
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1999

A Structured Approach to Software Tool Integration A Structured Approach to Software Tool Integration

Penelope A. Noe

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Noe, Penelope A., "A Structured Approach to Software Tool Integration" (1999). Theses and Dissertations.
5225.
https://scholar.afit.edu/etd/5225

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5225?utm_source=scholar.afit.edu%2Fetd%2F5225&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/99M-14

A Structured Approach to Software Tool Integration

THESIS

Penelope Ann Noe
ILt, USAF

AFIT/GCS/ENG/99M-14

Approved for public release; distribution unlimited

QÜ4LTIY INSPECTED 3 19990409 088

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GCS/ENG/99M-14

A Structured Approach to Software Tool Integration

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Penelope Ann Noe, B.A. Computer Science

lLt, USAF

March, 1999

Approved for public release; distribution unlimited

AFIT/GCS/ENG/99M-14

Approved:

A Structured Approach to Software Tool Integration

Penelope Ann Noe, B.A. Computer Science

ILt, USAF

Dr. Thomas C. Hartrum Date

ätfk&JBH
Date

Committee Member

Maj. Michael L. Talbert Date
Committee Member

Acknowledgements

Over the past 18 months, many people have been called upon to provide much needed

support. To those people, I say "Thank You." This thesis work could never have been

accomplished without the support of my family and friends. I can never thank them

enough for all of their love and encouragement. While there are too many to name, I hope

they all realize how much I appreciate them. I would also like to thank my advisor, Dr.

Hartrum, for always being available for encouragement and guidance. He helped me to

develop something to make us both proud. He was always pushing for a little more, to

make it better, stronger, and clearer. My other committee members, Maj Graham and Maj

Talbert were also very helpful with all of their fresh ideas and thought-provoking questions.

Finally, I would like to thank my wonderful office mates, Capt Dave VanVeldhuizen and

Maj Tom Schorsch. They were always there when I needed them, whether it was to offer

words of encouragement or to make me laugh. All in all, this has been an experience I will

not soon forget, nor do I wish to.

Penelope Ann Noe

in

Table of Contents

Page

Acknowledgements • U1

List of Figures viii

List of Tables «

Abstract x

I. Introduction 1

1.1 Background 2

1.2 Problem 4

1.3 Initial Assessment of Past Efforts 6

1.4 Scope 7

1.5 Approach 7

1.6 Assumptions 9

II. Background 10

2.1 Background Information on AFITtool 10

2.2 Shortcomings of AFITtool 11

2.3 Tool Review 12

2.3.1 Tools that could improve shortcomings 13

2.3.2 Tool Criteria 14

2.3.3 Architecture tools 15

2.3.4 Software Development Environment tools 16

2.3.5 Drawing/Diagramming tools 17

2.3.6 Theorem Provers 18

2.3.7 Data Storage 19

IV

Page

2.4 A Sampling of Integration Methods 20

2.5 Tool Integration Models 22

2.5.1 Thomas and Nejmeh's Approach to Wasserman's model 22

2.5.2 Wallnau and Feiler's Approach to Wasserman's Model 27

2.6 Summary 29

III. Tool Integration Methodology 30

3.1 Methodology Overview 31

3.2 Functional Dimensions 31

3.2.1 Functional Dimensions for a Single of Tool 32

3.2.2 Functional Dimensions for a Pair of Tools 35

3.3 Structural Dimensions 37

3.3.1 Communication Path 37

3.3.2 Control Integration Implementation 38

3.3.3 Data Transformation 39

3.4 Design Rules 40

3.4.1 Communication Path Design Rules 41

3.4.2 Neither Extendable 42

3.4.3 First Extend 42

3.4.4 Second Extend 45

3.4.5 Both Extend 46

3.5 Two-Way Communication 48

3.6 Summary 48

IV. Application of Methodology to AFITtool 49

4.1 Integration of AFITtool 49

4.2 Integration of AFITtool and the Acme parser 51

4.2.1 Representing the Domain Model in Acme 51

Page

4.2.2 Application of the Methodology 55

4.2.3 Data Integration 56

4.2.4 Control Integration 57

4.3 Integration of Rational Rose 98 and AFITtool 57

4.3.1 Representing Rose drawings in the Domain Model . 58

4.3.2 Application of the Methodology 58

4.3.3 Data Integration 59

4.3.4 Control Integration 61

4.4 Integration of AFITtool and Rational Rose 98 61

4.4.1 Representing the Domain Model in Rose drawings . 61

4.4.2 Application of the Methodology 62

4.5 Integration of AFITtool and daVinci 63

4.5.1 Application of the Methodology 64

4.5.2 Data Integration 64

4.5.3 Control Integration 66

4.6 Validation of the Integration Methodology 66

V. Results, Conclusions and Recommendations 69

5.1 Results 69

5.2 Analyzing the Rose 98 Extensions 72

5.3 Conclusions 72

5.4 Recommendations For Future Work 73

5.4.1 Extending Methodology 74

5.4.2 Extending Existing AFITtool Interface 74

5.4.3 Further AFITtool Integration 75

5.5 Summary 75

Appendix A. AFITtool Input Template 77

VI

Page

Appendix B. Z Symbols 83

Appendix C. Rules for Using Rose98 with AFITXool 87

C.0.1 The Class Diagram 87

C.0.2 The State Model 90

Appendix D. Detailed Descriptions of Design Rules 93

D.l First Extend 93

D.2 Second Extend 94

Appendix E. Acme Example for Aggregate Class 96

Appendix F. Configuration Management of Files Related to this Research 100

F.l AFITtool 100

F.2 daVinci 100

F.3 Rose 101

Bibliography 102

Vita 105

vn

List of Figures

Figure Page

1. Overall Transformation System Concept 3

2. Neither Tool Extendable 43

3. First Tool Extendable 45

4. Both Tools Extendable 47

5. Overall System Integration Concept 50

6. Output of the Acme parser 53

7. j4.F7Ttool/Acme Parser Integration 56

8. Rose/^F/Ttool Integration 59

9. ^FJTtool/Rose Integration 63

10. jlFiTtool/daVinci Integration 65

11. Class Diagram 87

12. Attribute Declarations in Class 87

13. Operation Specification 89

14. Post-Conditions in Operation 89

15. State Diagram 90

16. State Specification 90

17. Transition Specification 91

18. Detailed Transition Specification 91

vni

List of Tables

Table Page

1. Methodology for Tool Integration 32

2. Functional Dimensions for a Single of Tool 33

3. Functional Dimensions for a Pair of Tools 35

4. Extendability Class 36

5. Structural Dimensions 37

6. Communication Path Design Rules 41

7. Design Rules for First Extend 44

8. Design Rules for Second Extend 46

9. State Transition Table for SubCounter Class 52

10. Methodology for Tool Integration 72

11. Fuel Tank State Table 96

12. Jet Engine State Table 96

13. Throttle State Table 96

IX

AFIT/GCS/ENG/99M-14

Abstract

As the trend towards commercial off-the-shelf (COTS) software continues, civilian

companies and government agencies alike are battling with the challenge of making multiple

software packages and applications work together. Many of these companies and agencies

have attempted to integrate the software tools to form a coherent system that satisfies

their goals. However, most of this integration work was accomplished without the use of a

step by step approach guiding the effort.

Many researchers in the field of software tool integration have determined the areas

that need to be addressed when tools are integrated. Some researchers have developed and

expanded upon a theoretical model for integration. This model of tool integration aids

in understanding what types of integration need to be performed, but does not provide

a set of steps to aid in completing the integration. The methodology developed as part

of this thesis research is based upon this model of integration. It provides a method of

characterizing the tools being integrated and offers guidance on how to integrate them in

a step by step manner.

A software development tool, AFITtool, has been developed at the Air Force Institute

of Technology (AFIT) to build software based on a formal requirements specification.

The process of developing executable code from a requirements specification is based on

mathematically provable, correctness-preserving transformations. Researchers at AFIT

realized that some of AFITtooYs shortcomings could be addressed by taking advantage of

the capabilities of other tools. As part of this research, three tools were chosen to integrate

with AFITtool and performing the integrations served to demonstrate the effectiveness of

the methodology developed, while addressing specific shortcomings of AFITtool.

A Structured Approach to Software Tool Integration

I. Introduction

Commercial off-the-shelf (COTS) software is more widely used now than ever before. As

COTS becomes more capable of handling larger and larger tasks, more companies rely on

it to assist in achieving their daily goals. Besides using COTS, the government also creates

software for use by other government agencies, usually termed government off-the-shelf

(GOTS) software. As the number of COTS and GOTS packages used by each company or

government agency increases, so does the need for them to work together.

While each company or agency has a mission that drives its daily activities, often

there is not just one software tool capable of accomplishing the mission. Each agency

usually uses several tools in combination to accomplish their mission. One drawback of

purchasing off-the-shelf software is the necessity of accepting tools as they are rather than

using custom-built tools. In some cases, companies are turning to tool integration to form

a cohesive environment that is similar to a custom-built tool.

The Air Force Institute of Technology (AFIT) has not missed this trend. Research

conducted at AFIT to create a formal method of software development, from requirements

specification to code generation, has produced AFITtool. Although the tool has been

developed in-house, it is lacking in some functionality that is offered by COTS tools. In

order to take advantage of the capabilities of the COTS tools, one or more of them could

be integrated with AFITtool. At the start of this research, a structured method of tool

integration was not in use at AFIT. It was recognized that such a method would be helpful

in integrating AFITtool with the desired COTS tools. Developing a methodology for use in

software tool integration became the focus of this research, using AFITtool to demonstrate

the validity of the methodology.

The rest of this chapter describes the motivation for integrating AFITtool with other

tools, as well as the motivation for developing a structured approach to tool integration.

The first section gives further information on the background of AFITlool and tool inte-

gration in general. The next section describes the problems encountered in tool integration

and AFITtool, followed by a discussion of the past efforts in tool integration and the devel-

opment of AFITtool. The last three sections of the chapter describe the scope, approach

and assumptions of this research effort.

1.1 Background

The goal of using several tools in harmony to achieve an organization's mission can

often be realized by integrating the necessary tools. In the past, researchers have developed

models of integration to give structure to tool integration efforts. One model proposes using

an integration tool as the framework, fitting the tools into this framework [9]. Other models

are built on the premise that there are levels of integration that must be addressed in any

integration effort.

At the same time, the software engineering industry has been striving to develop a

formal, consistent method for generating provably correct software. Part of this effort has

included using formal methods to formulate a requirements specification that can then be

used to produce executable code (see Figure 1). AFITtool has been developed to satisfy

this need. It uses an internal abstract syntax tree (AST) for each object class specified.

Specifications, written as Z (zed) Schemas using I^T^X syntax, are converted and parsed

into these ASTs.

One of the essential aspects of software engineering is code reuse. Much effort is

put forth to specify, develop, and store code that can be reused. Often this creates more

work for the developers and does not reduce future effort. In order to reuse code, it has

to be rather generic, requiring the reuse developers to tailor the code for their purpose.

Tailoring is often as much work as developing from scratch. However, many researchers

claim that efforts to exploit reuse of domain knowledge can be very successful [5]. The

knowledge gathered in the software development process is often generic enough that it

can be used in other applications. For example, if an application is developed to simulate

a cruise missile, much of the domain knowledge gathered in the development process could

be reused in an application to simulate a rocket. Although the domains are different, they

Domain Expert
and

Domain Engineer

Formal
Design
Histories

Design

Transform

Design

Decisions

& Rationale

Software

Engineer

Design
Reuse
Library

Figure 1 Overall Transformation System Concept

have many similarities because they are both composed of similar components, such as a

jet engine, fuel tank and throttle.

In addition, the formal language used in the Z specification is often difficult for

the customer to understand. Although the specification is mathematically provable, and

therefore easier to extend to code generation, most customers are not familiar with formal

methods, nor are they educated in them. Therefore, the customer may approve of an

incorrect specification due to lack of understanding, defeating the primary goal of formal

methods: to create the correct system. Additionally, formal methods are difficult for most

developers, managers, and other team members to understand.

By integrating AFITtool with existing tools that handle the previously mentioned

areas, it is possible to develop an integrated toolset that provides complete support for

generating provably correct code. Adding to AFIT\oo\ would not affect its strength, the

use of formal methods to develop correct software, but would make it a more robust tool,

possibly offering domain model reuse and other methods of inputting domain models.

1.2 Problem

Since there is not an industry-wide standard for tool integration, many tool inte-

gration efforts have been haphazard at best. Often there has not been a clear plan on

how to integrate the tools, causing the integration efforts to miss the goal of a seamlessly

integrated system. Although the system may still work and achieve the mission of the

company, it may not be easy to use and it may cause confusion on the part of the user.

For the most part, the developers involved in integrating tools hope the tools work

together well, in such a way that users are not aware of the existence of multiple tools. If the

integrated toolset seems like several tools, the users must know how to work with several

different tools, instead of just learning one tool. Not only can this cause confusion, but

it can also cause errors that lead to user frustration. Another possible problem after tool

integration is that it may restrict the set of correct inputs, forcing the users to remember

new rules. In the end, they may revert to using the separate tools so they know exactly

what tool they are using and what rules to follow.

At the start of this research, AFITtool was a single tool which partially addressed

the problem of generating executable code from a formal requirements specification. Since

the executable code reflects the requirements specification, it is critical that the specifica-

tion correctly represent the system as the user intends. By offering another view of the

specification or adding an automated level of checking, it is possible to detect some types of

errors in the specification. One way to add these additional layers of correctness checking

is to integrate AFITtool with existing tools that perform the desired functions.

Although the ASTs created by AFITtool can be made persistent, there is not an easy

mechanism in place to retrieve, search or customize the ASTs, nor is there a mechanism

to navigate any domain knowledge gathered in the process of developing the ASTs. Since

there are many tools that provide for persistence of data, the key issue is developing an

interface between one of these tools and AFITtool. If accomplished, storing the AST

has great potential for future development efforts in the area of reuse. Giving the ability

to use a previously stored knowledge representation allows users to extend or customize

knowledge in a domain, rather than parsing the whole domain every time.

In the market today, there are several types of database management systems that

provide data persistence. The current trend is to develop an Object-Oriented Database

Management System (ODBMS) that captures the semantics of the data by encapsulating

it into units called objects [32]. There are also more traditional methods such as flat

file systems and relational databases. A middle ground is found in the area of extended

relational databases and object relational databases [28].

Another consideration is integrating AFITtool with existing CASE tools to create

a friendlier environment for the user. A CASE tool, usually graphically based, includes

a generally uncomplicated method to input, modify and output key information in the

software engineering life cycle. Many allow the user to develop requirements specifications,

design specifications and code. In this approach, AFITtool would continue to be used to

enforce the formalisms, but the CASE tool would provide a friendly interface for the user,

rather than the text-based interface in existence now. Again, the key issue is to develop

an interface to ensure the semantics of the model are enforced as it is transferred from

a graphical form to formal language specification and vice versa [7]. There are many

large-scale CASE tools available, including Rational Rose [21] and ERwin, and several

smaller-scale tools such as the Knowledge Based Software Assistant (KBSA) Advanced

Development Model (ADM) [8] and Aesop [11].

The focus of this research effort is summarized in the following statement.

Problem Statement: Show that tool integration can be accomplished by following

a structured approach that can be applied to any pair of software tools. In addition, show

that the appropriate tools are chosen for integration based on identified shortcomings of an

existing system. Demonstrate these assertions by integrating AFITtool with one or more

tools, while maintaining the semantics and the formalisms of the specification.

1.3 Initial Assessment of Past Efforts

Researchers on tool integration have developed models for integration that range

from proposing the use of a tool as a framework to the use of a highly theoretical model

as the basis for integration. The model most widely published was first developed by

Anthony Wasserman and has been modified and extended by several researchers. Wasser-

man's model is directed toward computer-aided software engineering (CASE) environment

development [36]. His research offers a way of examining which tools should be integrated

in order to meet the software development goals. Chapter 2 describes the five integration

classes of Wasserman's model in more detail. None of the proposed models, however, offer

a step by step methodology to use during the actual integration. Additionally, they do not

offer any guidance on the best way to approach the integration of the tools. The thrust

of his research seems to be ensuring that theoretically all aspects of the integrated toolset

are intact [36].

Past efforts in the research of formal methods at AFIT have produced the tool that

exists today. At the start of this research, AFITtool took only a formal specification as

input, written in Z in Mp^C. The specification was then parsed into a domain abstract

syntax tree (AST). The domain AST was then transformed by a series of partially im-

plemented design transformations and a design representation AST was created [14]. The

next step in the process, transforming to a coding language AST (specifically Refine Ada),

was also partially implemented [30]. The transformations from Z to Ada were completed

in research efforts at AFIT concurrent with this one [23] [33].

AFITtool supports writing the domain AST to a file, which can then be loaded at

a later time. However, to load multiple domains required an extensive amount of manual

preprocessing to put the files in the format expected by AFITtool. There was also no

central repository for domain ASTs, meaning each person only knows of his or her own

domain ASTs. Additionally, there was no naming convention for these ASTs, so even if a

central repository were created, it would be very difficult to retrieve the correct AST.

1.4 Scope

This research effort was concerned with developing a methodology for integrating

software tools by first examining the characteristics of the tools involved and then following

a general set of guidelines to perform the integration. Although AFITtool was used as the

demonstration system, this research was not primarily concerned with changing AFITtool

to address all of its shortcomings. The goal was to modify AFITtool in order to address

some of its shortcomings and to demonstrate the feasibility of a structured approach to

tool integration.

1.5 Approach

To meet the proposed research objectives, the following approach was followed:

1. Assess the current state of the system. An in-depth analysis of the current state of

the AFITtool system was performed, including what ASTs are built and how the

various ASTs are used in the system. Shortcomings of AFITtool that could be met

by other existing tools, such as a persistent storage manager and one or more CASE

tools, were identified.

2. Research current state of the art of tool integration. Many military, academic and

commercial organizations in the software engineering field are investigating toolset

integration and interoperability. A literature review was conducted to avoid dupli-

cation of effort, as well as to gather any available information on potentially useful

approaches.

3. Outline the capabilities of existing tools. Several categories of tools were potential

candidates for integration, including database management systems, graphical user

interface CASE tools, software architecture tools, and drawing tools that take domain

information and produce diagrams. Several tools were investigated to determine the

feasibility and benefits of integrating one or more of them. The integration of one

or more of these tools with AFITtool benefits users of AFITtool by extending and

supporting its capabilities. Although these tools can be used in conjunction with

AFITtool without being integrated, an integrated toolset that combines formal and

non-formal methods is very valuable to the users of AFITtool.

4. Derive a general framework or methodology for integrating tools. The software en-

gineering community has been evaluating the possibility of developing integrated

toolsets for many years. An integrated toolset can be obtained by developing a tool

with many functions, by integrating several existing tools, or both. A methodol-

ogy for integrating existing tools would be useful by the software community as a

whole. This approach is more flexible since it allows several existing tools to be used

together, rather than starting from the beginning and developing a toolset.

5. Integrate tools. After conducting the tool analysis, three tools were chosen to inte-

grate with AFITtool. The tools, daVinci, the Acme parser, and Rational Rose 98,

were chosen based on their functionality and their added benefits for AFITtool.

6. Verification and validation of the integrated system. Using an example object domain,

the ability of the integrated system to capture, store, retrieve and locate the nec-

essary information without changing the meaning of the domain was demonstrated.

This step was designed to show whether or not the tool integration was successful

(verification), since the goal is not only to work with a domain, but also to ensure

it is the correct representation of the domain, both when it is entered and when it

is manipulated. The integrated system and the original system were used by some

AFIT students to offer a comparison and determine whether or not the integrated

system offers any benefits (validation).

8

7. Demonstration of the methodology. The methodology was demonstrated through the

integration of three tools with AFITtool. By using the developed methodology to

integrate tools, covering many aspects of the methodology, the demonstrations were

achieved. Since it is impossible to cover all areas of a generic methodology in the

time available, a representative sample was demonstrated.

