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AFIT/GCS/ENS/99M-1 

Abstract 

This paper describes the development of the Human Computer Interface (HCI) for a 

Decision Support System for routing Unmanned Aerial Vehicles (UAVs). This problem 

is a multi-vehicle routing problem with time-windows. Because of the unique nature of 

UAVs, a tool is needed to support dynamic re-routing. We solve the problem in two 

ways. First, we create a UAV Decision Support Tool (UAV DST) that uses a set of Java 

software objects to display maps and convert between latitude-longitude coordinates and 

x-y coordinates. Secondly, this library provides the ability for the user to dynamically re- 

optimize large UAV routing problems through a simple graphical interface. The library is 

built on top of a Java implementation of the tabu search algorithm written by O'Rourke 

(1999). This library provides the basis for future simulation and analysis of the Kenney 

Battlelab Initiatives by providing the interface to routing decision support and simulation 

modules. 

VI 



A JAVA BASED HUMAN COMPUTER INTERFACE FOR A UAV DECISION 

SUPPORT TOOL USING CONFORMAL MAPPING 

I. Introduction 

The UAV Battlelab sponsored this research to investigate ways to more 

effectively use Uninhabited Aerial Vehicles (UAVs) to meet Air Force objectives. 

Specifically, we look at the Predator. The Predator is a slow UAV, with a long endurance 

that is typically used for reconnaissance operations. It broadcasts live video for rapid 

analysis. A typical Predator mission might have 50-100 targets, versus one or two targets 

for a fighter mission. While a fighter mission might last 2-3 hours, a Predator mission 

lasts 24-36 hours. Unlike targets for fighter missions, Predator targets have short time- 

windows, and unpredictable loiter times. 

Currently, the 11th Reconnaissance Squadron, in Indian Springs Nevada, plans and 

executes missions using the Predator UAV. Operators begin with a list of targets, with 

associated time-windows. Using a Ground Control Station (GCS), operators manually 

enter route points by clicking on a map using subjective criteria for the ordering of the 

route points. The operator picks a route that looks good. The operator then performs a 

terrain clearance check, which ensures the Predator doesn't fly into a mountain; and, a 



line-of-sight check, which ensures that the Predator doesn't fly behind any mountains. 

This leaves them with an initial route for their mission. 

For a number of reasons that will be explored later, the Predator operators must 

often re-plan their routes dynamically. Currently, there is no tool to help the operator re- 

plan the route dynamically. Each time the route is re-planned the operator must pick the 

order that they plan to visit the targets. If they make a sub-optimal decision, then they 

will not be able to image all of the planned targets. 

We create a UAV Decision Support Tool (UAV DST) that helps the operators 

make this decision. O'Rourke (1999) creates a Java implementation of the tabu search 

algorithm for UAV routing, while Walston (1999) provides a discrete event simulation 

of UAV characteristics. 



II. Implementing The UAV Decision Support Tool 

2-1. Introduction And Literature Review 

The Air Force is researching Unmanned Aerial Vehicles (UAVs) for missions 

involving a high risk of losing an aircraft, requiring a low cost platform, or requiring long 

endurance. One such application is the Suppression of Enemy Air Defenses (SEAD) 

mission; since enemy air defenses are designed to destroy aircraft, UAVs can expect to be 

targeted. In addition to using UAVs in new ways, there is also ongoing research in the 

areas of vehicle improvements. Both of these efforts can be significantly enhanced 

through the use of virtual prototyping. 

The Air Force organization chartered to evaluate this area, and the sponsor of this 

research, is the UAV Battlelab. The mission of the UAV Battlelab is ".. .to rapidly 

identify and demonstrate the military worth of innovative concepts which exploit the 

unique characteristics of UAVs to advance Air Force combat capability." (Theisen 1999) 

The UAV Battlelab accomplishes this mission by answering questions in the form 

of Battlelab Initiatives. According to the UAV Battlelab: 

A Battlelab Initiative is a concept or idea that may enhance the way 
the Air Force applies global air and space power. Ideas may be 
driven by combat experience, technology, or a desire to employ 
forces more effectively or efficiently. The Battlelab takes these ideas 
and concepts, and attempts to prove their value/worth to the Air 
Force. Initiatives are classified in terms of their scope as either 
Mitchell Class Battlelab Initiatives or Kenney Class Battlelab 
Initiatives (Theisen 1999). 

This research is part of several Kenney Battlelab Initiatives (KBIs). 



Kenney Battlelab Initiatives (KBIs) are for innovative, straight 
forward, and lower cost concepts. This category is named for Lt Gen 
George Kenney who adapted existing weapons and tactics to help 
turn the tide in the Pacific during the early days of World War II. 
Some examples of his work are parafrag bombs (hanging parachutes 
on small bombs to allow for bombing against aircraft in revetments), 
skip bombing against ships (adopted medium bombers to drop 
bombs at low altitude and placed cannons in the nose for more 
effective strafing), and what became called "Kenney Cocktails" 
(phosphorus bombs that exploded in the air sending out hot 
phosphorus to burn enemy aircraft in revetments). KBIS will be 
pursued under the sponsoring operating command's direction 
(Theisen 1999). 

One KBI of interest is concerned with using UAVs for the SEAD mission. The 

11th Reconnaissance Squadron tests the operational effectiveness of the Predator UAV. 

Currently, an operator from that squadron enters the route points that the UAV will fly. 

(There are up to 180 route points in a typical mission.) A collaborative research effort 

provides a decision support system for routing UAVs that requires a user interface for 

effective implementation. 

The airmen who operationally route UAVs manually design target sequences by 

hand, and do not have the computer support to visually experiment and test their 

decisions with a routing decision support tool. This research provides such a capability 

by plotting target locations, then using an AutoRoute feature to calculate near-optimal 

routes with minimal travel time. A second collaborative research effort creates a discrete 

event simulation to support virtual prototyping of UAVs to evaluate capability 

improvements. For example, a user can double the speed of the UAV and determine the 

effect that has on the number of covered targets. 



A significant challenge is accurately getting coordinate inputs from a map. While 

the Earth has a curved surface, maps are flat; hence they distort the size and shape of the 

landmasses. Software that displays maps need routines that convert between latitude- 

longitude coordinates to x-y coordinates. Previous research (Taylor 1997) has created 

routines in C and FORTRAN to do this for meteorological software. The literature 

provides routines to do these transformations (Taylor 1997, Allison 1995, Bortoluzzi and 

Ligi 1986). Some of the software routines (e.g. W3LIB) require every single map 

parameter with every function call to convert coordinates. Others maintain global data 

structures with this information that prevent working with more than one map at a time, 

(e.g. EZMAP). Taylor created routines that use initialization routines to fill in C 

structures, thus allowing a library to support more than one map at a time. 

This research creates a library of objects in Java to display maps, and convert the 

coordinates from x-y to Latitude-Longitude. Java is an object oriented programming 

language created by Sun Microsystems for embedded applications. Its main advantage 

over traditional languages is that it's portable across many platforms and operating 

systems. Java also allows the creation of applets, which can be executed from Web pages 

by major browsers such as Netscape and Microsoft Internet Explorer. Our library 

provides the Human Computer Interface (HCI) for discrete event simulations of UAVs 

and routing algorithms to support the modeling and support of KBIs. 

