
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-1999 

An Interactive Tool for Refining Software Specifications from a An Interactive Tool for Refining Software Specifications from a 

Formal Domain Model Formal Domain Model 

Gary L. Anderson 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Anderson, Gary L., "An Interactive Tool for Refining Software Specifications from a Formal Domain Model" 
(1999). Theses and Dissertations. 5210. 
https://scholar.afit.edu/etd/5210 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5210?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


AFIT/GCS/ENG/99M-01 

AN INTERACTIVE TOOL FOR REFINING 
SOFTWARE SPECIFICATIONS 

FROM A FORMAL DOMAIN MODEL 

THESIS 
Gary L. Anderson, B.S. 

Captain, USAF 

AFIT/GCS/ENG/99M-01 

Approved for public release; distribution unlimited 

DTIC QUALITY INSPECTED 8 19990409 051 



The views expressed in this thesis are those of the author and do not reflect the official policy or 

position of the Department of Defense or the U.S. Government 



AFIT/GCS/ENG/99M-01 

AN INTERACTIVE TOOL FOR REFINING SOFTWARE SPECIFICATIONS 

FROM A FORMAL DOMAIN MODEL 

THESIS 

Presented to the Faculty of the Graduate School of Engineering 

Of the Air Force Institute of Technology 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

Gary L. Anderson, B.S. 

Captain, USAF 

March 1999 

Approved for public release, distribution unlimited 



AFIT/GCS/ENG/99M-01 

AN INTERACTIVE TOOL FOR REFINING SOFTWARE SPECIFICATIONS 

FROM A FORMAL DOMAIN MODEL 

Gary L. Anderson, B.S. 
Captain, USAF 

Approved: 

T-^-ri^Z— 

Chairman 

1 Member   ' 

Ot^&L/ A 
Member 

5> A,^' im 
date 

S fo*,,A m°i 
date 

date 



Acknowledgments 

I want to thank my thesis advisor, Dr. Hartrum, for guiding me through the long and 

challenging thesis process. He always made himself available and was pleasantly cordial but always 

professional. I also thank my committee members, Major DeLoach and Major Graham, who often gave me 

timely advice when I was "stuck". 

I owe a debt of gratitude to my lovely wife, Rajni, and two children, Sheena and Kevin, who are 

the greatest blessings of my life. They were always encouraging and understanding through many late 

nights and working weekends. Most of all I want to thank the Lord Jesus. His strength helped me focus on 

the task at hand, while maintaining a balance and keeping a healthy perspective on life. 

in 



Table of Contents 

Page 

Acknowledgments iii 

List of Figures viii 

Abstract x 

1 Introduction 1 

1.1 Background 1 

1.2 Problem 3 

1.3 Initial Assessment of Past Effort 4 

1.4 Proposed Solution 5 

1.5 Scope 6 

1.6 Approach 7 

1.7 Assumptions 8 

1.8 Thesis Overview 8 

2 Background 9 

2.1 Languages Used 10 

2.1.1 REFINE 10 

2.2 The Abstract Syntax Tree 12 

2.2.1 Accessing nodes in the tree 12 

2.2.2 Saving the AST 13 

2.3 Z Specification Language 13 

2.4 The AFIT KBSE System Representation 14 

2.4.1 Domain Object Model 14 

2.4.2 Unified-Object Model 16 

2.4.2.1 Input Grammar/parsing 17 

2.4.2.2 Predicates 17 

2.5 Rule-Based Artificial Intelligence 18 

2.5.1 Forward Chaining 19 

2.5.2 Backward Chaining 20 

2.6 Data Dictionary 21 

2.7 Eliciting Information Through a User Interface 23 

2.8 Other Relevant Research 23 

3 Requirements 25 

IV 



3.1 Philosophy Behind the Elicitor-Harvester Requirements 25 

3.2 Input and Output Requirements 27 

3.2.1 Elicitor-Harvester Inputs 27 

3.2.1.1 Domain AST Input 28 

3.2.1.2 Application Engineer Input 28 

3.2.1.3 Rules 28 

3.2.1.4 Inputs from the Data Dictionary 28 

3.2.2 Elicitor-Harvester Outputs 29 

3.2.2.1 Specification AST 29 

3.2.2.2 History Database 30 

3.2.2.3 Output to the Data Dictionary 30 

3.3 Functional Requirements 30 

3.3.1 Operational Capabilities 30 

3.3.1.1 Primitive Classes 31 

3.3.1.2 Class Attributes 32 

3.3.1.3 Class Operations 32 

3.3.1.4 States 32 

3.3.1.5 Events 33 

3.3.1.6 Transitions 33 

3.3.1.7 Parameters 33 

3.3.1.8 Predicates 33 

3.3.1.9 Data Types 34 

3.3.1.10 Constants 35 

3.3.1.11 Inheritance 35 

3.3.1.12 Associations 35 

3.3.1.13 Aggregate Classes 36 

3.3.1.14 Aggregate Operations 36 

3.3.2 Prohibited and Restricted Actions 36 

3.4 Clean-up Process 37 

3.5 User Interface 37 

3.6 Artificial Intelligence Techniques Employed 38 

3.7 Modifications to ASTs 38 

3.8 Sample Domains 39 

3.9 Requirements Summary 40 

4 Design 41 

4.1 Data Dictionary Design 41 



4.1.1 Data Dictionary Structure 41 

4.1.2 Handling User Inputs 42 

4.1.3 Using the Data Dictionary 43 

4.2 User Interface Design 45 

4.3 Starting Up EH 45 

4.4 Specifying Domain Items 47 

4.4.1 Selecting Objects for the Specification 49 

4.4.1.1 Mapping Predicates to Domain Objects 52 

4.4.2 Modifying Objects 54 

4.5 Adding New Objects 58 

4.5.1 Creating Objects Using Backward Reasoning 58 

4.5.2 The Backward Chaining Rule Base 59 

4.5.2.1 The Backward Chaining Database 60 

4.5.2.2 Backward Reasoning Algorithm 62 

4.5.3 Examples of Creating Objects 63 

4.5.3.1 Creating an Operation 63 

4.5.3.2 Creating a Data Type 67 

4.5.4 Adding New Objects to the Specification 69 

4.6 Viewing the Specification 69 

4.7 Saving the Specification 70 

4.8 Design Summary 71 

5 Implementation and Evaluation 72 

5.1 EH Functionality Implemented 72 

5.2 Maps Added to the Domain Model 74 

5.3 Implementation Difficulties Encountered 75 

5.3.1 Parsing Predicates 75 

5.3.2 Representing Function Calls in Z Predicates 75 

5.3.3 Mapping Predicate Variables to Domain Objects 77 

5.3.4 Selection of Specification Items 78 

5.3.5 Map from the New Object to the Parent Object 78 

5.3.6 Deleting Duplicate Types 79 

5.3.7 Problems with POB save 79 

5.4 Evaluation .-.■ 80 

5.4.1 The Manual Process Defined 81 

5.4.2 Standard Comparison Specifications 82 

5.4.3 Evaluation Results 83 

VI 



5.4.3.1 Time Comparison 84 

5.4.3.2 Correctness Comparison 84 

5.4.3.3 Ease of Use 85 

5.5 Implementation Summary 87 

6 Conclusions and Recommendations 88 

6.1 Conclusions 88 

6.2 Future Recommendations 89 

6.3 Final Comments 91 

Bibliography 92 

Appendix A: Output Specifications from Tests 94 

Appendix B: Sample Domains 102 

Appendix C: Compilation Configuration 110 

Vita 112 

Vll 



List of Figures 

Page 

Figure 1 Formal Approach to Creation of Correct Domain-Specific Software 3 

Figure 2 Declaring a REFINE data structure 11 

Figure 3 Employee object class defined as an Abstract Syntax Tree 12 

Figure 4 Transformation Process: From Formal Specification to Code 14 

Figure 5 The Domain Object Model (DOM) AST Structure 15 

Figure 6 Domain Tree inheritance hierarchy , 16 

Figure 7 A Predicate AST parsed into the Unified-Object Model 18 

Figure 8 Elicitor-Harvester Environment 27 

Figure 9 Classes and Associations for the School Domain 39 

Figure 10 Class Hierarchy for the Cruise Missile Domain 40 

Figure 11 The structure of the Data Dictionary class 42 

Figure 12 The Aword structure. The fact base used when matching input names to domain objects 42 

Figure 13 List of domain objects matching the user input for fueljevel 44 

Figure 14 The start up message and Main Menu 46 

Figure 15 Screen Display: User prompts for the name of an input, output, or internal update 48 

Figure 16 Screen Display: Choosing objects and the action options 49 

Figure 17 Screen Display: Choosing to select an object or modify first 49 

Figure 18 Structure of the Operation Subtree 51 

Figure 19 CalcPropWt: an operation in the CRUISE MISSILE domain 52 

Figure 20 Predicate AST in Unified-Object Model 53 

Figure 21 Maps for processing predicates 53 

Figure 22 EH-Object database declaration 55 

Figure 23 Mod-Object database declaration 55 

Figure 24 Screen Display: Modification options list 56 

vm 



Figure 25 Screen Display: Modifying the datatype of an attribute 57 

Figure 26 AST created by REFINE to store a rule ; 59 

Figure 27 Add-Object database declaration 61 

Figure 28 Algorithm for the backward reasoning engine 62 

Figure 29 Screen Display: Identifying a new operation 64 

Figure 30 Sample rule used in the backward reasoning process 65 

Figure 31 Screen Display: Defining a post-condition 65 

Figure 32 Screen Display: Handling unidentified predicate variables 67 

Figure 33 Screen Display: Creating a data type 68 

Figure 34 Screen Display: A view of the selected specification in pretty print format 70 

Figure 35 Screen Display: The Save sub menu 70 

Figure 36 Capabilities implemented in this version of EH 72 

Figure 37 Inconsistency between Graphical and code representation 76 

Figure 38 Time in minutes to complete specification process and the speedups obtained 84 

Fisure 39 The AFFITTOOL main menu and domain functions submenu 86 

IX 



Abstract 

This work examines the process for refining a software specification from a formal object-oriented 

domain model. This process was implemented with interactive software to demonstrate the feasibility and 

benefits of automating what has been a tedious and often error-prone manual task. 

The refinement process operates within the framework of a larger Knowledge-Based Software 

Engineering system. A generic object-oriented representation is used to store a domain model, which 

allows the specification tool to access, select, and manipulate the required objects to form a customized 

specification. The specification is also stored as an object-oriented model, which in turn can be accessed 

by a design tool to transform the specification into source code. 

The tool has been designed as an interactive program that helps guide the user through the process 

of building the specification. The tool has been named the Elicitor-Harvester because of the functions it 

performs. It elicits application requirements from the user and harvests pre-existing knowledge from the 

formal domain. 



An Interactive Tool for Refining Software Specifications 
from a Formal Domain Model 

1 Introduction 

This work examines a process for specifying software applications. An automated tool was built to 

interactively guide a user through the process of refining software specifications from a formal object-oriented 

domain model. The tool allows the user to choose the parts of the domain model needed for the application, 

modify those parts as needed, and define new components to supplement the specification 

1.1 Background 

The article "No Silver Bullet", written in 1986, explained the difficulty the software industry was 

having trying to keep up with the incredible performance increases the computer hardware industry has 

achieved [19]. While the hardware industry continues to exploit new technologies and improve manufacturing 

techniques, the software industry continues to grasp at many new techniques and methodologies, hoping to find 

the "Silver Bullet", so to speak, that can kill the monster that plagues software development. The article 

explains that all these efforts have focused on the accidental difficulties of software (those problems associated 

with building the code) and not on the essential difficulties (inherent in the nature of the software). These 

essential difficulties lie in the complexity, conformity, changeability, and invisibility of software. The hardest 

part of software development lies in understanding, identifying, and specifying the requirements and rules of the 

desired software solution, and in making upgrades and changes once the product is fielded [2]. Knowledge 

Based Software Engineering (KBSE) is an attempt to address these essential difficulties. 