1.6 Assumptions

Several assumptions were made prior to the start of this research to promote its

success. First, the availability of domain experts was necessary during this research. This

included the sponsor, professors, past researchers, and documentation. Second, toolsets

that were chosen as integration candidates had to be available. If a toolset was unavailable

or would require major modifications, it was discarded as an integration candidate. Finally,

the stability of the system was very important throughout the course of the research. As

previously mentioned, other research work was ongoing to enhance AFITtool, and it was

necessary to have a configuration control methodology in place to ensure consistency of

the system.

The next chapter provides background information used in this thesis effort, including

a review of the capabilities of AFITtool, a short description for each tool that was consid-

ered for integration with .AFITtool, an overview of commonly used integration methods,

and a presentation of a well-known tool integration model. A complete description of the

software tool integration methodology developed during this thesis effort is presented in

Chapter 3. This methodology is a structured approach to integrating software tools, de-

signed to be used on any integration effort. Additionally, a validation of the methodology

is located at the end of the chapter. Chapter 4 contains a description of the application of

this methodology to the integration of AFITtool with three other software tools. The last

chapter includes a summary of the research presented here, as well as recommendations

for future work in this area.

77. Background

This chapter includes background information needed to integrate AFITtool with other

tools. The first two sections are background information on ^-FiTtool itself. This de-

scription serves as an overview of the development to this point, and as a motivation to

develop the tool further to address some of its shortcomings. The third section is a review

of tools that were candidates for integration. First, generalized tool requirements, based

on ^FITtool's shortcomings, are given. These requirements are followed by the criteria

used in the tool evaluation process. The next section describes a widely-known tool inte-

gration model and the modified models developed by other researchers in the field. The

last section of the chapter gives an analysis of several methods of integrating tools.

2.1 Background Information on AFITtool

Development accomplished at AFIT to create a formal method of software develop-

ment, from requirements specification to code generation, has produced AFITtool. This

tool was built with Software Refinery, using the REFINE language, and uses an inter-

nal abstract syntax tree (AST) for each object class developed [30]. Specifications are

converted and parsed into an AST called the domain AST. The domain AST represents

the domain being modeled in the system. This AST is manipulated by the Elicitor Har-

vester subsystem, designed to interactively refine a correct specification from a problem

requirement based on the domain model.

The refined domain AST is then transformed by a series of correctness-preserving

design transformations into the design AST. The design AST is then processed by an output

grammar to go from design to code. The design transformations and code generation were

further developed during this thesis cycle [23] [33]. Currently, Ada code is produced, but

with modifications AFITtooVs design AST can be redirected to any language supported by

the Reasoning Systems' Software Refinery [30]. In the current release of Software Refinery,

code development is supported in COBOL, Ada, C and FORTRAN [30]. The domain

AST is the first step in representing the requirements of the user, by representing the

10

specification. This specification can be manipulated, stored, retrieved and copied for later

use.

In support of reverse engineering, AFIT has also developed the Generic Imperative

Model (GIM), a generic representation of code. A GIM AST is transformed through the

Object Extractor to produce a Generic Object Model (GOM) AST. The GOM, produced in

the AFIT reverse engineering system, was a likely candidate for the design representation

AST to be used in AFITtool. During this thesis cycle, however, modifications were made

to the GOM and a new design tree was specified [23] [33]. Since the reverse engineering

work has already been accomplished, it is feasible to interface a reverse engineering tool

to AFITtool, using the design tree, for object-oriented code generation.

2.2 Shortcomings of AFITtool

As part of the initial work on this thesis, it was necessary to determine the shortcom-

ings of AFITtool in order to characterize the kind of improvements, via tool integration,

that could be made. The investigation of the shortcomings also facilitated the process of

determining the criteria for the tool search. The following list indicates the shortcomings

that existed before this research effort.

• Interface is not user friendly The interface to AFITtool was functional, but not

particularly user friendly. Most software developed in the recent past has a graphical

user interface (GUI). In the past few years, people have become more comfortable

with this type of interface and, in most cases, prefer it. There are several ways to add

a GUI to AFITtool that would not involve re-writing the entire system, and which

would make it more user friendly.

• Persistent storage of domains is limited Although AFITtool has the capability,

through built-in Refine functions, to offer persistent storage, it offers only a limited

amount. This is a feature that can be improved by further Refine coding or the

addition of a data storage tool. Additionally, some sort of lookup facility would aid

the use of the persistent storage.

11

• Verification is limited Currently, the parser in AFITtool checks for a file that is

properly structured, but does not check the correctness of the code entered. Since

AFITtool is based on formal methods, there are many ways to verify correctness.

This is currently only partially implemented on the level of checking for duplicate

variables and constants, and types that are not used. Other possible things to check

are that constants have a type, that attributes are denned over declared or predefined

types, that there is at least one attribute in each invariant constraint, there are no

name conflicts between a subclass and its superclasses, and that derived types are

defined over existing types [14]. Verification could be performed within AFITtool or

through the use of a separate tool integrated with AFITtool.

• Model analysis by the user is limited After the input of the model, some users

are not capable of performing detailed analysis of the model. By either offering a tool

to analyze the model or offering a graphical view of the model to the user, another

level of verification would be accomplished.

• Transformation from Z specifications to code is not complete The transfor-

mation of the domain AST to a design representation AST is not complete, making it

impossible to go completely from requirements specification to code. This problem is

well known by everyone who uses AFITtool and is being addressed in other research

efforts [23] [33].

By integrating one or more tools with AFITtool to operate on the requirements spec-

ification represented by the domain AST, several of the identified shortcomings could be

corrected. This research effort focused on representing the specification in a graphical form

which allows the user to spot some kinds of errors more easily. Although the transformation

from the domain AST to the design AST was not complete at the start of this research,

identifying and integrating tools that can operate on the design was still considered.

2.3 Tool Review

This section discusses candidates for integration with AFITtool based on a predeter-

mined set of criteria. The first subsections describes the general type of tool that could be

12

used to improve AFITtool, followed by a subsection that defines the criteria upon which

tool selection was based. The following subsections describe the various classes of tools

that were considered, with information on specific tools. Tools that failed to meet the

criteria are not discussed here.

2.3.1 Tools that could improve shortcomings. Some of the shortcomings of

AFITtool could be addressed by the addition of tools to the system. The following para-

graphs describe what kind of tools would improve each particular shortcoming of AFITtool.

There are many options for a friendlier front end, including developing a GUI appli-

cation involving one or more windows and menus, perhaps with Intervista1 [30], or Visual

Basic [6]. There are also OSF/Motif toolkit, a proprietary toolkit, and X Window appli-

cation builders available on the Unix platform [31]. Although there is a learning curve to

using these tools, it would improve the user interface of AFITtool. In addition, a tool that

already uses a GUI could be integrated with AFITtool and used as the front end.

A tool to store the domains that allows querying would improve the reusability of

domains. This could be the built-in Refine Persistent Object Base, discussed later, or a

database management system. Alternatively, a configuration management system could

be implemented that allows storing keywords to represent the domain, creating a central

repository for domain models.

A tool that interprets the Z specification (in words or in pictures) and ensures that

the interpretation meets with the meaning the user was trying to convey would enable more

correctness checking. By giving the user a different view of the specification, it may be

possible for the user to realize errors earlier. As an added method of correctness checking,

a theorem prover to ensure the correctness of the specifications and the transformation

could be added to the system. It would utilize the formal methods upon which AFITtool

is based, although it might involve extending AFITtool to "explain" to the tool what is

correct.

intervista is the GUI development package standard with Software Refinery

13

To achieve a true integration of AFITtool and the selected tools, a framework is

needed. The integration should be seamless to the user, offering the idea that there is one

system, rather than many components. There are several ways to do this, including using

a scripting language or a commercial framework designed to integrate tools.

2.3.2 Tool Criteria. During the tool evaluation process, seven criteria were used.

These criteria were developed with the shortcomings of AFITtool in mind (criteria 2 and 6)

as well as the feasibility of acquiring the tool (criterion 5) and the feasibility of integrating

the tool, based on the given time constraints (criteria 1, 3, 4, and 7). They address the

issues of integrating tools in a feasible manner, to provide an integrated environment for

the user and a practical project for the developer. A tool must meet the majority of

the criteria to be chosen for integration. The tool criteria are listed below in order of

importance, from highest to lowest

1. Executes on a Unix platform

2. Enhances AFITtool by fixing one or more shortcomings

3. Provides ease of integration

4. Has technical support available

5. Has reasonable and acceptable cost

6. Assists the user in understanding information stored in AFITtool

Ideally, the tools to be integrated would be based on Lisp or Refine so they could

be easily integrated into AFITtool. Since AFITtool is run on a Unix platform, it follows

that it is preferable for any integrated tools to run on the same platform. Additionally, if

the tool is a commercial product, a high level of technical support is desired. If it is not

commercial, it is important that the developers provide technical support. If the tool is not

well supported and/or documented by technical expertise, it is not a likely candidate for

integration. The tools need to be available for AFIT to either purchase at a reasonable cost

or acquire free of charge. Finally, the tools chosen for integration need to assist the user in

understanding, and possibly verifying, the information currently stored in AFITtool. The

following subsections discuss different types of tools that were considered for integration.

14

2.3.3 Architecture tools. There are many tools available to define and manipulate

the architecture of a software system. The following tools were developed at universities

under the Evolutionary Development of Complex Software (EDCS) project. They have

become strong tools, and support some level of integration with each other through the

Interface Definition Language Acme.

• Aesop: Aesop provides a toolset for constructing open, architectural environments

that support architectural styles. It interfaces with other tools through a Remote

Procedure Call (RPC) interface, allowing other tools to analyze and manipulate archi-

tectural descriptions. Aesop would enhance AFITtool by offering another capability

— specifying the architecture of the system being developed. Aesop is implemented

on a Unix platform and is available for release as a demonstration system from

Carnegie Mellon University [11].

Acme: Acme has been developed to provide a common ground for software archi-

tectures. It can be used for developing a system architecture as well as interfacing

multiple architecture designs. Currently, it supports translation between UniCon and

Aesop, as well as from Wright to Rapide. Acme would enhance AFITtool by allow-

ing the user to specify the architecture of the system being developed and translate

between architectures, if desired. Acme is implemented on a Unix platform and can

be obtained from Carnegie Mellon University [12].

Rapide: The Rapide project is an effort to develop new technology for specifying the

architectures of component-based large-scale, distributed multi-language systems.

The toolkit available to work with the Rapide language allows gradual refinement of

the architecture, thereby supporting incremental development, testing and mainte-

nance. Rapide is another tool that could be integrated with AFITtool to allow the

user the capability of specifying an architecture. The Rapide toolkit executes on the

Unix platform. This research is being performed at Stanford University, hence all

information and toolkits can be obtained without cost [17].

Wright: Wright provides a formal basis for architectural description. It is an archi-

tecture description language that allows the user to describe an architecture with

15

precision. It also enables the user to analyze both the architecture of individual

software systems and of families of systems. Additionally, Wright defines consis-

tency checks that the user can perform to increase their confidence in the design

of a system. Wright is another alternative to allow the introduction of architecture

descriptions into AFITtool. The Wright project is being pursued by researchers at

Carnegie Mellon University. They are currently developing a toolkit on the Unix

platform to work with the Wright language and it would be available at no cost to

AFIT [18].

2.3.4 Software Development Environment tools. One approach to tool integration

involves starting with a development environment and expanding it to create a custom

software development environment. The tools discussed here are Computer-Aided Software

Engineering (CASE) tools that can further enhance AFITtool by offering a less formal view

of the system. Additionally, these tools support the whole software life cycle, meaning they

can be used at all stages of the development process.

• Rational Rose: Rational Rose is a development environment that allows software

systems to be developed. It has many features, including language development in

Ada95, Java and C++, Corba/IDL generation, database schema generation and an

extensibility interface. Rose 98 supports the Unified Modeling Language (UML),

Booch, and Rumbaugh notations making it more flexible. It has been implemented

for both the PC and Unix platform. AFIT currently owns an educational license

for Rose, making a purchase unnecessary. Integration of Rose with AFITtool could

be accomplished through Rose Scripts or Rose Automation. This integration would

offer a visual modeling tool that is currently unavailable to the user and would help

the user and the customer understand what is being modeled [21].

• Knowledge Based Software Assistant Advanced Development Model (KBSA ADM):

ADM, developed for Rome Labs by Andersen Consulting, is a tool that was designed

to encompass the entire software life cycle. It provides an integrated environment that

could possibly be used as a common ground to integrate AFITtool with other tools.

ADM incorporated Object Store for persistence as well as other tools/languages for

16

requirements acquisition and project management. It uses both the Unix and Win-

dows NT platforms to achieve its goals. AFIT acquired ADM through the Rome Site

of Air Force Research Laboratory, making it unnecessary to purchase this software [8].

2.3.5 Drawing/Diagramming tools. This section describes several drawing tools

available in the Unix environment. One way, out of the many possibilities, to use a drawing

tool is to graphically depict the state transition diagram. The tools could also be used

to allow the system to display the object model or the event flow diagram for the current

domain. Beyond simply drawing or displaying, it may also be possible to animate the

drawings to show the progression of the state transition table.

• xfig: xfig is the drawing tool that is standard with Unix. Users can draw pictures

and save them as .fig files or export them to .ps files. It is a primitive tool but may

be a possibility for integration since it is currently available at AFIT and runs on

the Unix platform.

• Graph Layout Toolkit: The Graph Layout Toolkit was developed by Tom Sawyer

Software to develop graphs in a GUI environment. It appears that there is also a

Java API that is used to interface with the software. By using the Java API, it is

available for Unix and PC platforms. This commercially available software can be

purchased at an educational price [22].

• daVinci: daVinci is a tool developed by the University of Bremen on the Unix plat-

form for graphical layout of nodes. daVinci has been integrated into the Artificial

Intelligence system developed at AFIT called PESKI using an interactive remote

procedure call interface. daVinci also supports command line options, allowing the

user to specify a graph to draw using term notation. This tool is available at no

charge and is currently on an AFIT system [10].

• Island Draw: Island Draw is a drawing tool that allows the user to create high-

quality diagrams. It provides an import and export facility, allowing many formats

to interact with the program. For example, it is possible to import a postscript

file into Island Draw and export an Island Draw file. Island Draw is available at

AFIT [19].

17

2.3.6 Theorem Provers. The following tools support proving the correctness, with

respect to supplied pre- and post-conditions, of specifications and code. The tools require

their input to be in a specified format or language, specific to the tool. These tools could

offer the ability to prove the correctness of a specification, before the transformations are

completed to generate code. Additionally, the tools would assist in proving the correctness

of the resulting code.

• Epilog Inference Package: Epilog is a library of Common Lisp subroutines to be used

in programs that manipulate Standard Information Format (SIF) files, a variant of

first order predicate calculus. It has built in routines to convert expressions, do

various pattern matching, and create and maintain SIF knowledge bases. To be

integrated with AFITtoo\, a converter would have to be written to put the domain

model (or other file to be examined) into SIF. Since Epilog uses Common Lisp, and

Refine is built on Common Lisp, the rest of the integration should be straightforward.

Epilog was built for Macintosh and Unix and is available for download from Stanford

University [16].

• Z/Eves: Z/Eves is a theorem prover that supports the analysis of Z specifications by

performing syntax and type checking, schema expansion, precondition calculation,

domain checking and general theorem proving. Since AFITtool currently uses Z

specifications to represent the requirements, this tool could enhance AFITtool by

allowing these specifications to be proven. Additionally, the files needed to integrate

with AFITtool are already input to the system, so integrating Z/Eves with AFITtool

would be straightforward. Version 1.5 of Z/Eves is available at no cost from ORA

Canada. It runs on SunOS, Object Store/2, Linux, Windows 3.1, Windows 95 and

Sun Solaris [24].

• ProofPower (supports HOL): ProofPower is a commercially available tool that sup-

ports the proof of HOL and Z specifications. The Z specifications are entered as

MpjX files, just as they are entered into AFITtool. This would make it possi-

ble to use the same files as the interface between ProofPower and AFITtool. It is

18

available for purchase from ICL under an educational license and runs on the Unix

platform [20].

• AMN-PROOF (supports HOL and PVS): AMN-PROOF is a theorem prover that

supports proof of Abstract Machine Notation (AMN) specifications and refinements

with the HOL and PVS theorem provers. A system is specified as a number of

abstract machines that are formally refined to an executable representation in terms

of more abstract machines. In the present version, the HOL prover is not supported

[15]. The tool is written in C++ and is available for Linux and Sun Sparc machines

by free download. This tool seems to be very rudimentary and may not be a good

choice for integration to AFITtool.

2.3.7 Data Storage. The following two tools are possibilities for adding persistent

storage to AFITtool. This storage would be used to store the domain model and should

offer a querying capability. Storing and loading domain models would increase ease of use

and reuse in the system, saving users effort.

• Object Design's Object Store: Object Store is an Object-Oriented Database Man-

agement System developed by Object Design. This could serve as the repository for

the domain models AFITtool produces. It supports a CORBA-compliant interface,

allowing integration with external tools. In order to integrate AFITtool with Object

Store, the domain AST would need to be output in a CORBA-compliant format. Al-

though not trivial, this could be accomplished. AFIT currently owns Object Store,

so a purchase would not be required. It runs on both Unix and PC platforms.

Refine's Persistent Object Storage: Refine has a built-in capability to store the AST

in a file called a Persistent Object Base. This must be programmed in Refine, spec-

ifying each node of the AST. Currently, AFITtool has this functionality in a limited

manner, but it is easily extendible. AFIT currently owns Refine and .AFiTtool is

based in Refine. It runs on the Unix platform.

19

2.4 A Sampling of Integration Methods

There are a multitude of methods available to integrate a tool set. One method

is to use a scripting language to handle the control flow of tool execution, allowing user

input when necessary. The script would also send any necessary commands and/or data to

the applications. Scripting languages are commonly used as the "glue" for an integrated

environment in many application areas. Developed components are integrated into appli-

cations using a scripting language [27]. The most common languages are tcl and Perl, but

there are many others available for use, including Visual Basic and JavaScript [27]. They

are often used when control flow integration is desired. The most common use of scripts

involves a script that controls what is to be executed, what data is passed and what the

user sees on the screen. The use of scripts can often speed up development time by a factor

of five to 10 [27]. Tel can be used in two ways: as a method for building application inter-

faces and as a uniform framework for communication between tools [26]. Tel has some of

the characteristics of Lisp, but it was designed to be embedded in an application program,

rather than to develop stand-alone programs [26].

A related concept is the use of intelligent agents, with a script, to perform the

required tasks [13]. Agents are used as a communication and control mechanism between

software components to create an integrated environment. Agents have been compared

to objects, and have some similarities, such as a message-based interface independent of

the internal data structures and algorithms. In programming efforts involving agents,

an agent communication language is needed, as well as constructs to allow the agents to

communicate within the framework of the system and the language. One agent language

in widespread use is called Knowledge Query and Manipulation Language (KQML). It uses

the idea of a message, which the agent can send and receive [13]. Agents, then, can control

both the flow of execution and the flow of data in a system. Because of these properties,

they are very useful in system integration. The agents must be controlled by a higher level

process, or a server of some sort, in order to have the proper flow in the system.

Another possibility for integration is to use an existing CASE tool, such as ADM

or Rational Rose, as the basis and integrate add-ins to that tool. This would extend an

already integrated environment to provide additional functionality to the users. Since the

20

majority of the environment is in production, the integration of more tools would simply

enhance the tool, rather than redefine it.

With the growing dominance of Object-Oriented (00) software development, two

standards have emerged to work with the data: Common Object Request Broker Archi-

tecture (CORBA) and Distributed Component Object Model (DCOM). The fundamental

idea is that a middleware application will be used to allow other applications to interact,

without having the same data types or formats. All data is stored as objects, in accordance

with the 00 paradigm, and methods are used to access the data. In the CORBA realm,

the middleware is called an Object Request Broker (ORB) and the data is stored and

retrieved using ORB methods. Each client must register with the ORB in order to use it.

