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Abstract 

This thesis evaluates two different methods of estimating a three 

dimensional wind field based upon a limited number of irregularly-spaced 

observations. This work was performed for the 45th Weather Squadron to 

determine how well the two methods worked and their potential for use in a 

visualization program. The two methods evaluated were Barnes' method and a 

method called Kriging, which is commonly used in geostatistics. Both of these 

estimation techniques were implemented and then evaluated to determine how 

accurate the estimates were that they created. The methods' accuracies were 

determined by withholding an observation from the observed wind field data set, 

performing the estimation, and then comparing the estimated value at the point 

of the withheld observation with the actual value withheld. These performance 

results were compared to determine which method produced a more accurate 

estimated wind field. Barnes' method proved to be the less complicated to 

implement, but Kriging provided a more accurate estimate. Both of the methods 

had a significant amount of estimation error associated with them. This large 

error casts serious doubt on their abilities to produce an accurate enough 

estimation to be useful in analyzing the low-level wind field. 

VII 



EVALUATION OF BARNES' METHOD AND KRIGING 
FOR ESTIMATING THE LOW LEVEL WIND FIELD 

I. Introduction 

1. Motivation 

a. 45th Weather Squadron Mission 

The 45th Weather Squadron has the mission of Exploiting The Weather To 

Assure Access To Air And Space. To accomplish this mission they provide 

weather services for Cape Canaveral Air Station (CCAS), Kennedy Space 

Center (KSC), and Patrick AFB. These three facilities combine efforts to conduct 

an average of 60 attempted launches per year, of which 35 are successful 

launches, over 5,000 pre-launch operations, as well as NASA ferry flights and 

other military aviation operations. In addition to the billions of dollars of payload 

associated with these launches, the 45th WS is also responsible for weather 

warnings and watches that provide for the safety of 25,000 people and the 

resource protection of over 8 billion dollars worth of facilities (Roeder, 1998). 

The 45th WS issues over 1200 lightning warnings/advisories per year as well 

as over 175 convective wind warnings. Weather warnings are special bulletins 

alerting customers to weather conditions that pose a hazard to life or property. 



Weather advisories are notifications of weather conditions that could affect 

operations (Air Force Manual 15-125,1997). These warnings and advisories are 

issued based upon a set of predetermined weather threshold values set by each 

customer of the 45th Weather Squadron. In addition to these standard warning 

and advisory thresholds, the 45th WS is also responsible for mission-specific 

forecasts covering launch operations with different requirements. Each launch 

operation has its own special set of launch criteria, including a variety of weather 

thresholds. The numbers of warnings and advisories provided above do not 

reflect these mission-specific forecasts. 

Forecasting weather events that violate these standard thresholds results in 

the large numbers of weather warnings/advisories. The 45th WS's current 

forecasting capabilities have resulted in weather warnings and advisories having 

a 40 percent false alarm rate. This means that 40 percent of the time a 

forecasted weather event does not occur. Of those weather warnings and 

advisories that do verify, 10 percent fail to meet the desired lead time. Desired 

lead times are determined locally based on the amount of time a customer needs 

to take precautionary action, such as tying down aircraft or bringing workers to 

shelter. The high false alarm rate reflects the reality of having to err on the side 

of safety and caution when billions of dollars and thousands of lives are at risk. 

The bottom line is that 35 percent of all launches are either delayed or scrubbed 

as a result of weather (Roeder, 1998). The high percentage of false alarms and 

the high percentage of launches impacted by weather indicate the importance of 

weather forecasts to launch operations. They also indicate the huge negative 



impact upon operations if a forecast is incorrect. This situation provides the 

motivation for finding better ways to produce accurate forecasts. This work 

provides the initial research for a proposed tool for improving the ability to 

forecast the local winds. 

b. Local Wind Field 

Forecasting wind conditions can be very difficult even in regions where the 

synoptic environment is relatively benign. This difficult task of forecasting the 

winds around Cape Canaveral is further complicated by the local landscape. 

Cape Canaveral has a very complex wind field created by a local topography 

composed of a mixture of land and water (Figure 1). Some of the larger bodies 

of water that dominate the landscape are the Atlantic Ocean, the Banana River, 

the Indian River, and the Mosquito Lagoon. This complicated land and water 

environment presents both a forecasting and an observational challenge. The 

lack of uniform terrain produces a complex wind field as the frictional properties 

of the local topography interact with the atmospheric pressure gradient. These 

complicated interactions increase the difficulty of forecasting the wind. 

Not only is the local wind field difficult to forecast, it is also difficult to 

observe. The main observational difficulty results from the large number of wind 

sensors. These wind sensors are located over a vast area to provide the proper 

coverage for the launch pads and other resources. The wind data from these 

sensors currently is displayed in multiple locations and multiple formats, requiring 

weather personnel to mentally visualize how all the separate numbers combine 



to create the wind field (Roeder, 1998). Ideally, all this data could be combined 

to produce one three-dimensional graphical display of the wind field. This 

display could then be used to augment both observational and forecasting 

capabilities, and to analyze the wind field to develop a better understanding of 

how the local conditions impact the wind. 
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Figure 1 - Cape Canaveral Wind Tower Distribution 

This figure provides a graphical depiction of the Cape Canaveral area and the 
spatial relationship between the wind towers 



2. Problem Statement 

To evaluate Barnes' method and Kriging to determine their accuracy in 

estimating the low-level wind field based upon the wind measurements from 

multiple wind sensors located on and around Cape Canaveral. Also, to evaluate 

their potential use as the estimation tool for a visualization program used to 

analyze the wind field in both time and space. 

3. Scope 

a. Thesis Scope 

The 45th weather squadron desires a product that will produce a graphical 

display of the observed wind field at Cape Canaveral, which can be used both to 

visualize the current wind flow, and to analyze the wind field for forecasting 

purposes. To achieve this goal three major issues need to be addressed: data 

integration, estimation of the tree-dimensional wind field using the wind tower 

observations, and graphical representation of the data. 

The scope of this work concentrates on the second of these three. The first 

portion of this project was not addressed because of hardware and budgetary 

constraints. To address the problems associated with having all the data 

transmitted to a central location would have required much of the work to be 

performed at Cape Canaveral, or for the system configuration there to be 

duplicated at AFIT. Neither of these was a realistic option due to lack of funds. 



However, the procedures for archival of data took care of most of the issues 

associated with the problem of data integration. The format of the archived data 

is briefly discussed to provide a basic understanding of the data used to evaluate 

the estimation methods. The wind tower data archive files contained wind 

readouts of all the sensors, grouped by date and time. These problems of data 

integration resolved, although artificially, allowed for the main focus of the work 

to be centered upon the problem of estimating the wind field. 

In meteorology this process of estimating a gridded field from non-spatially 

uniform observations is called objective analysis. This evaluation to determine 

the accuracy of the potential objective analysis methods must clearly be resolved 

before any issues about the display of the data can be addressed. Indeed, one 

could have the best display possible, but if the data is wrong, the display would 

not be useful. 

This effort examines two different methods of estimating the three- 

dimensional wind field based upon the observations of Cape Canaveral's local 

wind tower network. The examination establishes the steps for performing the 

objective analysis and displaying the estimated wind field. It also provides a 

quantitative evaluation of which estimation method is the most accurate.   The 

wind field estimate is computed for an area just large enough to contain all of the 

observational data provided by the wind tower data sets and is limited in the 

vertical to cover only the first five hundred feet due to lack of data above that 

level. There are a few wind profilers that can provide wind data above 1000 feet 

that can be included in future evaluations, but the scarce amount of data they 



provide caused them to be of little help for evaluating which objective analysis 

method was better. 

b. Constraints 

Due to hardware limitations, financial restrictions, and time constraints, this 

work does not attempt to duplicate the actual sensor configuration in place at 

Cape Canaveral. The wind data is read in from data files and processed. 

Therefore, no attempt is made to produce an estimated wind field and display 

those results in "real-time." Instead the two objective analysis methods are 

evaluated to determine how accurate they are, which one works better, and 

whether or not they can be used in a graphical "real-time" system. Also, due to 

time constraints the final data set is imported into an existing graphics package, 

such as vis5d, for final display. Finally, this effort attempts to estimate the 

observed wind as accurately as possible, without modifying the observed values. 

Therefore, no efforts are made to ensure the observed wind field is in proper 

balance with any other atmospheric variables. 

4. Summary 

This chapter defines the importance of more accurate forecasts to the space 

program. With work on the new international space station underway, the ability 

to conduct launch operations reliably takes on an added significance. This work 

is an important first step towards the creation of a tool to display the observed 

three-dimensional wind field at Cape Canaveral. The remainder of this paper 



provides the background material required to complete the work, how the 

evaluations were performed, the results of those evaluations, and the 

recommendations based upon those results. 
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II. Background/Literature Review 

1. Chapter Overview 

This chapter provides the background material for this project. Most of the 

background material and literature deal with the objective analysis methods 

being considered. Detailed mathematical derivations of the equations these 

methods are based upon is beyond the scope of this work. The appropriate 

references are included so those derivations can be examined if required. Both 

of these methods require the selection of parameter values to compute the 

estimated values. This chapter describes those parameters but does not 

address the steps used to determine the values of those parameters used for 

this application. Those steps and the reasons behind them will be presented in 

Chapter 3. 

2. Objective Analysis Overview 

To create a realistic three-dimensional visualization of the wind field, data 

from irregularly-spaced sensors must be analyzed and fit to a regularly-spaced 

grid. Figure 2 graphically depicts five irregularly-spaced observation points, 

labeled A through E, and a superimposed uniform grid. Finding an accurate 

method for using the data at points A -E, which are known, to estimate the 

values at each of the intersecting grid points, which are unknown, is not a trivial 



undertaking. This task is commonly performed as one of the initial steps in 

numerical weather prediction and is called objective analysis. This name came 

about because in the past all weather maps were analyzed by hand. This was 

considered a subjective method because no two forecasters would produce the 

same analysis. The methods used to interpolate the meteorological variables 

across the uniform grid were developed to provide an "objective" analysis. 

There has been much work concentrated on the task of developing objective 

analysis methods. The first efforts in meteorology were driven by the need to 

develop an automated process for initializing numerical weather prediction 

computer models (Daley, 1991:21). Panofsky created the first automated 

method based upon a scheme that used polynomial expansion to fit the 

observations. Gilchrist and Cressman made the next advancement by restricting 

the polynomial expansion's region of influence and suggesting the use of an 

initial or background field (Cressman, 1959). Barnes introduced his method in 

1964 as an attempt to regain some of the signal that was being smoothed out of 

the data by the other methods (Barnes, 1964). Starting in the 1970s, one of the 

primary concerns became ensuring that the estimated fields produced by the 

objective analysis initialize numerical weather prediction computer models well. 

This initialization effort often involved modifying the data to ensure dynamic 

relationships between some of the atmospheric variables were satisfied (Daley, 

1991:24). Because the desired output of the present study must be as close as 

possible to the observations, the emphasis is placed on methods that do not 

contain these additional features. 

10 



KNOÜ 
v ■ 

FN 

B 
• 

\ 

%B •  E 

UNKJOWN 

C« D# 

Figure 2 - Typical objective analysis grid 
This figure graphically depicts the relationship between irregularly spaced 
observation points (A-E) and a superimposed regularly spaced grid. 

One of the methods being evaluated was the method introduced by Barnes 

in 1964. Barnes' analysis scheme used the assumption that an atmospheric 

variable could be represented in two-dimensions as the summation of an infinite 

number of independent waves (Sen, 1997). In his own article Barnes indicated 

that his method was limited to applications where the data sampling was 

"reasonably uniform" (Barnes, 1964). The distribution of the data points shown 

in Figure 1 indicates that this scheme might not be well suited for this project. 

In addition to Barnes' method the 45th WS wanted Kriging or Bratseth to be 

evaluated to determine if they could produce a more accurate estimated wind 

field. The first method, Kriging, is well established in the geosciences and has 

11 



recently been considered as a valid method for solving atmospheric problems 

(Sen, 1997). Kriging makes use of a semi-variogram to allow weight functions to 

be based on the variation of the observed variable as a function of distance 

(Clark, 1979). The second method, the Bratseth method, derives the weights by 

using the correlation function for the forecast error (Sen, 1997). 

This project compared Barnes' method and Kriging to determine which 

method produced the more accurate estimated three-dimensional wind field. 

Time did not permit the examination of both Bratseth and Kriging. Kriging was 

chosen over Bratseth because most current numerical weather prediction 

models use optimal interpolation, or statistical interpolation, techniques that are 

similar to Kriging (Daley, 1991: 99). Contact with personnel in the MM5 model 

section at the Air Force Weather Agency, Offutt AFB, NE revealed that the 

preferred method of objective analysis continues to be the use of optimal 

interpolation schemes that take into account the observation error covariances 

(Williams, 1998). The remainder of this chapter will provide the background 

material required for understanding the Barnes and Kriging methodologies. 

3. Barnes' Analysis 

a. Overview 

Barnes proposed his method of estimation in 1964, in an effort to improve 

the details represented in the interpolated field. The Barnes objective analysis 

belongs to the class of successive approximation, or successive correction, 

12 



methods. This method is widely used because it is versatile, fast, and simple 

(Mullen, 1993). Another benefit is that it can be used in cases where there is no 

reasonable background field available, which is the case for Cape Canaveral 

(Daley, 1991:90). Barnes' method is based upon the assumption that a two- 

dimensional distribution of an atmospheric variable can be represented with a 

summation of an infinite number of independent harmonic waves, known as a 

Fourier integral (Barnes, 1964). Barnes states that this method is dependent 

upon the data density and therefore is best used in areas where the data density 

is fairly uniform. Even though Barnes emphasizes the importance of the uniform 

data dependency, he does indicate the possibility of being able to partially 

compensate for non-uniformity. 

The density of the observations, as depicted in Figure 1, is not very uniform. 

The Cape Canaveral wind tower sensors are configured such that there are 

areas with greater density than others. Nevertheless, Barnes' method is used in 

a wide variety of situations in meteorology, such as synoptic objective analyses, 

which also do not have a very uniform data distribution. In spite of its limitations, 

one desirable feature of the Barnes' method is that his algorithm converges to 

the observations at the observation locations (Daley, 1991:92). This attribute 

meets the requirement of having the estimated wind field match the observed 

wind field as closely as possible. 

13 



b. Mathematical Formulation 

Barnes begin the development of his method with the representation of the 

atmospheric quantity, f(x,y), as the following smoothed function: 

I/ex 

g{x, y)=  \\f{x + rcos0,y + rsm0)a>rdr dO, 
0 0 

where the smoothing is a result of the weight factor, 

f   1   A 
CD- 

\Ankj 
exp 

v  UJ 

In this equation 6 and rare polar coordinate variables with origin centered at 

(x,y), r is the distance between the observation and the point where the 

estimation is being computed, and k is a smoothing parameter related to the 

data density (Barnes, 1964). This function uses g(x,y) to represent f(x,y) by 

integrating the values of f(x,y) at all the surrounding locations multiplied by the 

weight factor. To obtain a maximum weight being assigned when the value of r 

= 0, Barnes rearranged the equations as follows: 

2^» 

g{x,y)= j \f(x + r cos 0, y + r sin 6>)x 
0 0 IK) 

( ^\ 

\K, 
de, 

where 

7 = exp 
(  r*\ 

v  UJ 
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This weight function, r|, is a function of the distance between the observation 

and the grid point where the estimation is being calculated. t| decreases 

exponentially as r increases regardless of the direction. At r = 0, r\ is maximized 

at 1. r| approaches 0 as r approaches oo, meaning that every observation 

regardless of distance provides some degree of influence upon the value of the 

variable at the estimation grid point. It is possible to define a radius of influence, 

beyond which all weights are assigned the value of zero. These equations are 

not easy to implement because the analytical form of f(x,y) is unknown, and 

the function cannot be integrated to infinity. These reasons prompted Barnes to 

use the following approximation: 

M 

where M represents the number of data points available within the region of 

influence, fj is the value of the observation, and rfcj) is the weight function. This 

practical equation results in taking the weighted average of the M observations. 

The next item to consider is how to determine the 4/c used in the r| term, 

which depends upon the minimum separation between observations as well as 

how much smoothing is desired (Mullen, 1993). The average distance between 

observation locations can be calculated as follows: 

d = 
'        Area Of Domain       > 

Number Of Observations 

15 



This equation provides a mechanism to attempt to compensate for non- 

uniform data density, and the d value establishes the upper and lower limits for 

y[4k. If y[4k < d then the analysis will be too noisy, and if it's greater than d , 

the analysis will be too smooth. One empirically-derived relationship shows 

V^should be 1.33 times d (Mullen, 1993). 

c. Implementation of Barnes' Method 

The algorithm implemented was as follows (Mullen, 1993): 

1. Start with the observations and the distances from the grid point being 

estimated at and the observation points. 

Fk = the value of the observation at point i 

Rijk = distance from grid point (i, j) to observation point k 

2. Calculate the first pass weights for each grid point. During this process a 

new and different set of weights is calculated for the observations for each 

grid point. It takes two steps to calculate these weights. The first pass 

determines a raw weight by taking the exponentiation of the negative of the 

distance squared divided by the 4k value. 

