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power transmissions to mimic the -163 dBw GPS signal power level while not saturating 

the LI frequency with its own signal and blocking actual GPS satellite transmissions. 

The low power level of GPS transmissions brings to light the problems of 

interference and noise. GPS spread spectrum provides some protection; still some 

interference has been experienced from users when receiving spurious emissions near the 

LI band, such as second and third harmonics of UHF television stations, and even higher 

order harmonics from VOR and TACAN [40]. Also, there is the risk of someone 

deliberately broadcasting interference to deny any GPS signals to a receiver ("jamming") 

or mimicking transmissions from a satellite to give erroneous information ("spoofing"). 

Recall that an INS is a self-contained system that does not rely on outside 

navigational signals or beacon transmissions. Despite its inherent long-term drift 

characteristics, an INS provides velocity and position estimates with high degree of 

precision and low error standard deviation in the short-term. A great deal of work has 

been done integrating systems such as GPS receivers and one or more INSs (for failure 

redundancy), combining the benefits of GPS accuracy with the protection INS systems 

have against external noise [2,4,13,14,17,19, 21,23, 39,44,45, 50, 51,56]. 

Integration of navigation aids can further improve the performance of the system. Due to 

the dependence on GPS, it would be useful to have a system that could determine the 

level of accuracy and reliability of GPS transmissions before computing a navigation 

solution. 



1.1.4.     Sensor Integration 

An extended Kaiman filter can combine the position, velocity, and attitude states 

output by the INS with measurements from a GPS receiver, barometric and radar 

altimeters, and a pseudolite to determine the best estimate of those states. The Kaiman 

filter in this research uses tight integration to process the measurements. Tight 

integration incorporates raw measurements from all sensors, e.g., pseudoranges for GPS, 

into a central Kaiman filter as shown in Figure 4. In contrast, loose integration provides 

each sensor (or a selected subset of sensors) with its own filter to process its 

measurements before incorporating the measurements into the central filter as shown by 

Figure 4. Although loose integration offers less complexity for each filter, tight 

integration is preferred in this case, as it requires the design and tuning of only a single 

filter and has better performance potential [20]. 

Furthermore, in cases where fewer than four GPS signals are available (the minimum 

to compute positions and velocities using GPS), the filter can still function properly [27]. 

If a separate filter is devoted to processing GPS measurements, as in loose integration, it 

cannot give an unambiguous estimate when there are fewer than four measurements 

available. The entire benefit of GPS is lost during those periods. When tight integration 

is implemented, all measurements are delivered to a single state estimation filter. When 

there are fewer than four GPS measurements available, the filter continues to function, 

deriving some advantage of having at least partial information from GPS. 
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1.2. Problem Definition 

The core of this work is to examine the application of the newly developed Modified 

Multiple Model Adaptive Estimation (M3AE) algorithm [33] to an existing navigational 

system model using a GPS-aided INS in the presence of external interference. This 

algorithm is then applied to the precision landing problem to determine its suitability. 

1.3. Previous Research 

A great deal of research has been conducted to develop an adequate precision landing 

system (PLS) using GPS [5,7,11,13,18, 22,45, 56]. One significant effort is the 

FAA's Local Area Augmentation System (LAAS), which is based upon a ground-based 

system broadcasting DGPS error corrections and utilizing airport pseudolites [5,18]. 

Within AFTT, there have been two realms of research applicable to PLS. The first relates 

to the practical aspects of PLS, which include Johnson [23] and Negast [38] who focused 

on GPS/INS navigation systems. The work of Gray [13] applied the system to a PLS and 

showed that JLS Category II could be satisfied using a GPS-aided INS with radar 

altimeter and pseudolite measurements incorporated. Britton [7] follows this by using 

differential GPS (DGPS) measurements to show Category III could be met. White [56] 

investigated the performance a PLS in the presence of GPS interference and spoofing. 

White implemented Multiple Model Adaptive Estimation (MMAE) [31] techniques to 

adjust the navigational system's model to give dependable results. Advanced 

developments in more theoretical topics involving the M3AE architecture expanded the 

capabilities of MMAE to handle the task of simultaneous estimation of interference levels 

and navigation performance [33, 55]. 
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1.4.     Scope of the Problem 

The basis of this work is the expansion of the effort at AFIT towards investigating 

PLSs [56]. It will primarily be the application of the algorithm developed by Miller 

known as Modified MMAE (M3AE) [33] and to extend the work of White to simulate 

varying GPS interference levels for a GPS/INS PLS [33]. This research uses a computer- 

based simulation, Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) 

[39], to test the performance of a model of the PLS. The model of the PLS implemented 

at AFIT assumes the INS is the primary navigation aid. 