KBSE is the study of representing information gained from domain knowledge and a problem 

statement with a series of formal models in an attempt to apply automated manipulation to the software 

development process. The formal representations can also allow Artificial Intelligence (AI) reasoning 

techniques and formal methods to be applied to determine different levels of correctness and completeness of 

the specification, design, and implementation [1]. By automating the transformations from formal specification 

through design and implementation and into source code, software systems can be maintained at the formal 

specification  level  instead  of at the code  level  as  it is currently.     By maintaining provably correct 



transformations from specification to code, the verification of source code is implicit and the need for 

verification testing (building the system right) is eliminated. Validation testing (building the right system) then 

becomes the main form of testing and would be an exercise of iteratively adjusting the specifications to meet the 

end users' requirements. Each time the specification is changed, the automatic transformations rebuild the 

source code to match the specification. 

The goals of the Air Force Institute of Technology (AFIT) KBSE research are to address some of the 

essential difficulties of software development by applying formal methods and automating the transformations 

as much as possible to avoid problems as described by Grassmann and Tremblay. 

During development of information systems, many problems arise from inadequacies of the notations that 

are used to describe the software product at each stage of the development life cycle. Many of these 

notations include natural language as a vehicle for describing the different artifacts. The notations that are 

most dependent on natural language are those that are used upstream in the life cycle (i.e., in its early 

phases of development). Also, in many development approaches to producing software, a different 

notation is used for each phase of the life cycle, and because of the very "visible seams" between phases, 

interface errors usually result [15]. 

The AFIT KBSE model consists of a series of stages beginning at the acquisition of knowledge from a 

Domain Expert (probably the end user of proposed software system) and ending with executable code on the 

fielded computers. In each stage, the knowledge data is transformed by a process that refines the knowledge 

representation a step closer to the final goal of an executable system. The entire process is known as the AFIT 

Forward Engineering Concept and is shown in Figure 1. Previous research at AFIT has demonstrated the ability 

to build formal domain models with a formal specification language such as Z (pronounced zed) or an algebraic 

language such as Larch or Slang, and parse them into a tree structure called an Abstract Syntax Tree (AST) [16] 

[17] [18]. Once a domain is represented in an AST, it can be accessed and manipulated in software. The square 

boxes in Figure 1 represent transformation processes that are candidates for automation. 

As more emphasis is placed on the correctness of the specification, the transformation shown as 

"Problem Setting" in Figure 1 becomes very critical. The Formal Specification model represents a complete 

and concise description of the objects, methods, states, and events that will exist in the final system and 

describes what they should do. The problem setting stage is performed by an application engineer who 



manipulates the domain model knowledge based on a set of requirements found in the Problem Statement. The 

Formal Specification specifies a customized application and will usually consist of a subset of the domain 

model objects with several details defined for the specific application. Once the Formal Specification is 

finalized, it passes into the Design Phase where the formal specification is transformed into a design 

specification. 
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Figure 1 Formal Approach to Creation of Correct Domain-Specific Software 

As the need for representing a software specification becomes critical, the need to automate the 

specification process increases. An application engineer can quickly become overwhelmed with the thousands 

of specification details if the process is performed manually. A tool is needed to guide the engineer through the 

process of identifying and refining specification components from the domain model. This research focuses on 

defining the requirements and demonstrating the feasibility of a tool to automate the Problem Setting 

Transformation process. Since the function of this tool is to elicit requirements from the application engineer 

based on the problem statement, and harvest information and knowledge contained in the existing domain 

model, the tool is called an Elicitor-Harvester (EH). 

1.2 Problem 

Elicitor-Harvester type tools have been developed for very restricted, well-defined applications such as 

the XCON system developed by Digital Equipment Corporation to assist in the configuration of newly ordered 

VAX computer systems [5]. The problem lies in trying to generalize the tool enough so it will work on a 



General Object Model to be used as a knowledge store in a knowledge-based system like the one under 

development at AFIT. The large number of rules needed for such a general system could cause an AI engine to 

be overwhelmed. The question of how to represent the rules in the object model in such a way that an AI search 

engine can correctly identify the many possible areas that need to be specified can be quite complex. The 

hardest problem may be trying to determine how the tool should interact with the application engineer to 

identify the parts of the domain model needed to implement the desired specification. If the application 

engineer is not a domain expert, the EH needs to shield him or her from the confusing details about the 

underlying domain AST. The EH needs to prompt for information in such a way that the user does not get 

frustrated with the process. This research analyzes these problems and attempts to find some feasible solutions. 

Problem Statement: 

Demonstrate the feasibility of an Elicitor-Harvester tool using AI techniques to allow a user to create a 

formal specification from a well-defined domain tree. The user may not know the details of the domain model, 

so the EH must guide him or her through the process by prompting the user for necessary inputs. However, EH 

must be able to harvest pertinent knowledge from the domain tree so as to avoid burdening the user with too 

many questions. 

1.3 Initial Assessment of Past Effort 

Elicitor-Harvester has been the thesis topic of three AFIT Master's theses since 1995. Charles Wright 

performed an analysis of EH in 1994-1995 before the AST structures were developed. He described the EH as 

a tool to help build a software system by reusing existing components. The EH would elicit requirements from 

the user and use AI techniques such as forward chaining and search methods to automatically select reusable 

components that would meet the user requirements [3]. 

Jerry Cochran studied how an EH tool could be used to reuse object oriented components by applying 

some rules and predicate logic. He created an object model of a pump system to use as an example [6]. His 

research showed some positive results, but the capabilities of an EH need to be generalized to be able to work 

on different domain models. 

Timothy Karagias finished his follow-on research in December, 1996 [2]. He studied ways to apply 

EH techniques to an object-oriented AST, which stored domain knowledge. His major goals were to define the 



requirements for the EH, design a nominal system, and demonstrate the feasibility for implementing the EH. 

He concluded that his goals were mostly met, but more work needed to be done in several areas. 

• The EH needs better verification of new aggregates created during the specification process. 

• A user interface should be built to help a user along in the complicated specification process. 

• The EH should be extended to make it compatible with several types of formal languages. 

• He also concluded that incorporation of AI is needed to select components of the domain AST that need 

further specification from the user. 

These three previous efforts demonstrated the feasibility and highlighted the usefulness of an EH tool. 

However, there were many difficult and untested problems associated with a smart interactive tool. An 

approach was needed that could lead the user through the entire process of identifying the input, output, and 

internal operations of the system; selecting the domain items that support those operations; modifying the 

existing operations or creating new ones to support the particular specification; then saving either the 

specification in work or the selected objects of the final specification. The operations are probably the most 

complex part of the domain model because of the formal predicates stored as pre-conditions and post- 

conditions. These predicates can be stored in a wide variety of formats and contain variables that can represent 

a variety of domain items such as input or output parameters, class attributes, classes, constants, or associations 

- all of which are associated with a data type or class. Since operations are so complex and important to the 

specification, an approach for handling operations in the EH process needed to be studied. 

1.4 Proposed Solution 

Without a tool to automate the specification process the engineer must use a manual process that is 

slow, tedious, and error prone. The manual process would require the engineer to find and modify domain 

description text files, check several separate files for consistency, compile the files and parse the specification 

descriptions through a domain parser. 

This research proposes to define an Elicitor-Harvester process to access domain knowledge acquired 

during the requirements gathering phase, which is represented as an AST. This knowledge is then transformed 

into a formal specification AST by eliciting the problem statement decisions from the application engineer and 

harvesting knowledge from the existing domain.  Through a series of questions an EH allows the application 



engineer to select and refine the existing domain components into a formal specification that represents the final 

software product. 

1.5 Scope 

A fully operational EH would need to have the capability handle all types of domain information 

associated with object-oriented modeling. This information includes aggregate and primitive classes, 

inheritance between sub and super-classes, associations between classes and their multiplicities, associative 

classes, class attributes, class constraints, operations or methods with their pre and post conditions, parameters, 

private and global constants, private and global data types, states, events, and state transitions. An EH would 

also need a well-designed user interface with the associated error checking to interact with the user. The EH 

would also need to perform many checks for consistency among the specification objects and perform various 

initialization and cleanup functions.  The task of implementing all functions needed for an EH was much too 

large for this thesis effort. 

The goal, therefore, was to thoroughly define the requirements of a general EH tool, while choosing a 

challenging subset of the proposed functionality that could demonstrate successful design and implementation 

of the EH concept. Operations and data types were the two parts of the domain model that were chosen for 

demonstration purposes, since their representations are fairly complex and they can be defined in a large variety 

of ways. Operations contain pre-conditions and post-conditions defined as formal predicates in the domain 

model. These predicates and data types relate to many other parts of the domain model, which made them quite 

complicated to implement, but very important in the specification process. A long-term goal for a user interface 

would allow the user to input predicates as natural language descriptions and translate them into formal 

language definitions with an expert system. This research had to limit the user to input predicates in proper Z1 

specification notation that could be correctly parsed in by an existing Z parser. 

This research effort also focused on incorporating Artificial Intelligence methods into the Elicitor- 

Harvester, mainly to deal with the rules used for adding or modifying operations and data types. Since the EH 

1 Z (Pronounce zed) is a formal specification language initiated by Jean-Raymond Abrial and subsequently developed by a team at Oxford 
University. It is based on logic, sets, relations, and functions and is used for stating what a system should do and m what order it should 
be done without stating how it should be done. [15] 



needs a well-defined domain as an input, two existing domains that were already analyzed and defined at AFIT 

were used for demonstration purposes - the School and the Cruise Missile domains. These AFIT defined 

domains are represented as Z Schemas in LaTeX2 files and can be parsed into a Domain Object Model (DOM) 

AST. While developing AI techniques for the EH on these specific test domains, operations that could be 

generalized to any type of domain vs. methods that should be restricted to a specific domain were identified. 

1.6 Approach 

To meet the proposed research objectives the following approach was followed: 

/. Became familiar with the current KBSE domain models and tools - Studied the current AFIT literature 

available for the current KBSE resources. Became familiar with the structure of the domain AST and 

the code that generates it. Also became familiar with analysis tools. 

2. Studied previous EH research and analyzed existing EH software available at AFIT - Read the three 

previous thesis efforts performed by AFIT graduate students to gain an understanding of areas needing 

further research. Became familiar with the existing EH tool created by Karagias and Hartrum to 

identify and narrow the scope of study. 

3. Studied other research performed outside AFIT- Performed a literature search for other research in the 

area of component reusability in general and EH techniques in particular. 

4. Studied Artificial Intelligence techniques - Performed a literature search for AI tools and techniques 

that could be integrated into an object-oriented EH tool. Sought guidance from committee members 

concerning possible AI options. 

5. Defined requirements for an EH tool — Several tasks needed to be performed to complete the 

requirements definitions as listed below. 

• Defined the specific goals this research tried to demonstrate. 

• Documented requirements that identified the scope and expectations for the EH. 

• Specified some test cases to validate the results. 

• Identified formal domain models to be used to test the EH. 

! LAT£X is a special version of the TEX, which is a trademark of the American Mathematical Society. 



•     Defined the structure of the domain AST to be used as input to the EH and the specification AST to 

be output from the EH. 

6. Designed and Implemented the EH tool - Used knowledge acquired from the previous steps to choose 

the tools and languages to facilitate development of an EH. Then proceeded to design and code a tool 

that met the requirements defined during step five. 

7. Tested EH software on domain models - Used the test cases identified during step five to validate the 

EH operations. Most testing was informal debugging and was an ongoing activity throughout the 

design and implementation phase. Requested other students and committee members to use the tools 

and provide feedback about the ease and understandability of the EH tool. 

8. Analyzed results - Compared findings with the goals defined in step five and described how well the 

results satisfied those goals. Analyzed whether or not the requirements were met or how close they 

were to being met. 

1.7 Assumptions 

Well-defined object oriented domains were assumed to exist and to be available at AFIT. It was 

assumed that the domain models used for testing the EH included aggregation. The domain AST was expected 

to sufficiently support all types of domain model objects. 