(   J?
2
-A 

TIT A     ''J'k 

Wijk =exp   

The second part of this process is to normalize these raw weights so that 

they sum to one. This new set of weights is obtained by dividing each raw 

weight by the sum of the raw weights. 

16 



Bi,jt - 

k 

3. At this point the first pass estimate can be calculated for each grid point 

by summing the values obtained by multiplying the observed value with the 

weight assigned to that observation. 

k 

Note: Steps 2 and 3 are performed interactively - the weights are calculated 

for a given grid point, the estimate is made, and then the next grid point is 

worked on. 

4. After the first estimate has been calculated, a correction factor is 

computed at each observation point. The correction factor is found by taking 

the average value of the four surrounding grid points and subtracting it from 

the observed value at that point. 

FCk=Fk-Gk 

5. Next the second pass weights are determined using the same method as 

in step 2. The algorithm implemented in this thesis used a new value of 4K 

that was one third the original value used in the first pass calculations. This 

value helps the technique converge faster (Daley, 1991:92). 

Kjt =exP 

W 
Bu,k —■ 

(   P2   ^ 
-Rij,k 

AK' 

iy:LI 
k 
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6. The second pass estimate is now calculated on the correction factors 

computed in step 4. This estimate is arrived at using the same method as in 

step 3. 

k 

7. The final estimate at each grid point is then computed by adding the first 

estimate at that grid point to the second estimate at the same grid point. 

GFU =Gu+GCiJ 

Steps 4-7 can be repeated until the correction factors fall below some 

predetermined error threshold. The algorithm implemented in this thesis only 

performs them once because the benefits of successive iterations diminish 

rapidly with each iteration (Mullen, 1993). 

4. Kriging 

a. Overview 

Kriging is similar to the Barnes' method because it also assigns a set of 

weights to each observation in an attempt to describe the influence of each 

observation on the value at a location some distance from it. The major 

difference between the two methods is that Kriging attempts to use a description 

(semi-variogram) of how the observed data varies as a function of distance, and 

then attempts to calculate the Best Linear Unbiased Estimator (BLUE). The 

BLUE is obtained by minimizing the estimation error variance (Clark, 1987:106). 

18 



b. Semi-variogram/Covariance function 

The first task to be performed in the Kriging process is to describe the 

variability of the data as a function of distance. The tool used to help define this 

variability is called a semi-variogram. A semi-variogram is one half of the 

variogram, which is the variance of the differences between the values at two 

observation points (Clark, 1987:5).   It is calculated using 

M=^EfeM-iK*+A)]2 . 

where g(x) is the observed value at location x, and g(x + h) is the observed 

value at a distance of h from location x. 

These values are calculated for each set of distances between observations. 

An example from the mining field will make this method more clear. In order to 

take mineral samples, boreholes are drilled at specified distances. If the holes 

are set up in a grid so that the distance between holes, h, is 50 feet, one is able 

to define a set of sample pairs that were taken 50 feet apart from each other. 

This set of data pairs allows the semi-variogram value to be calculated for that 

distance value. By skipping holes, one can then establish a set of values based 

on holes 100 feet apart. This process of defining sets based on the distance 

between the observations is only limited in a practical nature. That is, money 

and time prevent taking all the observations that might be desired. Once a 

sufficient number of sets have been analyzed, the semi-variogram data can be 

plotted on a scatter plot with the semi-variogram data on the vertical axis and 

distance on the horizontal (Figure 3). This scatter plot provides a visualization of 
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the variability of the data as a function of distance between two observations. 

Figure 3 is an example semi-variogram showing how the u and v components of 

the wind varied as a function of distance. In this example the fractional 

distances are a result of the distance between the observation locations being 

calculated in degrees of latitude squared by using the following equation: 

J = (A^)2+cos2^(A/02 

where (/> is the latitude and Ä is the longitude. The use of this equation to 

calculate the distance is based upon the assumption that Pythagorean's theorem 

can be applied (See Appendix C). This approximation does not introduce a 

significant error in the distances being used. The use of the radius of the earth 

to calculate "more accurate" distances in meters also introduces uncertainties 

because of the estimation involved with measuring the earth's radius. The 

impact these small errors has is minimal because the relative differences 

between distances are the key element used to establish the weights (Mullen, 

1993). 
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Figure 3 - Semi-variogram 
This figure shows the scattergram produced when semi-variogram values are 
plotted verse distance. 

Plotted on the scatter plot with the semi-variogram data is the best fit 2nd 

degree polynomial. Subjectively, it can be seen that the curve fits the data fairly 

well up to the 0.15 distance point; then the fit becomes less clear. In the ideal 

case the polynomial will intersect the origin. Theoretically, there should be no 

difference between two observations taken at some infinitely small distance from 

each other. Unfortunately, real world observations often conflict with the 

theoretical due to observational errors; therefore, the mathematical models that 

will be used to fit the semi-variogram data allow for a step discontinuity at the 

origin through a parameter called a "nugget." This nugget is essentially the y 
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intercept of the model fit to the data. As the distance increases the line reaches 

a point called a "sill." This is the maximum semi-variogram value and is the 

value given for large distances. Once the sill has been reached the semi- 

variogram data is considered constant. The point where the sill is reached is 

called the "range." In Figure 3 the nugget value would be approximately 2.5. 

The sill and the range are not displayed on this graph because there was no 

data for the distances the model suggests would be the range. One can 

visualize the curved line maximizing at around 14; this would be the sill. The 

distance value (approximately 0.45) where the sill is realized would be the range 

(Isaaks and Srivastava, 1989:292). 

Once the semi-variogram data has been plotted, a mathematical model can 

be fit to it. A model is necessary because values will be needed for distances 

other than those measured. Selecting a model to fit the data requires some 

restrictions be adhered to. Kriging, as will be shown in the next two sections, 

involves the solution of n+1 equations, with n+1 unknowns (where n is the 

number of observations). It is desirable for these equations to have only one 

stable solution (Isaaks and Srivastava, 1989:371). One way this can be 

guaranteed is to use functions that are known to create a positive definite matrix 

(Isaaks and Srivastava, 1989:372). The use of positive definite matrix ensures a 

real solution when inverting the matrix used to perform the Kriging weight 

calculations (Kreyszig, 1993). Therefore, the Gauss-Jordan method which 

provides a straightforward method for inverting the resultant matrix, would not fail 

to work properly (Chapra and Canale, 1988:250). Four models that meet this 
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requirement are the spherical, the exponential, the Gaussian and the linear 

model. In the event that the parameters of any one of these models cannot be 

adjusted to create a satisfactory fit, any linear combination of the models will still 

satisfy the condition of being positive definite (Isaaks and Srivastava, 1989:375- 

376). 

Another consideration when fitting a model to the semi-variogram data is 

whether or not the variation in the observations is a function of direction as well 

as distance. This study does not consider the case where the model considers 

the variation as a function of direction. Instead it considers only the isotropic 

case in which the sample semi-variogram is viewed as omni-directional, or the 

same in all directions. The use of the isotropic model is dictated by the layout of 

the wind tower network. The network layout prevents being able to isolate what 

portion of the variable's change is due to its displacement in either latitude or 

longitude. The variations are measured in an omnidirectional sense making the 

omnidirectional model the only choice. Isaaks and Srivastava consider the 

isotropic case easier to model because it is "better behaved" (Isaaks and 

Srivastava, 1989:375). 

Clark (1987) and Isaaks and Srivastava (1989) provide the standard forms 

for all four of the models. Only the exponential equation is provided here to aid 

in understanding how Kriging is implemented. The exponential model has the 

following form: 

f   3/^ 
y(h)=l-exp 

V    a ) 
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where a is the distance at which the semi-variogram value reaches 95% of its sill 

value, and h is the distance between the two points of concern. 

With a model fit to the semi-variogram, the last remaining task to be 

accomplished is to determine the corresponding covariance function. Isaaks and 

Srivastava provide a standard form of both the exponential semi-variogram 

model and its corresponding covariance function with all the parameters required 

to account for the "nugget effect," range, and sill. The complete form of the 

exponential semi-variogram model is: 

0 

Co+C, 
f 
1-exp 

r 3äV r(h)= 

The corresponding covariance model is: 

if |h| = 0 

if Ihl > 0 

C(h) = 
c0+c, 

Cl exp 

if|h| = 0 

if Ihl > 0 

where C0 is the nugget effect, C0+ C1 is the sill, and a is the range. See 

Figure 4 for an example that shows the relationship between the covariance 

model and the semi-variogram model. 
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Figure 4 - Example Semi-variogram/Covariance Model Plots 
This figure shows the relationship between the covariance model and the semi- 
variogram model. Note that the covariance model approaches zero as distance 
increases. 

c. Mathematical Formulation 

This section examines the error variance and how it is minimized to produce 

the Kriging method. The error variance, a2, of a set of estimates with a mean 

error of 0 can be written as 

K 1=1 

where v,. are the actual values and v,. are the estimated values. This equation is 

not very useful because the actual values are not known. Therefore, an 

equation similar to the one used in the development of the Barnes method must 

be employed: 
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1=1 

This equation sets the value of the estimate, v(x0), to be equal to the sum of the 

observations, v{xi), multiplied by a weight, coi. Subtracting this estimated value 

from the true value yields the error associated with the estimate. Isaaks and 

Srivastava (1989:284) show how the variance of this error can be expressed as 
n      n ^ n ^ 

ä\ = a2 +YTj0)i(Dfij ~22>Äo . 
1=1  7=1 1=1 

where a2 is the estimated variance, Ctj is the model covariance values 

calculated with the distance between observation points, and Ci0is the model 

covariance values calculated based upon the distance between the observation 

and the estimation location. This equation provides an expression for the error 

variance as a function of n unknowns, the n weights. The minimization of this 

error variance can now be accomplished by setting the first partial derivatives of 

these n equations equal to 0. This current set of equations does not restrict the 

sum of the weights to be equal to 1. Therefore another term, called a Lagrange 

Parameter must be added, yielding: 

ä\ =a2 +fjfjaia>JCij-2fjcoiCi0+2Jfjai-l  . 
1=1 j=i 1=1 Vi=i / 

The last term is equal to zero because of the requirement for the summation of 

the weights to be equal to 1.   The new variable, \i, is calculated as the n+1 term 

in the weight matrix, and is only used to calculate the actual error variance. 

Minimizing these equations yields the final set of n+1 equations. 

£>,.C..+// = C,.0    Vi = l n 

<■=! 
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where Cy is the model covariance value between observation i and observation j, 

and Ci0 is the model covariance value between observation i and the grid point 

where the estimation is being performed. These equations can be expressed in 

the following matrix form, which is considered ordinary Kriging: 

C»w=D, 

where the C matrix contains the covariance values based upon the distance 

between the observation points, the D matrix contains the covariance values 

based upon the distance between the observation point and the estimation point, 

and when solved the w matrix contains the desired set of weights associated 

with each observation. An expanded form of the matrix would have the following 

form: 

cn . • cu I 

• 

"w," c °10 

cml ■ ■ cnni 
w„ ^nO 

1   •• • l  °. ß . 1 

d. Implementation of Kriging 

This method is implemented using the following steps. 

1. Use the observations to determine which of the four standard models, or 

linear combination of them, provides the best covariance model to describe 

the variability of the data. Once the model has been selected determine the 

appropriate values to use for its parameters. 

2. Use the covariance model to complete the C and D matrix. 

3. Invert the C matrix. 

4. Multiply the C and D matrix together to get the weight matrix. 
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5. Get the final estimate by summing the observations multiplied by their 

associated weights. 

6. Repeat all the steps for each new set of observations. When moving to a 

new estimation point and still using the same observations, the D matrix 

must be build for each estimation point; then repeat steps 4 and 5. 

5. Summary 

This chapter has provided the background material required to follow the 

implementation of the objective analysis methods. The Barnes method was 

shown to have weights assigned to observations that decrease exponentially as 

the distance increases. Kriging was shown to be a method that attempts to take 

into account the natural variation of the data as a function of distance. Kriging is 

also supposed to provide the best linear unbiased estimator because of the 

minimization of the estimated error variance in its derivation (Clark, 1987: 106). 

Actual implementation issues will be discussed in the following chapters. 
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III. Methodology 

1. Chapter Overview 

This chapter provides a detailed description of the thesis work. A brief 

description of the program design is provided, but the emphasis is placed on how 

the methods described in Chapter 2 were implemented. As stated above, the 

primary goal of this project is to evaluate the two different objective analysis 

methods to determine how accurate they are at estimating the low-level wind 

field and which will provide the more accurate estimation of the wind field. The 

major tasks that needed to be accomplished were ingesting the archived data, 

performing the horizontal objective analysis, and estimating the error. 

Before continuing, it's important to know that the objective analysis methods 

were applied only on the horizontal plane at the height the observations were 

taken. Once this two-dimensional analysis was performed, a different 

interpolation method was used to fit the data to levels that had equal vertical 

spacing. The method used for this vertical estimation was cubic-splines. There 

are a couple of reasons why the objective analysis methods were applied only to 

the horizontal plane. One of the main reasons is that atmospheric variables 

normally vary much less in the horizontal than in the vertical. Also, atmospheric 

conditions, like a temperature inversion, can exist that will produce a barrier 

between winds aloft and winds at the surface. This condition will prevent the 
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winds at one level from exerting any significant influence over the winds at 

another (Garratt, 1992:3). Additionally, vertical interpolation has its own unique 

set of problems associated with it that were beyond the scope of this thesis. 

2. Program Design 

Before proceeding with these tasks, the computer program design must be 

considered. The solutions to the algorithms were implemented using the C++ 

programming language. The use of this language allowed for the encapsulation 

of data and the functionality required to manipulate it into program units called 

objects. Lower level objects were created to handle individual wind 

observations, sensor data, and many other program elements. These lower 

level objects were then combined to create objects for the entire observation set, 

as well as the Barnes' and Kriging algorithms. The general program flow is 

1. Read in the sensor data. 

2. Read in the entire observation file (all time steps). 

3. Perform the objective analysis, one time step at a time. 

4. Output those results to a temporary data file. 

5. Read in the temporary data file and perform the vertical interpolation, 

once the objective analysis is completed at all the observation levels. 

6. Print the final 3-D wind field to the output file. 

7. Convert the data to a vis5d file and start vis5d, to visualize the data. 
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These routines are contained in the files obanal.h and obanal.cc. The file 

obanal.h contains the entire object descriptions, while obanal.cc contains all of 

the executable code (Appendix A). The code was written to follow ANSI I 

standard to ensure its portability. The primary development was on a Pentium- 

based PC using Borlands Turbo C++. The code has been ported to the SUN 

workstations located in the AFIT Weather Laboratory, where it has compiled and 

executed. 

3. Data Integration 

Next, implementation issues are addressed. Data integration proved to be a 

straightforward process due to the use of archived data. The ASCII data files 

provided by the 45th WS contained the wind observations already sorted by 

time. Each observation included the date, time, tower identification number, and 

height of the observation. Using the station identification and a lookup table the 

latitude and longitude of each wind tower were obtainable. This portion of the 

project involved reading the raw ASCII data set for the wind tower sensor 

system. The data files came in self-extracting zip files, each containing 10 files. 

Each of these files contained 1 day's worth of observations. The observations 

were taken at 5-minute intervals, yielding 288 time slots in a 24-hour period. The 

only processing performed upon the data was to exclude observations that fell 

outside of 3 standard deviations from the mean value. 

Data archival procedures ensured that all the observations were already 

grouped by time eliminating the need to make sure observations fell within a 
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predetermined time window. No other processing of the data needed to be 

performed to make sure the data balanced in the appropriate meteorological 

equations because the data was not being used to initialize a computer model. 

Another reason further processing was not performed was because of the desire 

for the estimated wind field to remain as close as possible to the observed wind. 

The wind observations were recorded in the standard meteorological format 

of wind direction and wind speed in knots. This data was converted to the vector 

components. The v component is the south-north component of the wind, and 

the u component is the west-east component of the wind. The actual objective 

analysis methods were used to compute the estimated u and v components of 

the wind based upon the observed u and v components of the wind. 

4. Objective Analysis Implementation 

a. Overview of Implementation 

This section details the steps taken to implement both Barnes' method and 

Kriging. It provides all of the reasoning behind the selection of the parameters 

used to reach the final solution. One underlying assumption for both of these 

methods all is that error associated with the estimated wind value is unbiased. 

This unbiased condition means that the average error associated with the 

estimation would equal zero. 
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b. Barnes 

The Barnes method did not require a great deal of parameter selection. The 

algorithm described in Chapter 2 was implemented without any significant 

variations. The one parameter that needed to be determined was what 4k value 

to use. The method implemented attempts to compensate for the non-uniformity 

of the data spacing by determining the average distance between stations using 

the formula provided in Chapter 2. The 4k value had to be determined 

dynamically because the number of observations recorded at each level was 

different. The dynamic calculation also compensated for observations that might 

not be available due to a variety of reasons. 

c. Kriging 

The next method implemented was Kriging. The Kriging method is based 

upon having a good understanding of how the observed variable varies as a 

function of distance. Finding this relationship was the first issue addressed. 