Two configurations are investigated using various INS models with two different drift 

rates, combined with various combinations of other navigation aids to determine the 

effects on the overall performance of the system. The principal criteria by which to judge 

the performance are the FAA precision approach categories. All aircraft navigational 

computers can only use finite-order models of the system. To reflect this, an elaborate 96- 

state truth model is used to simulate "real-world" aircraft position, velocity, and attitude 

errors, and a reduced-order 13-state filter model serves as the aircraft's on-board 

navigation filter model of sensor error characteristics. The difference between the states 

of the truth model and state estimates of the filter model will provide the error data to be 

weighed against the FAA categories. Monte Carlo analysis is conducted to tune each 

filter model for optimal performance and to determine whether the configuration is 

sufficient for a PLS. Monte Carlo analysis is conducted using MMSOFE, along with 

MPLOT. MPLOT is a software tool used in conjunction with MMSOFE that extracts the 

raw data from the files created by MMSOFE to provide usable data for plotting [36]. 
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In addition, this work serves as an initial application of M3AE techniques to a 

practical situation. The M3AE concept has been verified using truth and filter models of 

the same order [33]. The capability of M3AE using a more realistic and complete truth 

model and a reduced-order filter model in the simulation is accomplished. 

1.5.     Assumptions 

As in all research, a number of assumptions must be made to define the limits of the 

corresponding results and conclusions. The most crucial elements are the models used to 

depict the behavior of navigation equipment in the real world. The 96-state truth model 

is assumed to represent how the system would perform in the real world, while the filter 

model serves as an example of how an operational navigation system would be 

implemented. The simulated flight profile and GPS satellite ephemeris data used are 

generated by a program called PROFGEN [35] designed specifically to create the proper 

files for use with MMSOFE [39]. 

The INS is assumed to have a barometric altimeter integrated with it, as this is 

commonly done to stabilize the INS's vertical readings. A feed-forward configuration is 

used with the INS, which means the INS receives no data to update its current position. 

Although a feedback configuration in which the INS could accept position updates from 

the navigation filter could yield better accuracy, if the measurements of a sensor were 

corrupted, the INS would be extrapolating its states based on an erroneous input which 

can further distort its results. 

The presence of GPS interference is modeled as zero-mean white Gaussian noise 

(WGN) in the measurement models. This is the only interference to be taken into 
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account; the INS is considered to be unaffected by outside disturbances, and jamming of 

the radar altimeter is not examined. Pseudolites can be affected in the same manner as 

GPS satellite signals. 

1.6.     Summary 

This work follows the progress of other studies concerning integrated GPS/INS 

navigation. The intent is to incorporate the recently developed theory behind 

simultaneous parameter and state estimation with M3AE into this path of study, PLS 

improvement. Chapter 2 presents the theory behind a critical tool of modern navigation 

systems, Kaiman filtering. It then follows with a description of parameter and state 

estimation using MMAE, and provides an overview of the development behind M AE. 

Chapter 3 presents the system models implemented in the simulations. The structure of 

the models for each navigation system component is described as well as the states and 

measurements modeled. Chapter 4 shows the results obtained through simulations and 

the corresponding analysis of the performance observed. Lastly, Chapter 5 gives a 

summary of conclusions based on this work and any recommendation for other paths of 

study. 
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2. Theory 

2.1.     Overview 

The overall structure of the navigation system simulated in this work is based on a 

modified MMAE (M3AE). Miller developed this method as a solution to the dilemma in 

simultaneously estimating both the states and the parameters of a system model 

accurately [33]. The structure of M3AE is composed of two major parts: the MMAE, 

designed specifically for parameter estimation, and a single extended Kaiman filter 

(EKF) tuned precisely for state estimation, once provided the parameter estimate from the 

MMAE. 

The MMAE is composed of a bank of Kaiman filters, each one based upon a different 

value of parameters. Both the MMAE and state estimator receive measurements from the 

external sensors. The MMAE uses these data to come up with a blended parameter 

estimate, which is passed on to the state estimator. The state estimator then has the best 

model available to render its estimate of the states, based on the incoming measurements. 