The literature provides much research into algortihms for the multi-vehicle 

routing problem. Bertsimas and Simchi-Levi (1996) gives a summary of algorithms for 

the vehicle routing problem. This includes best and worst case analysis for many 



algorithms. Gendreu et al. (1996) describes the use of tabu search on a class of the 

vehicle routing problem where there are random demands. They find an optimal solution 

89.45% of the time. Ryan et al. (1999) describe using the tabu search algorithm for the 

UAV routing problem in Modsim. O'Rourke (1999) applies the tabu search algortihm to 

the UAV routing problem in Java. 

The literature provides good reasons for building a graphical display for this 

problem. Crossland et al. (1995) examines whether the addition of Geographic 

Information Systems (GIS) to decision support systems affects the performance of 

individuals on spatial decision problems. The study found "unequivocal evidence" that 

the use of GIS increased the accuracy of decision-makers, as well as reduced the decision 

time. Keenan (1998) notes that while standard GIS software can be useful to a broad 

range of routing problems, a general purpose GIS will not be suitable for complex multi- 

vehicle routing problems. Keenan also notes that a skilled user can dramatically improve 

the routes generated by a heuristic routing function through skilled manipulation. Basnet 

(1996) create a Decision Support System (DSS) for a particular vehicle routing problem 

that arises in the New Zealand dairy industry. They create a user interface in Pascal that 

runs as a DOS program. 

How to create user interfaces for DSSs is another focus of research. Jones (1991) 

gives a taxonomy of the types of user interface development breaking it down into: 

subroutine libraries, draw-it yourself, hypermedia toolkits, object-oriented, text 

languages, network, by example, syntax-directed editors, and constraint-based. Jones 

argues that user interfaces are an important and neglected part of DSSs. Angehrn (1990, 



1991) creates a flexible system for graphically creating DSSs called Tolomeo. The basic 

idea is to let users specify specific examples of the problem they face, and some of the 

kinds of solutions they are looking for. The system then forms a hypothesis about the 

formal nature of the problem, and selects mathematical methods for solving it. Finally, it 

suggests new solutions to the user. Holsapple et al. (1991) describes a complicated 

framework for developing user interfaces for DSSs, dividing the effort into interface, 

event and functionality development. They create languages for describing customized 

decision support system interfaces. 

The literature, then, contains several distinct focuses. Some research concentrates 

on algorithms for the multi-vehicle routing problem. Other research examines the 

benefits of integrating GIS with DSSs. Finally, some research concentrates on 

frameworks for creating user interfaces for DSSs. 

This chapter is organized in the following manner. Section 2-2 explains the 

operational background for this problem, including the routing algorithm, and the unique 

characteristics of the UAV environment. Section 2-3 explains the design of the user 

interface, including the algorithms used for conformal mapping, as well as the integration 

of locked subroutes and threats with the routing algorithm. Section 2-4 explains the 

operational contribution of this research. Section 2-5 describes significant 

implementation details, and Section 2-6 concludes this thesis with a summary and 

suggestions for further research. 



2-2. Operational Background 

The UAV routing problem, or UAVP, is in the most general sense a special case 

of the Traveling Salesman Problem. Ryan et al. (1999) explain how the UAVP problem 

fits into Carlton's taxonomy of general vehicle routing problems (GVRP). Since UAVP is 

a homogeneous, multiple-vehicle, single-depot, traveling salesman problem with route- 

length constraints, and time windows, it is characterized as a [MVH, SD, TSP, RL, TW]. 

Ryan et al. (1999) further note that since GVRP belongs to the class of NP-complete 

problems, a heuristic method should be used to find near optimal solutions. Ryan et al.'s 

(1999) solution to the problem was to develop a MODSJM program using reactive tabu 

search on the TSP problem with time windows. 

O'Rourke (1999) extends Ryan et al.'s (1999) research, and creates a Java 

program that performs reactive tabu search to solve the UAVP. However, there are 

several unique aspects of the UAV environment that are not directly handled by 

O'Rourke's routines. First, there is the notion of threats; e.g. a Surface to Air Missile 

(SAM) site may render certain route segments dangerous to fly on. Another unique 

aspect of the environment is the concept of locked sub-routes. Locked sub-routes are 

route segments that the user tells the algorithm to retain during its searching. This is 

essential because there are often certain air corridors that must be flown when entering 

and leaving controlled airspace, or certain route segments the operator knows a priori 

must be part of the solution. 

The Predator system consists of the Predator aircraft, the ground control station 

(GCS), data links, sensor payloads, ground support equipment, and trained personnel. 



The GCS is a trailer that contains a mission planning station, a data exploitation station, 

an air vehicle operator station and a payload station. The Predator is remotely piloted 

from the GCS. The Predator must take off and land near the GCS since there are delays 

in response time due to the line of sight communications. In theory, a UAV could take 

off from one GCS, and be passed off to another mid-flight. However, the current doctrine 

prevents this from occurring. 

Table 1 shows a notional list of targets for the Predator. Figure 1 shows a sample 

plot for a Predator mission. 
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Table 2 shows the performance characteristics of the Predator. 

Table 2. Predator Performance Characteristics (Sisson 1997) 

Predator Performance Characteristics 

Maximum altitude  25,000 ft 
Maximum endurance  40+ hours 
True Air Speed  60-129 knots 
Cruise Speed  70 knots 
Radius  500 Nm 

SAR, EO, IR 
Thrust  85 Hp 

26.7 ft 
Width  3.7 ft 
Navigation System  GPS, INS 
Survivability Measures  None 
Payload  450 lbs 

The Predator has several interesting characteristics. First, it flies at extremely 

slow speeds. In fact, the Predator often flies too slow to be picked up on radar, and it is 

sometimes slower than the wind. Predators have been known to have a negative 

groundspeed. Second, the Predator sends back live video to intelligence. The Predator 

contains electro-optical infra-red (EO)/(IR) sensors, which consist of an infra-red camera 

for night missions, and two video cameras for use during the day. The Predator uses 

these sensors to send live video back to the GCS. Since the video is live, and easily 

understandable, this prompts a lot of requests to reroute the aircraft during flight to get a 

better look at things. Third, the Predator is very sensitive to bad weather. It does not fly 

well in the rain, because the water seeps through its wings and damages its electronics. 

(The camera for the Predator is much more expensive than the airframe!) Also, if ice 

forms on the Predator's wings, it becomes aerodynamically unstable. Fourth, the 

12 



Predator is entirely unclassified. This means that there are far fewer restrictions on where 

it can fly than a U2. 

All of these characteristics force the Predator operators to re-plan their routes 

frequently. During a typical mission, the aircraft is often diverted from its original route 

to cover unanticipated targets. Likewise, since it has trouble flying against the wind, and 

since it does not perform well in the rain, the operator often needs to re-plan the route 

dynamically to account for weather. Each time the operator re-plans the route, he or she 

must make a decision about what order to visit the targets in. If the operator makes a 

poor decision, there will not be enough time to cover all of the targets. 

Currently, mission planning is done using the GCS. Operators take a list of 

targets, and enter their coordinates into the GCS to plan a route. Usually, this is done by 

clicking on a map, though the capability to enter latitude/longitude coordinates is also 

availiable. The GCS performs a terrain analysis, which ensures the route does not go 

through a mountain, as well as a communications profile, which ensures that line-of-sight 

communications is maintained at all times. However, the GCS does not provide any 

insight into what order to visit the targets in. 

2-3. Interface Considerations 

This research creates an application that demonstrates an automatic route- 

planning feature (AutoRoute) using the tabu search algorithm. A separate research effort 

by O'Rourke (1999) implements the tabu search algorithm in Java. Figure 2 shows the 

Uninhabited Aerial Vehicle Decision Support System (UAV DST) application. 
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Figure 2. The UAV DST Application 

Figure 3 shows the name of each of the buttons. We present a detailed description 

functional use and capabilities of features listed in Figure 3. 