The client would then send requests to the ORB to store, retrieve or manipulate the data.

Most ORBs have a query facility built in to find the desired data. The Object Management

Group, composed of business leaders in the 00 community, developed CORBA and it is

available on both the PC and Unix platforms [2] [4]. DCOM has similar constructs for

common objects. DCOM was developed by Microsoft Corporation and is available only on

the PC platform [3] [4].

The emerging method of tool integration seems to be to use some sort of "middleware"

that ties tools together in the background, without the explicit knowledge of the user. This

method can also use several of the previously mentioned methods, including RPCs, message

passing and a CORBA interface. The "middleware" would provide a common ground, as

CORBA does for objects, from which all applications are run. This method could also

make use of intelligent agents that would perform the requested tasks and return with the

data or a message to the starting point. Web browsers are sometimes used to integrate

different applications by using a CGI application in the HTML code of the web page.

This has been very successful in the database arena, allowing companies to provide on-line

purchasing through a web page that communicates with a database [1]. Additionally, the

user is unaware of the true interface to the system, since they see only the web page.

High-level programming languages such as Visual Basic and C++ are often used as

driver programs to control the flow of execution and data throughout a system. Some

applications include a menu system that allows a user to choose each task that is accom-

21

plished, while other applications allow the user to start the system and several tasks are

accomplished in the background without user intervention. It seems that for an effort of

any size, a combination of methods will be used. Rather than accomplishing the whole

system integration through message passing or a CORBA object repository, a combination

of communication and control flow methods will be used. The main advantage of combin-

ing methods is flexibility. It allows tools to be located on different platforms, written in

different languages, and have different user interfaces.

2.5 Tool Integration Models

Over the years, the literature has provided documentation on many different ways to

approach tool integration. The most widely adhered to model was developed by Anthony

Wasserman and includes five classes of integration: platform, presentation, data, control,

and process [34]. One team of researchers discarded platform integration, arguing that the

primary focus is on the relationship between tools [34]. Other researchers have discarded

platform and process integration, leaving presentation, data, and control integration [35].

2.5.1 Thomas and Nejmeh's Approach to Wasserman's model. Thomas and

Nejmeh discarded platform integration from Wasserman's model, arguing that the rela-

tionship between the tools is the most important issue, while the platform provides the

basic building blocks for integration [34]. The following sections describe the four classes

of integration Thomas and Nejmeh discuss, along with properties they identified for each

class.

2.5.1.1 Presentation Integration. Presentation integration deals with the

relationship between user interfaces of tools. A highly integrated environment, from the

standpoint of presentation integration, is one which does not force the user to understand

multiple interfaces. Two properties have been identified in presentation integration: ap-

pearance and behavior, and interaction-paradigm integration [34].

1. Appearance and behavior: This property addresses the ease of use of the integrated

toolset. If a user understands one tool, how does that knowledge help them in dealing

22

with other tools in the environment? Two tools that are well integrated with respect

to appearance and behavior allow the user's experience with and expectations of one

tool to apply to other tools. Appearance and behavior integration captures both

lexical and syntactical similarities and differences in tools. The lexical elements of a

tool include things such as how the mouse clicks, how the menu bar looks, where win-

dows are placed, and if there are multiple windows or just one. Syntactical elements

of a tool include the order of commands and parameters, presentation of choices in

a dialog box, and the format of input and output files. Although windowing tools

are influenced by the guidelines of Motif and OpenLook, there is enough flexibility

to allow ambiguity in an integration effort.

2. Interaction-paradigm: The interaction of two tools can be very similar or very dif-

ferent, and the degree of difference impacts the user by causing him or her to have

to learn a great amount about the interface of a tool, if they are very different, or

not learn much at all, if they are similar. The underlying metaphors and mental

models of the tools are the two primary factors in interaction-paradigm integration.

The two tools are well integrated with respect to interaction-paradigm if they use

the same metaphors and mental models. The use of only one metaphor for the en-

tire system may be unachievable, but a balance is key. Two tools that use similar

file navigation methods are said to use similar metaphors. For instance, most MS

Windows systems use a file hierarchy approach to file navigation. Another approach

is that of a hypertext structure, where files are displayed and there is no emphasis

on which files are contained in which higher structures. These two common methods

of file navigation use very different metaphors. Integrating two tools using these

two different methods will result in an environment that is not well integrated with

respect to interaction-paradigm integration, without changes.

2.5.1.2 Data Integration. Thomas and Nejmeh identified five properties

of data integration, defined over the data management and representation aspects of two

tools: interoperability, nonredundancy, data consistency, data exchange, and synchroniza-

tion [34].

23

1. Interoperability: This property addresses the issues of two tools needing the same

data, and needing to view it in the same way. In some cases, the data may be se-

mantically correct overall for both tools, but the tools may attach different semantics

to the same data. This aspect of data integration, when addressed, answers ques-

tions regarding what has to be done to make the data available and correct for both

tools. The best scenario for integration, based on data interoperability, is two tools

using the same model and format. Two tools that use the same type of data, but

expect it in completely different formats, are not as well integrated and require a

data conversion program. Interoperability applies to persistent data only.

2. Nonredundancy: Nonredundancy describes the desire that two tools have little or no

overlapping data. This aspect of data integration examines the amount of overlapping

data that each tool stores and manipulates independently. If two tools have data

that is exactly the same, or can be derived from other data, it is difficult to ensure

consistency of the data in the integrated system. Therefore, it is desirable to minimize

redundant data. It may be practical, however, to have replicated data in a database

to improve performance.

3. Data consistency: Maintaining consistency of redundant or derived data may involve

special semantic constraints on the data involving the interaction of two tools. For

instance, two tools may have data independent of each other, but when integrated,

the data of one tool relates to the other in such a way that the admissible values are

restricted. When integrating tools in which this is applicable, it is important for the

tools to cooperate to maintain the semantic constraints on the data. This requires

each tool to "report" its data manipulations and their effects to other tools.

4. Data exchange: Some tools may need to exchange data, whether it be initial values

at the start of execution or updated values during execution. When two tools such

as these are integrated, the integration effort must address what needs to be done to

data generated by one tool in order for another tool to manipulate it. Data exchange

involves the tools agreeing on semantics and data format. If little or nothing needs

to be done to the data in order to exchange it between tools, the tools are well

integrated with respect to data exchange. Although this is similar to interoperability

24

of data, it also applies to nonpersistent data and may use different mechanisms to

share the data.

5. Synchronization: Synchronization is mainly concerned with the consistency of non-

persistent data shared among tools. Maintaining consistency involves each tool com-

municating any changes made to the data to all other tools. Since most tools will use

both persistent and nonpersistent data, synchronization is often an issue. Although

it is very similar to data consistency, synchronization applies to nonpersistent data,

while data consistency applies to persistent data.

2.5.1.3 Control Integration. One goal of a well-integrated toolset is to share

functionality between tools in such a way that the user gains access to the full functionality

without knowing which tool owns the functionality. Sharing functionality requires tools to

pass control from one to another, knowing only what functionality is needed, not which

tool is needed. Additionally, tools must communicate the operations to be performed when

passing control. Control integration complements data integration in that to pass control

from one tool to another, data or a data reference is often needed as well. Thomas and

Nejmeh identified two properties of control integration: provision and use [34].

1. Provision: Provision describes the extent to which each tool is needed by the inte-

grated environment as a whole. If a tool is added to the environment but not used,

it is said to be poorly integrated with respect to provision integration. Alternatively,

a tool is well integrated if it offers services other tools in the environment will use.

2. Use: The property of use complements that of provision in that it measures the

extent to which a tool uses services offered by other tools in the environment. In

order to achieve high use integration, the tools must be modular. Additionally, each

tool in the environment must use the services provided by other tools rather than

supplying the services within the tool.

2.5.1-4 Process Integration. Process integration is the fourth class of inte-

gration discussed in Thomas and Nejmeh's article. It deals with ensuring tools interact

well to support a defined software process. Tools that support a software process make as-

25

sumptions about that process. Tools are said to be well integrated with respect to process

integration if these assumptions are consistent. There are three properties associated with

process integration: process step, process event and process constraint. An integration

effort only needs to address process integration if the tools being integrated are relevant

to the same process step; for example, they both influence requirements analysis.

1. Process step: A process step is equivalent to a phase in the software life cycle. This

property addresses how well the tools combine to support a step in the process. In

an integration effort, one process step may be broken into smaller steps, each related

to a tool. These tools usually work in sequence, the execution of one satisfying the

precondition of the next in such a way that it may achieve its goals. Tools are well

integrated with respect to process step integration if the integrated tools complete

the process step and allow other tools to do their work. Conversely, tools are said

to be poorly integrated if one tool makes it harder for other tools to achieve their

goals, or if one tool does not satisfy the precondition directly, causing more work to

be accomplished by other tools.

2. Process event: A process step is composed of process events that, when executed

sequentially, achieve the goals of that step. Prom the standpoint of tool integration,

the integration is measured on how well the tools agree on the events that need

to be accomplished in each step. Thomas and Nejmeh identified two aspects of

process event agreement. First, the preconditions of one tool should reflect events

generated by other tools. Second, one tool should generate events that help satisfy

the preconditions of other tools. Tools are well integrated with respect to process

event integration if they generate and handle events consistently.

3. Process constraint: A process constraint is a condition that restricts some aspect

of the process. In a tool integration effort, process constraints are examined to

determine how well they cooperate to uphold the constraints. Tools are examined

both on whether or not their functions are constrained by another tool's functions

and if their functions constrain another tool's functions. If two tools agree on the

26

range of constraints they recognize and respect, they are well integrated with respect

to process constraints.

2.5.2 Wallnau and Feiler's Approach to Wasserman's Model. Wallnau and Feiler

refine Wasserman's model differently than Thomas and Nejmeh. They argue that "frame-

work and process integration are orthogonal to control, data, and presentation integration

(and to each other)" [35]. In their opinion, process integration defines what tools get

integrated, while framework integration defines how tools get integrated. This is effec-

tively the same relationship that exists between requirements and design in a software

development effort. Additionally, Wallnau and Feiler believe the original model that deals

only with control, data and presentation integration is sufficient to characterize tool inte-

gration. They do not believe, however, that control, data and presentation relationships

define how to integrate tools, but rather they describe the relationships between integrated

tools. Therefore, although the framework provides mechanisms to integrate tools, the tools

themselves provide the details of integration. They view integration as being composed of

three classes of entities: framework, process, and tools [35]. Since this research effort is

focused on tool integration, that is the only class described below. Intertool integration is

viewed as having three distinct types of integration, namely control, data, and presentation

integration.

2.5.2.1 Control Integration. Control integration embodies the concept of

one tool executing functions of another tool, or supporting remote execution of functions

of a tool. Control integration can be used to move control to where the data resides,

rather than taking the data integration approach of moving data to where control resides.

In the past, integration efforts have used data-driven and event-driven triggers, much like

database triggers. Data-driven triggers cause actions to occur due to a change in data,

such as a change in a database. Event-driven triggers cause actions to occur due to a

change in the environment. The significance of recent development in control integration

is the execution of a tool's lower-level functions.

27

2.5.2.2 Data Integration. Data integration has been the most common

class of integration in research efforts for many years. The central point of many research

efforts is making the data models and format agree between the tools. One way to achieve

this goal is to have data in a central repository and manipulate the tools to access this

data. Three other possible methods for data integration are format mechanisms, storage

mechanisms and carrier mechanisms. Format mechanisms use an agreed-upon format for

communication between tools, and include solutions that use a non-proprietary external

format for data, such as PostScript. Solutions that use storage mechanisms for data in-

tegration often involve using common databases, clipboards, and external files for data

sharing. Carrier mechanisms, such as pipes and sockets or remote procedure calls, are also

used for data integration. Agents carrying data could also be carrier mechanisms.

Research efforts in the area of data integration have determined that some data

repository services are often needed by the environment, to accomplish configuration man-

agement and project management, and have nothing to do with tool integration. Due to

this requirement, research has continued toward developing a central repository to handle

data integration in CASE environments. This research has promoted the development of

two concepts related to repository and data integration. The first is that the repository

data model and the data management services should be separate. This approach allows

the services and repository to access objects through the data model, while other envi-

ronment tools can access the data management services directly. This concept supports a

layered model for data integration. The second concept supports separating relationship

management services and data management services. The key behind this concept is sepa-

rating the relationship services from the underlying data model. This concept is aimed at

providing traceability and configuration management services to tools that manage their

own data.

2.5.2.3 Presentation Integration. The goal of presentation integration is

to provide a common look and feel for the integrated system. Over the years, this has

become less platform dependent, meaning X Windows applications and Macintosh ap-

plications may have the same kind of user interface. In order to achieve presentation

28

integration, tools must agree on a standard interface, an ideal that is not often prac-

ticed. Another approach is to use a user interface management system (UIMS), causing

the system to be less dependent on low-level mechanisms and more dependent on window

system-independent mechanisms. UIMS offer a framework for the integration, presenting a

common look and feel to the integration effort without changing the underlying tools. In-

tegrated Project Support Environment (IPSE) frameworks are in the same class as UIMS,

and will not be widely used, for much the same reasons. Although both seem like a very

promising concepts to presentation integration, they have not been widely adopted due to

their immaturity and lack of availability in customer environments.

2.6 Summary

This chapter presented many tools that were candidates for integration with AFITtool,

as well as the set of criteria that was used to select tools. Additionally, some of the meth-

ods of integrating tools as well as the models upon which integration can be based were

discussed. The next chapter presents a methodology for integrating software tools which

was influenced by Thomas and Nejmeh's characteristics of data and control integration.

29

III. Tool Integration Methodology

The integration of two or more tools is intended to form a complete system, with the goals

of the user in mind. In most cases, tools are integrated in order to form a system that

supports a software development process or another business practice, such as managing

inventory. Tool integration may become necessary after the merger of two companies,

each one using different software to manage inventory. After the companies merge, the

new company will need a single method of managing inventory and will not want to lose

inventory information or functionality provided by the two tools. Integrating the two tools

allows the new company to take advantage of all of the functionality of the two tools with

the interface of one tool. The data that was previously used by two separate tools can also

be transformed to a central repository which can be used by the integrated system.

Since the goal of tool integration is to form a fully operational, totally integrated

system, it is important to have a framework of rules guiding the integration process. For

this reason, the primary goal of this research has been to develop a generic methodology

that covers the majority of tool integrations involving existing tools. This methodology is

based on the concept of a design space, composed of functional and structural dimensions.

The functional dimensions of the design space identify the requirements for the tools that

most affect the solution for the integration effort. The structural dimensions of the design

space determine the overall framework of the integrated system. These dimensions detail

the characteristics of the pair of tools being integrated (functional dimensions) and the

characteristics of the resulting system (structural dimensions). This concept of a design

space was discussed by Lane in his work on software architectures [25]. A design space is one

method of classifying tools by examining each dimension. Each dimension enumerates all of

the possibilities for that aspect of a tool [25]. The mapping from the functional dimensions

to the structural dimensions is achieved through the use of design rules, guidelines for

choosing between structural dimensions, given a set of functional dimensions.

Although there are many methods used for tool integration, the methodology in this

chapter offers a way of choosing between methods and achieving the goal of an integrated

system. In developing this methodology, Lane's concept of a design space was extended.

The concept presented by Lane included one set of functional dimensions and one set of

30

structural dimensions. For this effort, however, it seemed appropriate to have two sets of

functional dimensions: one for a single tool and one for the tool pair. The methodology is

based on this extension, rather than the strict model presented by Lane [25]. The chapter

begins with an overview of the methodology, followed by a description of the functional

dimensions and structural dimensions. Finally, the chapter concludes with the design rules

for this design space.

3.1 Methodology Overview

In order to integrate two software tools, it is necessary to characterize the tools both

individually and as a pair. The aspects of a single tool that apply to the integration include

the methods used for data input and output and whether or not the tool can be extended,

and if so, how it is extended. These aspects are classified as functional dimensions of a

single tool, explained in the next section. The first step in the integration effort is to

determine the values of each of these aspects. The next step is to examine the interface of

the tool pair. The extendability of the two tools collectively is examined, as well as whether

or not the data they share is compatible. These aspects are captured in the functional

dimensions of a tool pair.

After determining the values of each of the functional dimensions, the design rules

for the design space can be applied, yielding values for each of the structural dimensions.

The structural dimensions include determining the communication path that will be used

in the integrated system, as well as the method of transforming the data and controlling

the system. These steps are summarized in Table 1. The following sections describe each

of the dimensions in detail, including the alternatives (values) for each dimension.

3.2 Functional Dimensions

Tool integration encompasses the tools in their entirety, but only certain aspects of

the tools are actually considered in the integration. The functional dimensions for the tool

integration design space take into account the characteristics relevant to the integration of

the tools. After examining the data integration characteristics proposed by Thomas and

Nejmeh [34], two sets of functional dimensions were defined. Section 3.2.1 specifies the

31

Table 1 Methodology for Tool Integration

Step 1: Determine for each tool:
Input Mechanism
Output Mechanism
Extendability

Step 2: Determine for each tool pair:
Extendability Class
Data Compatibility

Step 3: Apply design rules to determine structure of system
Provide output of first tool and input of second tool to determine
communication path.
Apply design rules based on extendability class
to determine control integration implementation and data transformation.

characteristics of a single tool, the first set of functional dimensions, while Section 3.2.2

characterizes a tool pair, the second set of functional dimensions.

3.2.1 Functional Dimensions for a Single of Tool. The important aspects of a

single tool are the method it uses for input, the method it uses for output, and the how

the tool can be extended, if possible. To characterize a tool, one alternative from each

dimension is chosen. The following paragraphs describe the three functional dimensions of

a tool: input characteristics, output characteristics, and tool extendability, illustrated in

Table 2.

3.2.1.1 Input Characteristics. The first functional dimension for a single

tool, input characteristics, characterizes the kind of input a tool uses. The input of a tool

is characterized by the method it uses to obtain the data it needs. The input data is used

to support the tool's functionality. The input data sources of a tool can be persistent

or non-persistent, and any given tool may use more than one of the alternatives offered

below. For tool integration, however, the tool is characterized by the input mechanism that

is relevant to the integration effort. Tools that accept input through the use of a graphical

user interface (GUI) may be integrated using this methodology, but the methodology does

not specifically address concerns that may arise when integrating a tool with a GUI. For

instance, the desire to create a seamlessly integrated system, with the appearance of one

tool is not addressed with respect to a tool with a GUI since that deals with presentation

32

Table 2 Functional Dimensions for a Single of Tool
Input Characteristics

Standard Input
File
Command Line Parameters
Message Passing

Output Characteristics
Standard Output
File
Message Passing
Built-in Output

Tool Extendability
Source Code available
Tool Provides Extension
Both
Neither

integration. If the tool has a GUI but also accepts input from another source, that is how

it should be characterized. There are four alternatives for the input dimension of a tool,

as follows.

• Standard Input (stdin): Stdin is the default input mechanism for many applications

and supports operating system redirection. In command line applications, stdin

refers to what is entered from the keyboard after the tool begins to execute.

• File: The data needed by the tool is held in a file. The tool knows the format of

the file and uses it for the data requirements. The path and name of the file may

be stored internal to the tool or may be supplied by the user at run-time. For the

purposes of this research, any persistent data source is termed a "file."

• Command line parameters: Command line parameters are parameters supplied when

the tool is executed. A tool could accept small amounts of data on the command

line, as in doquery -T<text>.

• Message Passing: If input from a tool is accomplished via message passing, it expects

data and possibly control messages in a certain format. These messages give the tool

the information it needs to perform the functions requested by the user. A tool

33

that uses messages as input makes it possible to monitor the flow of communication,

capturing key messages for use in controlling the system.

3.2.1.2 Output Characteristics. Output characteristics of a tool, the second

functional dimension, describe the methods a tool uses to record the results of the functions

it performs. Sometimes this "recording" is persistent, as in the case of a file, and other

times it is not, as in the case of standard output. The possibilities for output from a

tool are very similar to input, but there are some differences. For instance, the printer

and standard error are legitimate output destinations, but are not often considered input

sources. Similar to the input characteristics, a GUI is a valid output mechanism for a tool,

but is not considered in this methodology. There are four alternatives to this dimension.