In this way, accurate state estimates can be obtained in an environment where some of the 

parameters of the model can change. The Kaiman filter serves as the fundamental 

building block of an M3AE; thus, an explanation of the M3 AE begins from the most 

elementary component proceeding towards the overall structure. 

This study uses Kaiman filters to combine various sensor data (INS, GPS, etc.) to 

obtain an optimal estimate of the aircraft's position and velocity. Kaiman filtering has 

been used considerably in navigation applications [19, 27]. 
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It is well suited for this due its ability to take into account levels of uncertainty of states 

and measurements within a system. Kaiman filtering deals with systems that can be 

described by a set of linear, time-varying, stochastic differential equations [24,30]. In a 

sampled-data environment, such as a computer, discrete difference equations can be used 

with some adaptation. The stochastic processes involved are represented by white 

Gaussian noise (WGN), usually zero-mean unless a bias is needed. "White" indicates 

that the value of the process at an instant of time is independent of all other values at any 

other time, i.e., "perfect" randomness. Gaussian functions are used since uncorrelated 

jointly Gaussian functions are also independent. The strength values can be adjusted to 

fit the level of uncertainty needed for the models. 

2.2.     Extended Kaiman Filter 

Originally, Kaiman filters were designed to handle systems adequately described by 

linear models [30]. All models are approximations, and in many cases, linear models 

have deficiencies that are not negligible. This is often the case when the noise strengths, 
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i.e., levels of uncertainty, of the model are small values. Over time, the states of the filter 

can rely too heavily on the system model and become affected less by external 

measurements. This can result in model behavior that strays away from the actual real- 

world situation [31]. Several methods have been developed to counteract this. Some 

restrict the variance of the states from going below a certain value or have a built-in 

minimum threshold of uncertainty. Others limit the "memory" of the filter, such as in 

Fagin age-weighting where the effects of more recent measurements are magnified by 

increasing the assumed noise variance of earlier measurements exponentially backwards 

in time [31]. In cases where the linear model cannot sufficiently characterize the system, 

the filter equations can be adapted to handle non-linear equations. A linearized Kaiman 

filter assumes that a nominal state trajectory (value of the state vector over time) exists 

and estimates the perturbation about the nominal value. The perturbation is defined as 

the first-order term of the Taylor series of the difference between the state vector and its 

nominal trajectory. This filter performs well unless the actual and nominal state 

trajectories differ significantly [31]. To compensate for this, extended Kaiman filtering 

(EKF) relinearizes about the most recent state update. Thus, the filter computes a new 

nominal state trajectory after each update phase. 

In the equations that follow, a certain type of notation is used, following a convention 

adopted by Maybeck [30, 31, 32]. Vector and matrix variables are distinguished from 

scalar variables through a boldface type. Boldface, lower-case letters are reserved for 

vectors and capital letters for matrices. Thus, a, b, c would be scalars, a, b, c would be 

vectors, and A, B, C would be matrices. Variables are further distinguished by typeface. 
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Roman type indicates a deterministic variable, e.g., a, b, c, while a sans-serif (Helvetica) 

type indicates a stochastic variable, e.g. a, b, C. 

2.2.1.     System Dynamics Model Equation 

Consider the linear system dynamics model equation used for Kaiman filtering 

x(0 = F(Ox(0 + B(f)u(f) + G(f)w(0 (1) 

where x(f) is the state vector, F(f) is the system dynamics matrix, u(f) is a vector of 

deterministic control inputs with B(f) as a control input matrix, and w(f) is a vector of 

zero-mean WGN with G(t) as a noise input matrix. Note, w(f) is the hypothetical time 

derivative of a Brownian motion process ß(f) 

«W-4C0 (2) 
dt 

which does not exist in the real world since w(f) has an equal power density over all 

possible frequencies (hence, the term "white"). However, if it is assumed that a finite 

band of frequencies (of concern to the problem) is used, then w(f) "appears" as a white 

noise process within that band. Also, since w(f) is a Gaussian process, two statistics, 

mean and (auto)covariance kernel, are sufficient to completely describe how it behaves: 

E{w(f)} = 0 (3) 

E{ w(OwT (t + T) } = Q(t)S(r) (4) 

Q(0 is a square matrix that can be interpreted as the strength of the WGN, while 8(f) is 

the Dirac delta function, also known as the impulse function. With the addition of w(0, 

x(0 becomes a stochastic variable itself with these statistics: 

E{x(t)} = m (5) 
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E{ [x(0 - x(0][x(0 - x(Of} = P(0 (6) 

x(f) is interpreted as the best estimate of the state vector at time t, and P(f) is its 

corresponding covariance or range of uncertainty. 