1.8 Thesis Overview 

Chapter 2 describes the operating environment of the EH providing the reader with background 

information necessary to understand the setting of the problem. The languages and data structures used, other 

KBSE tools integrated, rule-based techniques used, and other relevant research are discussed. Chapter 3 

discusses the functionality required for an EH and the philosophy that guided the decisions made about the 

requirements. Chapter 4 describes the design of the EH and the reasons for the design choices. Chapter 5 

identifies the functional capabilities actually implemented to demonstrate feasibility and several of the problems 

encountered during implementation. The testing and evaluation of the EH is also discussed in Chapter 5. 

Finally, Chapter 6 closes with remarks about the accomplishments of this work and recommends further study 

in several areas relating to an EH. 



2 Background 

The purpose of the EH tool is to allow application engineers to develop their own customized software 

to satisfy their particular needs. The EH should use the formal domain representation to extract parameters the 

application engineer may need to identify for his or her particular system. The EH should interactively prompt 

the application engineer to specify certain parameters for the system being created based on an end user's 

requirements. AI techniques should be used to aid the application engineer in developing formal specifications 

from a domain model and customer requirements. The EH should search the domain AST for incomplete 

specifications or places where choices must be made. A user interface (preferably graphical) should guide the 

user through the problem areas that require decisions. As the user inputs specifications, the EH should mark 

portions of the domain model that need to be added to the specification model, helping it to evolve into a formal 

specification AST [4]. 

For example, AFIT may decide to build an academic domain model as a baseline to develop 

customized systems for various departments within AFIT. An object model would be built to describe the 

important entities and relationships in AFIT. Once this domain model is completed, application engineers could 

use the EH to identify the subset of objects, relationships, and operations they need for their particular software 

sub-system. Let's say a user needs a tool to track student grades. The student's GPA could be used to identify 

whether the student is in the top 10% or needs to be put on probation. During the process, the sub-system 

designer would be prompted to enter specifications such as GPA threshold for probationary status. The EH 

would build a formal specification AST, which could then be used to automatically create the executable code 

for the grade tracking system. 

In order to perform such intelligent functions, AI techniques must be incorporated into the EH to allow 

it to search the AST for areas that need to be specified. The EH should help an application engineer 

automatically find parts of the domain that were intentionally left unspecified because of the need for flexibility 

in the specification phase. For instance, a knowledge-based system used to specify a computer system would 

not know the specific power supply or hard drive required until a user is ready to design the system. The EH 

should be able to find these instances of unspecified information and prompt the user for input. The EH should 

iteratively add the knowledge provided by the user to the AST during this specification process. The EH should 

also allow the user to query the knowledge base to check the current specifications. 

9 



Once the formal specifications are complete, the KBSE system automatically transforms the 

specifications into a formal design [1]. From there, an automatic code generator creates the executable code. 

The knowledge based tool suite should also provide a means to test the final code against the requirements for 

validation purposes. 

This chapter describes research directly related to the Elicitor-Harvester. The key pieces that come 

together to implement the EH include Knowledge Base Data Dictionary, user interface, rule-based inference 

engines, rule bases, domain model, Abstract Syntax Trees (ASTs), REFINE™3 (the language used to implement 

the EH), Common Lisp©4 (for string manipulation and file I/O), the KBSE environment and supporting 

software (parse tools, grammar checker, POB save, domain definitions, Z notation), history maintenance, object 

reuse, and object (knowledge) transformations. 

Information directly related to EH is almost exclusively generated by AFIT research, which includes 

three previous Master's theses, published papers, and several formal and informal papers and drafts. Articles in 

the area of software reuse and AI were considered if they discussed the elicitation of domain knowledge or 

knowledge based AI techniques. 

2.1 Languages Used 

To demonstrate the effectiveness of an automated EH process, it was necessary to use a computer 

language that would provide the ability to manipulate information stored in the domain model. The majority of 

the software currently supporting the AFIT KBSE program is written in the REFINE language. REFINE 

provides many functions to store, create, and manipulate tree structures, which gives users great flexibility to 

define the meta-model structures for formal specifications. REFINE is written in Common Lisp, which has an 

extensive built-in library of functions that can be utilized in REFINE programs when needed. 

2.1.1 REFINE 

REFINE is a programming environment, which provides a programming language and a set of 

language processing tools (parser, compiler, etc.). The REFINE language is the first programming language to 

3 REFINE is the registered trademark of Reasoning Systems, Palo Alto, California. 

4 COMMON LISP is copyrighted by the Digital Equipment Corporation, 1984. 
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provide an integrated treatment of set theory, logic, transformation rules, pattern matching, and procedure. 

Because the language is executable and allows you to write programs at the specification level, the REFINE 

system supports programming with "executable specifications" [20], 

REFINE does not support most of the data structures that computer programmers are used to such as 

arrays, records, or linked lists, but allows the user to define object classes and maps between objects and types, 

which can simulate most data structures needed. A declared object class along with all its related maps can be 

thought of as a record structure similar to those used in Third Generation Languages (3GLs) such as Pascal, C, 

or Ada. Figure 2 shows comparable record declarations for Ada and REFINE. 

TYPE DepArray IS 
ARRAY (1..10) OF STRING 

TYPE Employee is RECORD 
ID       : Integer; 
Name     : NameType; 
Gender    : CHARACTER; 

var Employee 
var ID 
var Name 
var Gender 
var Dependent 

var PayRate 

: object-class subtype-of user-object 
: map (Employee, Integer) = {I|} 
: map (Employee, NameType) = {11} 
: map (Employee, symbol) = (II) 

s: map (Employee, set(string)) 
computed-using Dependents(x) = {} 

: map (Employee, Real) = (II) 

Dependents: DepArray; 
PayRate   : Float; 

END RECORD; 

var clerk   : 
var janitor : 

Employee = make-object('Employee) 
Employee = make-object('Employee) 

Clerk  : Employee; 
Janitor: Employee; 

ID(clerk) <- 1234 

Clerk.ID := 1234; 

Ada Record Equivalent REFINE structure 

Figure 2 Declaring a REFINE data structure 

If Employee is thought of as the object class, then the maps define the attributes of the object class. All 

attributes of the instantiated clerk and janitor objects in Figure 2 are initially undefined, which means a value is 

not currently mapped to the object class. REFINE supports sets and sequences of objects as shown in the 

Dependents attribute. REFINE also allows the designer to define the object-oriented concept of inheritance by 

declaring an Object-Class the subtype of another object class. The subtype will inherit all attributes from its 

ancestors up the inheritance chain. Object classes and maps are used extensively in AFIT KBSE code. They are 

the building blocks for Abstract Syntax Trees (ASTs), which are used to store object models, grammars, and 

even the source code itself. 
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2.2 The Abstract Syntax Tree 

Abstract Syntax Trees allow convenient and structured ways to store and represent data so it may be 

operated on with software. The nodes of the tree are defined by declaring a variable as an object class type and 

the connections between the nodes are defined by declaring a variable as a map between two nodes as shown in 

Figure 2. The Employee structure as declared is not an AST. If a user wants the Employee class to be an AST, 

the attributes must be identified in a Define-Tree-Attributes statement - then the Employee AST could be 

represented as shown in Figure 3. Notice the NameType node could also be declared as an object-class and 

could have tree attributes below it such as FirsfName, LastName, and Middlelnit mapped to strings. 

Define-Tree-Attributes('Employee, 
{'ID, 'Name, 'Gender, 'Dependents, PayRate}) 

Employee 

TT 

ID Name Gender 

Integer NameType symbol 

Dependents     PayRate 
J .   _J  

{string} Real 

Figure 3 Employee object class defined as an Abstract Syntax Tree 

When a structure has been declared as a tree, the REFINE tree traversal functions can be used on the 

tree to perform searches, copies, comparisons, or other operations on the nodes of the tree. Not all attributes 

must be declared as tree attributes in the Define-Tree-Attributes statement. Non-tree attributes can be accessed 

the same as tree attributes, but they will not be visited during the tree traversal functions. Since the AST is the 

main storage structure in REFINE, AFIT KBSE system employs them to represent all object models and 

grammars. 

2.2.1 Accessing nodes in the tre e 

While a REFINE session is running, only one object instance can be the "current node". The current 

node must be some object class type defined by the user or a REFINE defined object class. Attributes of the 

current node can be set, changed, or deleted with assignment statements. For example, if an Employee object is 
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the current node, then PayRate (current_node)    <-   14 . 75 would set the employees pay to $14.75. 

Important nodes such as the root of an AST can declared as global variables with the var declaration shown in 

Figure 2 as: 

var clerk : Employee = make-object('Employee). 

An attribute can be a set or sequence that can have new elements added to it.  E.g. if the clerk had a new 

baby, the Dependents set could be updated with this statement: 

Dependents(clerk) <- Dependents(clerk) with "John Jr." 

2.2.2 Saving the AST 

Often when using an object base represented in an AST, it is desirable to save the object base to a 

permanent file. REFINE provides the functionality to save objects and their tree and non-tree attributes to a file 

called a Persistent Object Base (POB). The POB file can be parsed back into main memory to work on in a 

later REFINE session. This ability is very important when working on a large domain that can't be finished in a 

single session. 

2.3 Z Specification Language 

Z is a formal specification language based on logic, sets, relations, and functions for stating what a 

system should do and in what order it should be done without stating how it should be done. Z, therefore, is 

considered to be a declarative language, as compared to a procedural or imperative one such as Pascal. In 

specifying a system in Z, issues concerning efficiency and implementability of the system are not of importance 

at the specification stage of software development. Z has become one of the most popular specification 

languages in recent years [15]. 

Z is used extensively in the AFIT KBSE system to specify various domains used as research examples 

and in software engineering classes. The two domains used in testing this EH research, the cruise missile and 

the school domains, are specified using Z notation. The Z descriptions are typed into a LaTeX text file template 

then loaded into an AST using Z parser and grammar developed at AFIT [16]. The EH uses these Z tools when 

reading in predicates typed in by the user to describe constraints and functions of a specification. 
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Of course, there are other formal methods for defining software specifications such as algebraic 

languages like Slang and Larch, but this version of EH uses Z since it is the basis for the existing AFIT toolset, 

and more complete domains are available for testing and analysis. 

2.4 The AFITKBSE System R epresentation 

Spec 
Universal 
Z Parser 

Uzed-to-DOM 
Transform 

J    DOM  \ 
—*\     AST    j 

Elicitor-Harvester 
Specification Tool 

DOM 
Spec 
AST 

Spec-to-Design 
Transform 

Design-to-Code 
Transform 

Refine 
Ada 
AST 

Figure 4 Transformation Process: From Formal Specification to Code 

The AFIT KBSE system uses many ASTs to store information at the various development stages. 

Figure 4 shows the ASTs representing the development stages and the processes that transform knowledge 

between the ASTs. The original Z-LaTeX Schemas are parsed into a Unified Object Model AST, which is 

transformed into a Domain Object Model (DOM) AST. The DOM is the general representation that can store 

any type of object-oriented domain no matter what formal specification language is used assuming the 

transformation software exists. The EH operates on the DOM and generally uses a subset of the DOM objects 

for the specification AST, although some components may be added or modified. The specification AST uses 

the same meta-model as the DOM. During the design stage, the specification stored in the DOM format is 

transformed into the Design Model, which represent a high-level design specification. During the DOM-to- 

Design transform, state transitions and attribute constraints are changed into functions, and Get and Set 

functions are created to retrieve and set the values for all class attributes. 

2.4.1 Domain Object Model 

The DOM, whose structure (meta-model) is shown in Figure 5, is the AST acted upon by the Elicitor- 

Harvester. The DOM is the generic object-oriented representation of a domain and stores all knowledge about 
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the given domain deemed important enough to maintain for resulting software applications. The DOM is 

typically populated by parsing in the Z Schemas that represent the domain knowledge through the Universal Z 

parser and the Uzed-to-DOM transform, but can also be populated by other means using REFINE functions or 

constructs called forms. 