• Standard Output (stdout): Stdout is the default output mechanism for many ap-

plications, much like stdin is the default input. Stdout refers to data or messages

printed to the screen. Additionally, stdout supports operating system redirection.

• File: The tool writes its output to a known file location and format. The location

of the file may be specified internal to the tool or it may be supplied by the user at

run-time.

• Message Passing: Using message passing as an output source involves the tool sending

formatted messages containing data to an external destination.

• Built-in Output: There are several output streams available to some tools through

the operating system or the chosen programming language, including the printer,

standard error (stderr) and a log file. The printer is usually reserved as an output

destination for formatted data. Stderr is the default output mechanism for errors.

It is used by both GUI and command line applications. The log file is an output

destination for messages the tool writes for the user's benefit. Additionally, some

tools have an internal format that is used to store data, and is not actually output,

such as the ASTs produced in Refine. These built-in output mechanisms may or may

not support operating system redirection.

34

3.2.1.3 Tool Extendability. The third functional dimension, the extend-

ability of a tool, is an important functional dimension in the design space. The ability to

extend the tool means the integrator is able to extend the tool beyond its current capabil-

ities. If the source code is available, routines may be written for data integration, control

integration, or both, and compiled into the tool so that they become part of the tool. Data

integration routines may be written to pre-process or post-process the data.

If the source code is not available but the tool is extendable by some other method,

the same kinds of routines may be written, as described previously, but they will not be

part of the compiled version of the tool. Tools that offer this sort of extendability often

accomplish it through a combination of allowing menus to be extended (or added) and

some sort of programming language. This method gives the integration expert the ability

to define a menu option for the desired functionality and write a script or program to

achieve the functionality. The last possibility is that the tool cannot be extended. There

are four alternatives to this dimension: the source code is available, the tool provides for

extension, both, or neither.

Table 3 Functional Dimensions for a Pair of Tools
Extendability Class

Neither Extendable
First Extendable
Second Extendable
Both Extendable

Data Compatibilty
Compatible
Not Compatible

3.2.2 Functional Dimensions for a Pair of Tools. The functional dimensions

for a pair of tools are necessary in order to characterize the interface between the tools.

The tool interface is central to the integration effort and must be fully understood in

order to proceed with the integration. When examining the tool pair to be integrated,

the extendability of the pair is important, as is the data compatibility between the tools.

From the values of these dimensions, the design rules can be applied and the structure

of the integrated system can be determined. The tool pair is considered as having a

35

"first" and "second" tool, indicating the direction of the flow of data. In the case where

tools communicate in two directions, i.e., the output of tool A is used by tool B and vice

versa, this methodology should be applied twice, once for each direction of data flow. The

following sections describe each dimension, the extendability class and data compatibility

of a tool pair, illustrated in Table 3.

3.2.2.1 Extendability Class. In examining a tool pair, the first functional

dimension involves determining the extendability of the tool pair. This dimension considers

all possible combinations of the Tool Extendability dimension for one tool, yielding 16

possibilities for the extendability of a tool pair. These possibilities can be grouped based

on similarities in how the integration is accomplished. For instance, there is not a difference

between the integration of a tool pair with the Extendability values Source Code and Tool

Provides and the integration of a tool pair with values Source Code and Source Code. Both

of the tool pairs have two extendable tools. Therefore, since the tool pairs fit into the

same equivalence class with respect to integration, the design space was reduced to reflect

the similarities of the tool pairs. Following this guideline, the four alternatives to this

dimension are produced: Neither Extendable, First Extendable, Second Extendable, and

Both Extendable. Table 4 illustrates how the possibilities for the individual tools combine

to determine the Extendability Class for the tool pair.

Table 4 Extendability Class
Tool 2

Tooll Neither Source Code Tool Provides Both

Neither Neither Second Second Second

Source Code First Both Both Both
Tool Provides First Both Both Both

Both First Both Both Both

3.2.2.2 Data Compatibility. The second functional dimension for a tool

pair, Data Compatibility, describes whether or not the data that the tools share is compat-

ible. Data can be compatible syntactically and/or informationally. It is assumed that the

data is compatible informationally, meaning the data required by one tool is represented in

some form by the other tool. Therefore, this dimension needs only to characterize whether

36

Table 5 Structural Dimensions
Communication Path
Shared Data

Data passed via stdin/stdout
Data passed via message passing
Data passed via middleware

Control Integration Implementation
Client-Server
Centralized
Distributed

Data Transformation
Transformation by output tool
Transformation by input tool
Transformation by both tools
Transformation by external source
No Transformation needed

or not the syntax of the data is compatible. If the data for both tools is in the same format,

the data is compatible sytactically. The compatibility of the data influences the structure

of the integrated system, specifically when data integration is performed. The alternatives

to this dimension are compatible and not compatible.

3.3 Structural Dimensions

The structural dimensions of the design space represent the outcome of the decisions

made as a result of analyzing the functional dimensions, determining the integration meth-

ods of the overall system. The structural dimensions are: Communication Path, Control

Integration Implementation, and Data Transformation, illustrated in Table 5.

3.3.1 Communication Path. The first structural dimension, the communication

path, describes the manner in which the data is exchanged by the tool pair being examined.

This dimension of the design space has four alternatives: shared data, data passed via

stdin/stdout, data passed via message passing and data passed by middleware.

• Shared Data: In an integrated system, several tools often use the same data, with

each tool reading from and/or writing to the data. There are several possible storage

mechanisms for shared data, including a file, common objects, or a database. The

37

key characteristic of shared data that distinguishes it from another type of data is

that it is persistent, allowing one tool or several tools to access the data. Since

multiple tools are working on the same data, problems with synchronous data access

could be encountered including resource locking, stale data, and timing issues. These

problems have to be addressed during the integration effort.

• Passed Data: Data that is needed by the second tool may be sent from the first tool

so that they may both use the data. The data passed is generally non-persistent,

relevant only during the execution of the tools using the data. Three of the alter-

natives of this dimension are special cases of passed data. The communication path

for the data can be through stdin/stdout, message passing, or via middleware. The

characteristics of stdin/stdout and message passing described in Sections 3.2.1.1 and

3.2.1.2 are valid in the case of passing data as well as input and output mechanisms

for the tool.

3.3.2 Control Integration Implementation. Control integration, the next struc-

tural dimension, provides a seamlessly integrated system by managing the control flow for

the entire system [9]. When several tools are integrated into one environment, one of the

goals of the integration effort is to develop an environment with a logical control flow,

based on the user's criteria, such as supporting a particular software process or methodol-

ogy. Control integration can provide the illusion of a single system consisting of multiple

components rather than a system that is an aggregate of several tools. Control integra-

tion implementation has three alternatives: client-server control, centralized control, and

distributed control.

• Client-Server Control: Client-server control involves one tool invoking another tool.

Based on the characteristics of the system, client-server control may involve executing

another tool or it may involve simply executing specific functions of another tool.

• Centralized Control: Centralized control is usually achieved through the use of one

driver program. This program executes the tools at the appropriate times. It may

also need to run any necessary data conversions and pass data and messages between

programs. (See Section 3.3.3.) The user sees one system, through the driver program.

38

• Distributed Control: Distributed control in an integrated system means control is

spread throughout the system, requiring several components of the system to handle

control. One approach to distributed control is to develop wrappers or individual

controllers for each tool to handle some aspect of control for the system. Each

wrapper would handle all communication from the other wrappers and invoke the

tool when necessary. Specifically, agents can be used as wrappers to handle tasks

such as communicating with other tools, running another tool, or running a data

conversion routine before invoking another tool. Agents are usually passive monitors

that only become active when a trigger event occurs, such as one tool completing its

write to a central data source [13]. The agent may then be programmed to notify

the other tool(s) in the system that they can use the data. Agents are often used as

a glue for integrated systems. The agents will actually act more like messengers in

that they can carry data or control information and wait for a reply before returning.

3.3.3 Data Transformation. The final structural dimension, data transformation,

addresses the amount of similarity of the two tools' data before integration. Two tools that

use the same data can be evaluated on the degree of transformation the data must undergo

before it can be used. This dimension has five alternatives: no data transformation needed,

data transformation performed by the output tool, data transformation performed by the

input tool, data transformation performed by both tools or data transformation performed

by an external source.

• No transformation needed: Data that does not need to be transformed is in the

proper format for both tools without any translation.

• Transformation performed by the output tool: As part of the integration effort, the

choice may be made to use a tool's input data format as the common format for

integration. In this case, any tool which outputs data must post-process this data,

converting it to the chosen format.

Transformation performed by the input tool: A tool using data from a common data

source may need to pre-process it to the format it expects before it is used.

39

•

•

Transformation performed by both tools: If two tools use the same data, it may be

the case that the data is stored in a standard format, causing both tools to transform

the data to and from the standard format.

Transformation performed by an external source: Tools may rely on an external

program to transform data into a format they can use. Transformations performed by

middleware could be accomplished with scripts or a program in a high-level language.

The functional and structural dimensions of the tool integration design space have

now been described in detail. These dimensions are used to describe the inputs and output

of the methodology: the tools which are to be integrated and the resulting integrated

system. The following section discusses the design rules of the design space, which provide

a mapping from the structural dimensions to the functional dimensions of the design space.

3.4 Design Rules

Design rules are meant to be guidelines used by the integrator to decide which method

of integration to choose. For the tool integration design space, there are a potential mul-

titude of design rules. The rules in the following sections were developed based on the

methods used to integrate tools, described in Chapter 2. There is not a quantitative scale

for the rules; instead, if a solution is preferred, the term "prefer" is used. Applying the

design rules is the second step of the process. The first step, determining the extend-

ability class for the pair of tools, is described in Section 3.2.2.1. That step examines the

extendability of the tool pair and places it in an extendability class.

The design rules use the values given to each of the functional dimensions, for both

a single tool and the tool pair, to determine the structural dimensions for the integration.

Design rules are applied in two phases. First, the communication path rules are applied,

considering the input and output mechanism of the tool interface, to determine the com-

munication path. The notation "X/Y" (for example, "stdout/stdin") is used to indicate

output of first tool/input of second tool and is referred to as the "data interface" between

the two tools. In the second phase, design rules are applied according to the extendability

class to determine the control integration implementation, the data interface, and the data

40

transformation. In some cases, the extendability class rules note exceptions to the tool

interface rules.

The next section describes the communication path rules, applicable to all extend-

ability classes. The following sections contain design rules for each extendability class, in

Table 3. Each of the sections that are specific to an extendability class include a diagram

that denotes the control and data flow through the resultant system. Control flow in the

system is indicated on the diagram by dashed lines, while data flow is indicated by solid

lines.

Table 6 Communication Path Design Rules

Rule
Number Tool Interface: Communication Path:

Tl file/(anything)
or (anything)/file

Shared Data

T2 stdout/stdin Stdin and Stdout

T3 Msg Passing/(anything)
or (anything)/Msg Passing

Message Passing

3.4.I Communication Path Design Rules. The communication path rules are

based upon the interface of the tool pair and provide guidance regardless of the extend-

ability class. In some cases, rules specific to the extendability class may contradict these

rules. These rules address the communication path (Table 5), one of the structural di-

mensions of the integrated system based on the tool values defined in Table 2. Table 6

summarizes these rules.

• Rule Tl: If file/(anything) or (anything)/file, the shared data communication path

should be used, since files are easily used as shared data. Files can be made to allow

access to both tools and can be manipulated into the desired format.

• Rule T2: If stdout/stdin, stdin and stdout should be used for the communication

path since they are operating system standard input and output mechanisms. Stdin

and stdout are inherently good communication mechanisms and this characteristic

should be taken advantage of when integrating tools that use them.

41

• Rule T3: If messages are used to pass data, message passing should be used as the

communication path. Tools that use messages to communicate can be linked to

another tool by using message passing to communicate between them.

3.4.2 Neither Extendable. The neither extendable class should use middleware

to handle the integration. Since the middleware is a centralized application, centralized

control should be implemented. The nature of the tools dictates the implementation chosen

for the central controller. If one of the tools is interactive and the other submits batch jobs,

it is desirable to gather all of the necessary information from the interactive tool and use

it to submit the batch jobs. Alternatively, if the input to the interactive tool can be stored

and supplied to the tool without user interaction, that may be preferred. These decisions

are based on the specific tools being integrated and their relationship to the process they

support. The key is that centralized control can be used to customize the default method

of input and output so that it is what the customer desires.

If one tool places its data in a central location and the other tool uses passed data,

the middleware should perform transformations on the data so that both tools use shared

data. The tool that depends on passed data cannot be changed, but the middleware can

reroute the data so that the input source or output destination for the tool using passed

data does not change. Since neither tool can be extended, the middleware must perform

any necessary data conversions between the tools. Therefore, the data transformation

value would be Transformation via Middleware.

The resulting system of a tool pair in this class would use middleware to execute

the first tool, execute any data conversion routines and then execute the second tool. In

this manner, data integration is achieved by executing the conversion routine and control

integration is executed by providing a method for the user to invoke one program that in

turn controls the other two tools, illustrated in Figure 2.

34.3 First Extend. Tool pairs that are in the extendability class First Extend

have a set of design rules that are specific to the class to guide the integration effort. These

42

USER

Drivp.r Program Y

Tool A

A
data
conversion

—r-

ToolB

Figure 2 Neither Tool Extendable

rules are primarily based on the data interface between the two tools and provide guidance

on the data compatibility of the integrated tools.

There are three general rules that are applied to this class, regardless of the tool

interface. The first rule addresses control integration implementation. Since only the first

tool of the pair is extended, the appropriate control integration implementation is client-

server control. Client-server control is used when one tool controls the other, or executes

functions in the other tool. Second, in this class, data transformation is performed by the

output tool since the first tool can be extended to properly format the data.

The third rule describes reasons to change the extendability class of the tool pair.

The integration of a tool pair in this extendability class may also be approached by fol-

lowing the rules for Neither Extendable. This solution may be desirable in the following

cases: if the data conversion involves two data formats which are completely dissimilar,

but could be transformed to a central format; if the extendability interface of the tool

does not provide the functionality needed to completely integrate the two tools; or if the

43

extendability interface of a tool is not well-documented or well supported, making a driver

program more maintainable. If this approach is chosen, the appropriate control integration

implementation should be used, as described in the design rules for Neither Extendable.

The remaining rules for this class are presented in Table 7 and are described in more

detail in Appendix D of this document. The letter/number combinations in the table refer

to the designator for the related transformation, described in detail below the table.

Table 7 Design Rules for First Extend

Stdin Message Passing File Command Line

Stdout Fl F5 F2 F2 or F3

Message Passing F2 F5 F2 F2 or F3

File F4 F5 F2 F2 or F3

Built-in Output F2 F5 F2 F2 or F3

• Transform Fl: Extend the first tool to convert the data to the proper format for the

second tool. Develop a driver program to pipe the two tools together, using stdout

and stdin to pass the data from the first tool to the second.

• Transform F2: Modify the first tool, if necessary, to write its data to a file. After

ensuring this file is in the proper format for the second tool, execute the second tool.

• Transform F3: If the command line input of the second tool expects actual data

on the command line, extend the first tool to build the command and execute the

second tool.

• Transform F4: Extend the first tool to format the data properly for the second tool

and build the command line for the execution of the second tool. Redirect the input

from the file to the second tool as part of the command.

• Transform F5: Extend the first tool to gather all of its output data, ensure it's in the

proper format for the second tool, and then execute the second tool. Pass messages

to the tool from the data gathered from the first tool.

Data integration for a pair of tools in this class is accomplished by writing a data

conversion routine to change the format of the data, location of the data, or both. Data

integration is handled by a conversion routine executed by the tool that is extended. The

44

control integration is also achieved by the extended tool executing the tools in the proper

order. The resultant architecture of the integrated system, illustrated in Figure 3, is

straightforward.

USER

Figure 3 First Tool Extendable

3.44 Second Extend. The extendability class Second Extend also has a set

of design rules that are specific to the class to guide the integration effort. In general,

integration efforts in this solution class should use client-server control. The reasoning

is similar to that given for First Extend; only one tool is extended, so that tool will be

responsible for controlling the other tool and that meets the description of client-server

control. For tool pairs in this class, data transformation is performed by the input tool

since the second tool can be extended to properly format the data. Also, for the same

reasons expressed in First Extend, it may be desirable to change the method of integration

to follow the rules for the Neither Extendable class.

The remaining rules for this class are presented in Table 8 and are described in more

detail in Appendix D of this document. The letter/number combinations in the table

reference transforms, described below the table.

• Transform SI: Extend the second tool to convert the data to the proper format from

the first tool. Develop a driver program to pipe the two tools together, using stdout

and stdin to pass the data from the first tool to the second.

45

Table 8 Design Rules for Second Extend

Stdin Message Passing File Command Line

Stdout SI S2 S3 S3 or S4

Message Passing S3 S2 S3 S3 or S4

File S3 S2 S3 S3 or S4

Built-in Output S3 S2 S3 S3 or S4

• Transform S2: Extend the second tool to gather all of the output from the first

tool. Perform any necessary data conversion and then execute the second tool. Pass

messages to the tool from the data gathered from the first tool.

• Transform S3: Extend the second tool to execute the first tool, save the data in a

file, and perform any necessary data conversions. Use the data as input to the second

tool.

• Transform S4: If the command line input of the second tool expects actual data on

the command line, extend it to execute the first tool, build the command and execute

the appropriate functions of the second tool.

In the resulting system, the second tool will execute the first tool when it is executed,

perform any changes to the data that are necessary, and finally execute the functionality

of the second tool that is desired. Data integration is handled by a conversion routine

executed by the tool that is extended. The control integration is also achieved by the

extended tool executing the tools in the proper order. Since extending the second tool is

similar to extending the first tool, it is not illustrated.

3.4.5 Both Extend. Even though it is possible to extend both tools in this pair, it

is preferred to choose one to extend, based on its control and data characteristics. Since it

does not matter which tool is chosen, the tool that most lends itself to extension should be

chosen. Extending two tools complicates the initial development as well as the maintenance

of the system by increasing the complexity of the system. However, if one tool lends itself

to data integration, while the other lends itself to control integration, both tools may be

extended. If both tools have a GUI, the integrator should develop a driver program that

will give a unified feeling to the system. In this case, centralized control is used. By

46

Tool A

y V

data
conversion

USER

ToolB

data
file

Figure 4 Both Tools Extendable

choosing one tool for extension, the design rules for First Extend or Second Extend are

applicable.

If the decision is made to extend both tools, distributed control should be imple-

mented. Using distributed control allows each tool to initiate functions in the other tool

and retrieve the results, creating a distributed environment in the system. There are sev-

eral possible methods for handling data and control integration for the tool pair. One tool

may handle data integration while the other tool handles control integration. Alterna-

tively, both tools could be extended to handle data integration, while only one implements

control integration. Data integration may involve each tool pre- or post-processing the

data. Additionally, a message passing scheme may need to be established to ensure the

data is not in use by both tools simultaneously. For control integration, it is usually best

to extend the first tool in the sequence to call the second tool, allowing the user to think

logically about the progression of the integrated system. However, in a case where the first

tool in the sequence does not lend itself to control integration, the second tool may also be

used for that aspect of integration. An example of the resultant architecture of extending

one tool for data and one for control is illustrated in Figure 4.

47

3.5 Two-Way Communication

In some cases, the tool pair being integrated may need to have two-way communica-

tion, that is, communication from each tool to the other tool. In this case, tool integration

should be approached, using this methodology, as if the tools are two pairs of tools, one

with communication in one direction and one with communication in the other direction.

By approaching the integration in this manner, the integration is broken down into two

smaller pieces and the methodology presented in this chapter may be used to guide the

integration. As the methodology is applied, it is possible that it will recommend extending

one tool for each integration, causing both tools to be extended for the overall integration.