To find this relationship one time step of observations was read in and the 

semi-variogram data was calculated. To plot this data, the data was collected in 

bins based upon distance. The use of bins was necessary because of the 

distribution of observation points not being uniform. All the semi-variogram 

values calculated that fell within the same specified range of distance values 

were place into the same bin and the average value of the difference squared 

between the two observations was computed. The initial selection of the bin size 

33 



was based upon efforts to balance smoothing of the data and having sufficient 

data to produce the semi-variogram graph. This initial bin size was calculated by 

taking the range of distances and dividing it by 100. The smallest distance was 

0.000147 degrees squared and the largest distance between observation 

stations was 0.264547 degrees squared. This number was rounded to 0.28 

degrees squared, yielding an initial bin size guess of 0.0028 degrees squared. 

Figure 5 shows the number of observational pairs whose separation falls within 

each distance bin. The histogram function within Microsoft Excel suggested a 

bin size of 0.0115 degrees squared as an optimum bin size to minimize the 

number of empty bins and have as equal a number in all the remaining bins as 

possible. This value of bin size was almost 4 times as large as the one initially 

selected. This suggested bin size resulted in 152 of the 555 distances being 

placed in the second bin. Using this size bin would cause over one fourth of the 

data to be averaged into one value greatly smoothing the data. The 0.0028 bin 

size had a maximum of 48 in one bin. 
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Figure 5 - Distance Histogram 
This histogram shows the number of data pairs that fell into each bin size. The 
semi-variogram values associated with these data pairs are averaged to produce 
one value per bin. The distance is in units of degrees squared. 

In an effort to further evaluate the bin size, different bin sizes were used to 

see how they affected the ability of a function to be fit to the scatter gram of the 

semi-variogram data. The measure used to determine which bin size was best 

was the R2 value on the second order polynomial trendline added to the data. 

The first size looked at was half the initial size. As expected, halving the bin size 

increased the variability of the data and reduced the fit; the R2 got smaller. Next, 

a bin size twice as large was selected. The expected result of this was that the 

data would be smoothed more and the fit would improve. The R2, however, got 
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smaller indicating that the trendline function had a more difficult time fitting a 

function to this data. As a result, the original bucket size of 0.0028 was used 

throughout the process. 

This initial data for one time slice was then plotted on the scatter gram 

shown in Figure 6. To use this graph as a basis for selecting a model, a function 

needed to be fit to the plotted data. Examination of the data revealed that no 

function could reasonably be fit to it. In the mining world the semi-variogram 

data was calculated by averaging several measurement differences for the same 

distance. The Cape Canaveral situation prevented a sufficient number of 

measurements from being taken at the same distance apart.   Isaaks and 

Srivastava (1989) used a couple of examples of data that was averaged in time 

to produce the semi-variogram data. So, this concept was applied to the Cape 

Canaveral problem in combination with the distance averaging to produce semi- 

variogram data derived from both distance and time averaging. Figure 7 shows 

the first scatter plot of this data combining 9 days of data. This averaging did 

produce a scatter gram containing data points that a function could be fit to. 
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Figure 6 - Semi-variogram (1Time Slice) 
The semi-variogram data plotted on this graph is for one time slice of 
observations. The distance is in units of degrees squared and the semi- 
variogram data in units of knots squared. 
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Figure 7 - Semi-variogram (9 Day Average) 
This graph shows the semi-variogram data averaged over the 288 time slices for 
each of the Julian days 97121 through 97129. The units of distance are degrees 
squared and the units for the semi-variogram data are knots squared. 

Once this method of averaging demonstrated its potential, the averaging 

process was started over. The days used to calculate the semi-variogram were 

between the Julian dates of 121 and 273 of 1997. The summer months were 

selected to avoid the dynamic weather patterns associated with the synoptic 

systems that impact the region during the winter months. It was hoped that with 

each new day's worth of data being added that a point would be reached at 

which the scatter-gram would stop changing. This stabilization did occur until the 

ten-day period from 97170 to 97180 was added. It was determined that the data 

started becoming more variable as the peak thunderstorm period was entered. 

38 



In an effort to get the best representation of the variability of the wind values it 

was determined that all the data for the time period, Julian dates 97121 through 

97273, should be used to create the semi-variogram data. This was 

accomplished resulting in a total of 39,112,633 data pairs being used to produce 

Figure 8. 
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Figure 8 - Semi-variogram (97121-97273) 
This graph shows the semi-variogram data averaged over the Julian dates 
97121 through 97273. The units of distance are in degrees squared and the 
units of semi-variogram data are in knots squared. 

The next task was to determine what model to fit to the semi-variogram data. 

Most of the literature reviewed addressed the subjective nature of fitting a model 

to the data. It was determined that allowing the computer to find the best-fit 

39 



functions would result in a much more accurate fit. The trendline function in 

Microsoft Excel was used to fit both a 2nd order polynomial and a 3rd order 

polynomial to the data. The difference between the two fits was minimal, as 

shown in Figure 9. Due to the minimal improvement of the higher order 

polynomial, the 2nd order polynomial was used, which allowed for a less 

complicated match to one of the standard models used for Kriging. 
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y = -132.48X2 + 65.463x + 4   y = 1507x3 - 624.96X2 + 101.47x + 4 

R2 = 0.3224 R2 = 0.3543 

Figure 9 - Semi-variogram w/Polynomial fit 
This figure shows the semi-variogram data averaged over the Julian dates 
97121-97273. The units of distance are in degrees squared and the units for the 
semi-variogram data are knots squared. The computer generated best-fit 2nd 

and 3rd degree polynomials are plotted. The R2 value shows the small 
improvement in the accuracy of the fit with the increased order of polynomial 
used. 

The match was accomplished by graphing the polynomial, the spherical 

model and the exponential model. The parameters for the spherical and 
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exponential models were adjusted until the graphed line matched the computer 

generated 2nd order polynomial as closely as possible. Figure 10 shows how 

close the following exponential function matches the 2nd order trendline: 
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Figure 10 - Semi-variogram 97121 - 97273 
This graph shows the fit of the exponential model and the spherical model when 
compared to the best-fit 2nd degree polynomial. The exponential model 
matches the polynomial curve almost perfectly and the spherical model falls 
below both of them. Units of distance are degrees squared and the units for the 
semi-variogram data is knots squared 

41 



The line representing the exponential model matches the 2nd order 

polynomial so closely that the two lines are hard to distinguish from each other. 

The lower, and straighter, line is the spherical model.   Based upon the fit of the 

exponential model to the computer generated "best fit" 2nd order polynomial 

function, the exponential model was selected to be used for the semi-variogram 

model. The parameters for this function were then used to produce the 

covariance model. This covariance model had the following parameters, which 

were taken directly from the exponential semi-variogram model that was fit to the 

data: 

C0=4.3 

C, = 9.9 

a = 0.44 

and had the form, 

3A "l 

C{h) = 
9.9 exp if h<a 

V 0.44; 
14.2 ifh>a 

This model was used in the computer program listed in Appendix A to create 

the C and D matrixes. 

5. Vertical Interpolation 

The selection of the vertical interpolation method was driven by the desire to 

keep the data smooth in the vertical. In general, wind directions and wind 

speeds do not display a discontinuity. Even in the event of a frontal boundary or 
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a temperature inversion the winds do not abruptly change when viewed at a fine 

enough scale. The selected method was cubic splines, which offers several 

benefits over using linear interpolation. The use of the cubic spline also has 

advantages over lower order splines. 

Splines provide a polynomial fit between data points (knots) with certain 

smoothness criteria (Cheney and Kincaid, 1985:258). A first-degree spline 

produces a straight line between the data points. A second-degree provides a 

curve where the function and its first derivative are continuous at the knots. The 

cubic spline, 3rd-degree spline, has the added criterion of the second derivative 

also being continuous. The cubic spline produces a line that does not change 

abruptly at each knot and is smooth to the eye (Cheney and Kincaid, 1985:269). 

According to Cheney and Kincaid (1985) the use of higher degree splines 

seldom provides a greater advantage; they conclude the cubic spline is the best 

interpolating function.   The implementation used here to solve the cubic spline 

closely follows their algorithm. 

6. Error Estimation 

This section is the heart of this work. Without some method of measuring 

the error associated with each of the methods tested it would be impossible to 

distinguish between their performance. Isaaks and Srivastava (1989) point out 

that estimation models are neither right, nor wrong, without external information 

to test them against. Without that external data, the best one can do is try to 
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determine whether the model is appropriate or not (Isaaks and Srivastava, 

1989:198). This being the case, how does one determine how "appropriate" one 

model is over another? Any arbitrary method could have been used to provide 

numbers for the grid points. The object was to find one that would provide the 

most accurate estimation of the true wind. While the actual wind was not known 

everywhere, it was known at the observation locations. The logical method to 

determine how well the objective analysis algorithms estimate the wind was to 

withhold an observation and then compare that observation to the estimated 

wind at that same point. The difference would be the error associated with that 

estimate. 

This was the method used during the evaluation of the two methods. The 

selection of which observation to withhold was accomplished by using a random 

number generation function available in the C++ standard library. This function 

was used to generate a random number between 0 and 100. Three hundred 

numbers were written into a data file. These numbers were then read in during 

the program operation to ensure that both the Kriging and Barnes method were 

evaluated with the same sequence of stations being withheld. When this 

number was read into the program, the modulus was calculated using the 

number of sensors available. This resulting number was then used as an index 

to determine the sensor data that was withheld. 

For each time slot one sensor was withheld. The data associated with that 

sensor and the timeslot was also recorded. Once the objective analysis was 

performed and the estimated wind field had been calculated, the estimated wind 
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value was found by performing linear interpolation using the four grid points 

surrounding the wind tower location. Then the following information was written 

to a data file: the wind sensor identification number, the observed u component 

of the wind, the observed »/component of the wind, the average observed u 

component, the average observed »/component, the standard deviation of the 

observed u component, the standard deviation of the observed v component, the 

estimated u component of the wind, the estimated v component of the wind, the 

average estimated u component, the average estimated v component, the 

standard deviation of the estimated u component, and the standard deviation of 

the estimated v component. One data file was produced for each day evaluated. 

The information listed above was recorded for each time slice. 

The first test was performed on a data file containing a uniform wind field. 

This provided a controlled test case where the estimated results were known 

beforehand. Both of the objective analysis methods being evaluated calculate 

the estimation based upon a weighted summation of the observations. If all the 

observations are the same, then the estimated value must also be the same as 

the observations. This test provided a means of checking the accuracy of the 

algorithms to ensure they performed as expected in the simple idealized case. 

After this test was performed, one day was randomly selected from each of 

the compressed archive files for a total of 16 days and 4535 time slices being 

evaluated. The selected days and the number of time slots in each day is 

provided in Table 1. Those days not containing all possible 288 time slices are 

identified with an asterisk. 
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Julian Date Number of Time 
Slices 

Julian Date Number of Time 
Slices 

97128 288 97208 288 

97134* 250 97217* 283 

97148 288 97222 288 

97159 288 97234 288 

97166 288 97245 288 

97170* 258 97253 288 

97183 288 97267 288 

97191 288 97270 288 

Table 1 - Tested Days and Number of Time Slices 
This table provides the Julian dates of the days that were tested and the number 
of time slices each of those days contained. 

7. Summary 

This chapter provided a detailed record of the steps followed during the 

implementation of the objective analysis methods. A brief description of the 

computer program functional design provided the basic program flow. The flow 

followed this general pattern: read in all of the observation data, calculate the 

estimated field on the horizontal planes, perform vertical interpolation, and output 
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the values in a vis5d format. What followed was a discussion of the data 

integration and then a brief explanation of how the 4k parameter for the Barnes 

method was dynamically calculated during program execution. The major 

portion of the chapter was dedicated to the description of how Kriging was 

implemented. 
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IV. Results Analysis 

1. Chapter Overview 

This chapter provides a detailed record of the data collected during the test 

phase of the implementation. It also provides insight as to what the data means 

about the accuracies of the estimation methods. Most importantly, the data is 

used to conclude which of the two objective analysis methods provides the most 

accurate estimation of the wind field and if that estimation is accurate enough to 

base a visualization program on. 

2. Results 

The first test performed was on the uniform wind field data set. The wind 

was set at 335 degrees and 2 knots for all of the reporting stations. This 

produced a U component of 0.845 and a V component of -1.813. Both Barnes 

and Kriging produced essentially these same values for their estimates. Table 2 

shows that the observed value minus the estimated value yielded an error that 

was negligible. The standard deviation for both methods was extremely small. 

These results met with expectations and showed that both of the methods were 

producing the proper estimated values. 
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Barnes error - U Barnes error - V Kriging error - U Kriging error - V 
1E-06 -1E-06 0 1E-06 

Observed 
Barnes STD - U 

Observed 
Barnes STD - V 

Observed 
Kriging STD - U 

Observed 
Kriging STD - V 

0 0 0 0 

Estimated 
Barnes STD - U 

Estimated 
Barnes STD - V 

Estimated 
Kriging STD - U 

Estimated 
Kriging STD - V 

0.000002 0.000005 0.000002 0.000005 

Table 2 - Uniform Wind Field Results 
This table provides the accuracy details about the test performed on the uniform 
wind field. The errors were calculated by subtracting the estimated value from 
the observed. Barnes and Kriging performed with almost equal accuracy. 

The next set of tests was performed on each of the randomly selected data 

files. Each of these files contained one day's worth of wind observations. The 

selected days are provided in Table 3. To determine how well the estimated 

wind value matched the observed value, the correlation between the two data 

sets was calculated. If there was no error, the estimated wind would match the 

observed wind and the correlation would be 1 (Mendenhall and Sincich, 

1992:214). 

The correlation numbers provided in Table 3 show that for every day 

evaluated except two the estimated values produced by Kriging correlated better 

to the observed values than did those estimated with Barnes' method. The 

average correlation for the U component using Barnes was almost 0.5 while 

Kriging had a correlation of 0.55. For the V component of the wind the 

improvement of the Kriging estimate over the Barnes estimate was even larger. 

Kriging's correlation was nearly 0.34, while the Barnes correlation was only 0.25. 
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Date Barnes 
Correlation - 
U 

Barnes 
Correlation - V 

Kriging 
Correlation - 
U 

Kriging 
Correlation - V 

97128 0.238 0.063 0.408 0.154 

97134 0.512 0.332 0.578 0.414 

97148 0.871 0.309 0.877 0.420 

97159 0.594 0.546 0.679 0.514 

97166 0.677 0.556 0.702 0.626 

97170 0.480 0.117 0.543 0.144 

97183 0.674 0.490 0.700 0.585 

97191 0.250 -0.068 0.313 0.050 

97208 0.003 0.318 0.039 0.452 

97217 0.701 0.181 0.671 0.181 

97222 0.521 0.240 0.596 0.383 

97234 0.706 0.178 0.709 0.343 

97245 0.291 0.160 0.390 0.379 

97253 0.622 0.358 0.669 0.445 

97267 0.214 -0.099 0.339 -0.002 

97270 0.610 0.298 0.611 0.338 

Average 
Correlation 

0.498 0.249 0.551 0.339 

Table 3 - Estimated/Observed Correlation 
This table provides the results of the correlation between the estimated wind 
component and the observed wind component for both Kriging and Barnes. 
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The range of correlation values was from -0.099 to 0.877. This means that 

some days the estimation schemes worked very well and others it did not work at 

all. To provide a better understanding of what these correlation numbers mean, 

close consideration is given to the day with the best correlation, the day with the 

worst correlation, and a day that represents the average case. 

a. Best Case 

The best case correlation occurred on day 97148 with a correlation value of 

0.871026 for Kriging on the u component of the wind. There was no significant 

synoptic weather event associated with this day. The land/sea breeze is evident 

in the u component of the wind by the positive and negative groupings of the 

wind. Figure 11 shows a plot of the estimated values versus the observed 

values. Also plotted on the graph is a line that shows the line the data would fall 

on if there was zero error. The majority of the data falls within a band that is 

within 3-4 knots of the error free line. 
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Figure 11 - 97148 Observed vs Estimated 
This figure depicts the scatter plot of the observed u component of the wind in 
knots versus the estimated wind for the Julian day 97148. The solid line 
represents a line of 0 error. 

The average absolute value of the error for the u component of the wind was 

2.39 knots. The maximum magnitude of error was 15.05 knots and the minimum 

was 0.001 knots. This shows that the estimate can be very good or extremely 

poor. 

Figure 12 shows the histogram data concerning the error magnitude, and 

Table 4 shows the cumulative percentage data. This table shows that over 73 

percent of the errors fell within 3 knots and 88 percent of the errors fell within 5 

knots. 
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Error Magnitude(Knots) Frequency Cumulative Percentage 
0 0 .00% 
1 81 28.22% 
2 76 54.70% 
3 54 73.52% 
4 28 83.28% 
5 14 88.15% 
6 13 92.68% 
7 8 95.47% 
8 5 97.21% 
9 4 98.61% 
10 0 98.61% 
11 3 99.65% 
12 0 99.65% 
13 0 99.65% 
14 0 99.65% 
15 0 99.65% 

>15 1 100.00% 

Table 4 - 97148 Cumulative Histogram Table 
This table provides the percentage of the values that occur at or below the 
specified error magnitude. 

