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Abstract 

As the trend towards commercial off-the-shelf (COTS) software continues, civilian 

companies and government agencies alike are battling with the challenge of making multiple 

software packages and applications work together. Many of these companies and agencies 

have attempted to integrate the software tools to form a coherent system that satisfies 

their goals. However, most of this integration work was accomplished without the use of a 

step by step approach guiding the effort. 

Many researchers in the field of software tool integration have determined the areas 

that need to be addressed when tools are integrated. Some researchers have developed and 

expanded upon a theoretical model for integration. This model of tool integration aids 

in understanding what types of integration need to be performed, but does not provide 

a set of steps to aid in completing the integration. The methodology developed as part 

of this thesis research is based upon this model of integration. It provides a method of 

characterizing the tools being integrated and offers guidance on how to integrate them in 

a step by step manner. 

A software development tool, AFITtool, has been developed at the Air Force Institute 

of Technology (AFIT) to build software based on a formal requirements specification. 

The process of developing executable code from a requirements specification is based on 

mathematically provable, correctness-preserving transformations. Researchers at AFIT 

realized that some of AFITtooYs shortcomings could be addressed by taking advantage of 

the capabilities of other tools. As part of this research, three tools were chosen to integrate 

with AFITtool and performing the integrations served to demonstrate the effectiveness of 

the methodology developed, while addressing specific shortcomings of AFITtool. 



A Structured Approach to Software Tool Integration 

I.   Introduction 

Commercial off-the-shelf (COTS) software is more widely used now than ever before. As 

COTS becomes more capable of handling larger and larger tasks, more companies rely on 

it to assist in achieving their daily goals. Besides using COTS, the government also creates 

software for use by other government agencies, usually termed government off-the-shelf 

(GOTS) software. As the number of COTS and GOTS packages used by each company or 

government agency increases, so does the need for them to work together. 

While each company or agency has a mission that drives its daily activities, often 

there is not just one software tool capable of accomplishing the mission. Each agency 

usually uses several tools in combination to accomplish their mission. One drawback of 

purchasing off-the-shelf software is the necessity of accepting tools as they are rather than 

using custom-built tools. In some cases, companies are turning to tool integration to form 

a cohesive environment that is similar to a custom-built tool. 

The Air Force Institute of Technology (AFIT) has not missed this trend. Research 

conducted at AFIT to create a formal method of software development, from requirements 

specification to code generation, has produced AFITtool. Although the tool has been 

developed in-house, it is lacking in some functionality that is offered by COTS tools. In 

order to take advantage of the capabilities of the COTS tools, one or more of them could 

be integrated with AFITtool. At the start of this research, a structured method of tool 

integration was not in use at AFIT. It was recognized that such a method would be helpful 

in integrating AFITtool with the desired COTS tools. Developing a methodology for use in 

software tool integration became the focus of this research, using AFITtool to demonstrate 

the validity of the methodology. 

The rest of this chapter describes the motivation for integrating AFITtool with other 

tools, as well as the motivation for developing a structured approach to tool integration. 



The first section gives further information on the background of AFITlool and tool inte- 

gration in general. The next section describes the problems encountered in tool integration 

and AFITtool, followed by a discussion of the past efforts in tool integration and the devel- 

opment of AFITtool. The last three sections of the chapter describe the scope, approach 

and assumptions of this research effort. 

1.1    Background 

The goal of using several tools in harmony to achieve an organization's mission can 

often be realized by integrating the necessary tools. In the past, researchers have developed 

models of integration to give structure to tool integration efforts. One model proposes using 

an integration tool as the framework, fitting the tools into this framework [9]. Other models 

are built on the premise that there are levels of integration that must be addressed in any 

integration effort. 

At the same time, the software engineering industry has been striving to develop a 

formal, consistent method for generating provably correct software. Part of this effort has 

included using formal methods to formulate a requirements specification that can then be 

used to produce executable code (see Figure 1). AFITtool has been developed to satisfy 

this need. It uses an internal abstract syntax tree (AST) for each object class specified. 

Specifications, written as Z (zed) Schemas using I^T^X syntax, are converted and parsed 

into these ASTs. 

One of the essential aspects of software engineering is code reuse. Much effort is 

put forth to specify, develop, and store code that can be reused. Often this creates more 

work for the developers and does not reduce future effort. In order to reuse code, it has 

to be rather generic, requiring the reuse developers to tailor the code for their purpose. 

Tailoring is often as much work as developing from scratch. However, many researchers 

claim that efforts to exploit reuse of domain knowledge can be very successful [5]. The 

knowledge gathered in the software development process is often generic enough that it 

can be used in other applications. For example, if an application is developed to simulate 

a cruise missile, much of the domain knowledge gathered in the development process could 

be reused in an application to simulate a rocket. Although the domains are different, they 
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have many similarities because they are both composed of similar components, such as a 

jet engine, fuel tank and throttle. 

In addition, the formal language used in the Z specification is often difficult for 

the customer to understand. Although the specification is mathematically provable, and 

therefore easier to extend to code generation, most customers are not familiar with formal 

methods, nor are they educated in them. Therefore, the customer may approve of an 

incorrect specification due to lack of understanding, defeating the primary goal of formal 

methods: to create the correct system. Additionally, formal methods are difficult for most 

developers, managers, and other team members to understand. 

By integrating AFITtool with existing tools that handle the previously mentioned 

areas, it is possible to develop an integrated toolset that provides complete support for 

generating provably correct code. Adding to AFIT\oo\ would not affect its strength, the 

use of formal methods to develop correct software, but would make it a more robust tool, 

possibly offering domain model reuse and other methods of inputting domain models. 

1.2   Problem 

Since there is not an industry-wide standard for tool integration, many tool inte- 

gration efforts have been haphazard at best. Often there has not been a clear plan on 

how to integrate the tools, causing the integration efforts to miss the goal of a seamlessly 

integrated system. Although the system may still work and achieve the mission of the 

company, it may not be easy to use and it may cause confusion on the part of the user. 

For the most part, the developers involved in integrating tools hope the tools work 

together well, in such a way that users are not aware of the existence of multiple tools. If the 

integrated toolset seems like several tools, the users must know how to work with several 

different tools, instead of just learning one tool. Not only can this cause confusion, but 

it can also cause errors that lead to user frustration. Another possible problem after tool 

integration is that it may restrict the set of correct inputs, forcing the users to remember 

new rules. In the end, they may revert to using the separate tools so they know exactly 

what tool they are using and what rules to follow. 



At the start of this research, AFITtool was a single tool which partially addressed 

the problem of generating executable code from a formal requirements specification. Since 

the executable code reflects the requirements specification, it is critical that the specifica- 

tion correctly represent the system as the user intends. By offering another view of the 

specification or adding an automated level of checking, it is possible to detect some types of 

errors in the specification. One way to add these additional layers of correctness checking 

is to integrate AFITtool with existing tools that perform the desired functions. 

Although the ASTs created by AFITtool can be made persistent, there is not an easy 

mechanism in place to retrieve, search or customize the ASTs, nor is there a mechanism 

to navigate any domain knowledge gathered in the process of developing the ASTs. Since 

there are many tools that provide for persistence of data, the key issue is developing an 

interface between one of these tools and AFITtool. If accomplished, storing the AST 

has great potential for future development efforts in the area of reuse. Giving the ability 

to use a previously stored knowledge representation allows users to extend or customize 

knowledge in a domain, rather than parsing the whole domain every time. 

In the market today, there are several types of database management systems that 

provide data persistence. The current trend is to develop an Object-Oriented Database 

Management System (ODBMS) that captures the semantics of the data by encapsulating 

it into units called objects [32]. There are also more traditional methods such as flat 

file systems and relational databases. A middle ground is found in the area of extended 

relational databases and object relational databases [28]. 

Another consideration is integrating AFITtool with existing CASE tools to create 

a friendlier environment for the user. A CASE tool, usually graphically based, includes 

a generally uncomplicated method to input, modify and output key information in the 

software engineering life cycle. Many allow the user to develop requirements specifications, 

design specifications and code. In this approach, AFITtool would continue to be used to 

enforce the formalisms, but the CASE tool would provide a friendly interface for the user, 

rather than the text-based interface in existence now. Again, the key issue is to develop 

an interface to ensure the semantics of the model are enforced as it is transferred from 

a graphical form to formal language specification and vice versa [7].   There are many 



large-scale CASE tools available, including Rational Rose [21] and ERwin, and several 

smaller-scale tools such as the Knowledge Based Software Assistant (KBSA) Advanced 

Development Model (ADM) [8] and Aesop [11]. 

The focus of this research effort is summarized in the following statement. 

Problem Statement: Show that tool integration can be accomplished by following 

a structured approach that can be applied to any pair of software tools. In addition, show 

that the appropriate tools are chosen for integration based on identified shortcomings of an 

existing system. Demonstrate these assertions by integrating AFITtool with one or more 

tools, while maintaining the semantics and the formalisms of the specification. 

1.3   Initial Assessment of Past Efforts 

Researchers on tool integration have developed models for integration that range 

from proposing the use of a tool as a framework to the use of a highly theoretical model 

as the basis for integration. The model most widely published was first developed by 

Anthony Wasserman and has been modified and extended by several researchers. Wasser- 

man's model is directed toward computer-aided software engineering (CASE) environment 

development [36]. His research offers a way of examining which tools should be integrated 

in order to meet the software development goals. Chapter 2 describes the five integration 

classes of Wasserman's model in more detail. None of the proposed models, however, offer 

a step by step methodology to use during the actual integration. Additionally, they do not 

offer any guidance on the best way to approach the integration of the tools. The thrust 

of his research seems to be ensuring that theoretically all aspects of the integrated toolset 

are intact [36]. 

Past efforts in the research of formal methods at AFIT have produced the tool that 

exists today. At the start of this research, AFITtool took only a formal specification as 

input, written in Z in Mp^C. The specification was then parsed into a domain abstract 

syntax tree (AST). The domain AST was then transformed by a series of partially im- 

plemented design transformations and a design representation AST was created [14]. The 

next step in the process, transforming to a coding language AST (specifically Refine Ada), 



was also partially implemented [30]. The transformations from Z to Ada were completed 

in research efforts at AFIT concurrent with this one [23] [33]. 

AFITtool supports writing the domain AST to a file, which can then be loaded at 

a later time. However, to load multiple domains required an extensive amount of manual 

preprocessing to put the files in the format expected by AFITtool. There was also no 

central repository for domain ASTs, meaning each person only knows of his or her own 

domain ASTs. Additionally, there was no naming convention for these ASTs, so even if a 

central repository were created, it would be very difficult to retrieve the correct AST. 

1.4 Scope 

This research effort was concerned with developing a methodology for integrating 

software tools by first examining the characteristics of the tools involved and then following 

a general set of guidelines to perform the integration. Although AFITtool was used as the 

demonstration system, this research was not primarily concerned with changing AFITtool 

to address all of its shortcomings. The goal was to modify AFITtool in order to address 

some of its shortcomings and to demonstrate the feasibility of a structured approach to 

tool integration. 

1.5 Approach 

To meet the proposed research objectives, the following approach was followed: 

1. Assess the current state of the system. An in-depth analysis of the current state of 

the AFITtool system was performed, including what ASTs are built and how the 

various ASTs are used in the system. Shortcomings of AFITtool that could be met 

by other existing tools, such as a persistent storage manager and one or more CASE 

tools, were identified. 

2. Research current state of the art of tool integration. Many military, academic and 

commercial organizations in the software engineering field are investigating toolset 

integration and interoperability. A literature review was conducted to avoid dupli- 



cation of effort, as well as to gather any available information on potentially useful 

approaches. 

3. Outline the capabilities of existing tools. Several categories of tools were potential 

candidates for integration, including database management systems, graphical user 

interface CASE tools, software architecture tools, and drawing tools that take domain 

information and produce diagrams. Several tools were investigated to determine the 

feasibility and benefits of integrating one or more of them. The integration of one 

or more of these tools with AFITtool benefits users of AFITtool by extending and 

supporting its capabilities. Although these tools can be used in conjunction with 

AFITtool without being integrated, an integrated toolset that combines formal and 

non-formal methods is very valuable to the users of AFITtool. 

4. Derive a general framework or methodology for integrating tools. The software en- 

gineering community has been evaluating the possibility of developing integrated 

toolsets for many years. An integrated toolset can be obtained by developing a tool 

with many functions, by integrating several existing tools, or both. A methodol- 

ogy for integrating existing tools would be useful by the software community as a 

whole. This approach is more flexible since it allows several existing tools to be used 

together, rather than starting from the beginning and developing a toolset. 

5. Integrate tools. After conducting the tool analysis, three tools were chosen to inte- 

grate with AFITtool. The tools, daVinci, the Acme parser, and Rational Rose 98, 

were chosen based on their functionality and their added benefits for AFITtool. 

6. Verification and validation of the integrated system. Using an example object domain, 

the ability of the integrated system to capture, store, retrieve and locate the nec- 

essary information without changing the meaning of the domain was demonstrated. 

This step was designed to show whether or not the tool integration was successful 

(verification), since the goal is not only to work with a domain, but also to ensure 

it is the correct representation of the domain, both when it is entered and when it 

is manipulated. The integrated system and the original system were used by some 

AFIT students to offer a comparison and determine whether or not the integrated 

system offers any benefits (validation). 

8 



7. Demonstration of the methodology. The methodology was demonstrated through the 

integration of three tools with AFITtool. By using the developed methodology to 

integrate tools, covering many aspects of the methodology, the demonstrations were 

achieved. Since it is impossible to cover all areas of a generic methodology in the 

time available, a representative sample was demonstrated. 

1.6   Assumptions 

Several assumptions were made prior to the start of this research to promote its 

success. First, the availability of domain experts was necessary during this research. This 

included the sponsor, professors, past researchers, and documentation. Second, toolsets 

that were chosen as integration candidates had to be available. If a toolset was unavailable 

or would require major modifications, it was discarded as an integration candidate. Finally, 

the stability of the system was very important throughout the course of the research. As 

previously mentioned, other research work was ongoing to enhance AFITtool, and it was 

necessary to have a configuration control methodology in place to ensure consistency of 

the system. 

The next chapter provides background information used in this thesis effort, including 

a review of the capabilities of AFITtool, a short description for each tool that was consid- 

ered for integration with .AFITtool, an overview of commonly used integration methods, 

and a presentation of a well-known tool integration model. A complete description of the 

software tool integration methodology developed during this thesis effort is presented in 

Chapter 3. This methodology is a structured approach to integrating software tools, de- 

signed to be used on any integration effort. Additionally, a validation of the methodology 

is located at the end of the chapter. Chapter 4 contains a description of the application of 

this methodology to the integration of AFITtool with three other software tools. The last 

chapter includes a summary of the research presented here, as well as recommendations 

for future work in this area. 



77.   Background 

This chapter includes background information needed to integrate AFITtool with other 

tools. The first two sections are background information on ^-FiTtool itself. This de- 

scription serves as an overview of the development to this point, and as a motivation to 

develop the tool further to address some of its shortcomings. The third section is a review 

of tools that were candidates for integration. First, generalized tool requirements, based 

on ^FITtool's shortcomings, are given. These requirements are followed by the criteria 

used in the tool evaluation process. The next section describes a widely-known tool inte- 

gration model and the modified models developed by other researchers in the field. The 

last section of the chapter gives an analysis of several methods of integrating tools. 

2.1    Background Information on AFITtool 

Development accomplished at AFIT to create a formal method of software develop- 

ment, from requirements specification to code generation, has produced AFITtool. This 

tool was built with Software Refinery, using the REFINE language, and uses an inter- 

nal abstract syntax tree (AST) for each object class developed [30]. Specifications are 

converted and parsed into an AST called the domain AST. The domain AST represents 

the domain being modeled in the system. This AST is manipulated by the Elicitor Har- 

vester subsystem, designed to interactively refine a correct specification from a problem 

requirement based on the domain model. 

The refined domain AST is then transformed by a series of correctness-preserving 

design transformations into the design AST. The design AST is then processed by an output 

grammar to go from design to code. The design transformations and code generation were 

further developed during this thesis cycle [23] [33]. Currently, Ada code is produced, but 

with modifications AFITtooVs design AST can be redirected to any language supported by 

the Reasoning Systems' Software Refinery [30]. In the current release of Software Refinery, 

code development is supported in COBOL, Ada, C and FORTRAN [30]. The domain 

AST is the first step in representing the requirements of the user, by representing the 

10 



specification. This specification can be manipulated, stored, retrieved and copied for later 

use. 

In support of reverse engineering, AFIT has also developed the Generic Imperative 

Model (GIM), a generic representation of code. A GIM AST is transformed through the 

Object Extractor to produce a Generic Object Model (GOM) AST. The GOM, produced in 

the AFIT reverse engineering system, was a likely candidate for the design representation 

AST to be used in AFITtool. During this thesis cycle, however, modifications were made 

to the GOM and a new design tree was specified [23] [33]. Since the reverse engineering 

work has already been accomplished, it is feasible to interface a reverse engineering tool 

to AFITtool, using the design tree, for object-oriented code generation. 

2.2   Shortcomings of AFITtool 

As part of the initial work on this thesis, it was necessary to determine the shortcom- 

ings of AFITtool in order to characterize the kind of improvements, via tool integration, 

that could be made. The investigation of the shortcomings also facilitated the process of 

determining the criteria for the tool search. The following list indicates the shortcomings 

that existed before this research effort. 

• Interface is not user friendly The interface to AFITtool was functional, but not 

particularly user friendly. Most software developed in the recent past has a graphical 

user interface (GUI). In the past few years, people have become more comfortable 

with this type of interface and, in most cases, prefer it. There are several ways to add 

a GUI to AFITtool that would not involve re-writing the entire system, and which 

would make it more user friendly. 

• Persistent storage of domains is limited Although AFITtool has the capability, 

through built-in Refine functions, to offer persistent storage, it offers only a limited 

amount. This is a feature that can be improved by further Refine coding or the 

addition of a data storage tool. Additionally, some sort of lookup facility would aid 

the use of the persistent storage. 

11 



• Verification is limited Currently, the parser in AFITtool checks for a file that is 

properly structured, but does not check the correctness of the code entered. Since 

AFITtool is based on formal methods, there are many ways to verify correctness. 

This is currently only partially implemented on the level of checking for duplicate 

variables and constants, and types that are not used. Other possible things to check 

are that constants have a type, that attributes are denned over declared or predefined 

types, that there is at least one attribute in each invariant constraint, there are no 

name conflicts between a subclass and its superclasses, and that derived types are 

defined over existing types [14]. Verification could be performed within AFITtool or 

through the use of a separate tool integrated with AFITtool. 

