
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1998

A Web-based Prototype for AFIT Edplan Administration A Web-based Prototype for AFIT Edplan Administration

Tien-Chen Lee

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Lee, Tien-Chen, "A Web-based Prototype for AFIT Edplan Administration" (1998). Theses and
Dissertations. 5221.
https://scholar.afit.edu/etd/5221

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F5221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5221?utm_source=scholar.afit.edu%2Fetd%2F5221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/98D-02

A Web-based Prototype for
AFIT Edplan Administration

THESIS
Tien-Chen Lee,

Captain, Taiwan AF

AFIT/GCS/ENG/98D-02

Approved for public release, distribution unlimited

DTIC QULIY I1 jCTED 1

Approved for public release, distribution unlimited

AFIT/GCS/ENG/98D-02

An Web-based Prototype for AFIT Edplan Administration

Tien-Chen Lee
Captain, Taiwan AF

Approved:

Michael L TIlbert, Ph.D., Major Date

Thesis Advis r

Richard A.Raines, Ph.D., Major Date
Committee Member

a4 OA rx TV f__ _ V.

Henry]Potoczny, Ph.D. Date
Committee Member

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department or the U.S. Government.

A Web-based Prototype for AFIT Edplan

Administration

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer System

Tien-Chen Lee

Captain, Taiwan AF

December 1998

Approved for public release, distribution unlimited.

Acknowledgments

I want to thank my thesis advisor, Major Talbert, for his sound

support, guidance, and much needed course corrections. I would like to

thank my committee members, Major Raines and Dr. Potoczny for

additional support and guidance on both my research and my studies at

AFIT.

I would also like to thank Dan Dipiro, who provided the

methodology I used in my thesis, for his assistance to my research. My

appreciation and thanks also go to my sponsor couple, Michael L Kinane

and his wife Estella Kinane, who have helped me in English writing skills

and many other supports.

ii

Table of Contents

A Web-based Prototype for AFIT Edplan Administration ... i

A cknow ledgm ents ... ii

Table of Contents .. iii

Table of Figures .. vii

List of Table .. ix

A bstract .. x

A Web-based Prototype for AFIT Edplan Administration 1-1

1 Introduction ... 1-1

1.1 Problem Statem ent .. 1-2

1.2 Purposes of this Research ... 1-3

1.3 Thesis O verview .. 1-4

2 Background .. 2-1

2.1 D atabase Access Techniques .. 2-1

2.1.1 Com m on G atew ay Interface (CG I) ... 2-2

2.1.2 O pen D atabase Connectivity (O D BC) .. 2-3

2.1.3 Java D atabase Connectivity (JD BC) .. 2-6

iii

2.1.4 ActiveX Data Objects (ADO) 2-9

2.2 Software Technologies for Web-based Applications 2-11

2.2.1 A pplet (client side) .. 2-12

2.2.2 ActiveX Server Pages (ASP) (server side) 2-12

2.3 Methodology of Dan Dipiro .. 2-16

2.3.1 Development Environment Analysis ... 2-17

2.3.2 Component Analysis and Design ... 2-23

2.3.3 Function Implementation .. 2-26

2.4 Su m m ary .. 2-28

3 Design of the prototype system .. 3-1

3.1 Dipiro's Methodology for choosing Internet technologies 3-1

3.1.1 Analysis of the client environment .. 3-2

3.1.2 Analysis of the existing database architecture 3-4

3.1.3 Analysis of development resources ... 3-5

3.2 Prototype system analysis and design ... 3-7

3.2.1 Component 1 (Student information input function).............. 3-7

3.2.2 Component 2 (Edplan data input) .. 3-10

3.2.3 Component 3 (View and update Edplan input) 3-13

3.2.4 Component 4 (Generate Edplan checker input file) 3-15

3.2.5 Component 5 (Generate AFIT form 69) 3-17

3.3 Validation of the prototype .. 3-19

4 Implementation and Evaluation of the prototype system 4-1

iv

4.1 Design Implementation of the Prototype System 4-1

4.1.1 Implementation of Component 1 (Student Info Input) 4-2

4.1.2 Implementation of the component 2 (Edplan data input) 4-6

4.1.3 Implementation of Component 3 (Edplan View & update) 4-8

4.1.4 Implementation of Component 4 (Edplan checker file) 4-12

4.1.5 Implementation of Component 5 (AFIT form 69 generator).. 4-14

4.2 Evaluation of the prototype system .. 4-17

4.2.1 Evaluation of student functions ... 4-17

4.2.2 Evaluation of the Faculty Function .. 4-20

4.2.3 Overall Evaluation of the Prototype System 4-20

4.3 Su m m ary ... 4-21

5 Findings and Conclusions ... 5-1

5 .1 F in d in g s .. 5-1

5.1.1 Findings from Using Dipiro's methodology 5-2

5.1.2 Issues with the finished prototype system 5-3

5.2 Recom m endations ... 5-4

5.2.1 Recommended Solution for Course "CSCE 699" Problem 5-5

5.2.2 Database Model for Web-based Application 5-5

5.3 C on clu sion s .. 5-6

5.4 Fu ture w ork .. 5-7

B ib lio grap h y .. 5-9

V

V ita ... 5-1 1

vi

Table of Figures

Figure 1. The Architecture of O DBC ... 2-6

Figure 2. The Architecture of JDBC and the relationship of JDBC and DBMS... 2-9

Figure 3. H TM L code for student ... 2-13

Figure 4. Student information input HTML page .. 2-14

Figure 5. ASP code for inserting student input to DB ... 2-15

Figure 6. ASP application interacting with Web-database 2-16

Figure 7. DFD for Schedule Library Room Component .. 2-24

Figure 8. Lowest Level DFD of Room Scheduling Component 2-26

Figure 9. DFD for Student input component .. 3-9

Figure 10. Lowest level DFD for Student input component 3-10

Figure 11. Level 0 DFD for Edplan input component ... 3-11

Figure 12. First level Decomposition of Edplan input component 3-12

Figure 13. Lowest level Decomposition of Edplan input component 3-12

Figure 14. DFD for view and update edplan component 3-14

Figure 15. Lowest level DFD of Edplan view and update component 3-14

Figure 16. Level 0 DFD for Edplan checker input file component 3-16

Figure 17. Lowest level DFD of the Edplan checker input component 3-16

Figure 18. Level 0 DFD for AFIT form 69 component ... 3-18

Figure 19. First Level DFD for AFIT form 69 component 3-18

Figure 20. Low level DFD of the AFIT form 69 component 3-19

vii

Figure 21. Tables of the Edplan database used by the project 4-2

Figure 22. Student input component DFD with used technologies 4-3

Figure 23. Student data input component ... 4-4

Figure 24. Student Identity Authentication page ... 4-5

Figure 25. Student Data Display page ... 4-5

Figure. 26. Result of Data Update page ... 4-6

Figure 27. Lowest level Decomposition of Edplan input .. 4-7

Figure 28. Edplan Input Form page ... 4-8

Figure 29. Lowest level DFD of Edplan View and Update component 4-9

Figure 30. The generated Edplan report page .. 4-10

Figure 31. Result of dropping a course .. 4-11

Figure 32 Screen shot of the result of course dropping ... 4-11

Figure 33. Lowest level DFD of the Edplan checker input component 4-12

Figure 34. Edplan Checker Input data generated in Component 4 4-13

Figure 35. Edplan Checker Input File download page .. 4-14

Figure 36. Low level Decomposition of the AFIT form 69 component 4-14

Figure 37. Students' Name pick list .. 4-15

Figure 38. Screen Shot of the Generated AFIT Form 69 .. 4-16

viii

List of Table

Table 1. The Statistics from the on-line Questionnaire .. 4-19

ix

AFIT/GCS/ENG/98D-02

Abstract

This document details the design, development, and evaluation of a

prototype course registration and reporting system for the students and faculty

of the United States Air Force Institute of Technology. The web-based system

provides HTML-based client interfaces and Active Server Page server processes

for interaction with the relational databases used to manage course and

personnel data. The system prototype was developed following the

"Engineering Software Components for Web-Database Access" methodology of

Dipiro. A survey of modern web-based database access techniques is first

provided and Dipiro's methodology is reviewed as background. The remainder

of the document details the application of the methodology as a decision aid for

decomposing system requirements into a series of user interaction and data

access functions. Then, again following the methodology, an analysis of extant

web-database access techniques is performed in the search for the most

appropriate one. Next, the developed prototype system's functions are described

and depicted via screen capture images. Finally the results of prototype

evaluation via user feedback surveys are provided along with recommendations

for future system improvement. Ultimately, this work stands as a validating test

case for the Dipiro's methodology.

x

A Web-based Prototype for AFIT Edplan

Administration

1 Introduction

In recent years, the technologies comprising the Internet have been

developing rapidly, due mostly to the rising utility of the World Wide Web. The

introduction of the WWW to the Internet has caused a great impact on not just

the computer world, but also many individuals and enterprises. As the WWW

becomes more useful and powerful and the prices of personal computers (PC)

continue to drop, the number of users is growing rapidly. The WWW was

originally used primarily for distributing static technical information, but today

it is being used for more a much broader genre of tasks. Since it is so useful and

powerful, it has triggered the desire of many different enterprises and

organizations to make consumer-ready information (data) available through this

powerful medium (WWW). Consequently, many technologies have been

developed for web applications to make these enterprises' data in standing

database management systems available via a browser-based interface to the

WWW.

1-1

1.1 Problem Statement

While many Web-based software technologies have been developed and

created, it has become more difficult for developers to choose an appropriate

technology for their projects. Dan Dipiro [Dipiro98], who graduated from Air

Force Institute of Technology (AFIT) March 98, offers a methodology to analyze

the currently existing technologies for Web-based database access to help

developers to pick the right one for their applications. His methodology focuses

on essential factors pertaining to the development environment, client capability,

and technologies available, which affect the design process and the capabilities of

each Internet technology.

AFIT course Education Plan (edplan) Administration is routine but

critical task for AFIT students and faculty. The edplan is used to record a

student's projected and actual academic programs. Each new AFIT student is

required to submit an initial education plan that lists all courses to be included in

the academic program. The edplan is prepared in conjunction with the student's

academic advisor. It helps faculty advisors ensure that the edplans, which

students propose, satisfy the requirements for their programs. Usually, students

will create the edplan either by using AFIT's edplan checker, an automated

education plan checking program, or by typing manually. After students submit

their initial edplan to their advisors, those faculty advisors enter the edplan into

the school's database, which stores all data about AFIT faculty and students.

Currently, students can not view and change their edplan by themselves. They

1-2

have to go to see their advisor to view or change. Students also have to create

the edplan checker input file to run the edplan checker program to see if they

satisfy the program requirements. Current students have to create this input file

by manually typing it themselves. Because the edplan checker program is

written in Prolog which is very particular in file format, it is very easy for

students to have typing errors and cause time wasting when running the file on

the edplan checker program. Due to the problems described above, a web-based

edplan prototype system will be developed to make the current process of

handling these matters efficient and reduce the chance of manually typing errors.

Additionally, because this application is in the same domain of Dipiro's

methodology, I will implement the methodology to choose an appropriate Web-

based technology and develop the Web-based prototype for AFIT Education Plan

Administration.