The average observed u component of the wind was 3.2 knots while the 

average Kriging estimated u component was 3.4 knots. The average observed v 

component was 3.0 knots, with the average Kriging estimated v component 

being 3.5 knots. Both the estimated u and v components of the wind were larger 

than the observed wind. The standard deviations (std) show the following: the 

observed std of the u component was 2.9 and the std of the observed v 

component was 2.7 knots. These values are larger that the std of the estimated 

components. The std of the estimated u component is 1.7 knots and 1.5 knots 

for the estimated v component. These numbers show that Kriging produces an 
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overestimate of the wind field, but has a reduced variability. This reduction in the 

variability represents a smoothing of the data. 

97148 - Error Magnitude Histogram 
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Figure 12 - Error Magnitude Histogram 
This histogram shows the frequency of errors measured in 1-knot increments. 

b. Worst Case 

The next task is to consider the worst case day, 97267. This day had a 

Kriging correlation for the v component of the wind of -0.002. The lack of 

positive values is evidence of the synoptic scale forcing, which was strong 

enough to dominate the land breeze. 
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Figure 13 shows a plot of the estimated values versus the observed values. 

Also plotted on the graph is a line that shows the line the data would fall on if 

there was zero error. Unlike Figure 11 the data in this graph does not group 

closely around the 0-error line. This is a visual confirmation of why this day is 

characterized by a low correlation. 
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Figure 13 - 97267 Observed vs Estimated 
This figure depicts the scatter plot of the observed v component of the wind in 
knots versus the estimated wind for the Julian day 97267. The solid line 
represents a line of 0 error. 

The average absolute value of the error for the v component of the wind was 

3.4 knots. The maximum magnitude of error was 10.1 knots and the minimum 
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was 0.01 knots. Figure 14 shows the histogram data concerning the error 

magnitude, and Table 5 shows the cumulative percentage data. This table 

shows that the maximum error might be less than that in the best case scenario, 

but there are a larger number of errors that are greater than three knots. In the 

97148 case over 73 percent of the errors fell within 3 knots, but for the worst 

case day only about 50 percent of the errors fall within 3 knots. 

Error Magnitude (Knots) Frequency Cumulative Percentage 
0 0 .00% 
1 54 18.75% 
2 49 35.76% 
3 39 49.31% 
4 31 60.07% 
5 36 72.57% 
6 33 84.03% 
7 21 91.32% 
8 14 96.18% 
9 7 98.61% 
10 3 99.65% 
11 1 100.00% 

>11 0 100.00% 

Table 5 - 97267 Cumulative Histogram Table 
This table provides the percentage of the values that occur at or below the 
specified error magnitude. 
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Figure 14 - 97267 Error Magnitude Histogram 
This histogram shows the frequency of errors measured in 1-knot increments. 

c. Average Case 

Finally, a case representing the average case is considered. The selected 

day has a correlation similar to the average u wind component correlation for the 

Kriging method. The day 97134 had a correlation of about 0.58, which is close 

to the 0.55 average. 

Figure 15 shows a plot of the estimated u values versus the observed 

values. Once again the line representing 0 error is also plotted on the graph. 
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Much of the data does plot close to the 0-error line; however, as the data 

becomes more positive it begins to deviate from that line much more. 
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Figure 15 - 97137 Estimated vs Observed 
This figure depicts the scatter plot of the u component of the observed wind in 
knots versus the estimated u component of the wind for the Julian day 97137. 
The solid line represents a line of 0 error. 

The average magnitude of the error for the u component of the wind was 2.7 

knots, and the average magnitude of the error for the v component of the wind 

was 1.3 knots. The largest magnitude of error for the u component was 12.1 

knots and the minimum was 0.03 knots. The largest error for the v component 

was 6.0 knots, and the minimum was 0.001 knots. Once again the standard 

deviations were significantly reduced indicating the degree of smoothing the 

estimation introduces into the estimated wind field. 
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Figure 16 and Table 6 provide the error magnitude distribution information. 

Comparing this information to the best and worst case days based upon the 

correlation numbers supports the correlation results. Looking at the percentage 

of errors that have magnitude of three knots or less yields 73 percent in the best 

case, almost 50 percent in the worst case, and 66 percent for this day 

representing the average case. 

Error Magnitude (Knots) Frequency Cumulative % 
0 0 .00% 
1 85 34.00% 
2 53 55.20% 
3 27 66.00% 
4 28 77.20% 
5 19 84.80% 
6 10 88.80% 
7 6 91.20% 
8 7 94.00% 
9 6 96.40% 
10 3 97.60% 
11 3 98.80% 
12 2 99.60% 
13 1 100.00% 

>13 0 100.00% 

Table 6 - 97134 Cumulative Histogram Table 
This table provides the percentage of the values that occur at or below the 
specified error magnitude. 
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Figure 16 - 97134 Error Magnitude Histogram 
This histogram shows the frequency of errors measured in 1-knot increments. 

d. Error as a function of station 

Due to the importance of distance upon the objective analysis methods 

evaluated, one might suspect that the error associated with an estimate would 

be a function of how far it is from the observations the estimate is based upon. 

The assumption would be that points farther from the observations, or outside 

the domain of the observations, would have the largest error associated with 

them. 

To evaluate this relationship, the data collected from each day tested was 

inspected to determine which wind towers had the largest magnitude of U and V 
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error associated with them. Stating the error is associated with a tower does not 

indicate the observation was incorrect. The wind tower locations are the only 

places the error is known, because certain observations were withheld for the 

purpose of evaluating the "true" value against the estimated. 

The number of times each tower appeared was recorded. Then the same 

process was accomplished again, but the tower IDs were recorded if they had 

one of the largest five errors. The five tower identification numbers that 

appeared the most times on each list were compared. 

Table 7 shows the results of this evaluation. There was a total of six wind 

tower IDs that appeared in the two lists. 

1st 2nd 3rd 4th 5th 
Most-Top 1 1617 819 3 1612 421 
Most-Top 5 1617 819 1612 2016 3 

Table 7 - Wind Towers with Largest Estimation Error 
This table lists the towers that most frequently had the largest error associated 
with them on the first row (1st indicating the most frequent). On the second row 
is listed the towers that most frequently had one of the largest five errors. Note 
that four of the towers appear in both lists. 

Figure 17 shows the number of occurrences for all of the wind towers that 

had one of the top five errors. The five towers that most frequently had one of 

the top five errors accounted for 66 percent of these errors. The same was true 

when the data considering only the top error was evaluated.   These results 

show that the location of where an estimate is calculated is an important factor in 

determining the degree of error associated with that estimate. 
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Figure 17 - Stations with Top Five Error Magnitude 
This histogram provides the frequency that each tower had one of the largest 
five errors associated with it. 

Looking at Figure 18 provides visual confirmation of the suspected 

relationship between the wind towers with the largest error and the remaining 

observations. In the figure, wind tower locations are marked with a small black 

circle. The location of the six wind towers identified in Table 7 as having the 

largest errors associated with them are identified by the larger gray circles. 

Figure 18 shows that these six stations are located on the outer edges of the 

area that bounds the entire set of observation locations. This was as expected. 
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The further the location of the estimated value got from the observations it was 

based on, the larger the error. 

Wind Towers - Largest Error 
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Figure 18 - Stations with Largest Error Magnitude 
This figure shows wind tower locations where the greatest frequency of having 
the largest error, or one of the top five largest errors, was encountered. 
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3. Summary 

This chapter presented the results of the testing. These results showed that 

Kriging provided a more accurate estimate than the Barnes method. 

Approximately 94 percent of the time the estimated value correlated better to the 

observed value for Kriging than Barnes. Also, about 93.3 percent of the time 

Kriging had a smaller value for the maximum magnitude of error. Even though 

Kriging provided a better estimate, it still produced errors that exceeded 10 

knots. Another impact of the Kriging estimation method was that it smoothed the 

data considerably. Indeed, Kriging smoothed the data more than Barnes did. 

Finally, the relationship between the estimated value's location and the 

supporting observations' locations was examined. The result showed that the 

further apart they were the larger the error became. 
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V. Conclusions/Recommendations 

1. Conclusions 

The results presented in Chapter 4 support the conclusion that Kriging 

produced a more accurate estimated wind field than did Barnes' method. The 

correlation numbers were better for Kriging, and the average magnitude of the 

error associated with Kriging was lower than with Barnes' method. Therefore, if 

this project continues without further research, Kriging should be implemented as 

the objective analysis method. 

It's important to understand that even though Kriging produced the best 

estimate of the wind field, it has its limitations. In the best case scenario almost 

12 percent of the errors were greater than or equal to 5 knots. Obviously, the 

best case rarely occurs. Even if one can hope for the average case scenario 

happening all the time, almost 16 percent of the time the estimated wind 

component will have an error exceeding 5 knots. The only way to drastically 

improve this estimation is to increase the number of observations taken at all 

levels. This would require an increase in the number of wind towers as well as 

the addition of sensors at additional heights on the current towers. All the 

evaluations were performed at the height of 54 feet because there were as many 

as 35 observations available on which to base the estimate. Some of the other 

heights had only one or two sensors available. 
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2. Recommendations 

There are three alternatives to consider. The first is to continue with this 

present objective analysis effort. The second is to use a mesoscale model to 

produce a wind field estimate. The third is to examine another method of 

graphically displaying the observations without performing the estimations. 

The first option to consider deals with continuing the present course. This is 

not a recommend course of action. The errors associated with the estimation 

techniques evaluated here are significant enough to cast serious doubt on their 

ability to create a realistic three-dimensional wind field that can be used to more 

accurately forecast or observe the winds at Cape Canaveral. Of the methods 

considered here, Kriging produced the most accurate estimated wind field. If it is 

determined that the use of an objective analysis method is the proper course to 

follow, then it is recommended that the Bratseth method, or some other type of 

optimal interpolation, be evaluated to determine if it could provide a better 

estimate than Kriging. 

The second option is the use of a mesoscale model, or some model that 

would include atmospheric dynamics. The use of a model would allow for the 

influence of local frictional and thermal properties to be accounted for. The 

concept is for the observations to be used as input. The model could then be 

run to fit a pressure field to the observed wind field. The derived pressure field 

could then be used to estimate the winds throughout the three-dimensional 

domain. 
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The third option would be to examine a method to graphically display the 

observations in a three-dimensional image. This display would not have the 

ability to isopleth wind values. It would simply display the observations in three- 

dimensional space with some type of symbol or object so that the observations 

can be visualized in proper physical relationship with each other. This option 

would allow for the data to be integrated into a single three-dimensional display. 

A variety of options could be used to display the magnitude and direction of the 

wind at each observation point, like a windsock. Its size or color could be altered 

to indicate magnitude. It could simply display the observed data in some 

convenient and coherent three-dimensional image. 

3. Summary 

In conclusion, the objective analysis methods have a large error associated 

with them and it is not recommended that they be used to estimate the low level 

wind field. 
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Appendix A: C Code for everything 

// File: ObAnal.h 
// Author:  Lt Mike Engel 
// Date: 
// 
//  This header file contains the declairations required to perform the 
//   the objective analysis of the CAPE area 

// 
// modified on 13 Nov 98 to add the Kriging class 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

MAX_LAT 2 9.0 
MAX_L0N 280.0 
MIN_LAT 2 8 
MIN_L0N 27 8.8 
MAX_ALT 3000 
LAT_STEP 0.05 
L0N_STEP 0.05 
ALT_STEP 4 8.0 
NUM_SENSORS 40 // 50    // 9 22 
NUM_HEIGHTS 10 //10 
MAX_FILENAME_LEN 80 
TRUE 1 
FALSE 0 
PI 3.14159265359 
XRANGE  25 // 13 //(MAX_LAT-MIN_LAT)/LAT_STEP + 1 
YRANGE  21 // 11 //(MAX_LON-MIN_LON)/LON_STEP + 1 
ZRANGE  21 //MAX_ALT/ALT_STEP 
K41 1     // for 1 call to the barnes sub routine 
K42 0.3   // for the second call to the barnes sub 
MAXVARS 5 
MAXTIMES 288 // 72   // 50 really 

int outputvert = 1; 

//  the Wind class is used as one of the base classes for the Windfield 
class 
//    it provides the data structure for the actual wind data 
// 
class Wind { 

public: 
Wind(){u=-999.0; v=-999.0;};    // the constructor 
void setWind(float, float); 
void setWindV(float, float);    // vector version (degree/speed) 
void getWind(float *, float *) ; 
void getWindV(float *, float *); //vector version (degree/speed) 

private: 
float u;    // the u component of the wind 
float v;    // the v component of the wind 

}; 
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//  Start the structures required for the Windfield class 
// 
struct sensorType { 

int id; // this is the station id number 
float latitude;  // the lat and Ion of the sensor location 
float longitude; 
float height; 
int sensorHeights[NUM_HEIGHTS]; 

}; 

struct obsDataType { 
Wind data[NUM_SENSORS][NUM_HEIGHTS]; 
long date; 
long time; 

}; 

struct Field3DType { 
Wind  data[XRAMGE][YRANGE][NUM_HEIGHTS];      //   zrange   ? 

}; 

struct Int2DType { 
int index[NUM_HEIGHTS][NUM_SENSORS]; 

}; 

// one way linked list to allow multiple time steps for observations 
struct obsListType { 

obsDataType *observation;    // pointer to the observation data 
obsListType *next; 

}; 

class ObsWindField { 
public: 

ObsWindField(); // constructor for the 
-ObsWindField();//destructor-frees the memory in the linked list 

void getSensorData();//open the data files containing the sensor 
information 

int getWindData();//open the data files containing the observed 
data 

// read the data and return the number of time steps 
void collectData(); 
void displaylnput(); 
void displaySensorlnfo(); 
void test (); 

void newObsList(); 
obsDataType *currObs; // observed wind values -- 

public to avoid lots of space 
obsListType *obsListHead; 

obsListType *obsList; 
sensorType sensorlnfo[NUM_SENSORS];    // data concerning sensor 

location 
int getSensorlndex( long ); 
int getHeightIndex( long ); 

private: 
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}; 

// constructor for the Barnes class 

class Barnes { 
public: 

Barnes(); 
-Barnes(); 
void doBarnesO;    // main function controlling the analysis 
int output2dAnalField( char *);       // print to a vis5d file 
int output2dAnalFieldHdr( char * ); 
void displayAnalFieldO;    // print anal field to the screen 
void getAnalData( int n, int xrange, int yrange ); 

// collect data on the anal field 
private: 

void barnesSub(float,int,int,int,int); 
// subroutine performing the analysis for each iteration 

float dist( float, float, float, float ); 
// function returing distance in 
// degrees square 

ObsWindField obsWind; 
obsDataType *corrFactor; 
Field3DType *anall; 
Field3DType *anal2; 
Int2DType *sensor; 
// int levellndex[l][1]; 
// int levelIndex[NUM_HEIGHTS][NUM_SENSORS]; 
int numOfSensors[NUM_HEIGHTS]; 
int numOfTimeSteps; 

}; 

// start the class definition for the kriging class 
//  this will contain all of the data elements and the functions 
// required to perform kriging 
class Kriging { 

public: 
Kriging(); 
-Kriging(); 
void doKrigingO; 
int output2dAnalField 

// constructor for the Kriging class 
// destructor for the Kriging class 
// main function controlling the analysis 

char *);   // print data to a passl file 
int output2dAnalFieldHdr( char * ); 

// print header information to the passl 
void displayAnalFieldO;    // print anal field to the screen 
float Kriging::coVariance( float dist ); 

// return the coVariance value 
void getAnalData( int n, int xrange, int yrange ); 

// collect data on the anal field 
private: 

void KrigingSub(int,int,int); 
// subroutine performing the analysis for each iteration 

float dist( float, float, float, float ); 
// function returing distance in degrees square 

float semiVarioFunc( float ); 
ObsWindField obsWind; 
Field3DType *anall; 
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}; 

Field3DType *anal2; 
Int2DType *sensor; 
// int levellndex[l][1]; 
// int levelIndex[NUM_HEIGHTS][NUM_SENSORS]; 
int numOfSensors[NUM_HEIGHTS]; 
int numOfTimeSteps; 

int heightIndex[NUM_HEIGHTS] = {12,30,54,60,90,162,204,295,394,492}; 
int interpHeightIndex[ZRANGE] = {12,36,60,84,108,132,156,180,204, 

22 8,252,2 76,3 00,324,34 8,3 72,396, 420,444,468,492}; 

void cubicSpline( int n, float * t,float * y,float * h,float * b, 
float * u,float * v,float * z ) ; 

void doVerticalInterpolation( void ); 
float InterpSpline( int n, float * t,float * y,float * z, int x ); 

// here are some global variables used to collect statistical data 
int display = 0; 
int dataCollection = 0; 
int idList[MAXTIMES]; 
Wind actual[MAXTIMES]; 
Wind mean[MAXTIMES] ; 
Wind std[MAXTIMES] ; 

void callKriging( void ); 
void callBarnes( void ) ; 

// File: ObAnal.cpp 
// Author:  Lt Mike Engel 
// Date: 9 Oct 98 
// 
//  This file contains the code required to perform the objective 
//  analysis of the observed data. 
// 
// include files 
#include "obanal.h" 
#include <stdio.h> 
#include <string.h> 
#include <iostream.h> 
#include <math.h> 
#include <fstream.h> 
#include <iomanip.h> 
#include <stdlib.h> 
#include <alloc.h> 
// #include "matrix.h" 

// start with the functions associated with the Wind class 
// The following functions are the get and set functions for the 
//    Wind class.  There are functions that deal with the u,v 
//    components 
//    of the wind as well as ones that use the speed and direction 
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void Wind: :setwind( float newu, float new) { 
u = newu; v = new; 

} 
void Wind::setWindV( float dir, float speed) { 

u = speed*sin( (double) dir*PI/180 ) ; 
v = speed*cos( (double) dir*PI/180 ); 

} 

void Wind::getWind( float * retu, float *retv) { 
*retu = u; *retv = v; 

} 
void Wind::getWindV( float * dir, float * speed) { 

*speed = sqrt( u*u + v*v ); 
*dir =  atan( (double)u/v)*180;    // not correct 

// start the class member functions for the ObsWindField class 
//     Function:  getWindData 
//     This function reads in the data from the data file. 
//     It prompts the user for the data file name 
//     It allows multiple data files to be merged 

// Function:  ObsWindField 
// This is the constructor function for the ObsWindField class. This 
// allocates memory for the observations and initializes the field 
//     to -999 for both the u and v components. 

