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Abstract 

The use of direct, or closed-form solutions of the trilateration equations used to 

obtain the position fix in GPS receivers is investigated. The paper is concerned with the 

development of an efficient new position determination algorithm that uses the closed- 

form solution of the trilateration equations and works in the presence of pseudorange 

measurement noise and for an arbitrary number of satellites. In addition, an initial 

position guess is not required and good estimation performance is achieved even under 

high GDOP conditions. A two step GPS position determination algorithm which 1) 

entails the solution of a linear regression problem and, 2) an update of the solution based 

on one nonlinear measurement equation is developed. The closed-form solution of the 

linear regression in step 1 provides an estimate of the GPS solution, viz., user position and 

user clock bias, as well as the estimation error covariance. In the update step only two to 

three iterations are required as opposed to five iterations which are normally required in 

the standard iterative least squares algorithm currently used in GPS. The two step 

algorithm also provides a data driven prediction of the pseudorange measurement noise 

strength and the estimation error covariance. The mathematical derivation of the novel 

and efficient solution algorithm for the GPS pseudorange equations using stochastic 

modeling is validated in a realistic simulation experiment based on 5000 Monte Carlo 

runs. The algorithm's performance is discussed and compared to the conventional 

iterative least squares algorithm currently used in GPS. 

VI 



1. Introduction 

1.1      Background 

The NAVSTAR Global Positioning System (GPS) is a space based satellite radio 

navigation system which provides three dimensional (3-D) user positioning by solving a 

set of nonlinear trilateration equations using pseudorange measurements. The current 

method of solving the nonlinear equations is to linearize the pseudorange equations and 

calculate the user position iteratively, starting with a user provided initial position guess 

[10]. For near earth navigation, the center of the earth is a good initial guess and the 

currently used Iterative Least Squares (ILS) algorithm is guaranteed to converge towards 

the GPS solution. An area of potential improvement that has been investigated in recent 

years is the use of non-iterative closed-form solutions to the nonlinear pseudorange GPS 

equations. Closed-form solutions have been developed by Bancroft [19], Krause [11], 

Abel and Chafee [17], Chafee and Abel [6], Hoshen [12], and by Nardi and Pachter [16], 

[!]• 

This thesis is an improvement over [16], [1], by removing a simplification, 

resulting in a more rigorous mathematical formulation. Indeed, this thesis and references 

[1] and [16] differ from previous work ([19], [11]) in that an overdetermined system is 

treated, making use of all in view (n > 6) satellites as opposed to using just four satellites. 

Moreover, this research departs from a deterministic formulation of the problem ([19], [6], 

[12], [11]) and specifically addresses the issue of developing a reliable closed-form 

solution that works in the presence of measurement noise. Previous work with the 

exception of reference [20] treated the pseudorange equations as a deterministic set of 

equations.   In this work, it is recognized that pseudorange measurements are noise 
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corrupted. Hence, the stochastic nature of the measurements is reflected in the GPS 

pseudorange equations from the onset to develop a probabilistically sound GPS solution. 

By stochastically modeling the measurements situation at hand, solving for position 

becomes a stochastic estimation problem. The use of correct stochastic modeling and 

estimation yields a GPS solution that in addition to the position estimate provides an 

estimate of the measurement noise intensity. Thus, the estimation algorithm developed 

here provides a data driven position (and user clock bias) estimation error covariance 

prediction. This introduces a new confidence factor into GPS positioning which is critical 

for the downstream integration of GPS and an Inertial Navigation System (INS) or SAR 

sensor. In addition good estimation performance is achieved even under high GDOP 

conditions. Moreover, direct, or autonomous, solutions which do not require an initial 

position guess are attractive for space navigation and for unusual planar array 

configurations using pseudolites, where the iterative process is sensitive to the initial 

position guess (e.g. the WAAS). Furthermore, fast solutions which do require fewer 

iterations and Floating-Point Operations (FLOPS) are attractive for high speed vehicles 

such as spacecraft, because the movement of the vehicle and the rotation of the earth, 

during the computation interval, have to be accounted for. 

The thesis is organized as follows: In Section 2.1 the nonlinear GPS pseudorange 

equations and the attendant error terms are discussed. A two step GPS position 

determination procedure is developed. Section 3.1 contains the development of a novel 

closed-form GPS position estimation algorithm which accounts for measurement noise. 

The method of linear regression adapted from statistics is used to obtain preliminary 

closed-form estimates of the position and user clock bias.   The number of in-view 

1-2 



satellites required is n > 5. In addition, a data driven estimate of the pseudorange 

measurement noise intensity is derived. The data driven estimation of the measurement 

noise intensity requires an additional satellite, thus, the two step algorithm developed in 

this paper requires at least 6 satellites in-view (n > 6). In Section 3.2 the second step of 

the new algorithm is discussed. In step 2 the closed-form solution is used in conjunction 

with one nonlinear measurement equation; thus, an update step, akin to a Kalman-like 

update technique is developed. This supplementary algorithm uses the solution of the 

closed-form algorithm from Section 3.1 as initialization. The novel two step algorithm is 

validated in extensive simulations. The experimental setup is discussed in Section 4.1 and 

the estimation results are given in Section 4.2. Moreover, comparisons are drawn with 

results achieved using the conventional ILS algorithm currently used in GPS. Good 

position and clock bias estimates are obtained using the two step algorithm with two to 

three iterations only, as opposed to five iterations in the ILS algorithm. Also, the FLOPs 

count is significantly reduced. Conclusions and recommendations are presented in 

Section 5.1 and 5.2 respectively. 

1.2      Research Motivation 

The goal in the design of a navigation system is to obtain the best possible 

positioning accuracy by eliminating or at least minimizing the impact of error sources. 

The GPS system errors can be attributed to seven basic sources of error: satellite clock 

errors, atmospheric delays, group delay, ephemeris errors, receiver noise and resolution, 

multipath errors, and receiver vehicle dynamics [15]. These sources of error are briefly 

addressed in the discussion of the stochastic modeling of the pseudorange equations in 

Chapter 3.   Although not the only or most intuitive approach to improving positioning 
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accuracy, improvement of the GPS position determination algorithm used within the GPS 

undoubtedly impacts the achievable accuracy of the solution. Improvements to the 

algorithm will complement any other system improvements to reduce errors in any of the 

seven basic error sources. There are numerous potential benefits that encourage 

improvements to the GPS position determination algorithm; a few that provided the 

motivation to this thesis are discussed in this section. 

1.2.1 Improved User Positioning. 

GPS plays an extremely important role in positioning applications, both military 

and civilian. Regardless of whether precise positioning service (PPS) or standard 

positioning service (SPS) is being used, an improved GPS position determination 

algorithm that provides a closed-form solution to the GPS pseudorange equations 

considering all in-view satellites can improve the accuracy of the GPS position fix. The 

improvement is expected to be achieved as a result of computing an exact solution to the 

nonlinear equation as opposed to introducing approximations by linearizing the equations. 

1.2.2 Test Range Enhancement. 

The Submeter Accuracy Reference System (SARS) navigation test reference 

system being developed at the 746th Test Squadron at Holoman Air Force Base, is used 

primarily in the flight testing of integrated navigation systems [18]. With the 

improvement of GPS, the accuracy of the integrated aircraft navigation systems is also 

improving. Since the test reference system must provide much higher accuracy than the 

system being tested, the importance of improved test range accuracy can never be 
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overemphasized. Additionally, he use of an improved GPS position estimation algorithm 

can enhance the accuracy of the SARS. 

1.2.3 Diversified Applications for GPS. 

Current iterative GPS algorithms are guaranteed to converge to a correct position 

solution for near-earth users, initializing the iterations at the earth's center and assuming a 

zero user clock bias [17]. In space applications, inverted GPS applications such as the 

SARS [18], [21], and unconventional applications that involve the use of both pseudolites 

and satellites, the lack of a sufficiently good initial guess may lead to convergence towards 

the wrong solution. Pseudolite are ground-based transmitters that provide GPS-like 

positioning data and can be used for augmentation. Inverted GPS applications, and the use 

of pseudolites are applications that are currently being considered by the 746th Test 

Squadron for the SARS as a result of work performed at AFIT by McKay [18]. The fact 

that a closed-form solution will not require an initial position guess is an advantage for 

these applications. 

1.2.4 Position Estimate Error Covariance. 

By stochastically modeling the GPS pseudorange equations, solving for position 

becomes a stochastic estimation problem. The use of correct stochastic modeling and of 

Kaiman Filtering like techniques to solve the estimation problem will lead to a GPS 

solution that provides accurate estimates of the position estimation error covariance in 

addition to the position estimate itself. This will introduce a new confidence factor into 

GPS positioning and is critical for the integration of GPS with additional sensors for 

integrated navigation systems. This will specifically enhance the accuracy of navigation 
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systems that are integrated using a federated approach but will not help in deep integration 

schemes as discussed in [22], where the raw pseudorange signals are being used for 

system integration. Federated system integration is done at processed data levels using 

computed positioning data from the navigation sensors. This approach is common when 

system integration is performed as an upgrade on existing sensors that do not provide 

access to raw data signals required for deep integration [4]. 

1.2.5   Computational Efficiency. 

The use of direct, or closed-form solution algorithms tend to be more 

computationally efficient than iterative or recursive algorithms. This efficiency results in 

reduction of the computational cycle which is most advantageous for high speed vehicles. 

The use of a positioning algorithm with short computation cycles is of extreme importance 

to space vehicles where the earth's rotation and the vehicle movement, in the computation 

interval, needs to be taken into consideration. 

1.3      Problem Statement 

The objective of this thesis is to provide a closed-form solution of the GPS 

pseudorange equations and presents an effective method for using them in the presence of 

measurement noise. This thesis work develops an improved closed-form mathematical 

solution to the GPS pseudorange equations, implements an algorithm based on the 

mathematical solution, and performs an experimental analysis of the algorithm using 

realistic Monte-Carlo simulations. The mathematical derivation of the closed-form 

solution used in this research is closely based on the work of Capt Salvatore Nardi [1] and 

notes provided by Dr. Meir Pachter [2]. 
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The closed-form positioning solution will consider pseudorange measurements 

from all available satellites to obtain a position fix. A minimum of 5 satellites will be 

needed to obtain an initial 3-D position fix using the algorithm developed in this thesis, but 

this is not a serious problem since there are always more than four satellites in view when 

the NAVSTAR GPS constellation is fully operational. This thesis work will emphasize the 

proper use of stochastic modeling and estimation in order to provide appropriate 

weighting of satellite pseudorange data in producing a positioning solution. 

