
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-1-1999

COBOL Reengineering Using the Parameter Based Object COBOL Reengineering Using the Parameter Based Object

Identification (PBOI) Methodology Identification (PBOI) Methodology

Sonia de Jesus Rodrigues

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Rodrigues, Sonia de Jesus, "COBOL Reengineering Using the Parameter Based Object Identification
(PBOI) Methodology" (1999). Theses and Dissertations. 5228.
https://scholar.afit.edu/etd/5228

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=scholar.afit.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5228?utm_source=scholar.afit.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

COBOL REENGINEERING USING THE
PARAMETER BASED OBJECT IDENTIFICATION

(PBOI) METHODOLOGY

THESIS

Sonia de Jesus Rodrigues, Captain, Brazilian Air Force

AFIT/GCS/ENG/99J-02

19990629 051
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/99J-02

COBOL REENGINEERING USING THE
PARAMETER BASED OBJECT IDENTIFICATION

(PBOI) METHODOLOGY

THESIS

Sonia de Jesus Rodrigues, Captain, Brazilian Air Force

AFIT/GCS/ENG/99J-02

Approved for public release; distribution unlimited

DTIC QUALITY INSPECTED 4

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of Ministerio da Aeronautica do Brasil.

AFIT/GCS/ENG/99J-02

COBOL REENGINEERING USING THE PARAMETER BASED OBJECT

IDENTIFICATION (PBOI) METHODOLOGY

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Sonia de Jesus Rodrigues, B.S.

Captain, Brazilian Air Force

June 1999

Approved for public release; distribution unlimited

AFIT/GCS/ENG/99J-02

COBOL REENGINEERING USING THE PARAMETER BASED OBJECT

IDENTIFICATION (PBOI) METHODOLOGY

Sonia de Jesus Rodrigues, B.S.

Captain, Brazilian Air Force

Approved:

hairman

C^WH^ (• A/^XZ^ UI^YX,

Dr. Thomas C. Hartrum

Dr. Scott A. DeLoach

date

-^ Wfyro ??
fl date

7 G.. Li/o r)
date

Acknowledgements

This research was possible only with the help and support of many. First, I would

like to thank my family for the love and support which not only made this research

possible, but also worthwhile and my godchildren Clara Rodrigues and Carlos Eduardo

Marcello for their letters and drawings that gave me breaks during my long hours of

work. I would like to thank my friends Captain Dinä Moraes and Major Ferreira Gomes

and his family for being so supporting, plus the entire supporting cast from the

International Military Student Office, but most specifically Mrs. Annette Robb. Thanks

also go to Major Talbert, my academic advisor who always took time to help me relax

wherever we met at the Hawkeye lab, and to Dave Doak for being both a source of

assistance at lab and a kind person. I would like to thank LtCol Lino Cruz my chief in

the Brazilian Air Force(FAB), for being the first person to believe in me, even before I

believed in myself and who gave me - with others members of the FAB - the opportunity

to do this Master's Degree. I would also like to thank the members of my committee, Dr.

Hartrum and Maj. Scott Deloach for making the KBSE meetings worthwhile. I would

like thank Captain Dinä who worked with me on the translation system phase and shared

many weekends and nights with me at the Hawkeye lab as we both strove to understand

Cobol Refine software. The results from the work on this phase form part of both our

respective theses. I would like to express my deep admiration to the faculty and staff of

the Air Force Institute of Technology, School of Engineering for helping me to attain my

goals and for their dedication and enthusiasm in teaching and research. Finally I would

like to express my appreciation for the three basic supports needed to accomplish this

mission at AFIT: my advisor Major Robert Graham, who put his trust in me as a student

in

to carry out this research, and provided a steady stream of mental guidance. His

assistance laid the foundation for all the research represented in this thesis, and I thank

him for his unflagging support despite the strains imposed on him. Next, I thank my

English teacher Paul Carbonaro for being my sense of vocabulary and expression.

Without him, my dissertation would not be what it is today. His effort in, and dedication

to understanding my work has been more than a professional. I must thank my dearest

friend LtCol William Atella for providing emotional support. He gave me the initial

encouragement to come and study in the US. Even many miles away, he has always been

"present" to give me continued support and strength. He believed in me and gave me the

emotional push needed to accomplish this mission even though I am far from my family,

friends and country.

Lastly, I must offer my gratitude to God for giving me strength when I needed it

most.

This thesis is dedicated to my late father.

IV

Table of Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

Abstract x

I. Introduction 1

1.1. Background 1

1.2. Problem Statement 6

1.3. Overview of the rest of the document 8

n. Literature Review 9

m. Methodology 25

ELI. Overview 26

ni.2. Approach of the Translation System 26

m. 3. Cobol versus GIM Characteristics and Restrictions 29

IH.4. Reengineering Methodology 33

in.5. Methodology Conclusion 34

IV. Design of the Reengineering System 35

IV. 1. Overview 35

IV.2. Classification of the Cobol Statements 36

IV.3. The Transformation System 36

IV.4. The Translation System 54

IV.5. Modifications to the PBOI Prototype 69

rV6. Summary 71

V. Analysis of the Methodology applied to FAB Cobol Legacy System 74

V.l.The Brazilian Air Force Cobol Legacy System Transformation 74

V.2. Converting Cobol System to the GIM 74

V.3.ConvertingGIMtotheGOM 75

VASummary 101

VI. Conclusions and Suggestions 103

VI.1. Introduction 103

VI.2. GIM conclusions 103

VI.3. GOM conclusion 105

VI.4. Parameter-Based Object Identification Method Conclusion 106

VI.5. Contributions 108

AppendixA. Cobol Legacy System 110

Appendix B. Legacy System Imperative Code 121

Bibliography 134

Vita 137

VI

List of Figures

Figure Page

1. Reengineering Process 2

2. Overall View of Reengineering Methodology 5

3. GM Domain Model 6

4. GOM Domain Model 6

5. Overall View of Research 8

6. PBOI Case Example 11

7. Overall View of Transformation and Translation Systems 35

8. Imperative Data Type Transformation 59

9. Imperative Arithmetic Expression Transformation 60

10. Imperative Conditional Expression Transformation 61

11. Imperative Input/Output Transformation 62

12. Imp-Subprogram-Call Transformation 63

13. System Diagram 77

14. Sigma 3 Conversion Example 91

15. Sigma 3 Conversion Example (CLASS-15) 92

16. Sigma 3 Conversion Example(CLASS-8) 93

17. Sigma 3 Conversion Example(CLASS-17) 94

18. Sigma 3 Conversion Example(CLASS-31) 95

19. Initial Class-System 97

20. Final Class-System 97

21. New Class Originated from Overlapping Classes 98

Vll

22. Loss of Functionality - Slicing Problem 100

23. Loss of Functionality-Messages Placed Incorrectly 102

24. Gom-record 106

Vlll

Table Page

1. Subprogram Categories 9

2. PBOI Cases 10

3. Cobol Constructs Classification 37

4. Cobol Constructs Recognized by the Translation System 67

5. Cobol Constructs X GIM Constructs 72

6. Sliced Subprograms 78

7. Category Subprograms and Produced Output Parameters 83

IX

Abstract

This research focuses on how to reengineer Cobol legacy systems into object-

oriented systems using Sward's Parameter Based Object Identification (PBOI)

methodology. The method is based on relating categories of imperative subprograms to

classes written in object-oriented language based on how parameters are handled and

shared among them. The input language of PBOI is a canonical form called the generic

imperative model (GIM), which is an abstract syntax tree (AST) representation of a

simple imperative programming language. The output is another AST, the generic object

model (GOM), a generic object oriented language. Conventional languages must be

translated into the GIM to use PBOI. The first step in this research is to analyze and

classify Cobol constructs. The second step is to develop Refine programs to perform the

translation of Cobol programs into the GIM. The third step is to use the PBOI prototype

system to transform the imperative model in the GIM into the GOM. The final step is to

perform a validation of the objects extracted, analyze the system functionally, and

evaluate the PBOI methodology in terms of the case study.

COBOL REENGINEERING USING THE PARAMETER BASED OBJECT

IDENTIFICATION (PBOI) METHODOLOGY

I. Introduction

1.1 Background.

Organizations have many legacy systems performing crucial work that may

represent years of accumulated experience and knowledge. A legacy system is a large

software system and might be written in assembly or third-generation language. The

systems are becoming too expensive to maintain and simply replacing them may also be

too expensive. So, reengineering should support examination and alteration of a legacy

system to reconstitute or implement it into a new form [2].

Reengineering is a technique that is becoming more and more important. The

interest in reengineering is originated by the need to leverage legacy systems. Previous

activities associated with legacy systems were just maintenance with small localized

changes until the systems were replaced. Systems were changed to correct bugs or to

support new requirements.

Reengineering is the examination and alteration of a subject system to reconstitute

it in a new form, followed by the implementation of the new form [2]. Reengineering

generally includes some form of reverse engineering (to achieve a more abstract

description) followed by some form of forward engineering or restructuring [2]. Reverse

engineering can be characterized as analyzing software to identify the system

components and their interactions, and represent the system on a high level of

abstraction.

Figure 1 shows a generalized view of the process of reengineering legacy code as

developed by Byrne [1].

Legacy System Target System

Figure 1 Reengineering Process

Nowadays, legacy systems that are in use in several military units and other

business organizations play fundamental parts and have great credibility for the users.

Most of the existing systems are mainframe and Cobol-based. Some of the common

problems presented by those systems include unstructured code, inefficient execution,

difficulty of maintenance, bad documentation and complexity. Those problems cause

great damage to the businesses. Therefore, the systems should be migrated by using a

paradigm that makes better performance, easy maintenance and reusability possible.

The object-oriented paradigm with its promise of re-usability, extensibility, and

maintainability has great appeal to organizations and encourages them to exchange their

legacy systems. Korson and McGregor [5] characterize the object-oriented paradigm

using the following concepts:

Classes - A class is a template that defines the attributes and operations for each

instance of the class.

Objects - Object is an instance of a class. Objects model real-world entities that

have state, behavior, and identity.

Methods - A method is a sequence of object-oriented statements that implement

a specific behavior.

Messages - A message invokes a specific method in an object. Messages are sent

to a target object that must be able to execute the method being invoked.

Inheritance - The classes in an object-oriented design are organized in a class

hierarchy where certain classes inherit the attributes and operations from other classes in

the hierarchy.

Polymorphism - In an object-oriented design, it is possible to have methods

(from different classes) with the same name. Polymorphism means the appropriate

method will be executed based on the class of an object instance.

Typical legacy systems are written in some imperative program language, such as

Fortran or Cobol. System maintenance is done and its documentation and structure

degraded, so the only reliable source of information about it is the source code.

Therefore, the reengineering must involve reverse engineering to increase understanding

in design level and create representations for it. After reverse engineering, forward

engineering should be applied for renovation of the programs into an object-oriented

language.

Reverse engineering must apply some techniques to determine the abstract

elements and extract objects. There are several techniques for understanding program

constructs and identifying objects. One is the Global Based Object Identification (GBOI)

technique, which establishes links to routines that manipulate global and static data [3].

Another one, Type Based Object Identification (TBOI), establishes relationships between

data types and routines that use them for formal parameter or return values [3]. The

Parameter Based Object Identification (PBOI) was defined by Major Sward in his thesis

"Extracting Functionally Equivalent Object-Oriented Designs from Legacy Imperative

Code" [19]. It is based on relating categories of imperative subprograms into classes,

based on how parameters are handled and shared among them. The PBOI method

provides a rationale for converting imperative subprograms into classes and methods that

implement the subprograms. Figure 2 shows the overall view of this methodology [6].

PBOI was developed with Fortran in mind, since Fortran for most of its history and usage

lacks the elaborate type definition capabilities that Cobol and other imperative languages

have and on which techniques such as TBOI depend. Despite this mindset, PBOI was

designed to be applicable to any imperative program.

The input language of PBOI is a canonical form called the generic imperative

model (GIM), which is an abstract syntax tree (AST) representation of a simple

imperative programming language. The GIM models the variables, expressions,

assignment statements and control flow typically built into imperative programming

language. Figure 3 shows a partial representation of the GIM domain model.

Conventional languages must be translated into the GIM to use PBOI. Sward

demonstrated this by writing a Fortran to GIM translator. The output is another AST, the

Imperative

Paradigm

Requirements
Specifications

Program
Slices

Generic
Imperative

Model

Legacy
Code

Object-Oriented

Representation

PBOI

Generic
OOA Model

>■

Generic
OOD Model

Generic
OOP Model

>

Object-Oriented

Paradigm

Figure 2 Overall View of Reengineering Methodology

generic object model (GOM); a canonical generic object oriented language. The GOM

models objects, classes, methods and messages typically built into an object-oriented

programming language. Figure 4 shows a partial representation of the GOM domain

model. The GOM must be translated into a conventional language, such as ADA, C++

or Java, for compilation and execution.

Sward's claim is that many languages, such as Ada, C, Pascal or Cobol could also

be translated and PBOI applied. My research objective is to determine whether or not

PBOI is a viable tool for reverse engineering Cobol systems.

imperative-domain

imperative-design imperative-statemente

imperative-io / I imperative- imperative-
/ \ iteration procedure

imperative-assignment/ ; i; __ M jmperatjve_imperative-data-

function type

imperative^subprogram

imperative-variabt

imperative-data-
construct

imperative-procedure-call
imperative-selection

imperative-
expression

imperative-expression

Figure 3 GIM Domain Model

GOM-design

GOM-io

GOM-
assignment

GOM-
statement

GOM;data-construct

/ \
GOM-

expression

GOM
variable

GOM method GOM-data
^^ / —._____ type
GOM-iteration / GOM.functional

GOM-procedural- method
method GOM-functional- /

message
GOM-procedural-message GOM-attribute

access

GOM-selection

Figure 4 GOM Domain Model

1.2 Problem Statement.

This research focuses on how to perform reengineering of Cobol legacy systems

into object-oriented systems using the PBOI methodology. PBOI formal transformations

extract an object-oriented design equivalent to the legacy imperative code and it is

feasible to automate this methodology. The Sward dissertation was based on legacy

Fortran imperative code. The objective of the research is to evaluate the methodology

that Sward developed, to determine whether or not it is a viable tool for reverse

engineering Cobol systems.

The GIM is programming language independent; in this way, the GIM allows the

PBOI prototype to be easily extended to other languages. The first step of the research is

to translate Cobol code into the Generic Imperative Model (GIM) Abstract Syntax Tree

(AST). So, it is necessary to construct an automatic transformation system. The

translation part of the thesis was done in collaboration with Captain Dinä Moraes (FAB).

Her research then evaluated the ability of the GIM to handle the Cobol language and

proposed some changes [24].

The second step is to extract an object-oriented design by using the PBOI

methodology, as currently implemented by Sward. The extracted object code is

represented in the GOM, which has been developed to model objects, classes, methods

and messages.

The third step is to analyze the extracted objects and verify their consistency with

the original imperative code to validate that the object oriented design is functionally

equivalent to the legacy system, as Sward claims he has proven.

The fourth step is to analyze the objects to see if they constitute a reasonable or

plausible object-oriented design, or at least can serve as a starting point for further design

refinement.

Figure 5 shows an overall view of this research.

Figure 5 Overall View of Research

analyze
design

IF

1.3 Overview of the rest of the document.

The remainder of this thesis proceeds as follows. Chapter II reviews previous

work in the area of reengineering. Chapter HI describes the methodology used to

transform a Cobol legacy system into the GOM. Chapter IV presents the design of the

transformation and translation systems with the classification of the Cobol constructs, and

also describes the PBOI prototype. Chapter V describes the Brazilian Air Force Cobol

legacy system transformation into the GOM. Chapter VI presents conclusions about

GIM, GOM and PBOI methodology.

n. Literature Review

This section reviews previous work in the area of reengineering. This review

includes approaches in reverse and forward engineering. Reverse engineering supports

reengineering, and forward engineering supports the implementation of a new system

with the same functionality as the legacy system.

2.1 Sward's work is based on PBOI methodology [19]. The PBOI methodology

classifies all imperative subprograms into six categories. Table 1 shows this

classification.

Table 1 Subprogram Categories

Number of Calls to other
Subprograms

Number of Data Items
produced by the
Subprogram

Zero Greater than zero

Zero Category 0 Category 1

One Category 2 Category 3

Greater than one Category 4 Category 5

The processes of slicing and masking convert the category 4 and 5 subprograms

into category 2 and category 3 subprograms. The slicing process builds one program for

each output parameter, and each program is composed of the statements involved in

changing the value of the data item produced in that subprogram. The masking process

creates local variables. They substitute the variables that are different from the one

produced in the subprogram, and which are involved in the slicing that transforms the

subprogram into category 2 or 3.

After, the procedures are converted into methods and classes.

For subprograms in category 2, the formal parameters are converted into attributes

of a class and the subprogram is converted into a method of the class.

For category 3 subprograms, the subprogram is converted into a method of the

class and initially the formal parameters are converted into attributes of a class. Later,

the attribute can be converted into parameters of the calling method or of the called

methods. The filtering to determine which parameter will be converted into an attribute

(or a parameter of another class) is based on the classification of the parameters. The

PBOI methodology classifies the subprogram parameters into four cases. Table 2 shows

this classification.

Table 2 PBOI CASES (parameter classification)

Actual in the called subp. is Actual in the called subp. is

Formal in the calling subp. not Formal in the calling subp

Formal in the called

subprog. Is Attribute in PBOI CASE 1 PBOI CASE 3

the called ,

subprogram/class

Formal in the called

subprog. Is Parameter in PBOI CASE 2 PBOI CASE 4

the called

subprogram/class

10

Consider the example below of two imperative subprograms (Figure 6) and the

class that was converted from the subprogram. The subprogram PGM-0220 is a category

2 subprogram, so the formal parameters are converted into attributes of a class and the

subprogram is converted into a method of the class. Next, to convert the subprogram

PGM-0210-400036-AV-400010-TABLE to a method and class, the parameters of the

calling and called subprograms are classified to determine how to convert the two

subprograms.

Procedure PGM-0210-400036-AV-400010-TABLE(400780-INDEX, HEX-1,
400033-LOC-400010-TABLE,400036-AV-400010-TABLE)

begin
LOCAL-1 := 400780-INDEX;
if 400033-LOC-400010-TABLE (1) = "VASP"
then LOCAL-1 := HEX-1;

PGM-0220 (400036-AV-400010-TABLE, LOCAL-1)
Else endif

End

Procedure PGM-0220 (400036-AV-400010-TABLE, 400780-INDEX)
Begin

if 400036-AV-400010-TABLE (400780-INDEX) = "S.TEC"
then 400036-AV-400010-TABLE (400780-INDEX) := "VASPT"
else 400036-AV-400010-TABLE (400780-INDEX) := "VASP " endif

end

Figure 6 PBOI Case Example

The parameter 400036-AV-400010-TABLE is classified as PBOI CASE 1 and

LOCAL-1 is classified as PBOI CASE 3. Additionally, C-4 is an instance of CLASS-1

class. Therefore, the final classes and methods converted from the two subprograms are :

11

class CLASS-4 attributes
400033-LOC-400010-TABLE, HEX-1,
400780-INDEX
method PGM-0210-400036-AV-400010-TABLE (C-4.C-5) begin

LOCAL-1 := GET-400780-INDEX (C-4);
if GET-400033-LOC-400010-TABLE (C-4, 1) = "VASP"
then LOCAL-1 := GET-HEX-1 (C-4);

PGM-0220 (GET-400036-AV-400010-TABLE(C-5), LOCAL-1)
else endif

end
superclass USER-OBJECT

class CLASS-1 attributes
400036- AV-400010-TABLE
method PGM-0220 (C-l, 400780-INDEX) begin
if GET-400036-AV-400010-TABLE

(C-l, 400780-INDEX)
= "S.TEC"

then SET-400036-AV-400010-TABLE
(C-l, 400780-INDEX, "VASPT")

else
SET-400036-AV-400010-TABLE
(C-l, 400780-INDEX, "VASP ")

endif
end

superclass USER-OBJECT

2.2 Yang's Work. The method reverse engineers Cobol programs into a reusable form

through program transformation based on a wide spectrum language called the

Reengineering Wide Spectrum Language (RWSL). They use the Reengineering Assistant

(RA) prototype to support transformation and semantic interface analysis for reuse of

Cobol programs [6].

The method consists of the following steps:

12

1- Translating a Cobol program into RWSL by Translator (an RA tool component).

2- Looking for functionally self-contained modules. A reusable component can be

obtained from a self-contained module. A self-contained module can be a code module, a

function or a procedure in the system.

3- Taking each self-contained module and applying program transformations to

abstract the module into its high-level representation using Entity Relationship (ER)

diagrams.

4- Using the ER diagrams together with the original code, use a semantic interface

analysis tool to generate semantic predicates and interface predicates for a reusable

module in terms of its pre-conditions, post-conditions and obligations.

5- Storing the reusable module and maintaining a link between the ER representation

and the reusable module.

The method obtains reusable Cobol code components and their designs, written in

RWSL, by combining an analysis of data structures and code. It makes the original

program more understandable because it represents the abstracted ER diagram. The

components saved can be reused but it is necessary that future research in RA applies the

reusable components.

In comparison, the PBOI approach is based on obtaining an object-oriented design

for the original Cobol system while the aim of Yang's research is a reusable library of

components and design.

2.3 Yoshino's method generates a narrative specification used by real-world maintainers

to facilitate the understanding of business procedures in existing Cobol programs [7].

13

This research determines which information should be extracted from Cobol programs

for software maintenance. This information is needed to:

1- Distinguish normal and error processes, which coexist in systems.

2- Assign data items to conditional branches. Convert control-centered expressions

in a program into data-centered expressions in the specification.

3- Call external subprograms to understand the parameter assignment, invocation

and the return code check

4- Eliminate temporary variables, and remove statements with temporary variables

to make the program description more comprehensible.

5- Replace Perform statements by the performed target code when the following

restrictions are satisfied: number of statements in the performed code is under a fixed

number (100) and the number of the calls of the performed code is below a fixed number

(3). Relocate the subroutine to the position where it should have been originally to make

the program easier to read.

6- Extract numerical and actual specification headings for quick reference.

7-Relate branch conditions and their procedures to build a table for the

specification.

8- Add cross-references to the specification when the process that follows is not on

the next line.

2.4 REDO Sneed's work is the result of research conducted at Oxford University on

how to transform Cobol programs into object-oriented specifications [8]. The input of

this process is a Cobol program without database accesses or special data communication

14

interfaces. The output is a formal specification in the language Z++. The process is

accomplished in three steps. The first is to translate the Cobol program into the

UNIFORM language. UNIFORM is a meta-language that facilitates the production of

documentation such as data flow, entity-relationship (ER) and others. During the second

step, every record type is recognized as an object and every field as an object attribute.

The procedure division is divided into slices based on data flow analysis. I/O operations

on a particular file and the statements that manipulate the contents of this file are

identified and determine a program phase. Phases correspond to data flow paths. The

last step generates an object-oriented specification. The program slices produced during

the second step are attached to the objects to which they are related, and will become

methods in a class. The statements that access, alter or set attributes to records, which

belong to a class, are components of the class methods. Finally, the UNIFORM syntax is

converted to a Z++ notation. The result of this process is a class specification for each

file and the procedurally structured statements are related to the classes.

PBOI research and Sneed's research both have Cobol reengineering as an

objective. The aim of both sets of research is to reconstruct the Cobol system in an

Object-Oriented model. These sets of research are based on two phases. One is to

transform the program into an intermediate structure: GIM for PBOI, and UNIFORM for

Sneed's. GIM and UNIFORM can be seem as canonical languages. Sneed's research

uses the UNIFORM to produce technical documents, and PBOI methodology uses GIM

to translate the system into the GOM. In Sneed's research, the records are used to

identify objects, of which every field becomes an attribute, and slices are cut up from the

Procedure Division. The slices are a sequence of statements from the file input to the file

15

output. Later, the slices are attached to the objects to which they refer. So, Sneed's

method is based on record identification, while the PBOI methodology is based on

parameter identification. The GIM lacks record types, so this information is unavailable

to PBOI.

Sneed's method is similar to the TBOI method, because both identify the classes

based on the types of formal parameters and the operations that manipulate them [3].

