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Preface 

This research explores the technology and behavioral rules required to enable a 

constellation of identical satellites to autonomously configure into a solid structure 

while in High Earth Orbit (HEO). The primary result is that such a mission can only 

be accomplished if the satellites have at least the following characteristics: (1) mo- 

bility (2) two analog communications channels (3) one duplex radio channel, and (4) 

a close proximity attraction mechanism. A MATLAB Graphical User Interface, the 

Structural Emergence Simulator (STEMS), is developed, and behavior algorithms are 

designed that successfully model a complete autonomous structural re-configuration 

in zero-gravity. 
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Abstract 

This work describes novel research on autonomous nano-satellite structure for- 

mation. The collaborative behavior of nano-satellites in a zero gravity environ- 

ment is explored, and satellite characteristics are proposed that maximize constella- 

tion robustness and minimize manufacturing costs.   Identical satellites with impulse 

thrusters and two light-intensity transceivers demonstrate abilities to form complex 
(5) lattice structures.    A comprehensive MATLAB     simulation engine, the Structural 

Emergence Simulator (STEMS), is developed for experimentation. Behavior algo- 

rithms are proposed to facilitate both swarming and structural formation and are 

validated using STEMS. 

A payload of multiple satellites is placed in a zero gravity environment and re- 

leased to reconfigure into a pre-designed structure. Data transmission between (or 

to) satellites is not permitted during the swarming phase of the structural reconfig- 

uration mission. A swarming behavior function, the binary behavior algorithm, is 

invented that presents a satellite direction and magnitude solution to the satellite 

control system. The interplay of social forces due to the binary algorithm results in 

satellite swarming and a quiescent state of spatial equilibrium. Attractive and re- 

pulsive tendencies generate group cohesion while maintaining freedom of movement. 

A second behavior function, the four-post algorithm, is invented to facilitate struc- 

ture formation behavior. This algorithm switches satellite transmission channels, ef- 

fectively altering the path of incident swarming satellites. The algorithm is subject to 

two constraints: rules must be evaluated and acted upon locally, and the final struc- 

tural form must be known. The binary and four-post algorithms facilitate endless 

transitions from a gaseous swarming phase to a solid lattice structural phase. 

Two methods of conserving fuel are discovered. Fuel savings of 38% are realized 

by setting a minimum thruster threshold based upon environmental noise levels, and 

fuel savings of 45% are realized by seeding structural formation prior to swarm equi- 

librium. Finally, analysis indicates a correlation between architecture complexity 

and structure formation half-life. 



Structural Emergence and the Collaborative Behavior of 
Autonomous Nano-Satellites 

1. Introduction 

1.1   Background 

1.1.1   Cellular Automata 

Cellular automata (CA) [15,19] are discrete dynamical systems in which local 

states are completely specified in terms of local information. Cellular automata are 

best imagined as cellular systems that alter the state of local cells, asynchronously or 

synchronously, based upon a function of the measured state of local neighbors. The 

most favored design is a two dimensional lattice, but it is not difficult to imagine an 

N-dimensional automata with cells of varied geometry. The laws implemented in an 

automaton are local and uniform by definition, and automata are inherently parallel 

devices, i.e., each state in an Ri x R2 lattice can be updated simultaneously. 

Cellular automata were introduced in the 1940s by John von Neumann [50,51] 

after a suggestion by Stanislaw Ulam. The idea was to describe a device made 

of identical components and capable of realizing a specialized machine. Continued 

work by Konrad Zuse, Arthur Burks [15], John Holland, John Conway, Tommaso 

Toffolio, and Stephen Wolfram [56,57], to name a few, ultimately produced a number 

of practical implementations of well-developed theory. Wolfram successfully classified 

the emergent properties of chaotic systems in a series of papers on the Theory and 

Applications of Cellular Automata [56,57,58,31]. According to a concise description 

of automata by Wolfram [56,57] CA have five fundamental defining characteristics 

(see Table 1.1) and can be decomposed into four classes (Table 1.2) based on 



Figure 1.1   Deterministic Cellular Automata (DCA) at 1, 30K,    60K, 90K, 120K, 150K element 
modifications:   Gaseous Cohesion 

a spacio-temporal metrics. Langten argues that Wolfram's rule IV belongs 

naturally between rules II and III if CA are classified using established metrics of 

chaotic behavior. Wuensche [58] suggests that Wolfram's class I and II be combined 

naturally into a more concise ordered (class 1-2), complex (class 4), and chaotic (class 

3) scheme. For the purpose of generating the proper abstract analogy for nano- 

satellites, we must only be aware that such classifications exist and that we seek an 

ordered quiescent state (Table 2, Rule 1). 

Figure (1) is an automata coded in MATLAB® that models gaseous cohesion. 