• Model analysis by the user is limited After the input of the model, some users 

are not capable of performing detailed analysis of the model. By either offering a tool 

to analyze the model or offering a graphical view of the model to the user, another 

level of verification would be accomplished. 

• Transformation from Z specifications to code is not complete The transfor- 

mation of the domain AST to a design representation AST is not complete, making it 

impossible to go completely from requirements specification to code. This problem is 

well known by everyone who uses AFITtool and is being addressed in other research 

efforts [23] [33]. 

By integrating one or more tools with AFITtool to operate on the requirements spec- 

ification represented by the domain AST, several of the identified shortcomings could be 

corrected. This research effort focused on representing the specification in a graphical form 

which allows the user to spot some kinds of errors more easily. Although the transformation 

from the domain AST to the design AST was not complete at the start of this research, 

identifying and integrating tools that can operate on the design was still considered. 

2.3    Tool Review 

This section discusses candidates for integration with AFITtool based on a predeter- 

mined set of criteria. The first subsections describes the general type of tool that could be 
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used to improve AFITtool, followed by a subsection that defines the criteria upon which 

tool selection was based. The following subsections describe the various classes of tools 

that were considered, with information on specific tools. Tools that failed to meet the 

criteria are not discussed here. 

2.3.1    Tools that could improve shortcomings. Some of the shortcomings of 

AFITtool could be addressed by the addition of tools to the system. The following para- 

graphs describe what kind of tools would improve each particular shortcoming of AFITtool. 

There are many options for a friendlier front end, including developing a GUI appli- 

cation involving one or more windows and menus, perhaps with Intervista1 [30], or Visual 

Basic [6]. There are also OSF/Motif toolkit, a proprietary toolkit, and X Window appli- 

cation builders available on the Unix platform [31]. Although there is a learning curve to 

using these tools, it would improve the user interface of AFITtool. In addition, a tool that 

already uses a GUI could be integrated with AFITtool and used as the front end. 

A tool to store the domains that allows querying would improve the reusability of 

domains. This could be the built-in Refine Persistent Object Base, discussed later, or a 

database management system. Alternatively, a configuration management system could 

be implemented that allows storing keywords to represent the domain, creating a central 

repository for domain models. 

A tool that interprets the Z specification (in words or in pictures) and ensures that 

the interpretation meets with the meaning the user was trying to convey would enable more 

correctness checking. By giving the user a different view of the specification, it may be 

possible for the user to realize errors earlier. As an added method of correctness checking, 

a theorem prover to ensure the correctness of the specifications and the transformation 

could be added to the system. It would utilize the formal methods upon which AFITtool 

is based, although it might involve extending AFITtool to "explain" to the tool what is 

correct. 

intervista is the GUI development package standard with Software Refinery 
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To achieve a true integration of AFITtool and the selected tools, a framework is 

needed. The integration should be seamless to the user, offering the idea that there is one 

system, rather than many components. There are several ways to do this, including using 

a scripting language or a commercial framework designed to integrate tools. 

2.3.2 Tool Criteria. During the tool evaluation process, seven criteria were used. 

These criteria were developed with the shortcomings of AFITtool in mind (criteria 2 and 6) 

as well as the feasibility of acquiring the tool (criterion 5) and the feasibility of integrating 

the tool, based on the given time constraints (criteria 1, 3, 4, and 7). They address the 

issues of integrating tools in a feasible manner, to provide an integrated environment for 

the user and a practical project for the developer. A tool must meet the majority of 

the criteria to be chosen for integration. The tool criteria are listed below in order of 

importance, from highest to lowest 

1. Executes on a Unix platform 

2. Enhances AFITtool by fixing one or more shortcomings 

3. Provides ease of integration 

4. Has technical support available 

5. Has reasonable and acceptable cost 

6. Assists the user in understanding information stored in AFITtool 

Ideally, the tools to be integrated would be based on Lisp or Refine so they could 

be easily integrated into AFITtool. Since AFITtool is run on a Unix platform, it follows 

that it is preferable for any integrated tools to run on the same platform. Additionally, if 

the tool is a commercial product, a high level of technical support is desired. If it is not 

commercial, it is important that the developers provide technical support. If the tool is not 

well supported and/or documented by technical expertise, it is not a likely candidate for 

integration. The tools need to be available for AFIT to either purchase at a reasonable cost 

or acquire free of charge. Finally, the tools chosen for integration need to assist the user in 

understanding, and possibly verifying, the information currently stored in AFITtool. The 

following subsections discuss different types of tools that were considered for integration. 
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2.3.3 Architecture tools. There are many tools available to define and manipulate 

the architecture of a software system. The following tools were developed at universities 

under the Evolutionary Development of Complex Software (EDCS) project. They have 

become strong tools, and support some level of integration with each other through the 

Interface Definition Language Acme. 

• Aesop: Aesop provides a toolset for constructing open, architectural environments 

that support architectural styles. It interfaces with other tools through a Remote 

Procedure Call (RPC) interface, allowing other tools to analyze and manipulate archi- 

tectural descriptions. Aesop would enhance AFITtool by offering another capability 

— specifying the architecture of the system being developed. Aesop is implemented 

on a Unix platform and is available for release as a demonstration system from 

Carnegie Mellon University [11]. 

Acme: Acme has been developed to provide a common ground for software archi- 

tectures. It can be used for developing a system architecture as well as interfacing 

multiple architecture designs. Currently, it supports translation between UniCon and 

Aesop, as well as from Wright to Rapide. Acme would enhance AFITtool by allow- 

ing the user to specify the architecture of the system being developed and translate 

between architectures, if desired. Acme is implemented on a Unix platform and can 

be obtained from Carnegie Mellon University [12]. 

Rapide: The Rapide project is an effort to develop new technology for specifying the 

architectures of component-based large-scale, distributed multi-language systems. 

The toolkit available to work with the Rapide language allows gradual refinement of 

the architecture, thereby supporting incremental development, testing and mainte- 

nance. Rapide is another tool that could be integrated with AFITtool to allow the 

user the capability of specifying an architecture. The Rapide toolkit executes on the 

Unix platform. This research is being performed at Stanford University, hence all 

information and toolkits can be obtained without cost [17]. 

Wright: Wright provides a formal basis for architectural description. It is an archi- 

tecture description language that allows the user to describe an architecture with 
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precision. It also enables the user to analyze both the architecture of individual 

software systems and of families of systems. Additionally, Wright defines consis- 

tency checks that the user can perform to increase their confidence in the design 

of a system. Wright is another alternative to allow the introduction of architecture 

descriptions into AFITtool. The Wright project is being pursued by researchers at 

Carnegie Mellon University. They are currently developing a toolkit on the Unix 

platform to work with the Wright language and it would be available at no cost to 

AFIT [18]. 

2.3.4 Software Development Environment tools. One approach to tool integration 

involves starting with a development environment and expanding it to create a custom 

software development environment. The tools discussed here are Computer-Aided Software 

Engineering (CASE) tools that can further enhance AFITtool by offering a less formal view 

of the system. Additionally, these tools support the whole software life cycle, meaning they 

can be used at all stages of the development process. 

• Rational Rose: Rational Rose is a development environment that allows software 

systems to be developed. It has many features, including language development in 

Ada95, Java and C++, Corba/IDL generation, database schema generation and an 

extensibility interface. Rose 98 supports the Unified Modeling Language (UML), 

Booch, and Rumbaugh notations making it more flexible. It has been implemented 

for both the PC and Unix platform. AFIT currently owns an educational license 

for Rose, making a purchase unnecessary. Integration of Rose with AFITtool could 

be accomplished through Rose Scripts or Rose Automation. This integration would 

offer a visual modeling tool that is currently unavailable to the user and would help 

the user and the customer understand what is being modeled [21]. 

• Knowledge Based Software Assistant Advanced Development Model (KBSA ADM): 

ADM, developed for Rome Labs by Andersen Consulting, is a tool that was designed 

to encompass the entire software life cycle. It provides an integrated environment that 

could possibly be used as a common ground to integrate AFITtool with other tools. 

ADM incorporated Object Store for persistence as well as other tools/languages for 
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requirements acquisition and project management. It uses both the Unix and Win- 

dows NT platforms to achieve its goals. AFIT acquired ADM through the Rome Site 

of Air Force Research Laboratory, making it unnecessary to purchase this software [8]. 

2.3.5 Drawing/Diagramming tools. This section describes several drawing tools 

available in the Unix environment. One way, out of the many possibilities, to use a drawing 

tool is to graphically depict the state transition diagram. The tools could also be used 

to allow the system to display the object model or the event flow diagram for the current 

domain. Beyond simply drawing or displaying, it may also be possible to animate the 

drawings to show the progression of the state transition table. 

• xfig: xfig is the drawing tool that is standard with Unix. Users can draw pictures 

and save them as .fig files or export them to .ps files. It is a primitive tool but may 

be a possibility for integration since it is currently available at AFIT and runs on 

the Unix platform. 

• Graph Layout Toolkit: The Graph Layout Toolkit was developed by Tom Sawyer 

Software to develop graphs in a GUI environment. It appears that there is also a 

Java API that is used to interface with the software. By using the Java API, it is 

available for Unix and PC platforms. This commercially available software can be 

purchased at an educational price [22]. 

• daVinci: daVinci is a tool developed by the University of Bremen on the Unix plat- 

form for graphical layout of nodes. daVinci has been integrated into the Artificial 

Intelligence system developed at AFIT called PESKI using an interactive remote 

procedure call interface. daVinci also supports command line options, allowing the 

user to specify a graph to draw using term notation. This tool is available at no 

charge and is currently on an AFIT system [10]. 

• Island Draw: Island Draw is a drawing tool that allows the user to create high- 

quality diagrams. It provides an import and export facility, allowing many formats 

to interact with the program. For example, it is possible to import a postscript 

file into Island Draw and export an Island Draw file. Island Draw is available at 

AFIT [19]. 
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2.3.6 Theorem Provers. The following tools support proving the correctness, with 

respect to supplied pre- and post-conditions, of specifications and code. The tools require 

their input to be in a specified format or language, specific to the tool. These tools could 

offer the ability to prove the correctness of a specification, before the transformations are 

completed to generate code. Additionally, the tools would assist in proving the correctness 

of the resulting code. 

• Epilog Inference Package: Epilog is a library of Common Lisp subroutines to be used 

in programs that manipulate Standard Information Format (SIF) files, a variant of 

first order predicate calculus. It has built in routines to convert expressions, do 

various pattern matching, and create and maintain SIF knowledge bases. To be 

integrated with AFITtoo\, a converter would have to be written to put the domain 

model (or other file to be examined) into SIF. Since Epilog uses Common Lisp, and 

Refine is built on Common Lisp, the rest of the integration should be straightforward. 

Epilog was built for Macintosh and Unix and is available for download from Stanford 

University [16]. 

• Z/Eves: Z/Eves is a theorem prover that supports the analysis of Z specifications by 

performing syntax and type checking, schema expansion, precondition calculation, 

domain checking and general theorem proving. Since AFITtool currently uses Z 

specifications to represent the requirements, this tool could enhance AFITtool by 

allowing these specifications to be proven. Additionally, the files needed to integrate 

with AFITtool are already input to the system, so integrating Z/Eves with AFITtool 

would be straightforward. Version 1.5 of Z/Eves is available at no cost from ORA 

Canada. It runs on SunOS, Object Store/2, Linux, Windows 3.1, Windows 95 and 

Sun Solaris [24]. 

• ProofPower (supports HOL): ProofPower is a commercially available tool that sup- 

ports the proof of HOL and Z specifications. The Z specifications are entered as 

MpjX files, just as they are entered into AFITtool. This would make it possi- 

ble to use the same files as the interface between ProofPower and AFITtool.  It is 
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available for purchase from ICL under an educational license and runs on the Unix 

platform [20]. 

• AMN-PROOF (supports HOL and PVS): AMN-PROOF is a theorem prover that 

supports proof of Abstract Machine Notation (AMN) specifications and refinements 

with the HOL and PVS theorem provers. A system is specified as a number of 

abstract machines that are formally refined to an executable representation in terms 

of more abstract machines. In the present version, the HOL prover is not supported 

[15]. The tool is written in C++ and is available for Linux and Sun Sparc machines 

by free download. This tool seems to be very rudimentary and may not be a good 

choice for integration to AFITtool. 

2.3.7 Data Storage. The following two tools are possibilities for adding persistent 

storage to AFITtool. This storage would be used to store the domain model and should 

offer a querying capability. Storing and loading domain models would increase ease of use 

and reuse in the system, saving users effort. 

• Object Design's Object Store: Object Store is an Object-Oriented Database Man- 

agement System developed by Object Design. This could serve as the repository for 

the domain models AFITtool produces. It supports a CORBA-compliant interface, 

allowing integration with external tools. In order to integrate AFITtool with Object 

Store, the domain AST would need to be output in a CORBA-compliant format. Al- 

though not trivial, this could be accomplished. AFIT currently owns Object Store, 

so a purchase would not be required. It runs on both Unix and PC platforms. 

Refine's Persistent Object Storage: Refine has a built-in capability to store the AST 

in a file called a Persistent Object Base. This must be programmed in Refine, spec- 

ifying each node of the AST. Currently, AFITtool has this functionality in a limited 

manner, but it is easily extendible. AFIT currently owns Refine and .AFiTtool is 

based in Refine. It runs on the Unix platform. 
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2.4    A Sampling of Integration Methods 

There are a multitude of methods available to integrate a tool set. One method 

is to use a scripting language to handle the control flow of tool execution, allowing user 

input when necessary. The script would also send any necessary commands and/or data to 

the applications. Scripting languages are commonly used as the "glue" for an integrated 

environment in many application areas. Developed components are integrated into appli- 

cations using a scripting language [27]. The most common languages are tcl and Perl, but 

there are many others available for use, including Visual Basic and JavaScript [27]. They 

are often used when control flow integration is desired. The most common use of scripts 

involves a script that controls what is to be executed, what data is passed and what the 

user sees on the screen. The use of scripts can often speed up development time by a factor 

of five to 10 [27]. Tel can be used in two ways: as a method for building application inter- 

faces and as a uniform framework for communication between tools [26]. Tel has some of 

the characteristics of Lisp, but it was designed to be embedded in an application program, 

rather than to develop stand-alone programs [26]. 

A related concept is the use of intelligent agents, with a script, to perform the 

required tasks [13]. Agents are used as a communication and control mechanism between 

software components to create an integrated environment. Agents have been compared 

to objects, and have some similarities, such as a message-based interface independent of 

the internal data structures and algorithms. In programming efforts involving agents, 

an agent communication language is needed, as well as constructs to allow the agents to 

communicate within the framework of the system and the language. One agent language 

in widespread use is called Knowledge Query and Manipulation Language (KQML). It uses 

the idea of a message, which the agent can send and receive [13]. Agents, then, can control 

both the flow of execution and the flow of data in a system. Because of these properties, 

they are very useful in system integration. The agents must be controlled by a higher level 

process, or a server of some sort, in order to have the proper flow in the system. 

Another possibility for integration is to use an existing CASE tool, such as ADM 

or Rational Rose, as the basis and integrate add-ins to that tool. This would extend an 

already integrated environment to provide additional functionality to the users. Since the 
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majority of the environment is in production, the integration of more tools would simply 

enhance the tool, rather than redefine it. 

With the growing dominance of Object-Oriented (00) software development, two 

standards have emerged to work with the data: Common Object Request Broker Archi- 

tecture (CORBA) and Distributed Component Object Model (DCOM). The fundamental 

idea is that a middleware application will be used to allow other applications to interact, 

without having the same data types or formats. All data is stored as objects, in accordance 

with the 00 paradigm, and methods are used to access the data. In the CORBA realm, 

the middleware is called an Object Request Broker (ORB) and the data is stored and 

retrieved using ORB methods. Each client must register with the ORB in order to use it. 

The client would then send requests to the ORB to store, retrieve or manipulate the data. 

Most ORBs have a query facility built in to find the desired data. The Object Management 

Group, composed of business leaders in the 00 community, developed CORBA and it is 

available on both the PC and Unix platforms [2] [4]. DCOM has similar constructs for 

common objects. DCOM was developed by Microsoft Corporation and is available only on 

the PC platform [3] [4]. 

The emerging method of tool integration seems to be to use some sort of "middleware" 

that ties tools together in the background, without the explicit knowledge of the user. This 

method can also use several of the previously mentioned methods, including RPCs, message 

passing and a CORBA interface. The "middleware" would provide a common ground, as 

CORBA does for objects, from which all applications are run. This method could also 

make use of intelligent agents that would perform the requested tasks and return with the 

data or a message to the starting point. Web browsers are sometimes used to integrate 

different applications by using a CGI application in the HTML code of the web page. 

This has been very successful in the database arena, allowing companies to provide on-line 

purchasing through a web page that communicates with a database [1]. Additionally, the 

user is unaware of the true interface to the system, since they see only the web page. 

High-level programming languages such as Visual Basic and C++ are often used as 

driver programs to control the flow of execution and data throughout a system. Some 

applications include a menu system that allows a user to choose each task that is accom- 
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plished, while other applications allow the user to start the system and several tasks are 

accomplished in the background without user intervention. It seems that for an effort of 

any size, a combination of methods will be used. Rather than accomplishing the whole 

system integration through message passing or a CORBA object repository, a combination 

of communication and control flow methods will be used. The main advantage of combin- 

ing methods is flexibility. It allows tools to be located on different platforms, written in 

different languages, and have different user interfaces. 

2.5    Tool Integration Models 

Over the years, the literature has provided documentation on many different ways to 

approach tool integration. The most widely adhered to model was developed by Anthony 

Wasserman and includes five classes of integration: platform, presentation, data, control, 

and process [34]. One team of researchers discarded platform integration, arguing that the 

primary focus is on the relationship between tools [34]. Other researchers have discarded 

platform and process integration, leaving presentation, data, and control integration [35]. 

2.5.1    Thomas and Nejmeh's Approach to Wasserman's model. Thomas and 

Nejmeh discarded platform integration from Wasserman's model, arguing that the rela- 

tionship between the tools is the most important issue, while the platform provides the 

basic building blocks for integration [34]. The following sections describe the four classes 

of integration Thomas and Nejmeh discuss, along with properties they identified for each 

class. 

2.5.1.1 Presentation Integration. Presentation integration deals with the 

relationship between user interfaces of tools. A highly integrated environment, from the 

standpoint of presentation integration, is one which does not force the user to understand 

multiple interfaces. Two properties have been identified in presentation integration: ap- 

pearance and behavior, and interaction-paradigm integration [34]. 

