
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1999

A Java Based Human Computer Interface for a UAV Decision A Java Based Human Computer Interface for a UAV Decision

Support Tool Using Conformal Mapping Support Tool Using Conformal Mapping

Randy A. Flood

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Flood, Randy A., "A Java Based Human Computer Interface for a UAV Decision Support Tool Using
Conformal Mapping" (1999). Theses and Dissertations. 5213.
https://scholar.afit.edu/etd/5213

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F5213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5213?utm_source=scholar.afit.edu%2Fetd%2F5213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFTT/GCS/ENS/99M-1

A JAVA BASED HUMAN COMPUTER INTERFACE
FOR A UAV DECISION SUPPORT TOOL USING

CONFORMAL MAPPING

Thesis

Randy A. Flood, First Lieutenant, USAF
AFIT/GCS/ENS/99M

Approved for public release; distribution unlimited

X QUALITY INSPECTED £ 19990409 041

AFIT/GCS/ENS/99M-1

A JAVA BASED HUMAN COMPUTER INTERFACE FOR A UAV DECISION
SUPPORT TOOL USING CONFORMAL MAPPING

THESIS

Presented to the Faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Randy A. Flood, B.S.

First Lieutenant, USAF

March 1999

Approved for public release, distribution unlimited

THESIS APPROVAL

NAME: Randy A. Flood, 1st Lieutenant, USAF CLASS: GCS-99M

THESIS TITLE: A JAVA BASED HUMAN COMPUTER INTERFACE FOR A UAV
DECISION SUPPORT TOOL USING CONFORMAL MAPPING

DEFENSE DATE: 9 March 1999

COMMITTEE: NAME/TITLE/DEPARTMENT SIGNAT

Advisor T. Glenn Bailey, Lieutenant Colonel, USAF
Assistant Professor of Operations Research and Deputy Head
Department of Operational Sciences
Air Force Institute of Technology

Reader Gregg H. Gunsch, Lieutenant Colonel, USAF
Assistant Professor of Computer Engineering anct"t)epuTy
Department of Electrical and Computer Engineering
Air Force Institute of Technology

Reader Timothy M. Jacobs, Major, USAF
Assistant Professor of Computer Science

T^/yr^n
Department of Electrical and Computer Engineering
Air Force Institute of Technology

Acknowledgements

I'd like to thank my sponsor, the UAV Battlelab, my advisor Lieutenant Colonel

Thomas Bailey, my committee members Lieutenant Colonel Gregg H. Gunsch, and Major

Tim Jacobs. I'd especially like to thank the 11th Reconnaissance Squadron. Without their

support, none of this would have been possible.

11

Table Of Contents

Acknowledgements ii

List of Figures ..iv

List of Tables v

Abstract vi

I. Introduction 1
II. Implementing The UAV Decision Support Tool 3

2-1. Introduction And Literature Review 3
2-2. Operational Background 8
2-3. Interface Considerations 13
2-4. GUI/Tabu Interface 20
2-5. Conformal Mapping 23
2-6. Implementation Details 30
2-7. Conclusion 31

Appendix 1. Alphabetical Index Of Fields and Methods 33

Appendix 2. Class Hierarchy 54

Bibliography 56

Vita 58

in

List of Figures

FIGURE 1. SAMPLE PLOT (O'ROURKE 1999) 11
FIGURE 2. THE UAV DST APPLICATION 14
FIGURE 3. DESCRIPTIONS OF BUTTONS 14
FIGURE 4. AIRCRAFT CHARACTERISTICS DIALOG BOX 18
FIGURE 5. TARGET CHARACTERISTICS DIALOG BOX 19
FIGURE 6. THREAT CHARACTERISTICS DIALOG BOX 20
FIGURE 7. THE USER DRAGS THE TOP TARGET ONTO THE BOTTOM ONE 23
FIGURE 8. A CIRCLE WITH RADIUS R AT POINT C, AND A LINE SEGMENT FROM PI TO P2 .29

IV

List of Tables

TABLE 1. NOTIONAL PREDATOR TARGET LIST (RYAN 1999) 10
TABLE 2. PREDATOR PERFORMANCE CHARACTERISTICS (SISSON 1997) 12
TABLE 3. SOME FEATURES OF COMMON PROJECTIONS (TAXONOMY BASED ON DANA

1995) 24
TABLE 4. CLASS XY 26
TABLE 5. CLASS LATLONG 26
TABLE 6. CLASS CONFORMALMAP 27

AFIT/GCS/ENS/99M-1

Abstract

This paper describes the development of the Human Computer Interface (HCI) for a

Decision Support System for routing Unmanned Aerial Vehicles (UAVs). This problem

is a multi-vehicle routing problem with time-windows. Because of the unique nature of

UAVs, a tool is needed to support dynamic re-routing. We solve the problem in two

ways. First, we create a UAV Decision Support Tool (UAV DST) that uses a set of Java

software objects to display maps and convert between latitude-longitude coordinates and

x-y coordinates. Secondly, this library provides the ability for the user to dynamically re-

optimize large UAV routing problems through a simple graphical interface. The library is

built on top of a Java implementation of the tabu search algorithm written by O'Rourke

(1999). This library provides the basis for future simulation and analysis of the Kenney

Battlelab Initiatives by providing the interface to routing decision support and simulation

modules.

VI

A JAVA BASED HUMAN COMPUTER INTERFACE FOR A UAV DECISION

SUPPORT TOOL USING CONFORMAL MAPPING

I. Introduction

The UAV Battlelab sponsored this research to investigate ways to more

effectively use Uninhabited Aerial Vehicles (UAVs) to meet Air Force objectives.

Specifically, we look at the Predator. The Predator is a slow UAV, with a long endurance

that is typically used for reconnaissance operations. It broadcasts live video for rapid

analysis. A typical Predator mission might have 50-100 targets, versus one or two targets

for a fighter mission. While a fighter mission might last 2-3 hours, a Predator mission

lasts 24-36 hours. Unlike targets for fighter missions, Predator targets have short time-

windows, and unpredictable loiter times.

Currently, the 11th Reconnaissance Squadron, in Indian Springs Nevada, plans and

executes missions using the Predator UAV. Operators begin with a list of targets, with

associated time-windows. Using a Ground Control Station (GCS), operators manually

enter route points by clicking on a map using subjective criteria for the ordering of the

route points. The operator picks a route that looks good. The operator then performs a

terrain clearance check, which ensures the Predator doesn't fly into a mountain; and, a

line-of-sight check, which ensures that the Predator doesn't fly behind any mountains.

This leaves them with an initial route for their mission.

For a number of reasons that will be explored later, the Predator operators must

often re-plan their routes dynamically. Currently, there is no tool to help the operator re-

plan the route dynamically. Each time the route is re-planned the operator must pick the

order that they plan to visit the targets. If they make a sub-optimal decision, then they

will not be able to image all of the planned targets.

We create a UAV Decision Support Tool (UAV DST) that helps the operators

make this decision. O'Rourke (1999) creates a Java implementation of the tabu search

algorithm for UAV routing, while Walston (1999) provides a discrete event simulation

of UAV characteristics.

II. Implementing The UAV Decision Support Tool

2-1. Introduction And Literature Review

The Air Force is researching Unmanned Aerial Vehicles (UAVs) for missions

involving a high risk of losing an aircraft, requiring a low cost platform, or requiring long

endurance. One such application is the Suppression of Enemy Air Defenses (SEAD)

mission; since enemy air defenses are designed to destroy aircraft, UAVs can expect to be

targeted. In addition to using UAVs in new ways, there is also ongoing research in the

areas of vehicle improvements. Both of these efforts can be significantly enhanced

through the use of virtual prototyping.

The Air Force organization chartered to evaluate this area, and the sponsor of this

research, is the UAV Battlelab. The mission of the UAV Battlelab is ".. .to rapidly

identify and demonstrate the military worth of innovative concepts which exploit the

unique characteristics of UAVs to advance Air Force combat capability." (Theisen 1999)

The UAV Battlelab accomplishes this mission by answering questions in the form

of Battlelab Initiatives. According to the UAV Battlelab:

A Battlelab Initiative is a concept or idea that may enhance the way
the Air Force applies global air and space power. Ideas may be
driven by combat experience, technology, or a desire to employ
forces more effectively or efficiently. The Battlelab takes these ideas
and concepts, and attempts to prove their value/worth to the Air
Force. Initiatives are classified in terms of their scope as either
Mitchell Class Battlelab Initiatives or Kenney Class Battlelab
Initiatives (Theisen 1999).

This research is part of several Kenney Battlelab Initiatives (KBIs).

Kenney Battlelab Initiatives (KBIs) are for innovative, straight
forward, and lower cost concepts. This category is named for Lt Gen
George Kenney who adapted existing weapons and tactics to help
turn the tide in the Pacific during the early days of World War II.
Some examples of his work are parafrag bombs (hanging parachutes
on small bombs to allow for bombing against aircraft in revetments),
skip bombing against ships (adopted medium bombers to drop
bombs at low altitude and placed cannons in the nose for more
effective strafing), and what became called "Kenney Cocktails"
(phosphorus bombs that exploded in the air sending out hot
phosphorus to burn enemy aircraft in revetments). KBIS will be
pursued under the sponsoring operating command's direction
(Theisen 1999).

One KBI of interest is concerned with using UAVs for the SEAD mission. The

11th Reconnaissance Squadron tests the operational effectiveness of the Predator UAV.

Currently, an operator from that squadron enters the route points that the UAV will fly.