\. Selection 

P| Ground Control Station 

•\ Add Target 

*ff AutoRoute 

fi Lock 

KCut 

'*"§" Aircraft Characteristics 

|§§ Add Threat 

JH Add No-Fly Zone 

Figure 3. Descriptions of Buttons 
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2-3-1 Selection. 

The Selection tool selects objects. Using the Selection tool, clicking on a target, 

and then releasing the mouse button, will select that target, and display the Target 

Characteristics Dialog Box. After selecting a target, you may click on it and drag it 

across the map to move it. When you move a target, the route follows. Moving a threat 

or a node in a no-fly zone works the same way. Simply select it, then click on it and drag 

it across the map. Selecting a target, without releasing the mouse button, and then 

dragging it on top of another target will create a locked route segment from the first target 

to the second one. This tool will be used whenever you need to move something on the 

map, or manually adjust the route. 

2-3-2 Ground Control Station. 

The Ground Control Station (GCS) tool inserts a ground control station on the 

map. Using the Ground Control Station tool, clicking on the map, and releasing the 

mouse button will move the GCS to the place where you clicked. The GCS acts as the 
i 

depot to the routing algorithm, and thus is the point where all UAVs take-off and land. 

For this application, there is only one GCS. This tool is only used when you want to 

move the GCS, which is infrequently. 
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2-3-3 Add Target 

The Add Target tool adds targets to the map. Using the Add Target tool, clicking 

on the map, and releasing the mouse button will add a target to the map at the point where 

you clicked. To move a target on the map, you must select it, and drag it across the map 

using the Selection tool. To edit the characteristics of a target, you must select it using 

the Selection tool. Targets act as the customer nodes to the routing algorithm. The Add 

Target tool is used whenever you need to add a new target to the map, which is very 

frequently. 

2-3-4 AutoRoute. 

The AutoRoute button begins calculating a near-optimal route. Clicking the 

AutoRoute tool will begin calculating a near-optimal route using 3,500 iterations of the 

tabu search algorithm. The cursor changes to an hourglass indicating that the system is 

busy. When the new route is displayed, and the cursor changes back to the arrow cursor, 

then the AutoRoute calculation is complete. You should use the AutoRoute button 

whenever you add or remove one or more targets, threats, or no-fly zones to the map, or 

move anything on the map. This is the key feature of this application. It is intended to be 

used frequently. 

16 



2-3-5 Lock. 

The Lock tool allows the user to lock route segments, so that they will not be 

changed by the AutoRoute feature. Using the Lock tool, clicking on a target locks the 

route segment immediately after that target. Clicking the same target again using the 

Lock tool unlocks the route segment. You would use this tool to lock any part of the 

route that you don't want the AutoRoute feature to change. For example, you can use the 

lock tool to ensure that the AutoRoute feature will not change the part of the route that 

flies through controlled airspace. Also, if you have a target that you know you must visit 

next, you can lock that portion of the route. This feature is designed to be used somewhat 

frequently. 

2-3-6 Cut. 

The Cut tool is used to remove targets, threats, and no-fly zones from the map. 

Using the cut tool, clicking on a feature on the map removes it. Alternatively, selecting a 

feature and then clicking on the cut tool also deletes that feature. Deleting the last node 

in a no-fly zone deletes it. The Cut tool is used whenever you want to delete a target, 

threat, or node in a no-fly zone from the map. 

2-3-7. Aircraft Characteristics. 

The Aircraft Characteristics button displays the Aircraft Characteristics Dialog 

Box (Figure 4). There are three parameters that can be modified. Parameters can be 

changed by clicking on the field for that parameter, then entering a new value, then 

clicking the OK button. 
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1 US Aircraft Characteristics 1 

j     OK 

Range(NM) 
9999.0 

Speed(Knots 
250.0 

Number of Aircraft 
2 

Figure 4. Aircraft Characteristics Dialog Box 

2-3-8. Add Threat. 

The Add Threat tool is used to add threats to the map. Using the Add Threat tool, 

clicking on the map adds a threat at the point where you clicked. To move threats, use 

the Selection tool to drag them across the map. To edit the properties of threats, select the 

threat using the Selection tool, then edit the desired properties in the Threat 

Characteristics Dialog Box. This tool will be used whenever you need to add a threat to 

the map. Due to the mostly static nature of threats, this tool will be used infrequently. 

2-3-9. Add No-Fly Zone 

The Add No-Fly Zone tool is used to add no-fly zones. Using the Add No-Fly 

Zone tool, clicking the corners of a polygon creates a new no-fly zone. To add new points 

to an existing no-fly zone, first, select it, using the Selection tool, then, after clicking on 

the Add No-Fly Zone tool, clicking on the map will add points to the selected no-fly zone. 

This tool is used whenever you need to add another no-fly zone to the map. 
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2-3-10. Target Characteristics Dialog Box 

When a user clicks on a target using the selection tool, the dialog box shown in 

Figure 5 is displayed. As the user drags the target on the map, the latitude and longitude 

coordinates are updated in the dialog box. This allows the user to accurately position the 

target on the map. Alternatively, the user can enter the latitude longitude coordinates in 

the dialog box, and press the OK button. 

m 
Target Characteristics 

id i      Latitude      )    Longitude Time Window j 

1 44 40    J38     15 43 42 0         |2400 
Timetf 

Routing Characteristics   | Q Locked 

/indow ' Load   qty i M ; Type | Wait I 

0000 0000 0 0   jo.o 1       |o     | 

Figure 5. Target Characteristics Dialog Box 

2-3-11. Threat Characteristics Dialog Box. 

If the user clicks on a threat using the selection tool, then the Threat 

Characteristics dialog box is displayed (see Figure 6). Once again, as the user drags the 

threat across the map, the latitude and longitude are dynamically updated. 
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S3 ThreatCharacteiisticsDialog 

Latitude Longitude 

44 41    |30 16 [2 8 

type 

radius 20 

OK 

Figure 6. Threat Characteristics Dialog Box 

2-3-12. Aircraft Characteristics Dialog Box. 

If the user clicks on the Aircraft Characteristics button, or selects aircraft 

characteristics from the view menu, the Aircraft Characteristics Dialog Box is displayed, 

(Figure 3). 

2-4. GUI/Tabu Interface 

The tabu search algorithm inputs an array of N+v+l nodes numbered l..iV+v+l, 

with associated early arrive times e„ late arrival time /,, and wait-time w; a number of 

vehicle Nodes v; a number of customer (i.e. target) nodes N; a (N+v+l by N+v+l) 

time/distance matrix D; and outputs an ordered list of a near-optimal route. The routing 

algorithm assumes that the first node is a vehicle node, and that the last node is the place 
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for the aircraft to stop upon completing its tour (which in most cases is the same as the 

first node.) 

There are several challenges associated with using this tabu search algorithm in 

the context of this application. The first challenge is the notion of locked sub-routes. 

Locked sub-routes are route segments that the user tells the algorithm to retain during its 

search. This is essential because certain air corridors must often be flown when entering 

and leaving controlled airspace. Additionally, the user may be required to divert the 

aircraft to survey an unanticipated target, and does not want the algorithm to change one 

or more portions of the route that are already flight planned or profiled for terrain 

clearance and communication. 

