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mobile ground radar may have a positional error on the order of the range measurement error. This fact 

motivates our analysis of the specific effect of radar positional uncertainties (biases) on tracking errors. 

The other systematic error sources addressed, the range and azimuth offsets (or biases), are 

determined in part by radar detection technique (Doppler, mono-pulse, etc.), oscillator (clock) stability 

and jitter, wind torque and mechanical imperfections (for a physically rotated antenna), and calibration or 

alignment imperfections, etc.. By examining the effect of the net position and range and azimuth offsets, 

a budget may be obtained that determines the allowable tolerance of each of the above error sources. 

1.3 Scope of Research 

Of the sources of registration error, three sources which have proven to be major problems in air 

defense and air traffic control systems are analyzed: (1) position of the radar with respect to the system 

coordinate origin; (2) alignment of the antennas with respect to a common North reference (that is, the 

azimuth offset); and (3) range offset errors. Other errors may exist in current radar systems; however, 

they have not been significant problems in the past[Bar90]. 

The fourth source of error, the inherent inability of 2D radars to produce the correct ground range 

for conversion to Cartesian coordinates, is not considered. This error is not random, it always results in 

an overestimate of the ground range; the magnitude of the error depends on the aircraft range and 

elevation angle. The only real solution to this problem is the use of 3D radars. Otherwise, the best that 

can be done is to include this error as a component of the range measurement error. To remove this 

source of error from our model, the target path is generated in three dimensions and the required 

translation and rotations are performed by approximating the Earth's geoid shape with an ellipsoid. See 

Appendix 2 for the development of these spatial transformations. The range and azimuth measurements 

are then extracted, effectively removing the ground range error. 



1.4 Document Overview 

Chapter two addresses pertinent requirements for determining adequate registration. First an 

analytic framework is developed to analyze this issue, with the Kaiman filter model as the underlying 

structure. Background theory for the Kaiman filter is included in Appendices one and two. With this 

analysis model, specific quantitative requirements for registration are then developed. Based on a Chi- 

square error distribution, bounds for the position, range, and azimuth errors are established. 

Chapter three describes the development of the simulation model and provides block diagrams for 

each module. In addition, the operation of each module is described in detail and the associated 

assumptions are listed. 

Chapter four provides the results of the simulations and the accompanying analysis. The target 

paths and representative error ellipse geometries are included to help visualize the results. 

Chapter five provides a summary of this research effort and offers suggestions for further 

development. 



2.    Summary of Current Knowledge 

To combine information from multiple sensors, radars in our case, a tracking algorithm is often 

implemented to provide measurement accuracies (or statistics). The word tracking implies that there 

exists a state estimate S* together with a covariance matrix P* for each detected aircraft. The pair (S*, 

P*) could be obtained, for example, from the standard Kaiman filter for a constant velocity plant model 

(that is, no acceleration). The Kaiman filter used in this application is a four-state discrete-time filter. If 

not familiar with Kaiman filters, refer to Appendices 1 and 2 for background information on Kaiman 

filtering described in the context of tracking. While this paper is not intended to be a treatise on Kaiman 

filtering, and definitely doesn't qualify as one, as will be seen, the Kaiman filter provides the tracking 

error statistics necessary for the analysis of registration errors. 

To associate observations with existing tracks, a track updating process typically begins with a 

gating procedure that is used to eliminate unlikely observation-to-track pairings. Processing is done at 

each scan using only data received on that scan to update the results of previous processing. This process 

assigns observations to existing tracks in a manner that minimizes some overall distance criterion. At 

scan k-1, the filter forms the prediction Sk]k_{ of the state vector for use at time kT. The measurement at 

scan k is Zk = HSk + Vk, where H is the observation matrix and V is zero-mean, white Gaussian 

measurement noise with covariance matrix R. The vector difference between the measured and predicted 

quantities, v k = Zk - H • S^.,, is defined as the residual, or innovation, with residual covariance matrix, 

© = H ■ P ■ HT + R, where P is the one-step prediction covariance matrix. The time subscripts will now 

be dropped for notational convenience. Assume that the measurement is of dimension M. Then defining 

d to be the norm of the residual (or innovation) vector, d2 =v T •©"' -v , the M-dimensional Gaussian 

probability density function for the residual is 



JL (2-1) 
f(v) =       e * 

{In) A.Jft 

where |0| = the determinant of 0[Bla86]. 

In either of the special cases where the probability of detection is unity or there are no expected 

extraneous returns, the gate size should be infinite for optimal correlation performance. However, since 

one of the primary purposes of gating logic is to reduce the number of observation-to-track pairings that 

must be considered, a finite gate size would be appropriate even in these cases. Also, for non-unity 

probability of detection or during the presence of extraneous returns, an optimal, non-infinite gate size 

can be defined. 