(There are up to 180 route points in a typical mission.) A collaborative research effort

provides a decision support system for routing UAVs that requires a user interface for

effective implementation.

The airmen who operationally route UAVs manually design target sequences by

hand, and do not have the computer support to visually experiment and test their

decisions with a routing decision support tool. This research provides such a capability

by plotting target locations, then using an AutoRoute feature to calculate near-optimal

routes with minimal travel time. A second collaborative research effort creates a discrete

event simulation to support virtual prototyping of UAVs to evaluate capability

improvements. For example, a user can double the speed of the UAV and determine the

effect that has on the number of covered targets.

A significant challenge is accurately getting coordinate inputs from a map. While

the Earth has a curved surface, maps are flat; hence they distort the size and shape of the

landmasses. Software that displays maps need routines that convert between latitude-

longitude coordinates to x-y coordinates. Previous research (Taylor 1997) has created

routines in C and FORTRAN to do this for meteorological software. The literature

provides routines to do these transformations (Taylor 1997, Allison 1995, Bortoluzzi and

Ligi 1986). Some of the software routines (e.g. W3LIB) require every single map

parameter with every function call to convert coordinates. Others maintain global data

structures with this information that prevent working with more than one map at a time,

(e.g. EZMAP). Taylor created routines that use initialization routines to fill in C

structures, thus allowing a library to support more than one map at a time.

This research creates a library of objects in Java to display maps, and convert the

coordinates from x-y to Latitude-Longitude. Java is an object oriented programming

language created by Sun Microsystems for embedded applications. Its main advantage

over traditional languages is that it's portable across many platforms and operating

systems. Java also allows the creation of applets, which can be executed from Web pages

by major browsers such as Netscape and Microsoft Internet Explorer. Our library

provides the Human Computer Interface (HCI) for discrete event simulations of UAVs

and routing algorithms to support the modeling and support of KBIs.

The literature provides much research into algortihms for the multi-vehicle

routing problem. Bertsimas and Simchi-Levi (1996) gives a summary of algorithms for

the vehicle routing problem. This includes best and worst case analysis for many

algorithms. Gendreu et al. (1996) describes the use of tabu search on a class of the

vehicle routing problem where there are random demands. They find an optimal solution

89.45% of the time. Ryan et al. (1999) describe using the tabu search algorithm for the

UAV routing problem in Modsim. O'Rourke (1999) applies the tabu search algortihm to

the UAV routing problem in Java.

The literature provides good reasons for building a graphical display for this

problem. Crossland et al. (1995) examines whether the addition of Geographic

Information Systems (GIS) to decision support systems affects the performance of

individuals on spatial decision problems. The study found "unequivocal evidence" that

the use of GIS increased the accuracy of decision-makers, as well as reduced the decision

time. Keenan (1998) notes that while standard GIS software can be useful to a broad

range of routing problems, a general purpose GIS will not be suitable for complex multi-

vehicle routing problems. Keenan also notes that a skilled user can dramatically improve

the routes generated by a heuristic routing function through skilled manipulation. Basnet

(1996) create a Decision Support System (DSS) for a particular vehicle routing problem

that arises in the New Zealand dairy industry. They create a user interface in Pascal that

runs as a DOS program.

How to create user interfaces for DSSs is another focus of research. Jones (1991)

gives a taxonomy of the types of user interface development breaking it down into:

subroutine libraries, draw-it yourself, hypermedia toolkits, object-oriented, text

languages, network, by example, syntax-directed editors, and constraint-based. Jones

argues that user interfaces are an important and neglected part of DSSs. Angehrn (1990,

1991) creates a flexible system for graphically creating DSSs called Tolomeo. The basic

idea is to let users specify specific examples of the problem they face, and some of the

kinds of solutions they are looking for. The system then forms a hypothesis about the

formal nature of the problem, and selects mathematical methods for solving it. Finally, it

suggests new solutions to the user. Holsapple et al. (1991) describes a complicated

framework for developing user interfaces for DSSs, dividing the effort into interface,

event and functionality development. They create languages for describing customized

decision support system interfaces.

The literature, then, contains several distinct focuses. Some research concentrates

on algorithms for the multi-vehicle routing problem. Other research examines the

benefits of integrating GIS with DSSs. Finally, some research concentrates on

frameworks for creating user interfaces for DSSs.

This chapter is organized in the following manner. Section 2-2 explains the

operational background for this problem, including the routing algorithm, and the unique

characteristics of the UAV environment. Section 2-3 explains the design of the user

interface, including the algorithms used for conformal mapping, as well as the integration

of locked subroutes and threats with the routing algorithm. Section 2-4 explains the

operational contribution of this research. Section 2-5 describes significant

implementation details, and Section 2-6 concludes this thesis with a summary and

suggestions for further research.

2-2. Operational Background

The UAV routing problem, or UAVP, is in the most general sense a special case

of the Traveling Salesman Problem. Ryan et al. (1999) explain how the UAVP problem

fits into Carlton's taxonomy of general vehicle routing problems (GVRP). Since UAVP is

a homogeneous, multiple-vehicle, single-depot, traveling salesman problem with route-

length constraints, and time windows, it is characterized as a [MVH, SD, TSP, RL, TW].

Ryan et al. (1999) further note that since GVRP belongs to the class of NP-complete

problems, a heuristic method should be used to find near optimal solutions. Ryan et al.'s

(1999) solution to the problem was to develop a MODSJM program using reactive tabu

search on the TSP problem with time windows.

O'Rourke (1999) extends Ryan et al.'s (1999) research, and creates a Java

program that performs reactive tabu search to solve the UAVP. However, there are

several unique aspects of the UAV environment that are not directly handled by

O'Rourke's routines. First, there is the notion of threats; e.g. a Surface to Air Missile

(SAM) site may render certain route segments dangerous to fly on. Another unique

aspect of the environment is the concept of locked sub-routes. Locked sub-routes are

route segments that the user tells the algorithm to retain during its searching. This is

essential because there are often certain air corridors that must be flown when entering

and leaving controlled airspace, or certain route segments the operator knows a priori

must be part of the solution.

The Predator system consists of the Predator aircraft, the ground control station

(GCS), data links, sensor payloads, ground support equipment, and trained personnel.

The GCS is a trailer that contains a mission planning station, a data exploitation station,

an air vehicle operator station and a payload station. The Predator is remotely piloted

from the GCS. The Predator must take off and land near the GCS since there are delays

in response time due to the line of sight communications. In theory, a UAV could take

off from one GCS, and be passed off to another mid-flight. However, the current doctrine

prevents this from occurring.

Table 1 shows a notional list of targets for the Predator. Figure 1 shows a sample

plot for a Predator mission.

r-l
e
es

3
u
M
U «
H
u

OH

73
e

#o
«3
o
Z

■s

73 <~> <-> <-> O o o n o o o o o o o o o o o o o o
D r> r> r> O o o o o o o o o o o o o o o o o o

i i "E en en en en en en en C) e») en en CN e») en en Cl

1 *5S ■ >
■ T3
1 o

CN

<

1 u ■3 <~) i—i <-> <-> r> r> O O o o o O r> n o o © O O O o (-> o o o o o o o o o o o o o O o O O o o o
S3
<

ON

CO /—-

E -3 (-1 (-1 O (~> O <-) O O O O O O o r> O O O O O o o o o o o o o o o o
oo no en m en en en m en en en en en en en en en en CN NO CN CN CN en C) en Cl Tf Tf Tf

tO CO
O to
•e sä

£ J

~ " "" ^

o
en
o m

CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN O
en

CN in m m CN CN CN CN o
CN
o
CN
o
CN

on oi

to 73 <-> <-> r> o O o O o o o O r> o o o o O O O o o m in in m m in in O O O > <-> <-> (-> <-> <-> o o o o o o O o o o O o O Ü o o i—(^H ^H '—i »—< r-H ^^ 1 .. CO •E m m in m >n m in in m in m in in m in in m m m in v\ t- r~ t- c- i> l^ l—

1 ^ <

■ CA
■ k-H

>, 73 in m in m m m >n >n m m >n in m in in m in in in m in in in m m in in in in in m

% ■E
<

o
pa

o o 5 <-> Tf vn oo 00 NO ON o o r~ r^ r~- r^ in in 00 CN Tf ON CN Tf Tf Tf ON
^^ r_^ en 00 NO Tf

=

R

to
on

cn V~i en ■* CN m CN ■* en Tf en Tf CN VI m Tf C) CN en Tf ■/■> CN Tf CN

T e Tf CN r> o 00 ON ON ON ON ON O ON CTN Tf ^^ Tf ON ON ^H ON en ON en Tf o CN en Tf r- t- 00 i—< *—' CN
\ C s in en m m en en en en en en Tt en en en Tf en Tf en m Tf Tf en m m

i — J
5 60

(1) r^ r- r- VO NO VO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO t- r- r^ P~ r~ r^ r- t~- t- f-
■ Q
i

=
" o <~> n ON NO Tf en ON ON CN ,-H in ON CN ON r~ ON ,-H en in r-~ r^ r~ i—i Tf ON CN ^H r~ y—t r^ en ON O

j on Tf CN Tf en en m in Tf Tf CN Tf VI Tf en en in >n CN

to

3 c ■*t Tf no ran oo 00 00 00 CTN ON ON ON -* o ON r^ r^ r~ in r- o en m oo ^_, o NO in NO 00 l> r^

s CN CN W) m m m in in m in in m m m m m V) in m in m Tf Tf m in iri l/N. Vt CN CN (N