1.4      Scope 

The focus of this research is on the improvement of the GPS algorithm to obtain 

better positioning accuracy and to obtain shorter computational cycles by reducing the 

number of required iterations. There are numerous other factors in GPS receiver design 

that affect GPS positioning accuracy that will not be addressed in this thesis. The GPS 

will be considered at the system level, hence the inner workings of the GPS receiver will 

not be considered. The GPS pseudoranges that will be used in the research are corrected 

pseudoranges. The corrected pseudoranges will represent the pseudoranges as they will 

be provided by the receiver after all known correction factors have been applied and 

known error modeled out of the raw pseudorange measurements. The correction of these 

errors are GPS receiver design issues beyond the scope of this thesis. Throughout this 

thesis, the term pseudoranges is treated as meaning corrected pseudoranges. 

1-7 



1.5      Assumptions 

Assumptions must be made about the noise corrupting the pseudorange 

measurements in order to allow the use of a simple stochastic model and to simplify the 

stochastic estimation problem. The following assumptions are used in this thesis. 

1. After all known corrections are applied to the pseudorange measurements, the 

residual noise corrupting the pseudorange measurement is a zero-mean 

Gaussian distributed noise. 

2. The noises on all pseudorange measurements have equal variance intensity. 

3. The noises on the pseudorange measurements are uncorrelated with one 

another. 

4. The effects of Selective Availability (SA) on pseudorange noise is not 

considered. 

5.A 10 degree elevation angle is always achievable for determination of in-view 

GPS satellites. 

6.   The GPS satellite constellation has 24 fully operational satellites. 

The extent to which the assumptions are valid is not exactly known; consequently, 

the impact of using these assumptions can not be determined beforehand. Some of the 

assumptions made are necessary to obtain Jhe solution to the pseudorange equations. 

Others are required to establish a realistic baseline for satellite availability used for the 

experimental simulations. Attempts will be made to qualify the significance of these 

assumptions on the positioning solution through experimental analysis. 
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1.6 Methodology 

This thesis contains three distinct phases. The first phase is the development of the 

two step algorithm. The second phase is the experimental implementation of this 

algorithm. The third phase is the experimental analysis which can only be initiated after 

the two step algorithm has been completed, implemented, and debugged. The approach 

will be iterative in nature since rework of the mathematical solution may be required after 

some experimental analysis is performed, which in turn will require changes to the 

algorithm and new simulations. 

1.7 Pseudorange Modeling in GPS 

GPS uses the radio timing principle to measure ranges between the satellites and 

the GPS receiver making it a time-difference-of-arrival system. If ranges were being 

measured directly, we would be dealing with a multilateration system and obtaining a 

position fix would be easy. Under ideal error and noise free conditions, if both the satellite 

and the GPS receiver's clock were perfectly synchronized on GPS time with no error, then 

the measured range would be the true range [14]. However, the GPS receiver measures 

pseudoranges which are corrupted by the receiver clock bias, measurement noise, and 

other error sources. The latter include atmospheric delays, satellite clock errors, 

ephemeris errors, and receiver induced errors. The receiver clock bias caused by the 

difference between the receiver clock time and GPS time is by far the largest contributor to 

the difference between pseudoranges and ranges; however, the receiver clock bias is 

common to a set of simultaneous pseudorange measurements making it possible to treat it 

as an unknown variable to be estimated along with the user position coordinates, hence the 

GPS solution consist of the user's three space coordinates and his clock time bias. 
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Ephemeris corrections provided to the satellites from the control segment can be 

used to partially eliminate the satellite time error and the ephemeris errors. Known 

tropospheric and ionospheric error model corrections can be applied to partially 

compensate for tropospheric and ionospheric delay errors. Improved receiver design 

techniques are used to minimize the effects of the receiver related errors including receiver 

noise, code loop quantization errors, multipath effects, and interchannel errors. If the 

residual errors are grouped together under one random variable, v, the GPS pseudorange 

equation can be modeled as the true Euclidean range with an unknown clock bias and 

measurement noise superimposed; thus, the stochastic nonlinear pseudorange 

measurement equation is given by: 

Ri  =   J(ux - xj)2 + (uy - y{)
2 + (uz - z-f + b + vt (1.1) 

This equation represents the ith corrected pseudorange equation, i = 1, 2, 3, ..., n, 

where (ux,u ,uz) are the user position coordinates, (xj.y^zj) are the known coordinates of 

the i' satellite, b is the range equivalent user clock bias, Vj is a zero-mean, Gaussian, 

pseudorange measurement noise, and n is the number of satellites in view. It is reasonable 

to assume that all receiver measurements are subject to the same noise intensity; therefore, 

they will have the same variance, ^. However, the measurement noise terms are not 

correlated between satellites. 

One such measurement equation is available for each of the n in view satellites. 

These n equations are the GPS pseudorange equations. All positions used in the 

derivation will be expressed in Earth Centered Earth Fixed (ECEF) coordinates. The 

nonlinear pseudorange equations will be solved algebraically for the estimated user 
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position, (ux,u ,uz) and user clock bias b. This will be achieved through algebraic 

manipulation to reduce the GPS pseudorange equations into a linear regression in the form 

of the standard linear measurement model as defined in [3]. The linear regression is given 

by 

Z   =   Hu + V (1.2) 

where z is the measurement vector, u is the vector of unknowns compromising the user 

position coordinates (ux,u ,uz) and the user clock bias b. H is the regressor matrix and V 

is a Gaussian noise vector whose covariance matrix must be determined. 
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2. Background 

This chapter presents the background theory upon which this research will be 

based. The first part includes a thorough literature review that provides a summary of 

current knowledge in the field of closed-form GPS algorithms and the application of 

stochastic modeling to the GPS pseudorange equations. The second part discusses the 

basic concepts of GPS technology. Particular emphasis is placed on the formulation of the 

GPS pseudorange equations and the theory behind the current iterative algorithms. 

2.1      The Global Positioning System 

This section presents an overview of the Global Positioning System to provide 

some insight into the complexity of the system. This section serves to focus attention to 

the specific portions of GPS of interest in this thesis, namely the position determination 

algorithm within the GPS receiver, and shows how it fits into context of the overall GPS 

system. GPS specific terminology and the coordinate systems used in this thesis are 

discussed as well. 

2.1.1    GPS System Overview. 

GPS is a satellite based radio-navigation system that provides worldwide, virtually 

continuous, three-dimensional (3-D) positioning and accurate timing. The beauty of the 

system is in its apparent simplicity since, from the user's perspective, extremely accurate 

positioning can be achieved with the use of a simple, fairly inexpensive GPS receiver. For 

these reasons, GPS is rapidly becoming the positioning sensor of choice for both military 

and civilian users. The continuous worldwide coverage provided by GPS makes it ideally 

suited for air, land, and sea navigation applications.  It must be recognized that there is 
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much more to GPS than the portion that the typical user is dealing with in obtaining a GPS 

position fix. GPS is composed of three segments: the space segment, the control segment, 

and the user segment. Each segment is essential to the proper functioning of GPS as an 

accurate and reliable navigation tool. The typical GPS user is concerned with the user 

segment only. 

The GPS space segment refers to the GPS satellite constellation. The GPS 

constellation consists of 24 satellites, 21 active satellites plus three active spares, in six 

orbital planes. Each of the satellites has an orbital period of approximately 12 hours (half 

a sidereal day). A healthy GPS constellation provides satellite coverage such that, for 

near-earth locations, there are always at least five satellites in-view and at least seven 

satellites in-view 80 percent of the time [13]. The satellites transmit time-tagged 

navigation messages which the GPS receivers (user segment) use to calculate their 

positions. The navigation message information required by the receivers to perform their 

function, includes GPS time, satellite ephemeris data, correction data, and system almanac 

data [10]. 

The control segment is composed of five stations spread over the world, which 

monitor and control the satellite orbits and GPS time. Only one of the five stations is the 

master control station and only three of the remaining four stations are uplink stations 

capable of transmitting data back to the satellites. The five stations receive the same 

signals seen by all users and collect pseudoranges to all the satellites. All pseudorange 

measurements collected by the stations are transmitted to the master control station which 

then computes the true satellite positions and true GPS time. This is possible since the 

stations are situated at very well surveyed positions.   The master control station then 
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calculates corrections for the satellites and transmits them to the uplink stations where the 

corrections are transmitted to the satellites [1]. 

The user segment is the GPS receiver. The receiver receives the navigation 

message, extracts the data and applies the corrections to obtain the pseudorange and 

pseudorange rate measurements. The user position, velocity, and time are then obtained 

through an algorithm that calculates a solution from the corrected pseudo-range 

measurements. The proposed research will specifically address an algorithm that can be 

used by a GPS receiver to obtain a position fix. 

2.1.2    The Earth Centered Earth Fixed (ECEF) Coordinate Frame. 

The ECEF coordinate frame is an orthogonal frame with its origin at the earth's 

center of mass. The ECEF frame is fixed to the earth and therefore rotates with the earth. 

This frame consists of three axes: x, y, and z. The z axis is aligned with the earth's spin 

axis directed north and the x and y axes lie in the equatorial plane. The x axis is directed 

through the Greenwich Meridian (O longitude) and the y axis through the 90 east 

longitude [10]. ECEF coordinates are commonly used in GPS since, in near earth 

navigation, the navigator wants to know his positioning with respect to the earth. 

Calculations in the GPS receiver are normally performed in the ECEF frame for 

convenience but are converted, in the GPS receiver, to a coordinate system the user selects 

for display. Geographic coordinates (Latitude, Longitude and Altitude) are commonly 

used for display purposes. 
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2.2      Summary of Current Knowledge 

The proposed thesis research involves the development and evaluation of a closed- 

form solution to the GPS pseudorange equations using stochastic modeling and 

estimation. A thorough literature review was required to identify areas and approaches that 

have not yet been explored in the field of closed-form GPS solutions and to establish the 

framework for this thesis research. This review of current literature on the NAVSTAR GPS 

emphasizes the development of closed-form solutions to the pseudorange equations and 

stochastic estimation. 

Relevant papers related to GPS closed-form solutions published over the past 

twelve years, past theses, articles, and books covering more general aspects of GPS, were 

reviewed. The information collected is critical to establishing that a problem exists and 

that the proposed thesis research is a potential solution for improved mathematical 

modeling for GPS. The literature review covers the following areas: GPS Overview, GPS 

equations, conventional GPS positioning solutions, and recent alternate approaches to 

GPS positioning solutions. Upon completion of the literature review, areas of interest that 

have not yet been addressed will be identified and the viability of pursuing the thesis 

research will be confirmed. 