GOMT-DomainTheory 

9 
dom-predef-types dom-global-const dom-global-types 

{DomTypeObj} 

has-name type-values 

{DomConstant} {DomTypeObj} 

has-primitive-classes has-aggregate-classes has-domain-associations 

{GOMT-Primitive-Class} 

1 ^y 
{GOMT-Aggregate-CIass} 

symbol [symbol] 

DomDerType 

V 

has-name     dom-private-types is-concrete 

symbol {DomTypeObj} boolean 

_£ 
{Association} 

I I 1 
has-preds        has-superclasses     lias-transitions 

{Predicate} {symbol} 

i 

{Transition} 

lias-aggregate-associations 

{Association} 

has-components 
~G~ 

DomBaseType 

has-gomt-states    has-events      has-GOMT-ops 
-I ,, I „ I  

ä-pr« 

{Predicate} 

{State} 

31 
{Events} {GOMT-Op} 

r 
has-datatype       has-states has-name 

symbol {symbols} symbol 

^=T 
dom-priyate-const        has-gomt-attrs lias-connections 

{DomConstant} {Attribute} {Connection} 

^> 

has-name 
 I  

symbol 

has-preds 
I     ill 

{Predicate} 

has-parameters           has-ops             has-name     has-datatype   has-avalue 
,     I       I I , I ' I     r     i     i 

[Parameter] 

Y 
{symbol} symbol symbol symbol 

associative-bject-name 

symbol 

has-type-multiplicity has-datatype 

TypeMultiplicity symbol symbol 

is-output        has-qualifler      has-name     has-mult    has-class-name     has-role      is-ordered 
_J_ 

boolean Qualifier 

3 
symbol Mult 

TypeSet TypeSequence 

has-name     has-datatype 
 I ,  , 1_ 

symbol symbol One 

X 
symbol symbol boolean 

Many Optional Plus 

has-int 

Specified [Spec-Range] 

I£ 
has-valuel      has-value2 

integer integer integer 

Figure 5 The Domain Object Model (DOM) AST Structure 

The DOM stores global information such as classes, global types and global constants below the 

Domain Theory (root) level. The class is the main component of the DOM and represents real-world entities or 

concepts. The most significant parts of the class are the attributes and the operations that act on the attributes. 

Classes also have states and events, which cause transitions between states. There can be two types of classes 

in a domain: primitive classes and aggregate classes. An aggregate class contains attributes whose data type is 

another class or set of classes in the domain. A primitive class has no references to other classes. Associations 

represent some relationship between classes.   Associations usually connect two classes and there is some 
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multiplicity represented in the connection; for example, a person can have zero, one, or more children. If a 

connection is a set, it can be ordered. 

The data type is another important part of the DOM. Attributes, constants, and parameters have data 

types, which can be base types or derived from a base type. Type definitions can be quite flexible, which is 

reflected in the complexity of the DomTypeObj subtree. A more thorough description of the DOM can be found 

in An Object Oriented Formal Transformation System for Primitive Object Classes [1]. 

All object classes in the domain AST are subtypes of some parent object and thus inherit attributes. 

The inheritance tree hierarchy is shown in Figure 6. The user-object is the standard REFINE object class from 

which all user objects can inherit. All objects in the domain AST except the root node and predicates are 

subtypes of the Obj-Object class and thus share many inherited attributes. 

user-object 

X £ 
GOMT-DomainTheory GOMT-Object 

i 
Unified-Object 

Obj-Object 

S" 

£ 
Predicate 

DomConstant      Attribute       GOMT-Op      Parameter     Event 

J ._! 

DomTypeObj Event-Map-Component Event-Map 

Transition     State      Connection      Association 

DomBaseType DomDerType 

X 

TypeMuItiplicity Qualifier Mult Spec-Range GOMT-Class 

TypeSet TypeSequence 

X ¥ 
GOMT-Aggregate-Ciass GOMT-Primitive-Class 

Figure 6 Domain Tree inheritance hierarchy 

2.4.2 Unified-Object Model 

The Unified-Object model is the AST structure that stores Z specifications when parsed from LaTeX 

text files, shown as the Univ Z AST in Figure 4. Predicates are subtypes of Unified-Objects, which are defined 

below the user-object in Figure 6. 
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2.4.2.1 Input Grammar/parsing 

REFINE provides good support defining input and output grammars. A programmer defines a series 

of productions that define acceptable patterns of text read from a file or input string. The grammar for the Z 

parser and the Unified-Object model was created for the AFIT KBSE system by Wabiszewski [16]. Once the 

domain is represented in the DOM, there is generally no more use for the Z parser. However, predicate objects 

have not yet been separately defined in the DOM because they are very complex. For the sake of efficiency, 

predicates from the Unified-Object model are grafted directly to the DOM object that contains them. 

Since predicates are used to identify such important specifications as constraints on attributes, states, 

events, and derived data types; pre and post conditions of operations; and guard conditions of transitions, a user 

of an EH would certainly need to create or change them while defining a specification. For this reason, the Z 

parser is employed by the EH to verify correct Z notation when an application engineer enters a new predicate. 

2.4.2.2 Predicates 

Z predicates are used in several contexts in the DOM.    Since Z uses many special logical and 

mathematical characters not recognized as ASCII text and the Z parser can only read from regular text, LaTeX 

has defined certain text strings as substitutes for special characters.   The following examples show the Z 

notation and the actual text strings accepted by the parser for several types of predicates. 

• Consider a derived data type called WeightType derived from type REAL. WeightType should consist 

of only positive real numbers and zero. The Z predicate is Vx : WeightType \ x > 0 and the parser 

accepts \forall  x   :   WeightType   |   x  \geq 0. 

• 

• 

Consider the attribute GPA (Grade Point Avg.) that must be between 0 and 4.0. This invariant 

constraint is defined with the Z predicate GPA>0.0 A GPA<4.0 and the parser accepts (GPA 

\geq  0.0   \land GPA  \leq  4.0). 

Consider an operation called CalcTotalTankWeight, which calculates the output parameter 

fuel_tank_weight by multiplying the amount of fuel with the fuel density then adding the weight of the 

empty tank. This post condition is defined with the Z predicate: 

fuel_tank_weight=fuel_levelxfuel_density+tank_weight   and   the   parser   will 

accept exactly the same thing because there are no special characters. 

Consider an operation in an aggregate class whose output parameter, ms, is the number of Master's 

degree students in a set of students that is the input parameter called advised. Student and GradClass 
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are primitive classes in the domain and member_o/is the association between them. This post condition 

can be defined with the Z predicate: 

ms = #{s: Student; c : GradClass \ s e advised A (S, C) e member _ of A c.program & DS} 
and the parser will accept  ms!   =   \#   \{   s:   Student;   c:   GradClass    |    (    (   s   \in 

advised?     \land   (   s,   c   )   \in member_of   )   \land c.program  \neq  DS   )   \}. 

Figure 7 shows the AST structure of the Z predicate: 

prop_wt! = fueltank.CalcTotalWt + jetengine.engine_weight 
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Figure 7 A Predicate AST parsed into the Unified-Object Model 

It becomes obvious, after seeing a few examples, that there is a fairly steep learning curve associated with Z. 

An application engineer would need to be well versed in Z to specify an application using the EH with the Z 

parser. A better option would be to use an expert system to translate natural language specifications into Z 

specifications, but that tool hasn't been built yet and is outside the scope of this thesis effort. 

2.5 Rule-Based Artificial Inte lligence 

The AFIT KBSE group has put great effort into building a general object model using REFINE ASTs 

to represent knowledge bases.     Although  much work has been done  in defining the  domain  model 
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representation, parsing in Zed specifications, and AST transformations, little research has been done to apply 

Artificial Intelligence (AI) techniques to aid knowledge acquisition or specification refinement functions. 

The Artificial Intelligence portion of a knowledge-based system consists of an inference engine and a 

knowledge base. Closely associated with the intelligent program is a database or fact base [7], In a rule-based 

system, the knowledge base is the set of rules and associated functions that act upon the database. The 

inference engine is the functionality that controls how the rules are checked and performs conflict resolution to 

decide which rule to execute if more than one rule is satisfied. The fact base or database maintains the current 

status of the reasoning process. During the EH process the database is the DOM specification tree or some 

other temporary object created to store information while performing rule-based reasoning. 

The structure of a rule is usually in the form of an implication in predicate logic, that is, if a set of 

premises in the antecedent evaluates to true then perform the actions given in the consequent. 

REFINE rules are structured like this: 

rule Modify-Name-Rule(X: object) 
chosen-option(X) = "Change Name" & mod-done?(X) ~= True 
—> Modify-Name(X) & mod-done?(X) = True & mod-name-done?(X) = True 

A REFINE rule requires a name and consists of a single transform statement, which is actually a logical 

implication.  The premises of the implication make up the antecedent and the action is the consequent, which 

often adds a new fact to the fact base.  The parameter (X: object) is the object passed into the rule from the 

inference engine.   Rules operate on the parameter object, which is generally part of a fact base or database. 

Since the rule can contain only a single transform statement, it is somewhat limited in the actions it can 

perform.   However, if the rule must perform several actions in the consequent or complex checks in the 

premises, the rule can call functions, which can be as complex as desired. 

Two different techniques are commonly used in rule-based systems: forward chaining, and backward 

chaining. The following sections discuss the differences between these two approaches. 

2.5.1 Forward Chaining 

The forward reasoning concept starts from a set of data collected through observation and works 

toward a conclusion. A set of rules is checked to see if the observed data satisfies the premises of any of these 

rules. If a rule is satisfied, it is executed to derive new facts that might then satisfy the premises of other rules 

to derive additional facts [7].  Since the reasoning progresses in a forward manner from the antecedent to the 

19 



consequent, and causes other rules to fire in a sort of chain reaction, the method is often called forward 

chaining. 

The REFINE language supports forward reasoning with built-in tree traversal functions and rule 

constructs, but backward reasoning is not supported. REFINE has built-in tree traversal functions called 

preorder-transform and postorder-transform, which essentially function as the inference engine. These 

functions take two arguments: the first argument is an instance of some object (usually in an AST), and the 

second argument is a list of rule names. These preorder-transform and postorder-transform functions will 

traverse the AST starting at the given node in a pre-order or post-order fashion, applying the entire list of rules 

to each node of the tree. REFINE attempts to apply the rules of the rule list in order and will continue looping 

through the rule sequence until no more rules can be successfully applied. At this point the traversal function 

moves on to the next object in the tree and iterates through the rules again. Each time a rule successfully 

executes (fires), the rule consequent will perform some action, which generally consists of some adjustment to 

an object in the database. 

2.5.2 Backward Chaining 

Backward reasoning is used instead of forward reasoning in the cases where little data is known about 

the problem up front. The process starts with little or no data defined for attributes in the database. Instead, a 

goal or list of goals (or possible conclusions) to be derived by the system must be provided [7]. The backward 

chaining process starts off with a goal that needs to be achieved and attempts to derive that goal with the 

following algorithm: 

1. Form a temporary stack initially composed of all top-level goals defined in the system. 

2. Set the goal to be traced equal to the top goal on the stack. If the stack is empty (i.e., all top-level goals 

have been tried), halt and announce completion. 

3. Gather all rules whose consequent satisfies the current goal. 

4. Consider each of the rules in turn: 

a. If all premises are satisfied (i.e., the value of each premise of the rule is defined in the database), then 

fire this rule to derive its conclusions. Do not consider any more rules for this goal. Its value is now 

given by the current rule's conclusion.   If the goal presently being traced is a top-level goal, then 
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remove it from the stack, and return to step 2.  If it is a subgoal, then remove this subgoal from the 

stack and return to the processing of the previous goal that was temporarily suspended. 

b. If a value for a premise is found in the database, but the database value does not match the premise 

value, this rule fails to execute. 

c. If any premise is not satisfied (that is, the premise value is not defined in the database), check for other 

rules whose consequent can derive a value for that premise. If such rules exist, then consider this 

premise value to be sub-goal, temporarily suspend the execution of the current rule, push the parameter 

onto the top of the stack, and go back to step 2 recursively. 

d. If step 4c is unable to find any rules to derive the specified value for the current parameter, ask the user 

to enter its value and add it to the database; then go to step 4a and consider the next premise of the 

rule. 