2.5 Fantechi's work relies on using a tool (C2O2) for analyzing Cobol applications [9].

A software prototype was developed based on a Lex/Yacc engine, which is capable of

processing all Cobol syntax and semantics. The software prototype was implemented

using the following method. Single Cobol programs are classified as subprograms, batch

programs and online programs. Main programs can be batch and online programs. The

basic idea in this approach to extracting object-oriented analysis from a Cobol application

is to focus on the Data Division that contains the information to create a representation of

the data structures. The entire transformation process, from Cobol application to an

object-oriented design, is realized in five phases. In the first transformation of the main

program identifies the corresponding classes. This process begins by an analysis of all

the data structures of the application's modules by identifying the minimal number of

data structures that are considered early prototypes of classes. The minimal number of

data structures is identified by eliminating the redundant definition of those structures.

The elimination is based on synonyms, numeric suffixes or another convention used in

the Cobol program.

16

The second phase establishes relationships of aggregation, association and

specialization among early prototype classes by which to organize them into classes. The

third phase of the transformation process is based on the analysis of the accesses to data,

to determine the relationships between classes and to assign access methods to the class

members. In the fourth and fifth phases, the code is reallocated to classes and methods

are organized. The first three phases involve the reanalysis of the system.

2.6 The objective of Boyle's research is to focus on Cobol reengineering, specifically

the restructuring of Cobol programs [22]. For this restructuring, the author built a system

based on transformations and derivations. These transformations and derivations are

based on knowledge about a particular Cobol programming style, program environment,

or good programming practice.

The methodology described by Boyle transforms the Cobol program into an

intermediate language, making it unambiguous, more self-documenting and easier to

understand the control flow. The restructuring of the program in that intermediate

language is accomplished with the objective of making the program modular and top-

down structured. That restructuring uses the transformation technique of unfolding and

folding. Paragraphs called by perform statements are transformed in procedures, while

paragraphs that are called by GO TO statements continue being paragraphs. In other

words, all the implemented transformations are based on a certain knowledge criterion

that makes the program most easily restructured. The last phase of that methodology is to

generate a structured Cobol program, using the program stored in that intermediate

17

language. The system that accomplishes that reengineering is based on transformations

and derivations and was implemented in TAMPR.

Boyle's research is composed of two different phases.

1. The first phase is the transformation phase that is responsible for including

more understanding of the behavior of the program and improving the readability

and understandability. So, the program is restructured. Subsequently, this Cobol

program is converted into a simplified language.

2. The second phase is the transformation of the program written in simple

language, for Cobol language again. The system is implemented using TAMPR

and based on transformations. The final product is a new structured Cobol

program.

The TAMPR transformations seek a pattern that comprises the

structures/statements of the language in which the program is written. When the TAMPR

finds the pattern, it changes it by another structure defined by the engineer. Both sets of

software can apply transformation sequences.

The author uses canonical forms to build different constructs in only one way.

That way represents several statements and facilitates the final transformation of the

program and the generation of that program into a specific reengineering aim. The

canonical forms are also used to structure the program. Some canonical forms are

structured into conditional statements and loops.

Reading Boyle's paper, it is clear that he intends to develop a tool capable of

improving the structure of Cobol programs. From my point of view, the research almost

has complete success, since the generated final program is easier to understand and more

18

modular than the original. However, I don't agree with the author that the program is

completely structured because, in the final program, there is a loop structure that has

different exits. So, it is possible to exit the loop structure not just by the loop condition

test. That is, in my opinion, a flaw in structured programming.

Like PBOI and Sneed, Boyle's work is based on two distinguished phases. The

first phase is to transform the program into an intermediate structure. The second is to

implement the reengineering. The intermediate structure is a canonical form analogous

to the GIM. This intermediate structure, then, can be used to reconstruct a new program.

In other words, it does not matter which the original language of the program is. After

the Cobol program goes into the intermediate structure, it is possible to reengineer it. In

the case of Boyle's 1998 research, the reengineering is for the same Cobol language. In

contrast, my research is about extracting objects. The research effort makes the program

easily understood, by renaming Cobol structures, and eliminating or duplicating code to

turn the program into modulate and top-down structure. In the PBOI research, the

translation of the legacy system into the GIM does not take into consideration the best

understanding or structure of the programs, except that the object-oriented form will be

better somehow. The two research efforts use systems based on transformations. The

research for restructuring Cobol programs concludes the reengineering and generates a

source program in a programming language (Cobol). In contrast, the PBOI methodology

does not generate a new program using any language. Boyle's approach is based on a

particular Cobol programming style while Sneed's is based on recognizing a record type

as an object. Then again, PBOI is more generic than both approaches, because it does not

take into consideration a specific programming style or a specific data type.

19

2.7 Livadas's research specifies a new approach to finding objects in programs [10].

They introduce the idea of two-step object identification and the idea of receiver-based

object identification. The aim of secondary object finding methods is to construct

secondary object groupings from those produced by RBOI. The receiver-based object

identification (RBOI) extracts candidate objects based on a receiver parameter type. A

receiver parameter type is one which is modified inside a routine.

The RBOI clusters a routine with the types of its receivers. The RBOI can be

applied to global and static variables. A candidate object in a program P relative to a

method M is defined as a triple Cm
p = ((|) ,3 ,8) where § is a subset of routines, 3 is a

subset of receiver types and 8 is a subset of data items. In the secondary object finding

methods, there are some operations such as: selection, union, intersection, subtraction and

deletion. The method is similar to relational data base queries and the queries help to

refine the object groupings. With a large set of types produced by RBOI or other primary

identification, this query can cluster the routines with the most complex types. The

complexity relation forms a directed acyclic graph on the set of types. The first step in

the method is to model a grammar to construct the internal program representation; that

is, the system dependence graph (SDG). The SDG models a grammar that permits

primitive data types, records, while, for loops, goto continue and break statements. Yet,

the SDG does not support pointer variables. The methodology in this research is similar

to that of PBOI because it is based on subprogram parameters.

20

2.8 De Lucia's research proposes a method for migrating legacy systems into an object-

oriented platform. The approach is based on the Encapsulation, Reengineering and

Coexistence of Object with Legacy (ERCOLE) project of the University of Salerno [11].

This project provides strategy and supporting technology to migrate legacy systems

toward object-oriented platforms. Most tools supporting the ERCOLE have already been

implemented, but some are still in progress. The process of migration has six steps and is

based on reverse engineering and reengineering. The reverse engineering phase

decomposes the programs into components that implement user interface management,

and those that implement application domain objects. The reengineering phase activities

use wrapping techniques. These techniques facilitate the new system by using existing

resources, and they allow identification and translation of the objects to be carried out

incrementally. So, a new object-oriented system and a legacy system coexist. The

objects are identified and encapsulated into an object wrapper. Thus, the new system can

use the existing resources through the interface's wrapper. The last step is an incremental

translation of the object wrappers, identified in the previous steps, using an object-

oriented language. The first step, Static Analysis of Legacy Code, is responsible for

extracting all the information needed for the next steps. The information is recovered by

several static analyzers, which cover different versions of RPG/400 and embedded SQL

code. The analyzers were implemented using YACC facilities and the Visual Age C ++

for the OS/2 environment. Information about the system such as control flow graph,

variables and where they are used, the embedded SQL code treated as a single node of

the system RPG and the related SQL section information, program calls, record

structures, files, arrays, key, and parameter list are stored in DB2 tables. The second

21

step, Decomposing Non-Batch Programs, is responsible for decomposing iterative

programs in interface management, components and application domain components.

This decomposition allows the system to be reengineered in a client-server paradigm. A

tool to build a control dependence graph and a sheer supports the process in this step.

The sheer analyzes control dependencies and calls among subroutines to identify the

statements involved in implementing the interface manager component. The statements

that implement rules and contain data base accesses are identified as application domain

components. In the third step, Abstracting an Object-Oriented Mode, batch programs and

the application domain components, extracted in the second step, are analyzed to

determine an object-oriented model. The approach for identifying the state of the object

is based on persistent data stores, and identifying object method candidates is based on

chunks of the code. After identifying the data stores that determine the object state,

programs, subprograms (or set of), and slices are analyzed to assign them to object

methods. The coupling measurement is based on the computation of the accesses of

program to data stores. The associations are achieved based on minimization of the

coupling measure. When a program does not access other objects (exclusive coupling),

the program is assigned to an object. In this situation, the program is considered a

method of the object to which the program has access. When the coupling measure

between the program and the object is predominant in respect to the coupling measures

between the program and the other objects, the program is assigned to the object. In this

situation, the program is considered as a message to the other objects. When the coupling

measure of a program is uniformly distributed, the program is analyzed to identify

subroutines (or set of) to be candidates for object methods. The analysis is performed to

22

transform the subroutine graph, constructed during the Decomposing Non-Batch

Programs step, into a dominance tree [18]. The coupling measure between subroutines

and persistent data stores are computed. The subtrees that contain one or more

subroutines (whose coupling measure is exclusive or predominant to the same object), are

candidate object methods. It is possible that after analyzing the subroutines, one with a

uniform distribution coupling measure can still exist. Thus, slicing techniques [2] are

applied to determine chunks of the subroutine to implement methods of different objects.

In the fourth step, Reengineering the System According to the Abstraction Results, each

subroutine, set of subroutines, or slice is encapsulated into a different program. The

identification of the interfaces of these new programs and the reengineering of the

database access require special attention. A data flow analyzer and a tool to support

software reengineering are implemented to reengineer RPG programs. In the fifth step,

Encapsulating Identified Objects within Object wrappers, groups of programs and

persistent data store, which implement an object, are encapsulated into an object wrapper.

Wrapper interface is a method for each program that implements an object method in the

object wrapper. The wrapper interface includes simple get/put operations to access the

persistent data stores encapsulated within the object wrapper. Messages received by the

object wrapper are converted into a call to a program that implements the function. The

calls between programs and access to persistent data stores encapsulated into different

object wrappers are not exchanged by messages, because the objects are not in an object-

oriented platform. The sixth step, Incremental Translation of Object Wrappers, is still

being studied. A tool to support the software engineer in the creation of the C++ is being

implemented.

23

2.9 Leite's work describes an automated transformation from Cobol to C/C++ and

shows how to handle transformation in a structured semi-automated manner [23]. This

approach is based on the transformational engine DRACO-PUC in porting Cobol

programs. DRACO-PUC is a software engine being developed at PUC-Rio (Pontifical

Catholic University of Rio de Janeiro), that uses the ideas of the DRACO paradigm [23].

DRACO-PUC is based on a powerful transformation engine that is the basis for the

transformation strategy. The DRACO-PUC transformations allow local transformations

that are applied to short segments of a program and global transformations that are

applied to large, distant but related, program blocks. The DRACO-PUC has a parser

generator that parses a program into DRACO abstract syntax trees (DASTs). The

transformations are performed using the internal representation of DASTs. The first step

of the transformation is to parse and generate the DASTs. Second, the transformations

are achieved by rule and recognition pattern. The transformations can map descriptions

in one language into the same language or into other languages. To accomplish the

transformation of the Cobol legacy system, the system is first restructured. Then, the set

of paragraphs is grouped in procedures. Analyzing a call graph among procedures helps

this activity. The data flow analysis is used to determine which modules will have

separate compilations. Next, the conversion of the Cobol program into C/C++ is

performed in three more steps. First, the program is divided into blocks according to the

control flow analysis. Second, the data division is analyzed and the semantic mapping

between the structured Cobol program and C++ is defined. Third, the C++ program

generated in the second step is converted into a more readable C++ program.

24

2.10 Summary.

The approaches to software evolution are changing rapidly along with changing

technology. Several approaches have been presented in this chapter that extract objects

from legacy systems. Some of them extract specifications to facilitate program

understanding.

25

HI. Methodology

3.1 Overview.

This chapter describes the methodology used to transform a Cobol legacy system

into the GOM. The methodology presented provides a technical approach for the Cobol

reengineering process. The methodology provides a way of extracting programming

constructs represented as an AST from Legacy Cobol code, and populating the GIM and

GOM. Therefore, the methodology provides a framework for Cobol reengineering, and

makes the transformation of a Cobol legacy system into the object-oriented paradigm

possible.

3.2 Approach to the Translation System.

A major part of this research is the translation of Cobol code into the GIM AST.

The transformation is developed using the Software Refinery™ development

environment and the Refine/Cobol™ reverse engineering tool.

The translation of Cobol code into the GIM AST is done in two steps:

transformation and translation.

The first step of translation is classifying the Cobol constructs into four classes:

transformable, directly translatable, indirectly translatable or not handled.

The transformable constructs are not represented in the GIM, but can be rewritten

into equivalent Cobol constructs that are directly or indirectly translatable. The

transformations will be implemented by developing programs in Refine.

26

The following statement illustrates an example of a transformable Cobol construct

rewritten into an equivalent directly translatable Cobol Construct.

COMPUTE ab = c + d.

This statement computes the sum c + d and places the result in both a and b. The

GIM lacks this "multiple assignment" capability. Transforming this statement to

COMPUTE a = c + d.

MOVE aTOb

makes the eventual translation more straightforward.

The following Cobol PERFORM statement illustrates an example of a

transformable Cobol construct rewritten into an equivalent indirectly translatable Cobol

construct.

PERFORM paragraph 1 thru end-paragraph 1 7 TIMES.

This statement executes the statements that are written within all the paragraphs

between paragraph 1 to end-paragraph 1 a total of seven times. Transforming this

statement to

PERFORM paragraph 1 thru end-paragraph 1 VARYING varl from 1 by 1 UNTIL

varl = 7.

makes the eventual translation more straightforward.

The directly translatable constructs will be converted directly into the GIM,

because they are modeled by GIM. These constructs correspond closely to GIM

constructs. For example, the Cobol statement

ADD a TO b GIVING c.

corresponds directly to the GIM statement.

c :=a + b

27

The indirectly translatable Cobol constructs are not represented in the GIM and

have no equivalent Cobol construct that is directly translatable into the GIM. To convert

these constructs into the GIM, we have to identify the closest imperative statements to

them, and implement this conversion by programming. The following Cobol PERFORM

statement, used as iteration construct, illustrates an example of an indirectly translatable

Cobol construct.

Indirectly-Translatable Cobol Construct:

PERFORM sum-of-odd-numbers

VARYING temp FROM 1 BY 2

UNTIL temp IS > maxodd

Imperative Construct:

Temp := 1

WHILE temp <= maxodd DO

BEGIN

sum-of-odd-numbers

Temp := temp + 2

END

The not-handled constructs are not recognized by the GIM and it is difficult or

impossible to convert them into constructs that the GIM recognizes.

28

The Cobol GOTO statement illustrates an example of a Cobol construct, that is not

handled because the GIM has no GOTO statement. Constructs that are not handled by

the translator impose restriction on its input: Cobol programs to be translated must first

be restructured to remove any occurrence of these constructs.

3.3 Cobol versus GIM Characteristics and Restrictions.

A Cobol program is composed of Divisions, Sections, Paragraphs and Sentences.

The translator uses the Identification Division, Data Division and Procedure Division for

the transformation of Cobol programs into the GIM. The Environment Division is not

used, because this division presents those aspects of the program that depend on the

particular hardware to be used and such information is not modeled in the GIM.

The Identification Division is used in the transformations just for the

identification of the main program, recovered from the program-id paragraph. The GIM

does not model documentation nor does it model comments.

The Data Division contains descriptions of the data used by the program, the

hierarchical relationships among data, and condition-names. Therefore, all data used

inside paragraphs are global variables and can be referenced. The GIM has only local

data, so the data items to be used in a procedure (performed paragraphs) must be passed

to it as parameters. This division and the Procedure Division are of great importance in

the transformation of the Cobol program into the GIM.

The Procedure Division contains the procedures associated with a program. In

this division, all statements to be transformed into the GIM and the main program are

29

identified. Paragraphs that are executed by a perform statement are transformed into an

imperative subprogram.

The main program is delimited by the Stop Run statement. Even though a Cobol

program can have more than one Stop Run statement, the legacy system must be

restructured as outlined in the PBOI methodology. Therefore, the main program is

composed of all the statements from the beginning of Procedure Division to Stop Run.

The program Jd paragraph identifies the imperative program name.

The imperative subprograms are identified by the existence of perform

statements. All statements composed between the paragraph name and the thru paragraph

name are used to build an imperative subprogram. Therefore, paragraphs found before

the Stop Run statement and that are executed by perform statement continue existing in

the imperative main program and a subprogram is created with the corresponding

statements. The paragraph name is used to identify the imperative subprogram.

The transform system implementation is restricted to the transformation of a

Cobol program with just the initial section. With more than the initial section, the Cobol

AST becomes a complex structure. Additionally the information is spread in different

tree attributes. So, to retrieve it from the complex structure, and translate the Cobol

constructs into the GIM would only serve to increase the complexity of the

transformation and translation system. Therefore, the Procedure Division of the Cobol

program to be transformed into the GIM cannot be subdivided into sections.

Cobol allows the programmer to build collections of heterogeneous data items. In

the File Section and Working-Storage Section of the Data Division, a description with an

entry level that is subdivided into other group items or elementary items constructs a

30

heterogeneous data item. This record structure is an important concept in Cobol.

Records are used as operands in several Cobol constructs. Therefore, it is not viable to

restrict a legacy Cobol code to not have heterogeneous data, because a Cobol program is

heavily based on record structures.

The solution is that the transformation system must implement a transformation to

change the records in the Data Division into elementary items. Also, the transformation

system implements the alterations to transform the statements that use group items into

set of statements that use only elementary items.

For this research, the input Cobol program has to adhere to certain restrictions.

Some restriction examples are shown below and all the restrictions imposed on the

statements by the difficulty of the transformation are presented in Chapter IV.

One restriction is not to use the Go To statement, since the GEVI doesn't

implement it. Another restriction is not to use move statements from group items to

group items where the structures are different, or in the condition clause of the if and

perform statements. Consequently they were not implemented into the AST structure. In

spite of the fact that the most-used Cobol statements are transformed into the GEVI,

certain statements have to have their characteristics restricted because of the difference

between the GIM AST structure and the Cobol AST structure.

Restrictions on the legacy Cobol program imposed by the GEVI are listed below,

and explanations about them are provided in Sward's dissertation [19].

- A formal parameter of a procedure must not be both an input and an output

parameter. This restriction is not satisfied because parameters are derived

from variables declared globally in the Data Division and almost all the

31

parameters are in and out parameters. There seems to be no reason, however,

for keeping this restriction. The GOM transformation slicing and masking

processes, described in Chapter II, work with input/output parameters.

All functions in the GIM return a single value at the end of their execution and

have no output parameters.

Cobol does not implement a function, so all Cobol programs adhere to this

restriction.

All actual parameters in subprogram calls must be variables.

The imperative subprogram calls are built by the translator based on perform

statements in such a way that all actual parameters are variables.

Subprograms to be modeled in the GIM are not allowed to make calls to

themselves.

Recursion is not allowed in Cobol, either, so legacy Cobol programs satisfy

this restriction.

The call tree of a collection of imperative subprograms must be a directed

acyclic graph.

Cobol satisfies the call tree restriction.

All variables in a subprogram are either declared locally or are formal

parameters of the subprogram.

The imperative subprograms are built by the translator based on perform

statements so that all variables in the subprogram are formal parameters.

Subprograms cannot be declared inside another subprogram. They are all

declared in the main program's global scope.

32

The imperative subprograms are built based on perform statements so that all

subprograms are declared in the main program's global scope.

- The GIM does not model heterogeneous data structures.

As mentioned above, Cobol program makes thorough use of records.

Therefore, the transformation system replaces all records with elementary

items and transforms the statements that use group items to use the new

elementary items. Hence, the legacy program does not need to satisfy this

restriction.

- The GIM does not model pointers.

Cobol language does not implement pointers, so the restriction is satisfied.

3.4 Reengineering Methodology.

The methodology for reengineering Cobol programs consists of five phases. In

the first phase, the legacy Cobol code is modified by hand to satisfy the restrictions

imposed by the GIM and restrictions imposed by the translation system. In the second

phase, the program is parsed to generate the input for the transformation system. In the

third phase, the Cobol AST is transformed into a new Cobol AST that is more similar to

the GIM AST. In the fourth phase the GIM AST is built by the translation system. In the

fifth and last phase, the objects are extracted from the GIM and the GOM is built using

Sward's prototype system.

The third and fourth phases are based on the Cobol construct classification

explained in the previous section. Detailed descriptions of the methodology phases and

the complete classification of Cobol constructs are provided in Chapter IV. That chapter

33

also describes the approach taken to apply the PBOI methodology to a Cobol legacy

system.

The program modeled in the GOM can be used to generate a program in an

object-oriented language. Research to recover the modeled program modeled into the

GOM and to generate the program in an object oriented language are being accomplished

atAFU.

3.5 Methodology Conclusion.

The Cobol language is different from a typical imperative language. Cobol

programs are often referred to as being data-intensive [21]. Cobol provides structured

data types and almost all its constructs provide multiple operations in just one statement.

A Cobol program is heavily record-based, and is allowed two different records to share

the same memory locations (redefines clause). In addition, the use of paragraphs and

perform statements is not really much like the subprogram calling structure of most

imperative languages. Despite the differences between the Cobol AST and the GIM

AST, this chapter has provided a description of an overall strategy for the translation of a

Cobol program into the GIM.

34

IV. Design of the Reengineering System

4.1 Overview.

This chapter presents the design of the transformation and translation systems and

the overall view of both is shown in Figure 7. The chapter includes the entire

classification of the Cobol constructs and the corresponding imperative statements.

Restrictions for some Cobol statements are described together with the classification. It

also describes how the phases of the PBOI methodology are applied to transform a Cobol

legacy system into the GOM.

The transformation system turns the Cobol code into constructs more similar to

those of the GIM. Consequently, the translation system has a smaller set of the Cobol

constructs as its input. The transformation system output is a Cobol program with

constructs that can be translated into the GIM.

parse
translate

H5| Cobol AST !■■ GIM AST

PBOI

transformation
system

translation
system

analyze
design

V
Figure 7 Overall View of Transformation and Translation Systems

35

The transformation and translation systems are built using Software Refinery that

parses in Cobol source code and builds an AST that stores information about the source

code. The transformation system builds a new Cobol AST that is more similar to GM

AST. The translation system builds the GIM AST based on the transformed Cobol AST.

4.2 Classification of the Cobol Statements.

The classification phase of the research is responsible for defining the approach

used to develop the transformation and translation systems. The four classes used were

defined in Chapter m. Table 3 summarizes the classification of the Cobol constructs.

The transformable constructs are treated in the transformation system. The directly

translatable and indirectly translatable constructs are treated in the translation system.

The constructs that use group items must be treated in the transformation system.

The statements were split into several statements, one for each elementary item, and they

were renamed with a new identification.

4.3 The Transformation System.

The transformation system in the Cobol reengineering methodology begins with

parsing the legacy Cobol program using Refine/Cobol. The parse constructs Cobol AST

that is the input for the transformation system. The transformations are applied to the

Cobol AST.

The final transformations are responsible for transforming group items. They are

final because the group items and their elementary items are necessary to transform the

statements.

36

Table 3 Cobol Construct Classification

Construct Classification Cobol Construct

Transformable add identifier-1 ... to identifier-2 ... , add identifier-1 ... to
identifier-2 giving identifier-3 ...
compute identifier-1 identifier-2 = arithmetic-expression
display identifier-1 identifier-2 ...
divide identifier-1 into identifier-2 ...
divide identifier-1 into identifier-2 giving identifier-3
identifier-4 ...
move identifier-1 to identifier-2 ...
multiply identifier-1 by identifier-2 identifier-3 ...
multiply identifier-1 by identifier-2 giving identifier-3
identifier-4 ...
perform paragraph-name
perform paragraph-name thru end-paragraph-name
perform paragraph-name thru paragraph-name identifier-1
times
(all statements with group with group item)

Directly Translatable accept, add giving , call, close ,
compute identifier = arithmetic-expression ,
display identifier,
divide identifier-1 into identifier-2 giving identifier-3
divide identifier-1 by identifier-2 giving identifier-3
if condition-1 , if else/otherwise ,
move identifier-1 to identifier-2 ,
multiply identifier-1 by identifier-2 giving identifier-3
open , read
subtract identifier-1 from identifier-2 giving identifier-3
write

Indirectly Translatable perform varying from by until , perform thru until ,
perform thru,

Not Handled cancel,copy, delete, enter, evaluate, exit, generate, goto,
initialize,
inspect, merge, purge, receive, release
replace, return, rewrite, search, send
set, sort, start, stop run, string,
supress, terminate,
use before reporting, use for debugging

37

4.3.1 Transformable Constructs.

Before each construct transformation explanation, the original Cobol construct is

presented with the constructs that are transformed. Also, the restrictions imposed on the

constructs are presented.