ObsWindField::ObsWindField() { 

obsListHead = NULL; 

} 

// Function: -ObsWindField 
//  This function is the destructor function for the linked list of 
//  observation data. It checks to make sure there is data on the list 
//  before free(). This is done in the while condition. 
ObsWindField::-ObsWindField() { 

obsListType * step; 
obsListType * save; 

step = save = obsListHead; 
obsListHead = NULL; 

while( step != NULL ) { 
save = step->next;     // point to the next node 
free( step->observation );   // free the observed data 
free( step ); // free the time step node 
step = save; 
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// function: newObsList 
// This function allocates the memory required for the observation 
//  data for a new time step 
void ObsWindField::newObsList() { 

// first allocate memory for the next link in the obs chain 
if( obsListHead == NULL ) { 

obsListHead = (obsListType *) malloc(sizeof(obsListType)); 
obsList = obsListHead; 

} 
else { 
obsList->next = (obsListType *) malloc(sizeof(obsListType)); 
//step to that next link 

obsList = obsList->next; 

} 
// set the next pointer to NULL -- terminate the linked list 
obsList->next = NULL; 

// allocate memory for the obs data 
obsList-observation = (obsDataType *) malloc (sizeof(obsDataType)); 
// currObs = (obsDataType *) malloc(sizeof(obsDataType)); 

//  set the pointer for the current obs being worked on to the init list 
currObs = obsList-observation; 

//allocate memory for the far pointer 
if( obsList == NULL || currObs == NULL ) { 

cout << "Insufficient memory to run" << endl; 
exit(1); 

// intialize the fields to -999 
for( int i = 0; i < NUM_SENSORS; i++ ) { 

for( int j =0; j < NUMJHEIGHTS; j++ ) { 
currObs->data[i][j].setwind( -999.0, -999.0 

} 
} 

} 

// function:  getWindData 
// This function gets a file name from the useer and then opens the file 
//    It reads in the observations and places them in the appropriate 
//    array position depending upon the sensor id and the height.  If 
//    the sensor id is not recognized then the data is ignored. 

int ObsWindField::getWindData() { 
int done = 0,idindex = 0, heightindex = 0; 
long date,time = l,lastTime = -l,oldtime,id,height,direction; 
float speed,gust,ddev,temp,td,rh; 
char filename[MAX_FILENAME_LEN],cl,c2, c3 ; 
char inbuffer[80],tempbuffer[8],yesno; 
char *errRet,*inputptr,*tempptr; 
FILE * indatafile; 
int t = 0; 
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// begin the outer loop -- allows multiple files to be read in 

while( Idone ) { 

//  allow user input of multiple data files 
// get the input 
cout << "Please enter the file name to open.\n"; 
ein >> filename; 
cout << filename << " "; 

// open the file and begin to read it 

indatafile = fopen( filename, "r" ); 

// check to make sure the file opened 
if( !indatafile ) { 

cout << "File could not be opened" << endl; 
exit(l);     // exit loop and program 

} 

// read in the header information 
for( int i = 0; i < 12; i++ ) 

fscanf( indatafile, "%s ", &inbuffer); 

// now read in the data 
while ( fgets( inbuffer, 80, indatafile ) ){ 
//first read in the date, time,id and height 
sscanf( inbuffer, "%7ld %61d %4ld %c%c%c %5ld", 

&date, &time, &id,&cl,&c2,&c3,&height); 

if( time != lastTime ) { 
if( t >= MAXTIMES ) 

break;   // exit the loop -- vis5d only allows 50 
newObsList(); 
currObs->date = date; 
currObs->time = time; 
t++; 
cout << "TIME: "<< time << " " << t << endl; 

} 
direction = speed = gust = -1; 
ddev = temp = td = rh = -1; 

inputptr = &inbuffer[3 0]; 

// the following data may or may not be in the file 
// read in the direction 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( int i = 0; i < 4; i++ ) 
tempbuffer[i] = inputptr[i]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%ld", &direction ); 
inputptr = Sdnputptr[i]; 

} 

// read in the speed 
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if( *inputptr != NULL && *inputptr != 10 ) { 
for( i = 0; i < 7; i++ ) 

tempbuffer[i] = inputptr[i]; 
tempbuffer[i] = NULL; 

sscanf( tempbuffer, "%f", &speed ); 
inputptr = &inputptr[i]; 

} 

//read in the gusts 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( i = 0; i < 7; i++ ) 
tempbuffer [i] = inputptrfi]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%f", &gust ); 
inputptr = &inputptr [i]; 

} 

// read in the DDEV 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( i = 0; i < 6; i++ ) 
tempbuffer[i] = inputptrfi]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%f", &ddev ); 
inputptr = &inputptr [i]; 

// read in the temp 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( i = 0; i < 7; i++ ) 
tempbuffer[i] = inputptr[i]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%f", &temp ); 
inputptr = &inputptr[i]; 

} 
// read in the dew point temp 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( i = 0; i < 7; i++ ) 
tempbuffer[i] = inputptrfi]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%f", &td ) ; 
inputptr = &inputptr[i]; 

} 
// read in the rh 
if( *inputptr != NULL && *inputptr != 10 ) { 

for( i = 0; i < 6; i++ ) 
tempbuffer[i] = inputptrfi]; 

tempbuffer[i] = NULL; 
sscanf( tempbuffer, "%f", &rh ); 

} 

// find out the location in the obs data structure to put the data 
idindex = getSensorlndex( id ); 
heightindex = getHeightIndex( height ); 

if( idindex == -1 || heightindex == -1 ) 
idindex = 0;// cout << "index error" << endl; 

75 



//  the id or height is not valid 

else 
if( direction != -1 && speed != -1 ) { 

// make sure wind data present 
if( direction >= 180 ) 

direction -= 180; 
else 

direction += 180; 
currObs->data[idindex][heightindex].setWindV( 

direction, speed ); 

} 
// save this information in order to make next link in list 
lastTime = time; 

} 

// get user input to determine if more data files are ready 

} 
fclose( indatafile ); 
return t;   // return the number of time steps 

} 

// function:  getsensorindex 
// This function uses the passed id to locate the index of that 
//    sensor in the 3-D wind field.  This information is based upon the 
//     data read in from the sensor file 
// 
int ObsWindField::getSensorlndex( long id ) { 

int i ; 

for( i = 0; i < NUM_SENSORS; i++ ) 
if( sensorlnfo[i].id == id ) 

break; 
if( i == NUM_SENSORS ) 

i = -1; 
return i; 

} 
// function:  getheightindex 
// This function uses the passed height to locate the index of that 
//     sensor in the 3-D wind field.  This information is based upon the 
//     global array located in the header file 
// 

int ObsWindField::getHeightIndex( long height ) { 

int i ; 

for( i = 0; i < NUM_HEIGHTS; i++ ) 
if( heightindex[i] == height ) 

break; 
if( i == NUM_HEIGHTS ) 

i = -1; 
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return i; 

//  function: display_input 
//  This function loops through the 3-D input array of the observed 
//    values and displays the values of the wind field input 
// 
void ObsWindField::displaylnput() { 

float u,v; 
obsListType *temp; 

temp = obsListHead; 
while( temp != NULL ) { 

//    cout << "time step" << endl; 
temp = temp->next; 

} 
// getchar(); 

for( int i = 0; i < NUM_SENSORS; i++ ) { 
for( int j =0; j < NUM_HEIGHTS; j++ ) { 

currObs->data [i] [j] .getWind( &u, &v ); 
if( u == -999.0 ) 

printf( "   n/a " ); 
// cout << "  n/a ";    // no wind data read in 

else 
printf( "% 2.2f ",u); 
// printf( "% 2.2f/% 2.2f ",u,v ); 
//;COut << u << "/" << v << " "; 

} 
printf("\n"); 

} 

getchar(); 

//  function:  getSensorData 
//  This function reads in the specifications about the wind sensors. 
//     This data is kept in the file sensor.dat.  Each line contains the 
//     id number, lat,lat minutes, lat secondds, Ion, Ion minutes, Ion 
// seconds, height 
void ObsWindField::getSensorData() { 

float lat,latm,lats,Ion,lonm,Ions,height; 
int id,i=0; 

FILE *sensorFile; 

sensorFile = fopen( "sensor.dat", "r" ); 

// make sure the file will open 
if( !sensorFile ) { 
cout << "Sensor File could not be opened" << endl; 
exit(l);    // exit loop and program 

} 
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// read in the data from the file 
fscanf( sensorFile, "%d %f %f %f %f %f %f %f", 

&id, &lat, fclatm, fclats, &lon, &lonm, &lons, &height ); 

// this loop reads in data and loads it into the sensor 
//   data structure until the file is empty- 

do { 
sensorlnfo[i].id = id; 
sensorlnfoti].latitude = (float) (lat + latm/60.0 + 

lats/6000.0); 
sensorlnfo[i].longitude = (float) (Ion + lonm/60.0 + 

Ions/6000.0); 
sensorlnfo [i] .height = height; 
i++; 

// read the data from the file 
fscanf( sensorFile, "%d %f %f %f %f %f %f %f", 

&id, &lat, &latm, &lats, &lon, &lonm, &lons, &height ); 

} 
} while( !feof( sensorFile ) && i < NUM_SENSORS ) ; 

// function: displaySensorlnfo 
// This function loops through the sensor data structure and prints the 
data to the screen 

void ObsWindField::displaySensorlnfo() { 
for( int i = 0; i<NUM_SENSORS; i++ ) { 

cout << sensorlnfo[i].id <<" "<<sensorInfo[i].latitude<<" 
"<<sensorInfo[i].longitude<< endl; 

} 
getchar(); 

} 

// Function: collectData 
// This function collects the observed data based upon the random number 
file 
void ObsWindField::collectData() { 

obsListType *obsListPtr; 
obsDataType *currObsPtr; 
FILE * randomNumFile; 
float obsu, obsv; 
int index[NUM_HEIGHTS][NUM_SENSORS]; 
int numSensorstNUM_HEIGHTS],t = 0; 
float meanU=0, totObsU=0, meanV=0, totObsV=0, tempU = 0, tempV = 0; 
cout << "in collect data" << endl; // getchar(); 
// point to the data in the first time slot 
obsListPtr = obsListHead; 
currObsPtr = obsListPtr->observation; 
// read the random number file 
randomNumFile = fopen( "random.dat", "r" ) ; 
for( int i = 0; i < MAXTIMES; i++ ) { 

fscanf( randomNumFile, "%d ", &idList[i] ); 

} 
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fclose ( randomNumFile ); 

// loop through the time steps 
while( obsListPtr != NULL ) { 

// get the number of sensors per level 
// outer loop steps through the vertical 
//  the inner loop counts the num of sensors with valid observations 

for( int z = 0; z < NUM_HEIGHTS; z++ ) { 

// initialize the counter for the current levels num of sensors 
numSensors[z] = 0; 

// first determine the number of sensors and thier indexes on this level 
//  this is the actual number of sensors with accepted observations 

for( int n = 0; n < NUM_SENSORS; n++ ) { 
currObsPtr->data[n][z].getwind( &obsu, &obsv ); 
if( obsu != -999.0 && obsv != -999.0 ) 

index[z][numSensors[z]++] = n; 

} 
//   only deal with height of maximum observations -- z = 2  - for now 
//   save the observation 
//   set the observation to -999 

if( z == 2 ) { 

// initialize for each time step 
meanU = meanV = 0; 
totObsV = totObsU = 0; 

tempU = tempV = 0; 

//   calculate the mean value 
for( int n = 0; n < numSensors[z]; n++ ) { 

// get the observation 
currObsPtr->data[index[z][n]][z].getWind(&obsu,&obsv); 

// add the new to the running total 
totObsU += obsu; 

totObsV += obsv; 

} 
meanU = totObsU/numSensors[z]; 
meanV = totObsV/numSensors[z]; 

mean[t].setwind( meanU, meanV ); 

totObsU = totObsV = 0; 
// now calculate the variance and the std 

for( n = 0; n < numSensors[z]; n++ ) { 

// get the observation 
currObsPtr->data[index[z][n]][z].getWind(&obsu,&obsv ); 

// add the new to the running total 
totObsU += (float) pow( (double)(obsu-meanU),2.0); 
totObsV += (float) pow( (double)(obsv-meanV),2.0); 

} 
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tempU =  totObsU/(numSensors[z]-1); 
tempV =  totObsV/(numSensors[z]-1); 

std[t].setWind((float)   sqrt((double)   tempU),    (float) 
sqrt((double)   tempV)   ) ; 

for(  n =  0;   n < numSensors[z];   n++  )   { 

//  get  the observation 
currObsPtr->data[index[z][n]][z].getWind(   &obsu,   &obsv  ); 

//  see  if  the  sensor id is  the  selected one 
if(  n ==  idList[t]%numSensors[z]   )   { 

idList[t]   =  sensorlnfo[index[z][n]].id; 
actual[t].setWind(  obsu,   obsv  ); 
currObsPtr->data[index[z][n]][z].setWind(   -999.0, 

-999.0   ) 
} 

} 
} 
obsListPtr = obsListPtr->next; 

if( obsListPtr != NULL ) 
currObsPtr = obsListPtr->observation; 

t++; 
}   // end the outer time loop 

/* for( int w = 0; w < t; w++ ) { 
mean[w].getWind( &obsu, &obsv ); 

cout << "mean " << obsu << " " << obsv << endl; 

} 
for(  w = 0; w < t; w++ ) { 

std[w].getWind( &obsu, &obsv ); 
cout << "std " << obsu << " " << obsv << endl; 

}  */ 
} 

// function:  test 
// This function allow selection of a specific sensor id and height 
//    and then displays that wind data to the screen 
void ObsWindField::test() { 

char another = 'y'; 
int height, id; 
float outu,outv; 

cout << "another? "; 
another = getchar();getchar();  // second one eats the ret char 

while( another != 'n' && another != 'N' ) { 
cout << "ID "; 
ein >> id; 
cout << "height"; 
ein >> height; 
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currObs- 
>data[getSensorIndex(id)][getHeightlndex(height)].getWind(   &outu,   &outv 
); 

cout << outu << "/" << outv << endl; 

cout << "another? "; 
another = getchar();getchar();  // second one eats the ret char 

} 
} 

// function: Barnes 
//    This is the constructor function for the Barnes class.  It takes 
//    care of allocating the memory for the wind field as well as the 
//    correction arrays Two analysis arrays are required for the Barnes 
//    system 

Barnes::Barnes () { 
// allocate memory for the data structures 
// these structs must be dynamically allocated due to stack limits 
corrFactor = (obsDataType *) malloc(sizeof(obsDataType)); 
anall = (Field3DType *) malloc(sizeof(Field3DType)); 
anal2 = (Field3DType *) malloc(sizeof(Field3DType)); 
sensor = (Int2DType *) malloc(sizeof(Int2DType)); 

// make sure the memory is present to run the program 
if( corrFactor == NULL || anall == NULL || anal2 == NULL || sensor 

== NULL) { 
cout << "Insufficient memory to run" << endl; 
exit(1); 

} 

// intialize the correction fields to 0 
for( int i = 0; i < NUM_SENSORS; i++ ) { 

for( int j =0; j < NUM_HEIGHTS; j++ ) { 
corrFactor->data[i] [j] .setWind( 0.0, 0.0 ); 

} 
} 

// function: -Barnes 
// This function is the destructor for the Barnes class 
// The function checks to make sure the pointers are still pointing to 
// allocated memory.  The destructor for the obs data does the same 

Barnes::-Barnes() { 

if( corrFactor ) { 
free( corrFactor ); 
malloc(sizeof(obsDataType)); 
corrFactor = NULL; 

} 
if( anall ) { 

free( anall ); 
malloc(sizeof(Field3DType)); 
anall = NULL; 
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} 
if( anal2 ) { 

free( anal2 ) ; 
malloc(sizeof(Field3DType)); 
ana12 = NULL; 

} 
if( sensor ) { 

free( sensor ); 
malloc(sizeof(Int2DType)); 
sensor = NULL; 