5.    If all rules that can satisfy the current goal have been attempted and all have failed to derive a value, 

then this goal remains undetermined. Remove it from the stack and go back to step 2 [7]. 

In general the backward chaining algorithm looks first to the database for information, then to other rules that 

may be able to derive the information, and finally, as a last resort, asks for input from the user. Instead of 

initially observing facts about an object or situation and specifying all the facts up front, backward reasoning 

allows the system to ask the user for facts when they become important in deriving results. This approach often 

proves to be more effective since the user is not burdened with attempting to enter all information about the 

situation that might prove useful. 

Backward reasoning uses the same rules in the same format as forward reasoning, but the rules are 

looked at backwards. The consequent of the rule is checked first to see if this rule is meant to solve the goal at 

hand. If it is an applicable rule, the premises in the antecedent are checked to see if they can be satisfied with 

available data. Since REFINE only provides built-in support for forward reasoning, a backward reasoning 

inference engine had to be built to support some of the EH capabilities. This inference engine is discussed in 

later chapters. 

2.6 Data Dictionary 

The data dictionary has become a very important tool for helping developers build applications from 

database definitions. Relational databases are currently the most popular method for modeling data and there 
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are many commercial database management systems (DBMS). One problem in developing applications from 

complex databases is that the developer has a very steep learning curve in understanding the database. A 

developer who has not been on the project during the data modeling phase must ask others who are more 

knowledgeable about the data to explain the data and relationships to him, or read through the development 

documents, which aren't always kept current. Therefore a large need exists for an interactive tool that can help 

the developer understand the database components and how they relate to each other. In a technical report 

about an intelligent Information Dictionary [13], a tool is described that implements a graphical user interface 

(GUI) using a hypertext type approach. The tool allows a user to mouse click on database table or relation 

between tables to see a description of the item. The user can also look at a list of the columns (attributes) of a 

table and view the description of a data column including the data type, unit of measurement, information 

source, constraints, and code meanings. By clicking on a relationship the user can view the to and from tables 

as well as the cardinality between them. As the user clicks on items of his choice, the tool harvests information 

from the database meta-data and the data dictionary tables and displays the retrieved information in a separate 

window. 

The AFIT domain model has many conceptual similarities to a data model. Since data dictionaries are 

typically a standard part of database developments and are useful in helping to identify the data elements, it 

makes sense to provide similar capabilities to a knowledge-based system. The benefits of interactively 

harvesting information from an AFIT domain tree and its associated dictionary should mirror those benefits for 

database applications. Since the domain model stores more than just data information, such as states, events, 

and operations, it may be better to refer to the dictionary as an object dictionary, domain dictionary, or a 

knowledge dictionary. This paper refers to it as a data dictionary, since most readers are familiar with that term. 

An EH is itself an interactive tool that must elicit specification requirements from the application engineer and 

harvest knowledge existing in the domain model. During the specification process, the application engineer 

will certainly need to view domain elements in a context that can be understood in order to make decisions 

about the application under development. Having a data dictionary can provide descriptive information about 

classes, attributes, associations, operations, states, events, and transitions to assist in the interactive 

communication between the EH and user. 
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2.7 Eliciting Information Thro ugh a User Interface 

One of the most difficult problems in software engineering is how to extract knowledge from users in a 

way that doesn't burden them with too many details, confuse them with a complicated set of instructions, or 

restrict them so much that they give up. Since the EH is a computer controlled process that needs extensive 

interaction with a human user, an approach to the human-computer interface needed to be studied. As with any 

interactive tool, an EH needs a well-designed user interface. Designing an effective interface is as much an art 

as a science and volumes have been published on the subject. The book The Art of Human-Computer Interface 

Design makes it clear how dissatisfied many computer users are with the existing interfaces [21]. Although it 

seems as though the jump from text-based to graphical interfaces was a big improvement, Theodor Holm 

Nelson, a software designer, writes: "Featuritis is a principal and well-known disease of software... You face a 

screen littered with cryptic junk...you try to understand what the icon means...The disease of featuritis is the 

unclarity and confusion that results from having too many separate, unrelated things to know and understand 

[21]." These opinions suggest that more pictures are not necessarily better than a few words if they are not 

designed intuitively. 

The user interface will certainly be a very important part of the EH tool. At the very least it should 

guide the user through the process of building the specification in a way that doesn't cause the user to get lost or 

confused. It should allow enough latitude so the user can move around within the tool to view the progress, 

save an interim specification, or make corrections. 

2.8 Other Relevant Research 

There is current research in the area of specification refinement. The University of Hawaii is currently 

working with an Army interactive combat simulation system called ModSAF (Modular Semi-Automated Forces 

[10]. Their work focuses in refining high-level specifications into more detailed specifications which can be 

formed into executable simulation scripts. Many of their refinement tasks are analogous to EH tasks. Their 

refinement process takes a user's high-level exercise training specification, a domain model of movement 

operators, and a database with terrain descriptions as input and produces a detailed exercise specification 

meeting the requirements as output. The domain model is basically a set of rule operators that add to the 

refined simulation script when all preconditions are met. 
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Their approach is a plan-based AI technique being applied to a very restricted domain. Even with a 

very restricted domain, the potential for combinatorial explosion of possible rule searches exists. They 

therefore used a hierarchical planning scheme that maintains rules at different levels of abstraction and operates 

on those subsets of rules in a controlled order. 

An approach like this may be useful for guiding an application engineer through the specification 

process with the EH. Essentially, the EH is a tool to help the application engineer refine the knowledge stored in 

a domain into a more descriptive set of specifications. Theoretically, it should be possible to create an 

automated process to transform the domain description into a low-level software specification with minimal 

human effort by dividing rules into related sets and breaking down the process into smaller sub-processes that 

look at a certain part of the domain model. It should be reasonable to start with more high-level specifications, 

such as identifying operations, classes, and associations required, and work down to the very detailed 

specifications like data type definitions, constraints on attributes, and multiplicities of associations. 

During the specification refinement process, it is often necessary or preferable to change or transform 

the structure of the object model into a different form that better fits the specification. Several data model 

transformations are explained in a paper by Blaha and Premerlani [12]. Some of the transformations explained 

include adding or removing constructs, restricting multiplicity, partitioning or merging constructs, composing 

associations, moving attributes among generalizations, and various other inheritance manipulations. When such 

a transformation takes place, the new form should be equivalent to the old form and no information should be 

lost. An EH user may not necessarily understand the need or reason for these transformations, so heuristics can 

be applied to find the needed transformations and recommend them to the user. 
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3 Requirements 

The purpose of this chapter is to define the requirements of an EH (Elicitor-Harvester) process that 

would fit into the framework of the object oriented knowledge base system being studied at AFIT. First, 

Section 3.1 discusses the thought processes that went into defining the requirements. Next, the inputs and 

outputs of the EH are described in the Section 3.2. The largest part of this chapter, Sections 3.3 and 3.4, focuses 

on the requirements of the functional capabilities, which include the actions allowed during the specification 

phase; the restricted or prohibited actions; and the clean-up process, which purges the unnecessary parts 

remaining in the specification. Section 3.5 discusses the interaction requirements between the user and the EH 

along with various possible approaches to a user interface. Following the User Interface Section is a section 

about the benefits and uses of AI (Artificial Intelligence) techniques in the EH process. Additional domain and 

specification AST (Abstract Syntax Tree) components required by the features of the EH are described. Finally, 

the sample domain models used for explanation, implementation, and testing are discussed. 

3.1 Philosophy Behind the Elicitor-Harvester Requirements 

The concept of an Elicitor-Harvester is still fairly new, so the requirements and expectations of such a 

process have not yet been well defined. As KBSE matures and commercial tools become available, the 

capabilities of an EH will certainly evolve so it smoothly integrates into the overall framework of the 

knowledge based tool set. The requirements described in this chapter are somewhat limited in scope to support 

this thesis effort. There is certainly room for further improvements and refinements that would improve 

performance or ease the use of an EH tool. Some suggested improvements are discussed in the 

Recommendation section of Chapter 6. 

Despite many philosophical discussions, it is difficult to agree upon what should or should not be 

allowed during the specification process. It is generally agreed that the EH process should not allow changes to 

the domain description, otherwise any application engineer could override the decisions of the domain expert, 

thus affecting future specifications built from that domain. On the other hand, it may be too restrictive to 

prohibit the application engineer from creating new objects not included in the domain, but required for a 

specific application. It also may be too restrictive to prohibit the modification of domain components into a 

form more suitable for the specified application. It is certainly not reasonable to expect a domain expert to have 
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enough foresight to anticipate every possible event or data element that may be needed for all future 

applications. 

One way to help protect the domain and allow flexibility for the application engineer is to create a 

distinct specification AST that is separate from the domain AST for each application developed. The 

application engineer would then have the freedom to modify existing objects and operations and create new 

ones where necessary as long as those changes do not violate constraints defined in the domain. 

Previous EH thesis studies at AFIT, Cochran [6], Wright [3], and especially Karagias [2], have 

attempted to define specific changes and transformations that should and should not be allowed during the 

specification phase. While this is certainly a desirable long range goal, the KBSE field is still too immature to 

nail down all the specific requirements of an EH tool. Since the specification phase is in the middle of the 

KBSE process, it is affected by the completeness of the domain description and it has the ability to cause 

problems downstream in the design and implementation phases. In relation to the domain AST, the EH should 

allow the application engineer to add or modify domain components if the knowledge represented in the domain 

model is not adequate to support the specification requirements. It should also be possible to clean up the 

specification AST by deleting unnecessary attributes, constants, data types, etc. at the end of the specification 

phase. 

With regard to the design and implementation phases, changes made to the model during specification 

could affect interface issues between resulting applications. For example, say an application engineer selects an 

object class named person from the domain model and uses it as is for application 1 (Al). A second application 

engineer creates application A2, which also uses the person class, except the engineer removes the address 

attribute and changes the data type for age to Months instead of Years. Later, it is decided that Al and A2 

should interface with each other; but because the two data structures storing the person records are different, the 

person records could not be easily merged. Even though both applications started with the same structure for 

person, some translation functions would now be needed between the two applications. 

It is probably impossible to prevent all scenarios of this type, and there is obviously a trade-off 

between specialization and standardization. The final decision between the two will depend on the management 

philosophy of the organization using the KBSE system. The multitude of such issues begs for an approach to 

specification that allows as much latitude as possible without violating deliberate domain constraints. Therefore, 
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an EH tool should provide great flexibility for the application engineer and leave the standardization issues to 

configuration management. 

A production EH tool should provide a knowledge base administrator the capability to define 

restrictions to be placed on certain specification functions. Similar to how a database administrator can set 

access privileges for database users, the knowledge base administrator could set the preferences of an EH to 

allow or prohibit certain specification abilities. With these thoughts in mind, the following sections define the 

requirements and scope of this version of an Elicitor-Harvester. 

3.2 Input and Output Requirements 

A good way to begin describing a process is to define the inputs and the outputs. The following 

paragraphs first look at the inputs, which consist of the domain AST, rules, the data dictionary; and inputs from 

the application engineers, and finish up with the outputs, which include the specification AST, user messages, 

data dictionary updates, and history database. Figure 8 shows the operating environment of the EH. 
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Figure 8 Elicitor-Harvester Environment 

3.2.I Elicitor-Harvester Inputs 

The EH receives inputs from the domain AST, the users or application engineers, rules, and the data 

dictionary. These inputs are explained in the following paragraphs. 
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3.2.1.1 Domain AST Input 

The main input to the EH is a domain AST, which stores knowledge about a particular domain. The 

representation used by the domain AST is generic enough to handle most types of domains. Although the 

sample domains available at AFIT are not complete domain descriptions, it is assumed that the domain being 

operated on by the EH is a reasonably complete model that has been thoroughly defined by a Domain Engineer 

with the aid of a Domain Expert. 