4.3.1.1 Assignment Transformation.

The add, compute, divide, move, multiply and subtract constructs assign a value to

one or more variables. These constructs are not modeled in the GIM but, they can be

modeled as imperative assignments. Therefore, these constructs are transformed into

several Cobol constructs with just one variable to receive the value of the assignment.

The add, divide, multiply and subtract constructs have one format that specifies

the variable to receive the assignment value. Therefore, the transformation system

converts all kinds of formats to a format using the giving clause. The giving clause

determines the variable that receives the assignment value.

As a result, the transformed Cobol AST is composed with the following format

add, compute, divide, move, multiply and subtract constructs.

add identifier-1 ... giving identifier-2

compute identifier-1 = arithmetic-expression-1

divide identifier-1 into identifier-2 giving identifier-3

divide identifier-1 by identifier-2 giving identifier-3

move identifier-1 to identifier-2

38

multiply identifier-1 fry identifier-2 giving identifier-3

subtract identifier-1 from identifier-2 giving identifier-3

a. Add Construct.

The add statement adds two or more data items and assigns the sum value to one

or more data items. As the add statement allows the variables preceding the to clause to

be the same as those which receive the result (variables following the to clause), there are

some concerns in transforming the add statement.

1. add identifier-1 ... to identifier-2 ...

Transformed into several add Cobol statements:

addidentifier-1 ... giving auxiliary-var

add auxiliary-var-1 to identifier-2 Giving identifier-2

add auxiliary-var-1 to identifier-3 Giving identifier-3

2. add identifier-1 ...to identifier-2 Giving identifier-3 ...

Transformed into: add and move Cobol statements:

add identifier-1 ... identifier-2 giving auxiliary-var

move auxiliary-var to identifier-3

move auxiliary-var to identifier-4

The transformation system creates an auxiliary variable to contain the sum of the

left-hand side identifiers (preceding the to clause) and a new add statement to add those

data items before the clause to. Additionally an add statement for each one of the right-

39

hand side identifiers (following the to clause) is created. The new variable holds the sum

of the data items. The creation of a new add statement and a new variable are necessary

to avoid an incorrect assignment. The variables that hold the result can be used as

operands on the add statement. The new add statement ensures that the following add

statements or move statements are assigned the correct sum value. The new add

statements are inserted before the original add construct in the statement sequence of the

Cobol AST. After the transformations, the auxiliary variables that are created are

inserted into the Data Division Working Storage Section. The add corresponding

statement is also transformed, into several add statements, during the group item

transformation described in item 4.3.1.4.

The example below shows a Cobol add statement and the transformed Cobol add

statement.

add HEX-1 to 400190-INDEX

Transformed Cobol construct:

add HEX-1 to 400190-INDEX giving 400190-INDEX

b. Compute Construct.

The compute statement sets one or more data items equal to the value of an

arithmetic expression. The compute statement with an arithmetic-expression with

multiply, divide and power operators is not transformable into the GIM, because the

cache and decache Refine statements used on the transformation and translation systems

show problems with these operators. This problem occurs when transforming the

statement as follows.

40

1. compute identifier-1 identifier-2 = arithmetic-expression-1

Transformed into several compute and move Cobol statements:

compute identifier-1 = arithmetic-expression-1

move identifier-1 to identifier-2

The compute construct is transformed to one compute statement and several move

statements. The result of the compute arithmetic expression is held in the variables

before the equal signal. For each variable before the equal signal, except for the first one,

a move statement is created to move the first variable to the others. The move statements

are able to assign the arithmetic expression result to each variable. The move statements

are inserted in the statement sequence of Cobol AST after the original compute. After,

the original compute is converted to have just the first variable before the equal sign. The

example below shows a Cobol compute statement and the transformed Cobol compute

statement.

compute HEX-0, HEX-1 = 400780-INDEX + 1.

Transformed Cobol constructs:

compute HEX-0 = 400780-INDEX + 1.

move HEX-0 to HEX-1.

41

c. Divide Construct.

The divide statement divides one data item into one or more such items. Then,

the quotient is assigned to one or more data items. The divide formats that have phrases

to deal with errors, including rounded option and remainder phases are not transformed.

1. Divide identifier-1 into identifier-2 ...

Transformed into several divide Cobol statements:

Divide identifier-1 into identifier-2 giving identifier-2

Divide identifier-1 into identifier-3 giving identifier-3

2. Divide identifier-1 into identifier-2 giving identifier-3 identifier-4

Transformed into one divide statement and several move Cobol statements:

Divide identifier-1 into identifier-2 giving identifier-3

move identifier-3 to identifier-4

3. Divide identifier-1 by identifier-2 giving identifier-3 identifier-4

Transformed into one divide statement and several move Cobol statements:

Divide identifier-1 by identifier-2 giving identifier-3...

move identifier-3 to identifier-4

To transform divide constructs, it is necessary to create move statements to be

used in the transformation of divide with giving clause. It is necessary because one of the

variables that hold the result can be used as an operand. So, to avoid an incorrect

42

assignment, the original divide construct is modified to have just the first variable that

holds the operation result. The new move statements are inserted after the original divide

in the statement sequence of the Cobol AST. The example below shows a Cobol divide

statement and the transformed Cobol divide statement.

divide DIVIDEND by DIVISOR giving RESULT 1 RESULT2.

Transformed Cobol constructs:

divide DIVIDEND by DIVISOR giving RESULT 1.

move RESULT1 to RESULT2.

d. Move Construct.

The move statement transfers the contents of one data item to one or more other

data items. Move statements allow data to be moved from group item to group item. The

transformation system restricts the group items involved in a move statement to have the

same structure. The move corresponding statement is not transformed because records are

eliminated in the group item transformation as described in item 4.3.1.4.

1. move identifier-1 to identifier-2 ...

Transformed into several move Cobol statements:

move identifier-1 to identifier-2

move identifier-1 to identifier-3

43

A Move construct is transformed into several move statements. For each variable

after the to clause, except for the first one, a move statement is created. The move

statements are inserted in the statement sequence of Cobol AST after the original move

construct. After, the original move construct is changed to have just the first variable

before the to clause. The example below shows a Cobol move statement and the

transformed Cobol move statements.

move HEX-0 , HEX-1 to 400190-INDEX.

Transformed Cobol constructs:

move HEX-0 to 400190-INDEX.

move HEX-1 to 400190-INDEX.

e. Multiply Construct.

The multiply statement forms the product of two data items and stores the result

in one or more data items. After the transformation, the multiply statement has just one

assignment.

1. Multiply identifier-1 by identifier-2 identifier-3 ...

Transformed into several multiply Cobol statements:

Multiply identifier-1 by identifier-2 giving identifier-2

Multiply identifier-1 by identifier-3 giving identifier-3

2. Multiply identifier-1 by identifier-2 giving identifier-3 identifier-4 ...

Transformed into one multiply statement and several moves:

44

Multiply identifier-1 fry identifier-2 giving identifier-3

Move identifier-3 to identifier-4

Like divide construct, to transform multiply construct it is necessary to create

move statements to be used in transformation of the multiply statement with giving clause.

It is necessary, because one of the variables that hold the result can be used as an

operand. So, to avoid an incorrect assignment, the original multiply construct is modified

to have just the first variable that held the operation result. The new move statements are

inserted after the original divide in the statement sequence of the Cobol AST. The

example below shows a Cobol multiply statement and the transformed Cobol multiply

statement.

multiply BASE by RATE1 giving RESULT , PERCENTAGE.

Transformed Cobol construct:

multiply BASE by RATE1 giving RESULT.

move RESULT to PERCENTAGE.

f. Subtract Construct.

The subtract statement subtracts a single data item or the sum of two or more data

items from one or more data items, and then assigns one or more data items with the

result. The subtract corresponding is not transformed because the records are eliminated

in the group item transformation as described in item 4.3.1.4.

45

1. subtract identifier-1 ... from identifier-2 ...

Transformed into add and subtract Cobol statements:

add identifier-1 ... giving auxiliary-variable

subtract auxiliary-variable from identifier-2 giving identifier-2 ,

subtract auxiliary-variable from identifier-3 giving identifier-3 ,

2. subtract identifier-l ...from identifier-n giving identifier-o identifier-p

Transformed into subtract and move Cobol statements:

subtract identifier-1 ... from identifier-n giving identifier-o

move identifier-o to identifier-p

To transform the subtract construct, without the giving clause, it is necessary to

create an add statement to save the original sum value of the variables before the from

clause. A new variable is created to hold that sum value. Subtract statements are created,

one for each variable after the from clause. The new variable is subtracted from each

variable after the from clause, and the result is saved in the latter variables. For the

subtract construct with the giving clause, the original subtract is modified to have just the

first variable after the giving clause. Also, move statements are created to save the result,

which is in the first variable, in the other variables after the giving clause. The new add

statement is inserted before the original subtract in the statement sequence of the Cobol

AST. The example below shows a Cobol subtract statement and the transformed Cobol

subtract statement.

46

subtract FEDTAXES, STATE-TAXES from ITEM-A , ITEM-B.

Transformed Cobol constructs:

add FEDTAXES to STATE-TAXES giving VAR-AUX.

subtract VAR-AUX from ITEM-A giving ITEM-A.

subtract VAR-AUX from ITEM-B giving ITEM-B.

Therefore, the transformed Cobol AST is just built with add, compute, divide,

move, multiply and subtract translatable constructs.

These transformations show that to transform a Cobol AST into a GIM AST is not

trivial. The Fortran AST has the same assignment statements as the GIM. But, the Cobol

does not have explicit assignment statements, and the constructs that can be viewed as

assignment statements allow multiple assignments in just one statement.

4.3.1.2 Iterative Control Flow Transformation.

Structured iterative control flow in Cobol is implemented using perform varying,

perform time and perform until statements.

Every perform statement has its own thru clause because there is a previous

transformation of all perform statements into perform thru statements.

The perform until is a directly translatable construct and it is directly translated

into the GIM. There is no transformation for it.

The perform varying is an indirectly translatable construct and it is translated into

the GIM. There was no transformation for it.

47

The perform time construct is transformed into a perform varying construct. The

original perform time is converted to a perform varying and a new variable is created to

control how many times the perform statement is executed. Also, the new variable is

inserted in the Data Division Working Storage Section. The example below shows a

Cobol perform tim§ statement and the transformed Cobol perform time statement.

perform SUM-OF-ODD-NUMBERS thru END-SUM TOTAL times

Transformed Cobol constructs:

perform SUM-OF-ODD-NUMBERS thru END-SUM varying VAR-

LOOP from 1 by 1 until VAR-LOOP = TOTAL.

4.3.1.3 Selective Control Flow Transformation.

The selective control flow in Cobol language is implemented by if-then-else and

if-then statements. The if statement is a directly translatable construct. So, this construct

is directly translated.

4.3.1.4 Record (Group Item) Transformation/Elimination.

The GIM does not represent records so, group items are eliminated and the

elementary items are renamed. Any item in a group item must have a level number

numerically greater than that of the group to which it belongs. The statements that use

group items have to be altered to use the new data structures. Different group items may

have subitems with the same name, to guarantee uniqueness, the elementary items are

renamed by joining the old name with the name of the most external group item (in other

48

words, with the smallest level number group item). The statements subject to the use of

the group items are the following: move and display. The move statement has to satisfy

one restriction. That is, the group items involved in the operation have the same

structure. The move statements with group items are transformed into several moves with

respective elementary items. The if and perform statements with group items are not

transformed because it is impractical to build the condition expression tree. The

transformation implementation restricts record structures so that they have an occurs

clause on just one level.

Example: 01 400060-PN-CFF occurs 5 times.

05 400070-PN picture X(18).

05 400085-AV picture X(05).

05 400080-CFF picture X(05).

05 400083-PQ picture X(04).

Were transformed into: 01 400070-PN-400060-PN-CFF occurs 5 times picture X(18).

01 400085-AV-400060-PN-CFF occurs 5 times picture X(05).

01 400080-CFF-400060-PN-CFF occurs 5 times picture X(05).

01 400083-PQ-400060-PN-CFF occurs 5 times picture X(04).

The transformation causes effects in the Data and Procedure Divisions. In the

Data Division, the group items are converted to elementary items and the elementary

items are renamed. In the Procedure Division, the statements that use group items are

transformed to use their elementary items and statements using elementary items whose

name changes are updated.

49

The group item transformation is implemented based on a map. The map is built

to map a tuple (the most external group item and each of its elementary items) to a new

elementary item name.

Transforms are implemented to transform display and move statements using

group items. Based on the map and for each statement (display and move) that uses

elementary items, a transformation renames them using the new elementary item name.

Also, the Data Division was traversed. When the group item has an occurs clause, an

occurs clause is created for the elementary items of the group item. The elementary items

in the Data Division are renamed with the new elementary item name, and the group

items are removed and all level numbers are altered to 1.

For display statement using a group item, several display statements are created,

one for each elementary item in the group item. The new display statements are inserted

in the same statement sequence where the original display is. The example below shows a

Cobol display statement and the transformed Cobol display statement.

display 400680-MSG upon console.

Transformed Cobol constructs:

display FILLER-CT-400680-MSG upon console,

display FILLER-40-400680-MSG upon console,

display 400700-CT-400680-MSG upon console.

For a move statement using a group item, several move statements are created, one

for each elementary item in the group item. The new move statements are inserted in the

50

same statement sequence where the original move is. A restriction for this transformation

is that the group items involved in the operation of the move statement must have the

same structure. The example below shows a Cobol move statement and the transformed

Cobol move statement.

move '' to 006200-DTL

Transformed Cobol constructs:

move '' to 006215-PN-POS-1-006200-DTL.

move '' to 006230-AV-006200-DTL

move'' 006220-CFF-006200-DTL.

4.3.1.5 Other Transformations,

a. Display Construct.

The display statement is used to output the contents of each identifier to a

hardware device. Although, the GIM allows multiple outputs because the imperative

output list is a sequence.

1. Display identifier-1 identifier-2 ...

Transformed into several display Cobol statements:

Display identifier-1

Display identifier-2

51

The example below shows a Cobol display statement and the transformed Cobol

display statement.

display 006220-CFF-006200-DTL upon console.

Transformed Cobol construct:

write(CONSOLE, 006220-CFF-006200-DTL)

b. Perform Construct.

The perform statement executes one or more paragraphs or executes statements

that are written within it. A transformation is created to transform a perform statement

with no thru clause into a perform statement with a thru clause, and to transform a

perform statement with a thru clause into a perform statement with a new thru paragraph

name. After the transformation of the perform statement, its meaning changes slightly.

Now the new paragraph name (end-paragraph-name) following the thru clause delimits

the last statement executed by the perform statement. In the original meaning the

paragraph name following the thru clause delimits the last paragraph to be performed.

Perform times statement is transformed into perform varying, so this transformation

creates a new variable to control the varying clause. After the transformations, the new

variable that is created is inserted in the Data Division Working Storage Section. The

insertion of the new variable in the Data Division is required because this division is used

to transform the variables into the GIM.

52

1. perform paragraph-name

Transformed into perform Cobol statement:

perform paragraph-name thru end-paragraph-name

2. perform paragraph-name thru end-paragraph-name

Transformed into perform Cobol statement:

perform paragraph-name thru end_end-paragraph-name

The example below shows a Cobol perform statement and the transformed Cobol

perform statement.

perform SUM-OF-ODD-NUMBERS.

Transformed Cobol construct:

perform SUM-OF-ODD-NUMBERS thru END-SUM-OF-ODD-NUMBERS.

This transformation is implemented to make the translation of perform statement

into the GIM as an imperative subprogram more direct.

4.3.2 Implementing the Transformation System.

The transformation system's function is to turn a legacy Cobol system into one

with more similar constructs to those of the GIM. The output of the transformation

system is the input of the translation system.

After parsing the legacy Cobol program, the Cobol AST is traversed in pre-order

and for each statement found that matches the left-hand-side of the correspondent

53

transformation, the right-hand-side of the transformation is built. The traversal begins

with the Cobol AST of the entire legacy system. Some transformations in the

transformation system transform one construct into several constructs. Therefore, it is

necessary to ensure that the new constructs are inserted in the same statement sequences

where the original construct is.

Thus, it is necessary to create one Refine transform for each statement sequence

attribute in the Cobol AST. The statement sequence attributes subject to have statements

are: procedure-sentence-statement-sequence, verb-statement-sequence-1 and verb-

statement sequence-2. The following sections describe the transformations that develop.

4.4 The Translation System.

The translation system in the Cobol reengineering methodology begins by

traversing the transformed Cobol AST that is the output of the transformation system.

The transformations are applied to that Cobol AST.

4.4.1 Directly Translatable Constructs.

The directly translatable constructs are described next. The original Cobol

construct is presented with the constructs that are transformed and, the restrictions

imposed on the constructs are presented. Also, the variable, data type, expression and

input/output translations are described.

a. Accept Construct

The accept statement transfers data from a hardware device into identifier-1.

54

1. accept identifier-1

Transformed into one read statement.

read(file-name,identifer-1)

b. Add Construct

1. add identifier-1 ... giving identifier-2

Transformed into one assignment imperative statement:

Identifier-2 := identifier-1 +

c. Call Construct

The call statement causes control to be transferred from one program to another

program.

1. Call literal-1 [using identifier-1 ...]

Transformed into one subprogram call imperative statement:

Literal-1 (identifier-1 ...)

d. Close Construct

The close statement terminates the processing of file.

1. close file-name-1 ...

Transformed into one close imperative statement:

close file-name-1 ...

55

e. Compute Construct

Compute with an arithmetic-expression with multiply, divide and power operators

is not translatable into the GIM. This is because the cache and decache Refine

statements, used on the transformation and translation systems, shows problems with

these operators. Thus, the Cobol program cannot have compute construct with an

arithmetic-expression that uses divide and power operators.

1. compute identifier-1 = arithmetic-expression-1.

Transformed into one assignment imperative statement:

identifier-1 := imperative-expression;

f. Divide Construct

1. divide identifier-1 into identifier-2 giving identifier-3

Transformed into one assignment imperative statement:

Identifier-3 := identifier-2 / identifier-1;

2. divide identifier-1 by identifier-2 giving identifier-3

Transformed into one assignment imperative statement:

Identifier-3 := identifier-1 / identifier-2;

g. If construct

The if statement evaluates a condition and subsequent program action depends on

whether the value is true or false.

56

If statements allow the condition to be a group item, but the transformation

system restricts the condition so that it cannot be a group item.

1. if condition-1 statement-1...

Transformed into if then else imperative statement:

if condition-1 then statement- \...else null;

2. (/"condition-1 statement-1...else statement-n

Transformed into if then else imperative statement:

if condition-1 then statement-1... else statement-n ... ;

h. Move Construct

Move statements allow data to be moved from group item to group item. The

transformation system restricts the group items involved in the operation of the move

statement the items must have the same structure.

1. move identifier-1 to identifier-2

Transformed into one assignment imperative statement:

Identifier-2 := identifier-1;

i. Multiply Construct

1. multiply identifier-1 by identifier-2 giving identifier-3

Transformed into one assignment imperative statement:

identifier-3 := identifier-1 * identifier-2;

57

j. Open Construct

1. Open input/output file-name-1

Transformed into one open imperative statement:

open input/output file-name-1;

k. Read Construct

The read statement obtains a record from a file and puts it into the file's record

area.

1. read file-name

Transformed into one read imperative statement:

rea<i(identifier-file, file-name);

1. Subtract Construct

1. subtract identifier-1 from identifier-2 giving identifier-3

Transformed into one assignment imperative statement:

Identifier-3 := identifier-2 - identifier-1;

m. Write Construct

The write statement writes record to a file.

1. write record-name

Transformed into one output imperative statement:

write (file-name, record-name);

58

n. Variable Translation.

The Cobol variables are declared in the Data Division but the GIM does not have

variable declarations.

Therefore, the Cobol variables are translated into the GEM, building an

imperative-variable AST and stored in the Imperative Symbol Table.

For each reference to a Cobol variable, an instance of the imperative-name class is

built to store scope, identifier and indices information.

o. Data Type Translation.

A Data Description Entry (more specifically a picture clause) in the Data Division

specifies the characteristics of a data item.

The Cobol category of data items can be either alphabetic, alphanumeric,

alphanumeric-edited, numeric or numeric-edited. The occurs clause is used to define a

set of repeated data items. The editing characters in the picture clause are not used as a

format for input/output statements because the GIM does not model editing characters.

Figure 8 shows the transformations to translate the data types.

alphabetic

alphanumeric

alphanumeric-edited

numeric

numeric-edited

data item with occurs clause

imperative-string

imperative-string

imperative-string

imperative-integer

imperative-real

imperative-array

Figure 8 - Imperative Data Type Transformation

59

p. Imperative Expression Translation.

A Cobol expression can be either an arithmetic expression or a conditional

expression. An arithmetic expression can be a single elementary numeric data item and

two or more data items or literals connected by arithmetic operator. Figure 9 shows the

transformations to translate the arithmetic expression.

add-operator

divide-operator

exponentiate-operator

multiply-operator

subtr act-operator

false-value

true-value

integer-value

real-value

charstring-value

imperative

imperative

imperative

imperative

imperative

imperative

imperative

imperative

imperative

imperative-

-addition

-division

-exponent

-multiplication

-subtraction

-literal-false

-literal-true

-literal-integer

-literal-real

•charstring

Figure 9 - Imperative Arithmetic Expression Transformation

A conditional expression is a simple condition or a complex condition. Figure 10

shows the transformations to translate the conditional expression.

60

and-condition

not-condition

or-condition

equal-operator

greater-than-equal-operator

greater-than-operator

less-than-equal-operator

less-than-operator

imperative-and

imperative-not

imperative-or

imperative-equal

imperative-greater-than-or-equal

imperative- greater-than

imperative-less-than-or-equal

imperative-less-than

Figure 10 - Imperative Conditional Expression Transformation

q. Input/Output Translation.

The Cobol language implements input by accept and read statements. Output is

implemented by Cobol display and write statements.

The accept and read statements are translated into imperative-input and display

and write statements are translated into imperative-output.

The Cobol AST that represents the following write statement

write 006200-DTL.

is translated into the GIM by building one imperative-output. The record name (006200-

DTL) is converted to a GIM imp-identifier and stored in the imp-output-list attribute of a

GIM imperative output.

The imperative-output is shown below using GIL syntax.

Write(SYS5,006200-DTL);

Figure 11 shows the transformation to translate the input/output constructs into

imperative input/output.

61

Read-statement ► imperative-input

Accept-statement ► imperative-input

Write-statement ► imperative-output

Display-statement (giving) ► imperative-output

Figure 11 - Imperative Input/Output Transformation

r. Call Translation.

An Imperative subprogram call is implemented in Cobol language by the call

statement and, the Cobol perform statement. Therefore, these constructs are translated

into the GIM like an imp-subprogram-call AST.

The following Cobol perform and the call statements, are translated into the GIM

by building two imp-subprogram-call ASTs.

perform 600010 thru 600030-END.

call 'C18005PA'.

The perform name from the Cobol AST is converted to a GIM variable and stored

as the imp-call-identifier of the imp-subprogram-call AST. The sequence of the variables

used inside the paragraphs performed by the perform statement are converted to a

sequence of GIM variables and stored as the imp-call-actuals parameters in the GIM

AST.

The call identifier from the Cobol AST is converted to a GIM variable and stored

as the imp-call-identifier of the imp-subprogram-call AST.

62

The two imp-subprogram-call GIM ASTs built from these two translations are

shown below using the GIL syntax.

600010(..., CHK-UNIF, MODULE-STATUS, ...);

C18005PA;

Figure 12 shows the transformation to translate the constructs into the imp-

subprogram-call.

perform-statement ► imp-subprogram-call

call-statement ► imp-subprogram-call

Figure 12 - Imp-Subprogram-Call Transformation

4.4.2 Indirectly Translatable Constructs,

a. Perform Construct

Perform statements allow the condition in the until clause to be a group item, but

the transformation system restricts the condition so that it cannot be a group item.

Imperative subprograms are implemented in Cobol language by calling another

program (a called program).

A perform statement has a similar function to a program call. Therefore, the code

between the first paragraph and the last one performed by the perform statement is

considered a subprogram.

63

The variables used inside the performed paragraphs are treated like parameters.

The performed paragraphs before the stop run statement are translated into the

GIM as subprograms and also they are kept inside the main program. The main program

is identified as the code between the first statement in the Procedure Division until the

last statement before the stop run statement.

The performed paragraphs after stop run are translated into the GIM as

subprograms, but in this case, there is no code duplication.

The following Cobol perform statement, and the corresponding performed

paragraphs are translated into the GIM by building an imperative-procedure AST.

PROCEDURE DIVISION.
perform 600010 thru END-600030-END.