1.2 Purposes of this Research.

The goals of this research are to implement Dipiro's methodology to

analyze the existing web-based data access software technology and choose a

good one to create a prototype edplan system. And also investigate the ways of

the connectivity between database, such as Java Database Connectivity (JDBC),

Open Database Connectivity (ODBC) and ActiveX Data Object (ADO). The

attraction of the WWW motivates the design of a Web-based edplan function to

1-3

help both the students and faculty to maintain the edplan easily. This

application will provide an interactive page to let students input their initial

edplan data as well as course credit category information, which doesn't exist in

current ACES database. In particular, course credit category information is

critical in ensuring specific graduate program requirements have been satisfied

by the mix of courses taken. After the input data is generated, it will be sent to

the prototype database directly. The data generated may be used to apply to

other academic functions, such as an AFIT Form 69, an official record of the

courses taken and the requirements they satisfy. The finished prototype system

will be very useful for students as an "edplan on-line" interface, which helps

them to generate and maintain an edplan more easily and efficiently.

Consequently, this would save the faculty time currently spent doing this for

students and it will also be useful to faculty for automated generation of AFIT

Form 69 and it may be useful for other academic functions in the future.

1.3 Thesis Overview

Chapter 2 provides background information in the areas covered by this

thesis, with a focus on some current database connectivity techniques (such as

CGI, ODBC, JDBC and ADO), software technologies for web-base database

access (Applets, ASP) and Dipiro's methodology. Chapter 3 describes the

analysis and design of the project functions by implementing Dipiro's

1-4

methodology. Chapter 4 discusses the implementation of Dipiro's methodology

for the prototype system and the evaluation of the finished prototype. Finally,

Chapter 5 contains findings, conclusions, and areas for future system

improvement.

1-5

2 Background

In this chapter, background information is provided on the technologies

and methodology discussed in this thesis. The first section provides the

fundamental background of current database access techniques, such as

Common Gateway Interface (CGI), Open Database Connectivity (ODBC), Java

Database Connectivity (JDBC), Active Data Object (ADO), etc. The second

section gives information about applets and Active Server Pages (ASP), two

software technologies for web-database integration. The third section overviews

a methodology for mapping web technologies to data access problems, proposed

by Captain Dan Dipiro [Dipiro98], GCS 98M. The goal of this chapter is to give

the reader idea of different technologies connecting to database through the

WWW and to provide a foundational understanding of Dipiro's methodology.

2.1 Database Access Techniques

There are many methods of remote database access available today.

Application developers can choose from the Common Gateway Interface (CGI)

and Fast CGI, Open Database Connectivity (ODBC), Java Database Connectivity

(JDBC), Object Linking and Embedding Database (OLE DB), Active Data Object

(ADO), Data Access Object (DAO), gateways, proprietary Application

Programming Interface (API), and no doubt others in various stages of

implementation. The industry has evolved from monolithic, mainframe

2-1

applications to client-server and distributed computing [North97]. The

computing world has been developing in every aspect. The more it develops the

more data needs to be handled. Due to the frequency of data exchange between

corporations or individuals, database access has become a critical mission issue.

As a survey of extant technologies, some background knowledge of database

access techniques is provided.

2.1.1 Common Gateway Interface (CGI)

The CGI is a standard for interfacing external applications with

information servers, such as web servers. CGI programs are executed in real-

time, which allows them to dynamically process information, and also run their

applications in processes isolated from the web server. Thus CGI overcomes

some of the limitations of otherwise static web pages by offering the ability to

dynamically create HyperText Markup Language (HTML) pages in response to

user requests, fielded by the web server. Many early solutions to web-based data

access relied on the CGI and server-side applications [Dipiro98]. The

disadvantage of CGI applications is that a web server starts up an instance of the

CGI program for each user request. Some web servers are equipped with an

additional set of Application Programming Interfaces (APIs), such as Microsoft's

Internet Information Server API (ISAPI), Netscape's Netscape Server API

(NSAPI), or Apache's ASAPI, which don't use the "process-per-request" model.

2-2

While these APIs provide similar functions, they are vendor-specific and often

incompatible. Fast CGI, a faster and open interface from Proprietary APIs, is a

new, "open extension to CGI that provides high performance for all Internet

applications without any of the limitations of existing Web server APIs"

[FastCGI]. Fast CGI is simple because it is actually the extended CGI and

performs much better. Since FastCGI is an open specification, you can run it

without depending on software, which solves the problem of vendor-specific

APIs.

2.1.2 Open Database Connectivity (ODBC)

ODBC was developed by Microsoft in 1992. ODBC is an API for

programs that use Structured Query Language (SQL) to access data. The main

purpose of the ODBC interface standard is to enable applications to access data

from a variety of database management systems (DBMS) using a standard SQL-

like interface. ODBC allows for maximum interoperability and alleviates the

need for independent software vendors and developers to learn multiple APIs.

ODBC provides a universal data access interface and application developers can

allow an application to concurrently access, view, and modify data from

multiple, heterogeneous databases.

The ODBC interface supports the following:

2-3

"* A library of ODBC function calls: These function calls allow an

application to connect to a DBMS execute SOL statements, and retrieve

results.

"* SQL syntax support: The SQL syntax is based on a Call Level Interface

from the SQL Access Group (SAG)(now part of X/open) and X/open

that advanced to become the international standard CLI for SQL-92.

"* Error standard: It provides a standard set of error codes.

• Connection standard: It provides a standard way to connect and log

on to a DBMS.

* Data type standard: It offers a standard way to represent data types

[Hettih97].

When an application tries to communicate with a DBMS, it will use ODBC

interface functions to perform many tasks, such as requesting a connection or

session with a data source, sending SQL requests to the data source, defining

storage areas and data formats for the results of SQL requests, processing errors

and requesting commit or rollback operations for transaction control, then finally

terminating the connection to the data source. An application can also connect to

multiple data sources concurrently. After the data source is connected, the

application can then perform the tasks described above.

The architecture of ODBC can be classified as four components as follows:

2-4

"* Application: Performs processing and calls ODBC functions to submit

SQL statements and retrieve results, also known as an "ODBC Client".

"* Driver manager: The driver manager is provided by Microsoft and it

is a Dynamic Link Library (DLL), which allows to load drivers

dynamically when they are needed. It loads and unloads drivers,

performs status checking, and manages multiple connections between

applications and data sources.

"* Driver: A driver process ODBC function calls, submits SQL requests

to a specific data source and return results to the application. Any

ODBC client (application) can access any DBMS for which there is an

ODBC driver.

"* Data source: Data source is the back-end, which consists of the data

the user wants to access and its associated operating system, DBMS.

The figure 1 shows the architecture of ODBC.

2-5

[Application J
I

ODBC API

ODBC Driver manager

ODBC Driver

DBMS DBMS DBMS

Figure 1. The Architecture of ODBC.

Most of the main tasks are done by DBMS-specific drivers. In response to

ODBC function calls from an application, a driver establishes a connection with

and submits requests to a named data source. It also translates data to or from

other formats, returns results to the application, and formats errors into standard

error codes and returns them to the application. The ODBC standard has been

widely accepted as a vendor-neutral API to access heterogeneous SQL databases.

The capabilities of ODBC make the data connection easier and help application

developers to concentrate more on the core functions of the applications.

2.1.3 Java Database Connectivity (JDBC)

Before description of JDBC, some background information may be

2-6

useful to know. The object-oriented paradigm of programming has swept

through the computer science industry over the past five years. Java is one of the

most popular and powerful object-oriented languages modeled after C++. Java

was released by Sun Microsystems in the summer of 1995. One of the foremost

features of Java is its hardware independence. Java source code is compiled into

bytecodes, which are platform independent [JAVA96]. Due to Java's platform

independent feature, it is an ideal language for Internet applications since it can

easily interface with the various kinds of computers and operating systems in

use throughout the Internet, such as UNIX, Microsoft Windows and Macintosh.

Java programs that are embedded in World Wide Web pages are referred to as

"applets", while stand-alone programs are called "Java applications". Before

Java, users viewed HTML-based pages using Web browsers, such as Internet

Explorer, or Netscape. These pages contain text, pictures, audio and video clips,

and other multimedia files. With new "Java-enabled" browsers (such as

Netscape 2.0 and higher), users may visit a web page with an embedded Java

applet, which is downloaded from the web server to the client (user's personal

computer) and executed on that user's machine. This allows web pages to

perform many complex tasks such as animation, interactive games and database

access. In addition, Java supports multithreading and multiprocessing, making it

suitable for database applications that involve large numbers of concurrent users.

Due to the popularity of the Java language, Sun released Java Database

2-7

Connectivity (JDBC) in June 1996. JDBC is an SQL API that includes Java classes,

a driver manager, and loadable drivers. JDBC shares a common objective with

Microsoft ODBC, which provides connectivity to SQL-based databases and

provides developers with an open standard for hooking their databases to the

Web. JDBC and ODBC are both based on the Call Level Interface (CLI) from

X/open [SUN96]. Developers familiar with ODBC should feel comfortable with

JDBC's environment, since JDBC shares some common classes, such as database

connections and callable SOL statement classes. The JDBC's architecture is

similar to ODBC's, except that JDBC can also use a JDBC-ODBC Bridge to

connect to ODBC drivers. The JDBC-ODBC Bridge, jointly developed by

JavaSoft and Intersolv, maps JDBC logic into the appropriate ODBC function

calls. The remote DBMS (with the appropriate ODBC drivers) receives these calls

as they do from any other ODBC client, and executes them. Applications written

in Java, including Java applications and applets, can use JDBC to access remote

databases. Figure 2 shows the architecture of JDBC and the relationship between

applications, JDBC and DBMS.

2-8

Downloaded from

Java application Java applet web server

JDBC API

1 Web

JDBC Driver manager server

Web server
host computerJDBC-ODBCrdg JDBC Driver JDBC Driver

ODBC Driver

DBMS DBMS DBMS

Figure 2. The Architecture of JDBC and the relationship of JDBC and DBMS.

With the growing popularity of Java, the Java language is evolving very

quickly, and new Java products are appearing each day. In the future, JDBC may

be the connectivity API of choice for many database systems.

2.1.4 ActiveX Data Objects (ADO)

ActiveX Data Objects (ADO) is Microsoft's strategic, high-level

2-9

interface to all kinds of data. ADO is built on top of the Object Linking and

Embedding applied to databases (OLE DB)1 model from Microsoft. The main

purpose of the ADO is data access and manipulation. ADO is the successor to

both Data Access Objects (DAO)2 and Remote Data Objects (RDO)3. ADO

combines the best of previous data access methods with an object-based

standard, and includes the capability of DAO and RDO and extends their reach

to provide data access for the Internet using the OLE-DB model.

ADO includes several objects, three of which are fundamental for

interacting with a database. Those three fundamental objects are:

"* The Connection object: The connection object is used to create a

connection to a data source. Once the connection is established, you

can issue a query against the database and get results back.

"* The Command object: The command object enables you to specify a

specific command that you are going to execute on a database. This

object is useful when issuing a data manipulation query, such as an

insert.

1 OLE DB was designed to give the developer access to a wide range of data
storage systems. ODBC only provides the interface to relational data stores
based on SQL. The idea of OLE DB is not to replace ODBC, but to extend it.