If this is the case, the rules for Both Extend should be examined and, if possible, only

one tool should be extended. Otherwise, the methodology should be followed in the same

manner as integrating a tool pair with one-way communication.

3.6 Summary

This chapter provides an overview of the methodology developed as part of this

research effort. Two concepts were combined to develop this methodology: the concept

of a design space, composed of functional dimensions, structural dimensions, and design

rules, and the concept of integration classes. The step-by-step approach described here is

illustrated in the next chapter through the application of the methodology to integrations

involving .AFJTtool.

48

IV. Application of Methodology to AFYItool

The integration of tools can be accomplished in several ways, some of which were described

in previous chapters. AFITtool was integrated with three other tools: a parser for archi-

tectural specifications written in Acme [12], Rational Rose 98, a CASE tool for software

development [21], and daVinci, a graph layout tool [10].

The integration of AFITtool was accomplished using two types of integration from

Wasserman's model, namely control and data integration. Platform integration is ignored

since all of the tools reside on the Unix platform, making platform integration unnecessary.

Presentation integration is considered in the criteria for the tools to be integrated, by

considering the interface to the tools. However, it is not the primary concern for this

integration effort; functionality of the resulting toolset is the primary concern. Process

integration, how the tools fit into the software process, is another type of integration that

is considered in the selection of tools to integrate and is not used during the integration

effort. The next sections contain detailed descriptions of the integrations implemented

between AFITtool and the tools listed above. The final section of this chapter describes

how the methodology described in the previous chapter meets the requirements of control

and data integration, as developed by Thomas and Nejmeh.

4-1 Integration of AFITtool

To solve the problem described in Chapter 1, AFITtool was integrated with Rose,

the Acme parser, and daVinci. Each tool chosen met all of the criteria for tool integration

and addressed at least one shortcoming of AFITtool, described in Chapter 2. All three

tools improved the user's ability to analyze the model by offering different views of it. In

addition, the integration with Rose offers another method of inputting domain models,

with an interface that is more user friendly than the current AFITtool interface.

This integrated system is illustrated in Figure 5. Rose is used to develop the informal

model of the software system, including class specifications and state diagrams. The user

is able to define other diagrams in Rose that may help with general understanding, but

these are not used by AFITtool. Rose provides the user the capability of entering textual

49

Rose

Formal
Model

Acme
parser

semi-formal object model

Rose
script

LaTeX file

/ Rose \,
I script I LaTeX file

Acme file

AFITtool /-"^-\
Event Flow
Information

(dorn tree I

-♦•[dom2acme)

Process
Information

dom2dav

daVinci file

daVinci

Figure 5 Overall System Integration Concept

information which can be used for formal constraints and this information is used in the

integration. Through the use of a Rose script, the information needed to populate the

domain model in AFITtool is gathered from the Rose diagrams and output to a BTfiX file

that can be parsed into AFITtool using its current capabilities.

Rose can also be used to develop object model and state diagrams of a domain

from an existing file. Through the use of another Rose script, a ETFJX file in the format

AFITtool expects can be used as input to create Rose diagrams. This capability can be

used to create object and state diagrams from existing domains, with little help from the

user.

Acme extends the capability of AFITtool by allowing the user to generate an ar-

chitecture specification for the system. The class and event flow information, stored in

the domain model, are used to generate an architecture based on the hierarchical object

model.

50

AFITtool was integrated with daVinci in order to display the process diagram of

the currently loaded domain model. Processes are represented by circles and data flows

are represented by lines going from one circle to another, with the name(s) of the data

element(s) on the line. The process diagram generated from the model can assist the user

in visually checking the correctness of the data flow model.

4.2 Integration of AFITtool and the Acme parser

The Acme parser is a batch tool with a command line interface. By default, the

parser uses standard in (stdin) and standard out (stdout) for input and output. The source

code for the parser is available, allowing it to be extended for control or data integration

purposes. By gathering information from the domain model in AFITtool, Acme code is

generated representing the object structural model. The Acme file is then sent to the

Acme parser for syntax checking and re-formatting. The Acme parser generates output

that is re-formatted according to the approved format of an Acme file. This integration

was accomplished by following the methodology presented in Chapter 3. The following

paragraphs describe the steps taken.

4.2.1 Representing the Domain Model in Acme. The Acme language provides a

method of representing the architecture of a system. The domain model stored in AFITtool

can be represented in Acme in a hierarchical fashion. For instance, the relationships

between classes that are stored in the domain AST, such as aggregation and inheritance,

can be represented in the Acme language. If there is only one level in the domain, such as

a single primitive component, that can also be represented in Acme.

In this integration, the event flows were chosen to represent the interaction between

classes in the domain. The state transition table, part of the ETpjX file used as input

to AFITtool, contains the information needed for generating the Acme file of event flows.

Table 9 is an example of a state transition table for the SubCounter class. Figure 6 contains

the output generated from Acme as well as the corresponding event flow diagram. The

diagram itself is not created by the tool, but could be drawn by the user to check the

51

Table 9 State Transition r. \b\e for SnbCounter Class
Current Event Guard Next Action Send

CountingUp ReSet CountingUp ResetCount

CountingUp CSet CountingUp Set Count

CountingDown CSet CountingDown SetCount

CountingDown ReSet CountingDown ResetCount

CountingUp SetMode newmode = down CountingDown SetModeDown

CountingUp Count thecount < limit CountingUp IncrementCount

CountingUp Count thecount = limit CountingUp Alarm

CountingDown SetMode newmode = up CountingUp SetModeUp

CountingDown Count thecount > 0 CountingDown Decrement

CountingDown Count thecount = 0 CountingDown Alarm

NotReset Count thecount > 0 NotReset Decrement

NotReset Reset Reset Notice

Reset Count thecount > 0 Reset Decrement

validity of the system. An example of the Acme representation of an aggregate class is in

Appendix E of this document.

The components of the architecture model are the classes of the object model, while

the connectors are the event flows to and from these classes. The end result is an architec-

tural description of an event flow diagram. A distinction is made between aggregate and

primitive classes in several ways. An aggregate class is of type AggregateClass in Acme,

and is developed with a Representation containing the necessary information on the classes

that make up the aggregate. These classes can be either primitive or aggregate classes,

and the architectural description represents multiple level aggregates if they exist in the

domain.

Primitive classes, those classes that are not composed of other classes, are represented

architecturally with ports, connectors, and attachments between the connectors and the

ports. They are of type PrimitiveClass. Each port is assigned to a component and is of

type SendPort, if the event is sent to a destination outside the class, or ReceivePort, if

the event is received from outside the class. Each event is assigned a connector, of type

EventFlow, as a path for the event to travel along. The connector has a destination and a

source, each of which are attached to a port.

The interactions between classes, based on event flows in the domain model, are

represented by placing connectors between the classes. Each class must have ports for

52

Pnnnt ^

SubCounter

Nntire „_
SetMnrfe

CSfit
PpSet *-

System c3 : ObjectEvent - {

Component Counter: PrimitiveClass;

Component SubCounter: PrimitiveClass - {

Port Alarm: SendPort;

Port CSet: ReceivePort;

Port Count: ReceivePort;

Port Notice: SendPort;

Port ReSet: ReceivePort;

Port SetMode: ReceivePort;

};
Connector AlarmEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

>;
Connector CSetEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

>;
Connector CountEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

};
Connector NoticeEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

};
Connector ReSetEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

>;
Connector SetModeEvent: EventFlow - {

Role sink: Destination;

Role source: Source;

};
Attachments {

SubCounter.Notice to NoticeEvent.source;

SubCounter.Alarm to AlarmEvent.source;

SubCounter.Count to CountEvent.sink;

SubCounter.SetMode to SetModeEvent.sink;

SubCounter.CSet to CSetEvent.sink;

SubCounter.ReSet to ReSetEvent.sink;

};

Figure 6 Output of the Acme parser

53

each event type sent or received. Attachments are made between each event flow connec-

tor and the correct port, based on which class sends and which class receives the event

type. Through this mapping, the event flows in the system are represented by connectors

between classes and ports on classes. In Figure 6, one example of an event type is the

connector AlarmEvent. The port Notice has both a role named sink and a role named

source, identifying each end of the connector.

Each class in the object model is represented by a component in the architecture.

Primitive classes, of type PrimitiveClass, are represented in Acme by defining the event

types valid for that class. Each class has a port for each event type sent or received. If

the class is the originator of the event type, the port is of type SendPort, and if the event

type is received from outside of the class the port is of type ReceivePort. Notice that in

Figure 6 the component SubCounter has a port for each event type in the class. Connectors

are attached to ports of components, representing an event flow between the components.

Each event type is assigned a connector, of type EventFlow, as a path for the event to

travel along. The connector has a destination connected to a receive port and a source

connected to a send port. When the domain model is processed, connectors are made for

each event type for each class. Attachments are detected between two classes if two classes

in the domain use the same name for an event type. This name matching provides the

sender and receiver of the event type, allowing each Acme connector to be attached to one

SendPort in the sending class and one ReceivePort in the receiving class. In some domains,

however, both the sender and receiver may not be present, leaving a dangling event flow.

Each aggregate class is of type AggregateClass in Acme, and is developed with a

Representation containing the necessary information on the classes that make up the ag-

gregate. These classes can be either primitive or aggregate classes, and the architectural

description can represent multiple level aggregates, if applicable. Aggregate classes also

have ports, connectors, and attachments for the events flowing at the level of the aggre-

gate class. For each primitive class that is part of an aggregate class, the information

described above is included. For each aggregate class that is part of another aggregate

class, information is included on each component of the aggregate.

54

The resulting architecture description can be used to visually check the validity

of the event flows of the system, ensuring every event type has a sending class and a

receiving class, denoted in the Attachments section of the Acme code. If the sender or

receiver class of an event type is not in the domain, the user can enter that information

into AFITtool and generate the Acme code again. The parsed Acme code can also be

annotated, using a text editor, for use in other tools, such as Rapide and Wright. Rapide

can be used to simulate the system, while Wright can be used to translate the code into

other architecture languages. Information on how to do this can be found in the Wright

and Rapide documentation [18] [17].

4.2.2 Application of the Methodology. As described in the methodology, the

first step is to determine the input, output, and extendability of each tool. The input

and output values for the Acme parser are Stdin and Stdout. For AFITtool, the input

and output values are File and Built-in Output. The extendability value for both tools

is Source Code Available. The next step is to determine the extendability class and data

compatibility for the tool pair. In this case, the extendability class is Both Extendable and

the data compatibility value is Not Compatible since the data in AFITtool is not in the

correct format for the Acme parser.

From these values along the functional dimensions, the design rules are applied to

determine the values for the structural dimensions. Since the Acme parser was extended

to take file input, tool interface rule Tl applies, and Shared Data is determined as the

value for the communication path. By applying the design rules for Both Extend, it was

determined that only one tool should be extended, even though it is possible to extend

both tools. The decision was made, however, to perform minor extensions to the Acme

parser to allow file input and output. This decision follows the spirit of the design rule,

and allows a cleaner interface between the two tools. Therefore, the extendability class

is changed to First Extend, since AFITtool contains the information needed by the Acme

parser.

Next, the rules for First Extend were applied since the majority of the extension

was performed to AFITtool. Following the guidance on control integration, the value for

55

AFITtwl
File Input
Built-in Output
Source Code

Acme Parser^
Stdin
Stdout
Source Code

Design
Rules

T1

Both Extend Rule:
Extend One,
so First Extend

First Extend Ru\&.
F2

Resulting System
■ Shared Data

Client-Server
Transformation by Output

Tool Pair
* Both Tools Extendable

Not Compatible

Figure 7 .d-FJTtool/Acme Parser Integration

the control integration dimension was determined to be Client-Server. Transform F2 was

used, directing that the built-in output of AFITiool be captured in a file in the proper

format for the Acme parser. By applying this rule, the value of the structural dimension

data transformation is Transformation by Output Tool. The values for the functional

and structural dimensions of this integration are summarized in Figure 7. The next two

subsections describe in detail how the integration was implemented, based on the decisions

made by following the methodology.

4.2.3 Data Integration. Data integration between .A.F7Ttool and the Acme parser

was accomplished by extending both tools. The Acme parser was extended to take input

and output file names on the command line. Both the input file name and output file name

are provided by the user. AFITtool was extended to generate an Acme file, in the syntax

expected by the parser. Refine code was written to read the domain Abstract Syntax Tree

(AST) in AFITiool and write an output file containing the architectural information for

the Acme source file. To generate this file, each class in the domain is examined. First,

aggregate classes are examined, generating event types for any events sent or received at

the aggregate level. Next, each primitive class that is part of an aggregate is examined and

Acme code is generated to represent the aggregate as a composition of its primitive classes.

Each primitive class is examined to determine any event flows sent or received by the class,

and an Acme connection is generated to represent the event type. Finally, primitive classes

that are not part of an aggregate class are examined and processed, generating event flows

56

for each class. In addition to the event flows, each class has a port for each event type and

an attachment between each event flow and its respective port.

4.2.4 Control Integration. Control integration of the Acme parser and AFITtool

was accomplished by extending AFITtool to generate the Acme file and to invoke the Acme

parser. The extensions to -AFITtool were accomplished through the use of Refine, both

the language and the environment of AFITtool. The user is able to select the generation

of Acme code from the domain menu of AFITtool. When this option is selected, the data

transformation program that was written to gather information from the domain model

and output it in Acme is invoked. The program also calls the Acme parser, passing the

input and output file names received from the user. The Acme parser then executes and

prints an error code in the AFITtool window if it detects an error or a "TRUE" if it

achieves successful completion. After the parser executes, control is returned to AFITtool

and the user may choose another option from the menu. If the parser detects an error, it

is reported to the user, allowing the revision of the domain model. Any errors that are

reported by the parser are not handled by AFITtool in any way. After any revisions, the

Acme code must be generated and parsed again.

4.3 Integration of Rational Rose 98 and AFITtool

Rational Rose 98 is a CASE tool, designed to be used throughout the life cycle of a

software system. Rose, however, uses semi-formal methods to specify the systems, while

AFITtool uses formal methods, ensuring the final system is correct with respect to the

requirements specification. By combining these two tools, the user is able to informally

specify the domain of the software system and to embed formal constraints in Rose's

textual fields, send the information to AFITtool, and use AFITtooYs formal capabilities

to complete the design transformations and code development of the specification. The

integration of Rose and AFITtool was separated into two integrations, one from Rose to

AFITtool and the second from AFITtool to Rose. The next sections describe the first

integration.

57

4-3.1 Representing Rose drawings in the Domain Model. The first step in allowing

Rose drawings as input to AFITtool is to specify the system, through drawings, in a

manner that AFITtool understands. The current input to AFITtool is a Z specification in

WFi^i format. This format is difficult to write and often difficult for the user to understand.

Although the proper use of a formal language guarantees the code produced will correctly

represent the specification, if the specification is incorrect the system will be incorrect.

The use of a semi-formal tool increases the likelihood of a correct specification because

the tool makes it easier for the user to understand what he or she has specified. Rose

specifications are essentially a series of drawings, meaning the user has to understand the

syntax of the drawings, a task that is often easier than understanding a formal language

such as Z. Because the user understands the drawings, sometimes he or she is able to detect

flaws they would not detect by looking at the WF$£ Z specification. By combining Rose

and AFITtool, the user is able to use semi-formal methods to specify the domain of the

software system, send the information to AFITtool, and use AFITtooVs formal capabilities

to complete the design transformations and code development of the specification.

The Rose drawings that are used to develop the AFITtool domain model are class

diagrams and state models. The other diagrams the user develops in Rose are not consid-

ered in the transformation from Rose to AFITtool. This transformation process expects

the diagrams to be in a specified format, compatible with AFITtool. For example, some

symbols need to be specified in I^TßK Z in order for the transformation to work correctly.

The mapping from Rose to AFITtool is described in detail in Appendix C, including the

proper format for each field in the Rose diagram.

4-3.2 Application of the Methodology. The first step in integrating the two tools

is to determine the input, output and extendability values for each of the tools. AFITtool

uses File input and produces Built-in Output. Rose uses File input and output. Both

tools are extendable, Rose via Tool Provides Extendability and AFITtool through Source

Code available. Next, the extendability class is determined from the combination of the

two tools. In this case, the extendability class is Both Extendable. The value of the data

58

Design
Rules

File
File
Tool Provides'

AFITtWl
File Input
Built-in Output
Source Code

T1

Both Extend Rule:
Extend One,
so First Extend

First Extend'Rule:
F2

Resulting System
■ Shared Data

Client-Server
Transformation by Output

Tool Pair
' Both Tools Extendable

Not Compatible

Figure 8 Rose/^F/Ttool Integration

compatibility functional dimension is Not Compatible since the data in Rose is not in the

format required by AFITtool.

The third step is to apply the design rules, supplying the functional dimensions as

input. First, communication path rule Tl was applied, since the Rose output mechanism

is File, making the communication path value Shared Data. Next, design rules for Both

Extend were applied, recommending that only one tool be extended. In this case, the

decision was made to extend AFITtool for control purposes only and Rose for data pur-

poses, causing the extendability class to change to First Extend. The decision to extend

AFITtool for control was made because AFITtooYs interface does not lend itself to be-

ing controlled by another tool. Based on the design rules for First Extend, the value for

control integration implementation was determined to be Client-Server and the value of

data transformation is Transformation by Output Tool. Transform F2 was used, since both

tools use files. The values for the functional and structural dimensions are summarized in

Figure 8. The next two sections describe in detail how the integration was implemented,

based on the decisions made by following the methodology.

4.3.3 Data Integration. Data integration of Rose and AFITtool was accomplished

by using the Rose Extensibility Interface, the provided method for extending Rose [29].

Included in the interface is a scripting language, Summit BasicScript, very similar to Visual

Basic. Most of the information captured in Rose drawings is accessible from within scripts.

The information gathered from the class specifications is written to separate WT$L files,

one for each class, named classname.tex, where classname is the corresponding class name.

59

These files are automatically generated by the Rose script when the option for "Output

Model to LaTeX" is chosen from the Tools | AFITtool menu in Rose. These files are in

the proper format for AFITtool and can be parsed into an AFITtool domain by the user.

AFITtool requires Z Schemas for each section of the definition of a domain. An ex-

ample of the template used for the file parsed by AFITtool can be found in Appendix A of

this document. Each section of the file gives an informal definition and a formal definition

of the current "piece" of the model. The file is broken into three main parts: Structural,

Functional and Dynamic Models. The Structural Object Model includes an informal de-

scription of the object, including the name, date, and author, as well as its attributes and

types. The formal section of the Structural Model consists of one or two Z schemas. The

first is required, as it contains the attributes and any class constraints that must hold at

all times. The second schema is an initialization schema. It may be omitted if the class

does not have initialization values for its attributes. Associations detected in the Rose

diagram are represented in the Structural Model of the class. If the diagram contains an

associative object, it is represented in Z WI$£ by a separate class schema. The cardinality

of associations in the model is not explicitly represented in the Structural Model, but is

used to determine the proper function.

The Functional Model of the object includes a Z schema for each operation defined in

the class. The name of the class must be included, either as Read-only (S) or as Read-Write

(A). For files automatically produced by Rose, the class is always included as Read-Write.

Input parameters to the operation are decorated with a "?" and output parameters are

decorated with a "!". Local variables included in the operation exist only in the scope of

the operation and are not decorated.

The final section of the file is the Dynamic Model. This model includes the state

model for the object class. A Z schema is defined for each state and each event in the

model. Each state includes the class schema, through the schema inclusion mechanism of

Z. Each event may include input parameters and constraints on those parameters. The

dynamic model is summarized in the state transition table, showing the complete set of

transitions for any object. The current state, next state, trigger event, guard condition(s),

action(s), and send events are included in the table.