J

60
U
Q

NO
Tf Tf

in
Tf 3 5 5 5 5 5 5 5 5 5 5 5 Tf Tf

Tf
Tf 5 5 5 5 5 in Tf 5 5 5 Tf Tf 5 Tf Tf 5 5 Tf Tf

Tf
Tf 5

<s n (N en Ti- m NO r~ oo ON o T_H <-N en 5 in NO r~ 00 ON o ^H CN # en en en en en en en en ■<* ■* ■* Tf Tf Tf Tf Tf Tf in in VI

Q - CN en Tf >n NO t- 00 ON O - CN en Tf in NO r-~ OO ON o
CN CN

CN
CN

en
CN

Tf
CN
m
CN

NO
CN CN

00
CN

ON
CN
O
en en

Ic* O N CN CN CN CN CN CN CN en en en

CN CN CN
*_, ♦J « < <f <
o.
CO

Q
ex
o
Q

o
Q

s
on

B
on on on 01) 60

o
60 6/ 60

on

3
on on

u
3

S3
'S n rl

l-H

■a
1-

1
4-) o a

60

I
a
'3

co
c o e

o
C
O
D

c

'S
c C o

on

ca

O

on

es
t-
O
on

ca

o

on

ca

o
on

cB
l-
O
on

ca

S
CL,

ca

2
ca
X)
a

Oi
ID

on to

o
0.
>>

o a,
>>

3
PQ
to
60

3 m
to
61

to
Q o

en
to

> >> >

o
'3

o
'S

o
'E a o c

o
c
o

c o c
o

c
o S S S O

3 o VI V3
Nel

73
(V!

73 l-i

o Q CB
T3
ca

■o
CB

£
M
O u

ca on >> > E o
i
E o
U

i
E
o
U

o. a
it 11) OJ

a1
11) (1) on

<
on
<
on

<
on on

CB

■a
E
o
Q

o
ca

Ü
o
ca

o
ca on

<o
on
ID

o
as

O O
Oi

s c
3 on

■a
on

<
<

CB
to

PC
o
BE PC •a T5 T3

en
e e C

o VI
C

PC
ca
T3
ca

E o
Q

09 pa H H
c;
I
CO
I
CO '3 '3

5
'3

z
to
OO

S3

PC
S3
N
CO
CB

H

1-4 o

•E
O
U

o
T3

"E o
U

oo >
■a
E
3
Q

to

CM
ca

s
p

o

s
S3

S
S3
ES

c o
■s 1)
on

C o
'S
on

ta
c
o

■s
on

O
O
Q
3
on

t5
o
a
3
on

u
u
D.
en
3
on

«J
O
U
Q
w^
3
on

B o u a
3
on

o
<L>
ft
«5
3
on

'S a
.p

Q

<

.P iw
CU

Q

<3

M-H

Q
I-

13
E
O

E
O

CO

E
o

0)

1
CO

73
03

>
to

73
CB

X!

ä
cä"

ft
O.
2 73
Ü

4
ex

73
O

a
2 73
O

^i-fyi^m ,1 ~%^-tf3Pi*

.—^._^^ ■

■fr Depot > . ' *• ,~ — , - .-.;•> .' ■=<sk*
M -.-' */^F ** -H

^ Q Waypoint

A Target

*••''""'•. **.

J30fM fe;SW^

NM LL 10, .f ?* *_'??" *■■__ * * _ _ _ if*-^:)'-

Figure 1. Sample Plot (O'Rourke 1999)

11

Table 2 shows the performance characteristics of the Predator.

Table 2. Predator Performance Characteristics (Sisson 1997)

Predator Performance Characteristics

Maximum altitude 25,000 ft
Maximum endurance 40+ hours
True Air Speed 60-129 knots
Cruise Speed 70 knots
Radius 500 Nm

SAR, EO, IR
Thrust 85 Hp

26.7 ft
Width 3.7 ft
Navigation System GPS, INS
Survivability Measures None
Payload 450 lbs

The Predator has several interesting characteristics. First, it flies at extremely

slow speeds. In fact, the Predator often flies too slow to be picked up on radar, and it is

sometimes slower than the wind. Predators have been known to have a negative

groundspeed. Second, the Predator sends back live video to intelligence. The Predator

contains electro-optical infra-red (EO)/(IR) sensors, which consist of an infra-red camera

for night missions, and two video cameras for use during the day. The Predator uses

these sensors to send live video back to the GCS. Since the video is live, and easily

understandable, this prompts a lot of requests to reroute the aircraft during flight to get a

better look at things. Third, the Predator is very sensitive to bad weather. It does not fly

well in the rain, because the water seeps through its wings and damages its electronics.

(The camera for the Predator is much more expensive than the airframe!) Also, if ice

forms on the Predator's wings, it becomes aerodynamically unstable. Fourth, the

12

Predator is entirely unclassified. This means that there are far fewer restrictions on where

it can fly than a U2.

All of these characteristics force the Predator operators to re-plan their routes

frequently. During a typical mission, the aircraft is often diverted from its original route

to cover unanticipated targets. Likewise, since it has trouble flying against the wind, and

since it does not perform well in the rain, the operator often needs to re-plan the route

dynamically to account for weather. Each time the operator re-plans the route, he or she

must make a decision about what order to visit the targets in. If the operator makes a

poor decision, there will not be enough time to cover all of the targets.

Currently, mission planning is done using the GCS. Operators take a list of

targets, and enter their coordinates into the GCS to plan a route. Usually, this is done by

clicking on a map, though the capability to enter latitude/longitude coordinates is also

availiable. The GCS performs a terrain analysis, which ensures the route does not go

through a mountain, as well as a communications profile, which ensures that line-of-sight

communications is maintained at all times. However, the GCS does not provide any

insight into what order to visit the targets in.

2-3. Interface Considerations

This research creates an application that demonstrates an automatic route-

planning feature (AutoRoute) using the tabu search algorithm. A separate research effort

by O'Rourke (1999) implements the tabu search algorithm in Java. Figure 2 shows the

Uninhabited Aerial Vehicle Decision Support System (UAV DST) application.

13

i Ä^U^H^l

I

Figure 2. The UAV DST Application

Figure 3 shows the name of each of the buttons. We present a detailed description

functional use and capabilities of features listed in Figure 3.

\. Selection

P| Ground Control Station

•\ Add Target

*ff AutoRoute

fi Lock

KCut

'*"§" Aircraft Characteristics

|§§ Add Threat

JH Add No-Fly Zone

Figure 3. Descriptions of Buttons

14

2-3-1 Selection.

The Selection tool selects objects. Using the Selection tool, clicking on a target,

and then releasing the mouse button, will select that target, and display the Target

Characteristics Dialog Box. After selecting a target, you may click on it and drag it

across the map to move it. When you move a target, the route follows. Moving a threat

or a node in a no-fly zone works the same way. Simply select it, then click on it and drag

it across the map. Selecting a target, without releasing the mouse button, and then

dragging it on top of another target will create a locked route segment from the first target

to the second one. This tool will be used whenever you need to move something on the

map, or manually adjust the route.

2-3-2 Ground Control Station.

The Ground Control Station (GCS) tool inserts a ground control station on the

map. Using the Ground Control Station tool, clicking on the map, and releasing the

mouse button will move the GCS to the place where you clicked. The GCS acts as the
i

depot to the routing algorithm, and thus is the point where all UAVs take-off and land.

For this application, there is only one GCS. This tool is only used when you want to

move the GCS, which is infrequently.

15

2-3-3 Add Target

The Add Target tool adds targets to the map. Using the Add Target tool, clicking

on the map, and releasing the mouse button will add a target to the map at the point where

you clicked. To move a target on the map, you must select it, and drag it across the map

using the Selection tool. To edit the characteristics of a target, you must select it using

the Selection tool. Targets act as the customer nodes to the routing algorithm. The Add

Target tool is used whenever you need to add a new target to the map, which is very

frequently.

2-3-4 AutoRoute.

The AutoRoute button begins calculating a near-optimal route. Clicking the

AutoRoute tool will begin calculating a near-optimal route using 3,500 iterations of the

tabu search algorithm. The cursor changes to an hourglass indicating that the system is

busy. When the new route is displayed, and the cursor changes back to the arrow cursor,

then the AutoRoute calculation is complete. You should use the AutoRoute button

whenever you add or remove one or more targets, threats, or no-fly zones to the map, or

move anything on the map. This is the key feature of this application. It is intended to be

used frequently.

16

2-3-5 Lock.

The Lock tool allows the user to lock route segments, so that they will not be

changed by the AutoRoute feature. Using the Lock tool, clicking on a target locks the

route segment immediately after that target. Clicking the same target again using the

Lock tool unlocks the route segment. You would use this tool to lock any part of the

route that you don't want the AutoRoute feature to change. For example, you can use the

lock tool to ensure that the AutoRoute feature will not change the part of the route that

flies through controlled airspace. Also, if you have a target that you know you must visit

next, you can lock that portion of the route. This feature is designed to be used somewhat

frequently.

2-3-6 Cut.

The Cut tool is used to remove targets, threats, and no-fly zones from the map.

Using the cut tool, clicking on a feature on the map removes it. Alternatively, selecting a

feature and then clicking on the cut tool also deletes that feature. Deleting the last node

in a no-fly zone deletes it. The Cut tool is used whenever you want to delete a target,

threat, or node in a no-fly zone from the map.

2-3-7. Aircraft Characteristics.