1. Appearance and behavior: This property addresses the ease of use of the integrated 

toolset. If a user understands one tool, how does that knowledge help them in dealing 
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with other tools in the environment? Two tools that are well integrated with respect 

to appearance and behavior allow the user's experience with and expectations of one 

tool to apply to other tools. Appearance and behavior integration captures both 

lexical and syntactical similarities and differences in tools. The lexical elements of a 

tool include things such as how the mouse clicks, how the menu bar looks, where win- 

dows are placed, and if there are multiple windows or just one. Syntactical elements 

of a tool include the order of commands and parameters, presentation of choices in 

a dialog box, and the format of input and output files. Although windowing tools 

are influenced by the guidelines of Motif and OpenLook, there is enough flexibility 

to allow ambiguity in an integration effort. 

2. Interaction-paradigm: The interaction of two tools can be very similar or very dif- 

ferent, and the degree of difference impacts the user by causing him or her to have 

to learn a great amount about the interface of a tool, if they are very different, or 

not learn much at all, if they are similar. The underlying metaphors and mental 

models of the tools are the two primary factors in interaction-paradigm integration. 

The two tools are well integrated with respect to interaction-paradigm if they use 

the same metaphors and mental models. The use of only one metaphor for the en- 

tire system may be unachievable, but a balance is key. Two tools that use similar 

file navigation methods are said to use similar metaphors. For instance, most MS 

Windows systems use a file hierarchy approach to file navigation. Another approach 

is that of a hypertext structure, where files are displayed and there is no emphasis 

on which files are contained in which higher structures. These two common methods 

of file navigation use very different metaphors. Integrating two tools using these 

two different methods will result in an environment that is not well integrated with 

respect to interaction-paradigm integration, without changes. 

2.5.1.2 Data Integration. Thomas and Nejmeh identified five properties 

of data integration, defined over the data management and representation aspects of two 

tools: interoperability, nonredundancy, data consistency, data exchange, and synchroniza- 

tion [34]. 
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1. Interoperability: This property addresses the issues of two tools needing the same 

data, and needing to view it in the same way. In some cases, the data may be se- 

mantically correct overall for both tools, but the tools may attach different semantics 

to the same data. This aspect of data integration, when addressed, answers ques- 

tions regarding what has to be done to make the data available and correct for both 

tools. The best scenario for integration, based on data interoperability, is two tools 

using the same model and format. Two tools that use the same type of data, but 

expect it in completely different formats, are not as well integrated and require a 

data conversion program. Interoperability applies to persistent data only. 

2. Nonredundancy: Nonredundancy describes the desire that two tools have little or no 

overlapping data. This aspect of data integration examines the amount of overlapping 

data that each tool stores and manipulates independently. If two tools have data 

that is exactly the same, or can be derived from other data, it is difficult to ensure 

consistency of the data in the integrated system. Therefore, it is desirable to minimize 

redundant data. It may be practical, however, to have replicated data in a database 

to improve performance. 

3. Data consistency: Maintaining consistency of redundant or derived data may involve 

special semantic constraints on the data involving the interaction of two tools. For 

instance, two tools may have data independent of each other, but when integrated, 

the data of one tool relates to the other in such a way that the admissible values are 

restricted. When integrating tools in which this is applicable, it is important for the 

tools to cooperate to maintain the semantic constraints on the data. This requires 

each tool to "report" its data manipulations and their effects to other tools. 

4. Data exchange: Some tools may need to exchange data, whether it be initial values 

at the start of execution or updated values during execution. When two tools such 

as these are integrated, the integration effort must address what needs to be done to 

data generated by one tool in order for another tool to manipulate it. Data exchange 

involves the tools agreeing on semantics and data format. If little or nothing needs 

to be done to the data in order to exchange it between tools, the tools are well 

integrated with respect to data exchange. Although this is similar to interoperability 
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of data, it also applies to nonpersistent data and may use different mechanisms to 

share the data. 

5. Synchronization: Synchronization is mainly concerned with the consistency of non- 

persistent data shared among tools. Maintaining consistency involves each tool com- 

municating any changes made to the data to all other tools. Since most tools will use 

both persistent and nonpersistent data, synchronization is often an issue. Although 

it is very similar to data consistency, synchronization applies to nonpersistent data, 

while data consistency applies to persistent data. 

2.5.1.3 Control Integration. One goal of a well-integrated toolset is to share 

functionality between tools in such a way that the user gains access to the full functionality 

without knowing which tool owns the functionality. Sharing functionality requires tools to 

pass control from one to another, knowing only what functionality is needed, not which 

tool is needed. Additionally, tools must communicate the operations to be performed when 

passing control. Control integration complements data integration in that to pass control 

from one tool to another, data or a data reference is often needed as well. Thomas and 

Nejmeh identified two properties of control integration: provision and use [34]. 

1. Provision: Provision describes the extent to which each tool is needed by the inte- 

grated environment as a whole. If a tool is added to the environment but not used, 

it is said to be poorly integrated with respect to provision integration. Alternatively, 

a tool is well integrated if it offers services other tools in the environment will use. 

2. Use: The property of use complements that of provision in that it measures the 

extent to which a tool uses services offered by other tools in the environment. In 

order to achieve high use integration, the tools must be modular. Additionally, each 

tool in the environment must use the services provided by other tools rather than 

supplying the services within the tool. 

2.5.1-4 Process Integration. Process integration is the fourth class of inte- 

gration discussed in Thomas and Nejmeh's article. It deals with ensuring tools interact 

well to support a defined software process. Tools that support a software process make as- 
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sumptions about that process. Tools are said to be well integrated with respect to process 

integration if these assumptions are consistent. There are three properties associated with 

process integration: process step, process event and process constraint. An integration 

effort only needs to address process integration if the tools being integrated are relevant 

to the same process step; for example, they both influence requirements analysis. 

1. Process step: A process step is equivalent to a phase in the software life cycle. This 

property addresses how well the tools combine to support a step in the process. In 

an integration effort, one process step may be broken into smaller steps, each related 

to a tool. These tools usually work in sequence, the execution of one satisfying the 

precondition of the next in such a way that it may achieve its goals. Tools are well 

integrated with respect to process step integration if the integrated tools complete 

the process step and allow other tools to do their work. Conversely, tools are said 

to be poorly integrated if one tool makes it harder for other tools to achieve their 

goals, or if one tool does not satisfy the precondition directly, causing more work to 

be accomplished by other tools. 

2. Process event: A process step is composed of process events that, when executed 

sequentially, achieve the goals of that step. Prom the standpoint of tool integration, 

the integration is measured on how well the tools agree on the events that need 

to be accomplished in each step. Thomas and Nejmeh identified two aspects of 

process event agreement. First, the preconditions of one tool should reflect events 

generated by other tools. Second, one tool should generate events that help satisfy 

the preconditions of other tools. Tools are well integrated with respect to process 

event integration if they generate and handle events consistently. 

3. Process constraint: A process constraint is a condition that restricts some aspect 

of the process. In a tool integration effort, process constraints are examined to 

determine how well they cooperate to uphold the constraints. Tools are examined 

both on whether or not their functions are constrained by another tool's functions 

and if their functions constrain another tool's functions. If two tools agree on the 
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range of constraints they recognize and respect, they are well integrated with respect 

to process constraints. 

2.5.2 Wallnau and Feiler's Approach to Wasserman's Model. Wallnau and Feiler 

refine Wasserman's model differently than Thomas and Nejmeh. They argue that "frame- 

work and process integration are orthogonal to control, data, and presentation integration 

(and to each other)" [35]. In their opinion, process integration defines what tools get 

integrated, while framework integration defines how tools get integrated. This is effec- 

tively the same relationship that exists between requirements and design in a software 

development effort. Additionally, Wallnau and Feiler believe the original model that deals 

only with control, data and presentation integration is sufficient to characterize tool inte- 

gration. They do not believe, however, that control, data and presentation relationships 

define how to integrate tools, but rather they describe the relationships between integrated 

tools. Therefore, although the framework provides mechanisms to integrate tools, the tools 

themselves provide the details of integration. They view integration as being composed of 

three classes of entities: framework, process, and tools [35]. Since this research effort is 

focused on tool integration, that is the only class described below. Intertool integration is 

viewed as having three distinct types of integration, namely control, data, and presentation 

integration. 

2.5.2.1 Control Integration. Control integration embodies the concept of 

one tool executing functions of another tool, or supporting remote execution of functions 

of a tool. Control integration can be used to move control to where the data resides, 

rather than taking the data integration approach of moving data to where control resides. 

In the past, integration efforts have used data-driven and event-driven triggers, much like 

database triggers. Data-driven triggers cause actions to occur due to a change in data, 

such as a change in a database. Event-driven triggers cause actions to occur due to a 

change in the environment. The significance of recent development in control integration 

is the execution of a tool's lower-level functions. 
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2.5.2.2 Data Integration. Data integration has been the most common 

class of integration in research efforts for many years. The central point of many research 

efforts is making the data models and format agree between the tools. One way to achieve 

this goal is to have data in a central repository and manipulate the tools to access this 

data. Three other possible methods for data integration are format mechanisms, storage 

mechanisms and carrier mechanisms. Format mechanisms use an agreed-upon format for 

communication between tools, and include solutions that use a non-proprietary external 

format for data, such as PostScript. Solutions that use storage mechanisms for data in- 

tegration often involve using common databases, clipboards, and external files for data 

sharing. Carrier mechanisms, such as pipes and sockets or remote procedure calls, are also 

used for data integration. Agents carrying data could also be carrier mechanisms. 

Research efforts in the area of data integration have determined that some data 

repository services are often needed by the environment, to accomplish configuration man- 

agement and project management, and have nothing to do with tool integration. Due to 

this requirement, research has continued toward developing a central repository to handle 

data integration in CASE environments. This research has promoted the development of 

two concepts related to repository and data integration. The first is that the repository 

data model and the data management services should be separate. This approach allows 

the services and repository to access objects through the data model, while other envi- 

ronment tools can access the data management services directly. This concept supports a 

layered model for data integration. The second concept supports separating relationship 

management services and data management services. The key behind this concept is sepa- 

rating the relationship services from the underlying data model. This concept is aimed at 

providing traceability and configuration management services to tools that manage their 

own data. 

2.5.2.3 Presentation Integration. The goal of presentation integration is 

to provide a common look and feel for the integrated system. Over the years, this has 

become less platform dependent, meaning X Windows applications and Macintosh ap- 

plications may have the same kind of user interface.   In order to achieve presentation 
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integration, tools must agree on a standard interface, an ideal that is not often prac- 

ticed. Another approach is to use a user interface management system (UIMS), causing 

the system to be less dependent on low-level mechanisms and more dependent on window 

system-independent mechanisms. UIMS offer a framework for the integration, presenting a 

common look and feel to the integration effort without changing the underlying tools. In- 

tegrated Project Support Environment (IPSE) frameworks are in the same class as UIMS, 

and will not be widely used, for much the same reasons. Although both seem like a very 

promising concepts to presentation integration, they have not been widely adopted due to 

their immaturity and lack of availability in customer environments. 

2.6   Summary 

This chapter presented many tools that were candidates for integration with AFITtool, 

as well as the set of criteria that was used to select tools. Additionally, some of the meth- 

ods of integrating tools as well as the models upon which integration can be based were 

discussed. The next chapter presents a methodology for integrating software tools which 

was influenced by Thomas and Nejmeh's characteristics of data and control integration. 
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III.   Tool Integration Methodology 

The integration of two or more tools is intended to form a complete system, with the goals 

of the user in mind. In most cases, tools are integrated in order to form a system that 

supports a software development process or another business practice, such as managing 

inventory. Tool integration may become necessary after the merger of two companies, 

each one using different software to manage inventory. After the companies merge, the 

new company will need a single method of managing inventory and will not want to lose 

inventory information or functionality provided by the two tools. Integrating the two tools 

allows the new company to take advantage of all of the functionality of the two tools with 

the interface of one tool. The data that was previously used by two separate tools can also 

be transformed to a central repository which can be used by the integrated system. 

Since the goal of tool integration is to form a fully operational, totally integrated 

system, it is important to have a framework of rules guiding the integration process. For 

this reason, the primary goal of this research has been to develop a generic methodology 

that covers the majority of tool integrations involving existing tools. This methodology is 

based on the concept of a design space, composed of functional and structural dimensions. 

The functional dimensions of the design space identify the requirements for the tools that 

most affect the solution for the integration effort. The structural dimensions of the design 

space determine the overall framework of the integrated system. These dimensions detail 

the characteristics of the pair of tools being integrated (functional dimensions) and the 

characteristics of the resulting system (structural dimensions). This concept of a design 

space was discussed by Lane in his work on software architectures [25]. A design space is one 

method of classifying tools by examining each dimension. Each dimension enumerates all of 

the possibilities for that aspect of a tool [25]. The mapping from the functional dimensions 

to the structural dimensions is achieved through the use of design rules, guidelines for 

choosing between structural dimensions, given a set of functional dimensions. 

Although there are many methods used for tool integration, the methodology in this 

chapter offers a way of choosing between methods and achieving the goal of an integrated 

system. In developing this methodology, Lane's concept of a design space was extended. 

The concept presented by Lane included one set of functional dimensions and one set of 
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structural dimensions. For this effort, however, it seemed appropriate to have two sets of 

functional dimensions: one for a single tool and one for the tool pair. The methodology is 

based on this extension, rather than the strict model presented by Lane [25]. The chapter 

begins with an overview of the methodology, followed by a description of the functional 

dimensions and structural dimensions. Finally, the chapter concludes with the design rules 

for this design space. 

3.1 Methodology Overview 

In order to integrate two software tools, it is necessary to characterize the tools both 

individually and as a pair. The aspects of a single tool that apply to the integration include 

the methods used for data input and output and whether or not the tool can be extended, 

and if so, how it is extended. These aspects are classified as functional dimensions of a 

single tool, explained in the next section. The first step in the integration effort is to 

determine the values of each of these aspects. The next step is to examine the interface of 

the tool pair. The extendability of the two tools collectively is examined, as well as whether 

or not the data they share is compatible. These aspects are captured in the functional 

dimensions of a tool pair. 

After determining the values of each of the functional dimensions, the design rules 

for the design space can be applied, yielding values for each of the structural dimensions. 

The structural dimensions include determining the communication path that will be used 

in the integrated system, as well as the method of transforming the data and controlling 

the system. These steps are summarized in Table 1. The following sections describe each 

of the dimensions in detail, including the alternatives (values) for each dimension. 

3.2 Functional Dimensions 

Tool integration encompasses the tools in their entirety, but only certain aspects of 

the tools are actually considered in the integration. The functional dimensions for the tool 

integration design space take into account the characteristics relevant to the integration of 

the tools. After examining the data integration characteristics proposed by Thomas and 

Nejmeh [34], two sets of functional dimensions were defined.   Section 3.2.1 specifies the 
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Table 1      Methodology for Tool Integration 

Step 1:      Determine for each tool: 
Input Mechanism 
Output Mechanism 
Extendability 

Step 2:      Determine for each tool pair: 
Extendability Class 
Data Compatibility 

Step 3:      Apply design rules to determine structure of system 
Provide output of first tool and input of second tool to determine 
communication path. 
Apply design rules based on extendability class 
to determine control integration implementation and data transformation. 

characteristics of a single tool, the first set of functional dimensions, while Section 3.2.2 

characterizes a tool pair, the second set of functional dimensions. 

3.2.1 Functional Dimensions for a Single of Tool. The important aspects of a 

single tool are the method it uses for input, the method it uses for output, and the how 

the tool can be extended, if possible. To characterize a tool, one alternative from each 

dimension is chosen. The following paragraphs describe the three functional dimensions of 

a tool: input characteristics, output characteristics, and tool extendability, illustrated in 

Table 2. 

3.2.1.1 Input Characteristics. The first functional dimension for a single 

tool, input characteristics, characterizes the kind of input a tool uses. The input of a tool 

is characterized by the method it uses to obtain the data it needs. The input data is used 

to support the tool's functionality. The input data sources of a tool can be persistent 

or non-persistent, and any given tool may use more than one of the alternatives offered 

below. For tool integration, however, the tool is characterized by the input mechanism that 

is relevant to the integration effort. Tools that accept input through the use of a graphical 

user interface (GUI) may be integrated using this methodology, but the methodology does 

not specifically address concerns that may arise when integrating a tool with a GUI. For 

instance, the desire to create a seamlessly integrated system, with the appearance of one 

tool is not addressed with respect to a tool with a GUI since that deals with presentation 
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Table 2     Functional Dimensions for a Single of Tool 
Input Characteristics 

Standard Input 
File 
Command Line Parameters 
Message Passing 

Output Characteristics 
Standard Output 
File 
Message Passing 
Built-in Output 

Tool Extendability 
Source Code available 
Tool Provides Extension 
Both 
Neither 

integration. If the tool has a GUI but also accepts input from another source, that is how 

it should be characterized. There are four alternatives for the input dimension of a tool, 

as follows. 

• Standard Input (stdin): Stdin is the default input mechanism for many applications 

and supports operating system redirection. In command line applications, stdin 

refers to what is entered from the keyboard after the tool begins to execute. 

• File: The data needed by the tool is held in a file. The tool knows the format of 

the file and uses it for the data requirements. The path and name of the file may 

be stored internal to the tool or may be supplied by the user at run-time. For the 

purposes of this research, any persistent data source is termed a "file." 

• Command line parameters: Command line parameters are parameters supplied when 

the tool is executed. A tool could accept small amounts of data on the command 

line, as in doquery -T<text>. 

• Message Passing: If input from a tool is accomplished via message passing, it expects 

data and possibly control messages in a certain format. These messages give the tool 

the information it needs to perform the functions requested by the user.   A tool 
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that uses messages as input makes it possible to monitor the flow of communication, 

capturing key messages for use in controlling the system. 

3.2.1.2 Output Characteristics. Output characteristics of a tool, the second 

functional dimension, describe the methods a tool uses to record the results of the functions 

it performs. Sometimes this "recording" is persistent, as in the case of a file, and other 

times it is not, as in the case of standard output. The possibilities for output from a 

tool are very similar to input, but there are some differences. For instance, the printer 

and standard error are legitimate output destinations, but are not often considered input 

sources. Similar to the input characteristics, a GUI is a valid output mechanism for a tool, 

but is not considered in this methodology. There are four alternatives to this dimension. 

• Standard Output (stdout): Stdout is the default output mechanism for many ap- 

plications, much like stdin is the default input. Stdout refers to data or messages 

printed to the screen. Additionally, stdout supports operating system redirection. 

• File: The tool writes its output to a known file location and format. The location 

of the file may be specified internal to the tool or it may be supplied by the user at 

run-time. 

• Message Passing: Using message passing as an output source involves the tool sending 

formatted messages containing data to an external destination. 

• Built-in Output: There are several output streams available to some tools through 

the operating system or the chosen programming language, including the printer, 

standard error (stderr) and a log file. The printer is usually reserved as an output 

destination for formatted data. Stderr is the default output mechanism for errors. 