Initially, all route segments are eligible for inclusion in the suggested route. The 

combined use of the tabu search algorithm and locked subroutes poses a unique 

implementation challenge. One method of accomplishing this is to divide up the nodes 

such that the tabu search algorithm only considers a subset of the route at a time. Under 

this approach, the tabu search would consider a route that includes the first node in the 

locked sub-route, but excludes other nodes in the locked sub-route. Then, it would plan a 

route starting with the last node in the locked sub-route, using only the remaining nodes. 

This technique concludes by piecing together these sub-routes. However, this approach 

while finding local optimums, may not find a global optimum. Also, it is difficult to 

determine how to group the nodes in the first part of the locked sub-route. 

21 



Instead of a direct representation of the nodes into the routing algorithm, all of the 

nodes in a locked sub-route are grouped into a single supernode. For example, if nodes 

Ni..Nj form a locked subroute, a single supernode M„ represents them to the routing 

algorithm, with a wait-time equal to the sum of the component wait times in JV/.../V,. In the 

time/distance matrix, the distance from any node Nk to Mt is the distance from Nk to Nt; 

however, the distance from M, to Nk, is equal to the sum of the distances from Ni..Nj plus 

the distance from Nj to Nk. 

After the tabu search returns a route, the supernodes are translated back to the 

locked subroute node segments through replacement. This creates a new route, that 

contains no supernodes, yet retains the desired locked sub-routes. 

As discussed earlier, another difficulty with using the tabu search algorithm in this 

domain is the concept of threats. The UAV DST models threats using a 

latitude/longitude coordinate and a radius. When building the time/distance matrix, any 

route segment which intersects the circle around a threat is given an extremely large 

penalty in the time/distance matrix. By making any solution containing that route 

segment infeasible, the routing algorithm will prefer routes that avoid threats. 

Although in many cases the output of the AutoRoute feature will be accepted, the 

user may need to manually adjust the route. We allow the user to drag one target to 

overlay another in a way that creates a route from one node to the next (Figure 7). 
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Before After 

Figure 7. The user drags the top target onto the bottom one 

2-5. Conformal Mapping 

Another significant challenge is inputting coordinates from a map. In order to do 

this, a conformal map object is developed. Map projections are systematic ways of 

transferring the 3-dimensional geometry of the Earth's surface on to a 2-dimensional 

surface (such as a piece of paper or a computer screen.) This can be viewed in terms of 

shadow casting, such as a light inside a globe casting shadows on a specially shaped 

paper near the globe. The shape of the paper used determines the type of projection; for 

example, a paper shaped as a cylinder gives a cylindrical projection, a paper shaped like a 

cone provides a conic projection, while a flat or planar sheet of paper provides a zenithal 

or azimuthal projection(Hill 1989). Table 3 lists some features of the most common 

projections. 
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This UAV DST implements a Mercator projection. According to Taylor latitude 

and longitude to x-y conversion is defined as 

X=X0+^-(C£ + C2r» 

Y = Y0+-^-(C£-C271) 

where £ and r] are the latitude and longitude coordinates of the point, a is the radius of the 

Earth, G0 is the gridsize at the equator, and Cl and C2 are constants. 

Converting from x-y coordinates to latitude-longitude uses the following 

equations 

$=—[a(x-x0)-c2(y-y„)] 
a 

ri=^-[ci(y-yo)+c2(
x-xo)]- 

Supporting conformal mapping in Java requires the classes Xy and LatLong for 

storing x-y coordinates and latitude-longitude coordinates, respectively. The Xy class 

supports the following methods shown in Table 4. 
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Table 4. Class Xy 

Method                                Description 

public Xy(int x, int y) Constructor 

public int getX() Assessor function for the X coordinate 

public int getY() Assessor function for the Y coordinate 

The methods for the LatLong class are given in Table 5. 

Method 

Table 5. Class LatLong 

Description 

public LatLong(double Lon, double Lat) constructor for specifying LatLong coordinates 
doubles 

public LatLong( int LongDegrees, int LongMinutes, int 
LongSeconds, int LatDegrees,   int LatMinutes,   int 
LatSeconds)  

constructor for specifying LatLong coordinates 
Degrees, Minutes, and seconds 

public final int getLongPegreesQ Assessor function for the Degrees Longitude 
public final int getLatDegreesQ Assessor function for the Degrees Latitude 
public final int getLatMinutesQ Assessor function for the Minutes Latitude 
public final int getLongMinutesQ Assessor function for the Degrees Longitude 
public final int getLongSecondsQ Assessor function for the Seconds Longitude 
public final double getLat() Assessor function for the Latitude as a double 

public final double getLongO Assessor function for the Longitude as a double 

public final void setLat(double L) Sets the Latitude as a double 

public final void sefLong(double L) Sets the Longitude as a double 

public final void setLatPegrees(int d) Sets the Degrees of Latitude 

public final void setLongDegrees(int d) Sets the Pegrees of Longitude 
public final void setLafMinutesQnt m) Sets the Minutes of Latitude 
public final void setLongMinutes(int m) Sets the Minutes of Longitude 
public final void setLatSeconds(int s) Sets the Seconds of Latitude 
public final void setLongSecondspnt s) Sets the Seconds of Longitude 
public void printQ Prints the Latitude and Longitude 
public void printLatQ Prints the Latitude as a double 
public void printLongQ Prints the Longitude as a double 
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In order to support conformal mapping, we create a ConformalMap Class in Java. 

The conformal map object initializes by passing in the x-y coordinates and the latitude- 

longitude coordinates of two known points. Table 6 shows the methods in 

ConformalMap. 

Table 6. Class ConformalMap 

Method 

public ConformalMap(Xy PI, LatLong LI, Xy P2, 
LatLong L2)  

Description 

Constructor, which takes 2 X-y coordinates, along 
with their corresponding LatLong coordinates 

Public LatLong Xy2LatLong(Xy P) Converts Xy coordinates to LatLong coordinates 
public Xy LafLong2Xy (LatLong P) Converts LatLong coordinates to coordinates to Xy 

coordinates 
public double getDistanceBetween (LatLong PI, 
LatLong P2)  

Returns the great circle distance between 2 LatLong 
coordinates 

public void print() Prints all the variables in ConformalMap for 
debugging purposes  

public double distanceBetween(Xy PI, Xy P2) Returns the Cartesian distance between 2 Xy 
coordinates 

boolean LineThoughThreat(Xy C, Xy PI, Xy P2, int 
R)  

Determines if a line segment defined by 2 Xy points 
intersects a circle at C with radius R 

The constructor for the ConformalMap class calculates the parameters for coordinate 

conversion as follows. Beginning with the constructor 

public ConformalMap(Xy PI, LatLong LI, Xy P2, LatLong L2) 

let xa and ya be the x and y coordinates of PI respectively. Let Xb and yb be the x and y 

coordinates of P2. Let 77„be the longitude of Pi, and £a be the latitude of PL Let r^be 

the longitude of P2, and ^ be the latitude of P2. Go is the gridsize at the equator. dxis 

the Cartesian distance between PI and P2 in x-y coordinates. d% is the Cartesian distance 
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between PI and P2 in latitude-longitude coordinates. C/, and C2 are constants. x0 and y0 

are the longitude and latitude of the x-y coordinate (0,0). 