The Aircraft Characteristics button displays the Aircraft Characteristics Dialog

Box (Figure 4). There are three parameters that can be modified. Parameters can be

changed by clicking on the field for that parameter, then entering a new value, then

clicking the OK button.

17

1 US Aircraft Characteristics 1

j OK

Range(NM)
9999.0

Speed(Knots
250.0

Number of Aircraft
2

Figure 4. Aircraft Characteristics Dialog Box

2-3-8. Add Threat.

The Add Threat tool is used to add threats to the map. Using the Add Threat tool,

clicking on the map adds a threat at the point where you clicked. To move threats, use

the Selection tool to drag them across the map. To edit the properties of threats, select the

threat using the Selection tool, then edit the desired properties in the Threat

Characteristics Dialog Box. This tool will be used whenever you need to add a threat to

the map. Due to the mostly static nature of threats, this tool will be used infrequently.

2-3-9. Add No-Fly Zone

The Add No-Fly Zone tool is used to add no-fly zones. Using the Add No-Fly

Zone tool, clicking the corners of a polygon creates a new no-fly zone. To add new points

to an existing no-fly zone, first, select it, using the Selection tool, then, after clicking on

the Add No-Fly Zone tool, clicking on the map will add points to the selected no-fly zone.

This tool is used whenever you need to add another no-fly zone to the map.

18

2-3-10. Target Characteristics Dialog Box

When a user clicks on a target using the selection tool, the dialog box shown in

Figure 5 is displayed. As the user drags the target on the map, the latitude and longitude

coordinates are updated in the dialog box. This allows the user to accurately position the

target on the map. Alternatively, the user can enter the latitude longitude coordinates in

the dialog box, and press the OK button.

m
Target Characteristics

id i Latitude) Longitude Time Window j

1 44 40 J38 15 43 42 0 |2400
Timetf

Routing Characteristics | Q Locked

/indow ' Load qty i M ; Type | Wait I

0000 0000 0 0 jo.o 1 |o |

Figure 5. Target Characteristics Dialog Box

2-3-11. Threat Characteristics Dialog Box.

If the user clicks on a threat using the selection tool, then the Threat

Characteristics dialog box is displayed (see Figure 6). Once again, as the user drags the

threat across the map, the latitude and longitude are dynamically updated.

19

S3 ThreatCharacteiisticsDialog

Latitude Longitude

44 41 |30 16 [2 8

type

radius 20

OK

Figure 6. Threat Characteristics Dialog Box

2-3-12. Aircraft Characteristics Dialog Box.

If the user clicks on the Aircraft Characteristics button, or selects aircraft

characteristics from the view menu, the Aircraft Characteristics Dialog Box is displayed,

(Figure 3).

2-4. GUI/Tabu Interface

The tabu search algorithm inputs an array of N+v+l nodes numbered l..iV+v+l,

with associated early arrive times e„ late arrival time /,, and wait-time w; a number of

vehicle Nodes v; a number of customer (i.e. target) nodes N; a (N+v+l by N+v+l)

time/distance matrix D; and outputs an ordered list of a near-optimal route. The routing

algorithm assumes that the first node is a vehicle node, and that the last node is the place

20

for the aircraft to stop upon completing its tour (which in most cases is the same as the

first node.)

There are several challenges associated with using this tabu search algorithm in

the context of this application. The first challenge is the notion of locked sub-routes.

Locked sub-routes are route segments that the user tells the algorithm to retain during its

search. This is essential because certain air corridors must often be flown when entering

and leaving controlled airspace. Additionally, the user may be required to divert the

aircraft to survey an unanticipated target, and does not want the algorithm to change one

or more portions of the route that are already flight planned or profiled for terrain

clearance and communication.

Initially, all route segments are eligible for inclusion in the suggested route. The

combined use of the tabu search algorithm and locked subroutes poses a unique

implementation challenge. One method of accomplishing this is to divide up the nodes

such that the tabu search algorithm only considers a subset of the route at a time. Under

this approach, the tabu search would consider a route that includes the first node in the

locked sub-route, but excludes other nodes in the locked sub-route. Then, it would plan a

route starting with the last node in the locked sub-route, using only the remaining nodes.

This technique concludes by piecing together these sub-routes. However, this approach

while finding local optimums, may not find a global optimum. Also, it is difficult to

determine how to group the nodes in the first part of the locked sub-route.

21

Instead of a direct representation of the nodes into the routing algorithm, all of the

nodes in a locked sub-route are grouped into a single supernode. For example, if nodes

Ni..Nj form a locked subroute, a single supernode M„ represents them to the routing

algorithm, with a wait-time equal to the sum of the component wait times in JV/.../V,. In the

time/distance matrix, the distance from any node Nk to Mt is the distance from Nk to Nt;

however, the distance from M, to Nk, is equal to the sum of the distances from Ni..Nj plus

the distance from Nj to Nk.

After the tabu search returns a route, the supernodes are translated back to the

locked subroute node segments through replacement. This creates a new route, that

contains no supernodes, yet retains the desired locked sub-routes.

As discussed earlier, another difficulty with using the tabu search algorithm in this

domain is the concept of threats. The UAV DST models threats using a

latitude/longitude coordinate and a radius. When building the time/distance matrix, any

route segment which intersects the circle around a threat is given an extremely large

penalty in the time/distance matrix. By making any solution containing that route

segment infeasible, the routing algorithm will prefer routes that avoid threats.

Although in many cases the output of the AutoRoute feature will be accepted, the

user may need to manually adjust the route. We allow the user to drag one target to

overlay another in a way that creates a route from one node to the next (Figure 7).

22

Before After

Figure 7. The user drags the top target onto the bottom one

2-5. Conformal Mapping

Another significant challenge is inputting coordinates from a map. In order to do

this, a conformal map object is developed. Map projections are systematic ways of

transferring the 3-dimensional geometry of the Earth's surface on to a 2-dimensional

surface (such as a piece of paper or a computer screen.) This can be viewed in terms of

shadow casting, such as a light inside a globe casting shadows on a specially shaped

paper near the globe. The shape of the paper used determines the type of projection; for

example, a paper shaped as a cylinder gives a cylindrical projection, a paper shaped like a

cone provides a conic projection, while a flat or planar sheet of paper provides a zenithal

or azimuthal projection(Hill 1989). Table 3 lists some features of the most common

projections.

23

ü

CS
OH

O
43
t-i
3
H

I
s
o

•22 S P 43 O K

o
£ .
4-c CS
O O

S
o
o

es
S3

o

es
T3
u

a) *3

& § CS M
43 —

•S a
C m
CS p
es 6

O
U

es
s

c
o
U

es p
-J u

B
° -3 co es

43 O

<c *
O. OH

u
'S w

- o ö es *^
O M 00

" .S T3
pp S--S
& 2 £

c
.2 i£
§£
's1 a &.2
tu 'w

43 =3

B .2
3 -a
■s 'C

•SP s
J3 es
05 Ja
U fi
CS o
C cj
O 43

■J3 ■"
o e>o

o^
& "

° g
2 fi
2 2
S. e*

B
O
O

~o
OH

ON
ON

C
° -3 co es
3 o
•rf es
OCH

«5 «

1 t
g <u

ff'S « u

O ° 3
r« -M

<U CJ

<l)

%
es
3
er w

u
1)

43 c
o < u

>/■> —
OS es

B PH

.§£
3(3

efl «>
CM 2
2 'M

1)
CS
M

"5b jg
S es

§S

o
o
o

B efl
43 u
*J B
43 43

Ja -2P cn es
o Ja

fcn CS

o
ON

3
iß
_B

I
o
O
u

43

4Ü
"es
ü

o -q -g

o a
es S
3 —,
er es
W Ja
>^H B

S u

2 « B 43 es ~

^ SP
T1 B
Ö °
5 es

eä S
Ja Ja
B cfl u —
O u
S "«3 43 o

u .y
S «

2 S
e3 O

•g-S
es

O

T3

es
o

T3
_C

"£>
U

VO
oo
ON

es
ej

es
0H

O

3 s

N
N

_3

*3
tt
O
ffl

PQ -5»
43 &

CM O

° S
8 a
eS <U

s « g
u 82 N

Mg*
.g3"g

.> o B

■" 43 U
cn rH C 'S *
° K B

•'S St
S5 =s S o ö 2 CM B 43

■3 -ö 'C
2 y s
§ g e

fe S Ja O B 'S
•ö g §
co N ü

— u

'S &^

es
ü

'G
T3
_B

">,
U

>
c/t
B
es
H
es 0
1) CS
> 0

aj ^s

NO
I 00

^ e>

os U —

t-i M 43
o 2 s

o
Cc,

es 52

'S I
es 5b

S5 B

B
O

Q

U
O

T3

O

B
Ü
O
u

43

B *

ü es

C es

0)

CS
CJ

O

3
Ja
P 'S 43 as«
O B «"

*^3 es es
U *J «

s .a a
a a.a

o
B cü
U e?

43

O
<0

CV0

CN

This UAV DST implements a Mercator projection. According to Taylor latitude

and longitude to x-y conversion is defined as

X=X0+^-(C£ + C2r»

Y = Y0+-^-(C£-C271)

where £ and r] are the latitude and longitude coordinates of the point, a is the radius of the

Earth, G0 is the gridsize at the equator, and Cl and C2 are constants.

Converting from x-y coordinates to latitude-longitude uses the following

equations

$=—[a(x-x0)-c2(y-y„)]
a

ri=^-[ci(y-yo)+c2(
x-xo)]-

Supporting conformal mapping in Java requires the classes Xy and LatLong for

storing x-y coordinates and latitude-longitude coordinates, respectively. The Xy class

supports the following methods shown in Table 4.