It is used by both GUI and command line applications. The log file is an output 

destination for messages the tool writes for the user's benefit. Additionally, some 

tools have an internal format that is used to store data, and is not actually output, 

such as the ASTs produced in Refine. These built-in output mechanisms may or may 

not support operating system redirection. 
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3.2.1.3 Tool Extendability. The third functional dimension, the extend- 

ability of a tool, is an important functional dimension in the design space. The ability to 

extend the tool means the integrator is able to extend the tool beyond its current capabil- 

ities. If the source code is available, routines may be written for data integration, control 

integration, or both, and compiled into the tool so that they become part of the tool. Data 

integration routines may be written to pre-process or post-process the data. 

If the source code is not available but the tool is extendable by some other method, 

the same kinds of routines may be written, as described previously, but they will not be 

part of the compiled version of the tool. Tools that offer this sort of extendability often 

accomplish it through a combination of allowing menus to be extended (or added) and 

some sort of programming language. This method gives the integration expert the ability 

to define a menu option for the desired functionality and write a script or program to 

achieve the functionality. The last possibility is that the tool cannot be extended. There 

are four alternatives to this dimension: the source code is available, the tool provides for 

extension, both, or neither. 

Table 3     Functional Dimensions for a Pair of Tools 
Extendability Class 

Neither Extendable 
First Extendable 
Second Extendable 
Both Extendable 

Data Compatibilty 
Compatible 
Not Compatible  

3.2.2 Functional Dimensions for a Pair of Tools. The functional dimensions 

for a pair of tools are necessary in order to characterize the interface between the tools. 

The tool interface is central to the integration effort and must be fully understood in 

order to proceed with the integration. When examining the tool pair to be integrated, 

the extendability of the pair is important, as is the data compatibility between the tools. 

From the values of these dimensions, the design rules can be applied and the structure 

of the integrated system can be determined.   The tool pair is considered as having a 
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"first" and "second" tool, indicating the direction of the flow of data. In the case where 

tools communicate in two directions, i.e., the output of tool A is used by tool B and vice 

versa, this methodology should be applied twice, once for each direction of data flow. The 

following sections describe each dimension, the extendability class and data compatibility 

of a tool pair, illustrated in Table 3. 

3.2.2.1 Extendability Class. In examining a tool pair, the first functional 

dimension involves determining the extendability of the tool pair. This dimension considers 

all possible combinations of the Tool Extendability dimension for one tool, yielding 16 

possibilities for the extendability of a tool pair. These possibilities can be grouped based 

on similarities in how the integration is accomplished. For instance, there is not a difference 

between the integration of a tool pair with the Extendability values Source Code and Tool 

Provides and the integration of a tool pair with values Source Code and Source Code. Both 

of the tool pairs have two extendable tools. Therefore, since the tool pairs fit into the 

same equivalence class with respect to integration, the design space was reduced to reflect 

the similarities of the tool pairs. Following this guideline, the four alternatives to this 

dimension are produced: Neither Extendable, First Extendable, Second Extendable, and 

Both Extendable. Table 4 illustrates how the possibilities for the individual tools combine 

to determine the Extendability Class for the tool pair. 

Table 4     Extendability Class 
Tool 2 

Tooll Neither Source Code Tool Provides Both 

Neither Neither Second Second Second 

Source Code First Both Both Both 
Tool Provides First Both Both Both 

Both First Both Both Both 

3.2.2.2 Data Compatibility. The second functional dimension for a tool 

pair, Data Compatibility, describes whether or not the data that the tools share is compat- 

ible. Data can be compatible syntactically and/or informationally. It is assumed that the 

data is compatible informationally, meaning the data required by one tool is represented in 

some form by the other tool. Therefore, this dimension needs only to characterize whether 
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Table 5      Structural Dimensions 
Communication Path 
Shared Data 

Data passed via stdin/stdout 
Data passed via message passing 
Data passed via middleware 

Control Integration Implementation 
Client-Server 
Centralized 
Distributed 

Data Transformation 
Transformation by output tool 
Transformation by input tool 
Transformation by both tools 
Transformation by external source 
No Transformation needed 

or not the syntax of the data is compatible. If the data for both tools is in the same format, 

the data is compatible sytactically. The compatibility of the data influences the structure 

of the integrated system, specifically when data integration is performed. The alternatives 

to this dimension are compatible and not compatible. 

3.3   Structural Dimensions 

The structural dimensions of the design space represent the outcome of the decisions 

made as a result of analyzing the functional dimensions, determining the integration meth- 

ods of the overall system. The structural dimensions are: Communication Path, Control 

Integration Implementation, and Data Transformation, illustrated in Table 5. 

3.3.1 Communication Path. The first structural dimension, the communication 

path, describes the manner in which the data is exchanged by the tool pair being examined. 

This dimension of the design space has four alternatives: shared data, data passed via 

stdin/stdout, data passed via message passing and data passed by middleware. 

• Shared Data: In an integrated system, several tools often use the same data, with 

each tool reading from and/or writing to the data. There are several possible storage 

mechanisms for shared data, including a file, common objects, or a database.  The 
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key characteristic of shared data that distinguishes it from another type of data is 

that it is persistent, allowing one tool or several tools to access the data. Since 

multiple tools are working on the same data, problems with synchronous data access 

could be encountered including resource locking, stale data, and timing issues. These 

problems have to be addressed during the integration effort. 

• Passed Data: Data that is needed by the second tool may be sent from the first tool 

so that they may both use the data. The data passed is generally non-persistent, 

relevant only during the execution of the tools using the data. Three of the alter- 

natives of this dimension are special cases of passed data. The communication path 

for the data can be through stdin/stdout, message passing, or via middleware. The 

characteristics of stdin/stdout and message passing described in Sections 3.2.1.1 and 

3.2.1.2 are valid in the case of passing data as well as input and output mechanisms 

for the tool. 

3.3.2 Control Integration Implementation. Control integration, the next struc- 

tural dimension, provides a seamlessly integrated system by managing the control flow for 

the entire system [9]. When several tools are integrated into one environment, one of the 

goals of the integration effort is to develop an environment with a logical control flow, 

based on the user's criteria, such as supporting a particular software process or methodol- 

ogy. Control integration can provide the illusion of a single system consisting of multiple 

components rather than a system that is an aggregate of several tools. Control integra- 

tion implementation has three alternatives: client-server control, centralized control, and 

distributed control. 

• Client-Server Control: Client-server control involves one tool invoking another tool. 

Based on the characteristics of the system, client-server control may involve executing 

another tool or it may involve simply executing specific functions of another tool. 

• Centralized Control: Centralized control is usually achieved through the use of one 

driver program. This program executes the tools at the appropriate times. It may 

also need to run any necessary data conversions and pass data and messages between 

programs. (See Section 3.3.3.) The user sees one system, through the driver program. 
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• Distributed Control: Distributed control in an integrated system means control is 

spread throughout the system, requiring several components of the system to handle 

control. One approach to distributed control is to develop wrappers or individual 

controllers for each tool to handle some aspect of control for the system. Each 

wrapper would handle all communication from the other wrappers and invoke the 

tool when necessary. Specifically, agents can be used as wrappers to handle tasks 

such as communicating with other tools, running another tool, or running a data 

conversion routine before invoking another tool. Agents are usually passive monitors 

that only become active when a trigger event occurs, such as one tool completing its 

write to a central data source [13]. The agent may then be programmed to notify 

the other tool(s) in the system that they can use the data. Agents are often used as 

a glue for integrated systems. The agents will actually act more like messengers in 

that they can carry data or control information and wait for a reply before returning. 

3.3.3 Data Transformation. The final structural dimension, data transformation, 

addresses the amount of similarity of the two tools' data before integration. Two tools that 

use the same data can be evaluated on the degree of transformation the data must undergo 

before it can be used. This dimension has five alternatives: no data transformation needed, 

data transformation performed by the output tool, data transformation performed by the 

input tool, data transformation performed by both tools or data transformation performed 

by an external source. 

• No transformation needed: Data that does not need to be transformed is in the 

proper format for both tools without any translation. 

• Transformation performed by the output tool: As part of the integration effort, the 

choice may be made to use a tool's input data format as the common format for 

integration. In this case, any tool which outputs data must post-process this data, 

converting it to the chosen format. 

Transformation performed by the input tool: A tool using data from a common data 

source may need to pre-process it to the format it expects before it is used. 
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Transformation performed by both tools: If two tools use the same data, it may be 

the case that the data is stored in a standard format, causing both tools to transform 

the data to and from the standard format. 

Transformation performed by an external source: Tools may rely on an external 

program to transform data into a format they can use. Transformations performed by 

middleware could be accomplished with scripts or a program in a high-level language. 

The functional and structural dimensions of the tool integration design space have 

now been described in detail. These dimensions are used to describe the inputs and output 

of the methodology: the tools which are to be integrated and the resulting integrated 

system. The following section discusses the design rules of the design space, which provide 

a mapping from the structural dimensions to the functional dimensions of the design space. 

3.4   Design Rules 

Design rules are meant to be guidelines used by the integrator to decide which method 

of integration to choose. For the tool integration design space, there are a potential mul- 

titude of design rules. The rules in the following sections were developed based on the 

methods used to integrate tools, described in Chapter 2. There is not a quantitative scale 

for the rules; instead, if a solution is preferred, the term "prefer" is used. Applying the 

design rules is the second step of the process. The first step, determining the extend- 

ability class for the pair of tools, is described in Section 3.2.2.1. That step examines the 

extendability of the tool pair and places it in an extendability class. 

The design rules use the values given to each of the functional dimensions, for both 

a single tool and the tool pair, to determine the structural dimensions for the integration. 

Design rules are applied in two phases. First, the communication path rules are applied, 

considering the input and output mechanism of the tool interface, to determine the com- 

munication path. The notation "X/Y" (for example, "stdout/stdin") is used to indicate 

output of first tool/input of second tool and is referred to as the "data interface" between 

the two tools. In the second phase, design rules are applied according to the extendability 

class to determine the control integration implementation, the data interface, and the data 
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transformation.   In some cases, the extendability class rules note exceptions to the tool 

interface rules. 

The next section describes the communication path rules, applicable to all extend- 

ability classes. The following sections contain design rules for each extendability class, in 

Table 3. Each of the sections that are specific to an extendability class include a diagram 

that denotes the control and data flow through the resultant system. Control flow in the 

system is indicated on the diagram by dashed lines, while data flow is indicated by solid 

lines. 

Table 6     Communication Path Design Rules 

Rule 
Number Tool Interface: Communication Path: 

Tl file/(anything) 
or (anything)/file 

Shared Data 

T2 stdout/stdin Stdin and Stdout 

T3 Msg Passing/(anything) 
or (anything)/Msg Passing 

Message Passing 

3.4.I Communication Path Design Rules. The communication path rules are 

based upon the interface of the tool pair and provide guidance regardless of the extend- 

ability class. In some cases, rules specific to the extendability class may contradict these 

rules. These rules address the communication path (Table 5), one of the structural di- 

mensions of the integrated system based on the tool values defined in Table 2. Table 6 

summarizes these rules. 

• Rule Tl: If file/(anything) or (anything)/file, the shared data communication path 

should be used, since files are easily used as shared data. Files can be made to allow 

access to both tools and can be manipulated into the desired format. 

• Rule T2: If stdout/stdin, stdin and stdout should be used for the communication 

path since they are operating system standard input and output mechanisms. Stdin 

and stdout are inherently good communication mechanisms and this characteristic 

should be taken advantage of when integrating tools that use them. 
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• Rule T3: If messages are used to pass data, message passing should be used as the 

communication path. Tools that use messages to communicate can be linked to 

another tool by using message passing to communicate between them. 

3.4.2 Neither Extendable. The neither extendable class should use middleware 

to handle the integration. Since the middleware is a centralized application, centralized 

control should be implemented. The nature of the tools dictates the implementation chosen 

for the central controller. If one of the tools is interactive and the other submits batch jobs, 

it is desirable to gather all of the necessary information from the interactive tool and use 

it to submit the batch jobs. Alternatively, if the input to the interactive tool can be stored 

and supplied to the tool without user interaction, that may be preferred. These decisions 

are based on the specific tools being integrated and their relationship to the process they 

support. The key is that centralized control can be used to customize the default method 

of input and output so that it is what the customer desires. 

If one tool places its data in a central location and the other tool uses passed data, 

the middleware should perform transformations on the data so that both tools use shared 

data. The tool that depends on passed data cannot be changed, but the middleware can 

reroute the data so that the input source or output destination for the tool using passed 

data does not change. Since neither tool can be extended, the middleware must perform 

any necessary data conversions between the tools. Therefore, the data transformation 

value would be Transformation via Middleware. 

The resulting system of a tool pair in this class would use middleware to execute 

the first tool, execute any data conversion routines and then execute the second tool. In 

this manner, data integration is achieved by executing the conversion routine and control 

integration is executed by providing a method for the user to invoke one program that in 

turn controls the other two tools, illustrated in Figure 2. 

34.3 First Extend. Tool pairs that are in the extendability class First Extend 

have a set of design rules that are specific to the class to guide the integration effort. These 
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Figure 2     Neither Tool Extendable 

rules are primarily based on the data interface between the two tools and provide guidance 

on the data compatibility of the integrated tools. 

There are three general rules that are applied to this class, regardless of the tool 

interface. The first rule addresses control integration implementation. Since only the first 

tool of the pair is extended, the appropriate control integration implementation is client- 

server control. Client-server control is used when one tool controls the other, or executes 

functions in the other tool. Second, in this class, data transformation is performed by the 

output tool since the first tool can be extended to properly format the data. 

The third rule describes reasons to change the extendability class of the tool pair. 

The integration of a tool pair in this extendability class may also be approached by fol- 

lowing the rules for Neither Extendable. This solution may be desirable in the following 

cases: if the data conversion involves two data formats which are completely dissimilar, 

but could be transformed to a central format; if the extendability interface of the tool 

does not provide the functionality needed to completely integrate the two tools; or if the 
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extendability interface of a tool is not well-documented or well supported, making a driver 

program more maintainable. If this approach is chosen, the appropriate control integration 

implementation should be used, as described in the design rules for Neither Extendable. 

The remaining rules for this class are presented in Table 7 and are described in more 

detail in Appendix D of this document. The letter/number combinations in the table refer 

to the designator for the related transformation, described in detail below the table. 

Table 7     Design Rules for First Extend 

Stdin Message Passing File Command Line 

Stdout Fl F5 F2 F2 or F3 

Message Passing F2 F5 F2 F2 or F3 

File F4 F5 F2 F2 or F3 

Built-in Output F2 F5 F2 F2 or F3 

• Transform Fl: Extend the first tool to convert the data to the proper format for the 

second tool. Develop a driver program to pipe the two tools together, using stdout 

and stdin to pass the data from the first tool to the second. 

• Transform F2: Modify the first tool, if necessary, to write its data to a file. After 

ensuring this file is in the proper format for the second tool, execute the second tool. 

• Transform F3: If the command line input of the second tool expects actual data 

on the command line, extend the first tool to build the command and execute the 

second tool. 

• Transform F4: Extend the first tool to format the data properly for the second tool 

and build the command line for the execution of the second tool. Redirect the input 

from the file to the second tool as part of the command. 

• Transform F5: Extend the first tool to gather all of its output data, ensure it's in the 

proper format for the second tool, and then execute the second tool. Pass messages 

to the tool from the data gathered from the first tool. 

Data integration for a pair of tools in this class is accomplished by writing a data 

conversion routine to change the format of the data, location of the data, or both. Data 

integration is handled by a conversion routine executed by the tool that is extended. The 
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control integration is also achieved by the extended tool executing the tools in the proper 

order. The resultant architecture of the integrated system, illustrated in Figure 3, is 

straightforward. 

USER 

Figure 3     First Tool Extendable 

3.44    Second Extend. The extendability class Second Extend also has a set 

of design rules that are specific to the class to guide the integration effort. In general, 

integration efforts in this solution class should use client-server control. The reasoning 

is similar to that given for First Extend; only one tool is extended, so that tool will be 

responsible for controlling the other tool and that meets the description of client-server 

control. For tool pairs in this class, data transformation is performed by the input tool 

since the second tool can be extended to properly format the data. Also, for the same 

reasons expressed in First Extend, it may be desirable to change the method of integration 

to follow the rules for the Neither Extendable class. 

The remaining rules for this class are presented in Table 8 and are described in more 

detail in Appendix D of this document. The letter/number combinations in the table 

reference transforms, described below the table. 

• Transform SI: Extend the second tool to convert the data to the proper format from 

the first tool. Develop a driver program to pipe the two tools together, using stdout 

and stdin to pass the data from the first tool to the second. 
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Table 8     Design Rules for Second Extend 

Stdin Message Passing File Command Line 

Stdout SI S2 S3 S3 or S4 

Message Passing S3 S2 S3 S3 or S4 

File S3 S2 S3 S3 or S4 

Built-in Output S3 S2 S3 S3 or S4 

• Transform S2: Extend the second tool to gather all of the output from the first 

tool. Perform any necessary data conversion and then execute the second tool. Pass 

messages to the tool from the data gathered from the first tool. 

• Transform S3: Extend the second tool to execute the first tool, save the data in a 

file, and perform any necessary data conversions. Use the data as input to the second 

tool. 

• Transform S4: If the command line input of the second tool expects actual data on 

the command line, extend it to execute the first tool, build the command and execute 

the appropriate functions of the second tool. 

In the resulting system, the second tool will execute the first tool when it is executed, 

perform any changes to the data that are necessary, and finally execute the functionality 

of the second tool that is desired. Data integration is handled by a conversion routine 

executed by the tool that is extended. The control integration is also achieved by the 

extended tool executing the tools in the proper order. Since extending the second tool is 

similar to extending the first tool, it is not illustrated. 

3.4.5 Both Extend. Even though it is possible to extend both tools in this pair, it 

is preferred to choose one to extend, based on its control and data characteristics. Since it 

does not matter which tool is chosen, the tool that most lends itself to extension should be 

chosen. Extending two tools complicates the initial development as well as the maintenance 

of the system by increasing the complexity of the system. However, if one tool lends itself 

to data integration, while the other lends itself to control integration, both tools may be 

extended. If both tools have a GUI, the integrator should develop a driver program that 

will give a unified feeling to the system.   In this case, centralized control is used.   By 
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choosing one tool for extension, the design rules for First Extend or Second Extend are 

applicable. 