} 
// call the destructor for the observation data 
obsWind.~ObsWindField() ; 

// function: doBarnes 
// This function is the main driving function for the Barnes anaylsis. 
// It calls the other functions required to read in the sensor 
// information as well as the observed data 
void Barnes::doBarnes() { 

Field3DType *tempAnalPtr; // used for array swapping 
float obsu, obsv, anallru,anallrv; 
float corru, corrv, analulu, analulv, analuru, 

analurv,analllu,analllv; 
int iw, js;   // the array index(s) to the west & south of obs point 
obsListType * obsStepPtr; 
int n=0; 

// read in the sensor data (lat/lon) information from the sensor file 
obsWind.getSensorData(); 

// display the read in data --  debugging tool 
//  obsWind.displaySensorlnfo(); 

// get the observed wind data from the data file(s) 
numOfTimeSteps = obsWind.getWindData(); 

// get the actual data values 
if( dataCollection ) 

obsWind.collectData(); 

// interigate the observed winds for accuracy 
// obsWind.test(); 

//  display the observed wind field 
// obsWind.displaylnput(); 

// loop through the time steps 
obsStepPtr = obsWind.obsListHead; 
obsWind.currObs = obsStepPtr-observation; 
output2dAnalFieldHdr( "passl" ); 

while( obsStepPtr != NULL ) { 
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cout << "Barnes Time step " << n << endl; 
//  outer loop steps through the vertical 
//  the inner loop counts the number of sensors with valid observations 

for( int z = 0; z < NUM_HEIGHTS; z++ ) { 

// initialize the counter for the current levels num of sensors 
numOfSensors[z] = 0; 

// first determine the number of sensors and thier indexes on this level 
//  this is the actual number of sensors with accepted observations 

for( int n = 0; n < NUM_SENSORS; n++ ) { 
obsWind.currObs->data[n][z].getWind( &obsu, &obsv ); 

if( obsu != -999.0 && obsv != -999.0 ) 
sensor->index[z][numOfSensors[z]++] = n; 

} 
} 

// call the barnes subroutine the first time 
barnesSub( (float) K41, XRANGE, YRANGE, NUM_HEIGHTS , 1 ) ; 

// swap pointers to the anal arrays 
tempAnalPtr = anall;      // save pointer to the first guess 
anall = anal2; // anall now contains nothing 
anal2 = tempAnalPtr;      // anal2 now contains the first guess 

// calculate the correction factors 
// outer loop steps through the heights 

for( z = 0; z < NUM_HEIGHTS; z++ ) { 
// inner loop steps throught the sensors 

for( int n = 0; n < numOfSensors[z]; n++ ) { 
iw = ( MAX_LON - obsWind.sensorlnfo[sensor- 

>index[z][n]].longitude )/L0N_STEP; 
js = ( MAX_LAT - obsWind.sensorlnfo[sensor- 

>index[z][n]].latitude )/LAT_STEP; 
obsWind.currObs->data[sensor- 

>index[z][n]][z].getWind(&obsu,&obsv); 
anal2->data[iw][js][z].getWind(&analulu,&analulv); 
anal2->data[iw+1][js][z].getWind(&analuru,&analurv); 
anal2->data[iw][js+1][z].getWind(kanalllu,&analllv); 

anal2->data[iw+1] [js + 1] [z] .getWind(&anallru,&anallrv); 
corru = obsu-(analulu+analuru+analllu+anallru)/4; 
corrv = obsv-(analulv+analurv+analllv+anallrv)/4; 
corrFactor->data[sensor- 

>index[z][n]][z].setWind(corru,corrv); 

} 
} 

// call the barnes subroutine for the second time 
//  this provides for a closer adjustment 
barnesSub( (float) K42, XRANGE, YRANGE, NUM_HEIGHTS, 2 ); 

// now add the two together to get the final estimate 
for( z = 0; Z < NUM_HEIGHTS; Z++ ) { 
for( int i = 0; i < XRANGE; i++ ) { 

for( int j =0; j < YRANGE; j++ ) { 
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anal2->data [i] [j] [z] .getWind(&obsu,&obsv); 
anall->data [i] [j] [z] .getWind(&corru,&corrv); 
anall- 

>data[i][j][z].setWind((obsu+corru),(obsv+corrv)); 
// anall now has the final guess 

} 
} 
} 

if( dataCollection ) 
getAnalData( n, XRANGE, YRANGE ); 

file 
// insert code to print the current time slot data to a data 

cout << "Print Barnes Time step " << n++ << endl; 

output2dAnalField( "passl"); 

// step through the linked list 
obsStepPtr = obsStepPtr->next; 

if( obsStepPtr != NULL ) 
obsWind.currObs = obsStepPtr-observation; 

} // end wile loop for time 

} 

// function: barnesSub 
// This function performs the meat of the barnes routine 
void Barnes::barnesSub( float k4, int xrange, int yrange, int zrange, 
int pass) { 

float beta[NUM_SENSORS], w[NUM_SENSORS]; 
float wsum = 0.0, glat,glon,tempu,tempv,obsu,obsv; 

// outer loop steps through the vertical 
for( int z = 0; z < zrange; z++ ) { 

// now perform the analysis 
// loop through the 2-D field 
for( int j =0; j < yrange; j++ ) { 

glat = MIN_LAT+LAT_STEP*j; 
for( int i = 0; i < xrange; i++ ){ 

glon = MIN_LON+LON_STEP*i; 
wsum = 0.0; 

// loop through the sensors to determine the raw weights 
for( int n = 0; n < numOfSensors[z]; n++ ) { 

w[sensor->index[z][n]] = exp( -1.0* 
dist( obsWind.sensorlnfo[sensor- 

>index[z][n]].latitude, 
obsWind.sensorlnfo[sensor->index[z][n]].longitude, 

glat, glon)/ 
(k4*1.2/numOfSensors[z])); 

wsum = wsum + w[sensor->index[z][n]]; 

} 
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// loop through the sensors to calculate the final weight 
for( n = 0; n < numOfSensors[z]; n++ ) { 

beta [sensor->index[z] [n]] = w[sensor->index[z] [n]]/wsum; 

} 

// initialize the analysed field 
tempu = tempv = 0.0; 

// now step through the sensors to calcualate the estimate 
for( n = 0; n < numOfSensors[z]; n++ ) { 

if ( pass == 1 ) 
obsWind.currObs->data[sensor- 

>index[z][n]][z].getWind(&obsu,&obsv); 
else 

corrFactor->data[sensor- 
>index[z][n]][z].getWind(&obsu,&obsv); 

tempu = tempu + beta[sensor->index[z] [n]]*obsu; 
tempv = tempv + beta[sensor->index[z][n]]*obsv; 

} 
anall->data[i][j][z].setWind(   tempu,   tempv   ); 

} 
} 

} 
} 

// function: dist 
//  This function accepts in the lat Ion pairs and calculates the 
distance 
// between them in degrees latitude squared 
float Barnes::dist ( float latl, float lonl, float lat2, float lon2 ) { 
//   cout << latl << " " << lonl << " " << lat2 << " " << lon2 << endl; 

return (pow((lat2- 
latl),2.0)+pow(cos((double)(latl+lat2)*PI/(2.0*180.0)),2.0)* 

pow((lon2-lonl) ,2.0)) ; 

// Function: getAnalData 
// This function collects the data on the 
void Barnes::getAnalData( int t, int xrange, int yrange ) { 

float meanU, meanV, stdU = 0, stdV = 0, tempu, tempv; 
float totAnalU, totAnalV; 
FILE * datafile; 

int z = 2;   // only look at the second level -- for now 

// cout << " in get anal data "<< endl; 

totAnalU = totAnalV = 0; 
//   calculate the mean value 
for( int i = 0; i < xrange; i++ ) { 

for( int j = 0; j < yrange; j ++ ) { 

// get the analized values 
anall->data[i][j][z].getWind( &tempu, &tempv ); 
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// add the new to the running total 
totAnalU += tempu; 
totAnalV += tempv; 

} 
} 
meanU = totAnalU/(xrange*yrange); 
meanV = totAnalV/(xrange*yrange); 

// cout << meanU << " " << meanV << endl; 

totAnalU = totAnalV = 0; 
// now calculate the variance and the std 
for( i = 0; i < xrange; i++ ) { 

for( int j = 0; j < yrange; j ++ ) { 
// get the observation 

anall->data[i][j][z].getWind( &tempu, &tempv ); 

// add the new to the running total 
totAnalU += (float) pow( (double)(tempu-meanU),2.0); 
totAnalV += (float) pow( (double)(tempv-meanV),2.0); 

} 
} 
stdU = (float) sqrt( (double) (totAnalU/(xrange*yrange))); 
stdV = (float) sqrt( (double) (totAnalV/(xrange*yrange))); 

// cout << stdU << " " << stdV << endl; 

float glat, glon, tempLat = MIN_LAT, tempLon = MIN_LON; 
float leftU, leftV, rightU, rightV, estU, estV, temp2u, temp2v; 
int p, q; 

// find the analysed value 
// first get the lat/lon of the withdeld observation 
for( int n = 0; n < NUM_SENSORS; n++ ) { 

// get the observation 
if( idList[t] == obsWind.sensorlnfo[n].id ) { 

glat =  obsWind.sensorlnfo [n] .latitude; 
glon =  obsWind.sensorlnfo[n].longitude; 

break; 

} 
} 

// now get the location of the four surrounding lat/lon pairs 
// find the latitude index 
for( p = 0; p < XRANGE; p++ ) { 

if( (tempLat + LAT_STEP) > glat ) 
break;       // found lower 

tempLat += LAT_STEP; 

} 
// find the longitude index 
for( q = 0; q < YRANGE; q++ ) { 

if( (tempLon + L0N_STEP) > glon ) 
break;       // found left 

tempLon += L0N_STEP; 

} 
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// cout << glat << " " << tempLat << " "  << glon << " " << tempLon << 
endl ; 

//  now perform the linear interpolation to estimate the estimate 

// get the wind values on the west side 
anall->data [p] [q+1] [z] .getWind( &tempu, &tempv ); 
anall->data [p] [q] [z] .getWind( &temp2u, &temp2v ); 

// interpolate the U and V values 
leftU = temp2u + ((glat - tempLat)/(float)LAT_STEP)*(tempu - temp2u); 
leftV = temp2v + ((glat - tempLat)/(float)LAT_STEP)*(tempv-temp2v); 

// get the wind values on the east side 
anall->data[p+1] [q+1] [z] .getWind( &tempu, &tempv ); 
anall->data[p+l][q][z].getWind( &temp2u, &temp2v ); 

// interpolate the U and V values 
rightU = temp2u + ((glat - tempLat)/(float)LAT_STEP)*(tempu- temp2u); 
rightV = temp2v + ((glat-tempLat)/(float)LAT_STEP)*(tempv- temp2v); 

// now get the final estimate 
estU = leftU + ((glon - tempLon)/(float)LON_STEP)*(rightU - leftU); 
estv = leftV + ((glon - tempLon)/(float)LON_STEP)*(rightV - leftV); 

//*/ 
datafile = fopen( "anal.dat", "a" ); 
actual [t] .getWind( &tempu, &tempv ); 
fprintf( datafile, "%d %f %f ", idList[t] , tempu, tempv ); 
mean[t].getWind( &tempu, &tempv ); 
fprintf( datafile, "%f %f ", tempu, tempv ); 
std[t].getWind( &tempu, &tempv ); 
fprintf( datafile, "%f %f ", tempu, tempv ); 
fprintf( datafile, "%f %f ", estU, estv ); 
fprintf( datafile, "%f %f ", meanU, meanV ); 
fprintf( datafile, "%f %f\n", stdU, stdV ); 

} 

fclose ( datafile ) 

// function: displayAnalField 
// This function gets the user input for the level and then 
// displays the analysed winds at the level specified 
void Barnes::displayAnalField() { 

float tempu, tempv; 
int level; 

for( int z = 0; z < NUM_HEIGHTS; z++ ) 
cout << numOfSensors[z] << " " ; 

cout << "enter level? "; 
ein >> level; 

while( level != 99 ) { 
for( int j = 0; j < YRANGE; j++ ) { 
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for(   int   i   =   0;    i   <   XRANGE;    i++   )    { 
anall->data[i][j][level].getWind(   &tempu,   &tempv  ); 
printf(   "%  2.2f   ",tempu  ); 
//printf(   "%  2.2f/%  2.2f   ",tempu,tempv  ); 

} 
printf(   "\n"); 

} 
cout << "enter level? "; 
ein >> level; 

} 
} 

// function: output2dAnalFieldHdr 
// This function prints the required information concerning number of 
time steps 
// size of the output data fields, lat/lon data, lat/lon step size, .. 

int Barnes::output2dAnalFieldHdr( char * filename ) { 
FILE * outdatafile; 
obsListType * obsStepPtr; 

// open the file -- overwrite any existing file 

outdatafile = fopen( filename, "w" ); 

// check to make sure the file opened 
if( !outdatafile ) { 

cout << "File could not be opened" << endl; 
exit(l);     // exit loop and program 

} 
cout << "Printing Header info to" << filename << endl; 
// now print the appropriate data 
// number of time steps --50 max 
fprintf( outdatafile, "%d\n", numOfTimeSteps ); 
// number of variables 
fprintf( outdatafile, "2\n"); 
// the data array dimmensions 
fprintf( outdatafile, "%d %d %d\n", XRANGE, YRANGE, NUM_HEIGHTS); 

// variable names 
fprintft outdatafile, "U\nV\n" ); 
// time stamps for each time step 
// must loop through and print 
obsStepPtr = obsWind.obsListHead; 
while( obsStepPtr ) { 

fprintf( outdatafile, "%ld ", obsStepPtr-observation->time ); 
obsStepPtr = obsStepPtr->next; 

} 
fprintf( outdatafile, "\n" ); 
// date stamp for each data set 
// must loop through and print 
obsStepPtr = obsWind.obsListHead; 
while( obsStepPtr ) { 

fprintf( outdatafile,"%ld ", obsStepPtr-observation->date ) ; 
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} 

obsStepPtr = obsStepPtr->next; 

} 
// northern most latitude 
fprintf( outdatafile, "\n%f\n", MAX_LAT); 
// the size of the incriment for latitude steps 
fprintf( outdatafile, "%f\n", LAT_STEP ); 
// western most longitude 
fprintf( outdatafile, "%f\n",MIN_LON-360.0 ); 
// the size of the incriment for latitude steps 
fprintf( outdatafile, "%f\n", LON_STEP); 
//height of the lowest data AGL --12 feet 
fprintf( outdatafile, "0.0036576\n"); 
fprintf( outdatafile, "%f\n", ALT_STEP*0.0003048); 
fclose( outdatafile ); 
return 1; 

// function: output2dAnalField 
// This function prints the actual data to the first pass file.  This 
//  data has not 
// been interpolated vertically to the equally spaced vertical grid 

int Barnes::output2dAnalField( char * filename) { 
FILE * outdatafile; 
float outu, outv; 

// begin the outer loop -- allows multiple files to be read in 
// open the file to append to it 

outdatafile = fopen( filename, "a" ); 

// check to make sure the file opened 
if( !outdatafile ) { 

cout << "File could not be opened" << endl; 
exit(l);    // exit loop and program 

} 

// first print the u value for every height 
for( int z = 0; z < NUM_HEIGHTS; z++ ) { 

for( int j =0; j < YRANGE; j++ ) { 
for( int i = 0; i < XRANGE; i++ ) { 

anall->data[i] [j] [z] .getWind( &outu, &outv ); 
fprintf( outdatafile, "% f ", outu ); 

} 
fprintf( outdatafile, "\n" ); 

} 
} 

// then print out the v value at each height 
for( z = 0; z < NUMJKEIGHTS; Z++ ) { 

for( int j =0; j < YRANGE; j++ ) { 
for( int i = 0; i < XRANGE; i++ ) { 

anall->data[i][j][z].getWind( &outu, &outv ); 
fprintf( outdatafile, "% f ",outv ); 

} 
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fprintf( outdatafile, "\n" 

} 
} 
fclose( outdatafile ); 

} 
return( 1 ); 

// Function: doVerticallnterpolation 
// This function reads the data file passl and performs the vertical 
interpolation 
//   using a cubic spline routine 
void doVerticallnterpolation( void ) { 

float *g; 
float *final; 
FILE *f; 
FILE *0; 
int it, iv, ir, ic, il; 

/** STEP 1:  The following vari 
** the README file section des 
** more information. 
** / 

int NumTimes; 
int NumVars; 
int Nr, Nc, Nl; 
char VarName[MAXVARS] [10] ; 
long int TimeStamp[MAXTIMES] 
long int DateStamp[MAXTIMES] 
float NorthLat; 
float Latlnc; 
float WestLon; 
float Lonlnc; 
float BottomHgt; 
float Hgtlnc; 

ables must be initialized in STEP 2.  See 
cribing the 'v5dCreateSimple' call for 

/* number of time steps */ 
/* number of variables */ 
/* size of 3-D grids */ 

/* names of variables */ 
/* real times for each time step 
/* real dates for each time step 
/* latitude of north bound of box */ 
/* spacing between rows in degrees */ 
/* longitude of west bound of box */ 
/* spacing between columns in degs */ 
/* height of bottom of box in km */ 