Since d is the sum of squares of M independent Gaussian random variables, it has by definition a 

Chi-square (x2) distribution, thus a correlation gate (G) can be defined such that the plot-to-track 

association or correlation decision is based on a Chi-squared test of the following form: 

[sp-zr[p,+PzHS,-Z]<G <2'2> 

where Sp denotes the position components of S* extrapolated to the time at which the next measurement 

Z is obtained; that is, 

S=O(A0S*       P=d(A0P*<I<A0r (2-3) 

where QAt) is the state transition matrix for a time At. Also Z is the measured position (in 2D Cartesian 

coordinates), Pp the covariance submatrix of P for the position components, and Pz the covariance 

matrix for the measurement. 



If a radar measurement Z from radar A satisfies the gate test defined by (2.2), then Z is used to 

update the track through the estimation procedure. If more than one measurement from radar A satisfies 

the gate test, then an ambiguity resolution logic is necessary to select one measurement for the track 

update process. This can be accomplished with an optimal assignment algorithm such as the Munkres 

algorithm. However, if no measurement from radar A satisfies the gate test, then the gate G may be 

enlarged by adding a "maneuver term": 

G' = G + (l/C)(AM)2,AM = At2/2 (2.4) 

for a maneuver or acceleration factor A. The normalizing factor C can be defined as either the minimum 

eigenvalue of the joint covariance matrix [Pp + Pz] or the nth root of the determinant of the (n x n) 

covariance matrix. If the correlated plot is in the maneuver gate (but not in the nonmaneuver gate) for 

two or more successive scans, then a "maneuver" might be declared and a special set of maneuver gains 

or filter constants used to update the track. A maneuver gate is not implemented in the model since only 

linear target paths are generated. This is done to simplify the Kaiman filter algorithm. The Kaiman filter 

is the optimal estimator for a linear path, however a maneuvering target requires an extended Kaiman 

filter in which its state vector is augmented with additional components. 

Referring to Figure 2-1, suppose that an aircraft is tracked by two radars denoted as radars A and 

B whose detectable coverage areas overlap. Where, or even if, a plot from radar B falls in the correlation 

gates depends both on the random measurement errors of the radar and the magnitude of the position, 

range, and azimuth biases between the two radars. 



Radar B 

Radar A 

Figure 2-1 Constant Measurement Error Ellipses 

If there are no registration errors or biases, then the plot from radar B should fall within the 

nonmaneuver gate G most of the time. Presumably, gate G was chosen to ensure that plots from a 

nonmaneuvering aircraft will satisfy (2.2) with a probability in the range 0.90 to 0.99, based on the 

characteristics of the random errors and the actual system design goals. Similarly, if the biases are small 

with respect to the random errors, then the plot from radar B should be in the nonmaneuver gate most of 

the time, although the exact probability will be less than the design goal. Similarly, if the biases are small 

with respect to the random errors, then the plot from radar B should be in the nonmaneuver gate most of 

the time, although the exact probability will be less than the design goal. 

On the other hand, if the biases are relatively large with respect to the random errors, perhaps 

approximately of the size of the gate G or even G', then the plot may fall between the nonmaneuver and 

the maneuver gates: 

G*$P-tf]Pp+Vz\%-z]<G' 
(2.5) 



Although it is unlikely that a tracking system would be designed to declare a maneuver on one maneuver 

gate correlation, the possibility now exists that a maneuver could be falsely declared if radar A 

subsequently fails to detect the aircraft on the next scan. If the plot from radar B is used to update the 

track, then the bias is superimposed on the state estimate, with a loss of system track accuracy. If the plot 

is simply discarded, then the system may have a delayed response to an actual aircraft maneuver; 

certainly, there is a loss of information. Finally, if the biases are very large with respect to the random 

errors, then the plot from radar B will not correlate with the track at all, in which case the system 

eventually will initiate a second track for the same aircraft. 

2.1 Random versus Systematic Errors 

It was asserted in the preceding paragraph that the biases or registration errors in plot data would degrade 

system track accuracy if used to update a system track. However, this is only one example of a more 

general problem in the general theory of estimation. To consider the more general problem, let X be a 

random variable with an expected value \i and standard deviation a; that is, 

^ = E[X],a2 = E[(X-n)2] (2.6) 

A random sample x from X can be represented as 

x = |i + 8 (2.7) 

where s is the zero-mean random component of X; therefore, 

E[s] = 0, a2 = E[s2] (2.8) 

In many radar tracker designs, it is assumed that the radar measurements have the properties just 

outlined. In particular, it is assumed that p, represents the true value of the aircraft position. Tracking or 

filtering is a process for estimating the true aircraft position |i from a sequence of measurements; that is, 
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random samples, taken over time. Thus, if the set of measurements {x1; x2, x3,.„, xN} is available; then 

the estimate x* of [i is given by 

X* = aixi + a2x2 + a3x3 +... + aNxN (2.9) 

where the set of nonnegative scalars {a,, a2, a3, . . ., aN}, determined by the gains of the filter algorithm, 

satisfies the usual convexity criterion: 

ai + a2 + a3 + ... + aN=l (2.10) 

If it is true that E[s] = 0, then x* is an unbiased estimate of the true position \i of the aircraft. 