25

Table 4. Class Xy

Method Description

public Xy(int x, int y) Constructor

public int getX() Assessor function for the X coordinate

public int getY() Assessor function for the Y coordinate

The methods for the LatLong class are given in Table 5.

Method

Table 5. Class LatLong

Description

public LatLong(double Lon, double Lat) constructor for specifying LatLong coordinates
doubles

public LatLong(int LongDegrees, int LongMinutes, int
LongSeconds, int LatDegrees, int LatMinutes, int
LatSeconds)

constructor for specifying LatLong coordinates
Degrees, Minutes, and seconds

public final int getLongPegreesQ Assessor function for the Degrees Longitude
public final int getLatDegreesQ Assessor function for the Degrees Latitude
public final int getLatMinutesQ Assessor function for the Minutes Latitude
public final int getLongMinutesQ Assessor function for the Degrees Longitude
public final int getLongSecondsQ Assessor function for the Seconds Longitude
public final double getLat() Assessor function for the Latitude as a double

public final double getLongO Assessor function for the Longitude as a double

public final void setLat(double L) Sets the Latitude as a double

public final void sefLong(double L) Sets the Longitude as a double

public final void setLatPegrees(int d) Sets the Degrees of Latitude

public final void setLongDegrees(int d) Sets the Pegrees of Longitude
public final void setLafMinutesQnt m) Sets the Minutes of Latitude
public final void setLongMinutes(int m) Sets the Minutes of Longitude
public final void setLatSeconds(int s) Sets the Seconds of Latitude
public final void setLongSecondspnt s) Sets the Seconds of Longitude
public void printQ Prints the Latitude and Longitude
public void printLatQ Prints the Latitude as a double
public void printLongQ Prints the Longitude as a double

26

In order to support conformal mapping, we create a ConformalMap Class in Java.

The conformal map object initializes by passing in the x-y coordinates and the latitude-

longitude coordinates of two known points. Table 6 shows the methods in

ConformalMap.

Table 6. Class ConformalMap

Method

public ConformalMap(Xy PI, LatLong LI, Xy P2,
LatLong L2)

Description

Constructor, which takes 2 X-y coordinates, along
with their corresponding LatLong coordinates

Public LatLong Xy2LatLong(Xy P) Converts Xy coordinates to LatLong coordinates
public Xy LafLong2Xy (LatLong P) Converts LatLong coordinates to coordinates to Xy

coordinates
public double getDistanceBetween (LatLong PI,
LatLong P2)

Returns the great circle distance between 2 LatLong
coordinates

public void print() Prints all the variables in ConformalMap for
debugging purposes

public double distanceBetween(Xy PI, Xy P2) Returns the Cartesian distance between 2 Xy
coordinates

boolean LineThoughThreat(Xy C, Xy PI, Xy P2, int
R)

Determines if a line segment defined by 2 Xy points
intersects a circle at C with radius R

The constructor for the ConformalMap class calculates the parameters for coordinate

conversion as follows. Beginning with the constructor

public ConformalMap(Xy PI, LatLong LI, Xy P2, LatLong L2)

let xa and ya be the x and y coordinates of PI respectively. Let Xb and yb be the x and y

coordinates of P2. Let 77„be the longitude of Pi, and £a be the latitude of PL Let r^be

the longitude of P2, and ^ be the latitude of P2. Go is the gridsize at the equator. dxis

the Cartesian distance between PI and P2 in x-y coordinates. d% is the Cartesian distance

27

between PI and P2 in latitude-longitude coordinates. C/, and C2 are constants. x0 and y0

are the longitude and latitude of the x-y coordinate (0,0).

Following Taylor (1997) the following calculations are performed:

dx = J(xa-xb)
2 + (ya-yb)

2

=,/<& „-$>) +<!\ a-**)2

adx
Go

di

_ (*„ -*»)(£, -£b) + (ya-yb)(ria -yb)
dxd^

(xa-xb)(ria -7]b)-(ya - yb)(%a -£b)

dxd^

xo-xa —
d,

Jo Sa d,

Once the ConformalMap object has been initialized, one can convert x-y

coordinates into latitude-longitude coordinates by calling public LatLong

Xy2LatLong(Xy P). Likewise, converting latitude-longitude coordinates into x-y

coordinates is accomplished by calling public Xy LatLong2Xy (LatLong P).

The boolean LineThoughThreat(Xy C, Xy PI, Xy P2, int R) method

determines if a line from PI to P2 would intersect a circle centered at C with radius R.

To understand how this works examine Figure 6 where

28

Figure 8. A circle with radius R at point C, and a line segment from PI to P2

a = distanceBetween(Pl, C);

b = distanceBetween(P2, C);

c = distanceBetween(Pl, P2);

„ ,™„, (b2-a2-c2),
B = ACOS(-- -)

2ac

b2= A(SIN(ä))

if (b2<R) return true;

else return false.

Using the law of Cosines:

b2=a2+c2-2acCOS(B)

lac

29

Now, the segment b2 forms a right angle with the segment from PI to P2. Hence,

b2=a(SJN(B)). Now, if b2 < R, then the line intersects the circle.

2-6. Implementation Details

We develop the UAV DST application using the rapid prototyping model. We

began by interviewing the manufacturers of several UAVs looking for a general

understanding of their capabilities and unique characteristics. We then met with the 11th

Reconnaissance Squadron to see how they used the Predator operationally, and what

problems they have. Next, we discussed UAV issues with a staff officer in Air Combat

Command long range planning.

At this point, we were able to develop the first version of the user interface. We

chose Symantic Visual Cafe as our development platform, because it has powerful

features for designing user interfaces. This allowed us to create our first prototype. It

was extremely slow, and did not yet have the AutoRoute capability. We demonstrated

this prototype to the 11th Reconnaissance Squadron. They gave us valuable feedback.

They wanted the ability to resize the window, a zoom capability, and different priority

nodes to be different colors.

We added the features they requested to the prototype, and integrated the tabu

search algorithm developed by O'Rourke (1999). We returned to the 11th Reconnaissance

Squadron, and demonstrated the second prototype. They were generally pleased. Some

operators commented that it should be integrated into the mission planning software that

intelligence officers use to plan missions. There was a general agreement that a routing

30

algorithm should use priorities, but there was no consensus on exactly how priorities

should be used.

In March 1999, we will to return to the 11th Reconnaissance with our final version

of the UAV DST. We will deliver it to them on a laptop that they can take with them

when they deploy.

2-7. Conclusion

We deliver a laptop containing the UAV DST application to the 11th

Reconnaissance Squadron. Using our software, they will be able to generate routes more

efficiently. Since their current software runs on a large UNIX workstation, it is difficult

for users to plan routes away from the workstation. Using the laptop, users can

experiment with different routes and then plug the best route into the workstation.

This research develops a ConformalMap class to handle conformal mapping in

Java. Unlike previous routines, this software is object oriented and highly portable. A

UAV DST is developed that demonstrates an automatic routing capability for UAVs. A

number of interesting features are provided, including integrating locked subroutes and

threats into the tabu search algorithm.

Future research needs to be done in several areas. First is the integration of the

AutoRoute feature into the software already used operationally to create routes. Second,

a separate research effort creates a discrete event simulation to model UAVs. The HCI

libraries could be easily extended to provide a graphical user interface for the discrete

event simulation. Finally, there are a couple of features of feasible routes that we did not

31

model. For example, because of the need for line of sight communication some routes

might not be feasible.

32

Appendix 1. Alphabetical Index Of Fields and Methods

AboutDialogfFrame, boolean). Constructor for class AboutDialog

Method AboutDialog is the constructor

AboutDialog(Frame, String, boolean). Constructor for class AboutDialog

Method AboutDialog is the constructor taking a string which acts as the title

actionPerformed(ActionEvent). Method in class myToolbarTestPanel

Method actionPerformed is the standard action callback

add(TimeWindow). Method in class NoFlyZoneContainer

Method add adds a NoFlyZone node (as a TimeWindow) to the current NoFlyZone

addNotifyQ. Method in class AboutDialog

Method addNotify is routine that is automatically generated by Symantic Visual Cafe