If the decision is made to extend both tools, distributed control should be imple- 

mented. Using distributed control allows each tool to initiate functions in the other tool 

and retrieve the results, creating a distributed environment in the system. There are sev- 

eral possible methods for handling data and control integration for the tool pair. One tool 

may handle data integration while the other tool handles control integration. Alterna- 

tively, both tools could be extended to handle data integration, while only one implements 

control integration. Data integration may involve each tool pre- or post-processing the 

data. Additionally, a message passing scheme may need to be established to ensure the 

data is not in use by both tools simultaneously. For control integration, it is usually best 

to extend the first tool in the sequence to call the second tool, allowing the user to think 

logically about the progression of the integrated system. However, in a case where the first 

tool in the sequence does not lend itself to control integration, the second tool may also be 

used for that aspect of integration. An example of the resultant architecture of extending 

one tool for data and one for control is illustrated in Figure 4. 
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3.5 Two-Way Communication 

In some cases, the tool pair being integrated may need to have two-way communica- 

tion, that is, communication from each tool to the other tool. In this case, tool integration 

should be approached, using this methodology, as if the tools are two pairs of tools, one 

with communication in one direction and one with communication in the other direction. 

By approaching the integration in this manner, the integration is broken down into two 

smaller pieces and the methodology presented in this chapter may be used to guide the 

integration. As the methodology is applied, it is possible that it will recommend extending 

one tool for each integration, causing both tools to be extended for the overall integration. 

If this is the case, the rules for Both Extend should be examined and, if possible, only 

one tool should be extended. Otherwise, the methodology should be followed in the same 

manner as integrating a tool pair with one-way communication. 

3.6 Summary 

This chapter provides an overview of the methodology developed as part of this 

research effort. Two concepts were combined to develop this methodology: the concept 

of a design space, composed of functional dimensions, structural dimensions, and design 

rules, and the concept of integration classes. The step-by-step approach described here is 

illustrated in the next chapter through the application of the methodology to integrations 

involving .AFJTtool. 
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IV.   Application of Methodology to AFYItool 

The integration of tools can be accomplished in several ways, some of which were described 

in previous chapters. AFITtool was integrated with three other tools: a parser for archi- 

tectural specifications written in Acme [12], Rational Rose 98, a CASE tool for software 

development [21], and daVinci, a graph layout tool [10]. 

The integration of AFITtool was accomplished using two types of integration from 

Wasserman's model, namely control and data integration. Platform integration is ignored 

since all of the tools reside on the Unix platform, making platform integration unnecessary. 

Presentation integration is considered in the criteria for the tools to be integrated, by 

considering the interface to the tools. However, it is not the primary concern for this 

integration effort; functionality of the resulting toolset is the primary concern. Process 

integration, how the tools fit into the software process, is another type of integration that 

is considered in the selection of tools to integrate and is not used during the integration 

effort. The next sections contain detailed descriptions of the integrations implemented 

between AFITtool and the tools listed above. The final section of this chapter describes 

how the methodology described in the previous chapter meets the requirements of control 

and data integration, as developed by Thomas and Nejmeh. 

4-1   Integration of AFITtool 

To solve the problem described in Chapter 1, AFITtool was integrated with Rose, 

the Acme parser, and daVinci. Each tool chosen met all of the criteria for tool integration 

and addressed at least one shortcoming of AFITtool, described in Chapter 2. All three 

tools improved the user's ability to analyze the model by offering different views of it. In 

addition, the integration with Rose offers another method of inputting domain models, 

with an interface that is more user friendly than the current AFITtool interface. 

This integrated system is illustrated in Figure 5. Rose is used to develop the informal 

model of the software system, including class specifications and state diagrams. The user 

is able to define other diagrams in Rose that may help with general understanding, but 

these are not used by AFITtool. Rose provides the user the capability of entering textual 
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information which can be used for formal constraints and this information is used in the 

integration. Through the use of a Rose script, the information needed to populate the 

domain model in AFITtool is gathered from the Rose diagrams and output to a BTfiX file 

that can be parsed into AFITtool using its current capabilities. 

Rose can also be used to develop object model and state diagrams of a domain 

from an existing file. Through the use of another Rose script, a ETFJX file in the format 

AFITtool expects can be used as input to create Rose diagrams. This capability can be 

used to create object and state diagrams from existing domains, with little help from the 

user. 

Acme extends the capability of AFITtool by allowing the user to generate an ar- 

chitecture specification for the system. The class and event flow information, stored in 

the domain model, are used to generate an architecture based on the hierarchical object 

model. 
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AFITtool was integrated with daVinci in order to display the process diagram of 

the currently loaded domain model. Processes are represented by circles and data flows 

are represented by lines going from one circle to another, with the name(s) of the data 

element(s) on the line. The process diagram generated from the model can assist the user 

in visually checking the correctness of the data flow model. 

4.2   Integration of AFITtool and the Acme parser 

The Acme parser is a batch tool with a command line interface. By default, the 

parser uses standard in (stdin) and standard out (stdout) for input and output. The source 

code for the parser is available, allowing it to be extended for control or data integration 

purposes. By gathering information from the domain model in AFITtool, Acme code is 

generated representing the object structural model. The Acme file is then sent to the 

Acme parser for syntax checking and re-formatting. The Acme parser generates output 

that is re-formatted according to the approved format of an Acme file. This integration 

was accomplished by following the methodology presented in Chapter 3. The following 

paragraphs describe the steps taken. 

4.2.1 Representing the Domain Model in Acme. The Acme language provides a 

method of representing the architecture of a system. The domain model stored in AFITtool 

can be represented in Acme in a hierarchical fashion. For instance, the relationships 

between classes that are stored in the domain AST, such as aggregation and inheritance, 

can be represented in the Acme language. If there is only one level in the domain, such as 

a single primitive component, that can also be represented in Acme. 

In this integration, the event flows were chosen to represent the interaction between 

classes in the domain. The state transition table, part of the ETpjX file used as input 

to AFITtool, contains the information needed for generating the Acme file of event flows. 

Table 9 is an example of a state transition table for the SubCounter class. Figure 6 contains 

the output generated from Acme as well as the corresponding event flow diagram. The 

diagram itself is not created by the tool, but could be drawn by the user to check the 
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Table 9 State Transition r. \b\e for SnbCounter Class 
Current Event Guard Next Action Send 

CountingUp ReSet CountingUp ResetCount 

CountingUp CSet CountingUp Set Count 

CountingDown CSet CountingDown SetCount 

CountingDown ReSet CountingDown ResetCount 

CountingUp SetMode newmode = down CountingDown SetModeDown 

CountingUp Count thecount < limit CountingUp IncrementCount 

CountingUp Count thecount = limit CountingUp Alarm 

CountingDown SetMode newmode = up CountingUp SetModeUp 

CountingDown Count thecount > 0 CountingDown Decrement 

CountingDown Count thecount = 0 CountingDown Alarm 

NotReset Count thecount > 0 NotReset Decrement 

NotReset Reset Reset Notice 

Reset Count thecount > 0 Reset Decrement 

validity of the system. An example of the Acme representation of an aggregate class is in 

Appendix E of this document. 

The components of the architecture model are the classes of the object model, while 

the connectors are the event flows to and from these classes. The end result is an architec- 

tural description of an event flow diagram. A distinction is made between aggregate and 

primitive classes in several ways. An aggregate class is of type AggregateClass in Acme, 

and is developed with a Representation containing the necessary information on the classes 

that make up the aggregate. These classes can be either primitive or aggregate classes, 

and the architectural description represents multiple level aggregates if they exist in the 

domain. 

Primitive classes, those classes that are not composed of other classes, are represented 

architecturally with ports, connectors, and attachments between the connectors and the 

ports. They are of type PrimitiveClass. Each port is assigned to a component and is of 

type SendPort, if the event is sent to a destination outside the class, or ReceivePort, if 

the event is received from outside the class. Each event is assigned a connector, of type 

EventFlow, as a path for the event to travel along. The connector has a destination and a 

source, each of which are attached to a port. 

The interactions between classes, based on event flows in the domain model, are 

represented by placing connectors between the classes.   Each class must have ports for 

52 



Pnnnt ^ 

SubCounter 

Nntire „_ 
SetMnrfe 

CSfit 
PpSet *- 

System c3 : ObjectEvent - { 

Component Counter: PrimitiveClass; 

Component SubCounter: PrimitiveClass - { 

Port Alarm: SendPort; 

Port CSet: ReceivePort; 

Port Count: ReceivePort; 

Port Notice: SendPort; 

Port ReSet: ReceivePort; 

Port SetMode: ReceivePort; 

}; 
Connector AlarmEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

>; 
Connector CSetEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

>; 
Connector CountEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

}; 
Connector NoticeEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

}; 
Connector ReSetEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

>; 
Connector SetModeEvent: EventFlow - { 

Role sink: Destination; 

Role source: Source; 

}; 
Attachments { 

SubCounter.Notice to NoticeEvent.source; 

SubCounter.Alarm to AlarmEvent.source; 

SubCounter.Count to CountEvent.sink; 

SubCounter.SetMode to SetModeEvent.sink; 

SubCounter.CSet to CSetEvent.sink; 

SubCounter.ReSet to ReSetEvent.sink; 

}; 

Figure 6      Output of the Acme parser 
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each event type sent or received. Attachments are made between each event flow connec- 

tor and the correct port, based on which class sends and which class receives the event 

type. Through this mapping, the event flows in the system are represented by connectors 

between classes and ports on classes. In Figure 6, one example of an event type is the 

connector AlarmEvent. The port Notice has both a role named sink and a role named 

source, identifying each end of the connector. 

Each class in the object model is represented by a component in the architecture. 

Primitive classes, of type PrimitiveClass, are represented in Acme by defining the event 

types valid for that class. Each class has a port for each event type sent or received. If 

the class is the originator of the event type, the port is of type SendPort, and if the event 

type is received from outside of the class the port is of type ReceivePort. Notice that in 

Figure 6 the component SubCounter has a port for each event type in the class. Connectors 

are attached to ports of components, representing an event flow between the components. 

Each event type is assigned a connector, of type EventFlow, as a path for the event to 

travel along. The connector has a destination connected to a receive port and a source 

connected to a send port. When the domain model is processed, connectors are made for 

each event type for each class. Attachments are detected between two classes if two classes 

in the domain use the same name for an event type. This name matching provides the 

sender and receiver of the event type, allowing each Acme connector to be attached to one 

SendPort in the sending class and one ReceivePort in the receiving class. In some domains, 

however, both the sender and receiver may not be present, leaving a dangling event flow. 

Each aggregate class is of type AggregateClass in Acme, and is developed with a 

Representation containing the necessary information on the classes that make up the ag- 

gregate. These classes can be either primitive or aggregate classes, and the architectural 

description can represent multiple level aggregates, if applicable. Aggregate classes also 

have ports, connectors, and attachments for the events flowing at the level of the aggre- 

gate class. For each primitive class that is part of an aggregate class, the information 

described above is included. For each aggregate class that is part of another aggregate 

class, information is included on each component of the aggregate. 
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The resulting architecture description can be used to visually check the validity 

of the event flows of the system, ensuring every event type has a sending class and a 

receiving class, denoted in the Attachments section of the Acme code. If the sender or 

receiver class of an event type is not in the domain, the user can enter that information 

into AFITtool and generate the Acme code again. The parsed Acme code can also be 

annotated, using a text editor, for use in other tools, such as Rapide and Wright. Rapide 

can be used to simulate the system, while Wright can be used to translate the code into 

other architecture languages. Information on how to do this can be found in the Wright 

and Rapide documentation [18] [17]. 

4.2.2   Application of the Methodology. As described in the methodology, the 

first step is to determine the input, output, and extendability of each tool. The input 

and output values for the Acme parser are Stdin and Stdout. For AFITtool, the input 

and output values are File and Built-in Output. The extendability value for both tools 

is Source Code Available. The next step is to determine the extendability class and data 

compatibility for the tool pair. In this case, the extendability class is Both Extendable and 

the data compatibility value is Not Compatible since the data in AFITtool is not in the 

correct format for the Acme parser. 

From these values along the functional dimensions, the design rules are applied to 

determine the values for the structural dimensions. Since the Acme parser was extended 

to take file input, tool interface rule Tl applies, and Shared Data is determined as the 

value for the communication path. By applying the design rules for Both Extend, it was 

determined that only one tool should be extended, even though it is possible to extend 

both tools. The decision was made, however, to perform minor extensions to the Acme 

parser to allow file input and output. This decision follows the spirit of the design rule, 

and allows a cleaner interface between the two tools. Therefore, the extendability class 

is changed to First Extend, since AFITtool contains the information needed by the Acme 

parser. 

Next, the rules for First Extend were applied since the majority of the extension 

was performed to AFITtool. Following the guidance on control integration, the value for 
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the control integration dimension was determined to be Client-Server. Transform F2 was 

used, directing that the built-in output of AFITiool be captured in a file in the proper 

format for the Acme parser. By applying this rule, the value of the structural dimension 

data transformation is Transformation by Output Tool. The values for the functional 

and structural dimensions of this integration are summarized in Figure 7. The next two 

subsections describe in detail how the integration was implemented, based on the decisions 

made by following the methodology. 

4.2.3 Data Integration. Data integration between .A.F7Ttool and the Acme parser 

was accomplished by extending both tools. The Acme parser was extended to take input 

and output file names on the command line. Both the input file name and output file name 

are provided by the user. AFITtool was extended to generate an Acme file, in the syntax 

expected by the parser. Refine code was written to read the domain Abstract Syntax Tree 

(AST) in AFITiool and write an output file containing the architectural information for 

the Acme source file. To generate this file, each class in the domain is examined. First, 

aggregate classes are examined, generating event types for any events sent or received at 

the aggregate level. Next, each primitive class that is part of an aggregate is examined and 

Acme code is generated to represent the aggregate as a composition of its primitive classes. 

Each primitive class is examined to determine any event flows sent or received by the class, 

and an Acme connection is generated to represent the event type. Finally, primitive classes 

that are not part of an aggregate class are examined and processed, generating event flows 
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for each class. In addition to the event flows, each class has a port for each event type and 

an attachment between each event flow and its respective port. 

4.2.4 Control Integration. Control integration of the Acme parser and AFITtool 

was accomplished by extending AFITtool to generate the Acme file and to invoke the Acme 

parser. The extensions to -AFITtool were accomplished through the use of Refine, both 

the language and the environment of AFITtool. The user is able to select the generation 

of Acme code from the domain menu of AFITtool. When this option is selected, the data 

transformation program that was written to gather information from the domain model 

and output it in Acme is invoked. The program also calls the Acme parser, passing the 

input and output file names received from the user. The Acme parser then executes and 

prints an error code in the AFITtool window if it detects an error or a "TRUE" if it 

achieves successful completion. After the parser executes, control is returned to AFITtool 

and the user may choose another option from the menu. If the parser detects an error, it 

is reported to the user, allowing the revision of the domain model. Any errors that are 

reported by the parser are not handled by AFITtool in any way. After any revisions, the 

Acme code must be generated and parsed again. 

4.3   Integration of Rational Rose 98 and AFITtool 

Rational Rose 98 is a CASE tool, designed to be used throughout the life cycle of a 

software system. Rose, however, uses semi-formal methods to specify the systems, while 

AFITtool uses formal methods, ensuring the final system is correct with respect to the 

requirements specification. By combining these two tools, the user is able to informally 

specify the domain of the software system and to embed formal constraints in Rose's 

textual fields, send the information to AFITtool, and use AFITtooYs formal capabilities 

to complete the design transformations and code development of the specification. The 

integration of Rose and AFITtool was separated into two integrations, one from Rose to 

AFITtool and the second from AFITtool to Rose. The next sections describe the first 

integration. 
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4-3.1 Representing Rose drawings in the Domain Model. The first step in allowing 

Rose drawings as input to AFITtool is to specify the system, through drawings, in a 

manner that AFITtool understands. The current input to AFITtool is a Z specification in 

WFi^i format. This format is difficult to write and often difficult for the user to understand. 

Although the proper use of a formal language guarantees the code produced will correctly 

represent the specification, if the specification is incorrect the system will be incorrect. 

The use of a semi-formal tool increases the likelihood of a correct specification because 

the tool makes it easier for the user to understand what he or she has specified. Rose 

specifications are essentially a series of drawings, meaning the user has to understand the 

syntax of the drawings, a task that is often easier than understanding a formal language 

such as Z. Because the user understands the drawings, sometimes he or she is able to detect 

flaws they would not detect by looking at the WF$£ Z specification. By combining Rose 

and AFITtool, the user is able to use semi-formal methods to specify the domain of the 

software system, send the information to AFITtool, and use AFITtooVs formal capabilities 

to complete the design transformations and code development of the specification. 

The Rose drawings that are used to develop the AFITtool domain model are class 

diagrams and state models. The other diagrams the user develops in Rose are not consid- 

ered in the transformation from Rose to AFITtool. This transformation process expects 

the diagrams to be in a specified format, compatible with AFITtool. For example, some 

symbols need to be specified in I^TßK Z in order for the transformation to work correctly. 

The mapping from Rose to AFITtool is described in detail in Appendix C, including the 

proper format for each field in the Rose diagram. 

4-3.2 Application of the Methodology. The first step in integrating the two tools 

is to determine the input, output and extendability values for each of the tools. AFITtool 

uses File input and produces Built-in Output. Rose uses File input and output. Both 

tools are extendable, Rose via Tool Provides Extendability and AFITtool through Source 

Code available. Next, the extendability class is determined from the combination of the 

two tools. In this case, the extendability class is Both Extendable. The value of the data 
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compatibility functional dimension is Not Compatible since the data in Rose is not in the 

format required by AFITtool. 

The third step is to apply the design rules, supplying the functional dimensions as 

input. First, communication path rule Tl was applied, since the Rose output mechanism 

is File, making the communication path value Shared Data. Next, design rules for Both 

Extend were applied, recommending that only one tool be extended. In this case, the 

decision was made to extend AFITtool for control purposes only and Rose for data pur- 

poses, causing the extendability class to change to First Extend. The decision to extend 

AFITtool for control was made because AFITtooYs interface does not lend itself to be- 

ing controlled by another tool. Based on the design rules for First Extend, the value for 

control integration implementation was determined to be Client-Server and the value of 

data transformation is Transformation by Output Tool. Transform F2 was used, since both 

tools use files. The values for the functional and structural dimensions are summarized in 

Figure 8. The next two sections describe in detail how the integration was implemented, 

based on the decisions made by following the methodology. 

4.3.3 Data Integration. Data integration of Rose and AFITtool was accomplished 

by using the Rose Extensibility Interface, the provided method for extending Rose [29]. 

Included in the interface is a scripting language, Summit BasicScript, very similar to Visual 

Basic. Most of the information captured in Rose drawings is accessible from within scripts. 

The information gathered from the class specifications is written to separate WT$L files, 

one for each class, named classname.tex, where classname is the corresponding class name. 
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These files are automatically generated by the Rose script when the option for "Output 

Model to LaTeX" is chosen from the Tools | AFITtool menu in Rose. These files are in 

the proper format for AFITtool and can be parsed into an AFITtool domain by the user. 