2.2.1    The GPS Pseudorange Equations. 

According to Parkinson [5], the GPS pseudorange equation that reflects all the 

known sources of error is given by 

Ri = J(ux - Xi)
2 + (u   - yf + (uz - z{)

2 + c(bu - B{) + c(T + I) + E + W (2.1) 
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where Rj is the raw pseudorange from the user to the i satellite, (ux, Uy, uz) are the user 

position ECEF coordinates, (XJ, yi? zj) are the ECEF coordinates of the 1th satellite as 

calculated from the Keplerian parameters in the satellite's ephemeris data, c is the speed of 

light in vacuum, bu, is the receiver clock bias, Bj is the error in satellite time, T is the 

tropospheric delay, I is ionospheric delay, E are ephemeris errors, and W represents other 

errors that can attributed to the receiver including receiver noise, code loop quantization 

error, multipath effects, and interchannel errors. 

Ephemeris corrections provided to the satellites from the control segment can be 

used to eliminate ephemeris errors partially. Known tropospheric and ionospheric error 

model corrections can be applied to compensate for tropospheric and ionospheric delay 

errors partially. Improved receiver design techniques are used to minimize the effects of 

the receiver related errors, including multipath errors. Given the current state of GPS 

receiver design technology, the residual errors that remain uncompensated can be assumed 

to be negligibly small. Furthermore, if the residual errors are grouped together under one 

random variable w the equation reduces to the expression presented as Eq. (1.1) known as 

the GPS pseudorange equation. If the residual errors are neglected entirely, the ideal GPS 

pseudorange equation can be expressed as: 

Ri - J(ux - Xi)
2 + (uy - y-f + (uz - z{)

2 + b (2.2) 

The ideal GPS pseudorange equation is a nonlinear equation in four unknowns, the 

three receiver position coordinates, (ux, Uy, uz) and the receiver clock bias, b. This 

equation is the basis for deriving the conventional iterative GPS position solutions.  At 
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least four GPS pseudorange equations are required to calculate the four unknowns, (ux, Uy, 

uz, b). 

2.2.2   Conventional Iterative Solution to the GPS Pseudorange Equations. 

The conventional approach to solving the GPS pseudorange equations is to 

linearize Eq. (2.2) about a nominal solution for the vector of unknowns. The vector of 

unknowns, and its associated nominal values, are define as: 

u = [ux, uy, uz, b] 

un = [uxn, u     uzn, bn] 

respectively. 

As described in [10], performing a Taylor series expansion of the GPS 

pseudorange equation and ignoring the second and higher order terms, the following 

equation is obtained: 

uxn - X: u     - y: u    - Zj 
R. „ R . + _JE lAu   + -^——Au   + — -Au  + Ab 1       ni     R.-b      x    R    -b      y    R.-b      z 

ni        n ni       n ni        n 
(2.3) 

Considering the exactly determined case of four pseudorange equations, the 

linearized pseudorange equations can be written in matrix form as: 

alx   aly alz l 

a2x  a2y a2z 1 

a3x  a3y a3z 1 

a4x a4y a4z 1^ 

Aux 

Auy 

Ab 

Rl- _Rnl ARX 

R2- _Rn2 AR2 

R3- _Rn3 AR3 

R4- ~Rn4 AR4 

(2.4) 
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where, 

uxn    xi 
aix      R    - b ni       n 

=  uyn ~ yj 
aiy     R • - b ni        n 

=   uzn ~ zi 

The ay entries in the H matrix are recognized as the cosine of the angle between 

the line-of-sight vector from the receiver to the i satellite and the j axis of the ECEF 

coordinate frame [10]. 

The linearized pseudorange equations can be written in a more compact form as 

HAu = AR. Solving for Au gives the result Au = H AR. This equation can be 

solved iteratively using the following procedure: 

1 .Estimate an initial un, a nominal receiver position and clock bias. 

2.Calculate   nominal   pseudoranges   and   difference   them   with   measured 

pseudoranges to obtain AR. 

3.Compute direction cosines to form the H matrix. 

4.ComputeAu  =   H   AR. 

5.Add Au to un, forming a new corrected un, and go back to step 2. 

6.Continue process until convergence to a solution is achieved by verifying that 

Au   «0 or that an established threshold is attained. 
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Upon completion, un, the nominal position and bias, represents the best 

estimate of receiver position and receiver clock bias. This method converges to a solution 

within three to five iterations even when the initial position guess is nowhere close to the 

true position [11], for instance the center of the earth. Drawbacks of using this iterative 

approach include the approximate nature of the linearized equations, computational 

loading associated with the inversion of a four by four matrix, the requirement for an 

initial guess, and the possibility of converging to the wrong solution if the initial position 

guess were not sufficiently close to the true position [11] [17]. The last concern is not an 

issue for near-earth navigation since a unique solution is guaranteed if the earth's center is 

used as the initial position guess and a zero initial clock bias is assumed, but is a serious 

concern if the receiver position is outside the GPS satellite constellation where a unique 

solution is not guaranteed. The same applies to certain inverted GPS arrangements [25]. 

To alleviate such concerns, direct closed-form solutions to the GPS pseudorange equations 

are sought. 

2.2.3   Closed-Form Solutions to the GPS Pseudorange Equations. 

Although closed-form solutions to the GPS pseudorange equations are attractive, 

the concept is not new. Joseph Hoshen [12] proposed that a closed-form solution to two- 

dimensional equations in the form of the GPS pseudorange equations may have been 

available since the third century BC in the form of the Problem of Apollonius. Since GPS 

is a fairly recent system, the first article in the open literature concerned with closed-form 

solutions, specifically tailored to the GPS pseudorange equations, is Stephen Bancroft's in 

1985 [19]. Bancroft developed an algebraic solution to the GPS pseudorange equations 

that was noniterative in nature.   His method provides an exact solution in the exactly 
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determined system using four satellites; like the iterative solution, however, it provides a 

least squares solution in an overdetermined system. The motivation to this solution was 

accuracy improvement and the possibility of space applications since an initial position- 

clock bias guess was not required. Bancroft's solution involves solving a quadratic 

equation, where each of the two roots leads to a potential solution, one of which does not 

satisfy the pseudorange equations and can be readily eliminated. This solution had a great 

deal of merit and motivated a number of papers in the years that followed. Driven by 

accuracy and computational issues including lower dimensionality and speed, Lloyd 

Krause [11] formulated a direct solution to the GPS pseudorange equation of the 

determined system based on difference linearization. By differencing the satellite position 

vectors, a new basis is formed by using any two adjacent difference vectors, forming a 

measurement plane, and a vector orthogonal to the plane. The four nonlinear pseudorange 

equations expressed in the new basis are reduced to three linear equations that are 

independent of the user clock bias and are used to solve for the user position directly. A 

quadratic auxiliary equation is then formed to solve for the user clock bias. Krause's paper 

demonstrated a brilliant approach by which differencing is used to linearize quadratic 

equations and remove dependence on variables. A similar approach will be used in the 

development of the closed-form algorithm for this thesis research. 

Abel and Chaffee [17] demonstrated that in both closed-form solutions presented 

by Bancroft [19] and by Krause [11], a position fix may not exist and if it does exist, it 

may not be unique. Abel and Chaffee's paper concluded that, in order to guarantee a 

unique position fix, an overdetermined system using at least five satellites must be 

considered.  In a subsequent paper [6], Abel and Chaffee suggest that in a pseudorange 
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system such as GPS, the geometry is hyperbolic, unlike the spherical geometry of a 

ranging system. In a ranging system, ranges are measured directly, unlike the case for 

GPS in which the pseudoranges include the unknown receiver clock bias. The solution to 

range equations is obtained geometrically through the intersection of spheres, but this 

method does not generalize to pseudorange equations because of the unknown bias in each 

pseudorange; hence, it is not possible to determine the spheres. In view of the fact that the 

pseudoranges are not only corrupted by an unknown clock bias but also by measurement 

noise, caution must be taken in dealing with the pseudorange equations when it comes to 

the use of solutions based on spherical geometry. 

2.2.4   Stochastic Modeling. 

Pseudorange noise that corrupts the pseudorange measurements is caused by the 

residual errors discussed earlier. In order to model the GPS pseudorange equations 

statistically, tremendous effort would have to be dedicated towards the development of 

reliable noise models. This noise is actually the manifestation of receiver noise and 

residuals of various measurement errors that remain unmodeled and uncompensated. The 

major contributors to pseudorange noise that warrant consideration will be discussed. 

Although Gaussian-like, receiver noise is better modeled by a longer tailed 

mixture of Gaussian distributions which can be expressed as: 

F(x)  -   (l-£)0>(x) + e$f|l 

where O is a Gaussian distribution and the parameter e is generally between 0.01 and 0.1 

[23].   In a multichannel receiver, receiver noise can be considered to be uncorrelated 
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across satellites. Consideration must also be given to the receiver clock bias which tends to 

correlate the pseudorange measurements. The uncompensated residuals of tropospheric 

and ionospheric errors may have nonzero means that also add to the modeling difficulties. 

Noise on the satellite position from the ephemeris data will also have some effect on 

pseudorange noise, but it is likely to be non-Gaussian and have a nonzero mean. 

Given the number of contributing factors to pseudorange noise and our lack of 

knowledge of their characteristics, it is reasonable to propose that the overall pseudorange 

noise will have a zero-mean Gaussian distribution by invoking the Central Limit Theorem. 

The Central Limit Theorem states that the sum of many independent random variables, 

regardless of their distribution, will approach a Gaussian distribution [3]. The Gaussian 

pseudorange noise will not be white due to the correlated nature of the encompassed errors 

and noise. This concern is alleviated since there is no requirement for the pseudorange 

measurements to be uncorrelated in time because the positioning problem will be treated 

as a static estimation problem, where each snapshot in time is treated as a new static 

estimation problem. On the other hand, it is desirable to the development of the stochastic 

estimation problem that pseudorange noise be uncorrelated across satellites. A solid 

argument for this is not available, but this will not hinder the development of the stochastic 

closed-form solution to the GPS pseudorange equations in this thesis since the 

pseudorange measurements will be differenced, thereby eliminating some of the effects of 

correlated noise. The uncorrelated noise after differencing can only be justified if the 

effects of Selective Availability (SA) that are highly time correlated in nature are not 

considered [9].   The choice to overlook the effects of SA in this thesis is not overly 
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restrictive since authorized military users of GPS are not subject to the effects of SA and it 

is believed that the use of SA will be abolished in the near future. 