However, if E[e] = ß, where ß is not zero (ß * 0), then by (2.10) it follows that 

E[x*] = ^i + ß (2.11) 

and the estimate x* is a biased estimate of \i. Moreover, the mean square error (mse), V, of a biased 

estimate of x* is larger than an unbiased estimate; that is, 

V [x*] = E [(x* - ^i)2] = (a,2 + a2
2 + a3

2 + . .. + aN
2)a2 (2.12) 

if E[s] = 0; whereas 

V[x*] = E[(x* - [if] = (a,2 + a2
2 + a3

2 + ... + aN
2)a2 + ß2 (2.13) 

ifE[e] = ß. 

From this it follows that the process of filtering or state estimation "averages" the random 

measurement errors to reduce the variance or mse of the estimate of the true state [i. However, the 

filtering process cannot remove or even reduce the magnitude of the bias or systematic errors. 
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In the context of a multiple radar tracking system, the presence of registration errors will result in 

a track mse larger than that which should be achievable theoretically. If the registration errors are 

sufficiently large, then multiple radar tracking will be less accurate than single radar tracking. In the 

worst case, registration errors can result in a failure to correlate multiple radar measurements from a 

common aircraft with a common track, either reducing the system effectively to a single radar system or 

even leading to multiple tracks for the same aircraft. Because the fundamental objective of multiple radar 

tracking is to ensure track continuity for an aircraft as it moves through multiple radar coverage 

envelopes, registration errors can defeat the very purpose of a multiple radar system. Therefore, the basic 

requirement for registration is to ensure that plots, that is, radar measurements, from a common aircraft 

will be in the nonmaneuver correlation gate (in the absence of maneuvers) [Bar90]. 

2.2 Quantitative Requirements for Registration 

At this point, the need for radar registration should be obvious. The next question therefore is, 

how well must radars be registered? Before it will be possible to address this question directly, some 

results from the distribution theory for normally distributed random variables must be stated. Based on 

this theory, an analysis model for the effects of registration errors on plot correlation will be developed. 

Finally, this model will be applied to derive some quantitative requirements for the three major sources of 

registration error: sensor position, range offset, and azimuth offset. These results are discussed at length 

in many textbooks on multivariate statistical analysis. 

For this discussion, assume that {Xk | k = 1, 2,. . ., N} is a set of normally distributed, scalar 

random variables with 

E[Xk] = ^ik, E[(Xk-^)2] = ak
2 (2.14) 

that is, each Xk is distributed as aN(fj.k, ak) random variable. 

Now consider a random variable Z defined as the normalized sum of squares of the Xk: 
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N 

k=\ 

Xk~Mk 
<y, 

(2.15) 

V     wk     J 

The random variable Z is distributed as a Chi-squared random variable with N degrees of freedom, 

denoted by %2(N). The distribution x2(N) is often called the central Chi-squared distribution because each 

of the normalized terms, 

X i       
Xi-K; (2.16) 

from the sum of (2.15) is distributed as aN(0, 1) random variable, which is often noted X'k~N(0,l). 

Equivalently, each normalized term squared 

z*=(x02 = 
Xk-\>-k 

\      °k       J 

(2.17) 

is a % (1) random variable. If the means p.k are omitted from the sum in (2.15), that is, 

k=\ 

rx^ 
\ak J 

(2.18) 

then Z is distributed as a noncentral Chi-squared random variable with parameter X, denoted by Z ~ %2(N, 

X). The noncentrality parameter X is defined 

k=\ 

r»k" 
(2.19) 

\akj 

The general theory just outlined can be extended to random vectors in a straightforward manner. 