2 DAO was developed to encapsulate database functions and operations within

the context of an object. DAO provides access to ODBC-compliant databases.
3 RDO was the successor to DAO and provided a better solution for ODBC

database access and extended the reach of these objects to the server.

2-10

* The Recordset object: The recordset object is used to manipulate the

records, or rows within your database tables. This object uses the

cursor for a query to help you to traverse the result table [Hettih97].

ADO is designed to be an easy-to-use application level interface for

today's developers. Microsoft implements ADO specifically to provide data

access across the Web and they also publicly stated that ADO eventually will

replace the company's current data access models, including DAO and RDO.

Thus ADO won't be just for Internet /Intranet data access, it is the Microsoft data

access model for the future [Litwin98].

2.2 Software Technologies for Web-based Applications

The software technologies for web-based data access can fit into two

categories with respect to the client-server model. The two categories contain

technologies used to create code designed to run on the client (client side) and

code designed to run on the server (server-side), respectively. This section

provides brief introductions of two different software technologies for both client

side and server side.

2-11

2.2.1 Applet (client side)

Applets are executable programs stored on the server and created with the

Java programming language from Sun Microsystems. Applets are embedded in

a web page and execute within the context of a browser. The browser must

support Java to be able to execute the applets. When a user requests a certain

web page, the HyperText Markup Language (HTML) is sent with the applets

from the server to the browser on the client machine. The browser detects the

applet by discovering the <APPLET> tag within the HTML document, then it

interprets the compiled Java bytecodes with the Java runtime interpreter (most

browsers support Java runtime interpreter nowadays) and executes the applet

program.

These applets can provide various functionality from multimedia to

spreadsheet applications. Currently applets have been used to perform complex

tasks such as animation, database access etc.

2.2.2 ActiveX Server Pages (ASP) (server side)

ASP is Microsoft's most recent Web server technology, and is designed to

make it easier for developers to create sophisticated Web applications. Microsoft

originally created ASP as the integral server processing component of their web

server, Internet Information Server (IIS). Now the Microsoft Personal Web

Server includes ASP as a component, too. The statement above does not mean

2-12

that ASP can only be used by Microsoft web servers though. In fact, ASP can

work with any other web servers, including Netscape's web server.

ASP is a server-side scripting environment that includes built-in objects

and components, such as ADO, which enable a degree of interactivity and

greatly simplify many complex tasks. ASP applications can combine HTML,

scripting language (scripts), and ActiveX server components to create useful

Web-based applications. To make it clear, a simple ASP application is presented

next. The code in Figure 3 is simply an HTML displaying a student's

information input form.

<html>
<head>
<title>Student Information input</title>
</head>
<body>
<p>Student Information

Enter your information into database in the following fields:</p>
<form action="students.asp" method=POST">

<table border='T' width="100%">
-<tr><td>Last Name</td>

<td><input type="text' size="30" name="lname"></td></tr>
<tr> <td>First Name</td>

<td><input type="text" size="30" name="fname"></td></tr>
<tr><td>Login Name</ td>

<td><input type="text" size="30" name="login"></td> </tr>
<tr><td>Password</td>

</tr> <td><input type="text" size="30" name="password"></td></tr>
<tr> <td>Rank</td>

<td><input type="text" size="30" name="rank"></td>
</table>
<p><input type="submit" name="B value="Click to enter information into
database"></p>
</form>
</body>
</html>

Figure 3. HTML code for student.

2-13

The output of that HTML code is shown in Figure 4 below.

J ~ o Se1cf J~u. h-ut1' --- I ýJ

Adtt'e] htp //pc-eng8245/t0eed',Iudent Ml

Student 4Ido atione
sEnter your toinormtion into database in the foAloSin. fields:

2Name

F iko~riguore 4 Sudnt nfrmtin npt TM pge

The following code in the Figure 5 does the main job. This code is a

combination of Visual Basic script, HTML and ADO (Connection Object). The

Connection object of ADO creates the connection to the target database and "if

... then" syntax of VB scripts is used to build the logic of this application. Scripts

delimiters are used to separate the scripts and HTML. This application simply

shows how to insert data into database by using ASP.

2-14

<!-#include file="IASUtil.asp"->

<html>
<head>
<title>Students' Info</title>
</head>
<body>

Set SDB = Server.CreateObject("ADODB.Connection")
SDB.Open "Students"
query = "SELECT * FROM Students WHERE
LastName = ". & Request("lname") & "' AND FirstName .. ". & Request("fname") &
Set Findquery = SDB.Execute(query)
If CheckRS(Findquery) then

<h2> A student with that last name and first name already exists!</h2>
Click back and try again.

Else
queryl = "INSERT INTO Students (LastName, FirstName, LoginName, Password, Rank)
VALUES(`' & Request("lname") & '"' & Request("fname") & "',' & Request("login") & "','

" & Request("password") & "',"' & Request("rank") & "')"

Set InsertQuery = SDB.Execute(queryl)

<h2> Student's info entered into database.</h2>

End If
Findquery.close
SDB.dose

</body>
</html>

Figure 5. ASP code for inserting student input to DB.

Unlike CGI, which runs isolated from the web server, ASP runs processes

on the server, and is multithreaded and optimized to handle large numbers of

users [IIS4.0]. Scripting is really how ASP holds all the pieces together and

controls the program flow of the web page. ASP 's database access component

uses ADO to access and manipulate information in a database. Figure 6 shows

how ASP interacts with databases.

2-15

Web server

HTTP

Internet/ Intranet - lop

Clients
(Browsers)

Figure 6. ASP application interacting with Web-database.

ASP is specially designed to make it easier to develop interactive Web

applications and to work together with Windows technologies such as ActiveX,

ADO, and ODBC. Therefore ASP would be a very good software technology to

choose if the developers intend to use Microsoft products.

2.3 Methodology of Dan Dipiro

Dan Dipiro graduated from AFIT/ENG school with a Masters of Science

in Computer Systems in 1998. The goal of his thesis research was to provide a

methodology that could be used in the analysis of a web-based data access

enterprise to aid the developer in choosing the right software technologies to

implement their data access services. His methodology consists of three main

steps - Development Environment Analysis, Component Analysis and Design,

2-16

and Function Implementation. The first step of this methodology, Development

Environment Analysis, includes the analysis of three environment factors. This

information and knowledge of the capabilities of each Internet technology are

actually enough for a developer to make a choice. Thus this section will focus

more on the first step and describe the other steps in more general terms.

2.3.1 Development Environment Analysis

This step describes how certain aspects of the overall system environment

can impact or influence the technologies chosen for implementing data access.

The first of those aspects to consider is the clients who will access the data

sources, the second is the existing database architecture, and the third is the

availability of development and maintenance resources. In this methodology,

the overall project is ultimately defined as an interoperating aggregation of

individual components, each performing a unique function.

2.3.1.1 Client Environment

The client environment can be defined in two classes of clients for a

typical web-based scheme. The first consists of internal clients who are members

of the organization owning the data sources. The second, external clients, are

those clients who exist outside the organization, but who need to access the data

sources.

2-17

Internal clients

Usually, information about the hardware and software platforms that the

internal clients use, and the number of these clients, are available to the

developers. Thus the developers can have more accurate task-to-technology

mapping in choosing the software technologies for their projects. The developers

can always select the best technologies to fit their internal clients' platforms to

increase the application capability and provide more optimized run-time

performance. Another positive aspect of internal clients is that they are most

likely to have a high-speed connection to the server, since they usually are on the

same network or local area network (LAN).

External clients

The application can also be designed for a specific number of approved

external clients or an unlimited number of potential external clients. The number

of external clients can have a great impact on a web server's performance. This is

because as the number of concurrently connected clients increases the server's

processing load, and can cause it to become overburdened if it does not have

sufficient processing power. Since a server typically has only one network

connection, response time can also be affected by a communications bandwidth

bottleneck. Thus the developers must project and plan for the potential impact

2-18

of the increased external client load on both network bandwidth and server

performance.

The software and hardware used by external clients is generally hard to

predict. Therefore, the designer must always consider portability to the expected

cause of client platform capabilities when designing components to be accessed

externally. For example, the impact of the choice to use a proprietary technology

could cause unpredictable results. Some clients may experience no degradation

in component functionality, others may get limited functionality, and some can

have total loss of functionality [Muel197]. For example, consider an applet

created in the Java programming language. A client using Sun's HotJava

browser will see the optimum result that the designer expected. A Microsoft

Internet Explorer client may see the application well, but some functions may not

work correctly. Some other clients with other browsers may even experience the

worse case, such as not seeing the component at all. Developers must also

consider the external client's network connectivity when designing components

to the system, since a long download time really degrades the perceived overall

performance of the system. In short, complete information about external clients

is unknown and cannot be known with any certainty. Therefore, the component

that they interface with should be designed for portability and of a reasonable

size to optimize download performance.

2-19

2.3.1.2 Analysis of the Existing Data Source Architecture

The second step to be considered when choosing technologies for web-

based database access component design is the existing database architecture.

This includes any existing database management systems, their ability to handle

an increased client load, and the physical location of the data sources.

Existing Database Management Systems

Two key areas of the existing DBMS are focused on in this step. The first

is the multi-user capability of the existing database management software. The

ability of a DBMS to service remote web clients will depend greatly on whether

the DBMS implements a single or multi-user environment. The web clients

accessing a database through most interfaces are treated the same as local clients

by most DBMS. Thus using a single-user DBMS, or one that can only handle a

small number of concurrent users, will greatly reduce the overall performance

for the web-based application. The second area that will influence any design is

the existence of any original equipment manufacturer (OEM) or third party

development tools. These tools allow the rapid graphical-based design of web

forms and reports, and also automatically generate the code necessary to compile

these applications. The major benefit of these development tools is their tight

coupling with the target data source. The tight coupling between the code

created by the tool and the DBMS ensures that the web-components will be more

functional and have fewer bugs. A negative aspect of these tools is that they tend

2-20

to be very expensive if not bundled with the DBMS. Some databases can only be

accessed via the web through a proprietary interface. This will limit a design to

the methods supported by that DBMS. Many DBMSs such as Microsoft Access

can communicate with clients through many ways such as ODBC or through a

JDBC-ODBC bridge. Using these types of DBMSs will make it more flexible for

designers to choose the technologies for applications.

Location of Data Source

The second area of the existing DBMS architecture that deserves

consideration is the physical location of the data sources. There are two cases,

the first of which is that the data resides in a single database or in multiple

databases on a single server. The second is when the data to be accessed resides

on different machines. The second case is the primary concern. A web

application needing to access data on several different machines will affect a

design by increasing its complexity and introducing potential security and

performance factors. Attempting to access several machines can also violate the

browser's security constraints. Usually most web browsers only let applets

connect to the machine from which they were served the web page. According

to Dipiro's methodology, to avoid the difficulties of this case, a three-tiered

approach should be used. In this approach, a server process on one machine

handles the interaction with the databases by receiving requests from the client,

and then executes them on the appropriate database servers. Using the three-

2-21

tiered approach can avoid the security restrictions imposed by the client's

browser and also maximize the performance of data access by residing on a

server with a fast communication path to the database.

2.3.1.3 Existing Resource Environment

The third factor to consider in this step consists of the available resources

of time, money, and personnel. This section provides information to aid the

designer who is limited in at least one area of those three aspects.