When the system dynamics cannot be expressed as a set of linear equations, a non- 

linear function must be set up for the model: 

x(0 = f[x(0,u(0,*] + G(f)w(0 (7) 

where f[x(f), u(f), t] is the non-linear vector function in terms of the state and control 

vectors and time. Also, in this research, no deterministic control inputs are considered, 

thus B(0 and u(0 are zero and do not appear from this point on. 

2.2.2.     Measurement Model Equation 

The linear discrete measurement model equation used for Kaiman filtering is 

z(/I.) = H(f,.)x(f,.) + v(0 (8) 

where zfo) is the measurement vector, H(f*) is the measurement matrix, and vfe) is a 

vector of zero-mean, discrete-time WGN representing the uncertainty of the 

measurements, or the measurement noise. It is important to note this equation is a 

discrete-time process (f,- instead of i) since measurements are taken at specific instants of 

time. Here, the measurements are considered to be taken at regular time intervals. The 

measurement noise v(fc) has the following statistics: 

E{v(f,)} = 0 (9) 

[R(0   i = 3 
W,)V^)}=0 .,- (10) 
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In this description, R(ff) is a square, positive definite matrix interpreted as the covariance 

of the noise vfo). Rfo) beinS positive definite implies that all measurements, i.e., 

elements of vfe), are corrupted by noise, and no linear combination of these 

measurements would be free from noise. In addition, it is assumed that the state and 

noise vectors, x(f), w(f), and v(f,), are uncorrelated with each other, and being jointly 

Gaussian this means they are also independent of each other[30]. 

As above, when the measurement dynamics cannot be expressed as a set of linear 

equations, a non-linear function must be used: 

z(r,.) = h[x(r/),rJ] + v(fI.) (ID 

where h[x(f), t] is the non-linear vector function in terms of the state vector and time. 

2.2.3.     System Model Linearization 

Equations (7) and (11) describe the non-linear model of the system of which a 

Kaiman filter determines the best estimate of the states x(f) and the estimation error 

covariance P(f). A linear approximation must be made to create a linearized Kaiman 

filter to apply to the model. A nominal state trajectory \„(t) V t e T (7/is the entire 

period the filter operates) is computed with initial conditions of x„(f0) = x„o, where the 

noise-free system dynamics equation is defined by 

xn(0 = f[x„(0,'] (12) 

where f[v] is the same as in Equation (7). Nominal, noise-free measurements are also 

considered with the corresponding measurement equation 

zn(ti) = h[xn(ti),ti] (13) 

where h[vlis me same as in Equation (11). 
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As mentioned in the beginning of this section, a linearized Kaiman filter estimates a 

perturbation to the nominal trajectory. The state perturbation is found by subtracting the 

nominal states from the original states. This yields a system dynamics equation Of 

[x(f) - x„ (f)] = {f [x(0, t] - f [x„ (0, t]} + G(f)w(f) (14) 

Now, a Taylor series expansion is performed on f[x(0, t] about xn(t) V t e T 

dkf[x(t),t] 
f[x(0,f] = £- 

*=o 
[x(0-x„(0f (15) 

x(0=x„(r) dxk 

A first-order approximation may be made by neglecting all the terms with powers greater 

than one (k > 2) 

[x(0-x„(r)] (16) f[x(0,^f[xn(0,]+
af[X(0'?] 

ax 

Let 

Ffc..«]-«1*^' 

x(r)=x„(r) 

(17) 
x«)=x„«) 3x 

The linearized (first-order approximation) perturbation 5x(t) = [x(f) - x„(0] is found by 

substituting Equations (16) and (17) into Equation (14) 

Sx(t) = F[t;xn(t)]Sx(t) + G(t)\N(t) (18) 

The same procedure is applied to the measurement equation, with a Taylor series 

expansion of h[xfo), t] about zn(ti) V tte T yielding 

Sz(ti) = mt;xn(ti)]Sx(t) + v(t) (19) 

At this point, the Kaiman filter equations can be applied, resulting in the linearized 