The assumption that the noise across pseudoranges can be modeled as an 

2 
independent zero-mean, a   variance random variable is used by Dailey and Bell [20] 

without any solid justification.    The assumption is used to derive statistics for the 

pseudorange equations position solution errors similar to what is being proposed for this 

thesis research; however, their approach does not consider a closed-form solution. 

2.2.5   The Stochastic Estimation Problem. 

The components of an estimation problem are the variables to be estimated, the 

measurements, and a mathematical model describing relationship between the 

measurements and the variables to be estimated [3]. Given the lack of dynamics in the 

GPS pseudorange equations at any given time instant, a static estimation problem can be 

formulated from the stochastically modeled pseudorange equations. The variables to be 

estimated and the measurement noise on the pseudoranges can be represented by random 

variables. The stochastic estimation process will not only provide an optimal estimate of 

the unknown variables, the user coordinates and user clock bias; but, will also provide the 

estimation error covariance. This is the most significant motivation to pursuing a 

stochastic approach to solving the GPS pseudorange equations. However, the error 

covariance accuracy will be limited by the quality of the measurement noise statistics. In 

a stochastic estimation problem, this emphasizes the requirement for good noise models. 

2 
In this research the measurement noise is modeled as a zero-mean, a   variance Gaussian 

2 
noise, which is believed to be adequate. Due to the lack of knowledge of the variance o 
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and the fact that it is dependent on receiver design, location, orientation and time of day, 

attempting to model the noise variance is not a viable option.   The approach that is 

2 
proposed in this research is to determine the variance, (G ), of the Gaussian measurement 

noise, by using the return difference or measurement residual. 

2.2.6   Conclusion of Literature Review. 

The literature review supports the proposed approach for this thesis research. 

There are problems associated with the currently used iterative approach to GPS 

positioning and there is potential for improvement with an exact closed-form solution. 

With the exception of one recent paper [20], the pseudorange equations have generally 

been treated as a deterministic set of equations. The lack of effort in the area of stochastic 

modeling applied to GPS pseudorange equations is evident from the lack of literature on 

the subject. Previous work on closed-form solutions for the GPS pseudorange equations 

did not make use of the pseudorange measurements from all in-view satellites; the 

derivations considered the exactly determined case using only four of the available 

pseudorange measurements to obtain positioning solutions. Based on the literature 

review, the development and evaluation of a closed-form solution to the GPS pseudorange 

equations using stochastic modeling an all in-view satellites, is warranted. 
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3. Mathematical Derivations 

This chapter presents a thorough mathematical derivation of the closed-form 

solution to the GPS pseudorange equations (step 1), and the Kalman-like update equation 

(step 2). 

3.1      Development of a Closed-Form Solution 

The mathematical derivation of the closed-form solution (step 1) is developed in 

four parts. The first part presents the algebraic manipulations to transform the stochastic 

GPS pseudorange equations as shown in Eq. (1.1) into the desired matrix linear regression 

form as shown in Eq. (1.2). The second part involves the derivation of statistics for the 

equation error in the linear regression. The third part presents the development of the 

static stochastic estimator based on a minimum variance estimate that will provide an 

estimate of the user position coordinates and user clock bias. The final part presents the 

derivation of the estimation error covariance matrix. 

3.1.1   Basic Concepts. 

Prior to initiating the mathematical derivation, it is necessary to present some basic 

concepts and notations that will be used in the sequel: 

2 
• x ~ N ((J,, G ) is the notation used to represent a random variable (x) that has a Gaus- 

sian (Normal) probability distribution function with mean (^i) and variance (G ). 

• E is used to represent the expectation operator. The expectation of a random variable 

yisgivenby E{y}   =    j pf(p)dp, where f(p) is the density of y [3]. This also 
—oo 

defines the mean (|i), the first moment of the random variable. 
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• Expectation is a linear operation; therefore, for any two random variables x and y, then 

E{x + y}   =  E{x} + E{y}. 

• If two random variables x and y are uncorrelated, then E{xy}  =  E{x}E{y}. 

• The variable of the i* element of a random vector x can be expressed as 

Pjj = E< (xj - (J-j) k which make up the diagonal elements of the covariance 

matrix. The off-diagonal elements Py are zero if the i* and j* elements of the random 

vector x are uncorrelated. 

• For a random variable x ~ N(0, a ), the moments of x are expressed as E{x } for 

k = 1, 2, ...,«>. An odd k denotes an odd moment and an even k denotes an even 

moment. All odd moments are zero and even moments are given by (k - 1 )o   [26]. 

3.1.2   Linear Regression. 

The corrected pseudorange can be modeled as the true Euclidean range with an 

unknown clock bias and Gaussian measurement noise superimposed; thus, the stochastic 

pseudorange measurement equation is given by: 

Ri =   J(*x ~ Xi)2 + (Uy - yf + (uz - zf + b + vj (3.1) 

This equation represents the ith corrected pseudorange equation, 

/ = 1, 2, 3, ..., n, where (ux,u ,uz)are the user position coordinates, (x^y^z^ are 

the known coordinates of the ith satellite, b is the range equivalent user clock bias, Vi is a 

zero-mean, Gaussian, pseudorange measurement noise, and n is the number of satellites in 

view. It is reasonable to assume that all measurements are subject to the same noise 

intensity; therefore, they will have the same variance, o2 . However, the measurement 

noise terms are not correlated between satellites. 
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Eq. (3.1) can be written as: 

(ux - xf + (u   - Yi)
2 + (uz - z/  =   (Ri - b - Vi)

2 (3.2) 

Expanding Eq. (3.2) results in the following equation: 

u2 + u2 + u2 - b2 - 2xiux - 2yjUy - 2ZJUZ + 2Rjb  =  R2 (3.3) 
2       2       2 2 

— x- — v- — z- — 2R-V- + 2bv- + v- 

It is noted that the first four terms in Eq. (3.3) are simply the unknown variables 

squared and that they are common to all n equations. This presents an opportunity of 

eliminating the nonlinear terms by differencing; hence, the n"1 equation is subtracted from 

the remaining n - 1 equations. The resulting n - 1 equations are linear in the unknown 

variables and can be expressed as: 

4) (xn - xt)ux + (yn - Yi)uy + (zn - Zi)uz + (Rj - Rn)b  =   ±(vf - vf) (3. 

1/^2 2        2        2        2        2        2        2\ 
+ - R   - R   + x   - x   + v   - V   + z   - z      + R v   - R-v- - bv   + bv- 2l    i n        n       l      ■'n     -^l      ^n       l  I nvn        l  l        vn I 

As a by-product of the preceding operation, the nonlinear n    pseudorange 

equation remains. 

Rn  =   >J(ux-xn)2 + (uy-yn)2 + (uz-zn)2 + b + vn (3.5) 

The n* equation will remain unused for this section of the derivation but will be 

used subsequently as an auxiliary equation for use in the Kaiman update solution. 

The linear regression in Eq. (3.4) can be compactly written in a matrix notation 

form as: 
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Z   =  Hu + V (3.6) 

where: 

R 

2        2.2        2,2       2 
Rl-Rn + xn-xl + yn-yi + zn 

2        2.2        2,2       2 
R2 - Rn + xn - x2 + yn - Y2 + zn 

2        2 2        2 2       2 
n- 1 R+x—x      i + v   — v      i+z—z n        n       n - 1     ■> n     ■> n - 1        n       n - 

(3.7) 

lj(n- l)x 1 

H   = 

(xn-Xl) (yn-yi) (zn-Zl) (Rj-RJ 

(xn-xl)  (Yn-yi)  (zn-zl)  (Rl-Rn) 

• • • • 

(xn-xl)  (Yn-yi)  (zn-zl)  (Rl-Rn) (n- l)x4 

(3.8) 

The parameter u  =   [ux, u , uz, b]   , and the equation error 

$ = 

Rnvn - Rlvl + b<vl - vn) + Uvl " vn 

Rnvn - R2V2 + b(v2 " V + \{V2 " vn) 

Rnvn - Rn - lvn - 1 + b(vn - 1 " vn) + ^(vn - 1 " vn) 

(3.9) 
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3.1.3   Noise Statistics. 

Using the linear regression obtained in Section 3.1.1 as shown in Eq. (3.6), it is 

possible to obtain an estimate of u if the statistics of the noise vector are given. The noise 

vector statistics are yet to be determined; however, the composition of the noise vector 

elements is known. The statistics of V must be derived from the known statistics of the 

pseudorange measurement noise Vj. 

Statistics for vi where (i, j = l,2,...,n): 

E{Vi} = 0 

EJvf 1 - a2 

E{ViVj} = 0(i*j) 

Statistics for V where (i, j = 1,2,..., n-1): 

E{Vi}   =   E^-RiVi + Mvi-vJ + ^vf-v^j 

=  RnE{vn}-RiE{vi} + b(E{vi}-E{vn}) + i E|V?1 
A 

r^-Eun 
\ 

=  0-0 + b(0) + ifo2-o2 

=  0 

EH1= E((RnVn~RiVi+b(vi-Vn)+^ 2- 

where V{  =  -(jf - v2j 
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E-J V2 I  =  R2v2 - 2R Rv v- + 2bR v (v- - v ) + 2R v V; + R2v2 
|if n  n n   l  n  l n  nv   1       n-' n  n   i 1   1 

- 2bRiVi(Vi - vn) - 2RiViVi + b2(Vi - vn)2 

+ 2bVi(Vi - vn) + Vi 

E V2     =  R2E v2   -2RnR1E{vnvi} + 2bRnE vnVi-v2 

+ 2RnE  vnVi   + R2E  v2   - 2bRiE  v? - v^ 

2RiE ViVi   + b2E  (Vi - vn)2   + 2bE V^ - V^ 

+ E Vi 

E< v v- — v i   n  i       n =   E{vnvi}-Evn -a 

E Vi - vnVi -E vnVi - vn 

E^vnVi)   =   ^Yi-vJ     =   \ 
E{vn}E{v2l-E{v^ 

E  v.Vi     =   ±E  -Vjv' + vf -E(Vi}E <   +E v; =  0 
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b2E J(V:-VJ2        =     b' 
( 

i       n E{vf   -2E{Vivn} + E v2 2b2o2 

BV?     -4iEW-^2 

1„I    4     ?22        4 —h< v- — 2v- v   + v 4   I   l l   n       n 

Thus, 

'Ekl-2EJv?W,jl+Ekn 

V V 

If3<i4-2o4 + 3o4 

a 

EJ vf I =  Rja2 - 2bRno2 + R?a2 - 2bRjc
2 + 2b V + o4 

=  a4 + a2f R2 + R2 - 2b(Rn + Rj) + 2b2 1 

=  G4 + a2((Rn-b)2 + (Ri-b)2) 

(3.10) 