When time is a limiting resource, a designer should seek to create

components that are simple, clearly documented, and that maximize code reuse

whenever possible. Also the designer should be familiar with the capabilities

and drawbacks of each technology in order to help decide which best suit design

goals and environment constraints.

For funding resource limitations, the price information of web server and

development tools are available to help designers make the right choices within

their budget. The impact of funding resource limitations is that it can restrict the

tool choices of the developers.

In terms of development personnel limitations, if there are plenty of

personnel for analysis and development, a more in-depth analysis can be done of

the competing technologies which can also reduce the overall time needed for

component development. If the developer is limited in personnel, he should at

least seek to learn the capabilities, drawbacks, and communications capabilities

2-22

of the technologies to be considered before analyzing and designing the

components. Dipiro recommends that the developer may choose a technology

that he is familiar with or easy to learn, or one that develops a web component

through a development tool included with their DBMS.

2.3.2 Component Analysis and Design

The second step of Dipiro's methodology takes a structured approach to

creating the individual components that will comprise an overall web-based

access project. This step guides the developer in deciding which technologies

will meet the specifications of each individual component. A component here is

considered an application or combination of applications, that implements one

clearly defined function. An example component, "to reserve a library study

room", is used for analysis and design. The example will involve five sub-

components. The first sub-component obtains the desired time slot from the

user. The second queries a database to find out which rooms are available in that

period. The third and fourth display the results to the user and handle a room

reservation request respectively. The fifth sub-component processes, then

displays, the result of the request back to the user.

Functional Analysis Overview

2-23

An object-oriented (00) functional modeling diagram technique called a

Data Flow Diagram (DFD), which is useful to depict the component's overall

function [Rumba9l], is used to perform a functional analysis of the component to

be designed. In the DFD, the process is represented as a circle containing a

description of the process. Arrows leading into a circle denote an input to the

process. Arrows leading out denote output. Any persistent data stores are

represented by the database name with a line above and below. Figure 7 shows

the top-level DFD for the example problem.

Desiredtimeslot Scheduled room

Library-rooms

Figure 7. DFD for Schedule Library Room Component.

2-24

The component then can be decomposed into any necessary sub-

components. The level to which decomposition is performed is at the designer's

discretion.

Component Functional Decomposition

Functional decomposition is used in this methodology to determine the

sub-functions that need to be built, and those sub-functions may be the

applications themselves. When decomposing the processes of a component into

sub-processes, it is broken into smaller sub-components, whose function is a sub-

task of the overall component process. For the room reservation example, five

sub-components are required for implementation. Figure 8 shows the lowest

level DFD of the room scheduling component. The first function gets the desired

start and stop time from the client. It then sends those times to the second

function that must determine which rooms are available during that time slot.

That process, in turn, sends the client the results of the query for viewing and

reserving a room, if desired. If the client requests to reserve a room, the fourth

process handles the request and sends the results to the fifth to be displayed for

the client.

2-25

Desiredstarttime
/ Get desired Desired-stop-time /Determine Romifomto Display Room•

Library-rooms

Dipay Rgistration-status Schedle

Figure 8. Lowest Level DFD of Room Scheduling Component.

2.3.3 Function Implementation

This step is to take the fully decomposed component and analyze the

possible technologies that can be used to implement each sub-component

process. The developer may choose to implement any or all sub-components in

any of the existing web technologies rather than just a single one. It is important

for the developer to be familiar with the methods in which the different

technologies can communicate with each other. This is because the choice to

implement a sub-component in a certain technology may limit what technology

the developer can use for adjacent sub-components. For example, a static HTML

page can only originate from a web server process (such as ASP, CGI) and can

only send output to a sub-component that can receive 'an HTTP request. This

step provides the information about which technologies can communicate and

2-26

which can't. For example, an applet is capable of making calls to a database over

the internet via JDBC or ODBC, but a stand-alone application can't interface with

other components through the HTTP protocol, and only web server processing

(CGI, ASP) can receive input from, and output to, HTML documents using the

HTTP protocol. The main part of this step, to use the library example from the

last step, is to make assumptions concerning the design specification and

demonstrate how to implement the project based on that specification. The

assumptions made for this example are shown in the following:

"* The component will be accessed by external clients only

"* The client uses a variety of hardware platforms running a similar

variety of operating systems (Unix, Windows, Macintosh, VMS, etc.)

"* Some users may have low bandwidth connections (dial-ups)

"* The client interface should look the same on all platforms

"* The user should be able to print the reservation confirmation for their

records

"* No database architecture changes are necessary to handle additional

clients

A starting point should be chosen first to start implementing the project.

Any sub-component which is constrained by one or more of the three

environment factors can be a starting point. Usually, a starting point occurs in

either a user interface, or a database access sub-component. From the

assumptions and specifications of the example, due to the heterogeneous

2-27

environment of the clients and the potential for low bandwidth connections, the

starting point should be at the user interface. In the example static, HTML pages

are chosen for all interfaces with the user (client). This maximizes the sub-

component portability (visible on all browsers) and minimizes its bandwidth

requirements (no downloaded code sent to client). Therefore, Figure 8 Sub-

Component 1.1 (Get Desired Reservation Time), 1.3 (Display Room Availability),

and 1.5 (Display Reservation Status) will all be HTML pages. Since HTML pages

can only generate HTTP requests, and only a web server process can generate an

HTML page, a web server process technology (such as ASP) was chosen to

implement Sub-Component 1.2 (Determine Available Rooms) and 1.4 (Schedule

Room).

2.4 Summary

This chapter presents an overview of four different database connectivity

technologies (CGI, ODBC, JDBC, and ADO), two web-based database software

technologies (Applets, ASP) and Dipiro's methodology. The techniques and

technologies offered in this chapter are important to know to create the web-

based data access applications. The knowledge of those technologies is used in

conjunction with Dipiro's methodology as the foundation in the Chapter 3 to

determine the technologies for building the target project.

2-28

3 Design of the prototype system

This chapter describes the application of Internet technologies to build a

prototype system for the problem described in chapter 1. Following the

methodology of Dipiro [Dipiro98] it examines the capabilities of each Internet

technology, with the goal of choosing the appropriate technologies to accomplish

the specific web-based data access project. The reason using Dipiro's

methodology is because the problem we are going to solve is in the same domain

with the methodology. Therefore his methodology should be good to perform

for this project. This chapter also describes the processes and the importance of

building the prototype system and provides a way to validate the finished

product.

3.1 Dipiro's Methodology for choosing Internet technologies

As mentioned in chater2, Dipiro's methodology consists of three main

steps, but in fact only the first two steps are implemented here to help determine

the appropriate technologies and design the project in this chapter. The third

step will be used to help implement the design of the prototype system. This

section examines the applicability of the three development environment factors

described by Dipiro. The edplan application described in chapter one is analyzed

by looking at the possible clients who will access the data source, the possible

3-1

database architecture, and the available development resources for building the

application components.

3.1.1 Analysis of the client environment

According to Dipiro's methodology, when analyzing a development

environment, the client environment is the first and most critical factor to

consider, because the whole purpose of the proposed application is to service

clients. In Dipiro's methodology, the potential clients of any web-based data

access fall into two categories, internal and external clients.

3.1.1.1 Internal clients

For the edplan application, internal clients will be the AFIT/ENG faculty

and AFIT/ENG students who use the Internet at school. Based on the

information that EN secretary offers, the approximate number of internal clients

will be 30-70 (currently AFIT/ENG has 30 faculty and the average number of

new ENG students is about 40). The small number of clients in this category

ensures that any server-side processing applications will not overload the web

server. All internal clients' operating system, hardware and web browser

platform are known or predictable. In AFIT, all computers are IBM compatible

PC-based computers. Each computer runs the Microsoft® Windows®95

operating system and has Microsoft® Internet Explorer (at least version 3) as its

3-2

web browser software. For the platform homogeneity, we might choose

Microsoft technologies, such as ADO, ASP (see chapter2 section2.1.4 and 2.2.2),

to build the target project. Additionally, all internal clients are connected to the

web server over a shared 10MBps LAN. This fast connection ensures that

applications created for internal clients will not suffer any significant

performance loss due to network traffic.

3.1.1.2 External clients

In general, precise information on external clients can not be obtained

with certainty. Thus, the developer must make estimates of external client

platform possibilities in order to design components for external client use. In

this case, since we will just use the AFIT/ENG as a test bed to build a prototype

for the real system, the number of the external clients can be determined quite

accurately. The external clients who will be interested in accessing the database

are the AFIT/ENG students, which are approximately 80 (including lower and

upper classmen, and doctoral students). The server is adequate to serve this

expected loads imparted by this client pool. But if we try to build the application

for a real system, more effort should be taken to approximate of the number of

the external clients and make estimates of their possible platforms. Those can aid

the developer in determining the necessary level of component portability and to

ensure that any components designed for external use will not over load the

server. Most of the external clients will typically connect through a dial-up

3-3

Internet connection (kilobits per second), which is orders of magnitude slower

than the LAN. Furthermore, various different operating systems and hardware

platform can be expected, but as long as they are able to establish a network

connection and run web browser software (most computers support these), no

system compatibility problems are to be expected.

The external client's browser software is also unknown. Even though

there are not many browser choices available, current browsers vary greatly in

some key aspects. For example, older browser software may not be able to run

client-side code such as JavaScript, applets or ActiveX controls. Therefore

components for external clients should be designed with technologies that

support the largest possible subset of available browsers [Dipiro98]. Since all

browsers support standard HTML, HTML documents are very portable for

presenting information to the client. Thus, HTML is quite a good choice to

building the sub-component for the project. It is popular today to offer the client

the choice of scripted, framed, or plain HTML information delivery. For the

purposes of this research, HTML-only presentation is employed.

3.1.2 Analysis of the existing database architecture

All the data about AFIT students is currently stored in the ACES database.

The edplan prototype system needs only a few tables from the ACES, such as the

Course, Coursedescription and Course_offering tables. Since in this research

3-4

we are to build a prototype for a future enhancement to STARS system, we will

transform the Oracle tables into smaller scale tables in Microsoft Access for

demonstration purpose. Thus, Microsoft Access will be the DBMS for this

application. The transformed data will be located and maintained on a single

PC, which will be used as the web server for the edplan application. Because the

data and server reside on the same machine, the application can access data with

greater speed by eliminating network communications traffic. However, the

DBMS and the web server have to share the memory and processor, which can

result in lower overall performance as the server's workload increases.

3.1.3 Analysis of development resources

This section describes the effects of the availability of development

resources, including personnel, funds and time. For this edplan application, it

can be a one-man project or a group project. The product of the one-man may

not be very robust, since some points of the design may be missed which may

cause the application to not function well. A group project would be more

robust, since every aspects of the design phase can be more done thoroughly.

Unfortunately, time and personnel resource limitations will restrict the edplan

application to a one-man project.

Naturally, a one-man project will increase the time required to develop

the application. When the developer has a time constraint, existing code should

3-5

be reused as much as possible to simplify application development and to ease

code maintenance. Additionally, funds for this prototype are not currently

programmed into the AFIT budget. Thus, due to the lack of personnel, time, and

funds, we would certainly seek technologies which are inexpensive and easy to

learn, to help ensure rapid but reliable prototype development. As described in

chapter2, ActiveX Server Pages is easy to learn and requires no compilation. An

ASP application can be written with any text editor, and compiled by the web

server being accessed. The only requirement for developing an ASP application

is to have a Microsoft Internet Information Server (IIS) or Personal Web Server

(PWS). The Personal Web Server was designed to allow development of

applications for use on a single machine. The limitation of PWS is that the

application won't be able to support a high volume application with a large

number of users, but it is suitable for the proof-of-concept intention of this

research.