For this case, let X denote a normally distributed random vector in RN with mean u. and covariance matrix 

P. Then the quadratic form £, defined by 
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$ = (X-ii?r\X-n) (2.20) 

is distributed as a x2(N) random variable, % ~ x2(N). Similarly, if the quadratic form \ is defined 

^ = XTP-'X (2.21) 

then, £ ~ x2(N, X), where the noncentrality parameter A, is given by 

A. = HTP"V (2.22) 

2.3 Analysis Model 

With the help of the general theory just outlined, it is now possible to develop a mathematical 

model with which the quantitative effects of registration errors can be examined, specifically, the effects 

on multiple radar tracking and correlation. To proceed, let Z denote a measurement of an aircraft position 

from a radar in the system. We assume that tracking is performed in a Cartesian coordinate system, either 

R or R6, (the positions x,y or x,y,z and their corresponding velocities). Consequently, it may be assumed 

that Z is in system coordinates; that is, the measurement vector Z is of the form [x, y] or [x, y, z], rather 

than the natural radar polar coordinates [r, 0] or [r, 9, cp]. 

Although it cannot be proven rigorously, we may assume that the measurement Z is a normally 

distributed random vector with the mean equal to the true aircraft position. This assumption is partially 

justified for two reasons. First, the radar range measurement r generally follows a Rayleigh distribution. 

The azimuth measurement 9 certainly is not uniformly distributed over the interval [0, 2n)\ however the 

value of the azimuth, in effect, is quantized in the radar signal processor and in the analog-to-digital 

conversion process. Consequently, it is reasonable to assume that 9 is approximately uniformly 

distributed over some subinterval of [0, 27i)[Bar90]. It can be shown that the polar-to-Cartesian 

coordinate conversion 
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x = r cos(0), y = r sin(8) (2.23) 

yields two independent N(0, 1) random variables if r follows a Rayleigh distribution and 9 is uniformly 

distributed over [0, 27t)[Pap91]. 

If the random variables x and y are ~N(0,G) and independent, 

2nu 

(2.24) 

then to find the probability distribution function in polar coordinates, 

fR<ä(r,9) = fxr(x>y) 

\A*,y)\ 

(2.25) 

where |J(x,y)| is the absolute value of the Jacobian of the polar to Cartesian transformation which is, 

A*,y) = 

dr dr dx dx 
-i 

dx dy dr d6 
39 de dy dy 

dx dy dr de 

(2.26) 
cos#   -rsin# 

sin#     rcos6 

where |..| is the determinant of the matrix. From (2.24), it can be concluded that, 

fR&(r,e) = r-fXY(x,y) = —r    e^12*1 ,r>0M<7r 
2no 

(2.27) 

and 0 otherwise. This is a product of a function of r times a function of 9. Hence the random variables r 

and 8 are independent with 

r      -r2/2a2 

fR(r) = —e-r,1° ,/e(0) = —,r>O,0<;r 
a in 

(2.28) 
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Where the proportionality constant is chosen to make the area (total probability) of each term equal to 1. 

Thus it follows that if x and y are ~N(0,a) and independent, the random variables r and 6 are independent 

with r being Rayleigh distributed and 6 being uniformly distributed. 

Secondly, empirical measurements gathered by Hughes Aircraft Company over past years 

suggests that the random errors in Z are at least approximately normally distributed[Bar90]. It is true, 

however, that there is a distinct correlation in the errors between x and y. This is the reason for 

employing a Kaiman filter capable of tracking in two dimensions. This allows us to take advantage of the 

coupling, or correlation, of the x and y measurements. Recall that the actual radar measurements are in 

polar coordinates, and any change in range or azimuth generally results in a corresponding change in x 

and y. Of course, in the special case of a target path co-linear with either the x or y axis, a change of 

range will not result in changes in both x and y. 

Assume that a time-ordered sequence of correlated measurements {Zh Z2, Z3,. .., Zk} are 

processed by a Kaiman filter to obtain a track, which consists of a state estimate S* and a covariance 

matrix P* for the state estimate. Therefore, the state estimate S* is a linear combination of the 

measurements {Zh Z2, Z3, . . ., Zk}. With the assumption of normality for the errors in Z, and the natural 

assumption of independence of the time sequence of measurements, it follows that the state estimate S* is 

a normally distributed random vector. 

Now consider the correlation criterion given in (2.2) 

>,+Pz]-V*J«* (2'29) I = Sp -Zk+\ 

The quadratic form % in (2.24) is distributed as a x2(M, A,) random variable with the number of degrees of 

freedom M equal to the dimension of the measurement vector Z. 
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In theory, the non-central ity parameter X should be zero if the measurement Zk+] was obtained 

from the same aircraft represented by the track vector S*. The parameter A, can be other than zero if 

either (1) the measurement Zk+l was obtained from a different aircraft than that represented by the track or 

(2) there are biases that would create an apparent difference without the random measurement errors. For 

this application, X will represent the total normalized biases in the measurement vector Z; that is, 

x=br[p/,+pz]-,b (2-30> 

Note that (2.25) assumes that the measurement vector Z is of the form 

Z = n + b + s (2.31) 

where u. is the true aircraft position and s is the vector of random errors. Assuming that the mean of the 

prediction Sp is JLI, then 

E[sp-z]=b (2.32) 