3.2.1.2 Application Engineer Input 

The application engineer, who will be called the user, is the person who operates the EH for the 

purpose of creating a specification for a new application. The EH communicates with the user through a user 

interface, which is discussed more thoroughly later in this chapter. The EH queries the user for information 

about the new specification and the user provides that information by keying in a response. 

3.2.1.3 Rules 

The rule base supplies the EH with derived values based on the objects passed to the rules and the data 

available in the domain and specification ASTs. Input from rules is usually indirect. A rule, if executed, 

generally updates some object or a field in a data structure, which is called a fact base. The EH can access 

those updated items and act on the new information accordingly. 

3.2.1.4 Inputs from the Data Dictionary 

The data dictionary stores aliases for names of components declared in the domain. Since a user may 

not know the names of the objects in the domain, the responses keyed in may not match the object names. If the 

user enters a term not recognized as a domain identifier, the EH queries the data dictionary for synonymous 

terms that may match the user's input. Since domain names are often abbreviated, the EH uses a set of rules or 

heuristic functions to generate reasonable abbreviations, which often help match user input to domain names. 

During the domain-engineering phase, domain items (data elements) should have their descriptions and 

synonyms stored in the data dictionary section of the domain. 
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3.2.2 Elicitor-Harvester Outputs 

The outputs of the EH include a specification AST for a particular application, a history database, and 

new entries to the data dictionary. Its outputs must also include informative messages and data requests to the 

application engineer via the user interface. 

3.2.2.1 Specification AST 

The main output of the EH is the specification AST. If the specification is defined properly and 

thoroughly, it should allow for an efficient automated transformation to the design phase. The specification tree 

should contain all associations, classes, attributes, attribute restrictions, operations, pre and post conditions, 

events, states, transitions, data types, and constants. Of course, not all details are specified at this stage. The 

specification identifies what needs to be done, but not necessarily how to do it. Particular data structures, file 

formats, algorithms to optimize performance, and temporary variables are a few examples of software that do 

not get defined until the design phase. 

There are two approaches to creating the specification AST. One way is to build it from the ground up 

by adding components as they are identified as necessary to the specification. The second way is to make a 

copy of the entire domain AST, make required changes, and then prune the parts not necessary for the 

specification. A disadvantage of the first approach is that it requires the maintenance of two ASTs during the 

EH process - the harvesting of the domain tree, and the building of the specification tree. The advantage is that 

the clean-up process is simpler because only a subset of the domain AST is added to the specification AST. 

The advantage of the second approach is that it only requires one AST (the copy of the domain AST), which is 

augmented with new components then pruned of the unnecessary items. Although the pruning (during clean up) 

is more extensive, the advantage of working with a single AST that contains everything probably outweighs the 

disadvantage of extra pruning. Here is the subtle kicker: as the application engineer adds to and modifies 

components in the domain model, the specification AST begins to contain items that should be checked and 

harvested for further refinements during the specification phase. By using two ASTs, the EH must perform 

searches on both the domain AST and the specification AST while harvesting for knowledge. This (first) 

approach can become an implementation nightmare. For this reason, the second approach was chosen. Objects 

in the AST need an extra flag or two to indicate when they have been selected as a required part of the new 

specification. These flags are also used during clean up to help identify which parts to prune from the tree. 
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3.2.2.2 History Database 

During EH processing, many decisions are made and many actions performed. There may be times 

when the user wants to change or delete one or more of those actions, similar to how an "undo" function works. 

There needs to be a way to log the activities performed during the EH process so that each time a specification 

item is selected, added, modified, or deleted, the description of that action is stored. The history database 

fulfills these requirements. It is a repository of EH activities stored in such a way that a sequence of actions can 

be viewed for editing. The long-term aspects of such a feature would allow a user to go back and undo specific 

actions by selecting from a list of prior actions. An entire specification could also be replayed, which would 

allow the application engineer to fine-tune the specification. Imagine, for example, that an application engineer 

has completed the specification process and finds out only a few minor changes are needed. The application 

engineer could access the history database, modify a couple of historical actions, and rerun the specification 

process from the history database without having to go through the entire EH process again. 

For this research, the history database has been limited to simply storing in chronological order the 

actions that caused a change to the specification AST and providing a mechanism to view it. Other 

functionality should be studied and is discussed in the recommendations section of Chapter 6 

3.2.2.3 Output to the Data Dictionary 

When the user keys in identifying names of domain tree objects desired for the specification under 

construction, there are cases when no matching synonym is found in the data dictionary. It is desirable for the 

EH to have the ability to add new synonyms to the data dictionary for future use. The EH would appear to 

"learn" new synonyms for the domain objects. This learning functionality is outside the scope of this research 

and is discussed in the Recommendations section of Chapter 6. 

3.3 Functional Requirements 

Now that the input and output requirements have been defined, the following sections discuss the 

functions allowed and prohibited during the transformation from domain AST to specification AST. 

3.3.1 Operational Capabilities 

This section outlines the actions an EH should be able to perform. In describing capabilities of the EH 

a method similar to one describing DBMS (Database Management System) functions will be used. The actions 

30 



allowed on database tables are Create, Retrieve, Update, and Delete (CRUD). These terms, which have been 

borrowed and changed to Create, Select, Modify, and Delete, describe the actions allowed on AST components 

and are defined below. As mentioned before, a knowledge base administrator should be able to set the 

restrictions for many of the functions depending on the management philosophy of the using organization. 

Therefore, an additional term called "Restrictable" is also defined. A generic term is needed to identify a part of 

the AST that could refer to a class, attribute, state, constant, data type, or any other part of the domain. Since 

the word "components" can lead to ambiguity, the word "item" is used instead. 

• Create - Ability to create a new item that needs to be added to the specification. 

• Select (Retrieve) - Ability to use the item as defined in the domain model. All items are assumed to 

have the ability to be selected unless otherwise stated. 

• Modify (Update) - Ability to change the item by applying some transform to the item such as merging 

or generalizing as described by Blaha [12]. Modify also includes adding, deleting, or changing 

anything in the subtree of the item. For instance, if the data type of an attribute within a class is allowed 

to be changed (not restricted), then that is considered an allowable modification to the class. 

• Delete - Ability to remove an item from the specification tree during specification or clean-up 

functions. 

• CAUTION! If not performed properly many Delete functions can cause problems because the item 

being deleted may be referred to in other parts of the domain. Therefore, these functions should be used 

at the end of the specification phase during the clean-up process to ensure necessary items are not 

deleted in the specification phase. 

• Restrictable - This means an item can be restricted from create, modify, or delete actions by the 

knowledge base administrator. Management may decide certain functions should be restricted to 

maintain consistency between different applications developed from the same domain. 

3.3.1.1 Primitive Classes 

• Create - New classes can be created; however, this may be a restricted function if the domain is 

considered complete. In some cases, a new class can be created as a sub-class in an inheritance tree. 

This approach is a good way to add attributes or items to a class, which may be the preferred alternative 

to changing an existing class. 
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• Modify - Classes may be modified by changing items in the class subtree. These changes can include 

adding, modifying, or deleting the class name, type declarations, constants, attribute names or types, 

predicates (invariants), operations, states, transitions, or events. Modification of some or all items may 

be restricted. 

• Delete - Classes may be deleted from the specification AST if they are not used in the specification or 

if the deletion results from merging two classes in a transformation. This function may be restricted. 

3.3.1.2 Class Attributes 

• Create - New attributes can be added to a class. This function may be restricted if the chosen 

alternative for extending classes is to inherit new sub-classes. 

• Modify - The name or type of a class attribute can be modified. Modify functions can be restricted. 

• Delete - Attributes can be deleted if not used in the specification. 

3.3.1.3 Class Operations 

• Create - New operations on a class can be created. 

• Modify - An operation can be modified by changing the name; adding, changing, or deleting 

parameters or predicates (pre or post-conditions); and/or changing the sub-operations. These functions 

can be restricted. 

• Delete - Class operations can be deleted if not used in specification. 

3.3.1.4 States 

• Create - New states can be created since new attributes are allowed to be created. The state of an 

object depends on its attribute values. This function can be restricted. 

• Modify - States can be modified by changing the name, or by adding or changing the predicates (state 

invariants). This function can be restricted. 

• Delete - States can be deleted if the attributes identified in the invariants have been removed from the 

specification. 
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3.3.1.5 Events 

Since events are defined in classes, the mapping between sending and receiving events must be 

specified at a higher level. These event mappings will need to be defined at the domain level after all class 

events have been specified. 

• Create - New events generated by an object or events to which the object or responds can be created. 

If the object must respond to the new event, states and transitions associated with the new event must 

also be created or modified. 

• Modify - The name, parameters (arguments), and predicates (parameter constraints) may be changed. 

These functions can be restricted. 

• Delete - Events can be deleted from the specification tree if not applicable, but great care needs to be 

taken to assure associated states and transitions are properly handled. 

3.3.1.6 Transitions 

• Create - New transitions will need to be created if new states or events have been added. 

• Modify - Transitions can be modified by changing the predicates (guard conditions) or operations 

(actions). This function can be restricted. 

• Delete - A transition may be deleted if any of the following do not appear in the specification: caused- 

by-event, from-state, to-state, attributes identified in the predicates. It may be wise to produce an error 

message if items are missing from the transition sub-tree. 

3.3.1.7 Parameters 

• Create - New parameters can be created when added to the parameter list of an operation or event. 

• Modify - The name, type, and output flag can be changed. Modify functions can be restricted. 

• Delete - Parameters can be removed from the parameter list of operations or events. 

3.3.1.8 Predicates 

• Create - New predicates can be created when adding constraints to an event, guard conditions to a 

transition, invariants to a class, or pre and post-conditions in an operation. Restrictions may be placed 

on predicate creation and will depend on the restrictions to the items of which the predicate is a part. 
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• 

New predicates should be checked for correctness to be sure that the variables in the predicate 

correspond to existing domain items. 

Modify - Since many predicates define constraints on the domain model, the only changes allowed to a 

predicate should be ones that further restrict the constraint for a particular application. It may be very 

difficult to ascertain whether a change to a predicate constitutes further restriction or not. Because 

predicates are quite complex and flexible, the AI abilities would have to be very sophisticated to decide 

if a change resulted in further restriction. This degree of sophistication is beyond the scope of this 

research, therefore the designer of an EH may choose to prohibit modification of constraint predicates. 

In some cases, constraints can be implemented by restricting the range of a data type, which may be 

preferable over a predicate. Changing pre-conditions and post-conditions in operations is allowed in 

order to allow refinement of functionality. Modified predicates should also be checked for correctness 

to be sure the variables in the predicate correspond to existing domain items. 

Delete - A predicate can be removed during clean up if none of the items named in the predicate remain 

in the specification. Predicates defining domain constraints should not be deleted if applicable to the 

specification. 

3.3.1.9 Data Types 

Data types can be defined at the global level (dom-global-type attribute of GOMT-DomainTheory) or locally 

within the class (dom-private-types attribute of the GOMT-Class). An application engineer should have the 

ability to move data type definitions between the local and global levels if desired. If more than one class 

declares the same data type, it would make sense to move the type declaration up to the global level. On the 

other hand, a global data type should be moved down to the class level if it is only used in one class. 

• Create - New data types can be created. It may be useful to create derived or sub-types to help define 

constraints. These definitions can sometimes replace predicates such as class invariants. 

• Modify - Data types can be modified by changing name, the enumerated list of type values, the 

predicate (usually the data range), and type multiplicity. Data types are often named but not defined in 

the domain model, and therefore should be defined more clearly in the specification if possible. These 

functions can be restricted for certain data types, which the domain engineer wants to keep as is. See 

Section 3.3.2 for more details. 