In a similar manner, 

E{V-V;}. . 
1 JJl*j 

£- + a2(Rn - b)2 
(3.11) 

From the results obtained in Eq. (3.10) and Eq. (3.11), the covariance matrix for 

the noise vector V is explicitly given by: 

3-7 



R =  a 

d1   c c • 

c   d2 c 

c    c d^ c 

c    c c d. 

c    c c  d 

c 

c 

c 

c 

• 
c 

n- 1 

(3.12) 

U (n - 1) x (n - 1) 

where 

and 

T- + (Rn - b)2 

dj  =  a2 + (Rn - b)2 + (Rj - b)2 for i  =   1,2, 3, ..., n - 1 

The closed-form solution presented in this thesis requires the inverse of R.  It is 

desirable to find a closed-form solution for this inverse to reduce the computation load of 

2~ 
our GPS positioning algorithm. If R is redefined as, R  =   co R,then: 

R 
-1 1   R"1 

CO 

(3.13) 

where: 
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R 

c 
1 1 i »       1 

1 
d_2 

c 
1    4 »       1 

1 1 
c 

»       1 

• »       1 

1 1 •   4 
dn-l 

(3.14) 

The elements of the diagonal of R are a function of b, the clock bias error, and G , 

the standard deviation of the measurement noise.   For implementation purposes it is 

desirable to remove this dependency before finding a solution for R 
~-l 

The diagonal elements of R are given by: 

di  _   o2 + (Rn - b)2 +      (Ri-b)2 

?r + (Rn-b)2   ^ + (Rn-b) 

(3.15) 

2 2 
Since a   « (Rn - b)  , Eq. (3.15) can be simplified as follows: 

^ (Ri - br 
- « 1 + — = 
c (Rn-

b) 
di (3.16) 

For most positioning applications b « (Rj - b) and Eq. (3.16) can be simplified 

further as shown in Eq. (3.17). To further strengthen the validity of the assumptions made 

to form Eq. (3.16) and Eq. (3.17), Rn can be picked as the largest of all available 

pseudoranges. Eq. (3.17) defines dj for the rest of this thesis: 
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di     Rr 
-1 -1 + —, C R2 

(3.17) 

Thus, 

R 

d2   1 1   •      1 

1   d2 1   •      1 

1    1 d3 •      1 

• •      1 

1    1 •  • dn_! 

(3.18) 

~-l 
To find R      let's define the diagonal matrix 

D  =   Diag 

di-1 
\ 

d2-l 
• 

• 

• 

dn-l-l_ ) 

and the vector e 

(n-l)xl 

Obviously, 

R  =  D + ee D-e(-l)    e 

Applying the Matrix Inversion Lemma, 

-1 

R-1 D-1 + D"1! - 1 - e D   e 
»T   -1 
I  D 

D" 
i + IV1! 

-1»T   -l 
D   ee D 
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If we define D      =  Diag 

l2 

rn-l 

1 di-1 

(n-l)x(n-l) 

then, D    e 

ln-l 

, e D   e 
n- 1 

k = 1 

(      1     T      ^ T.-1>>T   -1 
D   ee D 

V J i. J 

rr-. 
ij 

Thus, 

R 
i, i 2 a c i n- 1 

1+    I   rk 

, i  =   1, 2, ..., n - 1 

R 
i. J 2 

o c 

k = 1 
\ 

rr- 
i j 
n- 1 

1+    I   rk 

,i*J 

k = 1 

(3.19) 

3.1.4   Minimum Variance Estimate Solution. 

Using the linear regression from Eq. (3.6) as a starting point, the aim is to obtain 

an estimate u.   The u that minimizes the estimation error as weighted by the inverse 

covariance of the noise must be obtained. Recognizing that the equation error, also known 
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as the return difference or measurement residual, is (Z - Hu), the estimation problem 

can be formulated as follows: 

.T 
\IZ     „» 

min J(z-Hul  R Yz-HuYl (3.20) 

Eq. (3.20) can be expanded to obtain: 

»T  _i»     j   T  -1   >       »T   T  _i> 
Z  R    Z + u  H R    Hu-2u H  R    Z (3.21) 

Since a minimization over u is needed, Eq. (3.21) is differentiated with respect to 

u and set equal to zero yielding the following expression: 

0 + 2HTR_1Hu-2HTR_1Z   =   0 (3.22) 

Rearranging the expression and solving for u produces the desired solution: 

u = 
T   -1 T   -1* 

H  R    H      H  R    Z (3.23) 

In order to demonstrate that the stationary point solution in Eq. (3.23) is indeed a 

minimum, the hessian matrix of Eq. (3.21) must be verified. The resulting hessian matrix 

T   -1 
is (H R   H), which by definition is always positive definite, providing the necessary 

and sufficient conditions for minimization. Furthermore, since the existence of the hessian 

inverse in Eq. (3.23) is guaranteed, the existence of a solution is also guaranteed. 

Eq. (3.23) is a closed-form solution to the GPS pseudorange equations. However, 

this solution is dependent on a, the pseudorange measurement noise standard deviation. 

To simplify the solution for implementation, it is noted that Eq. (3.13) shows the noise 
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covariance R as simply R premultiplied by a scalar quantity. In Eq. (3.23) the 

scalar premultiplier of R will cancel out; therefore the estimation solution shown in Eq. 

(3.23) can be rewritten in a equivalent form as: 

u = 
T~-l 

H R    H 
v-1 

RTRli (3.24) 

Eq. (3.24) is used for coding the experimental Matlab algorithm. It must be noted 

~-l 
that there are no big matrix inversions associated with this solution since R    has been 

determined analytically and can be coded directly into the algorithm. The only inversion 

T~-l 
that needs to be performed is that of the small 4 x 4 matrix (H  R   H), which can be 

hardwired into the receiver's algorithm. 

3.1.5   Estimate Error Covariance. 

It follows from Eq. (3.20) and (3.23) that the covariance of the estimate error is 

given by: 

P^E^u-tYu-u^    } (3.25) 

>     £ If we expand u - u , 
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u - u 
v T~-l      -*    T~-lt 
u-(H R   H)    H R   Z 

,-1 
> u 

T~-l 
H R   H H

T
R-YHU^ 

> u - 
T~-l 

H R   H 
^V -1 

T~-l 
H R   H 

T~-l 
H R   H H R   V 

=  u - u - 

(   T-l   ^ 
H R   H 

T—1 
H R   H 

V J 

-1 

T--1-» 
H  R    V 

V 

T~-l-> 
H R   V 

J 

u - u     u - u 
(( i    N 

H  R    H 

-1 

VV 

(( 

J 

T~-l 
H R    H 

V 

T—1-» 
H R   V 

H R    V 

(( 
-1 

T~-l 
H  R    H 

T—1-» 
H R   V 

-1 

(( T--1-» 
H R    V 

\Tf T—1 
H R    H 

N-S 

T—1 
H  R    H 

T._l^^T~_i 
H R   VV R   H 

-1 
T—1 

H R    H 

EU>u-i)U-tT^ 
(   T-l    ^ H  R    H 

-1 

V 

T~_l      4-»T~-1 
H R   E^VV   \R   H 

J 

T—1 
H  R    H 

(   T     -1    ^ 
H R*    H 

V J 

-1 
T ~-l   2     ~ ~-l 

H R   öccRR   H 
T—1 

H R    H 

2 
G   C 

T—1 
H  R    H 

VV 

2 
=  o c 

T—1 
H R    H 

T~-l 
H R    H 

T—1 
H R    H 
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u 
2 

G   C 
T~-l 

H R   H (3.26) 

Unlike the solution estimate, the covariance P > is dependent on a; hence, a must 

be known or estimated, in order to estimate the error covariance. 

Substituting Eq. (3.6) into Eq. (3.24) yields: 

u = 
T~-l 

H R   H HTR YHU +V 

T~-l 
H  R    H 

Vlf 

\ J 

( 

T~-l 
H  R    H 

>       ( 
u + 

-1 
T~-l 

H R    H 
T--1-» 

H R   V 

-1 

=  u + 
T~-l 

H R    H 
V 

T~-l-> 
H  R    V 

(3.27) 

Now let's substitute Eq. (3.27) into the return difference equation: 

Z   =   Z-Hu   =   Hu + V-H u ( T~-l 
H R    H H  R    V 

=   Hu + ^-Hu-H 

v J 

T~-l 
H R    H 

V 

T--1-» 
H  R   V 

=   V-H 
A 

T~-l 
H  R    H 

V j 

( 

T--1-» 
H R   V 

Jn-l-H 
T~-l 

H R    H 
T~-l 

H R 
V J 

,-1 

-» 
V 

If we define   M  =  In _ x - H 
T~-l 

H R   H 
T~-l 

H R      , then the return difference 

can be expressed as: 
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Z  =  MV (3.28) 

Claim: The matrix M is indempotent, viz., M    =  M 

Proof: 

M    = Jn-l-H 
(   T-l    V 

H R    H 
V 

T~-l 
H  R Jn-l-H 

(   T-l   ^ 
H R    H 

V y 

-1 
T—1 

H  R 

In_!-2H 
T~-l 

H  R    H 
V J 

T~-l 
H  R     + 

(   ( 
H 

T—1 
H R    H 

T~-l 
H R 

Jn-1-2H 
f   T-l    V 

H  R    H 
T~-l 

H R     +H 

=   In-l-H 

M 

(   T-l    > 
H  R    H 

V J 

J 
-1 

(   T-l    > 
H R    H 

V J 

J 
-1 

T—1 
H R 

T—1 
H R 

Let's now define the weighted return difference: 

Z  =  R^Z (3.29) 

Where   Re     is   obtained  from  the   Cholesky   decomposition   of  R,   viz. 