Equations (2.29) and (2.30) are the model with which the impact of registration errors can be 

analyzed quantitatively. The non-maneuver gate G and the maneuver gate G' are chosen to obtain a 

specified probability of correlation of plots that represent the same aircraft as the track. For example, G is 

chosen from a x2(M) probability distribution to satisfy 

Probß < G] > po (2.33) 

The objective now is to define an error "budget" for the sources of registration error such that 

Probß < G] > po - Ap (2.34) 
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where the correlation statistic £, is distributed as a %2(M, X) random variable with parameter X given by 

(2.30), and Ap > 0 is the reduction in the correlation probability that can be tolerated if the system still is 

to meet the system-level requirements for tracking or track accuracy. 

2.4 Quantitative Requirements 

To develop some specific requirements for registration, consider first the correlation gate size G. 

One common rule of thumb in tracking systems is to choose G such that 

Probß <G] = 0.99 (2.35) 

If the measurement vector Z is in R2, then the inverse Chi-square with N = 2 degrees of freedom and a 

probability of .99 yields G = 9.2; similarly for Z in R3, G = 11.3. A correlation probability of 0.99 may 

be an excessive requirement considering the probability of detection of many surveillance radars, which 

often are specified to be only 0.8 to 0.9[Bar90]. Consequently, a correlation probability of 0.95 would 

seem adequate for most applications. Given that 0.95 is adequate, then from Figure 2-2, a gate size of 9.2 

allows a total bias parameter X = 1.2 for the two-dimensional case or A, = 1.5 for the three-dimensional 

case. 

0.95 

0,9 - 

X 
In   0.85 

0.8 

0.75 

0.7 

^^N=3 

N=2 \. 

2 3 4 
X (Non-Centrality Parameter) 

Figure 2-2 Non-central Chi-square (x2) cdf vs. non-centrality parameter 
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The three major sources of registration error are sensor position, range offset, and azimuth offset. 

The next step in the analysis, therefore, is to find the maximum error in each variable consistent with the 

bound of the parameter X. In the following discussion, only the case of a two-dimensional measurement 

vector will be considered since the model's measurements are in those dimensions. 

Consider an aircraft tracked by radars A and B. For convenience, let PA and PB denote the 

covariance matrices for the measurement errors at radars A and B, respectively. The registration problem 

is to ensure that the bias vector b is sufficiently small that the measurement from radar B will correlate in 

the non-maneuver gate with the system track. 

That is, the problem now is to bound the errors that contribute to the bias vector b from the 

inequality 

bT 
?p+Vzl 

,b<1.2 (2-36) 

Obviously, it would be convenient to eliminate one of the variance parameters. Many tracking systems, 

in an attempt to maintain sensitivity to possible aircraft maneuvers, bound the gains in the Kaiman filter 

from below[Bar90]. One rule of thumb is to allow the gains to decrease to the level that produces steady 

state position variances to be approximately 50 percent of the corresponding measurement variances. 

Thus, (2.36) becomes 

br[0.5-P,+PB]-1b<1.2 (2-37) 

Before continuing further, consider briefly the nature of the radar measurement error. In the radar 

measurement plane, that is, the [r, 6] plane, the covariance matrix P is defined 

P' 
'<*       0   ^ 

v0     r2al 

(2.38) 
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where ar and a9 are the standard deviations of the range and azimuth measurements, respectively; and 

where r is the range from the radar to the aircraft. In modern surveillance radars, the range measurement 

often is much more accurate than the cross-range measurement, which can result in highly elliptical 

equal-probability contours (or error ellipses) in the plane. The error ellipses in R2 have major and minor 

semi-axes equal to the square roots of the two diagonal components of the matrix in equation (2.38). 

The basic concept of an error ellipse describes the eccentricity of a single radar error contour 

determined by the ratio of the range error ar to the cross-range error r-ae. In this example, the range error 

ar is smaller than the cross-range error r-ae, which creates highly elliptical errors in the plane for both 

radars. In Figure 2-1, the sum is nearly circular because of the orthogonal geometry of the aircraft and the 

two radars. 