AFITtool requires Z Schemas for each section of the definition of a domain. An ex- 

ample of the template used for the file parsed by AFITtool can be found in Appendix A of 

this document. Each section of the file gives an informal definition and a formal definition 

of the current "piece" of the model. The file is broken into three main parts: Structural, 

Functional and Dynamic Models. The Structural Object Model includes an informal de- 

scription of the object, including the name, date, and author, as well as its attributes and 

types. The formal section of the Structural Model consists of one or two Z schemas. The 

first is required, as it contains the attributes and any class constraints that must hold at 

all times. The second schema is an initialization schema. It may be omitted if the class 

does not have initialization values for its attributes. Associations detected in the Rose 

diagram are represented in the Structural Model of the class. If the diagram contains an 

associative object, it is represented in Z WI$£ by a separate class schema. The cardinality 

of associations in the model is not explicitly represented in the Structural Model, but is 

used to determine the proper function. 

The Functional Model of the object includes a Z schema for each operation defined in 

the class. The name of the class must be included, either as Read-only (S) or as Read-Write 

(A). For files automatically produced by Rose, the class is always included as Read-Write. 

Input parameters to the operation are decorated with a "?" and output parameters are 

decorated with a "!". Local variables included in the operation exist only in the scope of 

the operation and are not decorated. 

The final section of the file is the Dynamic Model. This model includes the state 

model for the object class. A Z schema is defined for each state and each event in the 

model. Each state includes the class schema, through the schema inclusion mechanism of 

Z. Each event may include input parameters and constraints on those parameters. The 

dynamic model is summarized in the state transition table, showing the complete set of 

transitions for any object. The current state, next state, trigger event, guard condition(s), 

action(s), and send events are included in the table. 
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4-3.4 Control Integration. Since both tools are extendable, a decision was nec- 

essary to complete the integration of Rose and AFITtool. The domain tool menu of 

AFITtool was extended to include an option to create a domain model in Rose. When 

the user chooses this option, Rose is started and both Rose and AFITtool will execute 

simultaneously. The user can then develop a domain model in Rose, including classes and 

state models. After outputting the domain to a I^TjjjX file by choosing the option "Output 

Model to LaTeX" from the Tools | AFITtool menu in Rose, the user can return to the 

AFITtool window and load the domain, with Rose still running. If any corrections need 

to be made, the user is able to return to the Rose window, make the corrections, and 

generate the WFj£& file(s). Then the user may return to AFITtool and load the class(es) 

again. Each time changes are made, this process is reproduced to pass the changes from 

Rose to AFITtool. This allows the user to participate in an iterative process to develop 

the domain, developing the informal and formal models of the domain through a series of 

corrections. 

4-4    Integration of AFITtool and Rational Rose 98 

In some cases, it is desirable to use the same input source for more than one tool. Al- 

though this possibility is not explicitly discussed in the methodology, it was demonstrated 

as part of this research. By enabling Rose to use Z Wl^fi. files to create Rose diagrams, 

both Rose and AFITtool can use the same input. Although AFITtool does not have to be 

executed in order for Rose to read the I^TßX file, the file must be parsable by AFITtool. 

4-4-1 Representing the Domain Model in Rose drawings. The I^TßX file is ex- 

pected to be in the format of the template in Appendix A. The order of the file is important; 

if the file is not in the order expected by the Rose script, the proper diagrams will not be 

created. The Rose script expects each file to contain only one class, and recognizes a class, 

an initialization schema, zero, one or more events, zero, one or more states, and a state 

transition table. Additionally, if the file represents an aggregate class, the file may contain 

zero, one or more associations and/or associative classes. In the case of a domain that con- 

tains an aggregate class, it is necessary to first parse in the primitive classes and then the 
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aggregate class. If the primitive classes are not in place before the aggregate class is read, 

the diagrams will not be created correctly. Just as the cardinality of associations is not 

captured by the Rose to AFITtool data conversion, the cardinality is also not generated 

from the domain model to the Rose diagrams. 

4-4-2 Application of the Methodology. Although the methodology does not specif- 

ically discuss extending a tool to use the input generally used by another tool, the method- 

ology can be applied by considering an integration between the tool that created the input, 

for example, the IM^jX file, and the tool that will use the same input file. In this demon- 

stration, the tool that created the file, which does not need to be known, is the "first tool" 

and Rose is the "second tool." First, the functional dimensions for the first tool are de- 

termined. The input mechanism is not known, the output of the first tool is File, and the 

extendability is Neither. For this demonstration, the values for the functional dimensions 

of Rose are the same as for the first integration. For the tool pair, the extendability class 

is First Extend and the data compatibility value is Not Compatible since the I^TfijX file is 

not in the proper format for Rose. 

The next step is to apply the design rules, supplying the functional dimensions as 

input. Communication path rule Tl was applied again, since the "phantom" tool output 

mechanism in this case is the WTQK. File and the Rose input mechanism is File, making 

the communication path value Shared Data. Finally, design rules for Second Extend were 

applied to determine the data transformation and control integration implementation. 

The rules for Second Extend recommend the control integration implementation be Client- 

Server and the data transformation be Transformation by Input Tool. Transform S3 was 

used, since both tools use files, instructing that the second tool save the data from the first 

tool in a file and use it as input. The values for the functional and structural dimensions 

are summarized in Figure 9. The next two sections describe in detail how the integration 

was implemented, based on the decisions made by following the methodology. 

4-4-2.1 Data Integration. In order to enable Rose to create diagrams for 

existing BTßX models, data integration was accomplished by creating a Rose script. The 

Rose script is used to extend Rose by translating the data used by AFITtool into a format 
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Figure 9     .AFiTtool/Rose Integration 

it can use. In this case, the script reads the MpX file and creates the Rose model simulta- 

neously. Since the MpJX file used by Rose to create the domain diagrams is the same one 

that is used by AFITtool, it is suggested that the file be parsed into AFITiool before it is 

parsed into Rose, to detect any errors in the I#IEX file syntax. After the file is parsed into 

Rose, semantic errors in the file can be detected through the inspection of the diagrams. 

The diagrams can then be changed and the Wlpfi file can be re-created through the use 

of the script discussed in previous sections. In this manner, an iterative process can be 

achieved in which the domain is perfected. 

44.2.2 Control Integration. Control integration in this demonstration is 

accomplished through the extension of the Rose menu. In order to use the I#IpJX file as 

input, the user chooses the option "Read in LaTeX file" from the Tools | AFITtool menu 

in Rose. This selection causes a dialog box to appear, asking the user for a .tex filename. 

The default directory is the one from which Rose was started. The .tex file specified is 

parsed by Rose and the appropriate diagrams are created. 

4.5   Integration of AFITtool and daVinci 

The third tool that was integrated with AFITtool is daVinci, a graph layout tool 

developed at the University of Bremen, Germany. It was integrated with AFITtool to 

provide a visualization of the data flows in the domain model. After a domain is loaded 

into AFITtool, the user may choose to display the data flow diagram in daVinci. Each 

process is represented by a circle, and each data flow between processes is represented by 
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an arrow from one circle to another, with the name of the data displayed on the line. The 

user is able to visually check the data flow diagram and spot errors in the model which 

can then be corrected in the input file, or the Rose model if that mechanism was used, and 

re-loaded into AFITtool. 

4.5.1 Application of the Methodology. Applying the methodology in this integra- 

tion indicates that the values for the functional dimensions are as follows. The input and 

output of daVinci are File, while the input and output of AFITtool are File and Built-in 

Output. The extendability of AFITtool is Source Code Available and for daVinci is Tool 

Provides Extendability, since daVinci allows an RPC interface to be established. Prom 

these values, the extendability class for this tool pair is Both. The data compatibility 

value is Not Compatible since the information in AFITtool is not in the right format for 

daVinci. 

The next step in the methodology is to apply the communication path rules. The 

communication path was determined to be Shared Data, by applying rule Tl, since daVinci 

takes a file as input. Next, the design rules for Both Extend are applied and it is deter- 

mined that only one tool should be extended. The decision was made to extend only 

AFITtool, and use daVinci's capability to take an initialization file. The extendability 

class, therefore, changed to First Extend. By applying the design rules for First Extend, 

the control integration implementation was determined to be Client-Server and the value 

of data transformation is Transformation by Output Tool. Transform F2 applies to this 

integration and instructs that the built-in output of ^.FJTtool be captured in a file, in the 

proper format for daVinci. The values for the functional and structural dimensions are 

summarized in Figure 10. 

4.5.2 Data Integration. In order to integrate AFITtool with daVinci, AFITtool 

was extended to output a file containing information for daVinci to build a data flow 

diagram. Since daVinci is a graph layout toolkit, it does not require any information on 

placement of the nodes or edges. In addition, daVinci makes provision for extension with its 

Application Programmer Interface (API) commands. There are two options for using these 

commands: write an interactive driver program which creates a separate daVinci process 
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or create a file that consists of daVinci API commands and include the file name on the 

command line, i.e. daVinci -init command.f ile. With the first option, commands are 

sent via a pipe to daVinci and responses are received by the program. The program, 

therefore, is responsible for handling the communication flow between the program and 

daVinci. The program must handle all possible responses from daVinci. This is the desired 

approach for interactive applications. The second approach was chosen for this integration 

effort, though, since daVinci is being used to display the data flow diagram and does not 

need to allow changes. 

Data integration of daVinci and AFITtool was accomplished by extending AFITtool 

to create a file with the necessary graph commands in it. This file is created in several steps, 

the first of which is to examine all classes in the domain model, focusing on the processes 

in each class. Information on the processes is contained in the has-operations for each 

aggregate and primitive class in the domain. Next, every possible pair of processes in each 

class is examined to determine if the input parameter of one process is the output parameter 

of another class. Processes are linked based on name matching of the parameters. Finally, 

information for each process is written to the daVinci file. If a process shares data with 

another process, i.e. two processes have a parameter by the same name, commands are 

written to the daVinci file to create a node for each process and an edge between them 

with the name of the parameter on it. If a process is determined to be self-contained, not 

sharing data with another process, the daVinci command to create a node for the process 

is written to the file. The file is named c/assname.daVinci, where classname is the name 

of the class. 
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4-5.3    Control Integration. Control integration of AFITtool and daVinci was 

accomplished by extending the AFITtool domain menu. The user executes daVinci by 

choosing the daVinci option from the AFITtool domain menu. After the user chooses this 

option, a separate data file is created for each class in the domain. Each data file, as 

explained above, contains API commands in the proper syntax for daVinci to build the 

requested graph, representing the data flow diagram for the class. 

To draw the graph indicated by the saved file, daVinci is executed by AFITtool with 

the init option activated and the filename specified, i.e. daVinci -init classname. daVinci. 

This option causes daVinci to read the file and execute the API commands when daVinci 

is started, drawing the data flow diagram. In this integration, the last command in the file 

saves the graph as classname.gra.ph. . By saving the graph, the user is able to run daVinci 

at a later time and open the graph without re-building it. 

When daVinci is executed, separate daVinci windows, each with its own process 

identifier, are opened for each class. Each daVinci window contains the specified data flow 

diagram for a class. By starting a new process for each class, all of the data flow diagrams 

in the domain are displayed simultaneously. This allows the user to look at the process 

diagrams while making changes to the domain model. The user is responsible for closing 

the windows when they are no longer needed. If changes are made to the AFITtool domain 

model, they will not be reflected in the graph file until it is rebuilt. To rebuild the graph 

file, the user must select the daVinci option from the AFITtool menu again. Choosing 

this option causes the daVinci files to be re-generated and the diagrams to be displayed, 

allowing the user to repeat the process as necessary. 

4.6    Validation of the Integration Methodology 

This chapter has described in detail how the methodology developed as part of this 

research was applied to the integrations accomplished with AFITtool. For each integration, 

the steps taken to set up the integration and the actual methods used to accomplish data 

and control integration, two classes in Wasserman's integration model, were described. 

Thomas and Nejmeh identified five properties of data integration and two properties of 

control integration in their examination of Wasserman's model, explained fully in Chap- 
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ter 2 [35].  This section explains how these properties relate to the methodology and the 

integration demonstrations presented here. 

1. Data Integration Properties 

• Interoperability: Data interoperability between the tools is addressed by this 

integration methodology by ensuring the data is in the correct location and 

format for both tools. In some cases, getting the data to the right location 

and format involves some sort of data transformation, while in other cases, the 

tools agree on format and location before integration. In the case of writing a 

separate driver program, data transformation is accomplished by a routine in 

the program to write the data in the proper location and format for all tools. 

When one or both tools are extended, the extensions must handle the necessary 

data transformations. 

• Nonredundancy: Nonredundancy is accomplished in this methodology by en- 

suring that the tools use central data when possible. Central data, as described 

earlier, can be in the form of common objects, shared files or a common database. 

• Data consistency: The consistency of data is important when two tools use the 

same data, as is the goal in tool integration. The methodology ensures the 

data is consistent in two ways. First, data integration ensures only one tool is 

writing to the data at any given time. Second, control integration accomplishes 

intertool communication when data is shared, so that each tool reports when it 

has completed its changes. 

• Data exchange: Data exchange, succinctly, is the practice of two tools needing 

to pass or share data. In tool integration, the tools must agree on semantics and 

format for the data. The proposed methodology for data integration achieves 

proper data exchange by ensuring that either the driver program, if no tools are 

extended, or the tools themselves, if one or more tools are extended, perform 

any necessary data transformations so the data meets the agreed upon format 

and semantics. 
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• Synchronization: The property of synchronization is primarily concerned with 

the consistency of nonpersistent data, requiring each tool to report any changes 

made to the data to the other tool. Synchronization is accomplished in this 

methodology by control integration, adding some sort of reporting scheme in 

the driver program or to an extended tool. 

2. Control Integration Properties 

• Provision: In the proposed methodology, only tools that have semantic agree- 

ment on data are integrated, having the effect of satisfying the provision prop- 

erty of control integration. As provision requires that any tool integrated into 

the environment is used, ensuring semantic compatibility meets this require- 

ment. Although it is possible that the tool being integrated will make sense in 

the environment yet not be used, that is not in the spirit of the methodology as 

it is proposed. 

• Use: Use is highly related to the provision property in that it is a measure of 

the extent to which the tool is used in the integrated environment. Again, the 

spirit of the methodology is that only useful, semantically compatible tools will 

be integrated in the environment. The control integration guidelines ensure the 

availability of the functionality provided by each tool, causing the requirements 

of the use property to be met if the tools chosen for integration make sense 

together. 

AFITtool was integrated with three tools, the details of which were presented in this 

chapter. The information given demonstrates how to apply the methodology as well as 

how the methodology supports ideas presented by other researchers. The next chapter 

summarizes this thesis effort. 
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V.   Results, Conclusions and Recommendations 

Although this research effort began with the primary objective of enhancing AFITtool to 

reduce its shortcomings, it very quickly became an effort to develop a generic methodol- 

ogy for integrating tools. The increased use of commercial off-the-shelf (COTS) software 

and government off-the-shelf (GOTS) software has driven some companies and govern- 

ment agencies to use several software tools to accomplish their mission. Using several 

tools is often more difficult and confusing than using one, so some software developers 

have attempted integrating these off-the-shelf tools to form a cohesive tool capable of 

accomplishing the mission. 

After a thorough search of the literature, it was determined that there is not a 

generally accepted standard approach for integrating software tools. There are several 

models that offer a picture of the resulting integrated system, and upon which integration 

can be based, but there was not a step-by-step approach to use during integration. The 

next section of this chapter summarizes the work accomplished during this research effort. 

The following section analyzes the impact of one sample integration. The final section 

discusses recommendations for future work, both for improving the methodology and for 

improving AFITtool. 

5.1    Results 

The generic methodology developed during this research was partially based on the 

concepts of two groups of researchers: environment integrators and software architects. 

Anthony Wasserman's model for tool integration was used as a basis for the two types of 

integration covered by the methodology [36]. The characteristics for each integration type, 

developed by Thomas and Nejmeh, helped to further define the integration types [35]. Soft- 

ware architecture played a large role in the development of a design space, complete with 

structural and functional dimensions and design rules, concepts presented by Lane [25]. 

Wasserman's original model of integration has five classes of tool integration: plat- 

form, presentation, data, control, and process integration [36]. For this research, only 

data and control integration were considered due to the nature of the integration effort. 
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Data integration is concerned with ensuring data used in the integrated system is in the 

proper form for any component that needs it. Control integration focuses on maintaining 

necessary communication between tools after they are integrated. Since the primary goal 

was to integrate AFITtool with tools that could improve its shortcomings, presentation, 

platform and process integration were not directly addressed. Presentation integration 

focuses on how the integrated system looks to the user. This was addressed in the criteria 

for choosing tools to be integrated with AFITtool and did not need to be addressed sep- 

arately. Platform integration was not considered directly because it was also addressed in 

the tool criteria. One of the primary criteria was that all of the tools reside on the Unix 

platform, making the need to address platform integration during the integration effort 

unnecessary. Finally, the inherent structure of AFITtool establishes a software process, 

making it unnecessary for the integration methodology to address process integration. 

Both data and control integration were addressed in the design space defined for 

software tool integration. Functional dimensions, structural dimensions, and design rules 

were identified as part of the design space, following the description of a design space given 

by Lane [25]. Lane's original concept was extended to include two sets of functional dimen- 

sions, one set for a single tool and one set for a tool pair. The functional dimensions for a 

single tool provide a method of characterizing each tool, while the functional dimensions for 

the tool pair characterize the interface of the tools. The functional dimensions are applied 

successively, first for each tool and then for the tool pair, in order to reduce the dimension- 

ality of the resulting design space. Together, the two sets of functional dimensions fully 

define a pair of tools to be integrated, while the structural dimensions define the resulting 

integrated system. Design rules provide a mapping from the functional dimensions to the 

structural dimensions for a given pair of tools. 

The methodology developed as part of this research offers a step by step approach 

to tool integration. The tool integrator must first determine that there is information 

to be shared between the two tools. This information need not be in the same format, 

but must be semantically meaningful to both tools. Next, the methodology assists the 

integrator in classifying each tool in the pair with respect to its input mechanism, output 

mechanism, and extendability.   The tool pair is also characterized with respect to its 
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extendability class and data compatibility. From this tool classification, a mapping is 

provided from the tool pair to the integrated system by applying the appropriate design 

rules. The resultant system is characterized by the communication path used, the data 

transformation mechanism, and control integration method. 