T 
R =  ReRe • We now calculate the scalar quantity: 

Z  [ReJ  ReZ   =   Z  [RIJ    R^Z 
~T—1~ 

=   Z  R    Z 

->T    T~-l     -> 
=  V MR   MV 

ZT^eR^     Z 

~T- 
Since Z Z is a scalar, then: 
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EJ ZTi 1  -  EJ VTMTR *MV I  =  E<i Tr 
^->T    T—l     ->->TA 

V M R    MVV 
V J 

=  E^Tr 
(    T„_i     *.>T^ 
MR    MVV 

V 
Tr VR-WW] ' 

/ 

(    T-l 2~^ 
Tr MR   Mco R ca Tr MTR !MR 

J 

Claim:   R *MR  =  MT 

Proof: 

-1 

R !MR R ^In-l -B (   T- [ H R 'H 
1        T-l   - 

H  R    )R 
V                ) 

Jn-l-^H 
T-l   Y H R    H 

-1 
T 

H 
V               J 

Jn-l-H 
T ~-l 

H R    H ■'    T-0 H R 

T 

V ^ ) ) 

M 

Hence,   MTR 'MR  =  MTMT   and: 

E|Z
T
2|  =   co2TrfMTMT 

=   co2Trf(MM)T 

ca Tr 
("*) 

Now, we calculate: 

co Tr(M) 
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( 
Tr(M)   =  Tr !n-l-H 

(   T»-l   ^ H R    H 
T~-l H R 

V J 

(    ( 

=  Tr(I      ,)-Tr 

(n- 1)-Tr 

H 
V 

T~-l 
H  R    H 

T     -1 
H R* 

((   T-l   ^ 
H R   H 

V 

T~-l 
H R   H 

J 

=   (n-l)-Tr(I4) 

=  n-5 

Thus, 

E 2T£      =  ca(n-5) 
f   4 
^- + o2(Rn-b) 

V 

(n-5) (3.30) 

J 

~T: :T~-1. 
Given that E{Z 2} is a scalar and EjZ^Z}  =  ZAR *Z we can solve for o2 

by rearranging Eq. (3.30) as follows: 

^ + a
2(Rn-b)-^J  =  0 (3.31) 

Using the quadratic equation and taking only the positive root of Eq. (3.31) an 

estimate of o is given by: 

^_(Rn_6)+L-S)2 + ^> (3.32) 

In conclusion, the derived linear regression (3.6), which consists of (n - 1) 

equations, requires that n - 1 be at least four to provide an initial estimate of the four 

parameters in u. This implies that a minimum satellite availability of five is required to 
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produce the solution given in Eq. (3.24). An extra satellite is required for the prediction of 

the estimation error covariance P^. Thus, a minimum satellite availability of six is 

required to produce an initial estimate of the four parameters in u and the estimation error 

covariance 

3.2      Kaiman Update Solution 

This section presents the development of the Kaiman update GPS position 

determination algorithm, where the pseudorange equation which was subtracted from the 

first n - 1 equations is finally used. The Kaiman update step is a supplementary process 

that improves on the closed-form solution presented in Section 3.1. The concept behind 

the Kaiman update is discussed followed by the complete mathematical derivation of the 

solution. 

3.2.1   Kaiman Update Concept 

The concept behind the Kaiman update solution approach is similar to that of a 

conventional Kaiman Filter. The closed-form solution in Section 3.1 provides a 

preliminary GPS solution estimate (£) and the associated error covariance matrix (P^). 

Recalling that this solution was produced without making use of the nonlinear n™ 

pseudorange equation in Eq. (3.5), we can perceive this n"1 equation as a new 

measurement which can be used to update the previous estimate the same way that it 

would be accomplished during the update cycle of an extended Kaiman Filter. The 

approach that is used begins with the linearization of Eq. (3.5) about a nominal position 

estimate. The linearized equation is then manipulated into the standard linear 

measurement form as described in [3], and used to update the estimate.    Since the 
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measurement Eq. (3.5) is nonlinear, it may be necessary for the process to continue in an 

iterative manner until convergence within a predefined tolerance. Simulation results show 

that the algorithm converges after two to three iterations. 

The Kaiman update algorithm that is presented in this section differs from the 

basic Kaiman Filter developed by Kaiman ([7], [8]) in that the measurement that is used to 

update the preliminary estimate is correlated with the preliminary estimate. The 

conventional Kaiman Filter update equation does not allow for correlation between the 

new measurement and the previous estimate; hence, a novel Kalman-like update equation 

that accommodates this correlation and that addresses the specific measurement situation 

on hand, needs to be derived. 

3.2.2   Linearized Measurement. 

The first step in the mathematical development of the Kaiman update algorithm is 

to linearize Eq. (3.4) about a nominal user position (ux0, uy0, uz0) by performing a Taylor 

series expansion and neglecting second and higher order terms. The linearized equation 

obtained is given by: 

p         Ko ~ xn) , , 
Rn  « 2K - UXo) n        / 2 2  

VKo-xn)   +(uyo~yn)   + (uzo " zn) yo 

.,„-yJ 
v    v vn' 

(y - yn) 

VKo " Xn)2 + Ko - yn)2 + (uzo - zn)' 

Ko - zn) , . 

fxo - xn)2 + (uyo - yn)2 + Ko " ZJ 

+ j(uxo - xn)2 + (uyo - yn)2 + (uzo " zrf + b + vn 
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By defining the regressor h for this scalar measurement equation as follows: 

Ko - xn) 

1 Ko - xn)2 + <uyo - yQ)2 + Ko " zn^ 

 (y - yn)  

I Ko - xn)2 + <uyo - yn)2 + Ko " zn^ 

Ko - zn) 

^uxo - xn)2 + (uyo - yn)2 + Ko - zn)^ 

(3.33) 

the linearized equation can be rewritten as: 

Rn « h
Tu + cov 

(uxo - xn)uxo + (u     - yn)u     + (uzo - zn)u yo zo 

i Ko - xn)2 + (uyo - yn)2 + Ko " zn^ 

+ A/KO - xn)    + (uyo " yj   + Ko " ZJ 

The goal is to reduce the above equation into the form of a linear measurement 

model described by: 

Zn  =  h u + vn 

In order to achieve this goal, Zn must be defined as: 

Zn = Rn - A/KO-
xn)2 + (uyo " Vrf + Ko " zrf 

(uxo - xn)uxo + (uyo - yn)uyo + (uzo - zn)uz0 

+ 
VKo-xn)   +(uyo~yn)   + Ko ~ V 

(3.34) 
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which can be simplified into the following: 

Ko ~ xn)xn + (> ~ yn)yn + Ko ~ zn)zn 
Zn   =   Rn+      L 1 ; ~2      ; ~2 (3-35) 

V(uxo-xn)   +(V-yn)   +Ko-zn) 

Now that the n* pseudorange measurement equation is approximated into the 

appropriate linear measurement model form defined in Eq. (3.34), it can be used to update 

the solution obtained from the closed-form algorithm using a Kaiman type update 

approach. Using a linear measurement model simplifies the solution by allowing the use 

of linear Kaiman filtering techniques, as opposed to using an Extended Kaiman Filter or 

increasing the order of the filter to accommodate a nonlinear measurement equation. 

Keeping in mind that Zn is actually part of the measurements that were used to obtain the 

closed-form solution and not a new measurement as would be the case in a conventional 

Kaiman Filter application, hence the new measurement and the previous estimate are 

correlated. This is, a violation to the basic assumptions used in the derivation of the 

conventional Kaiman Filter update equations. A Kalman-like update equation that can 

accommodate correlation between the new measurement and the previous estimate needs 

to be derived. 

3.2.3   Noise Statistics 

In order to derive the new Kalman-like update equation, it is necessary to know the 

relationship between the noise in the new measurement (vn) and the previous estimate 

being the solution obtained from the closed-form algorithm. The linear regression used 

for the closed-form algorithm was defined in Eq. (3.6) as Z = Hu + V, and the statistics 

of the noise vector V were derived in Section 3.1.3. The closed-form algorithm produced 
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A 
an estimate of the GPS unknown parameters, u, defined in Eq. (3.24), and an estimate of 

its covariance matrix (P>), defined in Eq. (3.26). Using the knowledge of the estimated 

GPS solution, the true GPS parameter vector can be defined as, 

U   =   U  + W (3.36) 

where W ~ N(0, P>). The correlation of interest between vn and W can be defined as: 

p^E   Wvl   =   E  vnW (3.37) 

To determine the relationship between W and vn, the linear regression in Eq. (3.6) 

T ~-l is multiplied from the left by H R     yielding the expression: 

HTR lZ = HTR Vä + ^R 
lV (3.38) 

Eq. (3.38) can be solved for u to obtain: 

u   =   (uTR 1u\    H  R 1Z-fHTR 1
K\    HTR ^ (3.39) 

The first term on the right hand side of Eq. (3.39) is recognized from Eq. (3.24) as 

5"; therefore, an expression for W in terms of V is obtained. 

W  =   (I^R^HI    HTR_1V (3.40) 

Next the relationship between V and vn is determined by exploiting the noise 

statistics derived in Section 3.1.3. 
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2  ,   1 
EfV-v }   =  E<Rv   -R-v-v   + bvv   - bv   +- x    i  n; Inn        l  l  n in n      o V- v   — V i   n       n 

G Rn - a b 

a (Rn-b) 

(3.41) 

Eq. (3.41), which represents the variance between any single element of V and 

vn, can be generalized to obtain the following covariance matrix: 

EJVV. a (Rn - b) (3.42) 

_lj((n-l)xl) 

Using Eq. (3.40) and (3.42), an expression for the covariance between W and vn 

is determined: 

EJWVT 

( T~-l 
H R   H 

T~-l       ■» 
H R   E Vv, 

-1 

a (Rn - b) 
T~-l 

H  R    H 
T~-l 

H R 

(3.43) 

((n-l)xl) 

The goal is to derive a Kalman-like update equation to refine the unknown GPS 

A 
parameters vector estimate, u, and its covariance matrix, (P >), both produced by the 

closed-form algorithm developed in Section 3.1. Towards this end, an augmented linear 
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regression is formulated by combining Eq. (3.34) and (3.36).   The augmented linear 

regression is expressed as: 

Za   =   Hflu + Va (3.44) 

where Za is the 5 x 1 augmented "measurement" vector defined as: 

r     n 

Za = u 

W 
H   is the 5x4 augmented regressor defined as: 

Has 

and Va is the 5 x 1 augmented "measurement noise" vector defined as: 

Va 
W 
vn 

In the derivation that follows, to distinguish the preliminary estimate ft and P^ as 

produced by the closed-form algorithm from the estimate that will be obtained through the 

Kaiman update, the following notation is used: 

u    and P£ represent the estimate and the estimation error covariance prior to the update. 

§    and P> represents the estimate and the estimation error covariance following the 

update. 
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In order to obtain the updated estimates from the augmented linear regression in 

(3.44), it is necessary to derive the covariance of the augmented noise vector Va. Since 

the statistics of the noise components in Va have already being determined, the equation 

error covariance matrix, Ra, is given by: 

Ra   = 
T     2 

LP   <*. 