Based on the analysis above, the Microsoft Personal Web Server is chosen

as the web server and ASP will be used as the technology for the project. ODBC

is also one of the requirements for ASP applications, and is a Microsoft

compatible product as well. So we anticipate ASP and ODBC inherently

working together with great native speed. Therefore the ODBC technology is

selected for the real connecting job to access and manipulate the target database.

3-6

3.2 Prototype system analysis and design

The overall prototype system, which will be developed, can be divided

into six primary components. This section presents an analysis and design of

each component. The requirements for each component will be briefly described

and then the component will be analyzed using the functional decomposition

technique from Dipiro's methodology.

3.2.1 Component 1 (Student information input function)

As mentioned earlier, the real world data is stored in an Oracle DBMS.

Several tables are required for this case including Course, Coursedescription

and Courseoffering. After negotiating with the Database adminstror (DBA) in

charge of that relational database, those tables will be copied from Oracle and

transformed into Microsoft Access. Due to security issues, student personal

information including e.g., Social Security Number (SSN), are not allowed to be

copied. Thus some student input or data fabrication is needed for this prototype.

This component provides a form page to help students to input some of

their personal information to the database. The information that students input

will make them qualified to input their edplan data. The finished component

should be able to let students input their data in an easy fashion, using aids such

as drop-down menus and other ActiveX data entry controls. Students should be

3-7

able to view and update their personal data as desired. A student should then

have the ability to input their edplan data.

3.2.1.1 Functional Decomposition of the Student information input Component

The functional decomposition technique from Dipiro's methodology is

used to depict the component's overall function of the system being developed.

Component 1 requires several pieces of personal data from each student. The

input data are the student's last name, first name, Social Security Number (SSN),

program type (ex: GCE or GCS), program year (99M or 2000M), login name,

academic advisor and military rank. All the data sources for the prototype are

from the Edplan database created in Microsoft Access, which includes several

tables, such as Course, Coursedescription, Eddata, Faculty and Students tables.

The input information will be sent to the Students table in the Edplan database

after which the student will be registered as a user, and allowed to input edplan

data. Figure 9 shows the data flow diagram (DFD) for the student input

component.

3-8

SSN, Program, Year, Rank, Academic
advisor login name, Lastname, First Generate Get registered
name

Students table

Edit student
information

1.2

Figure 9. DFD for Student input component.

In order to input and view data into database and from database, the

component must query the database to insert and update the data. The student's

last name and last four digits of their social security number will then be used as

inputs for authentication to this component and the subsequent components. A

"cookie" (non- persistent or persistent) is created in conjunction with the

registration event to track the identity of the student for the subsequent

functions. This sub-component allows them to view or change their personal

data. Therefore the component can be further decomposed into the function

shown in Figure 10.

3-9

SSN, Program, Year, Rank, Academic
advisor Login name, Last name, First name Student data Insert student Get registered

Input form Iptdt
1..1.2

!
,Last name, last 4 SSN

Qur Displa students Upatableteeul fh

Figure 10. Lowest level DFD for Student input component.

3.2.2 Component 2 (Edplan data input)

The goal of this component is to provide a web interface to let students input

their edplan information to the Edplan prototype database. The information

students input will be used to generate an edplan report and print it. Currently

students have to complete the edplan report by typing it manually and then turn

in the finished edplan to their course advisor. The course advisors then have to

manually enter that data to the database via STARS. Subsequently each time the

students add or drop courses, they need to see their course advisor to update

their edplan data. Also, when they want to view their edplan data, again they

need to ask their course advisor to print the edplan data for them. This

3-10

component will make the whole edplan processes easier and more efficient for

both students and course advisors. The finished product should be able to help

students input all the necessary information for the edplan easily and only once,

and add or drop the courses when needed with minimal faculty processing. In

addition to the functions described above, students will also have the abilities to

view their edplan report and print it whenever they want and without having to

have their course advisor do it.

3.2.2.1 Functional Decomposition of the Edplan data input component

This component also needs students to insert their last name and last four

digits of their social security number as input (for authentication), if the student

doesn't use the previous component's registration function. If the student does

register already, the cookie will be used to identify the student. This component

enables the student to input their edplan data to be forwarded to Edplan

database (Eddata table). Figure 11 shows the top level (DFD) for the component.

Last name, Last 4 SSN Input

Eddata table

Figure 11. Level 0 DFD for Edplan input component.

3-11

The requirement for student authentication leads to the first level

decomposition of the component displayed in Figure 12.

Lastname, last 4 SSN

Students table Eddata table

Figure 12. First level Decomposition of Edplan input component.

In order to authenticate the student to get eligible to input the edplan

data, the component must query the database on the student's last name and last

four of their SSN. If authenticated the component should display the edplan

data input form and then insert the data into the database. Therefore, the

component can be further decomposed as following (figure 13).

Students Dtablse,

Result of the na

data submit - --

2.2.3 ------ Eddata table 2..

Figure 13. Lowest level Decomposition of Edplan input component.

3-12

3.2.3 Component 3 (View and update Edplan input)

The goal of this component is to provide ENG students with a means to

view the data they input, or initiate dropping or adding courses, as needed for

routine edplan maintenance. Also, a notification should be sent to their advisor

(by phone or email) to official drop or add courses, from the database. There is

no current means for students to directly view official edplan data by electronic

means, such as over the web, and any adding or dropping courses is done

exclusively by the advisor's direct action. This component can be helpful for the

real system. As with the last component, students must be authenticated to

ensure data security and to aid in obtaining the correct edplan data to display.

The students then should have the ability to view the edplan data, and have a

form to add or drop courses. Finally, the students should get a response

indicating if their updates were sent successfully, and made permanent by the

advisor.

3.2.3.1 Functional Decomposition of the view and update edplan component

This component uses cookies created from the student's last name and last

four of their SSN when they first signed in to generate the correct data and have

the access to add or drop courses. In order to view the edplan data and add or

drop courses, this component must query the database and present the data to

3-13

the student in an HTML form and also provide a form to add or drop courses.

Figure 14 shows the DFD for the component.

Add course
Cookie from last name, 3.2

View dplan dd or drop cour

Drop
course

3.3

Edplan database

Figure 14. DFD for view and update edplan component.

To meet the requirement, the students should have a form to add or drop courses

and get a response indicating if they drop or add courses successfully. The DFD can be

decomposed more detailed as the figure 15.

Cookie from last
name, last4 S d eDplay

3.1. 3.1.2

Course drop

322Drop

(delete)
S~Course

3.2.1

Edplan database

Add course
Form

Add (update) 3.3.1

3..3.2

Figure 15. Lowest level DFD of Edplan view and update component.

3-14

3.2.4 Component 4 (Generate Edplan checker input file)

The goal of this component is to help ENG students to generate the input file

running in the edplan checker program with the data obtained from them. This

component provides a means to generate the input data for students. Since the

edplan checker is written in Prolog, a particular file syntax and format are

expected. Thus the generated input data needs to be similar to the format of the

input file as much as possible. The input data may not be generated exactly the

same as the format, therefore the students might need to make some adjustment

for the generated input data to be run in the edplan checker program.

Students currently need to generate the input file by hand to run against the

edplan checker. This component makes it easier for them to generate the input

file by using the existing data. Using the generated input file to run in the edplan

checker is important to do. The edplan checker makes sure all the courses that

students take satisfy the theory, system, math and sequence application

requirements. Again, students must be authenticated to collect the right data.

After generating the input data, students edit the data by following the

instructions shown in the browser. Then students should be able to save the

input data as a file and download it to their desired directory to use that file

when they need to.

3-15

3.2.4.1 Function Decomposition of the Generate Edplan checker input component

This component uses the cookie to get the correct data for students and take

the data source to generate the input data for edplan checker program. The

generated input data then can be saved as a file and downloaded to student's

machine. Figure 16 shows the top level DFD for the generate edplan checker

input component.

Cookies from Last 4 Generate Download the input data to

SSN, Edplan student

______________ h___ checker input
P- 4.1

Students table

Figure 16. Level 0 DFD for Edplan checker input file component.

To generate the edplan checker file and download the file to the student's

machine, this component can be decomposed further as the following Figure 17.

Cookie from Last name Validate
last 4 of the SSN input Save input data

4.1. data as a file
4.1.2 4.1.3

Students table Eddata table Download
checker

Input
file

Figure 17. Lowest level DFD of the Edplan checker input component.

3-16

3.2.5 Component 5 (Generate AFIT form 69)

The goal of this component is to provide ENG faculty with an automated

means to generate the AFIT form 69, Graduate School Of Engineering Program

Summary. This component takes advantage of the data obtained from students

using the data entry components to generate the AFIT form 69 for the faculty.

The faculty then can use the generated form to complete the student's graduation

package.

Currently, the faculty advisor has to request the student's edplan data

through STARS and retype the necessary data onto the form 69 manually.

Utilizing the web to generate the form is quicker and more efficient because the

data was entered only once, when the student used the web interface, component

2(Edplan input component). This component helps eliminate the errors that can

come from manually typing the form, and reduces the amount of time spent

making corrections. This helps the faculty generate the form 69 in an easier and

more efficient way.

Since this component is a function for the faculty, a login screen is

required. Any faculty accessing this component must be authenticated to use

this function. For this test bed, some synthetic information of the ENG faculty

will be created to perform this function. The finished component should be able

to retrieve student personal data, such as last name, first name, program/year

and rank and associated edplan data to fill the form. Additionally, the faculty

3-17

should be able to select their own thesis students from a list of students' names to

generate the specific student's form 69.

3.2.5.1 Functional Decomposition of the AFIT form 69 component

This component takes the faculty's last name and last four digits of their

social security number from Faculty table (also located in Edplan database) as

input (authentication), then uses existing edplan data sources to generate the

data for the form 69.

Generate AFIT
Last name, last 4 of the faculty form 69

5.0

EDplan database

Figure 18. Level 0 DFD for AFIT form 69 component.

The requirement for faculty authentication leads to the first level decomposition

of the component displayed in Figure 19.

Last name, last 4 of the faculty Faculty Generate AFIT

Faculty table Eddata table

Figure 19. First Level DFD for AFIT form 69 component.

3-18

In order to generate the form 69 data, this component needs to query the database to

obtain the necessary data from the student's database. An HTML page with a list of the

faculty's students' name must be provided to be selected by the faculty for generating the

specific student's form 69. Thus the component can be further decomposed to the

functions shown in Figure 20.

Faculty name Query Student name Query DB to

database Selection generate form
S~5.2.2

Last name, ls ipa h

of the faculty validate 5.2.3r 6
Faculty52.

5.1.1n

Faculty table Students table EDdata table

Figure 20. Low level DFD of the AFIT form 69 component.