The conversion from radar coordinates to the Cartesian plane rotates an error ellipse in the plane 

by a unitary matrix of the form 

fcostf   -sin^ (2.39) 
U = 

, sind?     cos# 

where 8 is the angle to the target, measured counterclockwise from the abscissa, (the x axis), of the radar 

coordinate system. Thus, 

FR=V-rR-V
T (2.40) 

for radar R. Note that the unitary transformation U merely rotates an error ellipse with respect to the axes 

of the Cartesian plane; it does not change the basic shape or area of an error ellipse. Because the angle 0 

will be different for different radars viewing the same aircraft, the orientation of the error ellipses PA and 

PB can be quite different, even if the error matrices P'A and P'B in the respective radar planes are similar. 
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Now, consider the problem of a bias b due to an error in the knowledge of the position of radar B 

with respect to radar A. Equation (2.37) bounds the magnitude of b relative to the sum of the tracking 

and measurement error variances [0.5-PA+PB]- The worst case geometry occurs when (1) the aircraft 

under consideration is at the midpoint of the line segment that joins the two radar locations and (2) the 

bias vector b is parallel to that line. 

b2 = brb <1.8-min[o-r
2(4^2(5)]=1.8-cTf

2(min) (2-41) 

Now the limit of the allowable absolute position bias is defined as, 

|b,| = 1.34-o-,.(min) (2.42) 

This assumes, of course, that the range error is no greater than the cross-range error. However if this is 

not the case, then the cross-range error for some minimum detection range could be used instead. In this 

case, (2.37) becomes, 

b2=|b7'b|<1.8-min[r2.a|(4r2.^(fi)]=1.8TVe
2(min) (2-43) 

where a6(A) denotes the standard deviation of the azimuth measurements from radar A, and r is the 

down-range distance from the radar to the target. Therefore, taking the square root of equation (2.43) 

gives the maximum tolerance bP on the magnitude of the position error, 

|bp| = 1.34-r-o-ff(min) (2.44) 

where ae(min) is the standard deviation of the radar with the smallest azimuth measurement error. 

Next, consider the problem of range offset errors. The worst case geometry is the same as that for 

radar position errors. The range bias problem, however, is not a relative problem; that is, each radar can 

contribute an error. Whether these errors are additive or partially cancel each other depends on the exact 
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geometry as well as the sign of the bias. For the geometry under consideration, the worst case is for 

errors of the same sign. Therefore, the equivalent form of (2.44) is the following: 

|2bÄ| = 1.34-<r,(min) (2.45) 

where bR is the maximum tolerance for the range bias at each radar; or equivalently, 

|bÄ | = 0.67 -ar (min) (2.46) 

Lastly, consider the problem of antenna alignment or azimuth offset errors. The error or offset b 

of the measurement from radar B will be parallel to the cross-range error (due to azimuth measurement 

errors). The magnitude of the error, be, is given by 

b,=rfl(A&) (2.47) 

where Aße is the azimuth offset. 

The geometry in this case is more complex; however, some empirical observations will suffice to 

show that the worst case occurs for an orthogonal aircraft-radar geometry. Assuming that the axes of the 

Cartesian coordinate system are aligned so that the origin, aircraft, and the two radars compose the four 

corners of a rectangle. The azimuth offset error will be along the cross-range error with respect to radar 

B, which is parallel to the range error for radar A. Therefore, it follows that 

b] =|brb|<1.2.[0.5-^2(^) + r2-C7ö
2(5)] (2-48) 

If it is assumed that crr{A) « r&d(B), then it follows that a reasonable bound for the azimuth offset 

Aße is given by 

22 



|A/?,|< 1.1.(7, (2.49) 

Here, the azimuth offset has been treated as a relative error at radar B, which is adequate for a system of 

only two radars. 

However, if the down-range measurement variance ar is greater than the cross-range 

measurement variance r-ae, then 

b2
e =\brb\<1.2-[5-r2 -cr2

e{A) + r2 -cr2
e(B)] (2-50) 

and using equation (2.47) and the fact that the worst-case geometry will now occur when the target is 

centered between the two radars, and assuming the two azimuth variances are equal, 

|A&|<Vn2.^.<7e=l.34-<7fl 
(2-51) 

which is about 22 % greater than the maximum allowable bias using the previous assumption. 

In a system with three or more radars, it would be necessary to align each radar with respect to 

true north. Therefore, the actual requirement in a multiple radar system using the assumption that the 

cross-range measurement variance is much greater than the down-range variance is 

|Ay0fl|<O.55-<rfl (2.52) 

Assuming the down-range variance is greater than the cross-range variance, 

\Aße\< 0.67-cr6 (2.53) 

The results of these single-source error analyses are summarized in Table 1 in the form of a 

registration error budget. However, in actuality, these errors occur simultaneously, resulting in a 

cumulative error. If all three error sources are considered together as additive vectors, then by the nature 
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of vector addition, the error budget must be reduced by a factor of V3 ; the result is shown in the right- 

hand column of Table 2.1. 