• Delete - Data types can be deleted during clean up if not needed in the specification. 
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3.3.1.10 Constants 

Constants, like data types, can be defined at the global or class level; the same issues mentioned under 

data types also apply to constants. It is possible that two or more constants could have the same name and may 

or may not have the same meaning. The EH will depend on the application engineer to decide whether to move 

constants between global and class levels. 

• Create - Constants can be created if the application engineer finds it useful. 

• Modify - Constants can be modified by changing the name, type, or value. Since constants can be 

declared in the domain model with just a name, the type and value can and should be added during the 

specification phase if possible. These functions can be restricted for certain constants the domain 

engineer wants to keep as is. See the Section 3.3.2 for more details. 

• Delete - Unneeded constants can be deleted from the specification during clean up. 

3.3.1.11 Inheritance 

Inheritance can be used as a method for extending class definitions by adding a new sub-class instead 

of modifying the existing class. This alternative may be preferred in cases where items need to be added to a 

domain class, but management wants to maintain consistency of the domain class definitions. 

• Create - New sub-classes that inherit all items from the super-class can be created, and can have more 

items added to them in order to meet the specification requirements. 

• Modify - Many transforms can be applied to inheritance structures [12]. An abstract super-class may 

have several sub-classes representing choices for the application engineer. Once the choices are 

selected, the abstract class may no longer be necessary and can be deleted from the tree leaving just the 

chosen sub-class in the specification. Class attributes or operations can also be moved between the 

super-class and sub-classes, but this function can be restricted. 

• Delete - An inheritance class can be deleted if not needed in the specification. 

3.3.1.12 Associations 

• Create - Associations between classes can be added to allow description of relationships that were not 

thought of or included in the domain model. New associations must have the multiplicities defined, as 

well as attributes if necessary. 
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• Modify - Attributes of the association can be added, modified or deleted. Multiplicity of existing 

associations can be tightened, but not made less stringent. See Section 3.3.2. 

• Delete - An association need not exist between two classes in the specification if not required in the 

application, so it can be deleted. 

3.3.1.13 Aggregate Classes 

Aggregates are classes that contain other classes. Aggregation is a special type of association that 

models the has-a relationship; i.e., the class has a component. The relationship is modeled in the AST with the 

has-components and has-aggregate-associations attributes. Aggregates may also include regular association 

definitions between classes in the domain. These classes are sometimes called system classes. 

• Create - New aggregates can be created. The new aggregate can be the result of assembling several 

parts of the domain, or creating a sub-class of an aggregate class, which inherits the components of the 

parent class, plus adds more items to further specialize the aggregate. 

• Modify - Aggregates can be modified, since the aggregate is made up of many other items that can be 

modified. Classes, associations, and operations can be added to or removed from the aggregate as long 

as no prohibited or restricted functions are performed. 

• Delete - Aggregates can be deleted from the specification if not needed. 

3.3.1.14 Aggregate Operations 

Whereas primitive class operations have limited scope to the class in which they are defined, aggregate 

operations can perform actions on multiple classes. The EH tries to identify aggregate operations early in the 

specification process in order to infer the classes and associations needed for the specification. 

• Create - New aggregate operations can be created. 

• Modify - Aggregate operations can be modified by changing the name; adding, changing, or deleting 

parameters or predicates (pre or post-conditions); and/or changing the sub-operations. These functions 

can be restricted. 

• Delete - Aggregate operations can be deleted if not used in specification. 

3.3.2 Prohibited and Restricted Actions 

With the EH philosophy in mind, the actions restricted or prohibited for this EH are outlined. 
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• Predicates in classes often describe invariants intended to restrict attribute value ranges. When these 

constraints are restricted, they should not be allowed to be relaxed during the specification phase. 

• Multiplicity of associations defined in the domain cannot be expanded. E.g. a one-to-one relation 

cannot be expanded to a one-to-many relation. An association can be constrained further. E.g. a zero- 

or-one-to-many can be re-defined in the specification to be one-to-three. 

• Constants with defined values generally should not be changed and can be restricted. However, if a 

constant with the same name but different values or data types appears in more than one class, the user 

will be allowed to move the constant to the global level and choose between the two values. 

• Constants, data types and other items are sometimes carefully defined by the Domain Engineer with the 

intent that the item should not be changed during future phases. Such cases can be identified in the 

domain model to prohibit the EH from changing those items. See Section 3.7 for recommended AST 

changes to support this requirement. 

3.4 Clean-up Process 

. After the application engineer finishes with the specification, many parts of the AST that are 

unnecessary for the application being specified still remain. These extra parts are removed from the 

specification AST during the clean-up process. Depending on the kind of item being removed, the EH checks 

the parts of the domain that may use the item to make sure a required item is not deleted. During the clean-up 

process, the user is asked to verify the proper declaration level for data types and constants (global vs. local). If 

inheritance structures exist, decisions about abstract vs. concrete classes and placement of their attributes are 

made. After events have been cleaned up and only required events remain, the mappings between the from 

events and the to events are made. 

3.5 User Interface 

Ideally, the user interface should help the user be as efficient as possible. Efficiency means that the 

user gets a lot of work done with a small number of key strokes and mouse clicks. The interface should guide 

the user through the specification process in such a way that the user is not confused and the EH gets the 

information needed. The most common and accepted way of attaining efficiency in modern applications is with 

a Graphical User Interface (GUI), with which a user can make selections from menus and lists by clicking the 

mouse cursor on the selected items. Of course, many GUI development tools exist today and the Intervista GUI 
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software is provided with the REFINE package, but developing GUI interfaces can be very time consuming. 

Since the main thrust of this research of building a smarter EH methodology does not require a GUI, and after 

considering the time needed for the various options, a text-based interface was chosen. The basic requirements 

of a text-based interface are the ability to accept user input from the keyboard and print important information 

to the screen. 

3.6 Artificial Intelligence Tec hniques Employed 

AI techniques are utilized in the EH to help remove the burden of the many of the specification details 

from the application engineer. AI is mainly manifested in rule-based reasoning and heuristic functions. Rule 

bases have been created as a way to apply actions to the specification tree. Because there are so many different 

types of objects in the AST, trying to uniquely process each type of object would cause the source code to get 

very messy. Rule bases help simplify the code and keep it more structured. Heuristics are "rules of thumb" that 

are applied to infer the best action from the given circumstances. Heuristics have been implemented in the rule 

base and in algorithmic functions. The representation of the knowledge base as an object oriented AST and the 

search methods used over the tree also fit into the category of AI. These techniques are used in the EH to match 

terms in the data dictionary, select objects from the domain tree for use in the specification tree, make 

recommendations to the user, validate modifications and check restrictions, and help perform the clean-up 

functions. 

3.7 Modifications to ASTs 

Additions to the domain and specification AST were determined to be helpful to the EH process. 

• Section 3.3.2 describes how some items of the domain need to be marked as restricted from change. To 

support these cases an extra attribute is needed in the GOMT-Object class to indicate whether this 

particular item is allowed to be changed or not. The Domain Engineer can set this attribute to prohibit 

the EH from making changes to an item. 

• The data dictionary components are needed in the domain to provide the ability to store the string name 

of the domain element, multiple synonyms, a description of the domain element, and a pointer to the 

domain object to which the element refers. 

• As mentioned in the last paragraph of Section 3.2.2.1, an additional boolean flag is needed for all Obj- 

Objects to indicate whether this item has been selected for use in the specification. 
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•     A Library-Ops class is needed in the domain AST to accommodate pure operations (general operations 

that don't belong to any particular class in the domain, such as math functions like SquareRootix)). 

3.8 Sample Domains 

In order to test the EH functions, an actual sample domain and specification should be used. It is 

preferable to use as close to a real world example as possible. During previous research at AFIT, domains 

modeled in object-oriented architecture have tended to fall into different categories. Domains that model 

something to be built are aggregation oriented, such as the CRUISE MISSILE domain, which consists of the 

various parts of a cruise missile. Some domains are biased toward states and events, such as the TRAFFIC 

LIGHT INTERSECTION model. Some models consist of many primitive classes related through associations 

with domain level operations acting on multiple classes, such as the SCHOOL and TRAIN domains. Since it 

was difficult to come up with a single domain that could exercise all parts of the EH, it was necessary to use 

two domains as examples. The AFIT KBSE group had several incomplete domains already defined. Since 

creating a new domain can be very time consuming, the pre-existing AFIT domains were used. The 

incompleteness of the domains actually helped this research because it was easy to come up with examples for 

most types of additions and modifications. 
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The SCHOOL domain, shown in Figure 9, was chosen as one example domain since it is fairly 

extensive and there existed a well-defined specification for a scheduling application. The SCHOOL domain was 

used to test the actions performed on primitive classes, and their attributes, constraints, constants, data types, 

and operations. The SCHOOL domain helped exercise the inheritance functionality since Faculty and Student 

classes are subtypes of the Person class. It was also used for associations and pure operations. Since there is no 

has-parts aggregation in the SCHOOL domain, the CRUISE MISSILE domain, shown in Figure 10, was used 

when aggregate manipulation functions needed to be tested. For more detailed information about the sample 

domains, refer to the Z-schemas in Appendix B. 

Cruise Missile 

I 
Airframe Propulsion 

System 

I 
Throttle Jet Engine Fuel Tank 

Figure 10 Class Hierarchy for the Cruise Missile Domain 

3.9 Requirements Summary 

This chapter described several components required for an intelligent, user-friendly Elicitor-Harvester 

tool. The domain AST, data dictionary, rule bases, inference engine, fact bases, and history database all need to 

be orchestrated within the user interface to provide the user with a clear and intuitive way to build 

specifications. The input and output requirements were defined along with the actions allowed on the various 

types of domain items. Chapter 4 discusses the approach used to integrate the components of the EH into a 

useful, interactive tool. The design details used in building the EH tool are described along with the philosophy 

behind them. Chapter 5 discusses the functionality actually implemented, some of the difficulties encountered 

during development, and an evaluation of the implemented tool. 

40 



4 Design 

Since the area of eliciting and harvesting of a domain model is still in the early stages of research, the 

development of an EH (Elicitor-Harvester) tool could not follow the traditional waterfall method of the 

sequential requirements, design, implementation, and testing stages. The requirements in Chapter 3 were kept 

fairly general because it was not known if this research effort could meet those requirements. Approaches to 

user-computer interaction were very vague, and attempts to lay out a design usually brought out more questions 

than answers. Given this scenario, it would have been imprudent to try to completely design an automated EH 

process without knowing whether many of the details would work. As a better alternative to a waterfall 

approach, it was decided that iterative prototype development would be more effective. 

The main philosophical point kept in mind during each design decision was always to try to use the 

knowledge built into the domain or try to infer information from the domain before asking the user for input. 

The EH should take as much burden off the user as possible by limiting the number of choices when an input is 

requested. This chapter discusses the approach used to design the EH. 

4.1 Data Dictionary Design 

An application engineer may not always know the names of all domain objects, so when asked to enter 

the name of a domain item, the user may type in a different name. Further complicating the problem are the 

various methods of naming identifiers. Names are often abbreviated (prod_ID instead of product identifier) 

and multiple word identifiers may have no space between them or may have underscores, hyphens, or dots (for 

example, prod-id, prod.ID, ProductID). Realizing that identifier ambiguity could pose a problem during user 

interaction with the EH, the use of a data dictionary was considered. This section discusses the design of the 

data dictionary structure, the associated rules, functions, and fact base, and its uses. 

4.1.1 Data Dictionary Structure 

The AFIT KBSE system had no data dictionary capabilities except an unused description attribute that 

could be used to store a text description for each object. Therefore, to aid the application engineer during the 

specification process, a simple data dictionary structure, as shown in Figure 11, was built to store data elements 

corresponding to domain items. As part of the feasibility evaluation, functions were written to populate the data 

dictionary with the data element name, synonyms of the name, an optional description, and a pointer to the 
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actual domain object described. Ideally, a data dictionary would be populated during the domain-engineering 

phase. The system should be able to automatically create a data element for each domain item, but the domain 

engineer should supply descriptions and synonymous terms for each item. Later, during EH processing, the 

data dictionary can be searched to help match names entered by the application engineer to domain objects. 