*/ 
*/ 

/* spacing between grid levels in km */ 

float *t, *y, *h, *b, *u, *v, 
// perform the cubic spline 

*z; // pointers to work arrays used to 

cout << "Performing Vertical Interpolation" << endl; 

// open the first pass file 
// read in all of the header information 
f = fopen( "passl", "r" ); 
if (!f) { 

printf("Error: couldn't open %s for reading\n", "passl" 
exit(1); 

} 
// read in the header data from the first pass file 

); 

fscanf( f, "%d ", &NumTimes ); 
fscanf( f, "%d ", fcNumVars ); 
fscanf( f, "%d %d %d", &Nr, &Nc, 
for( int i = 0; i < NumVars; i++ ) 

fscanf( f, "%s ", &VarName[i] ) 
for( i = 0; i < NumTimes; i++ ) 

/* number of time steps */ 
/* number of variables */ 

&N1 ) ; 

/* names of variables */ 
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fscanf( f, "%ld ", &TimeStamp[i] ); /*real times each time step */ 
for( i = 0; i < NumTimes; i++ ) 

fscanf ( f, "%ld 
fscanf( f, "%f 
fscanf( f, 
fscanf( f, 
fscanf( f, 
fscanf( f, 
fscanf( f, 

ScDateStamp [i] /*real  dates  each time  step  */ 

"%f 
"%f 
"%f 
"%f 
"%f 

&NorthLat ) 
&LatInc ); 
&WestLon ); 
&LonInc ); 
&BottomHgt 
fcHgtlnc ); 

/* latitude of north bound of box */ 
/* spacing between rows in degrees */ 

longitude of west bound of box */ 
spacing between columns in degs */ 
height of bottom of box in km */ 

/* 
/* 
/* 

/* spacing between grid levels in km */ 

/* now open the output file and write the header data to it */ 

o = fopen( "pass2", "w" ); 
if (If) { 

printf("Error: couldn't open %s for reading\n", "pass2" ); 
exit(1); 

} 

fprintf( o, 
fprintf( o, 
fprintf( o, 
for( i = 0; 

fprintf 
for( i = 0; 

fprintf 
step */ 

fprintf( o, 
for( i = 0; 

fprintf 
step */ 

fprintf ( o, 
fprintf ( o, 
fprintf( o, 
fprintf( o, 
fprintf( o, 
fprintf( o, 
fprintf( o, 

"%d\n", NumTimes );    /* number of time steps */ 
"%d\n", NumVars );     /* number of variables */ 
"%d %d %d\n", Nr, Nc, Nl ); 
i < NumVars; i++ ) 

( o, "%s\n", VarNameti] );    /* names of variables */ 
i < NumTimes; i++ ) 

( o, "%ld ", TimeStamp[i] );  /* real times for each time 

"\n" ); 
i < NumTimes; i++ ) 
o, "%ld ", DateStamp[i] ); /* real dates for each time 

"\n" ); 
"%f\n", NorthLat ); /* latitude of north bound of box 
"%f\n", Latlnc );  /* spacing between rows in degrees 
"%f\n", WestLon );  /* longitude of west bound of box 
"%f\n", Lonlnc );  /* spacing between columns in degs 
"%f\n", BottomHgt ); /* height of bottom of box in km 
"%f\n", Hgtlnc ); /* spacing between grid levels in km */ 

*/ 
*/ 
*/ 
*/ 
*/ 

/* allocate space for grid 
t = (float *) malloc( Nl * 
y = (float 

location 

k) malloct Nl * 

h 
b 
u 
v 
z 

(float 
(float 
(float 
(float 
(float 

*) 
*) 
*) 
*) 

malloc 
malloc 
malloc 
malloc 

Nl 
Nl 
Nl 
Nl 

malloc( Nl 

data */ 
sizeof (float) 
sizeof(float) 

sizeof(float) 
sizeof(float) 
sizeof(float) 
sizeof (float) 
sizeof(float) 

// the z data locations 
// the data at that 

// work array 
// work array 
// work array 
// work array 
// contains the spline 

coefficients 
if (!t || !y || !h || !b || !u || !v || !z ) { 

} 

printf("Error: 
exit(l) 

out of memory\n"); 

// initialize t variable 
for( i = 0; i < Nl; i++ ) 
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t[i] = heightlndex[i]; //height index is a global array variable 
// alloc the mem for the working arrays used to perform the cubic spline 

g = (float *) malloc( Nr * Nc * Nl * sizeof (float) ); 

if dg) { 
printf("Error: out of memory\n"); 
exit(1); 

} 

// alloc the mem for the working arrays used to perform the cubic spline 
final = (float *) malloc( Nr * Nc *  ZRANGE * sizeof(float) ); 
if (!final) { 

printf("Error: out of memory\n"); 
exit (1); 

} 
#define G(ROW, COLUMN, LEVEL) g[(ROW) + ((COLUMN) + (LEVEL) * Nc) * Nr ] 
#define Final(ROW, COLUMN, LEVEL) final[(ROW)+((COLUMN)+(LEVEL)*Nc)*Nr] 

// cout << "1" << endl; getcharO; 
// read in the data from the first pass file 

// loop through the number of time steps 
for (it=0;it<NumTimes;it++) { 

// loop through the two variables (u and v) 
for (iv=0;iv<NumVars;iv++) { 

// read the data values from the passl file into the input buffer 
for( il = 0; il < Nl; il++ ) { 

for( ic = 0; ic < Nc; ic++ ) { 
for( ir = 0; ir < Nr; ir++ ) 

fscanf( f, "%f ", &G( ir, ic, il ) ); 

} 
} 

for( ir = 0; ir < Nr; ir++ ) { 
for( ic = 0; ic < Nc; ic++ ) { 

// load the vertical data into the work array y 
for( il = 0; il < Nl; il++ ) 

y[il] = G( ir, ic, il ); 
// now call the cubic spline routine 
cubicSpline( Nl, t, y, h, b, u, v, z ) ; 

// now loop through the desired data locations and call 
// the interpolation routine 
// load the results in the final buffer 

for( il = 0; il < ZRANGE; il ++ ) { 
Final( ir, ic, il ) = InterpSpline( Nl, t, y, z, 

interpHeightlndex[il] ); 
if(il != ZRANGE-1 && outputvert ) { 

InterpSpline( Nl, t, y, 
z,interpHeightlndex[il]+4 ); 

InterpSpline( Nl, t, y, 
z,interpHeightlndex[il]+8 ); 

InterpSpline( Nl, t, y, 
z,interpHeightlndex[il]+12 ); 

92 



InterpSpline( Nl, t, y, 
z, interpHeightIndex[il]+16 ); 

InterpSpline( Nl, t, y, 
z,interpHeightIndex[il]+20 ); 

} 
else 
outputvert = 0,- 

} 
} 

} 
// print the results 
for( il = 0; il < ZRANGE; il++ ) { 

for( ic = 0; ic < Nc; ic++ ) { 
for( ir = 0; ir < Nr; ir++ ) 

fprintf( o, "%f ", Final( ir, ic, il ) ); 
fprintf( o, "\n" ); 

} 
} 

} 

fclose(f); 
fclose(o); 

} 

void cubicSpline( int n, float * t,float * y,float * h,float * b, 
float * u,float * v,float * z ) { 

// cout << "In cubic spline" << endl; 

for( int i = 0; i < n-1; i++ ) { 
h[i] = t[i + l] -t[i] ; 
b[i] = (y[i+l]-y[i])/h[i]; 

} 
u[l] = (float) 2.0*(h[0]+h[l] ) ; 
v[l] = (float) 6.0*(b[l] -b[0] ) ; 
for(   i   =   2;   i   <  n-1;   i++   )    { 

u[i]   =  2.0* (h[i]+h[i-l] )- (float)   pow((double)   h[i-1] ,2.0)/u [i-1]; 
v[i]   =   6.0* (b[i] -b[i-l] ) -hti-1] *v [i-1]/u [i-1] ; 

} 
z [n-1]    =   0.0; 
for(   i  = n-2;   i   >  0;   i--   )    { 

z[i]   =   (v[i]-h[i]*z[i + l])/u[i]; 

} 
z[0]    =   0.0; 

} 

// Function: InterpSpline 
// This function uses the coefficients loaded in the z array to 
calculate the 
//   interpolated value at the location specified in variable x 
float InterpSpline( int n, float * t,float * y,float * z, int x ) { 

float diff, h, b, p; 
int i; 
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//  cout << "interp" << endl; 
// first find the appropriate portion of the spline 
for ( i = n-2; i > 0; i-- ) { 

diff = x - t [i]; 
if( diff > 0.0 ) 

break; 

} 
if( li ) 

diff   =  x   -   t [i]; 
// perform the  interpolation 
h =  t[i+l] -t[i] ; 

b  =   (y[i+l]-y[i])/h-h*(z[i+l]+2.0*z[i])/6.0; 
p  =   0.5*z[i]+diff*(z[i+1]-z[i])/(6.0*h); 
p  = b+diff*p; 

if(  outputvert   )   { 
FILE  *oo; 
oo =  fopen(   "vert.dat"   ,   "a"   ); 
if(   !oo  )    { 

cout << "Error opening vert.dat file"  ; 
exit (1); 

} 

} 

fprintf( oo, "%d %f\n", x, (y[i]+diff*p)); 
fclose ( oo ); 

} 

// return the results 
return (y[i]+diff*p); 

//  function: Kriging 
//    This is the constructor function for the Kriging class.  It takes 
//  care of allocating the memory for the wind field as well as the / // 
//  correction arrays. Two analysis arrays are required for the Kriging 
// system 
Kriging::Kriging() { 
// allocate memory for the data structures 
// these structures must be dynamically allocated due to local stack 
// limitation 

anall = (Field3DType *) malloc(sizeof(Field3DType)); 
anal2 = (Field3DType *) malloc(sizeof(Field3DType)); 
sensor = (Int2DType *) malloc(sizeof(Int2DType)); 
// make sure the memory is present to run the program 
if( anall == NULL || anal2 == NULL || sensor == NULL) { 

cout << "Insufficient memory to run" << endl; 
exit(l); 

} 
} 
//  function: -Kriging 
//  This function is the destructor for the Kriging class 
//  The function checks to make sure the pointers are still pointing to 
//  allocated memory.  The destructor for the observation data does the 
same 
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Kriging::~Kriging() { 
if( anall ) { 

free( anall );     //= (Field3DType *) 
malloc(sizeof(Field3DType)); 

anall = NULL; 

} 
if( anal2 ) { 

free( anal2 );     //= (Field3DType *) 
malloc(sizeof(Field3DType)); 

ana12 = NULL; 

} 
if ( sensor ) { 

free( sensor );    //sensor = (Int2DType *) 
malloc(sizeof(Int2DType)); 

sensor = NULL; 

} 
// call the destructor for the observation data 
obsWind.-ObsWindField(); 

// function: doKriging 
// This function is the main driving function for the Kriging anaylsis. 
It calls 
//   the other functions required to read in the sensor information as 
well as the 
//   observed data 
void Kriging::doKriging() { 

Field3DType *tempAnalPtr; // used for array swapping 
float obsu, obsv, anallru,anallrv; 
float corru, corrv, analulu, analulv, analuru, 

analurv,analllu,analllv; 
int iw, js;    // the array index(s) to the west and south of obs 

point 
obsListType * obsStepPtr; 
int n=0; 

// read in the sensor data (lat/lon) information from the sensor file 
obsWind.getSensorData(); 

// display the read in data --  debugging tool 
//  obsWind.displaySensorlnfo(); 

// get the observed wind data from the data file(s) 
numOfTimeSteps = obsWind.getWindData() ; 
// interigate the observed winds for accuracy 
// obsWind.test(); 

// get the actual data values 
if( dataCollection ) 

obsWind.collectData(); 

//  display the observed wind field 
// obsWind.displaylnput(); 

// loop through the time steps 
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obsStepPtr = obsWind.obsListHead; 
obsWind.currObs = obsStepPtr-observation; 
output2dAnalFieldHdr( "passlk" ); 

// outer loop steps through the time steps 
while( obsStepPtr != NULL ) { 

cout << "Kriging Time step " << n << endl; 
//  this loop steps through the vertical 
//  the inner loop counts the number of sensors with valid obs 

for( int z = 0; z < NUM_HEIGHTS; z++ ) { 

// initialize the counter for the current levels num of sensors 
numOfSensors[z] = 0; 

// first determine the num of sensors and thier indexes onthis level 
//  this is the actual number of sensors with accepted observations 

for( int n = 0; n < NUM_SENSORS; n++ ) { 
obsWind.currObs->data[n][z].getWind( &obsu, &obsv ); 

if( obsu != -999.0 && obsv != -999.0 ) 
sensor->index[z][numOfSensors[z]++] = n; 

} 
} 

// call the Kriging subroutine the first time 
KrigingSub( XRANGE, YRANGE, NUM_HEIGHTS ); 

if( dataCollection ) 
getAnalData( n, XRANGE, YRANGE ); 

// insert code to print the current time slot data to a data file 
cout << "Print Kriging Time step " << n++ << endl; 

output2dAnalField( "passlk"); 

// step through the linked list 
obsStepPtr = obsStepPtr->next; 

if( obsStepPtr != NULL ) 
obsWind.currObs = obsStepPtr-observation; 

} // end wile loop for time 

} 

// Function: getAnalData 
// This function collects the data on the 
void Kriging::getAnalData( int t, int xrange, int yrange ) { 

float meanU, meanV, stdU = 0, stdV = 0, tempu, tempv; 
float totAnalU, totAnalV; 
FILE * datafile; 

int z = 2;   // only look at the second level -- for now 

// cout << " in get anal data "<< endl; 

totAnalU = totAnalV = 0; 
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//   calculate the mean value 
for( int i = 0; i < xrange; i++ ) { 

for( int j =0; j < yrange; j++ ) { 

// get the analized values 
anall->data[i][j][z].getwindt &tempu, Stempv ); 
// add the new to the running total 
totAnalU += tempu; 
totAnalV += tempv; 

} 
} 
meanU = totAnalU/(xrange*yrange); 
meanV = totAnalV/(xrange*yrange); 

// cout << meanU << " " << meanV << endl; 

totAnalU = totAnalV = 0; 
// now calculate the variance and the std 
for( i = 0; i < xrange; i++ ) { 

for( int j =0; j < yrange; j++ ) { 
// get the observation 

anall->data[i][j][z].getwind( &tempu, &tempv ); 

// add the new to the running total 
totAnalU += (float) pow( (double)(tempu-meanU),2.0) 
totAnalV += (float) pow( (double)(tempv-meanV),2.0) 

} 
} 
stdU = (float) sqrt( (double) (totAnalU/(xrange*yrange))); 
stdV = (float) sqrt( (double) (totAnalV/(xrange*yrange))); 

float glat, glon, tempLat = MIN_LAT, tempLon = MIN_L0N; 
float leftU, leftV, rightU, rightV, estU, estV, temp2u, temp2v; 
int p, q; 

// find the analysed value 
// first get the lat/lon of the withdeld observation 
for( int n = 0; n < NUM_SENSORS; n++ ) { 

// get the observation 
if( idList[t] == obsWind.sensorlnfo[n].id ) { 

glat =  obsWind.sensorlnfo[n].latitude; 
glon =  obsWind.sensorlnfo[n].longitude; 

break; 

} 
} 

// now get the location of the four surrounding lat/lon pairs 
// find the latitude index 
for( p = 0; p < XRANGE; p++ ) { 

if( (tempLat + LAT_STEP) > glat ) 
break;       // found lower 

tempLat += LAT_STEP; 

} 
// find the longitude index 
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for( q = 0; q < YRANGE; q++ ) { 
if( (tempLon + L0N_STEP) > glon ) 

break;       // found left 
tempLon += L0N_STEP; 

} 

//  now perform the linear interpolation to estimate the estimate 

// get the wind values on the west side 
anall->data[p][q+1][z].getWind( &tempu, fctempv ); 
anall->data [p] [q] [z] .getWind( &temp2u, &temp2v ); 

// interpolate the U and V values 
leftU = temp2u + ((glat - tempLat)/(float)LAT_STEP)*(tempu - temp2u); 
leftV = temp2v + ((glat - tempLat)/(float)LAT_STEP)*(tempv -temp2v); 

// get the wind values on the east side 
anall->data[p+1] [q+1] [z] .getWind( &tempu, &tempv ); 
anall->data [p+1] [q] [z] .getWind( &temp2u, &temp2v ) ; 

// interpolate the U and V values 
rightU = temp2u + ((glat - tempLat)/(float)LAT_STEP)*(tempu- temp2u); 
rightV = temp2v + ((glat - tempLat)/(float)LAT_STEP)*(tempv-temp2v); 