600010.
display 'Create the Reduced Master File P-300' upon console.

600020.
i/CHK-UNIFnot = 00

display 'Open Error Unif-Ckh = ' CHK-UNIF
move' ' to MODULE-STATUS

otherwise
move ' ' to 006200-DTL.

600030.
move CURRENT-DATE to 400790-DATA-RESP.

END-600030-END.

The perform name (600010) is converted into a GIM variable and stored as the

imp-subprog-identifier of the imperative-subprogram AST. The variables (CHK-

UNIF.MODULE-STATUS,...) used inside the paragraphs (600010, 600020 and 600030)

are retrieved from a Refine map, converted into GIM variables and stored in the sequence

64

of imp-subprog-formals parameters for the GM AST. Each statement from the

performed paragraphs is converted into a GIM statement and stored in the sequence of

statements for the imperative-procedure AST.

The imperative-procedure AST is shown below using the GIL syntax.

Procedure 600010(...,CHK-UNIF,MODULE-STATUS,...)
Begin

write (SYS5 , 'Gerar os Mestres Reduzidos P-300');
i/CHK-UNIV not = 00 then

write(SYS5; Erro abertura Unif Ckh = ');
write(SYS5,CHK-UNIF);

else
006200-DTL := ' ';

end if;
end;

1. perform paragraph-name thru end-paragraph-name until condition-1

Transformed into one while imperative statement:

while not condition-1 do

Paragraph-name(all variables used in the paragraphs executed by the

perform statement);

end-while;

2. perform paragraph-name thru end-paragraph-name

Transformed into one subprogram call imperative statement:

paragraph-name(all variables used in the paragraphs executed by the

perform statement);

65

3. perform paragraph-name thru end-paragraph-name varying identifier-1 from

identifier-2 by identifier-3 until condition-1

Transformed into one assignment and while imperative statement:

Identifier-1 := identifier-2;

While not condition-1 do

Paragraph-name(all variables used in the paragraphs executed by the

perform statement);

end-while;

4.4.3 Constructs Not Handled.

The Cobol constructs are summarized in Table 3, which also show the not-handle

constructs that are not implemented into the GEVI. These constructs do not have

equivalent GEVI constructs. The evaluate Cobol construct determines the value of one or

more conditions and subsequent program action depends on the result. Therefore, the

evaluate construct can be transformed into the GIM to an if-then-else Cobol statement.

This transformation is not implemented, because evaluate construct is a new feature of 85

Cobol and it is not usually found in legacy Cobol systems. The stop run construct is not

transformed into the GIM, but it is used to determine the main program boundary.

4.4.4 Implementing the Translation System.

The translation system's function is to translate a Cobol program in canonical

form into the GEVI. The input of the translation system is the output of the transformation

system. Table 4 shows the constructs that the translation system translates into the GEVI.

The Cobol AST is traversed in pre-order and, for each perform-statement found a

map is created to relate the perform paragraph-name to its statements and its variables.

66

Table 4 Cobol Constructs Recognized by the Translation System

Accept identifier-1

Add identifier ... giving identifier-n

Call literal

Call literal using identifier ...

Close file-name

Compute identifier = arithmetic expression

Display identifier

Divide identifier-1 into identifier-2 giving identifier-3

Divide identifier-1 by identifier-2 giving identifier-3

If condition statement-1

Move identifier-1 to identifier-2

Multiply identifier-1 by identifier-2 giving identifier-3

Open input file-name

Open output file-name

Perform paragraph-name thru end-paragraph-name

Perform paragraph-name thru end-paragraph-name until condition

Perform paragraph-name thru end-paragraph-name varying identifier-1 from identifier-2

by identifier-3 until condition

Read file-name

Subtract identifier-1 from identifier-2 giving identifier-3

Write record-name

67

The translations use some maps to facilitate the transformations. During the

translation it is necessary to have information about the Data Division or other AST

objects. Therefore, the information is retrieved from the maps that are constructed before

the translation.

The Expression-Table and Conditional-Table maps are construct to identify the

operators and operands in a Cobol expression.

The Expression-Table maps a Cobol arithmetic-expression to a sequence of Cobol

arithmetic-expression. It is necessary to map each arithmetic operator and its operands.

The Conditional-Table maps a Cobol-Object to a sequence of Cobol expression.

It is necessary to map each conditional operator and its operands.

The Fake-Symbol-Table is constructed to map each perform statement to a

sequence of data-description-entry that is used in the paragraphs executed by the perform

statement.

The Statement-Table is constructed to map each perform statement to the

statements executed by the perform statement.

The All-Parameters map is constructed to map each perform statement to the

data-description-entry used in the paragraphs executed by the perform statement and the

other data-description-entry used in the paragraphs executed by any perform inside the

first perform.

A A A. 1 Imperative Main Program Translation.

The main program is identified as starting at the first statement in the Procedure

Division and stopping at the last statement before the stop run statement. The Cobol AST

68

tree is traversed and for each statement found, the sequence of imperative-program-

construct (imp-subprog-statements attribute) is appended with the statement.

4.5 Modifications to the PBOI Prototype.

The PBOI prototype had to be modified to satisfy the new release of Refine

software and the new aspects of the Brazilian Air Force Cobol legacy system.

The modification needed because of the new version of Refine was to change the

rule check-delta-get and check-delta-set to use the replace x by statement. These rules

are responsible for exchanging the variables that are class attributes with get and set

methods.

The PBOI prototype contains some hard-coded details specific to the BMDSIM

Fortran system [19]. Therefore, the PBOI prototype has to be modified to deal with the

Cobol system.

The specific modifications are:

1. To alter the directory names in the imp-reload.re and gom-save-pob.re files;

2. To initialize the variable *main-program* in the gim-methods.re file with the main

program name;

3. To assign the variable sequence *user-def-subs* in the gim-methods.re file with all

the subprogram names of the legacy system(this sequence must also have the

subprogram names that are generated during the slicing process);

4. To assign an integer to each subprogram in the imp-reload.re file.

69

The subprograms called by the main program are transformed before the main

one is. The PBOI system uses inter-procedural slicing [20] to build a program slice from

a subprogram. The first step is converting the GIM into the GOM is to slice the GIM

AST. As the PBOI system uses inter-procedural slicing[20], it is required that the slicing

process start in the subprograms that appear at the leaf level of the call tree of the generic

imperative design. This step is accomplished with the test-test-check-subp-calls function.

The entire transformation to convert the GIM into the GOM is accomplished by:

1. Running all the program slicing system files, loading the entire legacy system and

selecting the auto load slicing and auto load for C1AD99T1;

2. Setting the transformation focus on the main program;

3. Verifying the subprogram category classification with the test-classify function;

4. Slicing each subprogram category 4 and 5 and the main program with the test-test-

check-subp-calls function;

5. Checking the results of each slicing process with the test-check-inter-complete

function;

6. Masking all the other output parameters other than the slice variable to local variables

with test-mask-all-others function;

7. Loading the transformation system with the make-system

"-srodrigu/research/prototype/transform";

8. Choosing the auto load slices, auto load form C1AD99T1 (the main program) auto

load saved designs, auto saved designs and C1AD99T1, load all options; and

9. Focusing on the subprograms in the leaf program (of the system call diagram) to

perform the sigma(l, 2 or 3) option in the transformation menu;

70

10. Merging the overlapping classes(manually) from the *current-ood* (object-oriented

design).

The slicing process converts the category 4 subprogram into multiple category 2

subprograms, and converts the category 5 subprogram into either multiple category 2 or

category 3 subprograms.

After each slicing, it is necessary to check if the called subprograms are still

category 4 or 5. This step is accomplished with the test-check-inter-complete. For each

subprogram that is still category 4 or 5, the masking process has to be run.

The second step to convert the GIM into the GOM is the masking process. The

masking process is accomplished by running the test-mask-all-others function for each

variable to be masked in the subprogram.

Therefore, additional knowledge is to know (after slicing), what category each

subprogram is.

The sigma transformation process should be automatic because the user should be

able to simply select the system root. However, the PBOI prototype does not work well

because it run indefinitely and does not produce any classes. Finally, the merging

process is accomplished by running the test-test-trans-merge-overlap function.

4.6 Summary.

This chapter has presented the methodology development used to construct the

transformation and translation system and how to run the PBOI prototype. The

classification of the Cobol constructs has been presented and the restrictions applied to

71

each construct have been described. The transformations applied to translate specific

Cobol constructs into GIM AST have also been described.

Table 5 shows a summary of the Cobol constructs and their corresponding GIM

constructs.

Table 5 Cobol Constructs X GIM Constructs

COBOL CONSTRUCT GIM CONSTRUCT

Accept identifier-1 read(identifier-file, file-name)

add identifier-1 ... giving identifier-n identifier-n := identifier-1 + ...

call literal-1 literal-1

call literal-1 using identifier-1 ... literal-1 (identifier-1,....)

Close file-name-1 ... close file-name-1

Compute identifier-1 = arithmetic expression identifier-1 := arithmetic-expression

Display identifier-1 wn'te(file-name,identifier-1)

Divide identifier-1 into identifier-2 giving identifier-3 identifier-3 := identifier-2 / identifier-1

Divide identifier-1 by identifier-2 giving identifier-3 identifier-3 := identifier-1 /identifier-2

if condition statement-1 if condition then statement-1 ...

else null end if

if condition statement-1

Otherwise statement-n

if condition then statement-1 ...

else statement-n end if

Move identifier-1 to identifier-2 identifier-2 := identifier-1

Multiply identifier-1 by identifier-2 giving identifier-3 identifier-3 := identifier-1 * identifier-2

72

Open input file-name open file-name

Open output file-name open file-name

Perform paragraph-name thru end-paragraph-name paragraph-name(actual parameters)

Perform paragraph-name thru end-paragraph-name

until condition

while not condition do

paragraph-name(actual parameters)

end do

Perform paragraph-name thru end-paragraph-name

varying identifier-1 from identifier-2 by identifier-3

until condition

identifier-1 := identifier-2

while not condition do

paragraph-name(actual parameters);

identifier-1 := identifier-1 +

identifier-3;

end do

Read file-name reaJ(identifier-file, file-name)

Subtract identifier-1 from identifier-2 giving

identifier-3

identifier-3 := identifier-1 - identifier-2

Write record-name wn'te(file-name, record-name)

73

V. Analysis of the Methodology Applied to a FAB Cobol Legacy System

5.1 The Brazilian Air Force Cobol Legacy System Transformation

The Cobol system selected to undergo the reengineering process was brought

from the Air Force in Brazil. This system is part of the 300 project. This project is

responsible for controlling the maintenance of the military aircraft. This system was

developed on October 2 1969, and from that time until now it has undergone maintenance

to assist client needs, thereby making it more and more complex. Appendix A shows the

legacy Cobol program that was selected.

5.2 Converting Cobol System to the GIM.

The original system possessed GO TO statements that were removed to make the

system compatible with the GIM. The GO TO statements were structured, and they were

removed easily from the program. The statements were replaced by if statements or by

repeating small sections of the code.

The Brazilian Air Force Cobol legacy system C1AD99T1 included a main

program which had 39 paragraphs and a total of 304 lines in the Procedure Division.

Appendix A shows the legacy Cobol code used for the translation into the GIM.

The system was parsed using the Refine/Cobol and the Cobol AST was traversed.

The transformation system generated the Cobol legacy system with constructs more

similar to the GIM constructs. After, the translation system transformed the C1AD99T1

system into the GIM.

74

The translation of the Cobol legacy system into the GIM took eleven minutes.

After the Cobol system was transformed into the GIM, the system included the main

program, 19 subprograms and a total of 563 lines. Appendix B shows the imperative

code using the Generic Imperative Language (GEL) after the translation of the legacy

system into the GIM.

Almost all the subprograms were category 5 subprograms producing many output

parameters.

5.3 Converting GIM to the GOM.

The last phase in the Cobol reengineering methodology is to execute the system

that implements PBOI to extract the objects and to store them into GOM.

The GOM and PBOI were described in chapter I, and detailed information about

GOM and PBOI can be found in the Sward's dissertation [22].

The PBOI input is the GIM AST that is saved as Persistent Object Base (POB)

file after the translation of the Cobol program. POB file is a group of objects as a Unix

file. This is a Refine capability and the file can be saved and loaded in a subsequent

session to recreate the group of objects. The PBOI output is the GOM AST.

The test-classify function, responsible for verifying the subprogram category

classification, identified a subprogram that had the same output parameter as the left-

hand side of different assignment statements as a category 4 or 5, although it should have

identified it as category 2 or 3. After the slicing and masking process, that function

classified some sliced subprograms incorrectly. The wrong subprogram classifications

were written within parentheses in Table 7.

75

A hidden GOM restriction is that the subprogram names that must be in the

variable sequence *user-def-subs* in the PBOI prototype cannot begin with numbers. It

is required that the subprogram names begin with an alpha character.

Before running the PBOI with the C1AD99T1 system, a piece of it was used to

determine how the PBOI prototype would function. Using this sample with the main

program and four subprograms, two category 4, and two category 5 subprograms, the

slicing process took about three hours and the sigma transformations took more than

eleven, So, transforming the entire system would have been impractical, because almost

all the subprograms produced many output parameters, and that would have generated

many sliced programs. As a result, the C1AD99T1 system was reduced to make the

transformation of the system into the GOM viable. Eight paragraphs that generated eight

category 5 subprograms were eliminated from the system. These eliminations did not

affect the meaning of the system greatly, because they resulted in the elimination of some

groups of records that were to be processed.

Therefore, the system was reduced to one main program and 19 subprograms with

different categories (as can be seen in Figure 13 and Table 6).

76

C1AD99T1

PGM-START

PGM-0010

PGM-0020 PGM-0050 PGM-0100-READ PGM-0230 PGM-0310

END-OF-JOB

PGM-0140

PGM-0130 PGM-0110

PGM-0160 PGM-0120

PGM-0320 PGM-0190

END-OF-JOB
PGM-0210

PGM-0220

PGM-0170 PGM-0320

PGM-0180
END-OF-JOB

Figure 13 - System Diagram

77

Table 6 - Category Subprograms and Produced Output

Subprogram(performed paragraph) Cat. Data Items Produced in the imperative model

C1AD99T1 1
PGM-START 5 006215-PN-POS -1 -006200-DTL

006220-CFF-006200-DTL
006230-AV-006200-DTL
006246-BL-006200-DTL
006250-NOMEN-006200-DTL
006253-UN-006200-DTL
006255-CAT-006200-DTL
006260-OA-006200-DTL
006263-APL-006200-DTL
006265-TPR-006200-DTL
006270-FRG-006200-DTL
006280-TRG-006200-DTL
006285-RECUP-POR-006200-DTL
006287-CON-006200-DTL
006290-ESTOQUE-006200-DTL
006300-EC-006200-DTL
006310-OS-006200-DTL
006320-REP-006200-DTL
006330-AVG-PRICE-006200-DTL
006350-A-006200-DTL
006360-SHELF-006200-DTL
006229-LOC-006200-DTL
006375-LAST-ACQ-PRICE-006200-DTL
006376-PROC-IN-REWORK-006200-DTL
006377-COND-IN-REWORK-006200-DTL
006380-SUPERADOR-006200-DTL
006390-SUPERADO-006200-DTL
006400- ALTERADO-006200-DTL
006430-PRE-CALC-006200-DTL
006440-NMAX-CALC-006200-DTL
006450-CON-TOTAL-006200-DTL
006470-MES-RECEB-006200-DTL
006480-ANO-RECEB-006200-DTL
00648 l-Q-P-ART-006200-DTL
006482-Q-COMPRADA-006200-DTL
006510-CTL-006200-DTL
006520-TRAELER-ID-006200-DTL
006530-RCDS-006200-DTL
400033-LOC-400010-TABLE
400080-CFF-400050-PN-CFF

78

400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF
400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
400300-C-400280-9-REC
400530-LOC-400510-ID
450030-X-SPACE-OOl 100-MASTER-O
450040-PART-NO-001100-MASTER-O
450100-FED-MFG-CDE-001100-MASTER-
0
400070-PN-400050-PN-CFF
400115-DAY-400110-DATE
400120-ME-400110-DATE
400130-AN-400110-DATE
400155-DAY-400140-HOLD
400160-ME-400140-HOLD
400170-AN-400140-HOLD
400700-CT-400680-MSG
400740-DATE
400780-INDEX
400800-D-400790-DATA-RESP
400820-M-400790-DATA-RESP
400840-A-400790-DATA-RESP
SWITCH-0130-PATH-CONTROL-
swrrcHES
VAR-AUX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400100-POS-40090-RESPONSE
400185-SWT-400180-TEST
400550-AV-400510-ID
400036-AV-400010-TABLE
400210-0-CT
400190-INDEX

PGM-0010 MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400100-POS-40090-RESPONSE
400190-INDEX
400550-AV-400510-ID
400036-AV-400010-T ABLE
400530-LOC-400510-ID
400185-SWT-400180-TEST
400210-0-CT
VAR-AUX

79

SWITCH-0130-PATH-CONTROL-
swrrcHES
400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
450040-PART-NO-001100-MASTER-O
400780-INDEX
006530-RCDS-006200-DTL
400700-CT-400680-MSG
400070-PN-400050-PN-CFF
400033-LOC-400010-TABLE
400080-CFF-400050-PN-CFF
450100-FED-MFG-CDE-001100-MASTER-
0
400085-AV-400050-PN-CFF
450030-X-SPACE-OOl 100-MASTER-O
400300-C-400280-9-REC
400083-PQ-400050-PN-CFF

PGM-0020 4 400100-POS-40090-RESPONSE
400185-SWT-400180-TEST
400190-INDEX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

PGM-0050 4 400190-INDEX
400530-LOC-400510-ID
400550-AV-400510-ID
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

PGM-0100-READ 5 400210-0-CT
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400033-LOC-400010-TABLE
400036-AV-400010-TABLE
400070-PN-400050-PN-CFF
400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF
400210-0-CT
400263-BOMBA-400260-BOMBA
400300-C-400280-9-RECT
400266-BOMBA-400260-BOMBA
400700-CT-400680-MSG
400780-INDEX
450030-X-SPACE-OOl 100-MASTER-O
450040-PART-NO-001100-MASTER-O

80

450100-FED-MFG-CDE-001100-MASTER-
0
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
s wrrcH-o l 30-PATH-CONTROL-

SWITCHES,

VAR-AUX,
PGM-0110 5 400070-PN-400050-PN-CFF

400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF

PGM-0120 4 400070-PN-400050-PN-CFF
400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF

PGM-0130 5 SWrrCH-0130-PATH-CONTROL-
SWITCHES

400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
400033-LOC-400010-TABLE
400780-INDEX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400036-AV-400010-TABLE
006530-RCDS-006200-DTL
400700-CT-400680-MSG
VAR-AUX,
400070-PN-400050-PN-CFF
400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF

PGM-0140 5 400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
SWrrCH-0130-PATH-CONTROL-
swrrcHES
400033-LOC-400010-TABLE
400780-INDEX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400036-AV-400010-TABLE
006530-RCDS-006200-DTL
400700-CT-400680-MSG
VAR-AUX

81

PGM-0160 5 400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
400070-PN-400050-PN-CFF
400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF
400300-C-400280-9-REC
400263-BOMBA-400260-BOMBA
400266-BOMBA-400260-BOMBA
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
006530-RCDS-006200-DTL
400700-CT-400680-MSG
VAR-AUX

PGM-0170 5 400070-PN-400050-PN-CFF
400080-CFF-400050-PN-CFF
400083-PQ-400050-PN-CFF
400085-AV-400050-PN-CFF

PGM-0180 4 400300-C-400280-9-REC
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

PGM-0190 5 400033-LOC-400010-TABLE
400036-AV-400010-TABLE
400780-INDEX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

PGM-0210 5 400780-INDEX
MODULE-STATUS-MODULE-
ACTIVATION-CONTROL
400036-AV-400010-TABLE

PGM-0220 2 400036-AV-400010-TABLE
PGM-0230 2 MODULE-STATUS-MODULE-

ACTIVATION-CONTROL
PGM-0310 2 MODULE-STATUS-MODULE-

ACTIVATION-CONTROL
PGM-0320 5 VAR-AUX

006530-RCDS-006200-DTL
400266-BOMBA-400260-BOMBA
400700-CT-400680-MSG

END-OF-JOB 2 VAR-AUX

82

The process of slicing and masking took more than 51 hours. The 19

subprograms generated 180 slices. The number of sliced programs was so large, because

the subprogram generated many output parameters. Table 7 shows the sliced

subprograms and their categories.

Next, there was an attempt to generate the classes from the sliced subprogram

using the sigma option in the PBOI prototype. This process should have been automatic

but it did not work well. Instead the process was applied manually, and for each

subprogram the corresponding sigma transformation was performed. From bottom, 65

subprograms were converted into classes. This manual process took more than 84 hours,

and it did not work well.

Table 7 Sliced Subprograms

Subprogram Cat Slices Cat Masked
PGM-0010 5 PGM-0010-400100-POS-40090-RESPONSE 3 X

PGM-0010-400185-SWT-400180-TEST 3 X
PGM-0010-400190-INDEX 3 X
PGM-0010-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

3 X

PGM-0010-400070-PN-400050-PN-CFF 3 X
PGM-0010-400080-CFF-400050-PN-CFF 3 X
PGM-0010-400083-PQ-400050-PN-CFF 3 X
PGM-0010-400085-AV-400050-PN-CFF 3 X
PGM-0010-400550-AV-400510-ID 3 X
PGM-0010-400036-AV-400010-TABLE 3 X
PGM-0010-400530-LOC-400510-ID 3 X
PGM-0010-400033-LOC-400010-TABLE 3 X
PGM-0010-400210-0-CT 3 X
PGM-0010-VAR-AUX 3 X
PGM-0010-SWITCH-0130-PATH-CONTROL-
swrrcHES

3 X

PGM-0010-400263-BOMBA-400260-BOMBA 3 X
PGM-0010-400266-BOMBA-400260-BOMBA 3 X

83

PGM-0010-450040-PART-NO-001100-
MASTER-0

3 X

PGM-0010-400780-INDEX 3 X
PGM-0010-006530-RCDS-006500-TPvLR 3 X
PGM-0010-400700-CT-400680-MSG 3 X
PGM-0010-450100-FED-MFG-CDE-001100-
MASTER-0

3 X

PGM-0010-450030-X-SPACE-001100-
MASTER-0

3 X

PGM-0010-400300-C-400280-9-REC 3 X
PGM-0020 4 PGM-0020-400100-POS-400090-RESPONSE 2 X

PGM-0020-400185-SWT-400180-TESTE 2 X
PGM-0020-400190-INDEX 2 X
PGM-0020-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

2 X

PGM-0050 4 PGM-0050-400190-INDEX 2 X
PGM-0050-400530-LOC-400510-ID 2
PGM-0050-400550-AV-400510-ID 2
PGM-0050-MODULE-STATUS-MODULE-
ACTWATION-CONTROL

2 X

PGM-0100-READ 5 PGM-0100-READ-006530-RCDS-006500-
TRLR

3 X

PGM-0100-READ-400033-LOC-400010-
TABLE

3 X

PGM-0100-READ-400036-AV-400010-
TABLE

3 X

PGM-0100-READ-400070-PN-400050-PN-
CFF

3 X

PGM-0100-READ-400080-CFF-400050-PN-
CFF

3 X

PGM-0100-READ-400083-PQ-400050-PN-
CFF

3 X

PGM-0100-READ-400085-AV-400050-PN-
CFF

3 X

PGM-OlOO-READ-400210-O-CT 2(3) X
PGM-0100-READ-400263-BOMBA-400260-
BOMBA

3 X

PGM-0100-READ-400266-BOMBA-400260-
BOMBA

3 X

PGM-0100-READ-400300-C-400280-9-RECT 3 X
PGM-0100-READ-400700-CT-400680-MSG 3 X
PGM-0100-READ-400780-INDEX 3 X
PGM-0100-READ-450030-X-SPACE-001100-
MASTER-0

2(3)

84

PGM-0100-READ-450040-PART-NO-001100-
MASTER-0

2(3)

PGM-OlOO-READ-450100-FED-MFG-CDE-
001100-MASTER-O

2(3)