Following Taylor (1997) the following calculations are performed: 

dx = J(xa-xb)
2 + (ya-yb)

2 

*=,/<& „-$>)* +<!\ a-**)2 

adx 
Go 

di 

_ (*„ -*»)(£, -£b) + (ya-yb)(ria -yb) 
dxd^ 

(xa-xb )(ria -7]b )-(ya - yb )(%a -£b) 

dxd^ 

xo-xa — 
d, 

Jo      Sa d, 

Once the ConformalMap object has been initialized, one can convert x-y 

coordinates into latitude-longitude coordinates by calling public LatLong 

Xy2LatLong(Xy P). Likewise, converting latitude-longitude coordinates into x-y 

coordinates is accomplished by calling public Xy LatLong2Xy (LatLong P). 

The boolean LineThoughThreat(Xy C, Xy PI, Xy P2, int R) method 

determines if a line from PI to P2 would intersect a circle centered at C with radius R. 

To understand how this works examine Figure 6 where 

28 



Figure 8. A circle with radius R at point C, and a line segment from PI to P2 

a = distanceBetween(Pl, C); 

b = distanceBetween(P2, C); 

c = distanceBetween(Pl, P2); 

„     ,™„,   (b2-a2-c2), 
B = ACOS(-- -) 

2ac 

b2= A(SIN(ä)) 

if (b2<R) return true; 

else return false. 

Using the law of Cosines: 

b2=a2+c2-2acCOS(B) 

lac 
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Now, the segment b2 forms a right angle with the segment from PI to P2. Hence, 

b2=a(SJN(B)). Now, if b2 < R, then the line intersects the circle. 

2-6. Implementation Details 

We develop the UAV DST application using the rapid prototyping model. We 

began by interviewing the manufacturers of several UAVs looking for a general 

understanding of their capabilities and unique characteristics. We then met with the 11th 

Reconnaissance Squadron to see how they used the Predator operationally, and what 

problems they have. Next, we discussed UAV issues with a staff officer in Air Combat 

Command long range planning. 

At this point, we were able to develop the first version of the user interface. We 

chose Symantic Visual Cafe as our development platform, because it has powerful 

features for designing user interfaces. This allowed us to create our first prototype. It 

was extremely slow, and did not yet have the AutoRoute capability. We demonstrated 

this prototype to the 11th Reconnaissance Squadron. They gave us valuable feedback. 

They wanted the ability to resize the window, a zoom capability, and different priority 

nodes to be different colors. 

We added the features they requested to the prototype, and integrated the tabu 

search algorithm developed by O'Rourke (1999). We returned to the 11th Reconnaissance 

Squadron, and demonstrated the second prototype. They were generally pleased. Some 

operators commented that it should be integrated into the mission planning software that 

intelligence officers use to plan missions. There was a general agreement that a routing 
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algorithm should use priorities, but there was no consensus on exactly how priorities 

should be used. 

In March 1999, we will to return to the 11th Reconnaissance with our final version 

of the UAV DST. We will deliver it to them on a laptop that they can take with them 

when they deploy. 

2-7. Conclusion 

We deliver a laptop containing the UAV DST application to the 11th 

Reconnaissance Squadron. Using our software, they will be able to generate routes more 

efficiently. Since their current software runs on a large UNIX workstation, it is difficult 

for users to plan routes away from the workstation. Using the laptop, users can 

experiment with different routes and then plug the best route into the workstation. 

This research develops a ConformalMap class to handle conformal mapping in 

Java. Unlike previous routines, this software is object oriented and highly portable. A 

UAV DST is developed that demonstrates an automatic routing capability for UAVs. A 

number of interesting features are provided, including integrating locked subroutes and 

threats into the tabu search algorithm. 

Future research needs to be done in several areas. First is the integration of the 

AutoRoute feature into the software already used operationally to create routes. Second, 

a separate research effort creates a discrete event simulation to model UAVs. The HCI 

libraries could be easily extended to provide a graphical user interface for the discrete 

event simulation. Finally, there are a couple of features of feasible routes that we did not 
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model. For example, because of the need for line of sight communication some routes 

might not be feasible. 
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Appendix 1. Alphabetical Index Of Fields and Methods 

AboutDialogfFrame, boolean). Constructor for class AboutDialog 

Method AboutDialog is the constructor 

AboutDialog(Frame, String, boolean). Constructor for class AboutDialog 

Method AboutDialog is the constructor taking a string which acts as the title 

actionPerformed(ActionEvent). Method in class myToolbarTestPanel 

Method actionPerformed is the standard action callback 

add(TimeWindow). Method in class NoFlyZoneContainer 

Method add adds a NoFlyZone node (as a TimeWindow) to the current NoFlyZone 

addNotifyQ. Method in class AboutDialog 

Method addNotify is routine that is automatically generated by Symantic Visual Cafe 

addNotifyQ. Method in class AircraftCharacteristicsF 

Method addNotify is automaticallt generated by Symantic Visual Cafe 

addNotifyQ. Method in class Frame 1 

Method addNotify is automatically generated by Symantic Visual Cafe 

addNotifyQ. Method in class QuitDialog 

Method addNotify is automatically generated by Symantic Visual Cafe 

addNotifyQ. Method in class TargetCharacterisitcsWindow 

Method addNotify is automatically generated by Symantic Visual Cafe 
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addNotifvQ. Method in class TargetListFrame 

Method addNotify is automatically grnerated by Symantic Visual Cafe 

addNotifvQ. Method in class ThreatCharacteristicsDialog 

Method addNotify is automatically generated by Symantic Visual Cafe 

AirCraftCharacteristicsQ. Constructor for class AirCraftCharacteristics 

AircraftCharacteristicsFQ. Constructor for class AircraftCharacteristicsF 

Method AircraftCharacteristicsF is the default constructor 

AircraftCharacteristicsF(String). Constructor for class AircraftCharacteristicsF 

AircraftCharacteristicsF is a constructor using a string for the title 

assignlnputFile(String). Static method in class ReadFile 

B 

bestCost. Variable in class SearchOut 

bestCost. Variable in class StartPenBestOut 

bestCost. Variable in class TwBestTTOut 

bestiter. Variable in class SearchOut 

bestiter. Variable in class StartPenBestOut 

bestiter. Variable in class TwBestTTOut 

bestnv. Variable in class SearchOut 

bestnv. Variable in class StartPenBestOut 

bestnv. Variable in class TwBestTTOut 

BestSolnModQ. Constructor for class BestSolnMod 

bestTime. Variable in class SearchOut 

bestTime. Variable in class StartPenBestOut 
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bestTime. Variable in class TwBestTTOut 

bestTour. Variable in class SearchOut 

bestTour. Variable in class StartPenBestOut 

bestTour. Variable in class TwBestTTOut 

bestTT. Variable in class SearchOut 

bestTT. Variable in class StartPenBestOut 

bestTT. Variable in class TwBestTTOut 

bfCost. Variable in class SearchOut 

bfCost. Variable in class StartPenBestOut 

bfCost. Variable in class TwBestTTOut 

bfiter. Variable in class SearchOut 

bfiter. Variable in class StartPenBestOut 

bfiter. Variable in class TwBestTTOut 

bfnv. Variable in class SearchOut 

bfnv. Variable in class StartPenBestOut 

bfnv. Variable in class TwBestTTOut 

bfTime. Variable in class SearchOut 

bfTime. Variable in class StartPenBestOut 

bfTime. Variable in class TwBestTTOut 

bfTour. Variable in class SearchOut 

bfTour. Variable in class StartPenBestOut 

bfTour. Variable in class TwBestTTOut 

bfTT. Variable in class SearchOut 

bfTT. Variable in class StartPenBestOut 

bfTT. Variable in class TwBestTTOut 
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c(boolean). Method in class Frame 1 

Shows or hides the component depending on the boolean flag b. 