Table 2-1 Registration Error Budgets 

Error Source Single-Source Tolerance Multi-Source Tolerance 

Radar Position 1.34-ar(min) 

1.34-r-Ge(min) 

ar(A)<< r-ae(B) 

ar(A)*r-ae(B) 

0.77-ar(min) 

0.77-r-a6(min) 

ar(A)« r-ae(B) 

CTr(A)*r-ae(B) 

Range offset 0.67-ar(min) 0.39ar(min) 

Azimuth offset 0.55-ae 

0.67'Oe 

ar(A)<< r-ae(B) 

ar(A)« r-CTe(B) 

0.32-CTe 

0.39-ae 

CTr(A)<< r-a6(B) 

ar(A)» r-ae(B) 

Note: ar(min) is the minimum standard deviation over all radars in the system. The bound for the 

azimuth bias can be taken relative to each site. 

2.5 Summary 

Developed in this chapter, is the model by which the effects of registration error in a networked 

radar system may be quantitatively analyzed. Also introduced is the concept of a correlation gate as the 

sum of squared Gaussian distributed random variables, constituting a non-central Chi-squared random 

variable with degrees of freedom, N equal to the number of dimensions in the measurement vector. It is 

observed that the correlation gates most often take the form of "error ellipses" in two-dimensional 

measurement space. Finally, the worst-case geometries for the target, radars and global coordinate origin 

are presented. The three sources of error considered, the position, range, and the azimuth biases are to be 

quantitatively analyzed individually and cumulatively. 
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3.    Simulation Model Description 

3.1 Development of the Simulation Model 

One of the goals of this effort is the creation of a user-friendly software model which may be used 

in further analysis of networked radar systems. Since there exists a number of industry accepted and 

validated software models to simulate various radar types, resources are not expended in duplicating this 

capability. In addition, future efforts will be made to import radar plots generated from other tools as the 

input to this model. A model is desired that will be easily altered to allow for the analysis of differing 

sensor measurement characteristics, including azimuth and range measurement variances. It is also 

desirable to permit arbitrary placement of sensor positions, and to change the position, range, and 

azimuth biases easily. 

Because of these desired characteristics, it is decided to implement the model in the graphical 

simulation environment Simulink®, an extension to the widely accepted commercial software package 

MatLab®. One implication of using Simulink® is that not all MatLab® functions are directly callable from 

its block diagram simulation environment. To access certain MatLab® functions, or custom written 

functions, S-functions must be written. S-functions use a special calling syntax that enable you to interact 

with the MatLab® ordinary differential equation solver. 

Another difficulty using Simulink® is that (m x n) matrices are decomposed and reconstructed 

into (mn x 1) vectors and passed from block-to-block during a simulation. To perform matrix 

calculations, it is advantageous to use the MatLab® Digital Signal Processing Blockset® to ease the 

burden of resizing these vectors into their original dimensions. 

25 



Despite these restrictions, Simulink® provides an intuitive environment for model creation, allows 

easy model parameter changes, and allows Monte-Carlo simulations to be performed from the MatLab® 

command line. 

3.2 Simulation Model Block Diagram Description 

The block diagrams that constitute the simulation model are now considered. Note that in the 

following illustrations, thicker lines denote vectors and the thinner lines scalars. 
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Figure 3-1 Top-Level Block Diagram 

Figure 3-1 illustrates the top-level diagram of the simulation model. At the extreme left of the 

diagram is the target path generation and coordinate conversion block. This block passes the target paths 

from the two radars to the Kaiman filter and Chi-square test block. The binary output of the Chi-square 

test is then passed to the track maintenance blocks which perform sequential testing to determine the track 
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State. The "to workspace" blocks collect test data which is then accessed from the MatLab® command 

line to implement Monte Carlo analysis. 
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Figure 3-2 Path Generation Block Diagram 

Figure 3-2 illustrates the block diagram responsible for generating the target path, measurement 

variances, position bias, range bias, and azimuth bias. The coordinate transformation block performs a 

global to local transformation, injects the biases, and then performs the local to global transformation for 

each radar. The relevant equations for the coordinate transformation are included in Appendix three. 
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Figure 3-3 Coordinate Conversion and Bias Insertion Block Diagram 
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Figure 3-3 illustrates the internal block diagram responsible for local-to-global coordinate 

transformation, and the insertion of position, range and azimuth biases. Notice that the position biases are 

inserted in cartesian coordinate space, while the range and azimuth biases are inserted in spherical 

coordinate space. It may be intuitively obvious that the nature of these bias will influence the gate 

correlation process differently. More will be discussed about this topic in the analysis of results section of 

this paper. 
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Figure 3-4 Kaiman Filter and Chi-square Gate Test Block Diagram 

Figure 3-4 illustrates the block diagram responsible for generating the target tracks and 

accompanying statistics which are passed to the Chi-square gate test blocks. Notice that the bias is simply 

the difference of the state position components from radar one and the measurements from radar two. 