PGM-OIOO-READ-MODULE-STATUS-
MODULE-ACTIVATION-CONTROL

3 X

PGM-0100-READ-SWITCH-0130-PATH-
CONTROL-SW1TCHES

3 X

PGM-0100-READ-VAR-AUX 3 X
PGM-0110 5 PGM-0110-400070-PN-400050-PN-CFF 3

PGM-0110-400085-AV-400050-PN-CFF 3
PGM-0110-400080-CFF-400050-PN-CFF 3
PGM-0110-400083-PQ-400050-PN-CFF 3

PGM-0120 4 PGM-0120-400070-PN-400050-PN-CFF 2
PGM-0120-400085-AV-400050-PN-CFF 2
PGM-0120-400080-CFF-400050-PN-CFF 2
PGM-0120-400083-PQ-400050-PN-CFF 2

PGM-0130 5 PGM-0130-SWITCH-0130-PATH-CONTROL-
swrrcHES

3

PGM-0130-400263-BOMBA-400260-BOMBA 3 X
PGM-0130-400266-BOMBA-400260-BOMBA 3 X
PGM-0130-400033-LOC-400010-TABLE 3 X
PGM-0130-400780-INDEX 3 X
PGM-0130-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

3 X

PGM-0130-400036-AV-400010-TABLE 3 X
PGM-0130-006530-RCDS-006500-TRLR 3 X
PGM-0130-400700-CT-400680-MSG 3 X
PGM-0130-VAR-AUX 3 X
PGM-0130-400070-PN-400050-PN-CFF 3 X
PGM-0130-400080-CFF-400050-PN-CFF 3 X
PGM-0130-400083-PQ-400050-PN-CFF 3 X
PGM-0130-400085-AV-400050-PN-CFF 3 X
PGM-0130-400300-C-400280-9-REC 3 X

85

PGM-0140 5 PGM-0140-SWHCH-0130-PATH-CONTROL-
swrrcHES

2(3)

PGM-0140-400263-BOMBA-400260-BOMBA 2(3)
PGM-0140-400266-BOMBA-400260-BOMBA 3 X
PGM-0140-400033-LOC-400010-TABLE 3 X
PGM-0140-400780-INDEX 3 X
PGM-0140-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

3

PGM-0140-400036-AV-400010-TABLE 3 X
PGM-0140-006530-RCDS-006500-TRLR 3 X
PGM-0140-400700-CT-400680-MSG 3 X
PGM-0140-VAR-AUX 3

PGM-0160 5 PGM-0160-400070-PN-400050-PN-CFF 3 X
PGM-0160-400263-BOMBA-400260-BOMBA 3 X
PGM-0160-400266-BOMBA-400260-BOMBA 3 X
PGM-0160-400080-CFF-400050-PN-CFF 3 X
PGM-0160-400083-PQ-400050-PN-CFF 3 X
PGM-0160-400085- AV-400050-PN-CFF 3 X
PGM-0160-400300-C-400280-9-REC 3 X
PGM-0160-MODULE-STATUS-MODULE-
ACTIVATION-CONTRO

3 X

PGM-0160-006530-RCDS-006500-TRLR 3 X
PGM-0160-400700-CT-400680-MSG 3 X
PGM-0160-VAR-AUX 3 X

PGM-0170 5 PGM-0170-400070-PN-400050-PN-CFF 2(3)
PGM-0170-400080-CFF-400050-PN-CFF 2(3)
PGM-0170-400083-PQ-400050-PN-CFF 2(3)
PGM-0170-400085-AV-400050-PN-CFF 2(3)
PGM-0170-400300-C-400280-9-REC 3
PGM-0170-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

3

PGM-0180 4 PGM-0180-400300-C-400280-9-REC 2
PGM-0180-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

2

PGM-0190 5 PGM-0190-400033-LOC-400010-TABLE 2(3)
PGM-0190-400780-INDEX 3 X
PGM-0190-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

3

PGM-0190-400036-AV-400010-TABLE 3 X

86

PGM-0210 5 PGM-0210-400780-INDEX 2(3)
PGM-0210-MODULE-STATUS-MODULE-
ACTIVATION-CONTROL

2(3)

PGM-0210-400036-AV-400010-TABLE 3 X
PGM-0220 2
PGM-0230 2
PGM-0310 2
PGM-0320 5 PGM-0320-VAR-AUX 3

PGM-0320-006530-RCDS-006200-DTL 3
PGM-0320-400266-BOMBA-400260-BOMBA 2(3)
PGM-0320-400700-CT-400680-MSG 2(3) X

END-OF-JOB 2
PGM-START 5 PGM-START-006220-CFF-006200-DTL 2(3)

PGM-START-006215-PN-POS-1-006200-DTL 2(3)
PGM-START-006229-LOC-006200-DTL 2(3)
PGM-START-006230-AV-006200-DTL 2(3)
PGM-START-006285-RECUP-POR-006200-
DTL

2(3)

PGM-START-006253-UN-006200-DTL 2(3)
PGM-START-006375-LAST-ACQ-PRICE-
006200-DTL

2(3)

PGM-START-006246-BL-006200-DTL 2(3)
PGM-START-006250-NOMEN-006200-DTL 2(3)
PGM-START-006255-CAT-006200-DTL 2(3)
PGM-START-006260-OA-006200-DTL 2(3)
PGM-START-006263-APL-006200-DTL 2(3)
PGM-START-006265-TPR-006200-DTL 2(3)
PGM-START-006270-FRG-006200-DTL 2(3)
PGM-START-006280-TRG-006200-DTL 2(3)
PGM-START-006376-PROC-IN-REWORK-
006200-DTL

2(3)

PGM-START-006377-COND-IN-REWORK-
006200-DTL

2(3)

PGM-START-006380-SUPERADOR-006200-
DTL

2(3)

PGM-START-006390-SUPERADO-006200-
DTL

2(3)
-

PGM-START-400300-C-400280-9-REC 3 X

87

PGM-START-400080-CFF-400050-PN-CFF
PGM-START-450030-X-SPACE-001100-
MASTER-0
PGM-START-400083-PQ-400050-PN-CFF X
PGM-START-400085-AV-400050-PN-CFF X
PGM-START-450100-FED-MFG-CDE-
001100-MASTER-O

X

PGM-START-400800-D-400790-DATA-RESP 2(3)
PGM-START-400820-M-400790-DATA- 2(3)
RESP
PGM-START-400840-A-400790-DATA-RESP 2(3)
PGM-START-400115-DAY-400110-DATE 2(3) X
PGM-START-400120-ME-400110-DATE 2(3) X

PGM-START-400130-AN-400110-DATE 2(3)
PGM-START-400740-DATE 2(3)
PGM-START-400100-POS-400090-
RESPONSE

X

PGM-START-400190-INDEX X
PGM-START-400185-SWT-400180-TEST
PGM-START-400550-AV-400510-ID
PGM-START-400036-AV-400010-TABLE
PGM-START-400530-LOC-400510-ID X
PGM-START-400033-LOC-400010-TABLE X
PGM-START-400210-O-CT X
PGM-START-SWITCH-0130-PATH-
CONTROL-SWITCHES

X

PGM-START-400263-BOMBA-400260-
BOMBA

X

PGM-START-400266-BOMBA-400260-
BOMBA
PGM-START-450040-PART-NO-001100-
MASTER-0

X

PGM-START-400780-INDEX,
PGM-START-006530-RCDS-006500-TRLR X
PGM-START-006400-ALTERNADO-006200- 2(3)
DTL
PGM-START-006290-ESTOQUE-006200- 2(3)
DTL
PGM-START-006300-EC-006200-DTL 2(3)
PGM-START-006310-OS-006200-DTL 2(3)

88

PGM-START-006320-REP-006200-DTL 2(3)
PGM-START-006330-AVG-PRICE-006200-
DTL

2(3)

PGM-START-006350-A-006200-DTL 2(3)
PGM-START-006287-CON-006200-DTL 2(3)
PGM-START-006430-PRE-CALC-006200-
DTL

2(3)

PGM-START-006440-NMAX-CALC-006200-
DTL

2(3)

PGM-START-006450-CON-TOTAL-006200-
DTL

2(3)

PGM-START-006470-MES-RECEB-006200-
DTL

2(3)

PGM-START-006481-Q-P-ART-006200-DTL 2(3)
PGM-START-006482-Q-COMPRADA-
006200-DTL

2(3)

PGM-START-006360-SHELF-006200-DTL 2(3)
PGM-START-006480-ANO-RECEB-006200-
DTL

2(3)

PGM-START-MODULE-STATUS-MODULE-
ACTWATION-CONTROL

3 /X

PGM-START-VAR-AUX 3 X
PGM-START-400700-CT-400680-MSG 3 X
PGM-START-400070-PN-400050-PN-CFF 3 X

C1AD99T1 1

5.3-1 Class and Functionality Analysis.

The legacy system uses one input file(SYSO) and one output file(SYS5). The

input file has one record description 001100-MASTER-O while the output file has two

record descriptions 0062-DTL and 006500-TRLR. The Working Storage Section is

composed of 28 records.

Each of the category 2 and category 3 subprograms from the C1AD99T1 system

should have been converted to the object-oriented paradigm using the prototype. This

89

would have resulted in an object-oriented design with 185 classes and 185 methods. The

main program should have also been converted to a class and method.

The Sigma 3 conversion did not work well. The example below (Figure 14) of

subprograms PGM-0160-400700-CT-400680-MSG and PGM-0320-400700-CT-400680-

MSG shows the problem that occurred.

procedure PGM-0160-400700-CT-400680-MSG
(400070-PN-400050-PN-CFF, 450040-PART-NO-
001100-MASTER-O,
400033-LOC-400010-TABLE, 450030-X-SPACE-
001100-MASTER-O,
006530-RCDS-006500-TRLR, HEX-1,400340-OP,
400700-CT-400680-MSG)

begin
LOCAL-9 := 400070-PN-400050-PN-CFF;
LOCAL-8 := 006530-RCDS-006500-TRLR;
if 450040-PART-NO-001100-MASTER-0 > LOCAL-9 (1)
then PGM-0170-400070-PN-400050-PN-CFF

(LOCAL-9,450040-PART-NO-001100-MASTER-0,
450030-X-SPACE-001100-MASTER-O)

else
if 400033-LOC-400010-TABLE (1) = "VASP"
then if 450040-PART-NO-001100-MASTER-O =

LOCAL-9 (1)
then PGM-0170-400070-PN-400050-PN-CFF

(LOCAL-9,450040-PART-NO-001100-
MASTER-0,450030-X-SPACE-001100-
MASTER-0)

else endif
else endif

endif;
if 450040-PART-NO-001100-MASTER-O <= LOCAL-9 (
1)
then if 400033-LOC-400010-TABLE (1) /= "VASP"

then if 450040-PART-NO-001100-MASTER-O /=
LOCAL-9 (1)

then PGM-0320-400700-CT-400680-MSG
(LOCAL-8, HEX-1,400340-OP, 400700-

CT-
400680-MSG);

PGM-0320-0O6530-RCDS-006500-TRLR
(LOCAL-8, HEX-1.400340-OP)

else endif
else endif

else endif
end

class CLASS-31 attributes
400700-CT-400680-MSG, 400340-OP, HEX-1,
006530-RCDS-006500-TRLR,450030-X-SPACE-
001100-MASTER-O,
400033-LOC-400010-TABLE, 450040-PART-NO-
001100-MASTER-0.400070-PN-400050-PN-CFF

method PGM-0160-400700-CT-400680-MSG (C-31)
begin

LOCAL-9 := GET-400070-PN-400050-PN-CFF (C-31);
LOCAL-8 := GET-006530-RCDS-006500-TRLR (C-31);
if GET-450040-PART-NO-OOl 100-MASTER-O (C-31) >

LOCAL-9 (1)
then PGM-0170-400070-PN-400050-PN-CFF

(LOCAL-9,450040-PART-NO-001100
MASTER-0,450030-X-SPACE-001100-MASTER-0)

else if GET-400033-LOC-400010-TABLE (C-31,1) =
"VASP"

thenifGET-450040-PART-NO-OOllOO-MASTER-O
(C-31) = LOCAL-9 (1)

then PGM-0170-400070-PN-400050-PN-CFF
(LOCAL-9,450040-PART-NO-
001100-MASTER-O,
450030-X-SPACE-001100-
MASTER-O)

else endif
else endif

endif;
if GET-450040-PART-NO-001100-MASTER-0 (C-31)

<= LOCAL-9 (1)
then f GET-400033-LOC-400010-TABLE (C-31,1) /=

"VASP"
then if GET-450040-PART-NO-001100-

MASTER-O (C-31) /=LOCAL-9 (1)
then PGM-0320-400700-CT-400680-MSG

(LOCAL-8, GET- HEX-1 (C-31), GET-
400340-OP (C-31),GET-400700-CT-
400680-MSG (C-31)); PGM-0320-
006530-RCDS-006500-TRLR(LOCAL-8,
GET-HEX-1 (C-31), GET-400340-OP

(C-31))
else endif

else endif
else endif

end
superclass USER-OBJECT

90

procedure PGM-0320-400700-CT-400680-MSG
(006530-RCDS-006500-TRLR, HEX-1,400340-

OP,
400700-CT-400680-MSG) begin

LOCAL-6 := 006530-RCDS-006500-TRLR;
LOCAL-6 := HEX-1 + 400340-OP;
400700-CT-400680-MSG := LOCAL-6;
write (RCBU::STD-OUTPUT, 400700-CT-400680-

MSG)
end

procedure PGM-0170-400070-PN-400050-PN-CFF
(400070-PN-400050-PN-CFF, 450040-PART-

NO-001100-MASTER-O,
450030-X-SPACE-001100-MASTER-0) begin

if 450030-X-SPACE-001100-MASTER-0 = "T"
then
else 400070-PN-400050-PN-CFF (1) := 450040-

PART-NO-001100-MASTER-O
endif

end

procedure PGM-0320-006530-RCDS-006500-TRLR
(006530-RCDS-006500-TRLR, HEX-1,400340-OP)

begin
006530-RCDS-006500-TRLR := HEX-1 + 400340-OP

end

class CLASS-15 attributes
400700-CT-400680-MSG, 400340-OP, HEX-1,
006530-RCDS-006500-TRLR

method PGM-0320-400700-CT-400680-MSG (C-15)
begin

LOCAL-6 := GET-006530-RCDS-006500-TRLR (C-15);
LOCAL-6 := GET-HEX-1 (C-15) +

GET-400340-OP (C-15);
SET-400700-CT-400680-MSG (C-15, LOCAL-6);
write (RCBU::STD-OUTPUT, GET-400700-CT-400680-

MSG(C-15))
end
superclass USER-OBJECT

class CLASS-8 attributes
450030-X-SPACE-001100-MASTER-O,
450040-PART-NO-001100-MASTER-O, 400070-PN-

400050-PN-CFF
method PGM-0170-400070-PN-400050-PN-CFF (C-8)
begin

if GET-450030-X-SPACE-001100-MASTER-O (C-8) = "T"
then
else

SET-400070-PN-400050-PN-CFF
(C-8,1, GET-450040-PART-NO-001100-

MASTER-O (C-8))
endif

end
superclass USER-OBJECT

class CLASS-17 attributes
400340-OP, HEX-1,006530-RCDS-006500-TRLR

method PGM-0320-006530-RCDS-006500-TRLR (C-17)
begin

SET-006530-RCDS-006500-TRLR
(C-17, GET-HEX-1 (C-17) + GET-400340-OP (C-17))

end
superclass USER-OBJECT

Figure 14 Sigma 3 Conversion Example

In the PGM-0160-400700-CT-400680-MSG procedure, the LOCAL-8 parameter

is a PBOI case 3. Each of HEX-1, 400340-OP and 400700-CT-400680-MSG is a PBOI

case 1. The parameter LOCAL-8, corresponding to 006530-RCDS-006500-TRLR,

should have been converted from an attribute of class-15 to a parameter of a class-15

method. Nevertheless, that did not happen. The HEX-1, 400340-OP and 400700-CT-

91

400680-MSG remained attributes of class-15 but were not removed as attributes of

class-31.

In Maj. Sward's dissertation about PBOI methodology [19], an important point

was not described explicitly. When converting PBOI case 1 it is necessary to change an

instance of the class C2 (the class corresponding to the called subprogram) to a parameter

of the method of the class Cl (the class corresponding to the calling subprogram). It is

necessary to put an instance of the class C2 (the class corresponding to the called

subprogram) as a parameter of the method of the class Cl (the class corresponding to

calling subprogram). While converting, the data remains an attribute of class C2 (the

class corresponding to the called subprogram) and is removed as an attribute of Cl (the

class corresponding to calling subprogram).

The classes class-15, class-8, class-17 and class-31 should be converted as shown

bellow in Figures 15,16,17 and 18.

class CLASS-15 attributes
400700-CT-400680-MSG, 400340-OP, HEX-1,

method PGM-0320-400700-CT-400680-MSG (C-15 , 006530-RCDS-006500-TRLR)
begin

LOCAL-6 := 006530-RCDS-006500-TRLR;
LOCAL-6 := GET-HEX-1 (C-15) + GET-400340-OP (C-15);
SET-400700-CT-400680-MSG (C-15, LOCAL-6);
write (RCBU::STD-OUTPUT, GET-400700-CT-400680-MSG (C-15))

end
superclass USER-OBJECT

Figure 15 - Sigma 3 Conversion Example (CLASS-15)

92

The problems were: (a) the attribute 006530-RCDS-006500-TRLR was neither

removed as an attribute of the class-15 nor converted to a parameter of the class.

(b) the LOCAL-6 assignment should have been changed

from the GET- message to the 006530-RCDS-006500-TRLR parameter.

class CLASS-8 attributes
450030-X-SPACE-001100-MASTER-O,
450040-PART-NO-001100-MASTER-O,

method PGM-0170-400070-PN-400050-PN-CFF (C-8 ,400070-PN-400050-PN-CFF)
begin

if GET-450030-X-SPACE-OOl 100-MASTER-O (C-8) = "T"
then
else

400070-PN-400050-PN-CFF(l) :=
GET-450040-PART-NO-001100-MASTER-O (C-8)

endif
end
superclass USER-OBJECT

Figure 16 - Sigma 3 Conversion Example(CLASS-8)

The problems were: (a) the 400070-PN-400050-PN-CFF attribute of the class-8

was neither removed nor converted to a parameter of the class-8.

(b) the SET-400070-PN-400050-PN-CFF message should

have been changed to 400070-PN-400050-PN-CFFQ) := GET-450040-PART-NO-

001100-MASTER-O (C-8) assignment.

93

class CLASS-17 attributes
400340-OP, HEX-1

method PGM-0320-006530-RCDS-006500-TRLR (C-17 ,006530-RCDS-006500-
TRLR) begin

006530-RCDS-006500-TRLR := GET-HEX-1 (C-17) + GET-400340-OP (C-17)
end
superclass USER-OBJECT

Figure 17 - Sigma 3 Conversion Example(CLASS-17)

The problems were: (a) the 006530-RCDS-006500-TRLR attribute of the class-

17 was neither removed nor converted to a parameter of the class-17.

(b) the SET-006530-RCDS-006500-TRLR message should

have been changed to 006530-RCDS-006500-TRLR := GET-HEX-1 (C-17) + GET-

400340-OP (C-17) assignment.

class CLASS-31 attributes
006530-RCDS-006500-TRLR,
400033-LOC-400010-TABLE,
400070-PN-400050-PN-CFF

method PGM-0160-400700-CT-400680-MSG (C-31 , C-15 , C-8) begin
LOCAL-9 := GET-400070-PN-400050-PN-CFF (C-31);
LOCAL-8 := GET-006530-RCDS-006500-TRLR (C-31);
if GET-450040-PART-NO-001100-MASTER-0 (C-8) > LOCAL-9 (1)
thenPGM-0170-400070-PN-400050-PN-CFF

(LOCAL-9,GET-450040-PART-NO-001100-MASTER-0(C-8),
GET-450030-X-SPACE-OO1100-MASTER-0(C-8))

else
if GET-400033-LOC-400010-TABLE (C-31,1) = "VASP"
then ifGET-450040-PART-NO-001100-MASTER-0(C-8) = LOCAL-9 (1)

thenPGM-0170-400070-PN-400050-PN-CFF
(LOCAL-9, GET-450040-PART-NO-001100-MASTER-0(C-8),
GET-450030-X-SPACE-001100-MASTER-0(C-8))

else endif
else endif
endif:

94

if GET-450040-PART-NO-001100-MASTER-0 (C-8) <= LOCAL-9 (1)
then f GET-400033-LOC-400010-TABLE (C-31, 1) /= "VASP"

then ifGET-450040-PART-NO-001100-MASTER-0(C-8) /=
LOCAL-9 (1)

thenPGM-0320-400700-CT-400680-MSG
(LOCAL-8, GET-HEX-1 (C-15), GET-400340-OP (C-15),
GET-400700-CT-400680-MSG (C-15));
PGM-0320-006530-RCDS-006500-TRLR
(LOCAL-8, GET-HEX-1 (C-17), GET-400340-OP (C-17))

else endif
else endif

else endif
end
superclass USER-OBJECT

Figure 18 - Sigma 3 Convertion Example(CLASS-31)

The problems were: (a) the attributes HEX-1, 400340-OP, 400700-CT-400680-

MSG, 450030-X-SPACE-001100-MASTER-0 and 450040-PART-NO-001100-

MASTER-0 were not removed as attribue of the class-31.

(b) the GET- messages should have had its parameters

changed to C-15 in the PGM-0320-400700-CT-400680-MSG message, C-17 in the

PGM-0320-006530-RCDS-006500-TRLR and C-8 PGM-0170-400070-PN-400050-PN-

CFF.

The next step was the transformation (Sigma 3 option) of the subprograms that

call the subprogram PGM-0160-400700-CT-400680-MSG (class-31) into classes. This

transformation also changed the classes that had already been built in the previous

transformation (class-31 for example). These kind of changes cause further changes:

attributes of a class become parameters of the corresponding class method. The new

95

parameters are instances of other classes whose methods are called by the first class

method. This procedure causes the generation of overlapping classes or duplicate object

instances. The overlapping classes and duplicate object instances are solved during the

transformation of the main program into the SYSTEM-CLASS class.

A class overlaps another class when an instance of each is built using at least one

common data item. Duplicate object instances are separate object instances that are built

from the same class using the same data items.

In the previous example, the transformation of the PGM-0160-400700-CT-

400680-MSG, PGM-0170-400070-PN-400050-PN-CFF, PGM-0320-400700-CT-

400680-MSG and PGM-0320-006530-RCDS-006500-TRLR programs generated class-

15 and class-17 overlapping classes. More overlapping classes should have been

generated during the transformations of the subprograms until the system root was

reached.

During the transformation of the main program, when the object instances are

created before each message that invokes a method, the overlapping classes should merge

but, they did not. This step should have created every object instance required for the

entire object-oriented design.

Let's suppose that the PGM-0130 was the main program, this would have resulted

in a class CLASS-SYSTEM as in Figure 19.

Class-15 and class-17 are overlapping classes and it is necessary to merge them

into a new class and create a single new instance built from the new class. Then, any

instance of an overlapping class (C-15 and C-17) should be replaced by an instance of the

new class.

96

class CLASS-SYSTEM attributes
method PGM-0160()
begin

C-15:=CREATE-CLASS-15(400700-CT-400680-MSG, 400340-OP , HEX-1)
C-8:=CREATE-CLASS-8(450030-X-SPACE-001100-MASTER-O , 450040-PART-

NO-001100-MASTER-O)
C-17:=CREATE-CLASS-17(HEX-1,400340-OP)
C-31:=CREATE-CLASS-31(006530-RCDS-006500-TRLR , 400340-LOC ,

400070-PN-400050-PN-CFF)
PGM-0160-400700-CT-400680-MSG(C-31, C-15 , C-8)

end
superclass USER-OBJECT

Figure 19 - Initial Class-System

The overlapping classes are merged into a new class by union of the attributes and

methods of the merged classes. It also creates a new method to create the new class.