addNotifyQ. Method in class AircraftCharacteristicsF

Method addNotify is automaticallt generated by Symantic Visual Cafe

addNotifyQ. Method in class Frame 1

Method addNotify is automatically generated by Symantic Visual Cafe

addNotifyQ. Method in class QuitDialog

Method addNotify is automatically generated by Symantic Visual Cafe

addNotifyQ. Method in class TargetCharacterisitcsWindow

Method addNotify is automatically generated by Symantic Visual Cafe

33

addNotifvQ. Method in class TargetListFrame

Method addNotify is automatically grnerated by Symantic Visual Cafe

addNotifvQ. Method in class ThreatCharacteristicsDialog

Method addNotify is automatically generated by Symantic Visual Cafe

AirCraftCharacteristicsQ. Constructor for class AirCraftCharacteristics

AircraftCharacteristicsFQ. Constructor for class AircraftCharacteristicsF

Method AircraftCharacteristicsF is the default constructor

AircraftCharacteristicsF(String). Constructor for class AircraftCharacteristicsF

AircraftCharacteristicsF is a constructor using a string for the title

assignlnputFile(String). Static method in class ReadFile

B

bestCost. Variable in class SearchOut

bestCost. Variable in class StartPenBestOut

bestCost. Variable in class TwBestTTOut

bestiter. Variable in class SearchOut

bestiter. Variable in class StartPenBestOut

bestiter. Variable in class TwBestTTOut

bestnv. Variable in class SearchOut

bestnv. Variable in class StartPenBestOut

bestnv. Variable in class TwBestTTOut

BestSolnModQ. Constructor for class BestSolnMod

bestTime. Variable in class SearchOut

bestTime. Variable in class StartPenBestOut

34

bestTime. Variable in class TwBestTTOut

bestTour. Variable in class SearchOut

bestTour. Variable in class StartPenBestOut

bestTour. Variable in class TwBestTTOut

bestTT. Variable in class SearchOut

bestTT. Variable in class StartPenBestOut

bestTT. Variable in class TwBestTTOut

bfCost. Variable in class SearchOut

bfCost. Variable in class StartPenBestOut

bfCost. Variable in class TwBestTTOut

bfiter. Variable in class SearchOut

bfiter. Variable in class StartPenBestOut

bfiter. Variable in class TwBestTTOut

bfnv. Variable in class SearchOut

bfnv. Variable in class StartPenBestOut

bfnv. Variable in class TwBestTTOut

bfTime. Variable in class SearchOut

bfTime. Variable in class StartPenBestOut

bfTime. Variable in class TwBestTTOut

bfTour. Variable in class SearchOut

bfTour. Variable in class StartPenBestOut

bfTour. Variable in class TwBestTTOut

bfTT. Variable in class SearchOut

bfTT. Variable in class StartPenBestOut

bfTT. Variable in class TwBestTTOut

35

c(boolean). Method in class Frame 1

Shows or hides the component depending on the boolean flag b.

compPensCNodeTypefl, int). Static method in class NodeType

compPens computes the exact vehicle Overload and time window penalties

CjwngPens(NodeType[], int). Static method in class VrpPenType

compPens computes the exact vehicle Overload and time windoe penalties

ConformalMap(Xy, LatLong, Xy, LatLong). Constructor for class ConformalMap

Method ConformalMap is the constructor for the ConformalMap class

CoordTypeQ. Constructor for class CoordType

CoordTypefdouble, double). Constructor for class CoordType

copyQ. Method in class NodeType

countVeh(NodeType H). Static method in class NodeType

countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions

count Vehicles (NodeType H). Static method in class TabuMod

count Veh calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

cut(). Method in class NoFlyZoneContainer

Method Cut removes the selected NoFlyZone

cycle(ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class
TabuMod

cycle - updates the search parameters if the incumbent tour is found in the hashing
structure

CycleOutQ. Constructor for class CycleOut

36

CvcleOuKint, int, double, ValueObj). Constructor for class CycleOut

cvclePrint. Variable in class PrintFlag

D

distanceBetween(Xy, Xy). Method in class ConformalMap

Method distanceBetween returns the cartesian distance between 2 points

E

endTime. Variable in class Timer

endTimeO. Method in class Timer

equals(KeyObi). Method in class KeyObj

equals(RecordObj). Method in class RecordObj

eguals(ValueObj). Method in class ValueObj

F

findXY(DList, int, int, int, int). Method in class NoFlyZoneContainer

Method findXY finds the NoFlyZone node (of classTimwWindow) in the DList D

findXY(int, int, int, int). Method in class NoFlyZoneContainer

Method findXY finds the NoFlyZone node (of classTimwWindow) in the NoFlyZone
setting current to the No Fly Zone(DList) it is in

findXYN(int, int, int, int). Method in class NoFlyZoneContainer

37

Method findXYN finds the NoFlyZone node (of classTimwWindow) in the
NoFlyZone wthout setting current

firstHashVal(int). Static method in class HashMod

firstHashVal

FramelQ. Constructor for class Frame 1

Method Frame 1 is the constructor

Framel(String). Constructor for class Frame 1

Method Frame 1 is the constructor which takes a title as a string

G

getArrQ. Method in class NodeType

getDepQ. Method in class NodeType

GetDistQ. Constructor for class GetDist

getDistanceBetween(LatLong, LatLong). Method in class ConformalMap

Method getDistanceBetween returns the great circle distance between 2 points

getEa(). Method in class NodeType

getldQ. Method in class NodeType

getLaQ. Method in class NodeType

getLatQ. Method in class LatLong

Method getLat returns the Lattitude as a Double

getLatPegreesQ. Method in class LatLong

Method getLatDegrees returns the Degrees part of the Lattitude as an Integer

getLatPegreesQ. Method in class NodeType

getLatMinutesQ. Method in class LatLong

Method getLatDegrees returns the Minutes part of the Lattitude as an Integer

38

getLatMinutesQ. Method in class NodeType

getLatSecondsQ. Method in class LatLong

Method getLatDegrees returns the Seconds part of the Lattitude as an Integer

getLatSecondsQ. Method in class NodeType

getLoadQ. Method in class NodeType

getLockedQ. Method in class NodeType

getLongQ. Method in class LatLong

Method getLong returns the Longitude as a Double

getLongDegreesQ. Method in class LatLong

Method getLatDegrees returns the Degrees part of the Longitude as an Integer

getLongDegreesQ. Method in class NodeType

getLongMinutesQ. Method in class LatLong

Method getLatDegrees returns the Minutes part of the Longitude as an Integer

getLongMinutesQ. Method in class NodeType

getLongSecondsQ. Method in class LatLong

Method getLatDegrees returns the Seconds part of the Longitude as an Integer

getLongSecondsQ. Method in class NodeType

getMQ. Method in class NodeType

getNodeQ. Method in class Target

Method getNode returns the node

getNumberOfVehiclesQ. Method in class AirCraftCharacteristics

Method getNumberOfVehicles returns the number of the UAVs

getOtyQ. Method in class NodeType

getRangeQ. Method in class AirCraftCharacteristics

Method getRange returns the range of the UAV

getSpeedQ. Method in class AirCraftCharacteristics

39

Method getSpeed returns the speed of the UAV

getTypeQ. Method in class NodeType

getWaitQ. Method in class NodeType

getXQ. Method in class NodeType

getXQ. Method in class Target

Method getX returns the X coordinate

getXQ. Method in class Xy

Method getX returns the X coordinate

getYQ. Method in class NodeType

getYQ. Method in class Target

Method getY returns the Y coordinate

getYQ. Method in class Xy

Method getY returns the Y coordinate

H

hashCodeQ. Method in class KeyObj

hashCodeQ. Method in class RecordObj

hashCodeQ. Method in class ValueObj

HashModQ. Constructor for class HashMod

InFromKeybdQ. Constructor for class InFromKeybd

insert(NodeTypefl, int, int). Static method in class NodeType

40

Method insert allows the element designated by "chl" to be shifted by "chD"
elements.

iterPrint. Variable in class PrintFlag

K

KeyboardTestQ. Constructor for class KeyboardTest

keyDouble(String). Static method in class InFromKeybd

keyFloat(String). Static method in class InFromKeybd

keyJnt(String). Static method in class InFromKeybd

KeyOb.Kint, int, int, int, int, int). Constructor for class KeyObi

keyString(String). Static method in class InFromKeybd

KeyToStringQ. Constructor for class KeyToString

kevToStringdnt, int, int, int, int, int). Static method in class KeyToString

LatLong(double, double). Constructor for class LatLong

Method LatLong is a constructor that takes longitude and lattitude as floats

LatLongfint, int, int, int, int, int). Constructor for class LatLong

Method LatLong is a constructor that takes longitude and lattitude in degrees,
minutes, and seconds

LatLong2Xy(LatLong). Method in class ConformalMap

Method LatLong2Xy Converts a LatLong coordinate to an Xy coordinate

loadPrint. Variable in class PrintFlag

41

lookForfHashtable, int, int, int, int, int, int, int). Static method in class HashMod

lookFor - looks for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the
hashtable

M

main(String[]). Static method in class AircraftCharacteristicsF

Method main is the main method for this frame, which is normally unused

main(String[]). Static method in class Frame 1

Method main is the main method for this application

main(String[]). Static method in class GetDist

main(String[]). Static method in class KeyboardTest

main(String[]). Static method in class MTSPTW

main executes MTSPTW problem.

main(String[]). Static method in class TargetListFrame

Method main is the main method for this frame

makePaletteQ. Method in class myToolbarTestPanel

Method makePalette creates the toolbar

mavg. Variable in class CycleOut

movePrint. Variable in class PrintFlag

moveValTlYint. int, NodeType[], NodeType[], int[][]). Static method in class NodeType

moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule
parameters preparing for computation of penalty terms (see compPens)

mpveValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod

moveValTT computes the incremental change in the value of the travel time from the

42

incumbent tour to the proposed neighbor tour, and computes the neighbor schedule
parameters preparing for computation of penalty terms (see compPens)

MTSPTWO. Constructor for class MTSPTW

myScrollPaneO. Constructor for class myScrollPane

myToolbarTestPanelQ. Constructor for class myToolbarTestPanel

Method myToolbarTestPanel is the constructor

N

nextQ. Method in class Target

Method next returns the next Target in the list

noCycle(double, int, double, int, int, PrintFlag). Static method in class TabuMod

noCycle - updates the search parameters if the incumbent tour is not found in the
hashing structure

NoCycleOutQ. Constructor for class NoCycleOut

NoCycleOut(int, int). Constructor for class NoCycleOut

NodeTypef). Constructor for class NodeType

NodeTypeünt, int, int, int, int, int, int). Constructor for class NodeType

NodeTypeünt, int, int, int, int, int, int, int, int, int, int, int, int). Constructor for class
NodeType

NoFlyZoneContainer0. Method in class NoFlyZoneContainer

Method NoFlyZoneContainer is the default constructor

NoFlyZoneContainerO. Constructor for class NoFlyZoneContainer

numfeas. Variable in class SearchOut

O

43

out(String, String). Static method in class WriteFile

paint(Graphics, int, Image, ImageObserver). Method in class NoFlyZoneContainer

Method Paint draws the NoFlyZones

penTrav. Variable in class SearchOut

penTrav. Variable in class StartPenBestOut

penTrav. Variable in class TsptwPenOut

previousf). Method in class Target

Method previous returns the previous Target in the list

printQ. Method in class ConformalMap

Method print prints out the key characteristics of the ConformalMap object

printQ. Method in class LatLong

Method print prints the lattitude and longitude

printQ. Method in class NodeType

printQ. Method in class Xy

Method print prints the X and Y coordinates

PrintCallsQ. Constructor for class PrintCalls

PrintFlagQ. Constructor for class PrintFlag

Default PrintFlag constructor sets all to "true".