The Kaiman filters also pass the required measurement error covariance and state prediction error 

covariance required by the Chi-square gate test blocks. 
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Figure 3-5 Kaiman Filter State Estimation Loop 

The Kaiman filter consists of two distinct recursive "loops". Figure 3-5 represents the Kaiman 

filter state estimation loop which recursively estimates the current state and also calculates the one-step 

prediction of the next measurement. It can be seen that the prediction is delayed by the period between 

individual measurements which corresponds to the scan time for the mechanically rotated radar. The 

measurement components of the predicted state vector are extracted and then subtracted from the current 

measurement, resulting in the state estimation error commonly called the innovation or innovation 

process. The innovation is then "weighted" by the Kaiman gain matrix (K), which is calculated in the 

Kaiman filter covariance loop shown in Figure 3-6. 
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As stated above, the Kaiman gain is calculated in the covariance loop of the Kaiman filter shown 

in Figure 3-6. It should be emphasized that the Kaiman gain is independent of the state. This can be seen 

by noticing that the only inputs to the covariance loop are the process (or plant) error covariance (Q), the 

measurement (or observation) error covariance (R), and its previously calculated Kaiman gain. 

u; f^     I u u*v 
V bias 

Transpose r 
rr^ MATLAB 

Function 
1 

P+R u u u*v 
V 

pseudoinv 

dA2 

1.2 

Chi-square 
gate 

Chi2 test 

Figure 3-7 Chi-Square Gate Test Block Diagram 

Figure 3-7 illustrates the internal block diagram of the chi-squared gate test block from Figure 3- 

4. This block performs the correlation criterion calculations described in equation (2.24) and compares 

this result to the gate size. Looking forward to the analysis of results section of this paper, the plots 

concerning the gating criterion correspond to d2 in Figure 3-7. The MatLab® function that performs the 

inverse operation here is the pseudo-inverse function with an imposed tolerance of 10"6. The pseudo- 

inverse function is used instead of the inverse or division functions due to the possibility of singularity of 

the innovation covariance matrix which may result from round-off errors. 

The matrix multiplication blocks in Figure 3-7 require knowledge of the size of the matrices to be 

multiplied. These values cannot be changed during a simulation; this is the source of difficulty in passing 

varying sized matrices that would be required for representing missed measurements or extraneous clutter 

(false alarm) measurements. One may be able to define an initial arbitrarily large matrix capable of 

containing the maximum probable number of targets measured at any instant. In the event of a missed 
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target, the measurement value could be represented by not a number (NaN). The algorithms that operate 

on the measurements would then need to be capable of detecting the NaN and either suspend calculation, 

or hold the previous calculated value. 

3.3 Assumptions 

A number of assumptions are asserted in order to simplify the creation of the simulation model. 

These assumptions may be grouped into the following topics: 

3.3.1 Fixed Sample (or Measurement) Intervals 

Although a fixed measurement interval is assumed, an actual rotating radar antenna generally will 

not measure a moving target at a fixed interval unless the target path is strictly radial. This assumption is 

made primarily due to the difficulty of implementing varying sample times in Simulink®. It should be 

noted however, the Kaiman filter algorithm doesn't required fixed sample intervals, thus future 

amendments to this model may remove this assumption. 

3.3.2 Single Target 

A single target is assumed in this analysis. This is done since, as eluded to earlier, each target 

requires a dedicated Kaiman filter. Additionally, the influences of biases in the single target case will 

also apply for multiple targets assuming that dedicated Kaiman filters are required for each target. This 

assumption does however, exclude the analysis of situations such as crossing targets, and closely 

separated targets (formations). 

3.3.3 No Clutter / False Alarms 

The assumption that no false alarms occur is made for reasons similar to the single target 

argument. In the event that clutter generates false alarms, a bank of Kaiman filters is needed to process 

all potential tracks since it cannot be determined if the detection is due to clutter or a real target. Future 
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amendments to this model would gain from the vectorization of the Kaiman filter algorithm. This may be 

accomplished by implementing an S-function capable of processing varying width vectors. 

3.3.4 100 % Probability of Detection 

It is assumed that each target is detected once on each scan. While this assumption rarely reflects 

reality, the difficulty of processing missed detections necessitated its acceptance. A missed detection 

must be represented mathematically in the simulation model. At each observation, the Kaiman filter 

accepts the target's spatial coordinates and performs the ensuing calculations. Representing the missed 

detection as a vector of Os impacts the calculation of the predicted state to varying degrees, depending on 

the previous measurement and state. To remove this assumption, some method must be used to alleviate 

this problem. 
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