Therefore, the new class (class-1517) and the CLASS-SYSTEM should have been

built as shown in Figures 20 and 21.

class CLASS-SYSTEM attributes
method PGM-0160()
begin

C-8:=CREATE-CLASS-8(450030-X-SPACE-001100-MASTER-O , 450040-PART-
NO-001100-MASTER-O)

C-1517:=CREAT-CLASS-1517(400700-CT-400680-MSG , HEX-1 ,400340-LOC)
C-31:=CREATE-CLASS-31(006530-RCDS-006500-TRLR , 400340-LOC ,

400070-PN-400050-PN-CFF)
PGM-0160-400700-CT-400680-MSG(C-31 , C-1517 , C-8)

end
superclass USER-OBJECT

Figure 20 - Final Class-System

97

class CLASS-1517 attributes
400700-CT-400680-MSG, 400340-LOC , HEX-1
method CREATE-CLASS-1517(A-400700-CT-400680-MSG , A-400340-LOC , A-
HEX-l):aCLASS-1517
begin

INST-CLASS-1517:= new(CLASS-1517)
SET-400700-CT-400680-MSG(INST-CLASS-1517)A-400700-CT-400680-MSG)
SET-400340-LOC (INST-CLASS-1517 , A-400340-LOC)
SET- HEX-1 (INST-CLASS-1517 , A- HEX-1)
CREATE-CLASS-1517:=INST-CLASS-1517

end
method PGM-0320-400700-CT-400680-MSG (C-15 ,006530-RCDS-006500-TRLR)
begin

LOCAL-6 := 006530-RCDS-006500-TRLR;
LOCAL-6 := GET-HEX-1 (C-15) + GET-400340-OP (C-15);
SET-400700-CT-400680-MSG (C-15, LOCAL-6);
write (RCBU::STD-OUTPUT, GET-400700-CT-400680-MSG (C-15))

end
method PGM-0320-006530-RCDS-006500-TRLR (C-17 ,006530-RCDS-006500-
TRLR) begin

006530-RCDS-006500-TRLR := GET-HEX-1 (C-17) + GET-400340-OP (C-17)
end

superclass USER-OBJECT

Figure - 21 New Class Originated from Overlapping Classes

The sample transformation of PGM-0160-400700-CT-400680-MSG, PGM-0320-

400700-CT-400680-MSG, PGM-0170-400070-PN-400050-PN-CFF and PGM-0320-

006530-RCDS-006500-TRLR into the GOM shows that each remaining class in the

object-oriented design, after the merging process, will not have attributes in common.

Almost all the sliced subprograms in the C1AD99T1 system have many parameters in

common. The origin of all data items is in the main program and the subprogram PGM-

0100-READ is responsible for treating/computing all the input and output data items of

the system. All these characteristics show that the PBOI methodology should have

98

created just one class for the input and output file with several methods corresponding to

the subprograms that deal with the data items. The subprograms that do not process the

input and output data items and do not call other subprograms use Working Storage data

items. However, the other subprograms that process the input/output data item, use the

same Working Storage data items. Therefore, these subprograms will generate

overlapping classes too.

The "behavior" of the transformation of the C1AD99T1 system into the GOM

showed that the object-oriented design will have just two classes, one for the main

program (C1AD99T1) and another with all the data items in the system as attributes and

all methods corresponding to the system subprograms.

The sliced subprograms were analyzed in order to address the following fact. The

overall functionality of the imperative design was proven to be maintained after the

translation of the system into the GIM and the transformation into the GOM. The sliced

subprograms are results of the first phase of the transformation of the system into the

GOM. And, the methods in a class are a copy of the corresponding sliced subprogram.

As the sliced subprograms are built based on the output parameters produced in a

subprogram, the statements that do not deal with them are not considered a component of

the sliced subprogram. Therefore, a subprogram that has output statements using an in

parameter will disappear from the system. This characteristic causes an inconsistent

functionality of the object-oriented design with the legacy system.

An example of this lost functionality (Figure 22) is demonstrated with the PGM-

0140 imperative subprogram.

99

procedure RU::PGM-0140
(RU::SWrrCH-0130-PATH-CONTROL-SWITCHES,

RU: :400350-D ATE-MSG, RU: :400263-BOMB A-400260-BOMB A,
RU: :400266-BOMB A-400260-BOMB A,
RU::400100-POS-400090-RESPONSE,RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-O, RU::400780-INDEX,
RU::HEX-1, RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU: :400036-AV-400010-TABLE, RU: :006530-RCDS-006500-TRLR,
RU: :400340-OP, RU: :400700-CT-400680-MSG,
RU: :FILLER-CT-400680-MSG, RU: :FILLER-40-400680-MSG,
RU::VAR-AUX

) begin
RU::SWITCH-0130-PATH-CONTROL-SWrrCHES := 160;
RU::PGM-0190

(RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-O, RU::400780-INDEX,
RU: :HEX-1, RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE);

write (STD-OUTPUT, RU::400350-DATE-MSG);
write (STD-OUTPUT, "E F..FECHAR OU C.CONTINUAR");
if RU::400100-POS-400090-RESPONSE (1) = "F"

then RU::400263-BOMBA-400260-BOMBA := "";
RU::400266-BOMBA-400260-BOMBA := " ";

RU::PGM-0320
(RU::006530-RCDS-006500-TRLR, RU::HEX-1, RU::400340-OP,
RU: :400700-CT-400680-MSG, RU: :FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400263-BOMBA-400260-BOMBA,
RU: :400266-BOMB A-400260-BOMB A, RU:: VAR-AUX)

else endif;
RU::PGM-0190

(RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-O, RU::400780-INDEX,
RU: :HEX-1, RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU: :400036-AV-400010-TABLE)

end

Figure 22 - Loss of Functionality (Slicing Problem)

The eliminated output statements showed 400350-DATE-MSG data item and

asked for an operator intervention to continue the process or stop it. Therefore, as the

100

output statements did not remain in the object-oriented design, the resulting system

would have had its functionality changed.

This demonstration showed that it is necessary to change the slicing process to

keep the statements that do not deal with the output parameters.

Another problem that generated a loss of functionality was when a message to call

a method could not be properly positioned within a class. Examples (Figure 23) of this

were the messages within the class-20 to the class-2 and class-4 methods. The message

to PGM-0210-400780-INDEX method would have been sent before the message to

PGM-0210-400036-AV-400010-TABLE method, because the PGM-0210-400780-

INDEX method set the 400780-INDEX data item value to the HEX-1 value and the

PGM-0210-400036-AV-400010-TABLE uses the 400780-INDEX value. Therefore, if

there was a statement following the LOCAL-1 := GET-400780-INDEX (C-4) assignment

that used the LOCAL-1 data item, the value of the LOCAL-1 would be incorrect.

5.4 Summary.

This chapter has provided the results of the transformation of the Cobol legacy

system into the GOM using the PBOI methodology. The PBOI prototype showed some

flaws during the transformation of the Cl AD99T1 system and was hard to execute. This

transformation demonstrated that the PBOI methodology applied to Cobol legacy systems

was not direct. The methodology could be applied to the small Cobol sample, yet showed

the same problems with the conversion of the PBOI Case parameters. The C1AD99T1

system was not a giant or different from Cobol systems found in many organizations.

101

class CLASS-20 attributes
400036-AV-400010-TABLE, HEX-1, 400780-INDEX,
450040-PART-NO-001100-MASTER-0,400033-LOC-400010-TABLE
method PGM-0190-400780-INDEX (C-20) begin

LOCAL-5 := GET-400033-LOC-400010-TABLE (C-20);
LOCAL-4 := GET-400036-AV-400010-TABLE (C-20);
LOCAL-5 (1) := GET-450040-PART-NO-001100-MASTER-0 (C-20);
PGM-0210-400036-AV-400010-TABLE
(400780-INDEX, HEX-1, LOCAL-5, LOCAL-4);
PGM-0210-400780-INDEX (400780-INDEX, HEX-1, LOCAL-5)
end

superclass USER-OBJECT

class CLASS-4 attributes
400036-AV-400010-TABLE, 400033-LOC-400010-TABLE, HEX-1,
400780-INDEX
method PGM-0210-400036-AV-400010-TABLE (C-4) begin

LOCAL-1 ':= GET-400780-INDEX (C-4);
if GET-400033-LOC-400010-TABLE (C-4, 1) = "VASP"

then LOCAL-1 := GET-HEX-1 (C-4);
PGM-0220 (400036-AV-400010-TABLE, LOCAL-1)

else endif
end

superclass USER-OBJECT

class CLASS-2 attributes
400033-LOC-400010-TABLE, HEX-1, 400780-INDEX
method PGM-0210-400780-INDEX (C-2) begin
if GET-400033-LOC-400010-TABLE (C-2, 1) = "VASP"

then SET-400780-INDEX (C-2, GET-HEX-1 (C-2))
else endif

end
superclass USER-OBJECT

Figure 23 - Loss of Functionality (Messages Placed Incorrectly)

Thus, the PBOI prototype was viable just for a small Cobol program that neither

has many paragraphs nor produces many output parameters.

102

VI. Conclusions and Suggestions

6.1 Introduction.

The purpose of this research was to establish the feasibility of the PBOI

methodology in relation to Cobol legacy systems. Three fundamental aspects were

investigated: the GIM, the GOM and the PBOI prototype.

The initial phase of this research was to transform the Cobol legacy C1AD99T1

system into the GIM. As the Cobol language has many constructs whose structures are

different from those of the GIM, it was necessary to develop a system to transform the

Cobol constructs into those more similar to the GIM constructs. Then, a translation

system was developed to translate the Cobol constructs into the GIM.

The second phase was to run the PBOI prototype. The aim was to extract the

objects from the GIM legacy system that had been saved in a persistent object base file.

However, the PBOI prototype was specific for the Fortran Ballistic Missile system and

for an old version of Refine software. Therefore, the PBOI prototype was modified to

deal with both the Cobol legacy system and the new version of Refine software.

The following sections present some conclusions about the PBOI methodology.

6.2 GIM conclusions

During the translation of the Cobol system into the GIM, some problems were

encountered. Some restrictions imposed by the GIM had to be overcome because it is

impossible for a Cobol system to exist with such restrictions. The restrictions were

103

described in chapter four. Even though Cobol is unique among imperative languages in

many ways, the GIM had equivalents form most of them.

The restriction that the GIM does not model heterogeneous data structures is one

that is impossible to satisfy because a Cobol program is focused on the design and

implementation of data structures [21]. In her dissertation, Capt. Dinä Moraes proposed a

way to represent records within the GIM [24]. The record transformation/elimination

increased the program length, because this transformation duplicates the statements

whose operands are group items.

The transformation of the statements that had multiple assignments increased the

number of lines of the program. The code was extended for each assignment in that

statement. The transformation of the perform statement also increased the number of

lines because when the performed paragraphs were before the stop run statement, the

code within the paragraphs was duplicated.

Another aspect that has not been addressed in this research is the redefines clause

in the Data Description Entry of the Cobol Data Division. The redefines clause allows

the same storage area to be described by different data description entries. It is a

characteristic that is widely used and found in a Cobol system and should be addressed.

The redefines clause hides a functional specification. Therefore, each time an

operation is performed over a record, the redefined record experiences the same operation

and vice-versa. One way to address this problem is to extend the Cobol code during the

transformation of the legacy system into code that is very similar to the GIM. In a case

where the two data description entries have the same characteristics of a data item, the

104

code is extended by writing the same operations using the redefined record (or the

original record that is not explicitly used in the operation).

In the case that the two data description entries have different characteristics of a

data item, a solution should be to construct a record with a sequence of bytes with the

same length of the original data entry. Later, a function can be defined to map the

redefined record to the sequence of bytes and from the sequence of bytes to a record.

This should be a piece of the solution that deals with the statements that use data entries,

and which are redefined. Future research should explore the changes required to deal

with the redefines clause with different data description entries.

A way to include the record structure in the GIM should be developed after

redefining the domain model and the grammar. This modification should be valuable

because the object-oriented languages use record structures.

6.3 GOM conclusions

The absence of heterogeneous data structures should be addressed in the GOM as

well. A way to represent heterogeneous data structures(records) within the GOM would

be to add a gom-record subclass of gom-data-type. Figure 24 shows the gom-data-type

class and the new subclass gom-record.

105

gom-instance gom-integer

gom-record

I

gom-boolean

gom-array

gom-record-fields

gom-variable

gom-character

gom-string

Figure 24 gom-record

6.4 Parameter-Based Object Identification Method Conclusion.

The PBOI method for identifying objects in imperative legacy code is based on

the data items passed as parameters in imperative subprogram calls. This method is

based on the thesis that object attributes manifest themselves as data items passed from

subprogram to subprogram in the imperative paradigm[19].

After slicing and masking processes, as described in chapter n, the PBOI

prototype starts the transformation of extracting objects into the GOM from the

subprograms category 2 and 3 and the main program category 1.

The PBOI prototype is a powerful tool. It can automatically identify all the

output parameters and construct the names of the program that are generated during the

slicing process. But the entire process of slicing and masking is not automatic. It is

106

necessary for the operator/user to interact with the prototype to choose each sliced

subprogram to mask. As the process of masking for each subprogram takes up to 20

minutes (depending on the quantity of output parameters produced in the subprogram),

the whole process is slow taking a long time and needing a lot of interaction from the

operator/user.

Slicing and masking again greatly expanded the size of the program because so

many of the derived subprograms produced multiple, related outputs. The result was a

large number of subprograms with many statements duplicated among several of them.

The prototype system is able to identify the main program in the PBOI

methodology because the program has a specific name and is without parameters. So the

imperative-symbol-table that is constructed during the transformation of the Cobol legacy

system into the GIM, specifically when the parameters are translated, has its construction

changed for the main program. Therefore, the imperative-symbol-table for the variables

in the main program is built during the transformation of the statements in the main

program.

When the source code scales up, specifically when there are many output

parameters produced in a subprogram, the PBOI methodology is affected. It is affected

because it provides many sliced programs and the PBOI prototype does not manage many

output parameters and many subprograms well. Therefore, to transform the system into

the GOM is more difficult for a Cobol system with many perform statements (calls to

subprograms), because the structural complexity is increased.

This research has so far indicated that the approach of the PBOI methodology can

be practically used in a small Cobol program that neither has many paragraphs nor

107

produces many output parameters. The real application of the approach will not be seen

until a more robust and more automated PBOI system has been built.

6.5 Contributions.

This research has been completed successfully. The objectives defined for this

work have been met.

This research makes the following major contributions:

1. Validation of the GIM using a Cobol legacy system;

2. Validation of the GOM with the records transformed into simple data type;

3. Demonstration that the PBOI prototype is impractical when applied to a system

with several category 5 subprograms and many output parameters;

4. Demonstration that the Object-Oriented design is not consistent with the legacy

code.

The analysis of the GIM, GOM and PBOI reveals a demonstration of the

potentiality and flaws of the PBOI methodology as a generic reengineering tool for

legacy systems. Also, my research provides substance for KBSE future research and for

the PBOI methodology that Maj. Sward is applying in his work within the USAF.

The step of analyzing the extracted objects that are in the GOM was not

accomplished. Consequently, it was impossible to verify their consistency with the

original legacy system. Such verification was needed if the object-oriented design was to

be shown to be functionally equivalent to the Cobol system. I was unable to evaluate the

object-oriented design because of the PBOI prototype problems described in chapter V.

108

Despite the fact that the PBOI prototype was not capable of providing the object-

oriented design of the legacy system, it was possible to conceive how the design might

be.

Overall, the research demonstrated that while the PBOI methodology is a

significant contribution in reengineering, it needs a better usage of elaborated types and a

more powerful prototype to eliminate problems revealed during the transformation of the

Cobol legacy system into the GOM.

109

Appendix A - Cobol Legacy System

000010 ID DIVISION.
C1AD10PC

000020* ESTA EH A REVISAO DE NUMERO 005
C1AD10PC
000030 PROGRAM-ID. C1AD99T1.
C01CMPPD
000040 AUTHOR. CONRAD G. WHITFIELD.
C01CMP

INSTALLATION 000050
C01CMP
000060
C01CMP
000070 DATE-WRITTEN. 02 OCT 1969.
C01CMP
000080 REMARKS.
C01CMP
000090 *************
*********** *C01CMP

DIRETORIA DE MATERIAL, FORCA AEREA BRASILEIRA,

RIO DE JANEIRO, BRAZIL.

HISTORIA DE MANUTENCAO DE PROGRAMA

000100
C01CMP
000110
C01CMPOG
000120
C01CMPOG
000130
000140
000150
000160
000170
000180
000190
000200 '
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350

DATA AUTORIDADE

16-11-71

16-01-84 SGT OSMAR

01-04-86 SGT EMILIA

04-10-88 SGT ROSANGELA

26-10-88 SGT ROSANGELA

25-08-92 SGT ROSANGELA

DESCRICAO DE TROCO

CONVERTIDO AO MESTRE

REV-70 E ANSI COBOL.

POR

CGW

AUMENTEI 4 BYTES NOS ARQUIVOS DCG
DE ENTRADA, DEVIDO AOS MESTRES
ATUIAS TEREM 4 BYTES A MAIS; E
MOVI ESPACO ANTES DAS LEITURAS
FIM.
TROCA DO PROCESSAMENTO DOS DCG
MESTRES EM FITA PARA DISCO
TAL COMO O ARQUIVO UNIFICADO.
COM ALTERACAO NO REG. DO UNI- DCG
FICADO, COLOCANDO-SE O CAMPO
6450-CON-TOTAL.
COM ALTERACAO NO REG. DO UNI- DCG
FICADO, COLOCANDO-SE O CAMPO
6460-DATA-RECEB.
E EXCLUINDO OS CAMPOS 006340-VALUE
006410-PRE E 006420-NMAX. ALTERANDO
DESTE MODO O TAMANHO DO REGISTRO CO-
MO TAMBEM O SEU NOME, QUE PASSOU A
SER C19N14PD.
COM ALTERACAO NO REG. DO UNIFICADO
COLOCANDO-SE O CAMPO 6481-Q-P-ART
E 6482-Q-COMPRADA.

110

000360
000370
000701
000702
000390
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000520
000530
000550
000560
000570
000590
000600
450030
450040
450050
450060
450070
450090
450100
450110
450130
450140
450160
450170
450210
450230
450240
450340
450350
450360
450380
450390
450410
450420
450430
450440
450450
450470
450480
450520
450530
450540
450560
450570
450580
450750
450760

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

console is console.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SKIP1
SELECT SYS0 ASSIGN TO SYS006-ARQ01

ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS 450040-PART-NO
FILE STATUS IS CHK-01.

SELECT SYS5 ASSIGN TO SYS011-UT-3350-AS
ORGANIZATION IS SEQUENTIAL
FILE STATUS IS CHK-UNIF.

DATA DIVISION.
FILE SECTION.
FD SYS0,

RECORD CONTAINS 448 TO 12488 CHARACTERS,
LABEL RECORDS ARE STANDARD.

01 001100-MASTER-0.
05 FILLER-1
05 450030-X-SPACE
05 450040-PART-NO
05 450050-AV-CODE
05 450060-FED-STOCK-NO
05 450070-NOMENCLATURE
05 450090-REP-AT
05 450100-FED-MFG-CDE
05 450110-CATEGORY
05 450130-LEAD-TIME
05 450140-SHELF-LIFE
05 450160-QUANT-PER-ART
05 450170-HOURS
05 450210-REWORK-FACT
05 450230-ACQ-PT
05 FILLER-3
05 450340-REORDER-LEVEL
05 450350-MAX-STOCK
05 450360-TURN-AROUND
05 450380-ACCNT-IND
05 450390-UNIT-OF-ISSUE
05 450410-ON-ORD-QUANT
05 450420-REWORK-QUANT
05 450430-INV-BAL
05 450440-REM-BAL
05 450450-AVG-UNIT-PRICE
05 450470-EXTENDED-VALUE
05 FILLER-4
05 450520-LAST-REC-DATE.
10 450530-LAST-REC-MO
10 450540-LAST-REC-YR
05 450560-LAST-PURCH-PRICE
05 450570-REPAIRABLE-TOTAL
05 FILLER-5
05 450750-USAGE-TO-DATE

PICTURE X(04).
PICTURE X(01).
PICTURE X(18).
PICTURE X(02) .
PICTURE X(15) .
PICTURE X(14).
PICTURE X(03) .
PICTURE X(05).
PICTURE X(01).
PICTURE 9(02) .
PICTURE 9(02) .
PICTURE X(04) .
PICTURE 9(04)V9.
PICTURE 9(03) .
PICTURE X(02) .
PICTURE X(13) .
PICTURE 9(04) .
PICTURE 9(05) .
PICTURE 9(03).
PICTURE X(01) .
PICTURE X(02) .
PICTURE 9(05) .
PICTURE 9(05) .
PICTURE 9(05).
PICTURE 9(05).
PICTURE 999999V999
PICTURE 9999999V99
PICTURE X(4) .

PICTURE 9(02) .
PICTURE 9(02) .
PICTURE 9(06)V999.
PICTURE 9(04).
PICTURE X(60).
PICTURE 9(06).

05 FILLER-6 PICTURE X(72)

111

450846 05
450847 05
450848 05
450849 05
450850 05
450851 05
450852 05
450860 05
450870 05
450880 05
450890 05
450900 05
450910 05
450980 05
450990 05
451000 05
451020 05
451030 05
451040 05
451055 05
000750 FD
000755 Li

006030
006050
006051
006099
006200 01
006205 04
006210 05
006215 10
006220 05
006224 05
006227 05
006229 10
006240 05
006246 10
006250 05
006253 05
006255 05
006260 05
006263 05
006265 05
006270 05
006275*05
006280 05
006285 05
006287 05
006290 05
006300 05
006310 05
006320 05
006330 05
006340" 05
006350 05
006360 05
006375 05
006376 05

450846-CALC-PRE
450847-CALC-NMAX
450848-RENOV-HOLD
450849-CRIT-CTR
450850-ESTQ-DISP
450851-RENOV-CTR
450852-LAST-VEND
450860-QUANT-SCRAPPED
450870-QUANT-PURCHASED
450880-EXPEND-TO-DATE
450890-PROCESSED-IN-REWORK
450900-SCRAPPED-IN-REWORK
FILLER-7
450980-REPLACING-PART-NUMBER
450990-REPLACED-PART-NUMBER
451000-ALTERNATE-PART-NUMBER
451020-CON-MED
45103Ö-APPLICATION
451040-INSTALL-TIME
451055-PHYS-INV-SWT

SYS5,
LABEL RECORDS ARE STANDARD,

RECORD CONTAINS 222 CHARACTERS
DATA RECORDS ARE 006100-HDR, 0062

006600-LOC, 006700-TOT-RCD.

006200-DTL.
006205-ID.
006210-PN.

006215-PN-POS-l
006230-AV
006220-CFF
006227-LOC.

006229-LOC
006240-FSN.

006246-BL
006250-NOMEN
006253-UN
006255-CAT
006260-OA
006263-APL
006265-TPR
006270-FRG
006275-FRG-DEC REDEFINES
006280-TRG
006285-RECUP-POR
006287-CON
006290-ESTOQUE
006300-EC
006310-OS
006320-REP
006330-AVG-PRICE
006340-VALUE
006350-A
006360-SHELF
006375-LAST-ACQ-PRICE
0 0 6 3 7 6-PROC-IN-REWORK

PICTURE 9(05).
PICTURE 9(05).
PICTURE 9(03).
PICTURE 9(03).
PICTURE 9(05) .
PICTURE 9(03) .
PICTURE X(05).
PICTURE 9(06).
PICTURE 9(06) .
PICTURE 9(08)V99
PICTURE 9(06).
PICTURE 9(06) .
PICTURE X(12) .
PICTURE X(18) .
PICTURE X(18) .
PICTURE X(18) .
PICTURE 9(05)V9.
PICTURE X(01) .
PICTURE X(03) .
PICTURE X(01).

00-DTL, 006500-TRLR,

PICTURE X
PICTURE X
PICTURE X

PICTURE X

PICTURE X
PICTURE X
PICTURE X
PICTURE X
PICTURE X
PICTURE X
PICTURE 9
PICTURE 9

006270-FRG PICTURE
PICTURE 9
PICTURE X
PICTURE 9
PICTURE 9
PICTURE 9
PICTURE 9
PICTURE 9
PICTURE 9
PICTURE 9
PICTURE X
PICTURE 9
PICTURE 9
PICTURE 9

01) .
05) .
05) .

02) .

09) .
14) .
02) .
01) .
02) .
01) .
02) .
03) .
9V99.

03).
03) .
05)V9.
05) .
05) .
05) .
05) .
06)V999,
07)V99.
01) .
03) .
06)V999.
06) .