Kaiman filter. It should be noted that, unlike the basic Kaiman filter, the best estimates 

of the perturbation states <5x(0 are first-order approximations and not truly optimal. In 
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order to get the estimates of the states themselves, the nominal state trajectory must be 

added 

2.2.4.     Extended Kaiman Filter Equations 

In many cases, the effect of neglecting the higher order terms of the Taylor series can 

cause the accuracy of the filter's predictions to stray over time. This is caused when the 

nominal state trajectory deviates significantly from the actual trajectory. Extended 

Kaiman filtering solves this by relinearizing about the most recent state estimate x(f) 

instead of the initial nominal state trajectory x„(0- Thus, a new nominal trajectory is 

created for each cycle of the filter. Each cycle of a Kaiman filter has two phases: 

propagation and update. Each filter update occurs at regular intervals u (i = 0,1, 2,...) 

and of instantaneous duration. The propagation phase takes place during the intervals 

between tt and *,-+;. In the EKF equations below, the following notation convention is 

observed [30, 31,32]: 

t\tt indicates the value of a given variable at time t, conditioned on measurements 

taken through time tt (this also represents the relinearization taking place). 

t;  indicates the value after the propagation phase, prior to the update phase 

t*  indicates the value after the update phase, prior to the next propagation phase 

2.2.4.1.     Propagation Phase 

The values of the state estimate x(t\tt) and state covariance P(f|f,) are propagated 

from t+ to f~i through the following differential equations: 
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x(t\ti) = f[x(t\ti),t] (2D 

PC^Ffrx^OlPt^ (22) 

where 

9f[x(0,f] 
F[f;x(%)] = - 

3x 

with these initial conditions: 

(23) 
x(O=x(f|»,0 

i(r,|f,) = i(fl
+) (24) 

P(rI.|fI.) = P(C) (25) 

2.2.4.2.     Update Phase 

After each propagation, the discrete-time measurements z, = z(fc) are applied. The 

updated values of the state estimate x(tt) and state covariance P(f,.) are computed through 

the following equations: 

K(f,) = P(fr)HT[fl;i(rr)]{H[rf;i(fr)]P(fr)HT[ff;i(/r)] + Rft)}"1 (26) 

x(t:) = x(t;) + K(ti){zi-h[x(t;),ti]} (27) 

P(O = P(0-K(OH[',;x(Q]P(0 (28) 

where 

dh[x(t),t] 
H[r,x(^)]s- 

3x 
(29) 

x(0=x(rf ) 

and translating the values after the propagation phase as: 

i(0 = *(',!',-.) (30) 

P(0 = P(^M) <31> 
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The values x(7,+) and P(f,+ ) are then used to start the next propagation phase and to 

recalculate the nominal state trajectory. 

The term {z,. -h[x(0,f,]} in Equation (27) is known as the measurement residual, 

and is represented by rfe)- The value of rfc) represents the difference between the actual 

measurements taken z,- = z(t,) and the filter's prediction of the measurements 

z(f,) = h[x(f r),f J based on the best estimate of the state vector prior to receiving z/. The 

characteristics of rfo) show how well the filter model simulates the behavior in the real 

world. In a linear Kaiman filter, for an accurate model, r(f,) will appear white and 

Gaussian with a mean of zero and a covariance of 

A(ti) = wrM;mt-)HT[ti-,x(t;)]+R(ti) (32) 

Note this term is embedded in the expression for Kfo) in (26). For an extended Kaiman 

filter, this description is good only to the first order. 

2.3.     Multiple Model Adaptive Estimation (MMAE) 

As a Kaiman filter runs, the algorithm generates its prediction of the states of the 

system model, x(f), along with an estimation error covariance P(f). All of this depends 

on how well the model itself depicts the system's behavior in the real world. The 

structure of the model is based on the parameters describing the interrelations of the 

states. For this work, these are the system dynamics function f[x(f), t], system noise 

input matrix G(0, measurement function h[x(r), t], and the strength of the system 

dynamics noise Q(0 and covariance of the measurement noise R(f,-). The filter can 

encounter difficulties when any of these quantities change from values assumed by the 

filter. Thus, it would be beneficial to have a filter that could adapt to such changes. A 
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technique known as multiple model adaptive estimation (MMAE) handles changes in 

system characteristics through a parallel bank of K individual Kaiman filters (where K is 

the number of possible parameter values a* taken into account), each calculating its own 

best estimate of the state vector xt(r,.) with Pt(r,.) (k = 1, 2,..., K). When the 

measurements z,- are given to the filters, they generate a set of residuals r*fe). These 

residuals are processed by a hypothesis conditional probability computation algorithm to 

quantify how well each filter matches the real world circumstances. This is expressed as 

a conditional probability, pk(td, by the recursive equation 

_    /*t,)|a,Z(tM)(Zila* »Zi-t)P* (f'-i) (33) 

where a* is the value of parameters associated with the fcth filter, ZM is the realization of 

the variable of Z(fa), which is in turn a vector of cumulative measurements from the 

initial time to to fa: 

Z(',-i) = 
z(*,_2) 

Z(*o) . 