60

4-3.4 Control Integration. Since both tools are extendable, a decision was nec-

essary to complete the integration of Rose and AFITtool. The domain tool menu of

AFITtool was extended to include an option to create a domain model in Rose. When

the user chooses this option, Rose is started and both Rose and AFITtool will execute

simultaneously. The user can then develop a domain model in Rose, including classes and

state models. After outputting the domain to a I^TjjjX file by choosing the option "Output

Model to LaTeX" from the Tools | AFITtool menu in Rose, the user can return to the

AFITtool window and load the domain, with Rose still running. If any corrections need

to be made, the user is able to return to the Rose window, make the corrections, and

generate the WFj£& file(s). Then the user may return to AFITtool and load the class(es)

again. Each time changes are made, this process is reproduced to pass the changes from

Rose to AFITtool. This allows the user to participate in an iterative process to develop

the domain, developing the informal and formal models of the domain through a series of

corrections.

4-4 Integration of AFITtool and Rational Rose 98

In some cases, it is desirable to use the same input source for more than one tool. Al-

though this possibility is not explicitly discussed in the methodology, it was demonstrated

as part of this research. By enabling Rose to use Z Wl^fi. files to create Rose diagrams,

both Rose and AFITtool can use the same input. Although AFITtool does not have to be

executed in order for Rose to read the I^TßX file, the file must be parsable by AFITtool.

4-4-1 Representing the Domain Model in Rose drawings. The I^TßX file is ex-

pected to be in the format of the template in Appendix A. The order of the file is important;

if the file is not in the order expected by the Rose script, the proper diagrams will not be

created. The Rose script expects each file to contain only one class, and recognizes a class,

an initialization schema, zero, one or more events, zero, one or more states, and a state

transition table. Additionally, if the file represents an aggregate class, the file may contain

zero, one or more associations and/or associative classes. In the case of a domain that con-

tains an aggregate class, it is necessary to first parse in the primitive classes and then the

61

aggregate class. If the primitive classes are not in place before the aggregate class is read,

the diagrams will not be created correctly. Just as the cardinality of associations is not

captured by the Rose to AFITtool data conversion, the cardinality is also not generated

from the domain model to the Rose diagrams.

4-4-2 Application of the Methodology. Although the methodology does not specif-

ically discuss extending a tool to use the input generally used by another tool, the method-

ology can be applied by considering an integration between the tool that created the input,

for example, the IM^jX file, and the tool that will use the same input file. In this demon-

stration, the tool that created the file, which does not need to be known, is the "first tool"

and Rose is the "second tool." First, the functional dimensions for the first tool are de-

termined. The input mechanism is not known, the output of the first tool is File, and the

extendability is Neither. For this demonstration, the values for the functional dimensions

of Rose are the same as for the first integration. For the tool pair, the extendability class

is First Extend and the data compatibility value is Not Compatible since the I^TfijX file is

not in the proper format for Rose.

The next step is to apply the design rules, supplying the functional dimensions as

input. Communication path rule Tl was applied again, since the "phantom" tool output

mechanism in this case is the WTQK. File and the Rose input mechanism is File, making

the communication path value Shared Data. Finally, design rules for Second Extend were

applied to determine the data transformation and control integration implementation.

The rules for Second Extend recommend the control integration implementation be Client-

Server and the data transformation be Transformation by Input Tool. Transform S3 was

used, since both tools use files, instructing that the second tool save the data from the first

tool in a file and use it as input. The values for the functional and structural dimensions

are summarized in Figure 9. The next two sections describe in detail how the integration

was implemented, based on the decisions made by following the methodology.

4-4-2.1 Data Integration. In order to enable Rose to create diagrams for

existing BTßX models, data integration was accomplished by creating a Rose script. The

Rose script is used to extend Rose by translating the data used by AFITtool into a format

62

"Phantom" Tool
Unknown Input
File Output
Neither

Rose
File
File
Tool Provides!

Design
Rules

T1

Second Extend Rules'
S3

Resulting System
■ Shared Data

Client-Server
Transformation by Input

Tool Pair
" Second Tool Extendable

Not Compatible

Figure 9 .AFiTtool/Rose Integration

it can use. In this case, the script reads the MpX file and creates the Rose model simulta-

neously. Since the MpJX file used by Rose to create the domain diagrams is the same one

that is used by AFITtool, it is suggested that the file be parsed into AFITiool before it is

parsed into Rose, to detect any errors in the I#IEX file syntax. After the file is parsed into

Rose, semantic errors in the file can be detected through the inspection of the diagrams.

The diagrams can then be changed and the Wlpfi file can be re-created through the use

of the script discussed in previous sections. In this manner, an iterative process can be

achieved in which the domain is perfected.

44.2.2 Control Integration. Control integration in this demonstration is

accomplished through the extension of the Rose menu. In order to use the I#IpJX file as

input, the user chooses the option "Read in LaTeX file" from the Tools | AFITtool menu

in Rose. This selection causes a dialog box to appear, asking the user for a .tex filename.

The default directory is the one from which Rose was started. The .tex file specified is

parsed by Rose and the appropriate diagrams are created.

4.5 Integration of AFITtool and daVinci

The third tool that was integrated with AFITtool is daVinci, a graph layout tool

developed at the University of Bremen, Germany. It was integrated with AFITtool to

provide a visualization of the data flows in the domain model. After a domain is loaded

into AFITtool, the user may choose to display the data flow diagram in daVinci. Each

process is represented by a circle, and each data flow between processes is represented by

63

an arrow from one circle to another, with the name of the data displayed on the line. The

user is able to visually check the data flow diagram and spot errors in the model which

can then be corrected in the input file, or the Rose model if that mechanism was used, and

re-loaded into AFITtool.

4.5.1 Application of the Methodology. Applying the methodology in this integra-

tion indicates that the values for the functional dimensions are as follows. The input and

output of daVinci are File, while the input and output of AFITtool are File and Built-in

Output. The extendability of AFITtool is Source Code Available and for daVinci is Tool

Provides Extendability, since daVinci allows an RPC interface to be established. Prom

these values, the extendability class for this tool pair is Both. The data compatibility

value is Not Compatible since the information in AFITtool is not in the right format for

daVinci.

The next step in the methodology is to apply the communication path rules. The

communication path was determined to be Shared Data, by applying rule Tl, since daVinci

takes a file as input. Next, the design rules for Both Extend are applied and it is deter-

mined that only one tool should be extended. The decision was made to extend only

AFITtool, and use daVinci's capability to take an initialization file. The extendability

class, therefore, changed to First Extend. By applying the design rules for First Extend,

the control integration implementation was determined to be Client-Server and the value

of data transformation is Transformation by Output Tool. Transform F2 applies to this

integration and instructs that the built-in output of ^.FJTtool be captured in a file, in the

proper format for daVinci. The values for the functional and structural dimensions are

summarized in Figure 10.

4.5.2 Data Integration. In order to integrate AFITtool with daVinci, AFITtool

was extended to output a file containing information for daVinci to build a data flow

diagram. Since daVinci is a graph layout toolkit, it does not require any information on

placement of the nodes or edges. In addition, daVinci makes provision for extension with its

Application Programmer Interface (API) commands. There are two options for using these

commands: write an interactive driver program which creates a separate daVinci process

64

Design
AFITtool Rules

File Input
Built-in Output _ ^,. x.
Source Code , _—"^ 4 Client-Server

Resulting System
T1 : ► Shared Data

Both Extend Rule: /^Transformation by Output
. ^ Extend One,

qaVlHCI _^-JT so First Extend
File
File
Tool Provides\ \ Rref Extend Rules

Tool Pair
Both Tools Extendable
Not Compatible

F2

Figure 10 .AFJTtool/daVinci Integration

or create a file that consists of daVinci API commands and include the file name on the

command line, i.e. daVinci -init command.f ile. With the first option, commands are

sent via a pipe to daVinci and responses are received by the program. The program,

therefore, is responsible for handling the communication flow between the program and

daVinci. The program must handle all possible responses from daVinci. This is the desired

approach for interactive applications. The second approach was chosen for this integration

effort, though, since daVinci is being used to display the data flow diagram and does not

need to allow changes.

Data integration of daVinci and AFITtool was accomplished by extending AFITtool

to create a file with the necessary graph commands in it. This file is created in several steps,

the first of which is to examine all classes in the domain model, focusing on the processes

in each class. Information on the processes is contained in the has-operations for each

aggregate and primitive class in the domain. Next, every possible pair of processes in each

class is examined to determine if the input parameter of one process is the output parameter

of another class. Processes are linked based on name matching of the parameters. Finally,

information for each process is written to the daVinci file. If a process shares data with

another process, i.e. two processes have a parameter by the same name, commands are

written to the daVinci file to create a node for each process and an edge between them

with the name of the parameter on it. If a process is determined to be self-contained, not

sharing data with another process, the daVinci command to create a node for the process

is written to the file. The file is named c/assname.daVinci, where classname is the name

of the class.

65

4-5.3 Control Integration. Control integration of AFITtool and daVinci was

accomplished by extending the AFITtool domain menu. The user executes daVinci by

choosing the daVinci option from the AFITtool domain menu. After the user chooses this

option, a separate data file is created for each class in the domain. Each data file, as

explained above, contains API commands in the proper syntax for daVinci to build the

requested graph, representing the data flow diagram for the class.

To draw the graph indicated by the saved file, daVinci is executed by AFITtool with

the init option activated and the filename specified, i.e. daVinci -init classname. daVinci.

This option causes daVinci to read the file and execute the API commands when daVinci

is started, drawing the data flow diagram. In this integration, the last command in the file

saves the graph as classname.gra.ph. . By saving the graph, the user is able to run daVinci

at a later time and open the graph without re-building it.

When daVinci is executed, separate daVinci windows, each with its own process

identifier, are opened for each class. Each daVinci window contains the specified data flow

diagram for a class. By starting a new process for each class, all of the data flow diagrams

in the domain are displayed simultaneously. This allows the user to look at the process

diagrams while making changes to the domain model. The user is responsible for closing

the windows when they are no longer needed. If changes are made to the AFITtool domain

model, they will not be reflected in the graph file until it is rebuilt. To rebuild the graph

file, the user must select the daVinci option from the AFITtool menu again. Choosing

this option causes the daVinci files to be re-generated and the diagrams to be displayed,

allowing the user to repeat the process as necessary.

4.6 Validation of the Integration Methodology

This chapter has described in detail how the methodology developed as part of this

research was applied to the integrations accomplished with AFITtool. For each integration,

the steps taken to set up the integration and the actual methods used to accomplish data

and control integration, two classes in Wasserman's integration model, were described.

Thomas and Nejmeh identified five properties of data integration and two properties of

control integration in their examination of Wasserman's model, explained fully in Chap-

66

ter 2 [35]. This section explains how these properties relate to the methodology and the

integration demonstrations presented here.

1. Data Integration Properties

• Interoperability: Data interoperability between the tools is addressed by this

integration methodology by ensuring the data is in the correct location and

format for both tools. In some cases, getting the data to the right location

and format involves some sort of data transformation, while in other cases, the

tools agree on format and location before integration. In the case of writing a

separate driver program, data transformation is accomplished by a routine in

the program to write the data in the proper location and format for all tools.

When one or both tools are extended, the extensions must handle the necessary

data transformations.

• Nonredundancy: Nonredundancy is accomplished in this methodology by en-

suring that the tools use central data when possible. Central data, as described

earlier, can be in the form of common objects, shared files or a common database.

• Data consistency: The consistency of data is important when two tools use the

same data, as is the goal in tool integration. The methodology ensures the

data is consistent in two ways. First, data integration ensures only one tool is

writing to the data at any given time. Second, control integration accomplishes

intertool communication when data is shared, so that each tool reports when it

has completed its changes.

• Data exchange: Data exchange, succinctly, is the practice of two tools needing

to pass or share data. In tool integration, the tools must agree on semantics and

format for the data. The proposed methodology for data integration achieves

proper data exchange by ensuring that either the driver program, if no tools are

extended, or the tools themselves, if one or more tools are extended, perform

any necessary data transformations so the data meets the agreed upon format

and semantics.

67

• Synchronization: The property of synchronization is primarily concerned with

the consistency of nonpersistent data, requiring each tool to report any changes

made to the data to the other tool. Synchronization is accomplished in this

methodology by control integration, adding some sort of reporting scheme in

the driver program or to an extended tool.

2. Control Integration Properties

• Provision: In the proposed methodology, only tools that have semantic agree-

ment on data are integrated, having the effect of satisfying the provision prop-

erty of control integration. As provision requires that any tool integrated into

the environment is used, ensuring semantic compatibility meets this require-

ment. Although it is possible that the tool being integrated will make sense in

the environment yet not be used, that is not in the spirit of the methodology as

it is proposed.

• Use: Use is highly related to the provision property in that it is a measure of

the extent to which the tool is used in the integrated environment. Again, the

spirit of the methodology is that only useful, semantically compatible tools will

be integrated in the environment. The control integration guidelines ensure the

availability of the functionality provided by each tool, causing the requirements

of the use property to be met if the tools chosen for integration make sense

together.

AFITtool was integrated with three tools, the details of which were presented in this

chapter. The information given demonstrates how to apply the methodology as well as

how the methodology supports ideas presented by other researchers. The next chapter

summarizes this thesis effort.

68

V. Results, Conclusions and Recommendations

Although this research effort began with the primary objective of enhancing AFITtool to

reduce its shortcomings, it very quickly became an effort to develop a generic methodol-

ogy for integrating tools. The increased use of commercial off-the-shelf (COTS) software

and government off-the-shelf (GOTS) software has driven some companies and govern-

ment agencies to use several software tools to accomplish their mission. Using several

tools is often more difficult and confusing than using one, so some software developers

have attempted integrating these off-the-shelf tools to form a cohesive tool capable of

accomplishing the mission.

After a thorough search of the literature, it was determined that there is not a

generally accepted standard approach for integrating software tools. There are several

models that offer a picture of the resulting integrated system, and upon which integration

can be based, but there was not a step-by-step approach to use during integration. The

next section of this chapter summarizes the work accomplished during this research effort.

The following section analyzes the impact of one sample integration. The final section

discusses recommendations for future work, both for improving the methodology and for

improving AFITtool.

5.1 Results

The generic methodology developed during this research was partially based on the

concepts of two groups of researchers: environment integrators and software architects.

Anthony Wasserman's model for tool integration was used as a basis for the two types of

integration covered by the methodology [36]. The characteristics for each integration type,

developed by Thomas and Nejmeh, helped to further define the integration types [35]. Soft-

ware architecture played a large role in the development of a design space, complete with

structural and functional dimensions and design rules, concepts presented by Lane [25].

Wasserman's original model of integration has five classes of tool integration: plat-

form, presentation, data, control, and process integration [36]. For this research, only

data and control integration were considered due to the nature of the integration effort.

69

Data integration is concerned with ensuring data used in the integrated system is in the

proper form for any component that needs it. Control integration focuses on maintaining

necessary communication between tools after they are integrated. Since the primary goal

was to integrate AFITtool with tools that could improve its shortcomings, presentation,

platform and process integration were not directly addressed. Presentation integration

focuses on how the integrated system looks to the user. This was addressed in the criteria

for choosing tools to be integrated with AFITtool and did not need to be addressed sep-

arately. Platform integration was not considered directly because it was also addressed in

the tool criteria. One of the primary criteria was that all of the tools reside on the Unix

platform, making the need to address platform integration during the integration effort

unnecessary. Finally, the inherent structure of AFITtool establishes a software process,

making it unnecessary for the integration methodology to address process integration.

Both data and control integration were addressed in the design space defined for

software tool integration. Functional dimensions, structural dimensions, and design rules

were identified as part of the design space, following the description of a design space given

by Lane [25]. Lane's original concept was extended to include two sets of functional dimen-

sions, one set for a single tool and one set for a tool pair. The functional dimensions for a

single tool provide a method of characterizing each tool, while the functional dimensions for

the tool pair characterize the interface of the tools. The functional dimensions are applied

successively, first for each tool and then for the tool pair, in order to reduce the dimension-

ality of the resulting design space. Together, the two sets of functional dimensions fully

define a pair of tools to be integrated, while the structural dimensions define the resulting

integrated system. Design rules provide a mapping from the functional dimensions to the

structural dimensions for a given pair of tools.

The methodology developed as part of this research offers a step by step approach

to tool integration. The tool integrator must first determine that there is information

to be shared between the two tools. This information need not be in the same format,

but must be semantically meaningful to both tools. Next, the methodology assists the

integrator in classifying each tool in the pair with respect to its input mechanism, output

mechanism, and extendability. The tool pair is also characterized with respect to its

70

extendability class and data compatibility. From this tool classification, a mapping is

provided from the tool pair to the integrated system by applying the appropriate design

rules. The resultant system is characterized by the communication path used, the data

transformation mechanism, and control integration method.

This methodology was used to perform the tool integrations with AFITtool. AFITtool

was integrated with three tools, the Acme parser, daVinci, and Rational Rose 98 [12] [10]

[21]. The Acme parser is a tool that reads files written in the Acme architectural definition

language and checks them for the proper syntax. After determining the syntax is correct,

the file is reformatted for proper tabbing, as defined by the parser, and written to the

output device. As part of the integration effort, the parser was extended slightly to allow

input from stdin or a file and output to stdout or a file. In the integration with AFITtool,

a file was produced from the domain model using the Acme language to represent the event

flows between classes in the model. The Acme parser is then called from AFITtool and

produces an output file, if the input is syntactically correct, in the proper style, and with

the name supplied by the user.

The graph layout tool daVinci was used in the integration with AFITtool to produce

a data flow diagram (DFD) for the currently loaded domain model. In order to integrate

the two tools, AFITtool was extended to create a file in the format expected by daVinci

and then to execute daVinci, supplying the filename as an input parameter. One DFD

for each class in the domain is displayed by daVinci and can be closed when the user is

finished with it.

Rational Rose 98 was integrated with AFITtool to provide two types of functionality:

allowing a user to specify a domain for AFITtool through diagrams with the Unified

Modeling Notation (UML) and allowing a user to generate Rose diagrams from an existing

Z WT^X. file in AFITtool format. The integration of these two tools provides the user

with a semi-formal view of the domain, rather than just the formal notation that was

available. Both Rose and AFITtool were extended, although AFITtool was only extended

to allow a user to execute Rose from within AFITtool. The majority of the extension

was performed by using the Rose scripting language, Summit BasicScript, to achieve the

transformations from diagrams to Z WTQH and Z MgX to diagrams [21]. This integration

71

Table 10 Methodology for Tool Integration

Rose Group Non-Rose Group Overall

Homework 2 562.6 min 677.9 min 620.2 min

Homework 3 167 min 230.8 min 194.4 min

Homework 5a 52.4 min 54.5 min 53.3 min

Project 36.2 hrs 60 hrs 46.3 hrs

also demonstrated that integrating two tools with a graphical user interface (GUI) lessens

the ease of making the integration appear seamless. Although the two tools function well

together, it is apparent that there are two separate tools executing.

5.2 Analyzing the Rose 98 Extensions

In order to gauge the merit of the integration of AFITiool and Rational Rose, a small

experiment was conducted between two groups of students. One group used the Rose ex-

tensions to produce the Z L^TfiK files for AFITtool, while the other group produced the files

from a template with only a text editor. Students were assigned three homework problems

and one project in which they were required to produce the Z ETßX files. The homework

problems were accomplished individually by 14 students and the project was accomplished

by seven teams of two students each, including four teams using Rose. Although the group

of students is not large enough to provide statistically valid results, the amount of time

spent on each problem was collected and the results were examined for any trends that

might indicate whether or not the Rose extensions are helpful.

These results, summarized in Table 10, display a trend indicating Rose users had

consistently faster times than those who did not use Rose. While neither group of students

is large enough to make statistically valid results, the consistency of these results clearly

indicates that the extensions to Rose are helpful in reducing development time.

5.3 Conclusions

The integration efforts involving AFITtool cover a representative sample of the cat-

egories discussed in the methodology. The methodology assists a tool integrator by first

allowing him to characterize the pair of tools and then giving him a step by step approach

72

to accomplish the integration. For each integration attempted as part of this research, the

methodology was effective at directing the proper steps to take for integration. Although

there is more than one way to accomplish most integrations, the methodology offered a

solution that achieved the goal in each case.