PrintFlag(boolean). Constructor for class PrintFlag

Additional PrintFlag constructor allows specification of "true" or "false".

printInitVals(int, int, int, double, String). Static method in class PrintCalls

printLatQ. Method in class LatLong

44

Method printLat prints the Lattitude

printLongQ. Method in class LatLong

Method printLong prints the Longitude

printTour(NodeTypeR)■ Static method in class NodeType

Q

OuitDialog(Frame, boolean). Constructor for class QuitDialog

Method QuitDialog is the constructor

QuitDialogfFrame, String, boolean). Constructor for class QuitDialog

Method QuitDialog is a constructor for QuitDialog

R

randWtWZ(int, int, int). Static method in class HashMod

randWtWZ computes random weights between 1 & range for nodes

ReacTabuObiO. Constructor for class ReacTabuObj

ReadFileQ. Constructor for class ReadFile

readNC(String). Static method in class TimeMatrixObj

readNextDoubleCStreamTokenizer). Static method in class ReadFile

readNextlntfStreamTokenizer). Static method in class ReadFile

readTime(int, int, int, double, StreamTokenizer). Method in class TimeMatrixObj

readTSP(int, int, StreamTokenizer). Method in class TimeMatrixObj

Reads in the x,y coordinates for a simple symmetric TSP problem AND calculates the
time matrix

45

readTSPTWCdouble, int, int, String, CoordType[], int[]). Static method in class
MTSPTW

readTSPTW(double, int, int, String, CoordType[], int[]). Static method in class
TimeMatrixObi

Reads in the x,y coordinates and time window file and calculates the time between
each node(reads in a dataset of Solomon's style)

RecordObi Q. Constructor for class RecordObi

RecordObj(int, int, int, int, int, int, int). Constructor for class RecordObi

rtsStepPrintdnt, int, int, int, int, int, int, int). Static method in class PrintCalls

search(double, double, double, int, int, int, int, int, int, int, int, int, int, VrpPenType,
int[][], PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[],
NodeType[], NodeType[]). Static method in class ReacTabuObj

Steps through ITER iterations of the reactive tabu search.

SearchOutQ. Constructor for class SearchOut

SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType,
NodeType[], NodeType[], NodeType[]). Constructor for class SearchOut

secondHashVaKint, int, int, NodeTypef], int[]). Static method in class HashMod

secondHashVal - updates second hashing value

setAirCraftCharacteristics(AirCraftCharacteristics). Method in class
AircraftCharacteristicsF

Method setAirCraftCharacteristics is used to associate an AirCraftCharacteristics
object to store the info in

setld(int). Method in class NodeType

setLat(double). Method in class LatLong

Method setLat sets the Lattitude using a Double

46

setLatDegrees(int). Method in class LatLong

Method setLatDegrees sets theDegrees part of the Lattitude using an Integer

setLatMinutes(int). Method in class LatLong

Method setLatMinutes sets the Minutes part of the Lattitude using an Integer

setLatSeconds(int). Method in class LatLong

Method setLatSeconds sets the Seconds part of the Lattitude using an Integer

setLpad(int). Method in class NodeType

setLong(double). Method in class LatLong

Method setLong sets the Longitude using a Double

setLongDegrees(int). Method in class LatLong

Method setLongDegrees sets the Degrees part of the Longitude using an Integer

setLongMinutes(int). Method in class LatLong

Method setLongMinutes sets the Minutes part of the Longitude using an Integer

setLongSeconds(int). Method in class LatLong

Method setLatMinutes sets the Seconds part of the Longitude using an Integer

setNextTarget(Target). Method in class Target

Method setNextTarget sets the next Target

setNpde(NodeType). Method in class Target

Method setNode sets the current node

setNumberOfVehicIes(int). Method in class AirCraftCharacteristics

Method setNumberOfVehicles sets the number of UAVs

setPreviousTarget(Target). Method in class Target

Method setPreviousTarget sets the previous Target

setQty(int). Method in class NodeType

setRange(double). Method in class AirCraftCharacteristics

Method setRange sets the range of the UAV

47

setSpeed(double). Method in class AirCraftCharacteristics

Method setSpeed sets the speed of the UAV

setThreat(TimeWindow). Method in class ThreatCharacteristicsDialog

Method setThreat sets the threat you are editing as a TimeWindow

setTimeWindow(TimeWindow). Method in class TargetCharacterisitcsWindow

Method setTimeWindow sets the TimeWindow

setType(int). Method in class NodeType

setVisible(boolean). Method in class AboutDialog

Method set Visible shows or hides the About Dialog Box

setVisible(boolean). Method in class AircraftCharacteristicsF

Shows or hides the component depending on the boolean flag b.

setVisible(boolean). Method in class QuitDialog

Shows or hides the component depending on the boolean flag b.

setVisible(boolean). Method in class TargetListFrame

Shows or hides the component depending on the boolean flag b.

setVisible(boolean). Method in class ThreatCharacteristicsDialog

Shows or hides the component depending on the boolean flag b.

setWait(int). Method in class NodeType

setX(int). Method in class NodeType

setX(int). Method in class Target

Method setX sets the x coordinate

setX(int). Method in class Xy

Method setX sets the X coordinate

setY(int). Method in class NodeType

setY(int). Method in class Target

Method setY sets the Y coordinate

48

setY(int). Method in class Xy.

Method setY sets the Y coordinate

ssltlc. Variable in class CycleOut

ssltlc. Variable in class NoCycleOut

startPenBest(int, int, int, NodeType[], double, int, int, int, VrpPenType, int, int, int, int,
int, int, int, int, int, int, NodeType[], NodeType[]). Static method in class StartTourObi

Initialize "best" values and their times; Compute cost of initial tour as tour length +
penalty for infeasibilities

StartPenBestOutO. Constructor for class StartPenBestQut

StartPenBestOuKint, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType,
NodeType[], NodeType[]). Constructor for class StartPenBestQut

startPrint. Variable in class PrintFlag

startTime. Variable in class Timer

startTimeQ. Method in class Timer

startTour(NodeType[], int[][], int, int). Static method in class NodeType

Method startTour will bubble sort the initial tour based on the average time window
time.

StartTourObi0. Constructor for class StartTourObj

stepLoopPrint. Variable in class PrintFlag

stepPrint. Variable in class PrintFlag

sumWait(NodeType[]). Static method in class NodeType

sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

swapdnt, int). Method in class MTSPTW

swap allows generic swap of integers.

swaplntfint, int). Static method in class NodeType

Method swaplnt switches two integers

swapNode(NodeType[], int, int). Static method in class NodeType

49

Method swapNode allows the elements "a" and "b" to be swapped in a Node Array.

tabuLen. Variable in class CycleOut

tabuLen. Variable in class NoCycleOut

TabuModQ. Constructor for class TabuMod

tabuSearchQ. Static method in class TabuMod

TargetQ. Constructor for class Target

Method Target is the constructor

Target(int, int). Constructor for class Target

Method Target is a constructor taking an X and Y coordinate

Target(int, int, Target, Target). Constructor for class Target

Method Target is a constructor taking X, and Y coordinates as well as a previous and
next target

Target(NodeType). Constructor for class Target

Method Target is a constructor taking a NodeType

TargetCharacterisitcsWindowQ. Constructor for class TargetCharacterisitcsWindow

Method TargetCharacterisitcsWindow is the default constructor

TargetCharacterisitcsWindow(TimeWindow, ConformalMap). Constructor for class
TargetCharacterisitcsWindow

Method TargetCharacterisitcsWindow is a constructor taking a ConfomralMap object

TargetListFrameQ. Constructor for class TargetListFrame

Method TargetListFrame is the default constructor

TargetListFrame(DList). Constructor for class TargetListFrame

Method TargetListFrame is a constructor taking a DList

50

TargetListFrame(String). Constructor for class TargetListFrame

TargetListFrame(Target). Constructor for class TargetListFrame

Method TargetListFrame is a constructor taking a Target

ThreatCharacteristicsDialog(TimeWindow). Constructor for class
ThreatCharacteristicsDialog

Method ThreatCharacteristicsDialog is the constructor

TimeMatrixQ. Constructor for class TimeMatrix

timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class
TimeMatrixObj

Compute 2 dimensional time/distance matrix Does not assume the problem is
symmetric, but makes it so

TimeMatrixObj 0. Constructor for class TimeMatrixObj

timePrint. Variable in class PrintFlag

Timer/). Constructor for class Timer

toStringQ. Method in class KeyObj

toStringQ. Method in class RecordObj

toStringQ. Method in class ValueObj

totalSeconds. Variable in class Timer

totalSecondsQ. Method in class Timer

totPenalty. Variable in class SearchOut

totPenalty. Variable in class StartPenBestOut

totPenalty. Variable in class TsptwPenOut

tour. Variable in class SearchOut

tourCost. Variable in class SearchOut

tourCost. Variable in class StartPenBestOut

tourCost. Variable in class TsptwPenOut

tpurHVwz(NodeType[], int[]). Static method in class HashMod

51

tourHVwz computes the Woodruff & Zemel hashing value from the sum of adjacent
node id multiplication

tourPen. Variable in class SearchOut

tourPen. Variable in class StartPenBestOut

tourSched(int, NodeType[], int[][]). Static method in class NodeType

method tourSched should be called with the sytax tourLen = tourSched(nodeArray,
time) from the orderStartingTour method.

tourSchedwithServiceTimeünt, NodeType[], int[][], int[]). Static method in class
NodeType

method tourSched should be called with the sytax tourLen = tourSched(nodeArray,
time) from the orderStartingTour method.