compPensCNodeTypefl, int). Static method in class NodeType 

compPens computes the exact vehicle Overload and time window penalties 

CjwngPens(NodeType[], int). Static method in class VrpPenType 

compPens computes the exact vehicle Overload and time windoe penalties 

ConformalMap(Xy, LatLong, Xy, LatLong). Constructor for class ConformalMap 

Method ConformalMap is the constructor for the ConformalMap class 

CoordTypeQ. Constructor for class CoordType 

CoordTypefdouble, double). Constructor for class CoordType 

copyQ. Method in class NodeType 

countVeh(NodeType H). Static method in class NodeType 

countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions 

count Vehicles (NodeType H). Static method in class TabuMod 

count Veh calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

cut(). Method in class NoFlyZoneContainer 

Method Cut removes the selected NoFlyZone 

cycle(ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class 
TabuMod 

cycle - updates the search parameters if the incumbent tour is found in the hashing 
structure 

CycleOutQ. Constructor for class CycleOut 
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CvcleOuKint, int, double, ValueObj). Constructor for class CycleOut 

cvclePrint. Variable in class PrintFlag 

D 

distanceBetween(Xy, Xy). Method in class ConformalMap 

Method distanceBetween returns the cartesian distance between 2 points 

E 

endTime. Variable in class Timer 

endTimeO. Method in class Timer 

equals(KeyObi). Method in class KeyObj 

equals(RecordObj). Method in class RecordObj 

eguals(ValueObj). Method in class ValueObj 

F 

findXY(DList, int, int, int, int). Method in class NoFlyZoneContainer 

Method findXY finds the NoFlyZone node (of classTimwWindow) in the DList D 

findXY(int, int, int, int). Method in class NoFlyZoneContainer 

Method findXY finds the NoFlyZone node (of classTimwWindow) in the NoFlyZone 
setting current to the No Fly Zone(DList) it is in 

findXYN(int, int, int, int). Method in class NoFlyZoneContainer 
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Method findXYN finds the NoFlyZone node (of classTimwWindow) in the 
NoFlyZone wthout setting current 

firstHashVal(int). Static method in class HashMod 

firstHashVal 

FramelQ. Constructor for class Frame 1 

Method Frame 1 is the constructor 

Framel(String). Constructor for class Frame 1 

Method Frame 1 is the constructor which takes a title as a string 

G 

getArrQ. Method in class NodeType 

getDepQ. Method in class NodeType 

GetDistQ. Constructor for class GetDist 

getDistanceBetween(LatLong, LatLong). Method in class ConformalMap 

Method getDistanceBetween returns the great circle distance between 2 points 

getEa(). Method in class NodeType 

getldQ. Method in class NodeType 

getLaQ. Method in class NodeType 

getLatQ. Method in class LatLong 

Method getLat returns the Lattitude as a Double 

getLatPegreesQ. Method in class LatLong 

Method getLatDegrees returns the Degrees part of the Lattitude as an Integer 

getLatPegreesQ. Method in class NodeType 

getLatMinutesQ. Method in class LatLong 

Method getLatDegrees returns the Minutes part of the Lattitude as an Integer 
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getLatMinutesQ. Method in class NodeType 

getLatSecondsQ. Method in class LatLong 

Method getLatDegrees returns the Seconds part of the Lattitude as an Integer 

getLatSecondsQ. Method in class NodeType 

getLoadQ. Method in class NodeType 

getLockedQ. Method in class NodeType 

getLongQ. Method in class LatLong 

Method getLong returns the Longitude as a Double 

getLongDegreesQ. Method in class LatLong 

Method getLatDegrees returns the Degrees part of the Longitude as an Integer 

getLongDegreesQ. Method in class NodeType 

getLongMinutesQ. Method in class LatLong 

Method getLatDegrees returns the Minutes part of the Longitude as an Integer 

getLongMinutesQ. Method in class NodeType 

getLongSecondsQ. Method in class LatLong 

Method getLatDegrees returns the Seconds part of the Longitude as an Integer 

getLongSecondsQ. Method in class NodeType 

getMQ. Method in class NodeType 

getNodeQ. Method in class Target 

Method getNode returns the node 

getNumberOfVehiclesQ. Method in class AirCraftCharacteristics 

Method getNumberOfVehicles returns the number of the UAVs 

getOtyQ. Method in class NodeType 

getRangeQ. Method in class AirCraftCharacteristics 

Method getRange returns the range of the UAV 

getSpeedQ. Method in class AirCraftCharacteristics 
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Method getSpeed returns the speed of the UAV 

getTypeQ. Method in class NodeType 

getWaitQ. Method in class NodeType 

getXQ. Method in class NodeType 

getXQ. Method in class Target 

Method getX returns the X coordinate 

getXQ. Method in class Xy 

Method getX returns the X coordinate 

getYQ. Method in class NodeType 

getYQ. Method in class Target 

Method getY returns the Y coordinate 

getYQ. Method in class Xy 

Method getY returns the Y coordinate 

H 

hashCodeQ. Method in class KeyObj 

hashCodeQ. Method in class RecordObj 

hashCodeQ. Method in class ValueObj 

HashModQ. Constructor for class HashMod 

InFromKeybdQ. Constructor for class InFromKeybd 

insert(NodeTypefl, int, int). Static method in class NodeType 
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Method insert allows the element designated by "chl" to be shifted by "chD" 
elements. 

iterPrint. Variable in class PrintFlag 

K 

KeyboardTestQ. Constructor for class KeyboardTest 

keyDouble(String). Static method in class InFromKeybd 

keyFloat(String). Static method in class InFromKeybd 

keyJnt(String). Static method in class InFromKeybd 

KeyOb.Kint, int, int, int, int, int). Constructor for class KeyObi 

keyString(String). Static method in class InFromKeybd 

KeyToStringQ. Constructor for class KeyToString 

kevToStringdnt, int, int, int, int, int). Static method in class KeyToString 

LatLong(double, double). Constructor for class LatLong 

Method LatLong is a constructor that takes longitude and lattitude as floats 

LatLongfint, int, int, int, int, int). Constructor for class LatLong 

Method LatLong is a constructor that takes longitude and lattitude in degrees, 
minutes, and seconds 

LatLong2Xy(LatLong). Method in class ConformalMap 

Method LatLong2Xy Converts a LatLong coordinate to an Xy coordinate 

loadPrint. Variable in class PrintFlag 
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lookForfHashtable, int, int, int, int, int, int, int). Static method in class HashMod 

lookFor - looks for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the 
hashtable 

M 

main(String[]). Static method in class AircraftCharacteristicsF 

Method main is the main method for this frame, which is normally unused 

main(String[]). Static method in class Frame 1 

Method main is the main method for this application 

main(String[]). Static method in class GetDist 

main(String[]). Static method in class KeyboardTest 

main(String[]). Static method in class MTSPTW 

main executes MTSPTW problem. 

main(String[]). Static method in class TargetListFrame 

Method main is the main method for this frame 

makePaletteQ. Method in class myToolbarTestPanel 

Method makePalette creates the toolbar 

mavg. Variable in class CycleOut 

movePrint. Variable in class PrintFlag 

moveValTlYint. int, NodeType[], NodeType[], int[][]). Static method in class NodeType 

moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule 
parameters preparing for computation of penalty terms (see compPens) 

mpveValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod 

moveValTT computes the incremental change in the value of the travel time from the 
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incumbent tour to the proposed neighbor tour, and computes the neighbor schedule 
parameters preparing for computation of penalty terms (see compPens) 