The integrations performed as part of this research effort serve to address two of

AFITtooVs shortcomings, described in Chapter 2. Allowing the user to develop a domain

model in Rose improves the user interface to AFITtool, both by offering a graphical input

method and by providing a faster method of input. Although the only accepted input to

AFITtool is the Z ETFJX file, now the user has the option of developing the file through

Rose. Through the experiment performed to judge the value of this approach, it seems that

giving the user the ability to use Rose to develop the domain model significantly decreases

development time in some cases. The integrations have also made it possible for the user

to perform model analysis on three aspects of the model: the DFD displayed by da Vinci,

the object model displayed by Rose, and the event flows written in Acme.

One of the initial goals of this research was to provide a step by step approach to a

seamless integration. However, in the integration performed between AFITtool and Rose,

it is apparent that two tools were made to work together because Rose is an interactive tool

with a GUI. Although da Vinci also has a GUI, the integration of .A.FJTtool and daVinci

gives a different appearance because the user does not interact with daVinci, except to close

the windows. There are frameworks on the market that integrate tools with an existing

GUI to make the integrated system look like one tool. It is possible that is the approach

that should be taken when integrating two tools with a GUI. The methodology does not

specifically address presentation integration, an important class of integration when tools

with a GUI are involved. Developing a methodology that addresses presentation integration

was outside the scope of this research, primarily due to time constraints.

5.4 Recommendations For Future Work

While this research effort accomplished quite a bit in the direction of a step by step

approach to tool integration and also in improving AFITtool through integration with

73

other tools, there are several possible areas for future researchers to pursue. The following

sections describe possibilities for further work on both the methodology and AFITtool.

5.4.1 Extending Methodology. Extending the methodology could be accomplished

in several ways, one of which would be to consider the other three classes of integration:

presentation, platform and process. In this effort, they were irrelevant and the methodology

does not address them. As the area of integrating two tools with a GUI is further explored,

it may be necessary to include a GUI as an alternative to the functional dimension input

mechanism and to define design rules to address the extended dimension. The addition of

GUI as an input mechanism may also make it necessary to consider presentation integration

as part of the methodology since presentation integration addresses how the system looks

to the user.

Platform and process integration should also be considered as extensions to the

methodology. Accomplishing a cross-platform, multiple GUI tool integration would test

areas of the methodology that were not considered in this effort and may point out areas

that are lacking. By exploring platform integration, the integration methodology can also

be used for distributed applications, which may or may not include different platforms.

Adding these integration classes may require the addition of one or more functional di-

mensions for each integration class and design rules to map from the functional to the

structural dimensions. Additionally, it may be necessary to add one or more structural

dimensions in order to characterize the resulting system with the additional consideration

of presentation, process and/or platform.

5.4.2 Extending Existing AFITtool Interface. The integrations accomplished

between AFITtool and Rose can also be improved. Since the primary goal was to demon-

strate integration of the tools, the extensions to Rose are not as complete as they could

be. Neither one of the Rose scripts handles cardinality of associations to the fullest. When

supplied with a WTEX. file, the Rose script simply alerts the user to place the proper cardi-

nality on the association. Since Rose treats aggregation as a special case of an association,

this is true for aggregation also. The user is required to enter the cardinality of the aggre-

gate components. When Rose writes the WT$i file for AFITtool, it does not write all of

74

the constraints due to the association. It does, however, output the proper constraints for

aggregation.

5.4.3 Further AFITtool Integration. Regarding improving AFITtool, an un-

tapped area is that of developing a state model simulator. It would be helpful for the

user to be able to see their state model "in action." During this research, the only tools

found that are capable of this type of simulation would have required a large number of

changes before integration. A more extensive search may locate a more appropriate tool.

Alternatively, a simulator could be developed at AFIT and integrated with ,A.FJTtool. The

layout portion of the simulator could be accomplished by integrating with daVinci through

the remote procedure call (RPC) interface. With the layout accomplished, the task would

involve developing a method of testing all possible routes through the state model, based

on the information in the state transition table.

Integrating a theorem prover with AFITtool would also be beneficial since AFITtool

is based on formal methods. There are several theorem provers available, some free and

some for purchase, that would enable an AFITtool user to check the correctness of the

specification entered into the domain model. Additionally, there are theorem provers that

could examine the code produced by AFITtool and check it for errors. The integration

of these tools, however, is only part of the effort. The larger effort would be determining

what information to provide as input to the theorem prover, i.e., determining what entails

a correct specification or correct code.

5.5 Summary

The main contribution of this thesis effort is the development of a step by step

approach to tool integration. By following the approach described here, tools can be

integrated to improve an existing tool and/or provide a unified view of several tools. By

choosing tools based on their characteristics and their ability to address the shortcomings

of AFITtool, the methodology was demonstrated and two of the shortcomings identified

for AFITtool have been addressed through tool integration. The methodology developed

75

is capable of guiding the tool integrator to a feasible solution and can be applied to the

integration of any two software tools.

76

Appendix A. AFTTtool Input Template

77

ObjectX Structure Definition

Object Name: ObjectX

Object Number: 9404XX

Object Description:

Date: 10/01/96

History:

Author: Hartrum

Superclass: None

Components: None

Context: None

Attributes:

Constraints:

None

Z Static Schema:
Let SSAN be the set of all Social Security numbers.
Let DATE be the set of all calander dates.
Let GENDER be the set of gender types.

[SSAN, DATE]

GENDER ::= male \ female

,_ ObjectX
attributel : type
attributed : type

predicate!
predicate!

78

. InitObjectX
AObjectX

attributel' = valuel
attributed = valuel

79

AssocW Association Definition

Association Name: AssocW

Association Number: 9404XX

Association Description:

Date: 10/03/94

History:

Author: Hartrum

First Object Class: ObjectX

Multiplicity:

Second Object Class: ObjectY

Multiplicity:

Context: None

Attributes:

None

Constraints:

None

Z Static Schema:

Let SSAN be the set of all Social Security numbers.

. AssocAttr
attributel : type
attribute2 : type

predicate!
predicate2

. AssocW _
assocw •: {{ObjectX x ObjectY) —► AssocAttr)

predicatel
predicated

80

ObjectX Functional Model

Object: ObjectX

Process Name:

Process Description:

Z Dynamic Schema:

. ProcessName _
AObjectX
inputll : type
outputV. : type
localvarl : type

preconditions
postconditions

81

ObjectX Dynamic Model

State Name:

State Description:

Z Static Schema:

^_ State A
ObjectX

attributeA > 0
attributeA < attributeB

Event Name:

Event Description:

Z Static Schema:

,_ Event A
parameteri : TYPE
"parameter^ : TYPE

parameteri > 0

State Transition Table:
Current Event Guard Next Action Send

StateA Event 1 a < b StateB Action-A EventA

82

Appendix B. Z Symbols

83

a \alpha e \theta 0 0 r \tau

ß \beta ti \vartheta ■K \pi V \upsilon

7 \gamma 1 \gamma W \varpi <P \phi

8 \delta K \kappa 9 \rho f \varphi

e \epsilon X \lambda Q \varrho X \chi

e \varepsilon V \mu a \sigma i> \psi

C \zeta V \nu <; \varsigma LJ \omega

V \eta i \xi

\Gamma A \Lambda E \Sigma * \Psi

A \Delta »11 \Xi T \Upsilon fi \Omega

0 \Theta n \Pi $ \Phi

Table 1: Greek Letters

± \pm n \cap o \diamond © \oplus

T \mp u \cup A \bigtriangleup e \ominus

X \times w \uplus V \bigtriangledown ® \otimes

-h \div n \sqcap < \triangleleft 0 \oslash

* \ast u \sqcup > \triangleright © \odot

* \star V \vee < Und6 0 \bigcirc

0 \circ A \wedge > \rhd6 t \dagger

• \bullet \ \setminus < \unlhd6 t \ddagger

+
\cdot
+

i \wr > \unrhd6 u \amalg

6 Not predefined in a format based on basefont.tex. Use one of the style options
oldlfont, newlfont, amsfonts or amssymb.

Table 2: Binary Operation Symbols

< \leq > \geq = \equiv N \models

-< \prec y \succ ro \sim i \perp

-< \preceq y \succeq r**i \simeq 1 \mid

< Ml > \gg x \asymp || \parallel

c \subset D \supset r^ \approx X \bowtie

c \subseteq D \supseteq =* \cong IX \Join6

c \sqsubset6 D \sqsupset6 ± \neq ^ \smile

c \sqsubseteq 3 \sqsupseteq = \doteq ■^ \frown

G \in 3 \ni oc \propto = =

h \vdash H \dashv < < > >

6 Not predefined in a format based on basef ont .tex. Use one of the style options
oldlfont, newlfont, amsfonts or amssymb.

Table 3: Relation Symbols

; : \colon . \ldotp

Table 4: Punctuation Symbols

\cdotp

84

<=>

Not

\leftarrow <- \longleftarrow T \uparrow

\Leftarrow <= \Longleftarrow it \Uparrow

\rightarrow —► \longrightarrow I \downarrow

\Rightarrow => \Longrightarrow a- \Downarrow

\leftrightarrow <—> \longleftrightarrow t \updownarrow

\Leftrightarrow ■«=>• \Longleftrightarrow t \Updownarrow

\mapsto +-> \longmapsto / \nearrow

\hookleftarrow <—► \hookrightarrow \ \searrow

\leftharpoonup -^ \rightharpoomrp / \swarrow

\leftharpoondown -* \rightharpoondown \ \nwarrow

\rightleftharpoons -%-> Meadsto6

predefined in a format basec on basef ont .tex. Use one of the style options

oldlfont , newlfont, amsfonts or amssymb.

Table 5: Arrow Symbols

\ldots \cdots \vdots \ddots

N \aleph / \prime V \forall 00 \infty

h \hbar 0 \emptyset 3 \exists D \Box6

i \imath V \nabla -I \neg O \Diamond6

.1 \jmath V \surd b \flat A \triangle

£ \ell T \top ll \natural * \clubsuit

P \wp _L \bot « \sharp ♦ \diamondsuit

» \Re II \l \ \backslash «9 \heartsuit

9 \Im L \angle d \partial * \spadesuit

Ü \mho6 . 1 1
6 Not predefined in a format based on basefont.tex. Use one of the style options

oldlfont, newlfont, amsfonts or amssymb.

Table 6: Miscellaneous Symbols

J2 \sum P| \bigcap © \bigodot
J] \prod U \bigcup © \bigotimes
]J \coprod [J \bigsqcup ® \bigoplus
/ \int V \bigvee (+| \biguplus
§ \oint f\ \bigwedge

Table 7: Variable-sized Symbols

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

Table 8: Log-like Symbols

(()) | \uparrow •ft \Uparrow
[[]] J. \downarrow JJ. \Downarrow
{ \{ } \} I \updownarrow $ \Updownarrow
L \lfloor J \rfloor |" \lceil] \rceil
{ Mangle) \rangle / / \ \backslash
II II \l

Table 9: Delimiters

85

I \rmoustache j \lmoustache 1 \rgroup f \lgroup

I \arrowvert || \Arrowvert | \bracevert

Table 10: Large Delimiters

a \hat{a} d \acute{a} ä \bar{a} <z \dot{a} a \breve{a}
ö \check-[a> ä \grave{a} o \vec{a} ä \ddot{a} a \tilde{a}

Table 11: Math mode accents

abc \widetilde{abc>

abc \overleftarrow{abc}
abc \overline{abc}

abc \overbrace{abc}

y/abc \sqrt{abc}

/' 1'

abc
—►
abc
abc

abc

Vabc
abc
xyz

\widehat{abc}

\overrightarrow{abc}
\underline{abc}

\underbrace{abc}

\sqrt[n]{abc}
\frac{abc}{xyz}

Table 12: Some other constructions

86

Appendix C. Rules for Using Rose98 with AFYTtool

In order to transform the diagram correctly, rules on the specification process have been

established. These rules are described in the following sections.

;. ..CtoOiijrjm tejlMiVisw/ M*)iL_.

JetEnglne
t&manufacturer;seqCter
Kn«d»L.riCfm :;MODE-i:TVPt
ftengins^WeJafit ftial
Sr-iadmum^fueWlowurate. RM
SthrüsUactor Real.
&c«rre.ntjfueLftow:rats'''fiBal.' . ■
^.urre.irtl{hr<j5t .-Heal- _ •

♦5etRate(f.l«wjratfr?.:.Re.al)- ■■"

/
jttEngint Ca,
{«nginijw«ight > 0
im^imumifiifU1MJitTl>'0 '.'.'".'.1!"""'
thrusuf*'afc[*,0.'.,..":.';".,.':.,.'.\"" .*
a/rrt'ntitijtLflgff -OLU \fliq Q .■ .■"■ ; " -
oijflrt'i.fMLfla*J»ti.\l^qnii>fimtl'rfiifji,»]'Jlii*_nlt; !.'
curri"t.'hrult.Mjtqö' " „.■"•'..',,.■■''-.,.'''-"' ■■!.■■'
cuff«pi.lhruitF!hm,ltJiaof*'wrr«n!rf|jtk.flaMr;r*tfc}; ■

i%Msi^*vmmmtiammewwii&

15*8*» i hum I.Ctw:. I Typ? |.',-j-fat
manufacturer JetEngini seqChai
modeLnum JetEnginf MODEL,
engina.welght jetEngini Real
maxlmum.fuel.flow JetEnginf Real
thrusLfactor JetEngini Real
current_fuBl_flow_ra JetEngini Real
current.thrust JetEngini Real

Figure 11 Class Diagram
Figure 12 Attribute Declarations

in Class

C.0.1 The Class Diagram. Each aggregate and primitive class must be fully

specified, including its name, description, class constraints, attributes, types, and opera-

tions, including pre-conditions and post-conditions. An illustration of the class diagram is

in Figure 11. If the domain model includes one or more aggregate classes, they must be

included in the diagram. The lines from the aggregate to the component classes must be

present as well. The transformation process will create one attribute for each component

class, named class nomeAttr. If the aggregate lines include a name, it is ignored by the

transformation process. The class name must be one word, but may include underscores.

The class description is placed in the Documentation field of the class specification and

may be several lines. Class constraints are placed in a Note box connected to the class by a

87

dotted line. The Class name must be the first thing in the note, and the only thing on the

first line. The rest of the constraint is enclosed in braces ({ constraint }). Each statement

in the constraint must be on a separate line. Any math symbols must be specified in the

WTj^i manner. A full specification of these symbols can be found in Appendix B of this

document. An example of a class constraint is as follows:

JetPropulsionSystem
{fuel_level \leq fuel_max
fuel_flow > 0}

Attributes must be defined in the class specification, as illustrated in Figure 12.

Attribute and type names must be one word, but can include underscores. Types may be

user-defined or system types. If an enumerated type is needed, the user may define this in

the type field of the attribute specification as follows:

{nuclear I air-to-air I surface-to-air}

The type will be named during transformation using the attribute name with "Type"

appended to it. If the above type definition was for the attribute "Missile", the type would

be named "MissileType" during the transformation. It would be defined in Z as expected

by AFITtool

Rose offers a section of the class specification for operation definitions. For a correct

transformation, the definition of each operation must include the name, input parameters,

output parameters, a description of the operation, pre-conditions and post-conditions of

the operation. The operation name and parameters must be one word, but may include

underscores, illustrated in Figure 13. The operation description is written in the docu-

mentation field of the operation specification. It may be multiple lines or it may be left

blank. Each input parameter is specified in the parameter section of the specification. The

same rules for naming and type definitions apply here as in the attribute section, with

one exception: each input parameter name must end in a "?" due to constraints during

generation of the EdgX file. Output parameters are specified in the space for Return

Type in the operation specification and must end in "!". Although Rose does not expect

this field to contain more than one value, or names for the values, AFITtool expects both

names and types for output parameters of an operation. For this reason, the Return Type

88

w^iflaäB^BrnBiff

' .^cur.A eras;

Figure 13 Operation Specifica-
tion

si ■si!

mm^smmmm ^tM*4,M»H(l

ir«ct!efli!89rsffi/-iUnspecifiedi

p

mm m
l
i

jjswä^^ &a| j;\3)W5K"*='fc Jftfe

Figure 14 Post-Conditions in Op-
eration

field must contain ReturnParamName! : Type. If there are multiple return parameters,

the syntax is as follows: ReturnParamName! : Type, ReturnParamName! : Type. Pre-

conditions and post-conditions are also specified for each operation. For an operation to

be valid, it must have at least a post-condition. The attribute names used must be the

same as those specified in the class definition. If an attribute is being changed, it must

be followed by a single tick to indicate its post-operation value. Each pre-condition or

post-condition must be stated on a separate line in Rose, illustrated in Figure 14. An

example of a post-condition follows.

current_fuel_flow_rate' = flow_rate?
current_thrust' = thrust_factor' * current_fuel_flow_rate'

Associations between classes are illustrated in Rose by a solid line. They are only

transformed and included in the domain model if they occur between two classes that are

components of an aggregate class, also present in the Rose diagram. The domain and/or

89

range restrictions that may be necessary to fully specify an association must be entered

in the class constraints for the aggregate class, as the Rose script does not generate those.

This includes the cardinality on either end of the association. If the association involves an

associative object, it should be present in the Rose diagram as well. It will be transformed

and included as part of the aggregate class. The association will be named based on the

name that is provided in the class hanging from the association line. Although Rose allows

the name of the association to be entered on the line or in the class, the transformation

expects the name in the class.

Bl -■''3 'y* .• ?i ' i

ChangeFuelFlowf «owjale
: Real)| tlowjate > 01 /
setjate "ChangeThrust;

StarlUse(thrust: Real,
madeup: someType)

ChangeFuelFlowf, llowjats Real)[
now_rale > 0] / set_rate

/—\ "ChangeThrust; StopUse;
/ "\ StartUse(thrust: Real)

J_i_
Running

ChangeFuelFlowf, (lowjale: Real)[(low.rate ■ 0] /
set.rate "ChangeThrust; StopUse(thrust: Real)

B'jllflllT^^ wttwäi&m*miim mm

f]*r*-'1MtEUtttitEKlM üB].--e«Mii,. j,^n,)n. ' ii'. jfi —
li^ii^^iliJii^^pSili^l»! * ■ 1

i] i| ii

Ill §■] r

:- -"•"

. •"»Tl» ^Uülui:' ' 8röv*je ' *T

Figure 15 State Diagram Figure 16 State Specification

C.0.2 The State Model. The state model in Rose is associated with one class. An

example of a state diagram is illustrated in Figure 15. It contains states and transitions

between the states. Each state must be fully specified, including the name and constraints

that hold during that state. Rose does not offer a place for state constraints, so they are

placed in the Documentation region of the state specification, listing one constraint per

90

line, illustrated in Figure 16. The rules for state constraints are the same as those for class

constraints, with regard to using math symbols.

igwiiiwiHiiiirTr •iTiiira"Tii'(BM*'s||Mia:,aiHTi||e,^ta<^

;crrtL,'; i*r •'{ Uü'inicii■; 4'OX AvuW I iV:«*** PuP'lyW**,:! fli

r>' I

l^'^j^-rj'j'^^^iati^i^K^itytimttJM
iCiwrtiC'.o»*"''!' 'M:':'"V.!"'..'..'"'! """.',- ■ 'K "" ''''>:■

'-''i,$ä*,'*<?f^*'Iiii'l''!:l|''t'i|;i"jfl':'''' -r8,e * °

''~t&i>fy,itf'.'i:t\.-'w*'1-'"'
■■-i!i!x«-4'fi/n yUjyihinäeiKuii status."

"" f 1
J i-.Wfc^fi&ta't'' ■ I!;,', "I;!

•^ VT»MM** ■ftH'Jfliiin1 («bflWl;;r'f::: -.J: ::''^:.rr:'~
""fflSf

I'VIII";'

c^.^lFrJi'm..,,]'"!,;ir v:v off

'■•■•'iSW'H ■■ "k< ''R''!'^""'"?