3.3 Validation of the prototype

The purpose of building the prototype system is to provide a service for the

students and to take advantage of capability of the WWW to make edplan

creation and validation easier and more efficient. The opinion and cooperation

of the students is important. Some of the students will be invited to test the

prototype system to see if the prototype is good or not and what needs to be

improved. After the test, the students performing the testing will be asked to

answer a questionnaire about the prototype system. The questions will

determine what the students think of this prototype system. This student

3-19

feedback will provide valuable information about the prototype and help to

improve or correct the system.

This prototype system should at least meet the following requirements:

"* The login function should be tested to demonstrate that it obtains the

correct data.

"* The system should be able to insert and update data correctly.

"* The students should be able to view their edplan data, drop or add

courses, and print the data report.

"* The faculty should be able to generate the form 69 data for a specific

student on demand.

"* The prototype should be able to generate the edplan checker input data

and download it to student's desired location.

Through the students' test for the prototype system, the functions of the

system will be evident. The comments from the students will help determine the

success of the project.

3-20

4 Implementation and Evaluation of the prototype system

Chapter 2 provides some background information on database

connectivity technologies, on the software technologies that could be used to

build web database applications and on Dipiro's methodology [Dipiro98].

Chapter 3 describes using Dipiro's methodology to choose the technologies for

building a prototype system and to aid in the discovery and design of the five

components that comprise that prototype system. This chapter presents the

implementation of those five components described in Chapter 3, and evaluates

the finished product on the basis of student feedback questionnaire response.

4.1 Design Implementation of the Prototype System

This section presents the implementation for each of the five components

comprising the target prototype system. The component's functional

requirements are described in chapter 3. Before going through the

implementation of each component, a diagram showing the tables of the Edplan

database used in this prototype system is displayed in Figure 21. The Eddata,

Students, and Faculty tables are populated and referenced routinely in the

implementation of this prototype. The remaining tables (Course,

Courseofferring and coursedescription) are official AFIT files and are used for

reference only.

4-1

SICOURSE-PEFX--CODE ý i 'T1W
]) COURSE SECTION Cadvisor

A C T I V I T Y T Y P E C O D E D. E d c o d e
- - LoginName

AFIT._ SCHOOL-CODE Year

COURSE DEPARTMENTCODECOURSE EFFECTIVE DATE MaProgra

JCOURSELEVEL CODE Name Status
COURSENUMBER Last Name
COURSEPREFIXCODE SNLastName
COURSE._SECTION Quarter FirstNarne

4COURSETITLE Coursdncode RaInk
sREDITeCHECK CODE ie oursegnureber SN Frecrbe byEXAMINDICATOR a oFisam

iNDIVIDUAL_CONTACT_MHOURipts)se fINPUTDATE i•••,:,-, LastName

INSTRUCTORCONTACTyHOURp s .
LOGIN._NAME
IMAXCREDITHOURS V TV T Y E C D
MAXENROLLMENTLIMIT ATVTYECD

MIN CREDIT HOURS loetlvlDDOfLCOmEM IN._ENROLLMENTLIMITCO SEEELOD
R.ELEASIBILITYINDICATOR URENME
SPECIALGRADINGCODE CUSRFXCD

frAIT LIsT-CODE COURSEmSECTION

,1RADINGDEPARTMENTCODE COURSETITLE OUE-
FULLCOURSETITLE COURSE_-DEPARTMENT. ODE

CREDITCHECK_CODE
DAY-CODE
7 EXAM-INDICATOR

Figure 21. Tables of the Edplan database used by the project.

4.1.1 Implementation of Component 1 (Student Info Input)

As described in Chapter 3, through the considerations prescribed by

Dipiro's methodology, we have determined Microsoft Active Server Pages

(including HTML, scripts) are the appropriate software technology to use for

building the prototype system.

Based on the function designs analyzed for each component in chapter 3,

each component is implemented by following the lowest level DFD provided in

last chapter. The lowest level DFD of component 1 with the technologies used

for each sub-component is shown in figure 22.

4-2

SSN, Program, Year, Rank, Academic
advisor Login name, Last nameFirst name Student data Insert studentInputl form iptdt

(ASP))(HTML)

Vldt Last name, last 4 SSN Suetdt

stdn - Students table

Figure 22. Student input component DFD with used technologies.

This component uses HTML to build a student input form for students to

input their personal data. The data they input will be important and necessary

for subsequent components. To make the data input simple, several drop-down

controls are used to offer selections of the correct information for students to

choose from, such as Year, Program, Rank, Academic Advisor and Edcode

(academic code for AFIT students). Figure 23 shows the screen shot from the

implementation of sub-component 1.1.1 in Figure 22.

4-3

Fi~j hegur2~e3Studentdat5ainputcomponent
Enter yuhe d rnnatain into database. tSefleASP

authentiation aplicationisshon iN Fgue 2

t _ ý ~4-4

Fiue2.Student daaiptom net

Sub-Component 1. 1.2 is invoked by pressing the SUBMIT button of the Sub-

Component 1. 1. 1 to insert the data into the student table in Edplan database. Since ASP

is the chosen software technology and is very capable for accessing the database, ASP is

also used to implement this sub-component. After students input their data,

authentication is required before they can view or change their personal data. A static

HTML page (Process 1.2. 1), which allows the students to enter their last name and last

four digits of their SSN, is provided for authentication. The screen shot of the

authentication application is shown in Figure 22.

4-4

ix

Student Functions

ENTER THE INFORMATION REQUESTED BELOW TO SIGN-rN

LAI aDPLA r A~ PAGE rAt HOEPA

Figure 24. Student Identity Authentication page.

Sub-Component 1.2.2 queries the database for a record matching the last name

and last four digits of SSN input by the student in sub-component 1.2.1. If a matching

record is found in the database, an HTML page (process 1.2.3) with the student's

personal information is then displayed (Figure 25). The student may now review and

update the information as necessary.

• i• "•!!/• '''• •" •.............li £ i.... • '

Nt h //lpc e• •/el~ae ap

Figure 25. Student Data Display page.

4-5

If the student makes any changes and then presses the SUBMIT CHANGES

button, sub-component 1.2.4 is invoked to update the data. Sub-Component 1.2.5 then

generates the static HTML page that informs the student of the result of their submission

as shown in Figure 26.

Your data have been updated successfully! Thank you.

[AMIT EDPLAN MAIN PAGE] [AFRT HOME PAGE 1

Figure. 26. Result of Data Update page.

4.1.2 Implementation of the component 2 (Edplan data input)

This component is the key to the edplan administration system. It enforces

security via a logon session (sub-component 2.1.1) similar to the student information

function (Figure 24). The entire component is implemented through the use of two ASPs

and three HTML pages. Figure 27 shows the DFD for the Edplan Input component

indicating the implementation technologies.

4-6

Lastname
last4 SSN Vaidt Qur ipa

Students table Insert Data

Result of the into db
data submit 2.2.2

2.2.3-- - - -(A P

(HTML) Eddata table

Figure 27. Lowest level Decomposition of Edplan input.

Sub-Component 2.1.2 is implemented by ASP, and queries the database on the

last name and the last four of the student to see if the student exists in the database. If the

student's data is found, a static HTML page, the edplan data input form, is displayed to

the student (sub-component 2.2.1). The student then enters his/her edplan data into the

form. For the same reasons as for the previous component, the input form uses drop-

down menus and radio boxes to make the input process easier for students. Figure 28

shows the screen shot of the sub-component 2.2.1 (Edplan Input Form)

4-7

0x

Edplan Information input form

For Capt Tiee-h-eeLee

O Qnicetc F1997 Fl Sh avtj Coe bede mbCSCE Ip

Cc rir oocb-r FT__E Credit h.-e FZI

Cat egory(-e o n tog th) s. Th cooi(799)

daait h daatbe h stuen wil then rqceive a orcespiclong se 56 54(69ub6-,cr65o4)

4.1.3 Implementreqired coe -omponentg coonl V STAT 5p6, 601, CSCd 531, 52, 631,
C~yet~ 786cand MATH 508, 521, 631, 633i** .

Thti 4. Thmponent ... tn esoio -- idiigw t-update of the daaig CSCtaIh,
DCrh 532, 54, 631, 647, 663, 686,756, 796, MAT 6113, 633

5. Aipfot r la T Seqacnel rDcocirhd V-war-pdt
C Sectueice . :Databactivequnce co-res -c 545,646,746

coi- "t a I Flatusetf

A fte ouinih yo- entry, click tel link belo, to go back to AFl! ociploce nwcic pige to proceed other f-toe s

(AF11 IDF"LX. MAIN PAGVýEj IAFITI6ME PAGEI J

Figure 28. Edplan Input Form page.

Once inputs/changes have been made and the SUBMIT INPUT button pressed,

the input data is then sent to the second ASP (sub-component 2.2.2) which inserts the

data into the Eddata table. The student will then receive a response (sub-component 2

2.3) indicating the success or failure of their submission.

4.1.3 Implementation of Component 3 (Edplan View & update)

This component allows the students to view and update the data that they

previous input for their edplan. The lowest level DFD of the View and Update

Edplan component indicating the technologies used is shown in the figure 29.

4-8

Cookie from last V Display
name, last4 Valdate

Result of

Course drop

(HTML) (delete)
• _• Course

3.2.1
J (ASP)

Edplan database

Add course
Form

RslofAdd (update) 3.3.1
Course ~ course (TL

addition 3.3.2
3.3.3(ASP)

Figure 29. Lowest level DFD of Edplan View and Update component.

To view and update the Edplan data, the students need to be

authenticated as before. However, if the students want to view their edplan

data, they must have already through the actions implemented as Component 2.

Thus sub-component 3.1.1 uses the "cookies" generated previously to get the

accurate data for the students by using ASP code. Sub-Component 3.1.2 then

displays the student's edplan information with an HTML page (Figure 30).

4-9

D.. I. fo Rock Fao * cot~tmEP0

Shttp'I/!pc-eng8245/!tee/'AFITEDPLAN/edrpt asp i

AIR FORCE INSTITUTE OF TECHNOLOGY

CSCE200- INTRODUCTION TO C AND C--- PROGRAMMING 2
................i I.........i

CSCE594 SOFTWARE ANALYSIS AND DESIGN 4

.. . .A.. PRO BA BILITY TH EO RY FO R COM M U NICA TION

AND CONTROL ___

C oSE3 MATUMETHOS COMPUTR E SCIENCE 4EI DR

L C SCE799 k _ ere INDDET stUDy 4

ýCU8ENME ORETLEC DIS DRO

ADCFALGORITHM DESIGN 4

[Click Here to ADD a Course to -your EDPLAN. I ___

Figure 30. The generated Edplan report page.

In this edplan data display page, there is a "cross" link (Process 3.2.1)

embedded in the last column of the edplan report table after each course data

and an "add course" link (3.3.1) at the end of the edplan report table. The

"cross" link is used to drop the course by pressing it. This sub-component

(Process 3.2.1) then uses ASP to access the database to delete the specified course.

Sub-Component 3.2.2 is the HTML page showing the success of dropping the

course (Figure3l).

4-10

i'.•' ;"•ilii•> ••,• !!!!l•! •i.. qiii~•:• • l•!li~i• ° •llli•/ii,,• ,...................................-..."1i%

A iIdjj http//rpc ng8245/tlee/-AFI TED PLAN/drop. asp~'qchoice=3-wi98&cchoice=MAT H&cnum=521 LJj i4s

You have dropped the course successfully!