It illustrates the transition of a chaotic system to one of lower spatial entropy. It- 

eration (1), Frame (1) [left] illustrates a random field of binary zeros and ones that 

represent water molecules in a diffuse state. A local rule that models molecular 

cohesion is applied iteratively and the result is a quiescent state analagous precipita- 

tion. However, the dimension of the resultant precipitate is a function of the local 

knowledge extent. For example, molecules in Figure (1) are affected by neighbors in 

a three pixel radius. However, if this radius of influence is extended and the same 

local rules applied, then resultant precipitates are of greater average dimension. The 

possible complexity of an end state is directly proportional to this knowledge extent. 

The nano-satellite structure formation implementation presented in this work has an 

extremely narrow local knowledge radius and by reducing hardware complexity, it 

limits the style of architecture. If this knowledge extent is too narrow, then it may 

be impossible to reach a desired end state. 
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List of Characteristics 

1     They consist of a discrete lattice of sites 
They evolve in discrete time steps 
Each site take on a finite set of possible values 
The value of each site evolves according to the same deterministic rules 

5     The rules for the evolution of a site depend only on a local neighborhood of sites around it 

Table 1.1   Five fundamental characteristics of automata: Wolfram [57,58] 

We seek a deterministic end state as a function of stochastic local rules, but only the 

initial conditions and not the local rules are known. One constraint imposed on this 

problem is that local rules must be functions of local neighbor states. Robustness and 

simplicity are compromised if global knowledge is shared. A solution to this problem 

is local behavior rule evolution using genetic algorithms, in which an initial rule is 

hypothesized and tested with mutations over successive generations until a solution 

is discovered. The problem with this approach is that no solution is guaranteed, and 

we must search a local rule space that suffers from massive dimensionality. Thus 

an algorithm must be developed to facilitate swarming and structure formation; to 

bridge the gap between known initial and final conditions while preserving locality. 

1.1.2 Artificial Life 

As carbon based life forms, we are naturally drawn to the study of carbon based 

life and hence to the field of biology. The biology of carbon based life [32] defines 

living systems as those that possess the following characteristics: (1) have highly 

organized bodily systems, (2) are chemically different from their environment, (3) 

take in energy from their environment, (4) respond to surrounding stimuli, (5) are 

particularly suited to their environment, and (6) can adapt to their surrounding 

environment [36,54]. These tenants are found to varying degrees in the progeny of 

modern man: silicon based machines. Although no machine exists (yet) that meets 

the most strict definition of life, there are robots that exhibit very life-like behavior. 
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Class Description 

I A spatially homogenous state 
II A sequence of simple stable or periodic structures 
III Chaotic aperiodic behavior 
IV Complicated localized structures 

Table 1.2   Cellular Automata classification: Wolfram [cite] 

Animation, the ability to learn, intelligence, and the conversion of energy are all as- 

pects of biological life that current robotic technologies can exhibit simultaneously. 

Self-reproduction, or the concept of Von Neumann universality, [14,16,50,51] on a 

physical level still eludes us. Until the silicon-based equivalent of meiosis and mitosis 

is achieved, the field of Artificial Life (AL or ALife) [7,38,41,42,43] must remain some- 

what distant from the field of carbon based biology. Regardless of the classification, 

ALife remains a discipline that studies the properties of natural life by attempting 

to recreate biological phenomena using artificial media. Here 'artificial' is in the 

sense that the media is of a composition other than carbon-based molecules - a very 

human-centric notion.   As described by Chris G. Langton [29,30]: 

"ALife complements the traditional analytic approach of traditional biology with 
a synthetic approach in which, rather than studying biological phenomena by 
taking apart living organisms to see how they work, one attempts to put together 
systems that behave like living organisms." 

Although ALife is biologically inspired, the action of designing creatures with 

animalian or human characteristics is not new. The earliest mechanical devices 

that were capable of generating their own behavior were the early Egyptian water- 

clocks [7] called Clepsydra. They used the rate limiting process of dripping water to 

indicate the position of the sun. Mankind has a long history of attempting to map 

the mechanisms of this contemporary technology on to the workings of nature, trying 

to understand the latter in terms of the former. It is as if mankind has a predilection 

for re-instantiation in an attempt to surmount perceived inadequacies. If the next 

evolutionary step of an advanced species is replacement by hardware which that the 

same species designed, then humankind is well on the way to evolving out of its 
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carbon-based shell. ALife is the study of this current (proposed) metamorphosis, 

just as biology is the study of the human mechanism. In keeping with the noble 

philosophy of ALife "to put together systems that behave like living organisms," the 

following pages explore one theoretical application of collaborative systems. 