112

006377 05 006377-COND-IN-REWORK PICTURE 9(06)
006380 05 006380-SUPERADOR PICTURE X(18)
006390 05 006390-SUPERADO PICTURE X(18)
006400 05 006400-ALTERNADO PICTURE X(18)
006410 *05 006410-PRE PICTURE 9(05)
006420 "05 006420-NMAX PICTURE 9(05)
006430 05 006430-PRE-CALC PICTURE 9(05)
006440 05 006440-NMAX-CALC PICTURE 9(05)
006450 05 006450-CON-TOTAL PICTURE 9(06)
006450 05 006460-DATA-RECEB.
006450 10 006470-MES-RECEB PICTURE 9(02)
006450 10 006480-ANO-RECEB PICTURE 9(02)
006450 05 006481-Q-P-ART PICTURE 9(04)
006450 05 006482-Q-COMPRADA PICTURE 9(06)
006500 01 006500-TRLR.
006510 05 006510-CTL PICTURE X(32)
006520 05 006520-TRAILER-ID PICTURE X(06)
006530 05 006530-RCDS PICTURE 9(07)
000770 WORKING-STORAGE SECTION.
001810 01 400680-MSG.
001820 05 FILLER-CT PICTURE X(32)
001830 VALUE IS '* REGISTROS MANDADOS PARA UNIFIC '
001840 05 FILLER-40 PICTURE X(06)
001840 05 400700-CT PICTURE 9(07)
000790 01 CHK-01 PIC 9(02).
000840 01 CHK-UNIF PIC 9(02) .
000850 01 400010-TABLE VALUE IS 1 1

000870 05 400030-ID OCCURS 5 TIMES.
000880 10 400033-LOC PICTURE X(04)
000890 10 400036-AV PICTURE X(05)
000970 01 400090-RESPONSE.
000980 05 400100-POS OCCURS 5 TIMES PICTURE X(01)
000990 01 400110-DATE.
001000 05 400115-DAY PICTURE 9(02)
001010 05 400120-ME PICTURE 9(02)
001020 05 400130-AN PICTURE 9(02)
001030 01 400130-1 VALUE SPACE PICTURE X(01)
001050 01 400150-DATE.
001000 05 400155-DAY PICTURE 9(02)
001010 05 400160-ME PICTURE 9(02)
001020 05 400170-AN PICTURE 9(02)
001090 01 400180-TEST.
001100 05 400185-SWT OCCURS 5 TIMES PICTURE X(05)
001110 01 400190-INDEX USAGE IS COMPUTATIONAL
001120 VALUE IS 1 PICTURE 9(01)
001140 01 400210-0-CT PICTURE 9(07)
001150 USAGE IS COMPUTATIONAL, VALUE IS 0.
001240 01 400260-BOMBA.
001250 05 400263-BOMBA PICTURE 9(01)
001260 VALUE IS ZERO.
001270 05 400266-BOMBA PICTURE 9(01)
001280 VALUE IS ZERO.
001290 01 400280-9-REC .
001310 05 400300-C OCCURS 5 TIMES PICTURE X(01)
001360 01 400340-OP PICTURE 9(07)
001370 USAGE IS COMPUTATIONAL, VALUE : ES ZERO.
001570 01 400480-UNITS.

113

001580
001590
001600
001610
001620
001640
001650
001660
001670
001680
001860
001870
001890
001900
001920
001940
001970
001980
000910
000920
000930
000940
000950
000960
001380
002060
002090
002100
000775
000780
001880
002110
002120
002130
002140
002150
002160
002170
002175
002175
002190
002200
002220
002230*
002240*
002250*
002270
002280
002300
002320
002330
002340

05

05

01
05
10
10
10
10
01
01
01
05
05
05
01
01
01
05
10
10
10
10
01
01

01
01
01
01

'DISCO 1 **** DISCO

■**** DISCO 4

ZERO

FILLER-1
VALUE IS

FILLER-2
VALUE IS

400510-ID VALUE IS ' '.
FILLER-0 OCCURS 5 TIMES

400530-LOC
FILLER-1
400550-AV
FILLER-2

400730-HOLD VALUE IS
400740-DATE
400790-DATA-RESP.

400800-D
400820-M
400840-A

HEX-0 USAGE IS COMPUTATIONAL VALUE IS 0, PICTURE
HEX-1 USAGE COMPUTATIONAL VALUE 1, PICTURE 9(04).
400050-PN-CFF.

OCCURS 5 TIMES.
PICTURE X{18).
PICTURE X(05).
PICTURE X(05).
PICTURE X(04).
PICTURE X(07).

CONTROL.
PIC X(30) VALUE ' '.

PATH-CONTROL-VARIABLE PIC S9(4) COMP VALUE ZERO.

PICTURE X(40)
2 **** DISCO 3

PICTURE X(30)
DISCO 5 1

PICTURE X(04).
PICTURE X(01).
PICTURE X(05) .
PICTURE X(05) .
PICTURE 9(04).
PICTURE 9(04).

PICTURE 9(02) .
PICTURE 9(02) .
PICTURE 9(02) .

9(04)

400060-PN-CFF
400070-PN
400085-AV
400080-CFF
400083-PQ

400350-DATE-MSG
MODULE-ACTIVATION
02 MODULE-STATUS
02
VAR-AUX
END-OF-FILE
400780-INDEX
PATH-CONTROL-

PIC X(01).
PIC X(01).

USAGE COMPUTATIONAL PICTURE
-SWITCHES.

9(04)

02 SWITCH-0130 PIC 9(4) COMP VALUE ZERO.
PROCEDURE DIVISION.
MAIN.

PERFORM PGM-START THRU END-START.
STOP RUN.

END-OF-JOB.
MOVE ' 'to VAR-AUX.
DISPLAY 'STOP RUN' upon console.

END-EOJ.
EXIT.

PGM-START.

* PERFORMED BY MAIN.

DISPLAY 'COM CCMP10. GERAR OS MESTRES REDUZIDOS P-300.
UPON CONSOLE.

OPEN
OUTPUT

SYS5.

114

002350
002360
002370
002380
002381
002390
002420
002430
002440
002450
002540
002550
002560
002570
002580

IF CHK-UNIF NOT =00
DISPLAY 'ERRO ABERTURA UNIF CKH =
MOVE ' ' TO MODULE-STATUS

else

CHK-UNIF

MOVE ' ' TO 006200-DTL
MOVE 10 TO 400790-DATA-RESP
MOVE 400800-D TO 400115-DAY
MOVE 400820-M TO 400120-ME
MOVE 400840-A TO 400130-AN
MULTIPLY 400130-AN BY 12 GIVING 400740-DATE
ADD 400120-ME TO 400740-DATE
MOVE '0020-600100' TO MODULE-STATUS.
PERFORM PGM-0010 THRU 0010-END
UNTIL MODULE-STATUS EQUAL ' '.

002590 END-START.
002600 EXIT.
002601
002620 PGM-0010.
002630* *
002640*
002650*
002660
002670
002700
002710
002740
002750
002760
002770
002780
002790
002800
002810
002820
002830 PGM-0020
002840* *
002850*
002860*
002870
002880
002881
002890
002900
002910
002920
002930
002940
002950
002960
002970
003320

PERFORMED BY START.

PERFORM PGM-0020 THRU 0020-END
UNTIL MODULE-STATUS NOT EQUAL '0020-600100'

PERFORM PGM-0050 THRU 0050-END
UNTIL MODULE-STATUS NOT EQUAL '0050-600300'

PERFORM PGM-0100-READ THRU 0100-END
UNTIL MODULE-STATUS NOT EQUAL '0100-READ'.

PERFORM PGM-0230 THRU 0230-END
UNTIL MODULE-STATUS NOT EQUAL '0230-900073'

PERFORM PGM-0310 THRU 0310-END
UNTIL MODULE-STATUS NOT EQUAL '0310-611330'

0010-END.
EXIT.

PERFORMED BY PGM-0010.

MOVE ' ' TO MODULE-STATUS.
DISPLAY ' DISCOS DE ENTRADA 01234'

MOVE ' ' TO 400090-RESPONSE.
ACCEPT 400090-RESPONSE.
MOVE HEX-0 TO 400190-INDEX.
MOVE ' ' TO 400180-TEST.
DISPLAY 'OS SEGUINTES DISCOS SERAO USADOS'
MOVE '0030-600140' TO MODULE-STATUS.

0020-END.
EXIT.

115

003780 PGM-0050.
003790*
003800*
003810*
003820
003830
003840
003850
003860
003870
003880
003890
003900
003910
003950
003960
003970
003980*
003990*
004000
004860 PGM-OIOO-READ
004870* *
004880*
004890*
004900
004910
004920
004930
004945
004950
004960
004970
004980
004990
005000
005010

PERFORMED BY PGM-0010.

MOVE ' ' TO MODULE-STATUS.
ADD HEX-1 TO 400190-INDEX
MOVE 400036-AV (400190-INDEX) TO 400550-AV

(400190-INDEX).
MOVE 400033-LOC (400190-INDEX) TO 400530-LOC

(400190-INDEX).
IF 400190-INDEX IS LESS THAN HEX-1

MOVE '0050-600300' TO MODULE-STATUS
OTHERWISE

DISPLAY 400510-ID UPON CONSOLE
MOVE '0060-610010' TO MODULE-STATUS.

0050-END.
EXIT.

*** MAIN PROCESS ROUTINE ***

PERFORMED BY 0080-READ, PGM-0010, PGM-0090-READ.

MOVE ' ' TO MODULE-STATUS.
READ SYS0
IF END-OF-FILE = 'T'
PERFORM PGM-0110 THRU 0110-END

ELSE
IF CHK-01 NOT = 00

DISPLAY ' ERRO DE LEITURA SYS0 CHK =
CLOSE SYS0
DISPLAY 'CLOSE SYS0'
PERFORM END-OF-JOB THRU END-EOJ

ADD HEX-1 TO 400210-0-CT
PERFORM PGM-0130 THRU 013 0-END.

CHK-01

005020 0100-END.
005030 EXIT.
005040*
005050
005060 PGM-0110.
005070* *
005080*
005090*
005100
005110
005120
005130
005140
005170

TO READ NEXT RECORD.

PERFORMED BY PGM-0100-READ.

IF 400300-C (1) IS EQUAL TO 'C'
PERFORM PGM-0120 THRU 0120-END

ELSE
DISPLAY 'REGISTRO DE CONTROLE INEXISTENTE NO SYS0 DISCI'

UPON CONSOLE
PERFORM PGM-0120 THRU 0120-END.

005180 0110-END.
005190 EXIT.
005200

116

005300 PGM-0120.
005310*
005320*
005330*
005340
005350
005360
005370
005380

PERFORMED BY PGM-0110.
*.
*
*

DISPLAY 'SYSO DISCI FECHADO' UPON CONSOLE.
MOVE HIGH-VALUES TO 400060-PN-CFF (1).
CLOSE

SYSO .
DISPLAY "FECHADO SYS0,ARQ01 CHK = ' CHK-01.

005490 0120-END.
005500 EXIT.
005510
005520 PGM-0130.
005530* *
005540*
005550*
005560
005570
005580
005590

* PERFORMED BY PGM-0100-READ.
*

IF SWITCH-0130 = 0160
PERFORM PGM-0160 THRU 0160-END

ELSE
PERFORM PGM-0140 THRU 0140-END.

005600 0130-END.
005610 EXIT.
005630
005640 PGM-0140.

* 005650*
005660*
005670*
005680
005750
005790
005830
005840
005860
005870
005880
005890
005900
005910
005920
006080
006090 PGM-0160.
006100* *
006110*
006120*
006130
006140
006150
006160*
006170
006180
006190
006200
006210
006220
006225
006227
006228

PERFORMED BY PGM-0130.

MOVE 0160 TO SWITCH-0130.
PERFORM PGM-0190 THRU 0190-END

DISPLAY 400350-DATE-MSG UPON CONSOLE.
DISPLAY 'E F..FECHAR OU C..CONTINUAR'
IF 400100-POS(1) IS EQUAL TO 'Fr

MOVE ' ' TO 400260-BOMBA
PERFORM PGM-0320 THRU 0320-END.

PERFORM PGM-0190 THRU 0190-END.
0140-END.

EXIT.

UPON CONSOLE.

PERFORMED BY PGM-0130, 0150-900075.

IF 450040-PART-NO IS GREATER THAN 400070-PN (1)
PERFORM PGM-0170 THRU 0170-END

ELSE
CHECK SEQUENCE OF MASTER AT 180.

IF 400033-LOC (1) IS EQUAL TO 'VASP'
IF 450040-PART-NO IS EQUAL TO 400070-PN (1)
PERFORM PGM-0170 THRU 0170-END

ELSE
DISPLAY 'ERRO DA SEQUENCIA NO MESTRE SYSO DISCI' UPON
CONSOLE.

IF 450040-PART-NO IS NOT GREATER THAN 400070-PN (1)
IF 400033-LOC (1) IS NOT EQUAL TO "VASP'

IF 450040-PART-NO IS NOT EQUAL TO 400070-PN (1)

117

006230
006240
006250
006260
006270
006280
006290 EXIT.
006300*
ABNORM.
006310
006320 PGM-0170.

DISPLAY 400070-PN (1) UPON CONSOLE
DISPLAY 'ANTES' UPON CONSOLE
DISPLAY 450040-PART-NO UPON CONSOLE
MOVE ' ' TO 400260-BOMBA
PERFORM PGM-0320 THRU 0320-END.

0160-END.

TO EOJ

006330*
006340*
006350*
006360
006370
006380
006390
006400
006410
006420
006430
006440
006450*
006460
006470 PGM-0180.
006480* *

* PERFORMED BY PGM-0160.

IF 450030-X-SPACE IS EQUAL TO 'T'
PERFORM PGM-0180 THRU 0180-END

ELSE
MOVE 450040-PART-NO TO 400070-PN (1)
MOVE 450100-FED-MFG-CDE TO 400080-CFF
MOVE 400033-LOC (1) TO 400083-PQ (1)
MOVE 400036-AV (1) TO 400085-AV (1).

(1)

0170-END.
EXIT.

TO EXIT.

006490*
006500*
006550
006680
006690
006700
006710*
006720
006730 PGM-0190

* PERFORMED BY PGM-0170.
*

MOVE 'C TO 400300-C (1).
MOVE '0100-READ' TO MODULE-STATUS.

0180-END.
EXIT.

TO ABORT.

006740*
006750*
006760*
006770
006780
006790
006800
006810
006920 PGM-0210.
006930* *
006940*
006950*
006960
006970
006980
006990
007010
007020
007030
007040
007050*

PERFORMED BY PGM-0140.

MOVE 450040-PART-NO TO 400030-ID
PERFORM PGM-0210 THRU 0210-END.

0190-END.
EXIT.

(1).

PERFORMED BY PGM-0190, 0200-900070.

IF 400033-LOC (1) IS EQUAL TO 'VASP'
MOVE HEX-1 TO 400780-INDEX
PERFORM PGM-0220 THRU 0220-END.

MOVE '0230-900073'
0210-END.

EXIT.
SKIP2

**

TO MODULE-STATUS.

118

007060*
007070*
007080
007090 PGM-0220.
007100* *
007110*
007120*
007130
007140
007150
007160
007170
007180
007190
007200
007210 PGM-0230

**
**

ANALYZE VASP LOCATION

PERFORMED BY PGM-0210.

IF 400036-AV (400780-INDEX) IS EQUAL TO 'S.TEC
MOVE 'VASPT' TO 400036-AV (400780-INDEX)

ELSE
MOVE 'VASP ' TO 400036-AV (400780-INDEX)

0220-END.
EXIT.

007220*
007230*
007240*
007250
007260
007270
007280
007290*
MASTER.
007300
008530
008770 PGM-0310.
008780* *
008790*
008800*
008810
008820
008830
008840
008850
008860*

PERFORMED BY PGM-0010, PGM-0090-READ.

MOVE ' ' TO MODULE-STATUS.
MOVE '0100-READ' TO MODULE-STATUS.

0230-END.
EXIT.

ALTERED AT 900070 TO PROC VASP

PERFORMED BY PGM-0010.

MOVE ' ' TO MODULE-STATUS.
MOVE '0060-610010' TO MODULE-STATUS.

0310-END.
EXIT.
SKIP3

*** END OF JOB ROUTINE

CLOSE

008890 PGM-0320.
008900* *
008910*
008920*
009120
C01CMPPD
009130
C01CMPPD
009150
C01CMP
009160
C01CMP
009170
009180
009190
009200
009210
009220
009230*
009240*

PERFORMED BY PGM-0060, PGM-0140, PGM-0160.

ADD HEX-1 400340-OP GIVING 006530-RCDS.

MOVE 006530-RCDS TO 400700-CT.

SYS5.

DISPLAY ' ' UPON CONSOLE.
DISPLAY 400680-MSG UPON CONSOLE.
DISPLAY ' ' UPON CONSOLE.
IF 400263-BOMBA IS EQUAL TO ' '

DISPLAY 'ESTE E UM TERMINACAO ANORMAL' UPON CONSOLE.
ADD 400263-BOMBA TO 400266-BOMBA.

THIS WILL FORCE A
DUMP IS 400260-BOMBA IS SET TO SPACES.

119

009250 PERFORM END-OF-JOB THRU END-EOJ.
009260 0320-END.
009270 EXIT.
009280* END OF ROUTINE TO READ SYS000-180.
009290* SKIP3
009300* NOTE ** ****** **
009310* ** ROTINA PARA PROCESSAR
009320* ** ARQUIVO SYS001-281 **
009330* ** ****** **
009340* NOTE * ******* *
009350* * BUILD LOCACAO ID RECORD *
009360* * ****** *.
009370

120

Appendix B - Legacy System Imperative Code

procedure RU::C1AD99T1 () begin
RU::PGM-START

(RU::006215-PN-POS-1-006200-DTL, RU::006230-AV-006200-DTL,
RU::006220-CFF-006200-DTL, RU::006229-LOC-006200-DTL,
RU::006246-BL-006200-DTL, RU::006250-NOMEN-006200-DTL,
RU::006253-UN-006200-DTL, RU::006255-CAT-006200-DTL,
RU::006260-OA-006200-DTL, RU::006263-APL-006200-DTL,
RU: .-006265-TPR-006200-DTL, RU: : 006270-FRG-006200-DTL,
RU::006280-TRG-006200-DTL, RU::006285-RECUP-POR-006200-DTL,
RU::006287-CON-006200-DTL, RU::006290-ESTOQUE-006200-DTL,
RU::006300-EC-006200-DTL, RU::006310-OS-006200-DTL,
RU::006320-REP-006200-DTL, RU::006330-AVG-PRICE-006200-DTL,
RU::006350-A-006200-DTL, RU::006360-SHELF-006200-DTL,
RU::006375-LAST-ACQ-PRICE-006200-DTL,
RU::006376-PROC-IN-REWORK-006200-DTL,
RU::006377-COND-IN-REWORK-006200-DTL,
RU::006380-SUPERADOR-006200-DTL,
RU::006390-SUPERADO-006200-DTL,
RU::006400-ALTERNADO-006200-DTL,
RU::006430-PRE-CALC-006200-DTL,
RU::006440-NMAX-CALC-006200-DTL,
RU::006450-CON-TOTAL-006200-DTL,
RU::006470-MES-RECEB-006200-DTL,
RU: :006480-ANO-RECEB-006200-DTL,
RU::006481-Q-P-ART-006200-DTL,
RU::006482-Q-COMPRADA-006200-DTL,
RU::400800-D-400790-DATA-RESP,
RU::400820-M-400790-DATA-RESP,
RU::400840-A-400790-DATA-RESP, RU::400115-DAY-400110-DATE,
RU::400120-ME-400110-DATE, RU::400130-AN-400110-DATE,
RU::400740-DATE,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL, RU::CHK-UNIF,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST, RU::HEX-1,
RU::400550-AV-400510-ID, RU::400036-AV-400010-TABLE,
RU::400530-LOC-400510-ID, RU::400033-LOC-400010-TABLE,
RU::FILLER-1-400510-ID, RU::FILLER-2-400510-ID,
RU::400210-0-CT, RU::CHK-01, END-OF-FILE, RU::VAR-AUX,
RU::SWITCH-0130-PATH-CONTROL-SWITCHES, RU::400350-DATE-MSG,
RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::006530-RCDS-006500-TRLR, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400070-PN-400050-PN-CFF,
RU::400080-CFF-400Ö50-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC)

end

121

procedure RU::END-OF-JOB (RU::VAR-AUX) begin
RU::VAR-AUX := " "; write (STD-OUTPUT, "STOP RUN") end

procedure RU::PGM-0010
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST, RU::HEX-1,
RU::400550-AV-400510-ID, RU::400036-AV-400010-TABLE,
RU::400530-LOC-400510-ID, RU::400033-LOC-400010-TABLE,
RU::FILLER-1-400510-ID, RU::FILLER-2-400510-ID,
RU::400210-0-CT, RU::CHK-01, END-OF-FILE, RU::VAR-AUX,
RU::SWITCH-0130-PATH-CONTROL-SWITCHES, RU::400350-DATE-MSG,
RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::006530-RCDS-006500-TRLR, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400070-PN-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC

) begin
while

not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL /=
"0020-600100"

do begin
RU::PGM-0020

(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST)

end;
while

not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL /=
"0050-600300"

do begin
RU::PGM-0050

(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400190-INDEX, RU::HEX-1, RU::400550-AV-400510-ID,
RU::400036-AV-400010-TABLE, RU::400530-LOC-400510-ID,
RU::400033-LOC-400010-TABLE, RU::FILLER-l-400510-ID,
RU::FILLER-2-400510-ID)

end;
while

not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL /=
"0100-READ"

do begin
RU::PGM-0100-READ

(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400210-0-CT, RU::HEX-1, RU::CHK-01, END-OF-FILE,
RU::VAR-AUX, RU::SWITCH-0130-PATH-CONTROL-SWITCHES,
RU::400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,

122

RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
RU::400340-OP, RU::400700-CT-400680-MSG,
RU::FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
RU::400070-PN-400050-PN-CFF, RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::45003O-X-SPACE-001100-MASTER-O,
RU::400300-C-400280-9-REC)

end;
while

not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL /=
"0230-900073"

do begin
RU::PGM-0230 (RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL)
end;

while
not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL /=

"0310-611330"
do begin
RU::PGM-0310 (RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL)
end

end

procedure RU::PGM-0020
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST

) begin
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := " ";
write (STD-OUTPUT, " DISCOS DE ENTRADA 01234");
RU::400100-POS-400090-RESPONSE := " ";
read (FROM-CONSOLE, RU::400100-POS-400090-RESPONSE);
RU::400190-INDEX := RU::HEX-0;
RU::400185-SWT-400180-TEST := " ";
write (STD-OUTPUT, "OS SEGUINTES DISCOS SERAO USADOS");
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0030-600140"
end

procedure RU::PGM-0050
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400190-INDEX, RU::HEX-1, RU::400550-AV-400510-ID,
RU::400036-AV-400010-TABLE, RU::400530-LOC-400510-ID,
RU::400033-LOC-400010-TABLE, RU::FILLER-l-400510-ID,
RU::FILLER-2-400510-ID

) begin
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := " ";
RU::400190-INDEX := RU::HEX-1 + RU::400190-INDEX;
RU::400550-AV-400510-ID (RU::400190-INDEX) :=

RU::400036-AV-400010-TABLE (RU::400190-INDEX);
RU::400530-LOC-400510-ID (RU::400190-INDEX) :=

RU::400033-LOC-400010-TABLE (RU::400190-INDEX);
if RU::400190-INDEX < RU::HEX-1

123

then RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL :=
"0050-600300"

else
write (STD-OUTPUT, RU::400530-LOC-400510-ID);
write (STD-OUTPUT, RU::FILLER-1-400510-ID);
write (STD-OUTPUT, RU::400550-AV-400510-ID);
write (STD-OUTPUT, RU::FILLER-2-400510-ID);
RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0060-610010"
end if

end

procedure RU::PGM-0100-READ
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400210-0-CT, RU::HEX-1, RU::CHK-01, END-OF-FILE,
RU::VAR-AUX, RU::SWITCH-0130-PATH-CONTROL-SWITCHES,
RU::400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
RU::400340-OP, RU::400700-CT-400680-MSG,
RU::FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
RU::400070-PN-400050-PN-CFF, RU::400080-CFF-400050-PN-CFF,
RU::45010O-FED-MFG-CDE-001100-MASTER-O,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::45003O-X-SPACE-001100-MASTER-O,
RU::400300-C-400280-9-REC

