054 
3 QUEUE SC2A 0.051 0.001 0.000 0.052 
4 QUEUE SC3A 0.051 0.001 0.000 0.052 
5 QUEUE SC4A 0.004 0.000 0.000 0.004 
6 QUEUE SC5A 0.020 0.001 0.000 0.020 
7 QUEUE SC6A 0.000 0.000 0.000 0.000 
8 QUEUE SC7A 0.002 0.000 0.000 0.003 
9 QUEUE SC8A 0.001 0.000 0.000 0.001 

10 QUEUE SC1B 0.098 0.002 0.001 0.101 
11 QUEUE SC2B 0.098 0.001 0.000 0.099 
12 QUEUE SC3B 0.187 0.002 0.001 0.191 
13 QUEUE SC4B 0.049 0.001 0.000 0.051 
14 QUEUE SC5B 5.808 0.249 0.079 6.311 
15 QUEUE SC6B 0.013 0.000 0.000 0.014 
16 QUEUE SC7B 0.375 0.008 0.003 0.386 
17 QUEUE SC8B 0.400 0.006 0.002 0.408 

File Average 
Number Wait Time 

1 0 007 
2 0 013 
3 0 013 
4 0 013 
5 0 003 
6 0 007 
7 0 001 
8 0 003 
9 0 001 

10 0 018 
11 0 018 
12 0 027 
13 0 012 
14 0 465 
15 0 006 
16 0 042 
17 0 044 
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SERVICE ACTIVITY STATISTICS for scenario NET2 ** 

Activity Label or Server Average Standard Standard 
Number Input Location Capacity Utilization Deviation Error 

1 SCO 1 0.268 0.001 0.000 
2 SC1A 1 0.201 0.001 0.000 
3 SC2A 1 0.201 0.001 0.000 
4 SC3A 1 0.201 0.001 0.000 
5 SC4A 1 0.060 0.001 0.000 
6 SC5A 1 0.130 0.001 0.000 
7 SC6A 1 0.018 0.000 0.000 
8 SC7A 1 0.048 0.000 0.000 
9 SC8A 1 0.024 0.000 0.000 

10 SC1B 1 0.268 0.001 0.000 
11 SC2B 1 0.268 0.001 0.000 
12 SC3B 1 0.348 0.001 0.000 
13 SC4B 1 0.198 0.001 0.000 
14 SC5B 1 0.858 0.004 0.001 
15 SC6B 1 0.108 0.001 0.000 
16 SC7B 1 0.445 0.002 0.001 
17 SC8B 1 0.457 0.002 0.001 

Database File (partial contents): 

RUN ID MEAN STDDEV 
1 C1 SC5B Wait 0.489111 0.591964 
2 C1 SC5B Wait 0.467019 0.527733 
3 C1 SC5B Wait 0.455314 0.546207 
4 C1 SC5B Wait 0.485863 0.541861 
5 C1 SC5B Wait 0.489467 0.564231 
6 C1 SC5B Wait 0.486997 0.555241 
7 C1 SC5B Wait 0.470935 0.506844 
8 C1 SC5B Wait 0.518326 0.610003 
9 C1 SC5B Wait 0.454573 0.532559 
10 C1 SC5BWait 0.455114 0.506825 

1 C2 SC5B Wait 0.467188 0.579109 
2 C2 SC5B Wait 0.448599 0.527040 
3 C2 SC5B Wait 0.429397 0.522720 
4 C2 SC5B Wait 0.468458 0.546739 
5 C2 SC5B Wait 0.474599 0.569887 
6 C2 SC5B Wait 0.465969 0.550299 
7 C2 SC5B Wait 0.451025 0.504098 
8 C2 SC5B Wait 0.492360 0.601518 
9 C2 SC5B Wait 0.437241 0.527563 
10 C2 SC5B Wait 0.434369 0.501537 
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