This methodology was used to perform the tool integrations with AFITtool. AFITtool 

was integrated with three tools, the Acme parser, daVinci, and Rational Rose 98 [12] [10] 

[21]. The Acme parser is a tool that reads files written in the Acme architectural definition 

language and checks them for the proper syntax. After determining the syntax is correct, 

the file is reformatted for proper tabbing, as defined by the parser, and written to the 

output device. As part of the integration effort, the parser was extended slightly to allow 

input from stdin or a file and output to stdout or a file. In the integration with AFITtool, 

a file was produced from the domain model using the Acme language to represent the event 

flows between classes in the model. The Acme parser is then called from AFITtool and 

produces an output file, if the input is syntactically correct, in the proper style, and with 

the name supplied by the user. 

The graph layout tool daVinci was used in the integration with AFITtool to produce 

a data flow diagram (DFD) for the currently loaded domain model. In order to integrate 

the two tools, AFITtool was extended to create a file in the format expected by daVinci 

and then to execute daVinci, supplying the filename as an input parameter. One DFD 

for each class in the domain is displayed by daVinci and can be closed when the user is 

finished with it. 

Rational Rose 98 was integrated with AFITtool to provide two types of functionality: 

allowing a user to specify a domain for AFITtool through diagrams with the Unified 

Modeling Notation (UML) and allowing a user to generate Rose diagrams from an existing 

Z WT^X. file in AFITtool format. The integration of these two tools provides the user 

with a semi-formal view of the domain, rather than just the formal notation that was 

available. Both Rose and AFITtool were extended, although AFITtool was only extended 

to allow a user to execute Rose from within AFITtool. The majority of the extension 

was performed by using the Rose scripting language, Summit BasicScript, to achieve the 

transformations from diagrams to Z WTQH and Z MgX to diagrams [21]. This integration 
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Table 10      Methodology for Tool Integration 

Rose Group Non-Rose Group Overall 

Homework 2 562.6 min 677.9 min 620.2 min 

Homework 3 167 min 230.8 min 194.4 min 

Homework 5a 52.4 min 54.5 min 53.3 min 

Project 36.2 hrs 60 hrs 46.3 hrs 

also demonstrated that integrating two tools with a graphical user interface (GUI) lessens 

the ease of making the integration appear seamless. Although the two tools function well 

together, it is apparent that there are two separate tools executing. 

5.2 Analyzing the Rose 98 Extensions 

In order to gauge the merit of the integration of AFITiool and Rational Rose, a small 

experiment was conducted between two groups of students. One group used the Rose ex- 

tensions to produce the Z L^TfiK files for AFITtool, while the other group produced the files 

from a template with only a text editor. Students were assigned three homework problems 

and one project in which they were required to produce the Z ETßX files. The homework 

problems were accomplished individually by 14 students and the project was accomplished 

by seven teams of two students each, including four teams using Rose. Although the group 

of students is not large enough to provide statistically valid results, the amount of time 

spent on each problem was collected and the results were examined for any trends that 

might indicate whether or not the Rose extensions are helpful. 

These results, summarized in Table 10, display a trend indicating Rose users had 

consistently faster times than those who did not use Rose. While neither group of students 

is large enough to make statistically valid results, the consistency of these results clearly 

indicates that the extensions to Rose are helpful in reducing development time. 

5.3 Conclusions 

The integration efforts involving AFITtool cover a representative sample of the cat- 

egories discussed in the methodology. The methodology assists a tool integrator by first 

allowing him to characterize the pair of tools and then giving him a step by step approach 
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to accomplish the integration. For each integration attempted as part of this research, the 

methodology was effective at directing the proper steps to take for integration. Although 

there is more than one way to accomplish most integrations, the methodology offered a 

solution that achieved the goal in each case. 

The integrations performed as part of this research effort serve to address two of 

AFITtooVs shortcomings, described in Chapter 2. Allowing the user to develop a domain 

model in Rose improves the user interface to AFITtool, both by offering a graphical input 

method and by providing a faster method of input. Although the only accepted input to 

AFITtool is the Z ETFJX file, now the user has the option of developing the file through 

Rose. Through the experiment performed to judge the value of this approach, it seems that 

giving the user the ability to use Rose to develop the domain model significantly decreases 

development time in some cases. The integrations have also made it possible for the user 

to perform model analysis on three aspects of the model: the DFD displayed by da Vinci, 

the object model displayed by Rose, and the event flows written in Acme. 

One of the initial goals of this research was to provide a step by step approach to a 

seamless integration. However, in the integration performed between AFITtool and Rose, 

it is apparent that two tools were made to work together because Rose is an interactive tool 

with a GUI. Although da Vinci also has a GUI, the integration of .A.FJTtool and daVinci 

gives a different appearance because the user does not interact with daVinci, except to close 

the windows. There are frameworks on the market that integrate tools with an existing 

GUI to make the integrated system look like one tool. It is possible that is the approach 

that should be taken when integrating two tools with a GUI. The methodology does not 

specifically address presentation integration, an important class of integration when tools 

with a GUI are involved. Developing a methodology that addresses presentation integration 

was outside the scope of this research, primarily due to time constraints. 

5.4   Recommendations For Future Work 

While this research effort accomplished quite a bit in the direction of a step by step 

approach to tool integration and also in improving AFITtool through integration with 
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other tools, there are several possible areas for future researchers to pursue. The following 

sections describe possibilities for further work on both the methodology and AFITtool. 

5.4.1 Extending Methodology. Extending the methodology could be accomplished 

in several ways, one of which would be to consider the other three classes of integration: 

presentation, platform and process. In this effort, they were irrelevant and the methodology 

does not address them. As the area of integrating two tools with a GUI is further explored, 

it may be necessary to include a GUI as an alternative to the functional dimension input 

mechanism and to define design rules to address the extended dimension. The addition of 

GUI as an input mechanism may also make it necessary to consider presentation integration 

as part of the methodology since presentation integration addresses how the system looks 

to the user. 

Platform and process integration should also be considered as extensions to the 

methodology. Accomplishing a cross-platform, multiple GUI tool integration would test 

areas of the methodology that were not considered in this effort and may point out areas 

that are lacking. By exploring platform integration, the integration methodology can also 

be used for distributed applications, which may or may not include different platforms. 

Adding these integration classes may require the addition of one or more functional di- 

mensions for each integration class and design rules to map from the functional to the 

structural dimensions. Additionally, it may be necessary to add one or more structural 

dimensions in order to characterize the resulting system with the additional consideration 

of presentation, process and/or platform. 

5.4.2 Extending Existing AFITtool Interface. The integrations accomplished 

between AFITtool and Rose can also be improved. Since the primary goal was to demon- 

strate integration of the tools, the extensions to Rose are not as complete as they could 

be. Neither one of the Rose scripts handles cardinality of associations to the fullest. When 

supplied with a WTEX. file, the Rose script simply alerts the user to place the proper cardi- 

nality on the association. Since Rose treats aggregation as a special case of an association, 

this is true for aggregation also. The user is required to enter the cardinality of the aggre- 

gate components. When Rose writes the WT$i file for AFITtool, it does not write all of 
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the constraints due to the association. It does, however, output the proper constraints for 

aggregation. 

5.4.3   Further AFITtool Integration. Regarding improving AFITtool, an un- 

tapped area is that of developing a state model simulator. It would be helpful for the 

user to be able to see their state model "in action." During this research, the only tools 

found that are capable of this type of simulation would have required a large number of 

changes before integration. A more extensive search may locate a more appropriate tool. 

Alternatively, a simulator could be developed at AFIT and integrated with ,A.FJTtool. The 

layout portion of the simulator could be accomplished by integrating with daVinci through 

the remote procedure call (RPC) interface. With the layout accomplished, the task would 

involve developing a method of testing all possible routes through the state model, based 

on the information in the state transition table. 

Integrating a theorem prover with AFITtool would also be beneficial since AFITtool 

is based on formal methods. There are several theorem provers available, some free and 

some for purchase, that would enable an AFITtool user to check the correctness of the 

specification entered into the domain model. Additionally, there are theorem provers that 

could examine the code produced by AFITtool and check it for errors. The integration 

of these tools, however, is only part of the effort. The larger effort would be determining 

what information to provide as input to the theorem prover, i.e., determining what entails 

a correct specification or correct code. 

5.5   Summary 

The main contribution of this thesis effort is the development of a step by step 

approach to tool integration. By following the approach described here, tools can be 

integrated to improve an existing tool and/or provide a unified view of several tools. By 

choosing tools based on their characteristics and their ability to address the shortcomings 

of AFITtool, the methodology was demonstrated and two of the shortcomings identified 

for AFITtool have been addressed through tool integration. The methodology developed 
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is capable of guiding the tool integrator to a feasible solution and can be applied to the 

integration of any two software tools. 
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Appendix A.    AFTTtool Input Template 
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ObjectX Structure Definition 

Object Name: ObjectX 

Object Number: 9404XX 

Object Description: 

Date: 10/01/96 

History: 

Author: Hartrum 

Superclass: None 

Components: None 

Context: None 

Attributes: 

Constraints: 

None 

Z Static Schema: 
Let SSAN be the set of all Social Security numbers. 
Let DATE be the set of all calander dates. 
Let GENDER be the set of gender types. 

[SSAN, DATE] 

GENDER ::= male \ female 

,_ ObjectX  
attributel : type 
attributed : type 

predicate! 
predicate! 

78 



. InitObjectX  
AObjectX 

attributel' = valuel 
attributed = valuel 
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AssocW Association Definition 

Association Name: AssocW 

Association Number: 9404XX 

Association Description: 

Date: 10/03/94 

History: 

Author: Hartrum 

First Object Class: ObjectX 

Multiplicity: 

Second Object Class: ObjectY 

Multiplicity: 

Context: None 

Attributes: 

None 

Constraints: 

None 

Z Static Schema: 

Let SSAN be the set of all Social Security numbers. 

. AssocAttr  
attributel : type 
attribute2 : type 

predicate! 
predicate2 

. AssocW _  
assocw •: {{ObjectX x ObjectY) —► AssocAttr) 

predicatel 
predicated 
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ObjectX Functional Model 

Object: ObjectX 

Process Name: 

Process Description: 

Z Dynamic Schema: 

. ProcessName _ 
AObjectX 
inputll : type 
outputV. : type 
localvarl : type 

preconditions 
postconditions 
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ObjectX Dynamic Model 

State Name: 

State Description: 

Z Static Schema: 

^_ State A  
ObjectX 

attributeA > 0 
attributeA < attributeB 

Event Name: 

Event Description: 

Z Static Schema: 

,_ Event A  
parameteri : TYPE 
"parameter^ : TYPE 

parameteri > 0 

State Transition Table: 
Current    Event      Guard Next Action Send 

StateA     Event 1    a < b StateB Action-A EventA 
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Appendix B.    Z Symbols 
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a \alpha e \theta 0 0 r \tau 

ß \beta ti \vartheta ■K \pi V \upsilon 

7 \gamma 1 \gamma W \varpi <P \phi 

8 \delta K \kappa 9 \rho f \varphi 

e \epsilon X \lambda Q \varrho X \chi 

e \varepsilon V \mu a \sigma i> \psi 

C \zeta V \nu <; \varsigma LJ \omega 

V \eta i \xi 

\Gamma A \Lambda E \Sigma * \Psi 

A \Delta »11 \Xi T \Upsilon fi \Omega 

0 \Theta n \Pi $ \Phi 

Table 1: Greek Letters 

± \pm n \cap o \diamond © \oplus 

T \mp u \cup A \bigtriangleup e \ominus 

X \times w \uplus V \bigtriangledown ® \otimes 

-h \div n \sqcap < \triangleleft 0 \oslash 

* \ast u \sqcup > \triangleright © \odot 

* \star V \vee < Und6 0 \bigcirc 

0 \circ A \wedge > \rhd6 t \dagger 

• \bullet \ \setminus < \unlhd6 t \ddagger 

+ 
\cdot 
+ 

i \wr > \unrhd6 u \amalg 

6 Not predefined in a format based on basefont.tex. Use one of the style options 
oldlfont, newlfont, amsfonts or amssymb. 

Table 2: Binary Operation Symbols 

< \leq > \geq = \equiv N \models 

-< \prec y \succ ro \sim i \perp 

-< \preceq y \succeq r**i \simeq 1 \mid 

< Ml > \gg x \asymp || \parallel 

c \subset D \supset r^ \approx X \bowtie 

c \subseteq D \supseteq =* \cong IX \Join6 

c \sqsubset6 D \sqsupset6 ± \neq ^ \smile 

c \sqsubseteq 3 \sqsupseteq = \doteq ■^ \frown 

G \in 3 \ni oc \propto = = 

h \vdash H \dashv < < > > 

6 Not predefined in a format based on basef ont .tex. Use one of the style options 
oldlfont, newlfont, amsfonts or amssymb. 

Table 3: Relation Symbols 

; :     \colon    .     \ldotp 

Table 4: Punctuation Symbols 

\cdotp 
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<=> 

Not 

\leftarrow <- \longleftarrow T \uparrow 

\Leftarrow <= \Longleftarrow it \Uparrow 

\rightarrow —► \longrightarrow I \downarrow 

\Rightarrow => \Longrightarrow a- \Downarrow 

\leftrightarrow <—> \longleftrightarrow t \updownarrow 

\Leftrightarrow ■«=>• \Longleftrightarrow t \Updownarrow 

\mapsto +-> \longmapsto / \nearrow 

\hookleftarrow <—► \hookrightarrow \ \searrow 

\leftharpoonup -^ \rightharpoomrp / \swarrow 

\leftharpoondown -* \rightharpoondown \ \nwarrow 

\rightleftharpoons -%-> Meadsto6 

predefined in a format basec on basef ont .tex. Use one of the style options 

oldlfont , newlfont, amsfonts or amssymb. 

Table 5: Arrow Symbols 

\ldots \cdots \vdots \ddots 

N \aleph / \prime V \forall 00 \infty 

h \hbar 0 \emptyset 3 \exists D \Box6 

i \imath V \nabla -I \neg O \Diamond6 

.1 \jmath V \surd b \flat A \triangle 

£ \ell T \top ll \natural * \clubsuit 

P \wp _L \bot « \sharp ♦ \diamondsuit 

» \Re II \l \ \backslash «9 \heartsuit 

9 \Im L \angle d \partial * \spadesuit 

Ü \mho6 . 1 1 
6 Not predefined in a format based on basefont.tex. Use one of the style options 

oldlfont, newlfont, amsfonts or amssymb. 

Table 6: Miscellaneous Symbols 

J2 \sum P| \bigcap © \bigodot 
J] \prod U \bigcup © \bigotimes 
]J \coprod [J \bigsqcup ® \bigoplus 
/ \int V \bigvee (+| \biguplus 
§ \oint f\ \bigwedge 

Table 7: Variable-sized Symbols 

\arccos     \cos       \csc     \exp     \ker \limsup     \min     \sinh 
\arcsin    \cosh    \deg    \gcd    \lg \ln \Pr \sup 
\arctan    \cot       \det     \hom    \lim \log \sec \tan 
\arg \coth    \dim    \inf    \liminf    \max \sin \tanh 

Table 8: Log-like Symbols 

(  ( )  ) |  \uparrow •ft  \Uparrow 
[  [ ] ] J. \downarrow JJ. \Downarrow 
{  \{ } \} I \updownarrow $ \Updownarrow 
L  \lfloor J \rfloor |" \lceil ] \rceil 
{  Mangle ) \rangle / / \ \backslash 
II II \l 

Table 9: Delimiters 
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I  \rmoustache  j  \lmoustache  1  \rgroup    f  \lgroup 

I  \arrowvert   ||  \Arrowvert   |  \bracevert 

Table 10: Large Delimiters 

a    \hat{a}   d \acute{a} ä \bar{a} <z \dot{a}  a \breve{a} 
ö \check-[a> ä    \grave{a} o \vec{a} ä    \ddot{a} a    \tilde{a} 

Table 11: Math mode accents 

abc \widetilde{abc> 

abc \overleftarrow{abc} 
abc \overline{abc} 

abc \overbrace{abc} 

y/abc \sqrt{abc} 

/' 1' 

abc 
—► 
abc 
abc 

abc 

Vabc 
abc 
xyz 

\widehat{abc} 

\overrightarrow{abc} 
\underline{abc} 

\underbrace{abc} 

\sqrt[n]{abc} 
\frac{abc}{xyz} 

Table 12: Some other constructions 
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Appendix C.   Rules for Using Rose98 with AFYTtool 

In order to transform the diagram correctly, rules on the specification process have been 

established. These rules are described in the following sections. 

;. ..CtoOiijrjm tejlMiVisw/ M*)iL_. 

JetEnglne   
t&manufacturer;seqCter  
Kn«d»L.riCfm :;MODE-i:TVPt 
ftengins^WeJafit ftial 
Sr-iadmum^fueWlowurate. RM 
SthrüsUactor Real. 
&c«rre.ntjfueLftow:rats'''fiBal.' . ■ 
^.urre.irtl{hr<j5t .-Heal- _ • 

♦5etRate(f.l«wjratfr?.:.Re.al)- ■■" 

/ 
jttEngint                                                                     Ca, 
{«nginijw«ight > 0 
im^imumifiifU1MJitTl>'0 '.'.'".'.1!"""' 
thrusuf*'afc[*,0.'.,..":.';".,.':.,.'.\"" .*  
a/rrt'ntitijtLflgff -OLU \fliq Q                  .■ .■"■ ;   ...." - 
oijflrt'i.fMLfla*J»ti.\l^qnii>fimtl'rfiifji,»]'Jlii*_nlt; !.' 
curri"t.'hrult.Mjtqö' "   „.■"•'..',,.■■''-.,.'''-"' ■■!.■■' 
cuff«pi.lhruitF!hm,ltJiaof*'wrr«n!rf|jtk.flaMr;r*tfc}; ■ 

i%Msi^*vmmmtiammewwii& 

15*8*»   i hum I.Ctw:. I Typ?    |.',-j-fat 
manufacturer JetEngini seqChai 
modeLnum JetEnginf MODEL, 
engina.welght jetEngini Real 
maxlmum.fuel.flow JetEnginf Real 
thrusLfactor JetEngini Real 
current_fuBl_flow_ra JetEngini Real 
current.thrust JetEngini Real 

Figure 11     Class Diagram 
Figure 12     Attribute Declarations 

in Class 

C.0.1 The Class Diagram. Each aggregate and primitive class must be fully 

specified, including its name, description, class constraints, attributes, types, and opera- 

tions, including pre-conditions and post-conditions. An illustration of the class diagram is 

in Figure 11. If the domain model includes one or more aggregate classes, they must be 

included in the diagram. The lines from the aggregate to the component classes must be 

present as well. The transformation process will create one attribute for each component 

class, named class nomeAttr. If the aggregate lines include a name, it is ignored by the 

transformation process. The class name must be one word, but may include underscores. 