) begin
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "
read (RU::SYS0,.
RU::FILLER-l-001100-MASTER-0,
RU::450030-X-SPACE-001100-MASTER-0,
RU::450040-PART-NO-001100-MASTER-0,
RU::450050-AV-CODE-001100-MASTER-0,
RU::450060-FED-STOCK-NO-001100-MASTER-0,
RU::450070-NOMENCLATURE-001100-MASTER-0,
RU::450090-REP-AT-001100-MASTER-0,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::450110-CATEGORY-001100-MASTER-0,
RU::45013O-LEAD-TIME-001100-MASTER-O,
RU::450140-SHELF-LIFE-001100-MASTER-0,
RU::450160-QUANT-PER-ART-001100-MASTER-0,
RU::450170-HOURS-001100-MASTER-0,
RU::450210-REWORK-FACT-001100-MASTER-0,
RU::450230-ACQ-PT-001100-MASTER-0,
RU::FILLER-3-001100-MASTER-0,
RU::450340-REORDER-LEVEL-001100-MASTER-0,
RU::450350-MAX-STOCK-001100-MASTER-0,
RU::450360-TURN-AROUND-001100-MASTER-0,
RU::450380-ACCNT-IND-001100-MASTER-0,
RU::450390-UNIT-OF-ISSUE-001100-MASTER-0,
RU::450410-ON-ORD-QUANT-001100-MASTER-0,
RU::450420-REWORK-QUANT-001100-MASTER-0,
RU::450430-INV-BAL-001100-MASTER-0,
RU::450440-REM-BAL-001100-MASTER-0,

124

RU::450450-AVG-UNIT-PRICE-001100-MASTER-0,
RU::450470-EXTENDED-VALUE-001100-MASTER-0,
RU::FILLER-4-001100-MASTER-0,
RU::450530-LAST-REC-MO-001100-MASTER-0,
RU::450540-LAST-REC-YR-001100-MASTER-0,
RU::450560-LAST-PURCH-PRICE-001100-MASTER-0,
RU::450570-REPAIRABLE-TOTAL-001100-MASTER-0,
RU::FILLER-5-001100-MASTER-0,
RU::450750-USAGE-TO-DATE-001100-MASTER-0,
RU::FILLER-6-001100-MASTER-0,
RU::450846-CALC-PRE-001100-MASTER-0,
RU::450847-CALC-NMAX-001100-MASTER-0,
RU::450848-RENOV-HOLD-001100-MASTER-0,
RU::450849-CRIT-CTR-001100-MASTER-0,
RU::450850-ESTQ-DISP-001100-MASTER-0,
RU::450851-RENOV-CTR-001100-MASTER-0,
RU::450852-LAST-VEND-001100-MASTER-0,
RU::450860-QUANT-SCRAPPED-001100-MASTER-0,
RU::450870-QUANT-PURCHASED-001100-MASTER-0,
RU::450880-EXPEND-TO-DATE-001100-MASTER-0,
RU::450890-PROCESSED-IN-REWORK-001100-MASTER-0,
RU::450900-SCRAPPED-IN-REWORK-001100-MASTER-0,
RU::FILLER-7-001100-MASTER-0,
RU::450980-REPLACING-PART-NUMBER-001100-MASTER-0,
RU::450990-REPLACED-PART-NUMBER-001100-MASTER-0,
RU::451000-ALTERNATE-PART-NUMBER-001100-MASTER-0,
RU::451020-CON-MED-001100-MASTER-0,
RU::451030-APPLICATION-001100-MASTER-0,
RU::451040-INSTALL-TIME-001100-MASTER-0,
RU::451055-PHYS-INV-SWT-001100-MASTER-0);
if END-OF-FILE = "T"

then RU::PGM-0110
(RU::400300-C-400280-9-REC, RU::400070-PN-400050-PN-CFF,
RU::400085-AV-400050-PN-CFF, RU::400080-CFF-400050-PN-CFF,
RU::400083-PQ-400050-PN-CFF)

else
if RU::CHK-01 /= 0
then write (STD-OUTPUT, " ERRO DE LEITURA SYSO CHK = ");

write (STD-OUTPUT, "CLOSE SYSO");
RU::END-OF-JOB (RU::VAR-AUX);
RU::400210-0-CT := RU::HEX-1 + RU::400210-0-CT;
RU::PGM-0130

(RU::SWITCH-0130-PATH-CONTROL-SWITCHES,
RU::400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
RU::400340-OP, RU::400700-CT-400680-MSG,
RU::FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
RU::VAR-AUX, RU::400070-PN-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-OOllOO-MASTER-O,
RU::400300-C-400280-9-REC)

125

else endif
endi f

end

procedure RU::PGM-0110
(RU::400300-C-400280-9-REC, RU::400070-PN-400050-PN-CFF,
RU::400085-AV-400050-PN-CFF, RU::400080-CFF-400050-PN-CFF,
RU::400083-PQ-400050-PN-CFF

) begin
if RU::400300-C-400280-9-REC (1) = "C"
then RU::PGM-0120

(RU::400070-PN-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF, RU::400083-PQ-400050-PN-CFF)

else
write (STD-OUTPUT,
"REGISTRO DE CONTROLE INEXISTENTE NO SYSO DISCI");
RU::PGM-0120

(RU::400070-PN-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF, RU::400083-PQ-400050-PN-CFF)

endif
end

procedure RU::PGM-0120
(RU::400070-PN-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF, RU::400083-PQ-400050-PN-CFF

) begin
write (STD-OUTPUT, "SYSO DISCI FECHADO");
RU::400070-PN-400050-PN-CFF (1) := "9";
RU::400085-AV-400050-PN-CFF (1) := "9";
RU::400080-CFF-400050-PN-CFF (1) := "9";
RU::400083-PQ-400050-PN-CFF (1) := "9";
write (STD-OUTPUT, "FECHADO SYS0,ARQ01 CHK = ")
end

procedure RU::PGM-0130
(RU::SWITCH-0130-PATH-CONTROL-SWITCHES,
RU::400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
RU::400340-OP, RU::400700-CT-400680-MSG,
RU::FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
RU::VAR-AUX, RU::400070-PN-400050-PN-CFF,
RU: :400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC

) begin

126

if RU::SWITCH-0130-PATH-CONTROL-SWITCHES'= 160

then RU::PGM-0160
(RU::400070-PN-400050-PN-CFF,
RU::450040-PART-NO-001100-MASTER-0,
RU::400033-LOC-400010-TABLE, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA, RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::400036-AV-400010-TABLE,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC,
RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::006530-RCDS-006500-TRLR, RU::HEX-1, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::VAR-AUX)

else
RU: :

(

PGM-0140
RU
RU
RU
RU
RU
RU
RU
RU
RU
RU

endif
end

:SWITCH-0130-PATH-CONTROL-SWITCHES,
:400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
:400266-BOMBA-400260-BOMBA,
:400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,
:450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
:HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
:400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
:400340-OP, RU::400700-CT-400680-MSG,
:FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
:VAR-AUX)

procedure RU::PGM-0140
(RU::SWITCH-0130-PATH-CONTROL-SWITCHES,
RU::400350-DATE-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::400100-POS-400090-RESPONSE, RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE, RU::006530-RCDS-006500-TRLR,
RU::400340-OP, RU::400700-CT-400680-MSG,
RU::FILLER-CT-400680-MSG, RU::FILLER-40-400680-MSG,
RU::VAR-AUX

) begin
RU::SWITCH-0130-PATH-CONTROL-SWITCHES := 160;
RU::PGM-0190

(RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE);

write (STD-OUTPUT, RU::400350-DATE-MSG);
write (STD-OUTPUT, "E F..FECHAR OU C..CONTINUAR");
if RU::400100-POS-400090-RESPONSE (1) = "F"
then RU::400263-BOMBA-400260-BOMBA := "

RU: :400266-BOMBA-400260-BOMBA := " " ;
RU::PGM-0320

(RU::006530-RCDS-006500-TRLR, RU::HEX-1, RU::400340-OP,

127

RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA, RU::VAR-AUX)

else endif;
RU::PGM-0190

(RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE)

end

procedure RU::PGM-0160
(RU::400070-PN-400050-PN-CFF,
RU::450040-PART-NO-001100-MASTER-0,
RU::400033-LOC-400010-TABLE, RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA, RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::400036-AV-400010-TABLE,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::006530-RCDS-006500-TRLR, RU::HEX-1, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::VAR-AUX

) begin
if RU::450040-PART-NO-001100-MASTER-0

> RU::400070-PN-400050-PN-CFF (1)
then RU::PGM-0170

(RU::400070-PN-400050-PN-CFF,
RU::450040-PART-NO-001100-MASTER-0,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400033-LOC-400010-TABLE,
RU::400085-AV-400050-PN-CFF, RU::400036-AV-400010-TABLE,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC,
RU: :MODULE-STATUS-MODULE-ACTIVATION-CONTROL)

else
if RU::400033-LOC-400010-TABLE (1) = "VASP"
then if RU::450040-PART-NO-001100-MASTER-0

= RU::400070-PN-400050-PN-CFF (1)
then RU::PGM-0170

(RU::400070-PN-400050-PN-CFF,
RU::450040-PART-NO-001100-MASTER-0,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400033-LOC-400010-TABLE,
RU::400085-AV-400050-PN-CFF, RU::400036-AV-400010-TABLE,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL)

else
write (STD-OUTPUT,
"ERRO DA SEQUENCIA NO MESTRE SYSO DISCI")

128

endif
else endif

endif;
if RU::450040-PART-NO-001100-MASTER-0 <=

RU::400070-PN-400050-PN-CFF (1)
then if RU::400033-LOC-400010-TABLE (1) /= "VASP"

then if RU::450040-PART-NO-001100-MASTER-0 / =
RU::400070-PN-400050-PN-CFF (1)

then write (STD-OUTPUT, RU::400070-PN-400050-PN-CFF (1)) ;
write (STD-OUTPUT, "ANTES");
write (STD-OUTPUT, RU::450040-PART-NO-001100-MASTER-0);
RU::400263-BOMBA-400260-BOMBA := " ";
RU::400266-BOMBA-400260-BOMBA := " ";
RU::PGM-0320
(RU::006530-RCDS-006500-TRLR, RU::HEX-1, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400263-BOMBA-400260-BOMBA,

RU::400266-BOMBA-400260-BOMBA, RU::VAR-AUX)
else endif

else endif
else endif

end

procedure RU::PGM-0170
(RU::400070-PN-400050-PN-CFF,
RU::450040-PART-NO-001100-MASTER-0,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400033-LOC-400010-TABLE,
RU::400085-AV-400050-PN-CFF, RU::400036-AV-400010-TABLE,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL

) begin
if RU::450030-X-SPACE-001100-MASTER-0 = "T"

then RU::PGM-0180
(RU::400300-C-400280-9-REC,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL)

else
RU::400070-PN-400050-PN-CFF (1) :=

RU::450040-PART-NO-001100-MASTER-0;
RU::400080-CFF-400050-PN-CFF (1) :=

RU::450100-FED-MFG-CDE-001100-MASTER-0;
RU::400083-PQ-400050-PN-CFF (1) :=

RU: :400033-LOC-400010-TABLE (1);
RU::400085-AV-400050-PN-CFF (1) :=

RU::400036-AV-400010-TABLE (1)
endif

end

procedure RU::PGM-0180
(RU::400300-C-400280-9-REC,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL

129

) begin
RU::400300-C-400280-9-REC (1) := "C" ;
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0100-READ"

end

procedure RU::PGM-0190
(RU::400033-LOC-400010-TABLE,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::HEX-1, RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE *

) begin
RU::400033-LOC-400010-TABLE (1) :=

RU::450040-PART-NO-001100-MASTER-0;
RU::PGM-0210

(RU::400780-INDEX, RU::HEX-1, RU::400033-LOC-400010-TABLE,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE)

end

procedure RU::PGM-0210
(RU::400780-INDEX, RU::HEX-1, RU::400033-LOC-400010-TABLE,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400036-AV-400010-TABLE

) begin
if RU::400033-LOC-400010-TABLE (1) = "VASP"
then RU::400780-INDEX := RU::HEX-1;

RU::PGM-0220 (RU::400036-AV-400010-TABLE, RU::400780-INDEX)
else endif;
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0230-900073"

end

procedure RU::PGM-0220
(RU::400036-AV-400010-TABLE, RU::400780-INDEX) begin
if RU::400036-AV-400010-TABLE (RU::400780-INDEX) = "S.TEC"
then RU::400036-AV-400010-TABLE (RU::400780-INDEX) :=

"VASPT"
else
RU::400036-AV-400010-TABLE (RU::400780-INDEX) := "VASP "

endif
end

130

procedure RU::PGM-0230
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL) begin
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := " ";
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0100-READ"

end

procedure RU::PGM-0310
(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL) begin
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0060-610010"

end

procedure RU::PGM-START
(RU::006215-PN-POS-1-006200-DTL, RU::006230-AV-006200-DTL,
RU::006220-CFF-006200-DTL, RU::006229-LOC-006200-DTL,
RU::006246-BL-006200-DTL, RU::006250-NOMEN-006200-DTL,
RU::006253-UN-006200-DTL, RU::006255-CAT-006200-DTL,
RU::006260-OA-006200-DTL, RU::006263-APL-006200-DTL,
RU::006265-TPR-006200-DTL, RU::006270-FRG-006200-DTL,
RU::006280-TRG-006200-DTL, RU::006285-RECUP-POR-006200-DTL,
RU::006287-CON-006200-DTL, RU::006290-ESTOQUE-006200-DTL,
RU::006300-EC-006200-DTL, RU::006310-OS-006200-DTL,
RU::006320-REP-006200-DTL, RU::006330-AVG-PRICE-006200-DTL,
RU::006350-A-006200-DTL, RU::006360-SHELF-006200-DTL,
RU::006375-LAST-ACQ-PRICE-006200-DTL,
RU::006376-PROC-IN-REWORK-006200-DTL,
RU::006377-COND-IN-REWORK-006200-DTL,
RU::006380-SUPERADOR-006200-DTL,
RU::006390-SUPERADO-006200-DTL,
RU::006400-ALTERNADO-006200-DTL,
RU::006430-PRE-CALC-006200-DTL,
RU::006440-NMAX-CALC-006200-DTL,
RU::006450-CON-TOTAL-006200-DTL,
RU::006470-MES-RECEB-006200-DTL,
RU::006480-ANO-RECEB-006200-DTL,
RU::006481-Q-P-ART-006200-DTL,
RU: .-006482-Q-COMPRADA-006200-DTL,
RU::400800-D-400790-DATA-RESP,
RU::400820-M-400790-DATA-RESP,
RU::400840-A-400790-DATA-RESP, RU::400115-DAY-400110-DATE,
RU::400120-ME-400110-DATE, RU::400130-AN-400110-DATE,
RU::400740-DATE,
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL, RU::CHK-UNIF,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST, RU::HEX-1,
RU::400550-AV-400510-ID, RU::400036-AV-400010-TABLE,
RU::400530-LOC-400510-ID, RU::400033-LOC-400010-TABLE,
RU::FILLER-1-400510-ID, RU::FILLER-2-400510-ID,
RU::400210-0-CT, RU::CHK-01, END-OF-FILE, RU::VAR-AUX,
RU::SWITCH-0130-PATH-CONTROL-SWITCHES, RU::400350-DATE-MSG,
RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,

131

RU::006530-RCDS-006500-TRLR, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400070-PN-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC

) begin
write (STD-OUTPUT,
"COM CCMP10. GERAR OS MESTRES REDUZIDOS P-300.");
if RU::CHK-UNIF /= 0
then write (STD-OUTPUT, "ERRO ABERTURA UNIF CKH = ");

RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := " "
else

:006215-PN-POS-1-006200-DTL := " ";
:006230-AV-006200-DTL := " ";
:006220-CFF-006200-DTL := " ";
:006229-LOC-006200-DTL := " ";
:006246-BL-006200-DTL := " ";
:006250-NOMEN-006200-DTL := " ";
:006253-UN-006200-DTL := "

RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU:
RU: :
RU: :
RU: :

006255-CAT-006200-DTL
006260-OA-006200-DTL
006263-APL-006200-DTL
006265-TPR-006200-DTL
006270-FRG-006200-DTL
006280-TRG-006200-DTL
006285-RECUP-POR-006200-DTL
006287-CON-006200-DTL := "
006290-ESTOQUE-006200-DTL := " ";'
006300-EC-006200-DTL := "
006310-OS-006200-DTL := "
006320-REP-006200-DTL := "
006330-AVG-PRICE-006200-DTL := "
006350-A-006200-DTL := "
006360-SHELF-006200-DTL := '" ";

RU::006375-LAST-ACQ-PRICE-006200-DTL :=
RU::006376-PROC-IN-REWORK-006200-DTL :=
RU::006377-COND-IN-REWORK-006200-DTL :=
RU::006380-SUPERADOR-006200-DTL := " " ;
RU::006390-SUPERADO-006200-DTL := " ";
RU::006400-ALTERNADO-006200-DTL := " ";
RU::006430-PRE-CALC-006200-DTL := " ";
RU::006440-NMAX-CALC-006200-DTL
RU::006450-CON-TOTAL-006200-DTL
RU::006470-MES-RECEB-006200-DTL
RU::006480-ANO-RECEB-006200-DTL
RU::006481-Q-P-ART-006200-DTL := " ";
RU::006482-Q-COMPRADA-006200-DTL := "
RU::400800-D-400790-DATA-RESP := 10;

400820-M-400790-DATA-RESP := 10;
400840-A-400790-DATA-RESP := 10;
400115-DAY-400110-DATE := RU::400800-

RU:
RU:
RU:
RU:
RU:
RU:

D-400790-DATA-RESP;
:400120-ME-400110-DATE := RU: :400820-M-400790-DATA-RESP;
:400130-AN-400110-DATE := RU::400840-A-400790-DATA-RESP;
:400740-DATE := RU::400130-AN-400110-DATE * 12;

132

RU::400740-DATE :=
RU::400120-ME-400110-DATE + RU::400740-DATE;
RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL := "0020-600100"

endif;
while not RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL = " "
do begin
RU::PGM-0010

(RU::MODULE-STATUS-MODULE-ACTIVATION-CONTROL,
RU::400100-POS-400090-RESPONSE, RU::400190-INDEX, RU::HEX-0,
RU::400185-SWT-400180-TEST, RU::HEX-1,
RU::400550-AV-400510-ID, RU::400036-AV-400010-TABLE,
RU::400530-LOC-400510-ID, RU::400033-LOC-400010-TABLE,
RU::FILLER-1-400510-ID, RU::FILLER-2-400510-ID,
RU::400210-0-CT, RU::CHK-01, END-OF-FILE, RU::VAR-AUX,
RU::SWITCH-0130-PATH-CONTROL-SWITCHES, RU::400350-DATE-MSG,
RU::400263-BOMBA-400260-BOMBA,
RU::400266-BOMBA-400260-BOMBA,
RU::450040-PART-NO-001100-MASTER-0, RU::400780-INDEX,
RU::006530-RCDS-006500-TRLR, RU::400340-OP,
RU::400700-CT-400680-MSG, RU::FILLER-CT-400680-MSG,
RU::FILLER-40-400680-MSG, RU::400070-PN-400050-PN-CFF,
RU::400080-CFF-400050-PN-CFF,
RU::450100-FED-MFG-CDE-001100-MASTER-0,
RU::400083-PQ-400050-PN-CFF, RU::400085-AV-400050-PN-CFF,
RU::450030-X-SPACE-001100-MASTER-0,
RU::400300-C-400280-9-REC)

end
end

133

Bibliography

1. Byrne, Eric J. "A Conceptual Foundation for Software Reengineering" Proceedings

of the International Conference on Software Maintenance. 216-235. IEEE Computer

Society Press, Nov 1992.

2. Bennett, Keith. "Legacy System: Coping with Success", IEEE Software (January

1995)

3. Liu, S. S. N. Wilde. "Identifying Objects in a Conventional Procedural Language: An

Example of Data Design Recovery." Proceedings of the Conference on Software

Maintenance. 266-271. Nov 1990.

4. Sneed, H. M. "Planning the Reengineering of Legacy Systems." IEEE, 24-34 (Jan

1995).

5. Korson, Jim and John D. McGregor. "Object-Oriented: A Unifying Paradigm,"

Communications of the ACM, 33(9):40-60(Sep 1990).

6. Yang, H. and Chu, W. C. and Sun Y.. "A Practical System of Cobol Program Reuse

for Reengineering." IEEE, 45-57 (1997).

7. Yoshino, T. and Uehara, S. and Ookubo, T. and Suguta, S. and Hotta, Y. and Sonobe,

M. "Reverse Engineering from Cobol to Narrative Specification." IEEE, 284-290

(1995).

8. Sneed, H. M. "Migration of Procedurally Oriented Cobol Programs in an Object-

Oriented Architecture." IEEE, 105-111 (1992).

9. Fantechi, A. and Nesi, P. and Somma, E. " Object Oriented Analysis of Cobol."

IEEE, 157-164 (1997).

10. Livadas, P. E. and Johnson, T. "A New Approach to Finding Objects in Programs."

Software Maintenance : Research and Practive, Vol. 6,249-260 (1994).

134

11. De Lucia, A. and Di Lucca, G. A. and Fasolino, A. R. and Guerra, P. and Petruzzellli,

S. "Migrating Legacy Systems Towards Object-Oriented Platforms." IEEE, 122-129

(1997).

12. Zimmer, J. A. "Restructuring for Style". Software-Practice and Experience,

20(4):365-389 (1990).

13. Miller, K. W.and Morell, L. Land Stevens, F. "Adding data Abstraction to Fortran

Software." IEEE 5(6):50-58 (1988).

14. Dietrich, Jr. and Nackman, L. R. and Grace, F. "Saving a Legacy with Objects."

OOPSLA Conference Proceedings, Special issue of SIGPLAN Notices, 24(10):77-

83,1989.

15. Jacobson, I. "Reengineering of old Systems to an Object-Oriented Architecture."

OOPSLA Proceedings, 340-350 (1991).

16. Wegner, P. "Dimensions of Object-Based Language Design." Proceedings of

OOPSLA, 168-182 (1987).

17. Cimitile, A. and Visaggio, G. "Software Salvaging and the Call Dominance Tree." J.

of Systems and Software, vol. 28, no. 2 117-127 (February 1995).

18. Weiser, M. "Program Slicing." IEEE Trans. On Software Engineering, 352-357 (July

1984).

19. Sward, R. E. "Extracting Functionally Equivalent Object-Oriented Designs from

Legacy Imperative Code". PhD. Dissertation, Air Force Institute of Technology

(1997).

20. Horwitz, S., et al. "Interprocedural Slicing Using Dependence Graphs." Proceeding of

the ACM SIGPLAN 88, Conference on Programming Language Design and

Implementation. 35-46. (Jun 1998).

21.Hongji Yang, William C. Chu, and Young Sun. "A Practical System of COBOL

Program Reuse for Reengineering," IEEE Eighth International Workshop on

Technology and Engineering Practice incorporating Computer Aided Software

Engineering, (1997).

135

22. Harmer, Terence J., McParland, Patrick J. and James M. Boyle. "Transformations to

Restructure and Re-engineer COBOL Programs," Automated Software Engineering.

(1998).

23. Leite, Julio Cesar , Sant'anna, Marcela and Prado, Antonio. "Porting Cobol

Programs Using a Transformational Approach," Software Maintenance: Research

and Practice , Vol. 9, 3-31 (1997).

24. Moraes, Dinä Leite. "Transforming Cobol Legacy Software to a Generic Imperative

Model" Master Dissertation, Air Force Institute of Technology (March -1999).

136

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1999

3. REPORT TYPE AND DATES COVERED

Master Dissertation
4. TITLE AND SUBTITLE

Cobol Reengineering Using the Parameter Based Object Identification (PBOI)
Methodology

6. AUTHOR(S)
Sonia de Jesus Rodrigues, Captain, Brazilian Air Force

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2750 P St
WPAFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99J-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Roy F. Stratton
AFRL/IFTD
525 Brooks Rd.
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This research focuses on how to reengineer Cobol legacy systems into object-oriented systems using Sward's Parameter
Based Object Identification (PBOI) methodology. The method is based on relating categories of imperative subprograms to
classes written in object-oriented language based on how parameters are handled and shared among them. The input language
of PBOI is a canonical form called the generic imperative model (GIM), which is an abstract syntax tree (AST) representation
of a simple imperative programming language. The output is another AST, the generic object model (GOM), a generic object
oriented language. Conventional languages must be translated into the GIM to use PBOI. The first step in this research is to
analyze and classify Cobol constructs. The second step is to develop Refine programs to perform the translation of Cobol
programs into the GIM. The third step is to use the PBOI prototype system to transform the imperative model in the GIM into
the GOM. The final step is to perform a validation of the objects extracted, analyze the system functionally, and evaluate the
PBOI methodology in terms of the case study.

14. SUBJECT TERMS

Object-oriented model, reengineering, canonical forms, object identification.
15. NUMBER OF PAGES

149
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescr bed by ANSI Std. 239.18 l '
Designed using Perform Pro, WHS/DIOR, Oct 94

	COBOL Reengineering Using the Parameter Based Object Identification (PBOI) Methodology
	Recommended Citation

	/tardir/tiffs/A364945.tiff