(34) 

and fz, ,aZ(, )(z,|at ,Z,_,) is a Gaussian density function with a mean of rjtfe) and a 

covariance of AtC?/): 

/^la^Al^^-i) = ßk exp|"M'i)j (35) 

where 

& = 
(2rc)f|A,(rf 

(36) 
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and 

Lk(ti) = rJ(ti)A-k\(ti) (37) 

The quantity rk(td is an m-dimension vector, i.e., m scalar measurements are taken at 

each measurement update interval. These conditional probabilities are then multiplied by 

their corresponding state estimates, which are summed to produce a blended estimate of 

the state vector i(f,). Figure 7 shows a block diagram of the MMAE [31]. 

The conditional probability is best interpreted as pk(ti) - Prob[a = a* | Z(f,-) = Z,], i.e., 

the probability that the parameter value a* is the correct one for the model, based on the 

measurements collected up to this point Z(Y,) = Z,-. 
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«n 
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Figure 7.        MMAE Structure for Parameter Estimation 
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The blended estimate is then the weighted mean of xk(tt), k = 1, 2,..., K: 

x(r,) = £{xfc)|Z(f,) = Z,} = f it(/,)A(',) (38> 

The corresponding covariance P(f,-) of the blended solution is 

k=\ 

The underlying concept of the MMAE is that values of the residuals determine which 

filter best represents the real-world system at the current time, i.e., the best filter has the 

smallest scaled residuals. These residuals are scaled by the inverse of the filter-computed 

residual covariance, as seen in Equation (37). The corresponding probability of that filter 

should increase over time and the other filters' probabilities should decrease, assuming 

the system environment remains constant. Prior to using the MMAE, each filter should 

be tuned (values of the dynamics pseudonoise strength matrix Q adjusted) for its best 

performance by running the algorithms under the conditions of each of K parameter 

values being the best or "true" values in the real world. Thus, the ** filter would be 

tuned for best performance when the "true" parameters are a*. 

An inherent trade-off problem exists in an MMAE between state estimation (x) and 

parameter estimation (ä). The problem is that the only way an MMAE can ascertain 

what the system parameters should be is through the measurements it receives. When an 

MMAE is designed to yield good state estimates (i.e., accurately predicting the system's 

actual states xfo) given all previous actual measurements ZM over a period of time) each 

filter is tuned individually to provide accurate state estimates for its own parameter value 

a*. If the filters are tuned conservatively, the residuals, rk (t,) = z, - h[x* (t~), t, ], can 

appear similar to each other. If all the residuals tend to have nearly the same magnitude, 
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then the MMAE favors (assigns the highest probability to) the filter with the least value 

of |At|, as shown by Equations (33) and (35) - (37). Although A* is used to represent the 

covariance of the residuals (assumed Gaussian), the value of |At| is independent of the 

residuals themselves and how well the kth filter fits the parameter environment. The 

conditional probability of each filter pfa) is dependent upon its residuals through L*fe) 

from Equation (37). If the scaled values of the residuals, r*(f,), are similar, then Life) ~ 

L2fo)«... * Luiti). This means that pk(td is how highly dependent on ßßd (2-32) which 

has as its only variable, |At (tt)\.  A strong dependence on |At (t,)\ can distort the 

blending process since there will be one filter; e {1, 2,..., K}, such that |A7(f,)| < 

U (t,)\ V fc */. If the parameter environment does not change for a period, pfr) will 

approach unity while all other pk(td will approach zero. As this happens, one filter out of 

the bank becomes favored by having most of the probability weighting. This may be the 

"best" filter out of the choices available, though it may not have the best parameters out 

of the entire parameter space. 

However, the performance of the algorithm relies upon significant differences 

between the residual characteristics of each elemental filter. Because of this, it is 

important to avoid adding too high levels of dynamics pseudonoise Q during filter tuning. 