1.2  Original Mission 

The original mission that motivated this thesis was, "to describe the simple local 

behavioral rules [45,46] that enable a robust constellation of satellites to swarm, then 

reconfigure into a pre-designed solid structure (May, 1997)." Three key words are: 

simple, local, and pre-designed, and each word carries important implications as indi- 

cated in the subsections. A new paradigm, with implementation of the recently pro- 

moted 'faster, better, cheaper' mantra at NASA, changed the primary metric by which 

spacecracft are judged from purely performance to 'specific performance' or perfor- 

mance per unit cost. The paradigm shift encouraged both a decrease in the cost and 

a decrease in the size of orbiting platforms. When launching an object into geosyn- 

chronous orbit costs $17,000 per pound, decreased size equates to decreased dollars 

spent. In partial response to this cost, MicroElectroMechanical Systems (MEMS) 

technology is thriving. MEMS devices are no longer laboratory curiosities: a large 

number of universities, companies, and nations have established laboratories and/or 

programs for research into the scientific fundamentals of such devices and their poten- 

tial applications. For example, Germany recently completed a four year, $258 million 

project, and Japan is midway though a ten year, $171 million effort. With these new 

technologies, the bottom line remains reliability. To increase reliability locality must 

be increased; in other words, the division of labor must be evenly distributed. Here, 

labor is synonymous with sensing, computation, and motive action. An increase in 

locality is often a prerequisite for an increase in robustness. The merger of simplicity 

and locality decreases both orbital structure cost and the probability of failure. 
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1.3 Design 

Honeybees, for example, generate actions based upon local information. If the 

nest appears to be mis-shapen, then the nearest bee takes responsibility for fixing 

the local problem based upon decisions made in response to a mixture of pheromone 

[52], thermal, and visual cues [48]. No sooner has the bee modified a portion of the 

hive than it forgets the action entirely and moves on to the next menial task. How 

then does a swarm of honeybees create such a seemingly complex hive? The answer 

is that bees peform many iterations of simple local rules [9,11,12] and the result is 

an object that appears pre-designed. It should be noted that honeybees do not have 

an entire blueprint stored in memory, they are hard-wired to respond to stimuli [20, 

24,52] based upon (what amounts to) stochastic local behavioral rules. Here 'hard- 

wired' does not imply non-adaptive or memoryless; however, reverse engineering (i.e., 

solving the inverse problem) a beehive or termite pillar and extracting the local rules 

required to make it is a difficult task and more than one set of local rules is likely to 

exist. 

The inverse problem is described in terms of initial conditions, local rules, and 

Wolfram's CA classifications (Chapter 2, Cellular Automata). The inverse problem 

requires that we search a rule space for a set (of rules) that guarantees a known result, 

given a specified range of environmental conditions with ambient noise below some 

threshold. Humans are extraordinarily adept at determining what local actions must 

be taken to ensure a result, which introduces the concept of architecture [23]; the 

formal practice of generating global blueprints that workers (automata) are capable 

of executing. Thus, an architect mentally takes into account the local tasks workers 

must accomplish to construct a structure. Just as an architect is limited by the 

capabilities of the worker (and vice-versa), so too we are ultimately limited to a style 

of architecture; to single valued functions that describe surfaces in three-dimensions. 

Prom a practical standpoint, launching a constellation of satellites to construct an 

object in orbit requires the certainty of blueprints and it is desireable to decompose 

these blueprints into local tasks with a quick algorithm.   Genetic algorithms may find 
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a solution to the inverse problem, however, rule evolution can be a time consuming 

process. A means of decomposing global knowledge into completely local action is 

proposed in Chapter 4, Methodology. The trade-off for determining local rules given 

a set of blueprints is increased speed for a decreased selection of architectural styles. 

1-4  Locality 

Locality refers to the level at which computations are executed in a distributed 

network of processors. In this work it implies the act of information processing 

and reception on an individual satellite level. The ultimate goal is to implement 

distributed intelligence so that emergent behavior is realized: 

"Emergence as a classical philosophical doctrine was (is) the belief that there 
will arise in complex systems new categories of behavior that cannot be derived from 
the system elements."    [Boden 7] 

Thus, distributed systems that demonstrate emergent behavior are often mis- 

taken for systems with highly-intelligent elements. Systems that demonstrate emer- 

gent behavior are capable of turning from chaotic behavior to yield functionality be- 

yond that of any single element. 

For example, behavior is based solely on local rules in a beehive. A veritable 

cornucopia of odors and imagery are received by a given bee, and actions is taken in the 

form of appendage and wingbeat movements. How fascinating that no digital Local 

Area Network (LAN), GPS, or wireless ethernet is ever used, yet bees accomplish their 

mission of hive construction with a high degree of success. Although no two beehives 

are identical, they are functional. Consider the antithesis of such Self-Organizing 

(SO) [13], behavior, the personal computer. The loss of even one transistor in a 

processor of millions can be catastrophic to the entire system. This problem may be 

addressed by distributing tasks to identical processors [19, 43]. 

Nearly every organism (on this planet) demonstrates either leaderless action or 

the ability to promote leaders without sacrificing the viability of the species. The sieve 

of evolution tends to favor locality as a means of avoiding the energy cost of higher 

intelligence.    Creatures with more intelligence tend to demonstrate caste behavior 
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