MTSPTWO. Constructor for class MTSPTW 

myScrollPaneO. Constructor for class myScrollPane 

myToolbarTestPanelQ. Constructor for class myToolbarTestPanel 

Method myToolbarTestPanel is the constructor 

N 

nextQ. Method in class Target 

Method next returns the next Target in the list 

noCycle(double, int, double, int, int, PrintFlag). Static method in class TabuMod 

noCycle - updates the search parameters if the incumbent tour is not found in the 
hashing structure 

NoCycleOutQ. Constructor for class NoCycleOut 

NoCycleOut(int, int). Constructor for class NoCycleOut 

NodeTypef). Constructor for class NodeType 

NodeTypeünt, int, int, int, int, int, int). Constructor for class NodeType 

NodeTypeünt, int, int, int, int, int, int, int, int, int, int, int, int). Constructor for class 
NodeType 

NoFlyZoneContainer0. Method in class NoFlyZoneContainer 

Method NoFlyZoneContainer is the default constructor 

NoFlyZoneContainerO. Constructor for class NoFlyZoneContainer 

numfeas. Variable in class SearchOut 

O 
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out(String, String). Static method in class WriteFile 

paint(Graphics, int, Image, ImageObserver). Method in class NoFlyZoneContainer 

Method Paint draws the NoFlyZones 

penTrav. Variable in class SearchOut 

penTrav. Variable in class StartPenBestOut 

penTrav. Variable in class TsptwPenOut 

previousf). Method in class Target 

Method previous returns the previous Target in the list 

printQ. Method in class ConformalMap 

Method print prints out the key characteristics of the ConformalMap object 

printQ. Method in class LatLong 

Method print prints the lattitude and longitude 

printQ. Method in class NodeType 

printQ. Method in class Xy 

Method print prints the X and Y coordinates 

PrintCallsQ. Constructor for class PrintCalls 

PrintFlagQ. Constructor for class PrintFlag 

Default PrintFlag constructor sets all to "true". 

PrintFlag(boolean). Constructor for class PrintFlag 

Additional PrintFlag constructor allows specification of "true" or "false". 

printInitVals(int, int, int, double, String). Static method in class PrintCalls 

printLatQ. Method in class LatLong 
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Method printLat prints the Lattitude 

printLongQ. Method in class LatLong 

Method printLong prints the Longitude 

printTour(NodeTypeR)■ Static method in class NodeType 

Q 

OuitDialog(Frame, boolean). Constructor for class QuitDialog 

Method QuitDialog is the constructor 

QuitDialogfFrame, String, boolean). Constructor for class QuitDialog 

Method QuitDialog is a constructor for QuitDialog 

R 

randWtWZ(int, int, int). Static method in class HashMod 

randWtWZ computes random weights between 1 & range for nodes 

ReacTabuObiO. Constructor for class ReacTabuObj 

ReadFileQ. Constructor for class ReadFile 

readNC(String). Static method in class TimeMatrixObj 

readNextDoubleCStreamTokenizer). Static method in class ReadFile 

readNextlntfStreamTokenizer). Static method in class ReadFile 

readTime(int, int, int, double, StreamTokenizer). Method in class TimeMatrixObj 

readTSP(int, int, StreamTokenizer). Method in class TimeMatrixObj 

Reads in the x,y coordinates for a simple symmetric TSP problem AND calculates the 
time matrix 
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readTSPTWCdouble, int, int, String, CoordType[], int[]). Static method in class 
MTSPTW 

readTSPTW(double, int, int, String, CoordType[], int[]). Static method in class 
TimeMatrixObi 

Reads in the x,y coordinates and time window file and calculates the time between 
each node(reads in a dataset of Solomon's style) 

RecordObi Q. Constructor for class RecordObi 

RecordObj(int, int, int, int, int, int, int). Constructor for class RecordObi 

rtsStepPrintdnt, int, int, int, int, int, int, int). Static method in class PrintCalls 

search(double, double, double, int, int, int, int, int, int, int, int, int, int, VrpPenType, 
int[][], PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], 
NodeType[], NodeType[]). Static method in class ReacTabuObj 

Steps through ITER iterations of the reactive tabu search. 

SearchOutQ. Constructor for class SearchOut 

SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, 
NodeType[], NodeType[], NodeType[]). Constructor for class SearchOut 

secondHashVaKint, int, int, NodeTypef], int[]). Static method in class HashMod 

secondHashVal - updates second hashing value 

setAirCraftCharacteristics(AirCraftCharacteristics). Method in class 
AircraftCharacteristicsF 

Method setAirCraftCharacteristics is used to associate an AirCraftCharacteristics 
object to store the info in 

setld(int). Method in class NodeType 

setLat(double). Method in class LatLong 

Method setLat sets the Lattitude using a Double 
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setLatDegrees(int). Method in class LatLong 

Method setLatDegrees sets theDegrees part of the Lattitude using an Integer 

setLatMinutes(int). Method in class LatLong 

Method setLatMinutes sets the Minutes part of the Lattitude using an Integer 

setLatSeconds(int). Method in class LatLong 

Method setLatSeconds sets the Seconds part of the Lattitude using an Integer 

setLpad(int). Method in class NodeType 

setLong(double). Method in class LatLong 

Method setLong sets the Longitude using a Double 

setLongDegrees(int). Method in class LatLong 

Method setLongDegrees sets the Degrees part of the Longitude using an Integer 

setLongMinutes(int). Method in class LatLong 

Method setLongMinutes sets the Minutes part of the Longitude using an Integer 

setLongSeconds(int). Method in class LatLong 

Method setLatMinutes sets the Seconds part of the Longitude using an Integer 

setNextTarget(Target). Method in class Target 

Method setNextTarget sets the next Target 

setNpde(NodeType). Method in class Target 

Method setNode sets the current node 

setNumberOfVehicIes(int). Method in class AirCraftCharacteristics 

Method setNumberOfVehicles sets the number of UAVs 

setPreviousTarget(Target). Method in class Target 

Method setPreviousTarget sets the previous Target 

setQty(int). Method in class NodeType 

setRange(double). Method in class AirCraftCharacteristics 

Method setRange sets the range of the UAV 
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setSpeed(double). Method in class AirCraftCharacteristics 

Method setSpeed sets the speed of the UAV 

setThreat(TimeWindow). Method in class ThreatCharacteristicsDialog 

Method setThreat sets the threat you are editing as a TimeWindow 

setTimeWindow(TimeWindow). Method in class TargetCharacterisitcsWindow 

Method setTimeWindow sets the TimeWindow 

setType(int). Method in class NodeType 

setVisible(boolean). Method in class AboutDialog 

Method set Visible shows or hides the About Dialog Box 

setVisible(boolean). Method in class AircraftCharacteristicsF 

Shows or hides the component depending on the boolean flag b. 

setVisible(boolean). Method in class QuitDialog 

Shows or hides the component depending on the boolean flag b. 

setVisible(boolean). Method in class TargetListFrame 

Shows or hides the component depending on the boolean flag b. 

setVisible(boolean). Method in class ThreatCharacteristicsDialog 

Shows or hides the component depending on the boolean flag b. 

setWait(int). Method in class NodeType 

setX(int). Method in class NodeType 

setX(int). Method in class Target 

Method setX sets the x coordinate 

setX(int). Method in class Xy 

Method setX sets the X coordinate 

setY(int). Method in class NodeType 

setY(int). Method in class Target 

Method setY sets the Y coordinate 
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setY(int). Method in class Xy. 