(3.45) 

The updated GPS minimum variance solution estimate and the associated 

covariance are then given by the expressions: 

r = *i*Wt* (3.46) 

+   _   (   T   -1 
Pd   ~     HaRa  Ha (3.47) 

The expressions in Eq. (3.46) and (3.47) are sufficient to obtain the required 

updates, but it is desirable to manipulate and reduce the equations into the more familiar 

and computationally efficient form of the classical Kaiman filter update equations. After 

lengthy manipulations and applying the Matrix Inversion Lemma, the Kalman-like update 

equations in the desired form are obtained, viz., 

u   =   u    + K 
( 

Zn-h   u (3.48) 

P     =     I- u 
[\ -pV)K + p  hTl (3.49) 
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where the intermediate variable Fis the modified preupdate covariance matrix given by 

hTP7h - 1 
p; + —-—= PP

T
+ —— 

(.-p'h) 
1 -p h 

(   -     T lO 
P>hp   + ph P> 

u r        u 
V y 

(3.50) 

and K is the modified Kaiman filter gain given by: 

K 
T 

1 -p h 

1       Yh-p 
1 + hTYh (3.51) 

The parameter estimate update, Eq. (3.48), appears identical to that of the classical 

Kaiman Filter update equations. However, this is not the case since the Kaiman Filter 

gain, Eq. (3.51), is not the same. 

A quick verification of the derived update equations is carried out to confirm the 

validity of the new equations. Note that in the special case of the classical Kaiman Filter 

with no correlation, p = 0 and Y = P7 . For this special case the classical Kaiman 

Filter update formulae are indeed recovered: 

K 1 
PTh T   _      u 

1 +h1PTh 

u u    + K 7       i.T *" Zn-h   u 
J 

Pt  =  fl-KhT^- yi 
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Eq. (3.48) to (3.49) are used in the Matlab implementation of the Kaiman update 

algorithm. The Kaiman update algorithm is intended to refine the GPS closed-form 

solution estimate in a direct and non-recursive manner. However, since the measurement 

Eq. (3.5) is nonlinear, it may be necessary for the process to continue in an iterative 

manner until convergence within a predefined tolerance. Recalling that the new 

measurement used by the Kaiman update algorithm is actually the n pseudorange 

equation in Eq. (3.5) which has been linearized about the position estimate produced by 

the closed-form algorithm, implies that how well the linearization fits the true unknown 

GPS parameters is dependent on how good the solution produced by the close-form 

algorithm is to begin with. In order to alleviate this undesired dependency, after the 

Kaiman Update algorithm has been applied once, and produces an improved solution 

estimate, Eq. (3.5) is once again linearized about the improved position estimate (note that 

the user clock bias plays no roll here) producing a new linear measurement equation. This 

is akin to the iterated Kaiman Filter algorithm used in Extended Kaiman Filtering. The 

Kaiman update algorithm is applied a second time using the preliminary estimate and 

estimation error covariance available prior to the update and produced by the linear 

closed-form algorithm, not the solution obtained as a result of the previous application of 

the Kaiman update. Theoretically, this process can be continued recursively until 

convergence to the best possible solution is achieved; however, it was found 

experimentally that after 2 or 3 application the change in the solution estimate is 

insignificant. Hence, the algorithm is hardwired to perform three iterations. As such, the 

algorithm is "not iterative." 
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4. Experimental Results and Analysis 

This chapter presents the experimental portion of the thesis. The first part 

discusses how the experiment was set up and how the Monte Carlo trials were run. The 

experimental results are then presented and the chapter sums up with a detailed analysis of 

the results. 

4.1      Experimental Setup 

The closed-form, linear regression algorithm developed in this paper requires at 

least six pseudorange measurements to produce a stand-alone GPS solution and a 

prediction of the position estimation error covariance. In terms of satellite availability, the 

worst case scenario occurs at latitudes in the range of 35 to 55 degrees where there are at 

most six satellites available 20 percent of the time. However, most of the time, more than 

six satellites are in view. The novel algorithm uses all n available pseudorange 

measurements to produce the GPS solution. Satellite availability is not dependent on user 

position longitude; hence, a fixed user position in the 35 to 55 degree latitude range over 

the continental Unites States, 40° N latitude, 105° W longitude, at an altitude of 300 m 

was selected. The geographic coordinates are converted to ECEF coordinates and used to 

generate the experimental data sets using GPSoft's Satellite Navigation Toolbox for 

Matlab [24]. The experimental data sets were generated for 12 scenarios which showed 

greatest diversity in satellite availability and geometry. 

The Satellite Navigation Toolbox is used to generate realistic GPS satellite 

position data from which true ranges can be calculated between all in view GPS satellites 

and the position of the selected receiver. After adding an arbitrary clock bias of 1000 m to 
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all the ranges, a zero mean random noise of preselected standard deviation 

a = 100 meters, is superimposed to represent the Gaussian measurement noise. The 

Satellite Navigation Toolbox has the capability of simulating realistic noise corrupted 

pseudorange measurements which could be applied directly to the GPS position 

determination algorithm as it would be the case in a real world scenario. The approach 

used in our experiments, simulating just the GPS satellite ephemeris data and producing 

the simulated pseudoranges, was preferable for the following reasons: 

• It proves a more structured data set for analysis of the algorithms since only the 

desired effects are being considered and the amount of noise corruption on the pseu- 

dorange measurements is exactly controlled; and, 

• Since the pseudoranges are produced starting from exactly known position coordi- 

nates, comparisons against the true position for determining the algorithm's accuracy 

are possible. 

In addition to producing experimental results using the novel two step algorithm 

developed in this paper, results were also produced using the conventional ILS algorithm 

to provide a comparison baseline. The ILS algorithm is commonly implemented using the 

"best four" satellites. The best four satellites are the four satellites in view whose 

pseudoranges form the regressor matrix H with the lowest condition number [18], [25]. 

However, the results in [1] show the ILS algorithm performing better when the 

pseudoranges from all satellites in view are used. Consequently, in the simulation, the ILS 

algorithm uses all n available pseudorange measurements to obtain the GPS solution. The 

regressor, or H matrix, is the conventional matrix of direction cosines with ones 

populating the last column. The n x 4 H matrix is a tall matrix so the generalized inverse 
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is used resulting in a least squares solution. 

4.2      Results 

The results presented in this thesis are the cumulative representation of 5000 

Monte Carlo (MC) runs. It was found experimentally that 5000 MC runs are enough for 

the average miss distance and its standard deviation to converge for the algorithms 

presented in this thesis. In order to provide an unbiased comparison between the results 

from each approach, the Gaussian pseudorange noise realization for each satellite is 

maintained the same between both algorithms for any given MC run. The estimation 

results as a function of satellite availability are shown in Table I. Miss dist is the 

experimentally determined three dimensional range between the true user position and the 

estimated position. The value shown in Table I is the average range over the 5000 MC 

runs. std(Miss) is the experimentally determined standard deviation of Miss dist over the 

5000 MC runs. The predicted standard deviation of the miss distance is gauged according 

to: 

Predicted    =    C+   + p+   + p+ 
std(Miss) V  "u       "22       u33 

All Miss dist results have been normalized with respect to the measurement noise 

standard deviation o. 6 is the average of the predicted values of G and std(6) is the 

standard deviation of this average. Both 6 and std(6) have also been normalize with 

respect to a. The number of iterations (# iterations) and FLOPS are the experimentally 

recorded number of iterations and FLOPS, required to produce the solutions, averaged 

over the 5000 MC runs. 
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n: :6 n: :7 n: :8 n: = 9 

ILS 
Algorithm 

2 Step 
Algorithm 

ILS 
Algorithm 

2 Step 
Algorithm 

ILS 
Algorithm 

2 Step 
Algorithm 

ILS 
Algorithm 

2 Step 
Algorithm 

6 la 0.81 0.89 0.93 0.940 

std(ö) la 0.60 0.47 0.40 0.35 

Experimental 
Miss dist / a 

2.17 2.25 1.53 1.54 1.45 1.47 1.44 1.43 

Experimental 
std(Miss) / a 

1.19 2.39 0.76 0.77 0.75 0.77 0.72 0.72 

Predicted 
std(Miss) / 0 

2.15 1.66 1.64 1.72 

# Iterations 5 2.45 5 2.53 5 2.3 5 2.35 

FLOPs 4115 3080 4535 3675 5013 4194 5503 5017 

Table 1. Average Results from 5000 Monte Carlo Runs 

4.2.1   Iterative Least Squares Algorithm Benchmark 

The experimental average miss distance and its standard deviation produced by the 

ILS algorithm are used as a baseline for comparison to the algorithm presented in this 

paper. The average nondimensional miss distance is a function of the number of satellites 

in view and it ranged from 1.44 to 2.17. The experimentally obtained nondimensional 

standard deviation of the miss distance is relatively small and it ranged from 0.72 to 1.19. 

This relatively small standard deviation shows that the position estimates from the ILS 

algorithm are biased, and worse, relying on an experimental determination of the ILS 

algorithm miss distance standard deviation misleads one into trusting the ILS provided 

position estimate. Since the ILS algorithm does not provide a prediction of the estimation 

error covariance, this bias can cause serious problems during a straightforward integration 

of GPS position estimates from the ILS algorithm with Inertia! Navigation System (INS) 

or SAR sensors data. 

Inrespective of satellite availability, it took the ILS algorithm 5 iterations to 
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converge to the required threshold for accuracy. Floating Point Operations (FLOPS) 

ranged between 4115 to 5503. The variance in FLOPS is a function of the size of H which 

changes as a function of satellite availability; of course the "miss distance" decreases as 

the availability of satellites in view increases. The ILS algorithm's FLOPS count would 

have been even higher had we ignored the results in [14], [25] and instead followed the 

conventional practice of selecting the best four satellites with the lowest GDOP 

Moreover, the estimation results would have been poorer. 

4.2.2   Two-Step Algorithm Results 

From a performance point of view the novel two step algorithm produced results 

comparable to the baseline ILS results. As shown in Table I, the average miss distances 

yielded by the novel algorithm when compared to those yielded by the conventional ILS 

algorithm were similar, the difference ranging from 0.01 to 0.08. The experimentally 

determined standard deviation was slightly larger than that of the ILS algorithm, the 

difference ranging from 0.00 to 1.20. Most importantly, the predicted standard deviation 

provided by the new algorithm proved to be a good indication of the accuracy of the novel 

algorithm positioning estimate. For the case where n = 9, the predicted standard deviation 

of the miss distance called for 63% of the position estimates to be in an ellipsoid, centered 

at the true user position, with "radius" of 1 a = 1.72 units. Experimental data showed 71 % 

of the position estimates within the IG ellipsoid. For n = 6, the predicted standard 

deviation of the miss distance called for 63% of the position estimates to be in an ellipsoid, 

centered at the true user position, with "radius" of IG = 2.15 units. Experimental data 

showed 58% of the position estimates within the la ellipsoid. These results confirm the 

validity of the novel algorithm's estimation error covariance prediction Correct estimation 

4-5 



error covariance information, viz., P >, is critical for the correct downstream integration of 

GPS positioning information and INS or SAR sensors data. 