TsptwPenQ. Constructor for class TsptwPen

tsptwPenfint, NodeType[], VrpPenType, double, int, int, int, int). Static method in class
TsptwPen

tsptwPen: Given the TW and load penalties, this procedure personalizes the penalties
to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for
infeasibilities.

TsptwPenOutQ. Constructor for class TsptwPenOut

TsptwPenOut(int, int, int, int). Constructor for class TsptwPenOut

tvl. Variable in class SearchOut

tvl. Variable in class TsptwPenOut

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int,
NodeType[], NodeType[], int, int). Static method in class BestSolnMod

TwBestTTOutO. Constructor for class TwBestTTOut

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]).
Constructor for class TwBestTTOut

twrdPrint. Variable in class PrintFlag

U

52

update(Graphics). Method in class myScrollPane

Method update merely paints without clearing the screen first

ValueObKint, int, int, int, int, int, int). Constructor for class ValueObj

VrpPenTypeQ. Constructor for class VrpPenType

VrpPenTvpefint int). Constructor for class VrpPenType

VrpPenTypefint, int, int). Constructor for class VrpPenType

W

WriteFileQ. Constructor for class WriteFile

X

Xy/int, int). Constructor for class Xy

Xy_2LatLong(Xy). Method in class ConformalMap

Method Xy2LatLong converts an Xy coordinate to a LatLong coordinate

53

Appendix 2. Class Hierarchy

• class java.lang.Object
• class AirCraftCharacteristics
• class java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer,java.io.Serializable)
• class java.awt.Container

• class java.awt.Panel
• class myToolbarTestPanel (implements

java.awt.event.ActionListener)
• class java.awt.ScrollPane

• class myScrollPane
• class java.awt.Window

• class java.awt.Dialog
• class AboutDialog
• class OuitDialog

• class java.awt.Frame (implements
java.awt.MenuContainer)

• class AircraftCharacteristicsF
• class Frame 1
• class TargetCharacterisitcsWindow
• class TargetListFrame
• class ThreatCharacteristicsDialog

class ConformalMap
class CoordType
class CycleOut
class GetDist
class HashMod
class InFromKeybd
class KeyObj
class KeyToString
class KeyboardTest
class LatLong
class MTSPTW

• class BestSolnMod
• class TsptwPen

class NoCycleOut
class NoFlyZoneContainer
class NodeType

54

class PrintCalls
class PrintFlag
class ReacTabuObj
class ReadFile
class RecordObj
class SearchOut
class StartPenBestOut
class StartTourObj
class TabuMod
class Target
class TimeMatrix
class TimeMatrixObj
class Timer
class TsptwPenOut
class TwBestTTOut
class ValueObj
class VrpPenType
class WriteFile
class Xy

55

Bibliography

Allison, David. "MAPPRO: A Program For Processing The Projection of Latitude-
Longitude Coordinates Into Rectangular Map Coordinate Systems," Computers &
Geosciences, 21: 859-875 (1995)

Angehrn, Albert A. and Liithi Hans-Jakob "Intelligent Decision Support Systems: A
Visual Interactive Approach," Interfaces 20: 17-28 (November-December 1990)

Angehrn, Albert A. "Modeling by Example: A link between users, models, and methods
in DSS," European Journal of Operational Research, 55: 296-308 (1991)

Basnet, Chuda, Les Foulds, and Magid Igbaria. "FleetManager: a microcomputer-based
decision support for vehicle routing," Decision Support Systems 16: 195-207
(1996)

Bertsimas, Dimitris J. and David Simchi-Levi. "A New Generation of Vehicle Routing
Research: Robust Algortihms, Addresing Uncertainty," Operations Research, 44:
286-304 (March-April 1996)

Bortoluzzi,Giovanni and Marco Ligi, "DIGMAP: A Computer Program For Accurate
Acquisition By Digitizer Of Geographical Coordinates From Conformal
Projections," Computers & Geosciences 12: 175-197 (1986)

Crossland, M. D., B. E. Wynne, and W. C. Perkins. "Spatial decision support systems:
An overview of technology and a test of effacy," Decision Support Systems 14:
219-235(1995)

Dana, Peter H. "The Geographer's Craft Project, Department of Geography, The
University of Texas at Austin," Map Projections explained, n pag.
http://wwwhost.cc.utexas.edu/ftp/pub/grg/gcraft/notes/mapproj/mapproj.html
(1995)

Gendreu, Michel, Gilbert Laporte, and Rene Seguin. "Atabu Search Heuristic For The
Vehicle Routing Problem With Stochastic Demands And Customers," Operations
Research, 44: 469-477 (May-June 1996)

Hill, Greg. "Should they know the Truth About Map Projections?" Queensland
Geographical Journal, 4: 47-60 (1989)

Holsapple C. W. S. Park, and A. B. Whinston. "Framework for DSS Interface
Development" in Recent Developments in Decision Support Systems, NATO ASI
Series . Ed. Clyde W. Holsapple and Andrew Whinston. Berlin: Springer-Verlag
(1991)

Jones, Christopher V. "User Interface Development and Decision Support Systems" in
Recent Developments in Decision Support Systems, NATO ASI Series . Ed. Clyde
W. Holsapple and Andrew Whinston. Berlin: Springer-Verlag, 1991

Keenan, Peter B. "Spatial decision support systems for vehicle routing," Decision
Support Systems, 22: 65-71 (January 1998)

O'Rourke, Kevin P. Dynamic Unmanned Aerial Vehicle (UAV) Routing With a Java-
encoded Reactive Tabu Search Metaheuristic. MS thesis, AFIT/GOA/ENS/99M-
06. School of Operations Research, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 1999

Ryan, J. L., T.G. Bailey, J.T. Moore, and W. B. Carlton. "Unmanned Aerial Vehicle
(UAV) Route Selection using Reactive Tabu Search," to appear in Military
Operations Researc, (1999)

Sisson, Mark. Applying Tabu Heuristic To Wind Influenced MinimumRisk and Maximum
Expected Coverage Routes. MS thesis, AFIT/GOR/ENS/97M-20. School of
Operations Research, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH (March 1997)

Taylor, Alan D. "Conformal Map Transformations for Meteorological Modelers,"
Computers and Geosciences, 23: 63-75 (1997)

Theisen, Paul, "USAF Unmanned Aerial Vehicle Battlelab", UAV Battlelab homepage,
n. pag. http://www.wg53.eglin.af.mil/battlelab/default.html (2 March 1999)

Walston, Jennifer G. Unmanned Aerial Vehicle Engagement Level Simulation. MS
thesis, AFIT/GOR/ENS/99M-17. School of Operations Research, Air Force
Institute of Technology(AU), Wright-Patterson AFB OH (March 1999)

57

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March, 1999 Master's Thesis
4. TITLE AND SUBTITLE

A JAVA BASED HUMAN COMPUTER INTERFACE FOR A UAV DECISION
SUPPORT TOOL USING CONFORMAL MAPPING

6. AUTHOR(S)

Randy A. Flood, 1LT, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, 2950 P Street, WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

O'HAIR, MARK A., LT COL, USAF
UAV Battleab
1003 Nomad Way, Suite 107
Eglin AFB FL 32542-6867

11. SUPPLEMENTARY NOTES

T. Glenn Bailey, Lieutenant Colonel, USAF

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENS/99M-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This paper describes the development of the Human Computer Interface (HCI) for a Decision Support System for routing
Unmanned Aerial Vehicles (UAVs). This problem is a multi-vehicle routing problem with time-windows. Because of the
unique nature of UAVs, a tool is needed to support dynamic re-routing. We solve the problem in two ways. First, we create
a UAV Decision Support Tool (UAV DST) that uses a set of Java software objects to display maps and convert between
latitude-longitude coordinates and x-y coordinates. Secondly, this library provides the ability for the user to dynamically
re-optimize large UAV routing problems through a simple graphical interface. The library is built on top of a Java
implementation of the tabu search algorithm written by O'Rourke (1999). This library provides the basis for future
simulation and analysis of the Kenney Battlelab Initiatives by providing the interface to routing decision support and
simulation modules.

14. SUBJECT TERMS
UAV, Routing, Decision Support System, TSP

15. NUMBER OF PAGES

66
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	A Java Based Human Computer Interface for a UAV Decision Support Tool Using Conformal Mapping
	Recommended Citation

	/tardir/tiffs/A361562.tiff