If you want to drop more classes, hit the "back" button in the tool bar to continue.

WAIT EDPLAN MAIN PAGEl WAITT HOME PAGE!

Figure 31. Result of dropping a course.

After pressing the ADD COURSE link, a "Course adding" HTML page

(Process 3.3.1) will appear on the screen (Figure 32) to let the students add the

desired course in a specific quarter. After selecting the course data and pressing

the Add Course button, Process 3.3.2 executes ASP to update the data in the

database. Process 3.3.3 shows the results as, depicted in Figure 32.

Course adding page d

Crse code:

Category T---

Figure 32 Screen shot of the result of course dropping

4-11

4.1.4 Implementation of Component 4 (Edplan checker file)

Component 4 generates a specially encoded and formatted input file for

AFIT's automated Edplan Checker program. The component also allows saving

the file and downloading the file for submission to the Edplan Checker program

Figure 33 shows the lowest level DFD for the Edplan Checker Input component

with the technologies used for implementation.

Cookie from Last name

last 4 of the student Validate student Display input Saveinputlat f hesudnt4.1.1.• q!•... /. data .2data as a file4.3

S/(HTML) (ASP)

Download the

checker input file
Students table Eddata table 4.1.4

Figure 33. Lowest level DFD of the Edplan checker input component.

Sub-Component 4.1.1 used ASP code to get a student's last name and last four of

their SSN stored as "cookies" generated in Component 1. This information is used for

lookups into the Eddata and Students tables to retrieve the necessary course and personal

data to create the edplan checker input file. Then the sub-component 4.1.2 returns an

HTML page from the server with the input data in an editable text format after the ASP is

executed (Figure 34).

4-12

...

H S~ t` f6a c, I HV c, 1 - 1_ 1 "

ye9rr(98)

pkilweenOGY omuer, s 0YY ,cmpterms~qutammfa9o

I[[kr1ou 286 4881

[iae4 486ve],
[fi ,143,4861,8,5],
[59748 93,594 i, tS89,925 i
[wi

9
9 ,46 4,] 686,

[spPu93 54 6461 665,46

[9698,46,6 c 99(4),

(m9ecg i1699 ce799(4])J.

After you finish editing your edplan checker data, dick the button below the tent are4
to build this data as a file and

downhload this rile mTnyo Ffl the fie to ZOO to run edplaut checker program
with this fie.

fTd l fyle es o 'LeeTien-i hen 5
Pt h l ler ver wOCYY h oputerxecuteos.,quthe

t ,53 1, 485,4492, -21]
[P9

8
,544, 566],

[e_98''799,546,6854,646],

[f.98 ,746 7991,

Figure 34. Edplan Checker Input data generated in Component 4.

Once the input data is displayed, the students make any necessary

corrections or additions. Clicking on the Build Edplan Download

File button will invoke another ASP to save the possible edited data as a plain

text file (sub-component 4.1.3). Next it displays a page (sub-component 4.1.4)

form which the student may to download the input file to their local machine.

The download page is shown in Figure 35. After downloading, the student may

transfer the file to the server which executes the Edplan Checker application.

4-13

Different browsers have different way to download the file. To make sure that you can
download the file, use right click of your mouse

to download this file. This way works for any browser.

Right dfick on the link below to download your EdPlan Data File.

EdPlaný Data File =====>>> CLICK BhERI

Figure 35. Edplan Checker Input File download page.

4.1.5 Implementation of Component 5 (AIT form 69 generator)

Component 5, presently the last component of this prototype system provides a

faculty-specific function. This component automatically generates any specific student's

completed AFIT Form 69, which has previously been a manual and error-prone task for

the faculty advisors. The lowest level DFD for the AFIT Form 69 generation component

is shown in Figure 36.

Faculty name Qur Stdn ae•ur Bt

database Slecmtsion enraeor

Last name, last 4(S)Dslyt
Ff the facult Validate 35. p9aC k p F- l d page

Faculty table Students table EDdata table

Figure 36. Low level Decomposition of the AFIT form 69 component.

4-14

Sub-Component 5.1.1 provides a static HTML page with an authentication

function (not shown). This function is similar to the students' authentication dialogue

from Component 1 and 2 and requires faculty last name and last four of SSN. This

component invokes sub-component 5.1.2 (ASP) to check if the faculty is an authorized

user. If so, a static HTML page with a pick list of the faculty member's students' names

is presented (sub-component 5.2.1). This dialogue screen lets the faculty select a student

whose Form 69 is to be generated. The students' name in the pick list is based on the

"Faculty Advisor" input field in sub-component 1.1.1 entered by each student. The

screen shot of this page is shown in Figure 37.

FiT eFit VieL ee Favoies H

I Back F'~d Slop Rplrfesh H ome Searc Favoritet Histcqy aharnne1Fdkcieen

Select the student's name to get the For.

o Pyburn . submithoic-

John Smith
Ikari deermani

1?FT in-hnLee E AFIT HOME RAGEI
Travis Tankersley

Figure 37. Students' Namne pick list.

4-15

Sub-Component 5.2.2 is invoked by pressing the SUBMIT CHOICE button after

selecting the student's name. This sub-component uses the name selected to search the

Eddata table to obtain the student's edplan information. A static HTML page with the

data-filled Form 69 is generated and sent to the faculty in a browser format (sub-

component 5.2.3). This sub-component displays the AFRT Form 69 with the information

of the chosen student (Figure 38). Faculty may print the form from the browser.

CATr t r PRGA REUREMNT -RDTOR Pyburnf Brad 12/2/re8

I[77 1 Lq
2,- Compute- Scinc BakrunP,0LLCUSS AEN

(692 689,' orM 654),, First One of I
CAT E1 532GRA 631IEMNT CR86I I CSCE26 Bra ? 12/2/981

M A T H~~~ ~~ 508.52 ..61..33.........i~ f ~
S TATsi 583 586.O I0.c TwoR G fC CE53 99 ___

2 o p trScience Ba k ro n aI ..SCE... 594

531,~~~~~~ 532, 631,.... MAH63 I 141___
*c.CSC 66 pus wooCA.I COUSE INIT4 ALS'

Sysems3 532. 63, 6586, 54-13a i.SCE583 4 I
(692,~ ~ ~ ~ 68, r65) jCOn f

NOcoutC teq 3b1 532 631,E786

PROOAMR58, U8,REM,*c.TAwoAL3 CSCE5231 4
IR Sof: rSC 531, 532 544 631,___ 13 CC54

Figure 638,3. Scree Shto2h eeatdAI om6

....-..1.......

4.2 Evaluation of the prototype system

The complete prototype system is composed of both a student academic

function (Edplan and Edplan checker input file generator) and a faculty function

(Form 69 generator). This section evaluates the finished prototype system by

examining the comments and feedback from students and faculty against the

minimum target requirements set in Chapter 3. To get the students' and faculty's

opinions and feedback, on-line questionnaires are provided. The on-line

questionnaires are designed to make it easy for students and faculty to input

their opinions and impressions of the functions offered by this prototype system,

and of course to make gathering meaningful statistics both easy and accurate.

4.2.1 Evaluation of student functions

The questionnaire for students includes ten questions. Those questions

focus on the comparison of this prototype system with the previous manual

"system". As described in Chapter 3, some students, specifically the AFIT/ENG

GCS 99M class, were invited to test this prototype web-based edplan

administration system and provide an evaluation

Class GCS 99M consists of 28 students. There were actually 14 people

from the class who participated in the testing of this prototype system. Although

not all of the 99M students took part in the experiment, the responses of those

students who did will be considered the majority opinion regarding this

4-17

prototype system. The results indicate that most of the students who have tried

this web-based edplan system like this process for handling their edplan

administration. According to student comments, most of them think this web-

based system should be the way for future AFIT edplan administration.

The results of the evaluation of the student's function, as derived from

the questionnaires, are provided in Table 1. In this table, there are eight columns.

The first column "#" represents the question number and the second column,

"Features", shows the features compared for improvement over the previous

version for each question in this questionnaire. The columns from the third to

the seventh column, have column titles as "- -", "-", "0", //', "+ +"'. Those

columns show the statistics information based on the responses from students for

each question. The following expresses what those columns stand for

respectively:

"0 The third column "- -" represents answers to a question that stress the

prototype system is "far worse" than the previous version or expectation.

"* The fourth column "-" represents answers to a question that stress the

prototype system is "worse" than the previous or expectation.

"* The fifth column "0" represents answers to a question that stress the

prototype system is "the same" compared with the previous version.

"0 The sixth column "+" represents answers to a question that stress the

prototype system is "better" than the previous version.

"* The seven column "+ +" represents answers to a question that stress the

prototype system is "much better" than the previous version.

4-18

* The eighth column " Ave " shows the average score for each question

(highest score is "5").

The following is Table 1, which shows the statistics for each question in

the questionnaire.

Table 1. The Statistics from the on-line Questionnaire

1 Speed of generating edplan 0% 7% 29% 50% 14% 3.7

2 Degree of convenience of generating edplan 0% 14% 0% 57% 29% 4.0

3 The process for viewing and updating edplan 0% 7% 0% 14% 79% 4.6

4 The speed of generating edplan checker file 7% 21% 21% 14% 37% 3.5

5 The process for generating edplan checker file 0% 14% 0% 36% 50% 4.2

6 Easy and convenience of access for creating 0% 7% 21% 64% 29% 3.9edplan and edplan checker input file

7 Efficient access for creating edplan and 0% 7% 21% 43% 29% 3.9
edplan edplan checker input file

8 Manual typing errors decreased 0% 0% 7% 36% 57% 4.5

9 Process improvement for creating edplan and 0% 14% 14% 43% 29% 3.9
edplan checker input file

The information generated in Table 1 clearly expresses what students

think about this system. The average scores indicate that all the features that this

prototype system focuses on, are acceptable and appreciated by most of the

students. According to the data in Table 1, almost all the students like the web-

based edplan viewing and updating function and the web access to the edplan

administration. This table provides a valuable baseline evaluation for gauging

the value added by future improvement.

4-19

4.2.2 Evaluation of the Faculty Function

For the faculty's function evaluation, three faculty members who were current or

previous academic advisors were invited to test the web-based AFIT Form 69 generation.

All these faculty members think this function largely improves the current method. They

really think this application provides an efficient and convenient way of generating Form

69, decreases the chance of manually typing errors and saves time for processing the

Form 69 in the current method.

Overall, using students' input data to generate the Form 69 makes the process

automatically and efficient. The existence of this function really boosts the value of the

whole prototype system. It shows that the data students input are reused frequently, not

only to generate the edplan report, and edplan checker input file, but also to generate the

Form 69 for the faculty. In short, this function validates the importance of this prototype

system.

4.2.3 Overall Evaluation of the Prototype System

According to student and faculty feedback and comments, this prototype system

offers many good functions, and is really an improvement over the current manual

process. Except for some valid concerns about the web-interface design itself, most of

the functions offered by this prototype system work as they are designed to. This

prototype system does satisfy the requirements set in Chapter 3. The data that students

and faculty generate are all correct, and students can update and input information

without errors. The students can view and print their edplan report with no problems

(most of the students like the display of the edplan report) and they can also generate the

4-20

edplan checker data easily with this prototype system. Finally, this system allows the

faculty to choose a specific student and generate and print the PC-version AFIT Form 69.