Although a conservative tuning philosophy is used to keep filter estimates from diverging 

considerably from the truth, conservative tuning tends to mask the differences between 

good and bad models [28, 33]. 

Another concern occurs when one of the elemental filters achieves a conditional 

probability of zero. Whenever this occurs, that filter's probability remains zero 
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indefinitely due to the recursive nature of Equation (33).  Thus, the filter is eliminated 

from the possible choices considered by the MMAE in the future. Even if the parameter 

conditions change such that the elemental filter that had zero-probability now represents 

the best model of the real-world system, that filter cannot have any probability weight 

assigned to it. One solution to prevent this from happening is to establish an artificial 

minimum threshold value that/?* can attain, i.e., min(p*) [1,31]. Consequently, this 

means no elemental filter can have pk = 1 even if it is the exact match, though this should 

not produce any significant problems in determining a solution [31]. 

The advantage MMAE provides to Kaiman filtering is that it handles situations where 

a single system model cannot sufficiently simulate the behavior of an actual system 

confronted with varying parameters. In addition to the states, the MMAE algorithm can 

be used to determine the best estimate of the parameters themselves a(f,.) based on all the 

measurements collected Zfo) = Z,. The blended estimate of the parameter set is 

calculated in the same manner as with the state vector: 

&(f,) = E{a(t,)\Z(tt) = Z,} = SMOft Ci) W 

The conditional covariance of a(f,-) of the blended parameter estimate is 

Pa(0 = JS{[aa,.)-ä(0][aa,)-ä(0]T|Z(0 = z.} 

= 5>t W -*W** (ti)-*(ti)fPk (O 
(41) 

When the filters are tuned for parameter estimation, it is done such that the residuals 

tend to have values sufficiently distant from each other. This helps to create a situation 

such that if the actual parameters do not exactly or closely match those of one of the 

filters, a blending of several filters will provide an accurate estimate of the parameters. 
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However, the method to make the residuals more distinct from each other entails 

applying smaller values of the Kaiman filter gains K*fo) to reduce the influence of the 

measurements z(. When the measurements have less influence, the filter tends to rely too 

heavily on the propagated state estimates x(0 . This means the actual state x(f,) can be 

misrepresented over time. Therefore, new techniques have been developed to give 

accurate estimates of both the states and the parameters simultaneously [33]. 

2.4.     Modified MMAE (M3AE) 

The M3AE architecture combines MMAE and Kaiman filter techniques for 

simultaneous state and parameter estimation. Under this architecture, an MMAE serves 

as the parameter estimator and is designed and tuned for estimating the system's 

uncertain parameters accurately. It is optimized for distinguishing among several 

possible hypothesized operating conditions dictating the parameters of the system. The 

separate single state estimator within the M3AE algorithm is designed and tuned to 

provide accurate state estimation, conditioned on the measurements and knowledge of the 

parameters provided by the parameter estimator. 

Several assumptions regarding the system must be accepted before an M AE can be 

applied to the model. Most importantly, the parameters to be estimated lie within a finite 

predefined parameter space. The elemental filters of the MMAE are then based on a 

subset of discrete parameter values chosen from the parameter space [31]. In addition, 

the variable parameters change more slowly than the system's states, thus estimates of 

these parameters can make use of any prior information available as to how they vary 

over time. As for designing an M3AE architecture, Miller describes a straightforward 
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method to analyze, tune, and predict the system's performance before conducting a full- 

scale Monte Carlo analysis. Figure 8 shows a flowchart of the performance analysis tool. 

First, a discretized parameter set is established using an algorithm designed by 

Sheldon to determine the parameters of each elemental filter of the MMAE [48, 33]. If 

appropriate, inter-residual distance feedback (IRDF) techniques developed by Lund [28] 

are applied to make each elemental filter appear more distinct from one another. Next, 

the state estimation Kaiman filter is designed using techniques described by Maybeck 

[30, 31]. It is important to note that the MMAE will provide the values of the variable 

parameters to the state estimator based on the incoming measurements. Then, the 

MMAE and state estimator are coded in a software simulation. A single Monte Carlo run 

C      Start      ) 

Build Models & 
Code Software 

Perform Single 
Monte Carlo 

Run on MMAE: 
(a, Pa, Pk) 

Tune/Modify 
State/Parameter 

Estimator 

Perform M3AE 
Covariance 

Analysis 
YES 

Validate through 
M3AE Monte 

Carlo Analysis 

C      St°P       ) 

Figure 8.        MMAE Structure 
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is performed on the MMAE to generate the values of the parameter estimate, a(f,), its 

covariance determined by the elemental filters, Pa(f,-), and the probabilities associated 

with each elemental filterpfa). Finally, an approximate covariance analysis is conducted 

to verify if the design's performance meets the desired specifications. If so, a thorough 

Monte Carlo analysis is conducted on the M3AE. If not, the MMAE and the state 

estimator are modified iteratively to solve the discrepancies. 