Method setY sets the Y coordinate 

ssltlc. Variable in class CycleOut 

ssltlc. Variable in class NoCycleOut 

startPenBest(int, int, int, NodeType[], double, int, int, int, VrpPenType, int, int, int, int, 
int, int, int, int, int, int, NodeType[], NodeType[]). Static method in class StartTourObi 

Initialize "best" values and their times; Compute cost of initial tour as tour length + 
penalty for infeasibilities 

StartPenBestOutO. Constructor for class StartPenBestQut 

StartPenBestOuKint, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, 
NodeType[], NodeType[]). Constructor for class StartPenBestQut 

startPrint. Variable in class PrintFlag 

startTime. Variable in class Timer 

startTimeQ. Method in class Timer 

startTour(NodeType[], int[][], int, int). Static method in class NodeType 

Method startTour will bubble sort the initial tour based on the average time window 
time. 

StartTourObi0. Constructor for class StartTourObj 

stepLoopPrint. Variable in class PrintFlag 

stepPrint. Variable in class PrintFlag 

sumWait(NodeType[]). Static method in class NodeType 

sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

swapdnt, int). Method in class MTSPTW 

swap allows generic swap of integers. 

swaplntfint, int). Static method in class NodeType 

Method swaplnt switches two integers 

swapNode(NodeType[], int, int). Static method in class NodeType 
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Method swapNode allows the elements "a" and "b" to be swapped in a Node Array. 

tabuLen. Variable in class CycleOut 

tabuLen. Variable in class NoCycleOut 

TabuModQ. Constructor for class TabuMod 

tabuSearchQ. Static method in class TabuMod 

TargetQ. Constructor for class Target 

Method Target is the constructor 

Target(int, int). Constructor for class Target 

Method Target is a constructor taking an X and Y coordinate 

Target(int, int, Target, Target). Constructor for class Target 

Method Target is a constructor taking X, and Y coordinates as well as a previous and 
next target 

Target(NodeType). Constructor for class Target 

Method Target is a constructor taking a NodeType 

TargetCharacterisitcsWindowQ. Constructor for class TargetCharacterisitcsWindow 

Method TargetCharacterisitcsWindow is the default constructor 

TargetCharacterisitcsWindow(TimeWindow, ConformalMap). Constructor for class 
TargetCharacterisitcsWindow 

Method TargetCharacterisitcsWindow is a constructor taking a ConfomralMap object 

TargetListFrameQ. Constructor for class TargetListFrame 

Method TargetListFrame is the default constructor 

TargetListFrame(DList). Constructor for class TargetListFrame 

Method TargetListFrame is a constructor taking a DList 
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TargetListFrame(String). Constructor for class TargetListFrame 

TargetListFrame(Target). Constructor for class TargetListFrame 

Method TargetListFrame is a constructor taking a Target 

ThreatCharacteristicsDialog(TimeWindow). Constructor for class 
ThreatCharacteristicsDialog 

Method ThreatCharacteristicsDialog is the constructor 

TimeMatrixQ. Constructor for class TimeMatrix 

timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class 
TimeMatrixObj 

Compute 2 dimensional time/distance matrix Does not assume the problem is 
symmetric, but makes it so 

TimeMatrixObj 0. Constructor for class TimeMatrixObj 

timePrint. Variable in class PrintFlag 

Timer/). Constructor for class Timer 

toStringQ. Method in class KeyObj 

toStringQ. Method in class RecordObj 

toStringQ. Method in class ValueObj 

totalSeconds. Variable in class Timer 

totalSecondsQ. Method in class Timer 

totPenalty. Variable in class SearchOut 

totPenalty. Variable in class StartPenBestOut 

totPenalty. Variable in class TsptwPenOut 

tour. Variable in class SearchOut 

tourCost. Variable in class SearchOut 

tourCost. Variable in class StartPenBestOut 

tourCost. Variable in class TsptwPenOut 

tpurHVwz(NodeType[], int[]). Static method in class HashMod 
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tourHVwz computes the Woodruff & Zemel hashing value from the sum of adjacent 
node id multiplication 

tourPen. Variable in class SearchOut 

tourPen. Variable in class StartPenBestOut 

tourSched(int, NodeType[], int[][]). Static method in class NodeType 

method tourSched should be called with the sytax tourLen = tourSched(nodeArray, 
time) from the orderStartingTour method. 

tourSchedwithServiceTimeünt, NodeType[], int[][], int[]). Static method in class 
NodeType 

method tourSched should be called with the sytax tourLen = tourSched(nodeArray, 
time) from the orderStartingTour method. 

TsptwPenQ. Constructor for class TsptwPen 

tsptwPenfint, NodeType[], VrpPenType, double, int, int, int, int). Static method in class 
TsptwPen 

tsptwPen: Given the TW and load penalties, this procedure personalizes the penalties 
to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for 
infeasibilities. 

TsptwPenOutQ. Constructor for class TsptwPenOut 

TsptwPenOut(int, int, int, int). Constructor for class TsptwPenOut 

tvl. Variable in class SearchOut 

tvl. Variable in class TsptwPenOut 

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, 
NodeType[], NodeType[], int, int). Static method in class BestSolnMod 

TwBestTTOutO. Constructor for class TwBestTTOut 

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]). 
Constructor for class TwBestTTOut 

twrdPrint. Variable in class PrintFlag 

U 
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update(Graphics). Method in class myScrollPane 

Method update merely paints without clearing the screen first 

ValueObKint, int, int, int, int, int, int). Constructor for class ValueObj 

VrpPenTypeQ. Constructor for class VrpPenType 

VrpPenTvpefint int). Constructor for class VrpPenType 

VrpPenTypefint, int, int). Constructor for class VrpPenType 

W 

WriteFileQ. Constructor for class WriteFile 

X 

Xy/int, int). Constructor for class Xy 

Xy_2LatLong(Xy). Method in class ConformalMap 

Method Xy2LatLong converts an Xy coordinate to a LatLong coordinate 
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Appendix 2. Class Hierarchy 

•   class java.lang.Object 
• class AirCraftCharacteristics 
• class java.awt.Component (implements java.awt.image.ImageObserver, 

java.awt.MenuContainer,java.io.Serializable) 
• class java.awt.Container 

• class java.awt.Panel 
• class myToolbarTestPanel (implements 

java.awt.event.ActionListener) 
• class java.awt.ScrollPane 

• class myScrollPane 
• class java.awt.Window 

• class java.awt.Dialog 
• class AboutDialog 
• class OuitDialog 

• class java.awt.Frame (implements 
java.awt.MenuContainer) 

• class AircraftCharacteristicsF 
• class Frame 1 
• class TargetCharacterisitcsWindow 
• class TargetListFrame 
• class ThreatCharacteristicsDialog 

class ConformalMap 
class CoordType 
class CycleOut 
class GetDist 
class HashMod 
class InFromKeybd 
class KeyObj 
class KeyToString 
class KeyboardTest 
class LatLong 
class MTSPTW 

• class BestSolnMod 
• class TsptwPen 

class NoCycleOut 
class NoFlyZoneContainer 
class NodeType 
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class PrintCalls 
class PrintFlag 
class ReacTabuObj 
class ReadFile 
class RecordObj 
class SearchOut 
class StartPenBestOut 
class StartTourObj 
class TabuMod 
class Target 
class TimeMatrix 
class TimeMatrixObj 
class Timer 
class TsptwPenOut 
class TwBestTTOut 
class ValueObj 
class VrpPenType 
class WriteFile 
class Xy 
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