This prototype system achieves every main target function. The functions

within the target range of this project all work correctly. Some aspects of the

design of the interface of the system need to be improved, but in terms of

functionality, this project can be considered complete and successful.

4.3 Summary

In this chapter, the five components of this prototype system are

implemented with the chosen software technologies ASP and HTML. Screen

shots of this prototype system were displayed to reveal the current state of the

prototype and the DFD with the implemented technologies were provided to

give the reader a complete picture and context. This chapter evaluated the

finished project by examining student and faculty feedback. The results of this

evaluation show this prototype system can be considered a success.

Chapter five presents the findings and conclusions based on the

evaluations of the prototype system, and provides a brief evaluation of Dipiro's

methodology. Finally the next chapter addresses some areas for future work.

4-21

5 Findings and Conclusions

The main goal of this thesis is to design and build a future AFIT web-

based Education plan administration prototype system by implementing the

methodology proposed by Dipiro [Dipiro98]. A secondary goal of this thesis is

also to validate Dipiro's methodology by using it for this real-world target

application.

Chapter 2 provides background information in the areas covered by this

thesis, with focus on the data connectivity technologies, such as CGI, ODBC,

JDBC, and ADO; web software technologies, such as Applet and ASP; and also

the details of Dipiro's methodology. Chapter 3 follows the methodology to

choose the most appropriate software technologies and design the components

comprising the goal prototype system. Chapter 4 provides the implementation

of the goal project and also evaluates the finished product based on student and

faculty feedback after their test use of this prototype system.

5.1 Findings

This section begins with an overview of the findings made during this

research and follows with some specific issues surrounding the application

development and the technologies that were applied.

5-1

5.1.1 Findings from Using Dipiro's methodology

In using Dipiro's methodology for building the target project, several

observations are made. The first step of Dipiro's methodology is very good in

helping the developers make decisions for choosing the right technologies to use.

The second helps the designers analyze and design the functions for their project.

The third assists in implementing the design of the project. By using Dipiro's

methodology, the range of choices among the many current technologies was

narrowed down smartly. This in turn helped reduce this designer's time

required for choosing the appropriate technologies, and left more time to focus

on the design of this project. Also, this methodology laid a structured logic path

for analyzing and designing the goal application, which gives this designer the

best and most correct direction to follow.

By following the first step of the methodology, Microsoft Active Server

Pages is selected as the most appropriate software technology for implementing

the target project. Using ASP is also good for the size of the client pool in this

goal project, since it didn't overload the server or processor. However, while this

application, due to its homogeneity, runs well and efficiently in PCs with

Internet Explorer 4.0 as a browser, it does not run well in the Netscape 4.0

browser (a more detailed explanation is described in section 5.1.2.2).

Additionally, ASP is easy to learn which reduces the time for the designer to

become familiar with this tool and facile with its constructs. Overall, ASP is

considered the best choice for this case project based on the analysis of the

5-2

development environment. Dipiro's methodology has been found to be

complete and thorough and genuinely helped arrive at the appropriate design

for this application. As long as PCs are still common platforms, the methodology

is good to use for web-based data access applications for the near future.

5.1.2 Issues with the finished prototype system

This section describes some problems with the finished product, after the

students had tested the prototype system. Each subsection covers a specific

problem. Several problems were found during the testing of this system.

5.1.2.1 Data retrieval problem

When the students tested the prototype system, the problem that most

students encountered was with the "special study" courses. After the students

had input their chosen courses, they were able to view their edplan input on

demand. If a student had chosen one or more special study courses, CSCE 699,

when inputting their edplan, the edplan view page in their edplan report listed

every possible CSCE 699 course in the database. This was because in the Course

table, the course code for all special study courses is CSCE 699, for all instances

of the course, for every student. A recommended solution is described in section

5.2.1.

5-3

5.1.2.2 Variations in web browsers

The incompatibilities between different browsers and even client versions

can affect the way a component functions or is displayed on the client's machine.

For example, Microsoft Internet Explorer 3.0 doesn't support a "checker"

function, which is part of the authentication function code. If a student used a

PC with IE 3.0 and tried to use the prototype system, the browser would raise an

error message that the authentication function was invalid and would not allow

the student to proceed with the other functions. Fortunately, most computers in

AFIT use IE 4.0 and will do so more in the near future, so this didn't affect this

prototype system substantially. Using the Netscape browser caused another

problem which was a malfunction in reading the "cookies" generated by the

prototype system. Netscape couldn't read the "cookies" created from the

authentication function correctly. It could still read the "cookies", but just

couldn't use them in the way that it is supposed to. Additionally, the way that

Netscape displays HTML-encoded information, such as list boxes and check

boxes, is very different from how an Internet Explorer. browser does this.

5.2 Recommendations

Based on the knowledge gained from the background research and from

designing and developing several web software components for the target

project, the following recommendations are offered with regard to the "Data

5-4

Retrieval" problems described in section 5.1.2.1. Additionally recommendations

for the future database model for web-based application are provided.

5.2.1 Recommended Solution for Course "CSCE 699" Problem

CSCE 699 is the course code for all "special study" courses in GCE/GCS

program. All the "special study" courses in the Course table have the same

course code and course number, but different course titles. Thus, when students

include C§CE 699 on the edplan input page, all "special study" courses are

selected and displayed on the edplan report page. To solve this problem, a

specific method is needed to deal with the "special study" courses. The

recommended solution is to create a separate CSCE 699 table for tracking

every.699 course taken in any quarter by any student. Any edplan report would

require the inclusion of appropriate course recorded in this table. The Edplan

Input Form page (sub-component 2.2.1) shown in Figure 28 should have a input

area for students to type in the title of the special study course taken. This

method should solve this "special study" course problem.

5.2.2 Database Modelfor Web-based Application

According to Dipiro's conclusion chapter and after experiencing

developing and designing the components for the prototype system, relational

databases are found to be efficient and appropriate for a web-based data access

5-5

project.

The way that the relational database is designed works out well with this

type of application. A relational database is highly recommended for use for the

future web-based database application. Additionally, it would be optimal if the

Oracle relational database or Microsoft SQL server can be used. These powerful

relational databases would make the application robust, efficient and ultimately

more robust in a multiple thread operating environment, where multiple users

access the system concurrently. The Microsoft Access database used for this

research is robust only for a single user.

5.3 Conclusions

By using Dipiro's methodology, it helps to choose the appropriate

technology based on the analysis of the development environment, and to

develop the components for the target project. For the PC-centric, Microsoft-

dominant near future, it is still a good methodology to implement for web-based

data access applications.

As revealed in the evaluation, the finished prototype edplan

administration system is not yet "shrink wrap" quality, however it clearly

presents an improvement over the current manual method. Additionally, it

provides a very good foundation for future AFIT edplan administration.

According to the students' comments, and current trends, a web-based system

5-6

such as this will be the desired platform for the future.

5.4 Future work

Many areas exist for future work based on the results of this prototype

system. Generally speaking, the interface design is not felt to be as precise or

intuitive as it could have been due to the time constraints for its development,

and some functions still have room for more improvement. Some of those

functions include the edplan input page, which only allows the student to input

one course at a time (the greatest time consuming part in this system); and the

edplan checker data generation function, which still needs to add some

information, (such as thesis quarter, background, and waived courses) and also

needs to FTP the file to run on ZOO (a unix-based network of workstations in

AFIT/ENG) to get the output. Therefore, more effort can be directed at

improving these functions so that they operate more efficiently, and are

transparent and completely web-based.

Since the prototype system developed in this thesis was not robust across

all browsers of different versions and software platforms, it would be advisable

to build a more portable system. Since portability is the very issue that most of

the applications are pursuing, this should be considered a key next

improvement.

Finally, due to the popularity and convenience of web access, similar

5-7

academic data administration applications should be developed on this platform

to make the current processes easier and more efficient.

5-8

Bibliography

[Dipiro98] Dipiro, Daniel L. " Methodology for the Analysis and Design of
Internet Software Components Providing Relational Database
Access Through the World Wide Web" Thesis, Dayton: Air Force
Institute of Technology, 1998.

[FastCGI] "FastCGI." WWAeb, http://www.fastcgi.com/

[Hettih97] Hettihewa, Sanjaya and Kelly Held. " Teach yourself Active Server
Pages in 14 Days" 1997.

[IIS 4.0] "Internet Information Server 4.0", WVVWeb, http://www.microsoft.
com/iis/guide/

[JAVA96] Hamann Jerrid. "Java, an Object-Oriented Programming" 8 Sep 96.
WWWeb,
http: / /www.cs.tamu.edu/people/jhamann/jdbc/-report/node5.ht
nil

[Jen96] Jen, Howard. "The OpenPath RDA/ODBC Driver" A White paper
WWWeb http: //www.openpath.com/products/"odbcpaper.htm
1996.

[Litwin98] Litwin, Paul. "ADO programming" Microsoft Office Conference,
http:://www.microsoft.com/accessdev/articles/moves202.htm 25
Sep 98.

[Muel197] Mueller, John Paul, ActiveX from the Ground Up, Berkeley:
Osborne, 1997.

[North96] North, Ken. "Building Web Databases" 7 Aug 96 AZAeb, http://
www.webtechniques.com/features/jan97/!weekly/012497/-north.s
html

[North97] North, Ken "How do data access APIs work." 16 May 97, VVAWWeb,
http://ourworld.compuserve.com/homepages/KenNorthidataacce.htm

[Rumba9l] Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy,
Frederick; Lorensen, William. "Object Oriented Modeling and
Design." Englewood Cliffs: Prentice Hall, 1991.

5-9

[SUN96] North, Ken "Sun's JDBC spec turns up database heat under Java"
PC Week Labs May 8,1996.

5-10

REPORT DOCUMENTATION PAGE Form ApprovedR R DOM8 No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 10 December 1998 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Web-based Prototype for AFIT Edplan Administration

6. AUTHOR(S)

Tien-Chen Lee, Captain, Taiwan AF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GCSIENG/98D-02
2950 P Street
WPAFB, OH 45433-7765

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AFIT/RRD AGENCY REPORT NUMBER

Mr. Randall Baker
2950 P Street
WPAFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This document details the design, development, and evaluation of a prototype course registration and reporting system for th
students and faculty of the United States Air Force Institute of Technology. The web-based system provides HTML-based
client interfaces and Active Server Page server processes for interaction with the relational databases used to manage course
and personnel data. The system prototype was developed following the "Engineering Software Components for
Web-Database Access" methodology of Dipiro. A survey of modem web-based database access techniques is first provided
and Dipiro's methodology is reviewed as background. The remainder of the document details the application of the
methodology as a decision aid for decomposing system requirements into a series of user interaction and data access
functions. Then, again following the methodology, an analysis of extant web-database access techniques is performed in the
search for the most appropriate one. Next, the developed prototype system's functions are described and depicted via screei
capture images. Finally the results of prototype evaluation via user feedback surveys are provided along with
recommendations for future system improvement. Ultimately, this work stands as a validating test case for the Dipiro's
methodology.

14. SUBJECT TERMS 15. NUMBER OF PAGES

100
Databases, Internet, Object Oriented Programming, Software Engineering 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

	A Web-based Prototype for AFIT Edplan Administration
	Recommended Citation

	tmp.1653079179.pdf.roK9v