^fci/P^

3™ BIMSIä «HA* iiiisii s. | ji]..; j(j^"r:; J[| - „c^^:.!.. j. ■ ■ - -; ^MUJI- , :■■,]- *•>j»K«»,

pr*
i'. !■;']!;; ■'JJ''! l^iE; |i;-| ;''^.j fj-: fe'i if- ■!;:!,!' ;i $) ■ ,Qr\ $£; ^

Figure 17 Transition Specifica-
tion

Figure 18 Detailed Transition
Specification

The transition may include a trigger event, a guard condition on that trigger event,

one or more send events and/or one or more actions to perform during the transition. The

trigger event is named in the field for Event in the Transition Specification, illustrated in

Figure 17. Any parameters to this event are placed in the Arguments field, with the name

of the parameter and its type, as follows: ParameterName : Type. If an event has multiple

parameters, they are listed as follows: ParameterName : Type, ParameterName : Type.

Any constraints on the event parameters are placed in the Transition Documentation field,

with the same format as previously described.

Actions are specified in the Action field of the Transition Specification. Parameters

to the action are not specified. Each action should be defined in the Operations section of

the Class definition. The guard condition is placed in the Condition field, using the math

syntax as described earlier. The specification of Send Events is placed in the fields called

Send Actions and Send Action Arguments in the Rose Transition Specification. If there

are multiple Send Events, they are separated by semi-colons. Arguments for these events

are also separated by semi-colons, leaving a space if one of the events has no arguments. If

91

one send event has multiple arguments, the arguments should be separated by commas, as

described above for event parameters. The previous guidelines are illustrated in Figure 18.

A textual example of three send events with only two having parameters is below. Notice

the third event has two parameters, separated by a comma.

Send Action: ChangeThrust; StopFlow; Schedule
Send Action Arguments: thrust : Real; ; s.time : Real, s_priority : Nat

92

•

Appendix D. Detailed Descriptions of Design Rules

D.l First Extend

If stdout/stdin, it is preferred to extend the first tool in sequence to convert the data

and then develop a driver program to execute the first tool followed by the second

tool, with output from the first converted before it is output via stdout. This is an

exception to the rule of using distributed control. In this case, centralized control

should be used. This approach is chosen because the interface between the tools

lends itself to a simple driver program to handle the integration.

• If stdout/file, it is preferred to extend the first tool to perform data integration

followed by executing the second tool. This approach is preferred due to the proper-

ties of stdout, including the ease of capturing the data and writing it to a properly

formatted file.

• If file/stdin, due to the characteristics of stdin, it is preferred to extend the first tool

to build a command that performs any necessary data conversions, redirects stdin to

data from a file, and executes the second tool.

• If file/file, it is preferred to extend the first tool to perform any necessary data

conversions before executing the second tool. Since both tools use the same data

medium, files, the least complex approach is to simply prepare the file for the second

tool and execute that tool.

• If (anything) /message passing, it is preferred to require the first tool to gather the

data needed by the second tool and format it for the messages before executing the

second tool. While the second tool is executing, the first tool passes it the messages

it expects, at the proper time and in the proper format, eliminating the need to

change the second tool in any way.

• If message passing/(anything), except message passing/message passing, it is pre-

ferred to extend the first tool to capture all of the messages in a file and integrate

like file/(anything). Since files are easily manipulated and read, the best approach

is to capture the messages in a file.

93

• If built-in output/stdin, it is preferred to extend the first tool to capture the output

and send it to stdin, since that's what the second tool expects, in the proper format

before executing the second tool.

D.2 Second Extend

• If stdout/stdin, it is preferred to develop a separate program to perform any necessary

data conversions. Additionally, develop a driver program to execute the first tool,

followed by executing the data converter and sending that output to the second tool.

This is an exception to the rule of using distributed control. In this case, centralized

control will be used. This approach is taken due to the ease with which stdout and

stdin can be manipulated.

• If stdout/file, it is preferred to extend the second tool to execute the first tool, save

the output in a file, perform data integration and execute the necessary functions in

the second tool. This approach is preferred due to the properties of stdout, including

the ease of capturing the data and writing it to a properly formatted file.

• If (anything)/message passing, it is preferred to perform the same type of integration

as with First Extend with the second tool extended rather than the first (if appli-

cable) since the integrations are similar. Having the data ready for message passing

smoothes the integration and allows successful integration without changing the first

tool.

• If file/stdin or file/file, it is preferred to extend the second tool to execute the first

tool, perform any necessary data conversions and then execute its own functions. The

manipulations possible with files allow for any conversion and redirection necessary.

• If message passing/(anything), it is preferred to approach this integration in the

same manner as First Extend with the second tool extended rather than the first (if

applicable). This approach is taken due to the similarity between Second Extend and

First Extend.

• If built-in output/(anything), it is preferred to develop a driver program that executes

the first tool, intercepts output to stderr or the printer and saves it to a file, due to

94

the ease of file manipulation. This solution will use centralized control. The rest of

the integration can then be performed in the same manner as file/(anything).

95

Appendix E. Acme Example for Aggregate Class

The following Acme code provides an example for the aggregate class Jet Propulsion Sys-

tem. Notice each component, FuelTank, JetEngine, and Throttle each has its own

section of code, describing the event flows into and out of that component. This example

also illustrates the flow between components of an aggregate class.

The state transition tables are first, followed by the actual Acme code generated.

Current Event Guard Next Action Send

Empty StartFill Filling set-inflow Schedule
PartiallyFilled
PartiallyFilled

StartFill
StartUse

Filling
Using

set-inflow
set_outflow

Schedule
Schedule

Full
Full

StartFill
StartUse

Full
Using set_outflow

Overflow
Schedule

Filling
Filling
Filling
Filling

StartUse
StopFill
StopFill
TankFull

fuel-level < capacity
fuel-level = capacity

FillAndUse
PartiallyFilled
Full
Full

set_outflow_level
set_update_level
set_update_level
update_level

Cancel
Cancel
Cancel
Overflow

Using
Using
Using

TankEmpty
StopUse
StartFill

Empty
PartiallyFilled
FillAndUse

update-level
set_outflow_level
set_inflow_level

ChangeFuelFlow
Cancel
Cancel

FillAndUse
FillAndUse

StopFill
StopUse

Using
Filling

set_inflow_level
set_outflow_level

Schedule
Schedule

Table 11 Fuel Tank State Table

Current Event Guard Next Action Send

Off ChangeFuelFlow flow-rate > 0 Running set_rate ChangeThrust; StartUse
Running
Running

ChangeFuelFlow
ChangeFuelFlow

flow-rate > 0
flaw-rate = 0

Running
Off

set_rate
set_rate

ChangeThrust; StopUse; StartUse
ChangeThrust; StopUse

Table 12 Jet Engine State Table

Current Event Guard Next Action Send

Normal ChangeSetting Normal update_position_index ChangeFuelFlow

Table 13 Throttle State Table

96

Family ObjectEvent = {

Port Type SendPort = {

>;
Port Type ReceivePort = {

>;
Role Type Source = {

};
Role Type Destination = {

};
Component Type AggregateClass = {

>;
Component Type PrimitiveClass = {

};
Connector Type EventFlow = {

>;
Attachments {

};

};
System JPS : ObjectEvent = {
Component JetPropulsionSystem : AggregateClass = {

Port ChangeSetting : SendPort;

Port ChangeThrottle : ReceivePort;

Port OutOfFuel : ReceivePort;

Port StartEngines : ReceivePort;

Port TankEmpty : SendPort;

Port startup : ReceivePort;

Representation {
System Aggregate-rep : ObjectEvent = {

Component FuelTank : PrimitiveClass = {

Port Cancel : SendPort;

Port ChangeFuelFlow : SendPort;

Port Overflow : SendPort;

Port Schedule : SendPort;
Port StartFill : ReceivePort;

Port StartUse : ReceivePort;

Port StopFill : ReceivePort;
Port StopUse : ReceivePort;

Port TankEmpty : ReceivePort;

Port TankFull : ReceivePort;

};
Component JetEngine : PrimitiveClass = {

Port ChangeFuelFlow : ReceivePort;

Port ChangeThrust : SendPort;

Port StartUse : SendPort;

Port StopUse : SendPort;

97

>;
Component Throttle : PrimitiveClass = {

Port ChangeFuelFlow : SendPort;

Port ChangeSetting : ReceivePort;

>;
Connector CancelEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

>;
Connector ChangeFuelFlowEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector ChangeSettingEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector ChangeThrustEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector OverflowEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector ScheduleEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

>;
Connector StartFillEvent : EventFlow = {
Role sink : Destination;

Role source : Source;

};
Connector StartUseEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector StopFillEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector StopUseEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};

98

Connector TankEmptyEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

};
Connector TankFullEvent : EventFlow = {

Role sink : Destination;

Role source : Source;

>;
Attachments {
FuelTank.Schedule to ScheduleEvent.source;

FuelTank.Overflow to OverflowEvent.source;
FuelTank.ChangeFuelFlow to ChangeFuelFlowEvent.source;

FuelTank.Cancel to CancelEvent.source;

FuelTank.StopUse to StopUseEvent.sink;

FuelTank.TankEmpty to TankEmptyEvent.sink;

FuelTank.TankFull to TankFullEvent.sink;
FuelTank.StopFill to StopFillEvent.sink;
FuelTank.StartUse to StartUseEvent.sink;

FuelTank.StartFill to StartFillEvent.sink;
JetEngine.ChangeThrust to ChangeThrustEvent.source;

JetEngine.StopUse to StopUseEvent.source;

JetEngine.StartUse to StartUseEvent.source;

JetEngine.ChangeFuelFlow to ChangeFuelFlowEvent.sink;
Throttle.ChangeFuelFlow to ChangeFuelFlowEvent.source;

Throttle.ChangeSetting to ChangeSettingEvent.sink;

};
}; /* end system */

}

>;
}; /* end system */

99

Appendix F. Configuration Management of Files Related to this Research

Several files were generated as part of the implementation of this thesis effort. The location

and content of these files is given in the following sections.

F.l AFITtool

File Name
runcmd.lisp

dom2acme.re

at2dav.re

domtool.re

Content
Runs a command in the command shell;
used to invoke daVinci, Acme parser, and Rose
Refine code to extract information from domain
model and produce Acme architecture file
Refine code to extract information from domain
model and produce daVinci diagrams
Extended menu to include options for
daVinci, Acme, and Rose

In order to use these files with AFITtool, they need to be included in the system.lisp

file, or compiled and loaded individually after Refine is started. They need to be compiled

and loaded in the order in which they appear in the table.

F.2 daVinci

File Name Content
/apps/AI/bin/SUN4SOL2/daVinci daVinci Executable

Nothing has to be compiled for the daVinci integration, except the aforementioned

files that are compiled as part of AFITtool.

100

F. 3 Rose

File Name
SCRIPTJPATH$/Rose2at.ebs

SCRIPT_PATH$/ltx2rose.ebs

On the Hawkeye System:
/apps/roseada/releases/rose.4.5.8153/rose.mnu

/apps/roseada/releases/rose.4.5.8153/bin/rose.exe
On the PC Network:
r:\simulat.ion\rose98\rose.mnu

r:\simulat.ion\rose98\bin\rose.exe

Content
Extracts information from Rose
diagram to create a Z WO^fi. file
for AFITtool
Parses MßX file to create Rose
diagrams

Menu file extended for AFITtool
integrations
Rose executable

Menu file extended for AFITtool
integrations
Rose executable

The script files used for the Rose to ^TßX and MfcjX to Rose conversions are in the

proper directory for Rose to use them, defined by the environment variable SCRIPT_PATH$.

SCRIPT_PATH$ is currently set to /apps/roseada/releases/rose.4.5.8153/scripts. The

scripts are interpreted, rather than compiled, so nothing needs to be done to them in order

for them to work correctly.

101

Bibliography

[1] Acker, Michael L. An Examination of Multi-Tier Designs for Legacy Data Access.
MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec 1997.
AFIT/GCS/ENG/97D-01.

[2] Baker, Sean. CORBA Distributed Objects Using Orbix. ACM Press, 1997.

[3] Brown, N. and C. Kindel. "Distributed Component Object Model Protocol -
DCOM/1.0." http://www.microsoft.com/oledev/olecom/draft-brown-dcom-vl-spec-

Ol.txt.

[4] Chung, P. Emerald, et al. "DCOM and CORBA Side by Side, Step by Step, and
Layer by Layer." http://www.bell-labs.com/emerald/dcom_corba/Paper.html.

[5] Coglianese, Louis, et al. Domain Analysis for the Avionics Domain Application Gen-
eration Environment of the Domain-Specific Software Architecture Project. Technical
Report ADAGE-IBM-92-11, Wright Laboratory Avionics Directorate: IBM Federal
Systems Company, Nov 1993.

[6] Corporation, Microsoft, editor. Microsoft Visual Basic Language Reference: Program-
ming System for Windows. One Microsoft Way: Microsoft Corporation, 1991.

[7] DeLoach, Scott A. Formal Transformations from Graphically-Based Object-Oriented
Representations to Theory-Based Specification. PhD dissertation, Air Force Institute
of Technology, Wright-Patterson AFB, OH, June 1996. AFIT/DS/ENG/96-05, AD-
A310 608.

[8] Faris, Chris, et al. Knowledge-Based Software Assistant Advanced Development
Model(KBSA/ADM). Technical Report AFRL-IF-RS-TR-1998-194, Rome Research
Site, Rome, New York: Air Force Research Laboratory, Information Directorate, Sep
1998.

[9] Fleming, R.T. and N. Wybolt. "CASE Tool Frameworks," Unix Review, <S(12):24-32
(December 1990).

[10] Fröhlich, Michael and Mattias Werner. The Graph Visualization System daVinci —
A User Interface for Applications. Technical Report 5/94, University of Bremen, May
1994.

[11] Garlan, David. An Introduction to the Aesop System. Technical Report ARPA Grant
F33615-93-1-1330, Pittsburgh, PA: Carnegie Mellon University, July 1995.

[12] Garlan, David, et al. "Acme: An Architecture Description Interchange Language."
Proceedings of CASCON'97. 169-183. November 1997.

[13] Genesereth, Michael R. and Steven P. Ketchpel. "Software Agents," Communications
of the ACM, 48-53 (July 1994).

[14] Hartrum, Thomas C. "Integrating Software Architecture Considerations into Software
Transformation Systems." Unpublished, Oct 1997.

102

[15] http://dsse.ecs.soton.ac.uk/ chp/amn_proof/doc/index.html. "AMN-PROOF." On-

line Documentation.

[16] http://logic.stanford.edu/software/epilog. "An Overview of EPILOG 2.0 for LISP."

Online Documentation.

[17] http://pavg.stanford.edu/rapide/overview.html. "Overview Of The Rapide Prototyp-

ing Project." Online Documentation, July 1997.

[18] http://www.cs.cmu.edu/afs/cs/project/able/www/wright/index.html. "The Wright

Architecture Description Language." Online Documentation, July 1998.

[19] http://www.islandsoft.com. "Island Software Corp.." Online Documentation.

[20] http://www.lemma one.demon.co.uk/ProofPower. "ProofPower." Online Documen-

tation.

[21] http://www.rational.com/products/rose/prodinfo.html. "Rational Rose 98 Product

Information." Online Documentation.

[22] http://www.tomsawyer.com. "Graph Layout Toolkit." Online Documentation.

[23] Kissack, John. Transforming Aggregate Object-Oriented Formal Specifications to
Code. MS thesis, AFIT/GCS/ENG/99M-09, Graduate School of Engineering, Air

Force Institute of Technology (AU), 1999.

[24] Kromodimoeljo, Sentot, et al. EVES Proof Checking and Browsing Final Report.
Technical Report FR-95-5482-06, Ottawa, Ontario, Canada: ORA Canada, December

1995.

[25] Lane, Thomas G. Studying software architecture through design spaces and rules.
Technical Report CMU/SEI-90-TR-18 and ESD-90-TR-219 and CMU-CS-90-175,
Carnegie Mellon University, Pittsburgh, PA: Software Engineering Institute, Nov

1990.

[26] Ousterhout, John K. "Tel: An Embeddable Command Language." Proceedings of

Winter USENIX Conference. 1990.

[27] Ousterhout, John K. "Scripting: Higher-Level Programming for the 21st Century,"

IEEE Computer, 23-30 (Mar 1998).

[28] Premerlani, William J. "An Object-Oriented Relational Database," Communications

of the ACM, 99-109 (Nov 1990).

[29] "Rational Educational Grant, SEED Program." Rational Software Corporation, 18880
Homestead Road, Cupertino, CA 95014.

[30] Reasoning Systems Inc. REFINE User's Guide, 1990.

[31] Reiss, Levi and Joseph Radin. X Window Inside and Out. 2600 Tenth St.: Osborne

McGraw-Hill, 1992.

[32] Rogers, Paul. "Object Database Management Systems," OTA Off the Record Research

(Feb 1997).

103

[33] Tankersley, Travis W. Generating Executable Code from Formal Specifications of
Primitive Objects. MS thesis, AFIT/GCS/ENG/99M-19, Graduate School of Engi-
neering, Air Force Institute of Technology (AU), 1999.

[34] Thomas, Ian and Brian A. Nejmeh. "Definitions of Tool Integration for Environ-
ments," IEEE Software, 29-35 (Mar 1992).

[35] Wallnau, K.C. and P.H. Feiler. Tool Integration and Environment Architectures. Tech-
nical Report CMU/SEI-91-TR-ll, Carnegie Mellon University, Pittsburgh, PA: Soft-
ware Engineering Institute, May 1991.

[36] Wasserman, Anthony I. "Tool Integration in Software Engineering Environments."
Software Engineering Environments: Proc. Int'l Workshop on Environments, edited
by F. Long. 137-149. Springer-Verlag, Berlin, 1990.

104

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time, for "^Sj^SS^alS^SVS a^p™**
gathering and maintaining the data needed, and completing and reviewing the collection of information ^"«CS£mS«?fSM&^^^^m«S^ma^^5JBl1erson

b^rs«^ °6 2o5°3- i
 ; REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999 Master's Thesis
4. TITLE AND SUBTITLE
A Structured Approach to Software Tool Integration

6. AUTHOR(S)

Penelope A. Noe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB, OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Roy F. Stratton, AFRL/IFTD
525 Brooks Rd.
Rome, NY 13441-4505
(330) 315-3004 (DSN 587-3004)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-14

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. Thomas C. Hartrum
Thomas.Hartrum@afit.af.mil
(937)255-3636x4581
12a. DISTRIBUTION AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
As the trend towards commercial off-the-shelf (COTS) software continues, civilian companies and government agencies alike
are battling with the challenge of making multiple software packages and applications work together. Many of these
companies and agencies have attempted to integrate the software tools to form a coherent system that satisfies their goals,
often without the use of a step by step approach guiding the effort. Many researchers in the field of software tool integration
have determined the areas that need to be addressed when tools are integrated. Some researchers have developed and
expanded upon a theoretical model for integration. This model of tool integration aids in understanding what types of
integration need to be performed, but does not provide a set of steps to aid in completing the integration. The methodology
developed as part of this thesis research is based upon this model of integration. It provides a method of characterizing the
tools being integrated and offers guidance on how to integrate them in a step by step manner.
A software development tool, AFITtool, has been developed at the Air Force Institute of Technology (AFIT) to build
software based on a formal requirements specification. The process of developing executable code from a requirements
specification is based on mathematically provable, correctness-preserving transformations. Researchers at AFIT realized
that some of AFITtool's shortcomings could be addressed by taking advantage of the capabilities of other tools. As part of
this research, three tools were chosen to integrate with AFITtool and performing the integrations served to demonstrate the
effectiveness of the methodology developed, while addressing specific shortcomings of AFITtool.
14. SUBJECT TERMS
Software tool integration, tool integration methodology, integrated software environment.

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

117
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	A Structured Approach to Software Tool Integration
	Recommended Citation

	/tardir/tiffs/A361674.tiff