// now get the final estimate 
estU = leftU + ((glon - tempLon)/(float)L0N_STEP)*(rightU - leftU); 
estV = leftV + ((glon - tempLon)/(float)LON_STEP)*(rightV - leftV); 

datafile = fopen( "anal.dat", "a" ) ; 
actual [t] .getWind( stempu, &tempv ); 
fprintf( datafile, "%d %f %f ", idList[t], tempu, tempv ); 
mean[t].getWind( &tempu, &tempv ); 
fprintf( datafile, "%f %f ", tempu, tempv ); 
std[t].getWind( &tempu, &tempv ); 
fprintf( datafile, "%f %f ", tempu, tempv ); 
fprintf( datafile, "%f %f ", estU, estV ); 
fprintf( datafile, "%f %f ", meanU, meanV ); 
fprintf( datafile, "%f %f\n", stdU, stdV ); 
fclose ( datafile ); 

} 
// these variobles are global here 
float semiVario[NUM_SENS0RS+1][NUMJ3ENSORS+1]; 
float semiVarioInv[NUM_SENSORS+l][NUM_SENSORS+l]; 

// function: KrigingSub 
// This function performs the meat of the Kriging routine 
void Kriging::KrigingSub( int xrange, int yrange, int zrange) { 

float glat,glon,tempu,tempv,obsu,obsv, distance, covar; 
int x, y, matrixSize; 

//float semiVario[NUM_SENSORS+l][NUM_SENS0RS+1]; 
//float semiVarioInv[1][1]; 

float w[NUM_SENSORS+l]; 
float d[NUM_SENSORS + l] ; 
int pivot; 
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float big, dummy; 
float sum; 

// outer loop steps through the vertical 
for( int z = 0; z < zrange; z++ ) { 

// now perform the analysis 
// loop through the 2-D field 

// if there are no sensors at the level skip it. 
if( numOfSensors[z] == 0 ) 
continue; 

matrixSize = numOfSensors[z]+1; 

// load the coVariance matrix for this level 
for( int n = 0; n < numOfSensors[z]; n++ ) { 

for( int 1 = n; 1 < numOfSensors[z]; 1++ ) { 
obsWind.currObs->data[sensor- 

>index[z][n]][z].getWind(&obsu,&obsv); 
obsWind.currObs->data[sensor- 

>index[z][1]][z].getWind(&tempu,&tempv); 

// get the distance between the sensors 
distance = dist( obsWind.sensorlnfo[sensor- 

>index[z][n]].latitude, 
obsWind.sensorlnfo[sensor->index[z][n]].longitude, 
obsWind.sensorlnfo[sensor->index[z][1]].latitude, 
obsWind.sensorlnfo[sensor->index[z][1]].longitude ); 

covar = coVariance( distance ); 
semiVario[n][1] = covar; 
semiVario[l][n] = covar; 

} 
} 

// finish initializing the last row/column of the matrix 
for( n = 0; n < numOfSensors[z]; n++ ) { 

semiVario[n][numOfSensors[z]] = 1.0; 
semiVario[numOfSensors[z]][n] =1.0; 

} 
semiVario[numOfSensors[z]][numOfSensors[z]]= 0.0; 

if( display ) { 
// invert the matrix 

printf( "\n" ); 
for(int q = 0; q<matrixSize; q++ ) { 

for(int p = 0; p<matrixSize; p++ ) { 
printf( "%2.6f ", semiVario[p][q] ); 

} 
printf( "\n"); 

} 
} 

// the inversed matrix starts out as the identity matrix 
for( int i = 0; i < matrixSize; i++ ) { 
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for( int k=0; k< matrixSize; k++ ) { 
if( k == i ) 

semiVarioInv[i][k] =1.0; 
else 

semiVarioInv[i][k] = 0.0; 

} 
} 

// start the matrix inversion routine 

for( int k = 0; k < matrixSize; k++ ) { 

// perform partial pivoting 
pivot = k; 
big = (float) fabs( semiVario[k][k]); 

for( int ii = k +1; ii < matrixSize; ii++ ) { 
dummy = (float) fabs( semiVario[ii][k] ); 
if( dummy > big ) { 

big = dummy; 
pivot = ii; 

} 
} 
if( pivot != k ) { 

cout << "pivoting" << endl; 
for( int jj = 0; jj < matrixSize; jj++ ) { 

// swap the rows in the original matrix 
dummy = semiVario[pivot][jj]; 
semiVario[pivot][jj] = semiVario[k][jj]; 
semiVario[k][jj] = dummy; 

// now swap the rows of the identity matrix 
dummy = semiVarioInv[pivot][jj]; 
semiVarioInv[pivot][jj] = semiVarioInv[k][jj]; 

semiVarioInv[k][jj] = dummy; 

} 
} 

// normalize the row 
dummy = semiVario[k] [k] ; 
for( int j =0; j < matrixSize; j++ ) { 

if( !dummy ) { 
cout << "Error - divide by zero" << endl; 
exit( 1); 

} 
semiVario[k][j] = semiVario[k][j]/dummy; 
semiVarioInv[k][j] = semiVarioInv[k][j]/dummy; 

} 
for( int i = 0; i < matrixSize; i++ ) { 

if( i!=k ) { 
dummy = semiVario[i][k]; 
for( int j =0; j < matrixSize; j++ ) { 

semiVario[i][j] = semiVario[i][j]- 
dummy*semiVario[k][j]; 

semiVarioInv[i][j] = semiVarioInv[i][j]- 
dummy*semiVarioInv[k][j]; 

} 
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} 
} 

} 

// invert the matrix 
for( q = 0; q<matrixSize; q++ ) { 

for(int p = 0; p<matrixSize; p++ ) { 
printf( "%2.6f ", semiVarioInv[p][q] ); 

} 
printf( "\n"); 

} 

for( int j =0; j < yrange; j++ ) { 
glat = MIN_LAT+LAT_STEP*j; 

for( int i = 0; i < xrange; i++ ){ 
glon = MIN_LON+LON_STEP*i; 
// now load the D matrix 
for( n = 0; n < numOfSensors [z]; n++ ) { 

distance = dist( obsWind.sensorlnfo[sensor- 
>index[z][n]].latitude, 

obsWind.sensorlnfo[sensor->index[z][n]].longitude, 
glat, glon); 

d[n] = coVariance(distance); 

} 
d[n] = 1.0; 

// multiply the matrix together 
// to determine the weights 
for( int p = 0; p < matrixSize; p++ ) { 

for( int q = 0; q < 1; q++ ) { 
sum = 0.0; 
for( int k = 0; k < matrixSize; k++ ) 

sum += semiVarioInv[p][k]*d[k]; 
w[p] = sum; 

} 
} 

// initialize the analysed field 
tempu = tempv = 0.0; 

// now step through the sensors to calcualate the estimate 
for( n = 0; n < numOfSensors [z]; n++ ) { 

obsWind.currObs->data[sensor- 
>index[z][n]][z].getWind(&obsu,&obsv); 

tempu = tempu + w[n]*obsu; 
tempv = tempv + w[n]*obsv; 

} 
anall->data[i][j][z].setwind(  tempu,   tempv  ); 

} 
} 

} 
} 

// function: dist 
//  This function accepts in the lat Ion pairs and calculates the 
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// distance between them in degrees squared 
float Kriging::dist( float latl, float lonl, float lat2, float lon2 ) { 
//  cout << latl << " " << lonl << " " << lat2 << " " << lon2 << endl; 

return (pow((lat2- 
latl),2.0)+pow(cos((double)(latl+lat2)*PI/(2.0*180.0)),2.0)* 

pow((lon2-lonl) , 2.0)) ; 

#define Cl 9.9 
#define CO 4.3 
ftdefine A 0.44 

// function: coVariance 
//  This function accepts distance between them in degrees squared 
// and calculates the covariance values 
float Kriging::coVariance( float dist ) { 
//  cout << "co "; 

if( dist ) 
return ( Cl*(exp( -3.0*dist/A ) ) ) ; 

else 
return( Cl + CO ); 

} 

// function: displayAnalField 
// This function gets the user input for the level and then 
// displays the analysed winds at the level specified 
void Kriging::displayAnalField() { 

float tempu, tempv; 
int level; 

for( int Z = 0; z < NUMJHEIGHTS; z++ ) 
cout << numOfSensors[z] << " " ; 

cout << "enter level? "; 
ein >> level; 
while ( level != 99 ) { 

for( int j =0; j < YRANGE; j++ ) { 
for( int i = 0; i < XRANGE; i++ ) { 

anall->data[i][j][level].getWind( &tempu, &tempv ) ; 
printft "% 2.2f ",tempu ); 
//printf( "% 2.2f/% 2.2f ",tempu,tempv ); 

} 
printft "\n"); 

} 

cout << "enter level? 
ein >> level; 

} 
// function: output2dAnalFieldHdr 
// This function prints the required information concerning number of 
time steps 
// size of the output data fields, lat/lon data, lat/lon step size, .. 

int Kriging::output2dAnalFieldHdr( char * filename ) { 
FILE * outdatafile; 
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obsListType * obsStepPtr; 

// open the file -- overwrite any existing file 

outdatafile = fopen( filename, "w" ); 

// check to make sure the file opened 
if( !outdatafile ) { 

cout << "File could not be opened" << endl; 
exit(l);    // exit loop and program 

} 
cout << "Printing Header info to" << filename << endl; 

// now print the appropriate data 
// number of time steps --50 max 
fprintf( outdatafile, "%d\n", numOfTimeSteps ); 
// number of variables 
fprintf( outdatafile, "2\n"); 
// the data array dimmensions 
fprintf( outdatafile, "%d %d %d\n", XRANGE, YRANGE, NUM_HEIGHTS); 
// variable names 
fprintf( outdatafile, "U\nV\n" ); 
// time stamps for each time step 
// must loop through and print 
obsStepPtr = obsWind.obsListHead; 
while( obsStepPtr ) { 

fprintf( outdatafile, "%ld ", obsStepPtr->observation->time ); 
obsStepPtr = obsStepPtr->next; 

} 
fprintf( outdatafile, "\n" ); 
// date stamp for each data set 
// must loop through and print 
obsStepPtr = obsWind.obsListHead; 
while( obsStepPtr ) { 

fprintf( outdatafile,"%ld ", obsStepPtr->observation->date ); 
obsStepPtr = obsStepPtr->next; 

} 
// northern most latitude 
fprintf( outdatafile, "\n%f\n", MAX_LAT); 
// the size of the incriment for latitude steps 
fprintf( outdatafile, "%f\n", LAT_STEP ); 
// western most longitude 
fprintf( outdatafile, "%f\n",MIN_LON-360.0 ); 
// the size of the incriment for latitude steps 
fprintf( outdatafile, "%f\n", LON_STEP); 
//height of the lowest data AGL --12 feet 
fprintf( outdatafile, "0.0036576\n"); 
fprintf ( outdatafile, "%f\n", ALT_STEP*0.0003048) ; 
fclose ( outdatafile ); 
return 1; 

} 

// function: output2dAnalField 
// This function prints the actual data to the first pass file.  This 
data has not 
// been interpolated vertically to the equally spaced vertical grid 
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int Kriging::output2dAnalField( char * filename) { 
FILE * outdatafile; 
float outu, outv; 

// begin the outer loop -- allows multiple files to be read in 
// open the file to append to it 

outdatafile = fopen( filename, "a" ); 

// check to make sure the file opened 
if( !outdatafile ) { 

cout << "File could not be opened" << endl; 
exit(l);    // exit loop and program 

} 
// first print the u value for every height 

for( int z = 0; z < NUM_HEIGHTS; Z++ ) { 
for( int j =0; j < YRANGE; j++ ) { 

for( int i = 0; i < XRANGE; i++ ) { 
anall->data[i][j][z].getWind( &outu, &outv ); 

fprintf( outdatafile, "% f ", outu ); 

} 
fprintf( outdatafile, "\n" ); 

} 
} 
// then print out the v value at each height 
for( z = 0; z < NUM_HEIGHTS; z++ ) { 

for( int j =0; j < YRANGE; j++ ) { 
for( int i = 0; i < XRANGE; i++ ) { 

anall->data[i][j][z].getwind( &outu, &outv ); 
fprintf( outdatafile, "% f ",outv ); 

} 
fprintf( outdatafile, "\n" ); 

} 
} 
fclose ( outdatafile ); 
return( 1 ); 

} 
float Kriging::semiVarioFunc( float dist ) { 

return dist; 

} 

//  start the main function -- this is the driver for the 
//     entire program 
int main( void ) { 

int datain; 

cout << "Display Data? (l=yes, 0=no): "; 
ein >> display; 
cout << "Collect Data? (l=yes, 0=no): "; 
ein >> dataCollection; 
cout << "Method? (l=Barnes, 2=Kriging): "; 
ein >> datain; 

if( datain == 1 ) 
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callBarnes(); 
else if( datain == 2 ) 

callKriging(); 
else 

cout << "Invalid selection."; 
cout << "I can do all things through Christ who strengthens me!" 
return 1; 

} 
void callKriging( void ) { 

Kriging anal2Wind; 
cout << "Kriging Testl" << endl; 
anal2Wind.doKriging(); 
cout << "After do Kriging" << endl; 
anal2Wind.displayAnalField(); 
anal2Wind.-Kriging(); 

doVerticallnterpolationO ; 

} 

void callBarnes( void ) { 
Barnes analwind; 
cout << "Barnes Testl" << endl; 
analWind.doBarnes(); 
analWind.displayAnalFieldO ; 
analWind.-Barnes(); 
doVerticallnterpolationO; 

} 
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Appendix B: Wind Tower Data 

ID  Lat Lon Height 
061 28 30 46.8000 279 26 19.3200 2.52 
1102 28 34 10.9200 279 25 48.9600 2.43 
3132 28 37 32.1600 279 21 34.4400 0.00 
0001 28 26 1.8012 279 25 35.7837 3.21 
0003 28 27 35.3242 279 28 23.8319 3.66 
0019 28 44 36.5204 279 17 58.0930 0.60 
0022 28 47 50.9066 279 15 43.9209 0.17 
0036 28 28 19.5471 279 27 38.4626 2.08 
0040 28 33 43.8099 279 25 17.2069 3.03 
0041 28 35 1.100   279 24 56.7270 2.90 
0108 28 32 9.0653  279 25 30.7496 2.91 
0112 28 36 50.7623 279 22 46.7753 2.01 
0303 28 27 35.925  279 25 43.95 2.5 
0311 28 36 9.8910  279 21 31.04 2.3 
0393 28 36 37.7536 279 23 35.2661 3.44 
0394 28 36 20.3539 279 23 54.1554 3.46 
0397 28 37 45.8793 279 22 35.285 2.36 
0398 28 37 29.3062 279 22 54.5717 2.04 
0403 28 27 30.86   279 24 27.672 2.60 
0412 28 36 22.5160 279 19 34.0590 2.9 
0415 28 39 30.8617 279 18 0.6606 2.43 
0418 28 42 19.9533 279 16 24.7431 0.88 
0421 28 46 31.6775 279 11 44.4169 1.40 
0506 28 30 56.9663 279 21 36.0032 1.73 
0509 28 33 44.2202 279 19 50.1415 2.24 
0511 28 35 54.8076 279 19 6.0396 0.79 
0512 28 36 57.6467 279 18 25.0582 1.28 
0513 28 37 50.7106 279 17 50.2348 3.16 
0714 28 38 35.2840 279 15 6.5332 2.35 
0803 28 27 47.4360 279 19 47.3590 3.30 
0819 28 44 47.0571 279 7  45.4213 8.14 
1000 28 24 28.5062 279 14 22.6214 9.14 
1007 28 31 37.8450 279 13 32.8740 1.1 
1012 28 36 20.2247 279 10 30.7188 9.17 
1204 28 29 3.4308  279 12 51.9385 8.11 
1500 28 24 41.2004 279 4  17.6290 8.07 
1612 28 37 2.3245  279 2  30.9478 3.14 
1617 28 40 34.3274 279 0  4.5389 1.85 
2008 28 31 23.2770 278 59 24.1613 15.6 
2016 28 38 56.0577 278 55 50.4109 7.39 
2202 28 26 30.0407 278 58 15.1926 20.09 
9001 28 23 35.5266 279 10 43.8410 6.65 
9404 28 20 17.4517 279 16 4.4544 6.43 
1605 28 29 45.4558 279 6  56.6325 2.98 
1108 28 32 29.688  279 11 18.24 0.00 
0110 28 34 10.989  279 24 48.909 2.5 
0805 28 31 6.0920  279 18 13.5320 2.5 
062 28 30 46.8000 279 26 19.3200 2.52 
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1101 28 34 10.9200 279 25 48.9600 2.43 
3131 28 37 32.1600 279 21 34.4400 0.00 
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Appendix C: Distance Calculations 

The distances computed in this thesis are computed in latitude degrees. 

They are based upon the approximations that Axwy and Axyz in Figure 19 are 

right triangles. This allows the distance to be written: 

D2 = a2 (A^)
2
 + (a cos(^))2 (AA)

2
 , 

where a is the earth's radius, A^=^2-^, <fi=-{0x + 02), and AA = A2-Al. This 

equation can be rearranged to the following form: 

d = =^- = (A^)2 + cos2 (/>{AAf. 
a 

The distances remained squared because Barnes' method used them squared. 

They were not changed for Kriging to ensure any inaccuracy resulting from the 

approximation was applied equally to both methods. 
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Figure 19 - Distance Approximation Figure 
This figure illustrates the approximations used in the calculation of the distances 
on a spherical surface. The distance, D, is being calculated using Pythagorean's 
Theorem 
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