The novel two step algorithm takes 2 to 3 iterations to produce a position estimate 

and a prediction of the estimation error covariance while the ILS algorithm takes 5 

iterations to produce only the position estimate. As a result, the FLOPS count for the two 

step algorithm is consistently lower than the FLOPS count for the ILS algorithm. 

Concerning the n dependence of the FLOPS count: Obviously, the miss distance 

decreases as n increases. Very good results are obtained for n > 7. However, even 

though the FLOPS count of both algorithms are proportional to satellite availability (n), 

the FLOPS count of the two step algorithm increases at a faster rate. This is due to the 

estimation of a in the novel algorithm, which requires operations on(n-l)x(n-l) 

matrices. 

Concerning the number of iterations in the two step algorithm: The two step 

algorithm could be hard wired to only two iterations instead of three to lower the FLOPS 

count even further. Experimental results show that if the number of iterations is reduced to 

two, the average miss distance and the estimation error covariance remain practically 

unchanged for n > 7 and change slightly for n  =  6 . 

4.2.3    Unconventional Geometries 

Given the deficiencies observed for the closed-form algorithm in typical near earth 

navigation scenarios, it is interesting to exercise the algorithm in unconventional high 

GDOP scenarios where the conventional iterative algorithm tends to have difficulties. 

This type of scenarios can be expected in WAAS and test range applications. In this paper 
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the experimental test environment consisted of a simulated ground planar array of 36 

pseudolites evenly spaced in a circular pattern with a 10000 meters radius and one 

pseudolite at the center. This pattern was selected because it represents the best achievable 

ground array for the iterative algorithm if the user is directly above the center pseudolite 

[25]. This number of pseudolites was selected to achieve satellite availability levels that 

allow for evaluation of the algorithm's data driven o estimation capability. The 

simulations had the user positioned 10000 meters directly above the center of the circular 

pattern and the center pseudolite is moved away from the center to vary the geometry. In 

this test environment, the conventional ILS algorithm produces fairly good estimates of 

the four GPS parameters with a pseudolite directly below the user; however, the estimates 

quickly degrade as the center pseudolite is moved away from directly below the user and it 

fails to produce a solution when the center pseudolite is offset by more than 400 meters. 

The closed-form algorithm (step 1) produces excellent estimates of the 

pseudorange measurement noise strength a. The c produced by the algorithm ranged 

from 0.98 to 0.9991. Unlike the results obtained for the typical near earth GPS scenario, 

the estimation of the two dimensional ux, and Uy user position coordinates are extremely 

good, with errors smaller than those obtained with the conventional iterative algorithm; 

however, the user altitude (uz) estimation error is very large ranging from 2.9 x 10 to 1.3 

x 10 . Given the extremely low estimation errors in the ux and Uy user position coordinate 

estimates, it appears that the geometry produced by pseudolite ground planar arrays is 

more favorable to the closed-form algorithm than any geometry that can be produced 

considering strictly the 24 satellite NAVSTAR GPS constellation. If it was necessary to 

estimate only the planar ux and uy user position coordinates from signals obtained strictly 
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from pseudolites in a ground planar array, as would be the case in a test range, the closed- 

form algorithm would be the algorithm of choice. 

Taking the estimates produced by step 1 and applying the Kaiman update 

algorithm in step 2 improved the estimate of uz. However, the error in uz is still too large 

to render its estimate useful. ux and uy are also slightly affected, sometimes for the worse, 

other times for the better. Based on the results, the Kaiman update (step 2) does not prove 

very useful in this ground planar array test environment, as it does not provide any 

significant improvement over the closed-form algorithm (step 1). Moreover, the risk of 

corrupting the ux and tu position estimates exists. Hence, both the ILS and the novel two 

step algorithm do not yield good altitude estimates when our planar arrays of pseudolites 

is used and the center pseudolite is offset by more than 400 meters from the center of the 

array. 

4.2.4    Closed Form (Step 1) Algorithm Results 

Step 1 is a prerequisite for step 2 of the novel GPS positioning algorithm. 

Additionally, step 1 provides the estimate of the pseudorange measurement noise intensity 

(a). Hence, in this Appendix step 1 is further discussed. 

The experimental results indicate that the closed-form algorithm presented in this 

paper is extremely sensitive to noise. The sensitivity to pseudorange noise is reflected in 

the extremely large average miss distances which ranged from 47 to 120. The standard 

deviation ranged from 35 to 90. This is to be expected due to the high condition number 

of the regressor matrix. Note however that the closed-form results are merely the initial 

guess used to initialize the Kaiman Update algorithms developed in this paper, and are not 
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the final answer. Concerning the use of step 1 results in step 2 of the novel algorithm: 

these results are perfectly valid in view of their rigorous derivation using linear 

mathematics only. There is no concern of Kaiman filtering divergence. 

The results show that the condition numbers for the (n - 1) x 4 regress or, H, 

yielded by the closed-form algorithm are all extremely large, ranging between 600 and 

775. Consequently, it is unlikely that this algorithm can provide a GPS solution with small 

errors. The ill conditioning of the regressor is largely due to the last column which is made 

up of the difference between the pseudoranges. The first three columns are made up of 

differences in the three satellite position coordinates (ux, Uy, uz) respectively which tend to 

produce much larger differences than the pseudorange differences. The poor scaling due to 

the last column of the H matrix manifests itself as extremely large errors in the 

range-equivalent user clock bias where the observed errors ranged between 1.83 and 7.75. 

The large errors in the clock bias estimates do not affect the position error which is strictly 

a function of the error in the estimated position coordinates. 

An additional feature of the closed-form algorithm is its ability to provide a data 

driven prediction of the covariance of the GPS solution estimate. The prediction 6, the 

standard deviation of the pseudorange measurement noise, is not reliable when only 5 

satellites are available. However, as satellite availability increases, the prediction a 

improves accordingly. The experimental results show that with six satellites in view, the 

average 6 is 0.81. However the standard deviation of this prediction averages 0.60. With 

seven satellites the average a is 0.89. The average standard deviation is 0.47 showing a 

lot of improvement. With eight satellites the average 6 is 0.93 showing further 

improvement and the average standard deviation decreases to 0.38. Comparison of 6 and 
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the true 0(0= 100 m) indicates that at least 6 satellites must be available before a reliable 

prediction of G can be obtained. 
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5. Conclusions and Recommendations 

This chapter presents a brief summary of the performance related issues of the 

novel 2 step algorithm. Emphasis is placed on identifying the areas of strength and 

suggesting applications for which it is best suited. The chapter sums up with 

recommendations for future work. 

5.1      Conclusions 

The performance of the novel two step algorithm is comparable to the performance 

of the baseline ILS algorithm and, furthermore, it retains all the attractive features that 

motivated the development of the closed-form algorithm in the first place. Considering the 

closed-form algorithm as supplemented by the Kaiman update algorithm as a single two 

step GPS position determination algorithm, a novel algorithm with the following attributes 

has been developed: 

1. The performance under typical navigation scenarios, using only the NAVSTAR GPS 

satellite constellation, is equivalent to the performance achieved by the conventional 

ILS algorithm used as a baseline. 

2. The algorithm is closed-form, hence it can be used under any geometrical conditions 

without the need for externally provided initialization and a degree of autonomy is 

thus achieved. 

3. The algorithm is computationally efficient due to its "non-iterative" nature and its 

lower FLOPS count. 
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4. The algorithm has the capability to produce a data driven estimate of the measurement 

noise strength (a) and, most importantly, predict its estimation error covariance. 

5. The horizontal positioning performance of the novel two step algorithm under poor 

geometry conditions, e.g. when ground-based planar arrays of pseudolites are used, is 

better than that of the conventional ILS algorithm. Moreover, there are no restrictions 

on the user position and an initial user position guess is not required. 

The step 1 preliminary solution provided by the closed-form algorithm presented 

in this paper is extremely sensitive to noise. At the same time, and since linear 

mathematics are used, a good position estimate is obtained. Used in conjunction with the 

Kaiman update algorithm in step 2, a GPS solution estimate comparable to the 

conventional iterative least squares algorithm is obtained. The preliminary closed-form 

algorithm's ability to produce a prediction of the estimation error covariance is a valuable 

asset which is essential for the initialization of the Kaiman update (step two). 

The strength of the closed-form algorithm surfaced in pseudolite ground array 

scenarios. In these scenarios the pseudolite availability is such that an excellent estimate of 

the pseudorange measurement noise strength, a, could be recovered from the 

measurement residuals, which can then be used to calculate the estimation error 

covariance. The performance of the closed-form algorithm in estimating the horizontal 

user position parameters showed considerable improvement over the iterative algorithm; 

furthermore, no user position restrictions were required as long as the user was within the 

confines of the outer radius of the circular pattern. This may prove beneficial to test range 

applications where the conventional iterative algorithm is at risk of failure and this 
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imposes restrictions on the flight test trajectory and altitude. 

In conclusion, the benefits of the novel noniterative algorithms are computational 

efficiency, data driven predictions of the pseudorange measurement noise strength and the 

estimation error covariance, no need for an initial position guess, and better performance 

under poor geometry. 

5.2      Recommendations 

This section presents areas that remain to be explored that can be taken on as 

follow on research. 

5.2.1   A Iternate Stochastic Closed-Form Algorithms 

New approaches to deriving alternate stochastic closed-form solutions to the 

system of pseudorange equations must be investigated in an attempt to obtain an algorithm 

that possesses the following qualities: 

• The regressor matrix should have a low condition number to maintain the estimation 

error amplification bounds to a minimum. 

• The algorithm should be capable of producing an estimate of the four GPS estimation 

parameters using only four pseudorange measurements. 

• The algorithm should be capable of producing an accurate GPS solution with a single 

application without the use of a supplementary algorithm. 

It must be noted that the existence of, or feasibility of developing, an algorithm 

that possesses all or any of the above qualities is not guaranteed. 
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5.2.2   GPS Measurement Noise Levels Investigation 

The accuracy of the novel algorithm is very sensitive to the accuracy of the 

measurement error estimate. New, more accurate, approaches for predicting the 

measurement noise strength must be investigated. Moreover, an new algorithm, capable 

of predicting the measurement noise strength when only 5 satellites are in view, must be 

developed. 

Another area that remains to be explored is the comparison between the existing 

algorithms that predict the measurement noise strength using the measurement vector and 

regressor matrix of the ILS algorithm and the algorithm presented here. 
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