The class description is placed in the Documentation field of the class specification and 

may be several lines. Class constraints are placed in a Note box connected to the class by a 
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dotted line. The Class name must be the first thing in the note, and the only thing on the 

first line. The rest of the constraint is enclosed in braces ({ constraint }). Each statement 

in the constraint must be on a separate line. Any math symbols must be specified in the 

WTj^i manner. A full specification of these symbols can be found in Appendix B of this 

document. An example of a class constraint is as follows: 

JetPropulsionSystem 
{fuel_level \leq fuel_max 
fuel_flow > 0} 

Attributes must be defined in the class specification, as illustrated in Figure 12. 

Attribute and type names must be one word, but can include underscores. Types may be 

user-defined or system types. If an enumerated type is needed, the user may define this in 

the type field of the attribute specification as follows: 

{nuclear  I   air-to-air  I   surface-to-air} 

The type will be named during transformation using the attribute name with "Type" 

appended to it. If the above type definition was for the attribute "Missile", the type would 

be named "MissileType" during the transformation. It would be defined in Z as expected 

by AFITtool 

Rose offers a section of the class specification for operation definitions. For a correct 

transformation, the definition of each operation must include the name, input parameters, 

output parameters, a description of the operation, pre-conditions and post-conditions of 

the operation. The operation name and parameters must be one word, but may include 

underscores, illustrated in Figure 13. The operation description is written in the docu- 

mentation field of the operation specification. It may be multiple lines or it may be left 

blank. Each input parameter is specified in the parameter section of the specification. The 

same rules for naming and type definitions apply here as in the attribute section, with 

one exception: each input parameter name must end in a "?" due to constraints during 

generation of the EdgX file. Output parameters are specified in the space for Return 

Type in the operation specification and must end in "!". Although Rose does not expect 

this field to contain more than one value, or names for the values, AFITtool expects both 

names and types for output parameters of an operation. For this reason, the Return Type 
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w^iflaäB^BrnBiff 

' .^cur.A eras; 

Figure 13      Operation      Specifica- 
tion 

si ■si! 

mm^smmmm ^tM*4,M»H(l 

ir«ct!efli!89rsffi/-iUnspecifiedi 

p 

mm m 
l 
i 

jjswä^^ &a| j;\3)W5K"*='fc Jftfe 

Figure 14     Post-Conditions in Op- 
eration 

field must contain ReturnParamName! : Type. If there are multiple return parameters, 

the syntax is as follows: ReturnParamName! : Type, ReturnParamName! : Type. Pre- 

conditions and post-conditions are also specified for each operation. For an operation to 

be valid, it must have at least a post-condition. The attribute names used must be the 

same as those specified in the class definition. If an attribute is being changed, it must 

be followed by a single tick to indicate its post-operation value. Each pre-condition or 

post-condition must be stated on a separate line in Rose, illustrated in Figure 14. An 

example of a post-condition follows. 

current_fuel_flow_rate'  = flow_rate? 
current_thrust' = thrust_factor'  * current_fuel_flow_rate' 

Associations between classes are illustrated in Rose by a solid line. They are only 

transformed and included in the domain model if they occur between two classes that are 

components of an aggregate class, also present in the Rose diagram. The domain and/or 
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range restrictions that may be necessary to fully specify an association must be entered 

in the class constraints for the aggregate class, as the Rose script does not generate those. 

This includes the cardinality on either end of the association. If the association involves an 

associative object, it should be present in the Rose diagram as well. It will be transformed 

and included as part of the aggregate class. The association will be named based on the 

name that is provided in the class hanging from the association line. Although Rose allows 

the name of the association to be entered on the line or in the class, the transformation 

expects the name in the class. 

Bl -■''3 'y*   .• ?i '  i 

ChangeFuelFlowf «owjale 
: Real )| tlowjate > 01 / 
setjate "ChangeThrust; 

StarlUse(thrust: Real, 
madeup: someType) 

ChangeFuelFlowf, llowjats Real)[ 
now_rale > 0 ] / set_rate 

/—\ "ChangeThrust; StopUse; 
/   "\ StartUse(thrust: Real) 

J_i_ 
Running 

ChangeFuelFlowf, (lowjale: Real)[ (low.rate ■ 0 ] / 
set.rate "ChangeThrust; StopUse(thrust: Real) 

B'jllflllT^^ wttwäi&m*miim mm 

f]*r*-'1MtEUtttitEKlM üB].--e«Mii,. j,^n,)n. ' ii'. jfi — 
li^ii^^iliJii^^pSili^l»! * ■ 1 

i] i| ii 

Ill §■ ] r 

:- -"•" 

*.                             •"»Tl*» ^Uülui:' '  8röv*je ' *T 

Figure 15      State Diagram Figure 16     State Specification 

C.0.2 The State Model. The state model in Rose is associated with one class. An 

example of a state diagram is illustrated in Figure 15. It contains states and transitions 

between the states. Each state must be fully specified, including the name and constraints 

that hold during that state. Rose does not offer a place for state constraints, so they are 

placed in the Documentation region of the state specification, listing one constraint per 
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line, illustrated in Figure 16. The rules for state constraints are the same as those for class 

constraints, with regard to using math symbols. 

igwiiiwiHiiiirTr •iTiiira"Tii'(BM*'s||Mia:,aiHTi||e,^ta<^ 

;crrtL,'; i*r •'{ Uü'inicii■; 4'OX AvuW I iV:«*** PuP'lyW**,:! fli 

r>' I 

l^'^j^-rj'j'^^^iati^i^K^itytimttJM 
iCiwrtiC'.o»*"''!' 'M:':'"V.!"'..'..'"'!  """.',- ■ 'K ""  ''''>:■ 

'-''i,$ä*,'*<?f^*'Iiii'l''!:l|''t'i|;i"jfl':'''' -r8,e * ° 

''~t&i>fy,itf'.'i:t\.-'w*'1-'"' 
■■-i!i!x«-4'fi/n yUjyihinäeiKuii status." 

"" f 1 
J i-.Wfc^fi&ta't'' ■ I!;,', "I;! 

•^ VT»MM** ■ftH'Jfliiin1 («bflWl;;r'f::: -.J: ::''^:.rr:'~ 
""fflSf 

I'VIII";' 

c^.^lFrJi'm..,, ]'"!,;ir v:v off 

'■•■•'iSW'H ■■ "k<   ''R''!'^""'"? 

^fci/P^ 

3™ BIMSIä «HA* iiiisii s. | ji]..; j(j^"r:; J[| - „c^^:.!.. j. ■ ■ - -; ^MUJI- , :■■,]- *•>j»K«», 

pr* 
i'. !■;']!;; ■'JJ''! l^iE; |i;-| ;''^.j fj-: fe'i if- ■!;:!,!' ;i $) ■ ,Qr\ $£; ^ 

Figure 17     Transition     Specifica- 
tion 

Figure 18     Detailed       Transition 
Specification 

The transition may include a trigger event, a guard condition on that trigger event, 

one or more send events and/or one or more actions to perform during the transition. The 

trigger event is named in the field for Event in the Transition Specification, illustrated in 

Figure 17. Any parameters to this event are placed in the Arguments field, with the name 

of the parameter and its type, as follows: ParameterName : Type. If an event has multiple 

parameters, they are listed as follows: ParameterName : Type, ParameterName : Type. 

Any constraints on the event parameters are placed in the Transition Documentation field, 

with the same format as previously described. 

Actions are specified in the Action field of the Transition Specification. Parameters 

to the action are not specified. Each action should be defined in the Operations section of 

the Class definition. The guard condition is placed in the Condition field, using the math 

syntax as described earlier. The specification of Send Events is placed in the fields called 

Send Actions and Send Action Arguments in the Rose Transition Specification. If there 

are multiple Send Events, they are separated by semi-colons. Arguments for these events 

are also separated by semi-colons, leaving a space if one of the events has no arguments. If 
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one send event has multiple arguments, the arguments should be separated by commas, as 

described above for event parameters. The previous guidelines are illustrated in Figure 18. 

A textual example of three send events with only two having parameters is below. Notice 

the third event has two parameters, separated by a comma. 

Send Action:     ChangeThrust;  StopFlow;  Schedule 
Send Action Arguments:    thrust   :  Real;   ;   s.time   :  Real,  s_priority  :  Nat 
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Appendix D.   Detailed Descriptions of Design Rules 

D.l    First Extend 

If stdout/stdin, it is preferred to extend the first tool in sequence to convert the data 

and then develop a driver program to execute the first tool followed by the second 

tool, with output from the first converted before it is output via stdout. This is an 

exception to the rule of using distributed control. In this case, centralized control 

should be used. This approach is chosen because the interface between the tools 

lends itself to a simple driver program to handle the integration. 

• If stdout/file, it is preferred to extend the first tool to perform data integration 

followed by executing the second tool. This approach is preferred due to the proper- 

ties of stdout, including the ease of capturing the data and writing it to a properly 

formatted file. 

• If file/stdin, due to the characteristics of stdin, it is preferred to extend the first tool 

to build a command that performs any necessary data conversions, redirects stdin to 

data from a file, and executes the second tool. 

• If file/file, it is preferred to extend the first tool to perform any necessary data 

conversions before executing the second tool. Since both tools use the same data 

medium, files, the least complex approach is to simply prepare the file for the second 

tool and execute that tool. 

• If (anything) /message passing, it is preferred to require the first tool to gather the 

data needed by the second tool and format it for the messages before executing the 

second tool. While the second tool is executing, the first tool passes it the messages 

it expects, at the proper time and in the proper format, eliminating the need to 

change the second tool in any way. 

• If message passing/(anything), except message passing/message passing, it is pre- 

ferred to extend the first tool to capture all of the messages in a file and integrate 

like file/(anything). Since files are easily manipulated and read, the best approach 

is to capture the messages in a file. 
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• If built-in output/stdin, it is preferred to extend the first tool to capture the output 

and send it to stdin, since that's what the second tool expects, in the proper format 

before executing the second tool. 

D.2   Second Extend 

• If stdout/stdin, it is preferred to develop a separate program to perform any necessary 

data conversions. Additionally, develop a driver program to execute the first tool, 

followed by executing the data converter and sending that output to the second tool. 

This is an exception to the rule of using distributed control. In this case, centralized 

control will be used. This approach is taken due to the ease with which stdout and 

stdin can be manipulated. 

• If stdout/file, it is preferred to extend the second tool to execute the first tool, save 

the output in a file, perform data integration and execute the necessary functions in 

the second tool. This approach is preferred due to the properties of stdout, including 

the ease of capturing the data and writing it to a properly formatted file. 

• If (anything)/message passing, it is preferred to perform the same type of integration 

as with First Extend with the second tool extended rather than the first (if appli- 

cable) since the integrations are similar. Having the data ready for message passing 

smoothes the integration and allows successful integration without changing the first 

tool. 

• If file/stdin or file/file, it is preferred to extend the second tool to execute the first 

tool, perform any necessary data conversions and then execute its own functions. The 

manipulations possible with files allow for any conversion and redirection necessary. 

• If message passing/(anything), it is preferred to approach this integration in the 

same manner as First Extend with the second tool extended rather than the first (if 

applicable). This approach is taken due to the similarity between Second Extend and 

First Extend. 

• If built-in output/(anything), it is preferred to develop a driver program that executes 

the first tool, intercepts output to stderr or the printer and saves it to a file, due to 
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the ease of file manipulation. This solution will use centralized control. The rest of 

the integration can then be performed in the same manner as file/(anything). 
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Appendix E.   Acme Example for Aggregate Class 

The following Acme code provides an example for the aggregate class Jet Propulsion Sys- 

tem. Notice each component, FuelTank, JetEngine, and Throttle each has its own 

section of code, describing the event flows into and out of that component. This example 

also illustrates the flow between components of an aggregate class. 

The state transition tables are first, followed by the actual Acme code generated. 

Current Event Guard Next Action Send 

Empty StartFill Filling set-inflow Schedule 
PartiallyFilled 
PartiallyFilled 

StartFill 
StartUse 

Filling 
Using 

set-inflow 
set_outflow 

Schedule 
Schedule 

Full 
Full 

StartFill 
StartUse 

Full 
Using set_outflow 

Overflow 
Schedule 

Filling 
Filling 
Filling 
Filling 

StartUse 
StopFill 
StopFill 
TankFull 

fuel-level < capacity 
fuel-level = capacity 

FillAndUse 
PartiallyFilled 
Full 
Full 

set_outflow_level 
set_update_level 
set_update_level 
update_level 

Cancel 
Cancel 
Cancel 
Overflow 

Using 
Using 
Using 

TankEmpty 
StopUse 
StartFill 

Empty 
PartiallyFilled 
FillAndUse 

update-level 
set_outflow_level 
set_inflow_level 

ChangeFuelFlow 
Cancel 
Cancel 

FillAndUse 
FillAndUse 

StopFill 
StopUse 

Using 
Filling 

set_inflow_level 
set_outflow_level 

Schedule 
Schedule 

Table 11      Fuel Tank State Table 

Current Event Guard Next Action Send 

Off ChangeFuelFlow flow-rate > 0 Running set_rate ChangeThrust; StartUse 
Running 
Running 

ChangeFuelFlow 
ChangeFuelFlow 

flow-rate > 0 
flaw-rate = 0 

Running 
Off 

set_rate 
set_rate 

ChangeThrust; StopUse; StartUse 
ChangeThrust; StopUse 

Table 12     Jet Engine State Table 

Current    Event                    Guard     Next         Action                                Send 

Normal     ChangeSetting                    Normal    update_position_index    ChangeFuelFlow 

Table 13      Throttle State Table 
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Family ObjectEvent = { 

Port Type SendPort = { 

>; 
Port Type ReceivePort = { 

>; 
Role Type Source = { 

}; 
Role Type Destination = { 

}; 
Component Type AggregateClass = { 

>; 
Component Type PrimitiveClass = { 

}; 
Connector Type EventFlow = { 

>; 
Attachments { 

}; 

}; 
System JPS : ObjectEvent = { 
Component JetPropulsionSystem : AggregateClass = { 

Port ChangeSetting : SendPort; 

Port ChangeThrottle : ReceivePort; 

Port OutOfFuel : ReceivePort; 

Port StartEngines : ReceivePort; 

Port TankEmpty : SendPort; 

Port startup : ReceivePort; 

Representation { 
System Aggregate-rep : ObjectEvent = { 

Component FuelTank : PrimitiveClass = { 

Port Cancel : SendPort; 

Port ChangeFuelFlow : SendPort; 

Port Overflow : SendPort; 

Port Schedule : SendPort; 
Port StartFill : ReceivePort; 

Port StartUse : ReceivePort; 

Port StopFill : ReceivePort; 
Port StopUse : ReceivePort; 

Port TankEmpty : ReceivePort; 

Port TankFull : ReceivePort; 

}; 
Component JetEngine : PrimitiveClass = { 

Port ChangeFuelFlow : ReceivePort; 

Port ChangeThrust : SendPort; 

Port StartUse : SendPort; 

Port StopUse : SendPort; 
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>; 
Component Throttle : PrimitiveClass = { 

Port ChangeFuelFlow : SendPort; 

Port ChangeSetting : ReceivePort; 

>; 
Connector CancelEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

>; 
Connector ChangeFuelFlowEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector ChangeSettingEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector ChangeThrustEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector OverflowEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector ScheduleEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

>; 
Connector StartFillEvent : EventFlow = { 
Role sink : Destination; 

Role source : Source; 

}; 
Connector StartUseEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector StopFillEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector StopUseEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
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Connector TankEmptyEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

}; 
Connector TankFullEvent : EventFlow = { 

Role sink : Destination; 

Role source : Source; 

>; 
Attachments { 
FuelTank.Schedule to ScheduleEvent.source; 

FuelTank.Overflow to OverflowEvent.source; 
FuelTank.ChangeFuelFlow to ChangeFuelFlowEvent.source; 

FuelTank.Cancel to CancelEvent.source; 

FuelTank.StopUse to StopUseEvent.sink; 

FuelTank.TankEmpty to TankEmptyEvent.sink; 

FuelTank.TankFull to TankFullEvent.sink; 
FuelTank.StopFill to StopFillEvent.sink; 
FuelTank.StartUse to StartUseEvent.sink; 

FuelTank.StartFill to StartFillEvent.sink; 
JetEngine.ChangeThrust to ChangeThrustEvent.source; 

JetEngine.StopUse to StopUseEvent.source; 

JetEngine.StartUse to StartUseEvent.source; 

JetEngine.ChangeFuelFlow to ChangeFuelFlowEvent.sink; 
Throttle.ChangeFuelFlow to ChangeFuelFlowEvent.source; 

Throttle.ChangeSetting to ChangeSettingEvent.sink; 

}; 
}; /* end system */ 

} 

>; 
}; /* end system */ 
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Appendix F.   Configuration Management of Files Related to this Research 

Several files were generated as part of the implementation of this thesis effort. The location 

and content of these files is given in the following sections. 

F.l    AFITtool 

File Name 
runcmd.lisp 

dom2acme.re 

at2dav.re 

domtool.re 

Content 
Runs a command in the command shell; 
used to invoke daVinci, Acme parser, and Rose 
Refine code to extract information from domain 
model and produce Acme architecture file 
Refine code to extract information from domain 
model and produce daVinci diagrams 
Extended menu to include options for 
daVinci, Acme, and Rose  

In order to use these files with AFITtool, they need to be included in the system.lisp 

file, or compiled and loaded individually after Refine is started. They need to be compiled 

and loaded in the order in which they appear in the table. 

F.2    daVinci 

File Name Content 
/apps/AI/bin/SUN4SOL2/daVinci daVinci Executable 

Nothing has to be compiled for the daVinci integration, except the aforementioned 

files that are compiled as part of AFITtool. 
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F. 3   Rose 

File Name 
SCRIPTJPATH$/Rose2at.ebs 

SCRIPT_PATH$/ltx2rose.ebs 

On the Hawkeye System: 
/apps/roseada/releases/rose.4.5.8153/rose.mnu 

/apps/roseada/releases/rose.4.5.8153/bin/rose.exe 
On the PC Network: 
r:\simulat.ion\rose98\rose.mnu 

r:\simulat.ion\rose98\bin\rose.exe  

Content 
Extracts information from Rose 
diagram to create a Z WO^fi. file 
for AFITtool 
Parses MßX file to create Rose 
diagrams 

Menu file extended for AFITtool 
integrations 
Rose executable 

Menu file extended for AFITtool 
integrations 
Rose executable 

The script files used for the Rose to ^TßX and MfcjX to Rose conversions are in the 

proper directory for Rose to use them, defined by the environment variable SCRIPT_PATH$. 

SCRIPT_PATH$ is currently set to /apps/roseada/releases/rose.4.5.8153/scripts.    The 

scripts are interpreted, rather than compiled, so nothing needs to be done to them in order 

for them to work correctly. 
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