2.4.1.     Parameter Space Discretization 

The M3AE's MMAE is designed for accurate parameter estimation. When designing 

the MMAE for parameter estimation, a parameter space must be defined. The parameter 

space is the range of values the uncertain parameter to be estimated can assume. Once 

this is determined, the next issue is the placement of the elemental filters to span the 

space. In the past, several ad hoc methods were used to determine the placement or 

discretization of the parameter space, e.g., equal spacing, exponential spacing, etc. [15, 

16, 31,46,49]. Sheldon[48,49] thought a more systematic design approach was required, 

thus he developed a method to assign the placement of the filters optimally. His method 

involves minimizing a cost function, C, which is the average of the mean-squared 

estimation error taken over the parameter space: 

J E{[a(0 - a(0]T W[a(0 - a(0]}<*> 
C = * -.  (42) 

\da 

where 

\da= J ... J jdal da2 ... daN 
(43) 

isw K2   N, 
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a, 
a 

a = 
2 (44) 

aN 

and W is a weighting matrix chosen by the designer to emphasize specific states, N is the 

number of scalar parameters (dimension of a), and K is the bounded region of the 

parameter space within which the parameters can take on values. 

The parameter space discretization and placement of the elemental filters is 

accomplished before implementing the MMAE. This entails deciding which parameters 

can change, what the appropriate parameter spaces are, and where the elemental filters 

should be placed within the parameter space. Sheldon developed a five-step algorithm to 

minimize a cost function over a parameter space numerically. The first three steps 

consist of constructing the truth and filter models to represent the system, deciding the 

number of filters to be used, and determining the cost function (parameter, state, or 

control, but in the M3AE, the MMAE is only used for parameter estimation) of the 

parameter set to be employed. The fourth step is the core of the process. The basic 

purpose is to apply a numerical integration technique to evaluate the value of the cost 

function, C, over the parameter space K. Assuming the parameter set remains constant 

for a given problem, only the numerator of Equation (42) needs to be evaluated, and with 

W often chosen as a diagonal matrix, it can be expressed as: 

JE{[a(0-ä(0]TW[a(0-ä(0]}rfa = Jtr(WE{[a(0-ä(0][a(f)-ä(0]T}ya   (45) 

where tr(») is the trace of a square matrix (sum of its diagonal elements). For numerical 

integration, X is divided into a number of discrete intervals. At one point of each 

integration interval, a value for a(f,.) is calculated in the following manner: 
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Sheldon defines a transformation matrix T that converts true states (indicated by the 

subscript T) Xrfo) to filter states (no subscript T) xfo) in this way: 

x(f,) = TxT(f,.) (46) 

where x(ti) is defined by the discrete-time system equation: 

x{tM) = &(tM,tl)x(tl) + Gä(ti)}Ni(tl) 

*(w,)=«,(*x*H~*) 

and 

(47) 

(48) 

(49) Gd(fl)wd(rl) = <[
w*ft+I,rl)G(T)dß(T) 

and wd(fj) is zero-mean WGN with strength (covariance) of Qdtt): 

Qd (,,) = J'i+1 *(,|+1, T)G(T)Q(T)G
T

 (T)O
T

 (*l+1, t)dt (50) 

The following equation is then solved iteratively, where the subscript, k, denotes the 

** filter corresponding to ak(k = 1, 2,..., K) (T, as a subscript, still denotes the truth 

model): 

rt (n +1) = YTt (n) YT + G0Q0Gj (51) 

where 

Y = 
■*t(I-K4Ht)   (^T-TOT)-^K,(HJ-HTy 

G0 = 

0>x 

TGdT   *tK/ 

G dT 0 

Qo = 
o QdT 

0     RT 

(52) 

(53) 

(54) 
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