Data-Dictionary 

Y 
has-elements 
 I  

{Data-Element} 

~V 

has-name-string 

string 

has-synonyms 

{string} 

has-descrip 

string 

member-of 
 i 

{Obj-Object} 

Figure 11 The structure of the Data Dictionary class 

4.1.2 Handling User Inputs 

To help match names to actual domain objects, a small set of rules was written to act on a fact base 

called Aword as shown in Figure 12. When the EH needs to match a word from the user's input to a domain 

object, the set of match rules are used to find objects with similar names. When the user inputs text, the EH 

Aword 

77 
whole-name 

i  

string 

abbreviations 
 I  

{string} 

object-seq 

[Obj-Object] 

has-sel-objs 

Selected-Obj 

2 
perfect-matches 

{Obj-Object} 

syn-matches 

{Obj-Object}      {Obj-Object} 

abbrev-matches 
 I  

partial-matches 

{Obj-Object} 

has-an-obj has-action 

Obj-Object symbol 

Figure 12 The Aword structure. The fact base used when matching input names to domain objects 

must parse the text string and store it in the Aword structure for further processing. The string of text, which 

can be a single word or multiple words, is read into a string and passed to the Sthng-to-Seq function. The 

String-to-Seq function removes commas from the string, separates the words into a sequence of strings, then 
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Stores them in a sequence of Aword objects called Phrase. Some text processing functions, such as String-to- 

Seq, employ calls to Common Lisp functions since REFINE is not very rich in string and character 

manipulation capabilities. The REFINE system is generally case insensitive, but when trying to match strings, 

the case becomes important. 

Once the user's input has been parsed into the sequence of Aword structures, the EH calls apreorder- 

transform function to traverse the data dictionary while applying rules to the data elements. The function 

essentially searches the data dictionary for domain object names that match the input word in various ways. 

There are four basic ways the input can match a data element. Ordered from most desired to least desired, these 

possible matches are: a perfect match, a synonym match, an abbreviation match, or a partial match and their 

descriptions are given here: 

1. Perfect Match - The input string exactly matches an element name in the has-name-string attribute of 

the data dictionary. 

2. Synonym Match - The input string exactly matches a name from a has-synonyms attribute of the data 

dictionary. 

3. Abbreviation Match - An abbreviation created from the user input matches the name or synonym of a 

data dictionary element. The abbreviations are created from the user input by using the first three, four, 

five, or six letters of the word (if the word is at least two letters larger than the abbreviation); and an 

abbreviation is created by removing all vowels except for a leading vowel. All abbreviations must be at 

least two characters long. 

4. Partial Match - The user input or abbreviation matches a sub-string of a name or synonym in the data 

dictionary. The Lisp function called Search is used to make these comparisons, and each time a sub- 

string is matched, a counter is incremented, which can be used to measure how good a match it is. 

When a matching data dictionary element is found, the domain object that is pointed to by the member-of 

attribute of the data element is added to the set of matching objects in the Aword structure. Each object in the 

matched sets in Aword are candidate objects for the user with the perfect matches being the most likely 

candidates and the partial matches being the least likely. 

4.1.3 Using the Data Dictionary 

Often during processing the EH will request information from the user such as the name of a domain 

item needed for the specification or a predicate for a new operation. The EH needs to ensure that the objects it 
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selects are indeed the same objects the user wants for the specification. The function Match-Word is called 

which creates the Aword structure and starts the rule-processing engine. The rules add objects to the Aword 

structure that match the user input in the four ways mentioned earlier. The set of matched objects is passed to 

the Sequence-Objects function where they are sequenced by object type in preparation for a pretty print to the 

screen. The list of objects is passed to the Print-Obj-List function, which prints the list of candidate object 

matches to the screen as shown in Figure 13, and asks the user to choose the proper object. 

Enter one of your desired OUTPUTS or return key to return to Main Menu 
fuel_level 

(0) None of these 
(1) CLASS: FuelTank 

HAS-ATTRIBUTES: tank_sim_time;  input_flow_rate;  output_flow_rate; 
fuel_level;  capacity;  tank_weight;  fuel_density; 
fuel_tank_weight; 

(2) CONNECTION: JetPropulsionSys.fueltank : FuelTank 
(3) ATTRIBUTE: FuelTank.fuel_level : Real 
(4) ATTRIBUTE: Throttle.actual_flow_rate : Real 
(5) ATTRIBUTE: Throttle.maximum_flow_rate : Real 
(6) ATTRIBUTE: JetEngine.current_fuel_flow_rate : Real 
(7) ATTRIBUTE: JetEngine.maximum_fuel_flow_rate : Real 
(8) ATTRIBUTE: FuelTank.fuel_tank_weight : Real 
(9) ATTRIBUTE: FuelTank.fuel_density : Real 
(10) ATTRIBUTE: FuelTank.output_flow_rate : Real 
(11) ATTRIBUTE: FuelTank.input_flow_rate : Real 
(12) ATTRIBUTE: JetPropulsionSys.prop_fuel : Real 
(13) OPERATION: DetermineFuelWeight 

HAS-PARAMETERS: fuel_weight; 
(14) OPERATION: CalculateNetFlow 

HAS-PARAMETERS: net_flow_rate; 
(15) OPERATION: InitFuelTank 

HAS-PARAMETERS: 
(16) OPERATION: LoadFuel 

HAS-PARAMETERS: fuel_load; 
(17) INPUT PARAMETER: flow_rate  IS: Real 
(18) INPUT PARAMETER: fuel_Weight  IS: Real 
(19) INPUT PARAMETER: fuel_load  IS: Real 
(20) OUTPUT PARAMETER: fuel_tank_weight  IS: Real 
(21) OUTPUT PARAMETER: fuel_weight  IS: Real 
(22) OUTPUT PARAMETER: net_flow_rate  IS: Real 
(23) OUTPUT PARAMETER: overflow_event_time  IS: SIMTIME 

Enter the number of an object you will want to to use for 'fuel_level'=> 

Figure 13 List of domain objects matching the user input for fueljevel. 

The user enters the item number desired and the number is returned to the calling function where the chosen 

object can be used as needed. Figure 13 shows many objects in the CRUISE MISSILE domain found to be 

possible matches for fueljevel, even though a perfect match was found in choice (3). The other objects were 

partial matches that had a sequence of at least two characters in common with fueljevel. These results 

demonstrate the usefulness and feasibility of a data dictionary. However, on large domains, this method of 

displaying all matches causes the list to be too long, which detracts from the ease of use of the interface.  This 

44 



version of EH does not use the full power of the matching schemes, but simply lumps all four matching sets 

together when executing. A fuller version of the EH would check the matched sets in sequence in an effort to 

decrease the number of choices for the user. 

4.2 User Interface Design 

The interface functions as an integral part of many sub-functions of the EH, and as such cannot be 

described as a component or separate module of the EH tool. Since the interface is basically the user's window 

into the EH, the screens controlled by the interface are used to guide the reader through the functionality of the 

EH. Describing what EH does with the information keyed in and how it derives the information displayed on 

screen should aid the reader in understanding the EH process. 

The user-computer interaction basically consists of the EH printing inquiries to the screen prompting 

the user to key in required information. The main purpose of the user interface is to methodically pull 

information from the user in a way that elicits input from the user only when the knowledge cannot be harvested 

from the domain model. The process should flow in a reasonable way such that the user understands what 

needs to be entered. 

Several standard functions were built to give the screen displays a common look. Often the user 

directs the control flow of the process by choosing one option from a menu or list of actions printed to the 

screen, as shown in Figure 14. Other times the user is asked to pick from a list of objects to be acted upon, as 

shown in Figure 13. Two functions, Print-String-List and Print-Obj-List, take a sequence of strings or objects 

respectively and an informational message string as arguments. The functions print out a numbered list of 

choices, print out the message string, which usually instructs the user what to do, and return the number selected 

by the user. Choice (0) is consistently printed as "None of these" in all lists printed to the screen. By choosing 

(0), the user can usually back out of this screen gracefully if it's not where he wants to be or none of the other 

choices are satisfactory. Print-Obj-List calls the Obj-Description function, which formats a short description of 

each object in the list. Figure 13 shows the format that Obj-Description creates for several object types. 

4.3 Starting Up EH 

The EH takes the root node of a domain AST (i.e. a GOMT-DomainTheory object) as its only 

argument.   The input argument can be the root object of the entire domain AST in the case when a new 
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specification is being created, or it can be the root of a partially finished specification that was saved from a 

previous session. The main driver function is named EH and is designed as a while loop that executes until the 

user chooses the "EXIT Elicitor-Harvester" options from the main menu. Before entering the loop, the Init- 

Spec-Tree, Fill-Data-Dict, and Print-Welcome-Message functions are called. Init-Spec-Tree creates a class 

called Op-Library that is used to store pure functions5. 

*** Welcome to the Elicitor-Harvester! *** 

The spec is: #4<Missile - a GOMT-DOMAINTHEORY> 
Your Working Specification is: Missile 

You will be asked a series of questions about your specification 
Type in your responses giving names of domain objects if possible. 
If you're not sure of the domain name, enteir one' you think is close. 

MAIN MENU 

(0) None of these 
(1) EXIT Elicitor-Harvester 
(2) Specify System INPUTS 
(3) Specify System OUTPUTS 
(4) Specify INTERNAL UPDATE functions of System 
(5) Perform CLEAN-UP Functions 
(6) SAVE Sub-Menu 
(7) PRINT Specification 

Choose the Specification function you want to perform => 

Figure 14 The start up message and Main Menu 

When the EH tool starts up with a new specification, the initialization rules named init-eh-ruleset 

perform several tasks on the domain objects. The eh-used and eh-pred-used attributes are reset; the connection- 

to-class maps are set for GOMT-aggregate-class objects; and duplicate global data types6 are purged from the 

AST. The Fill-Data-Dict function will execute only for a new specification that doesn't have a data dictionary 

defined yet. 

5 Pure functions are operations that simply act on the input arguments and return some value. Pure functions differ from domain operations 
in that they don't act on domain attributes. Pure functions are often mathematical functions such as SquareRoot(x), which takes a number 
as its input argument and returns the square root of the number. 

6 Global data types are stored in the dom-global-types map as DomTypeObj objects. At the time of this research, all data types loaded 
through the Z parser were put in the global area. Therefore, data types declared in more than one class would end up as duplicates in the 
domain. 
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The interface starts by showing the main menu as shown in Figure 14. Choices (2), (3), and (4) take 

the user to the heart of the EH functionality where domain items can be created, modified, and selected for the 

specification. Choice (5) helps the user "clean up the specification" by moving constants and data types from 

the global level to a private level within a class if desired. Choice (6) brings up the sub menu of save options, 

and Choice (7) prints the objects currently selected for use in the specification. 

4.4 Specifying Domain Items 

Options (2), (3), and (4) are used for specifying the required parts of an application. 

• Option (2) allows the user to identify the domain items needed to accommodate new data that is to be 

input to the application. Data is usually put into an application through input operations like set- 

attribute functions. Option (2) helps the user choose which operations can accept input data and which 

attributes are required to store the new data. For example, an input could be the insertion of a new 

record into a database. 

• Option (3) allows the user to identify the domain items needed to output data from the application to an 

output medium such as a report, a screen display, or another application. Output Data is usually 

accessed through an operation like a get-attribute function, which reads an attribute or set of values 

from a domain object, possibly performs some processing on the data, then outputs the result in some 

defined format. 

• Option (4) allows the user to identify the domain items needed to support internal updates to the 

application. Internal updates refer to changes in the state of the system and usually occur when an event 

causes the value of some attribute to be changed. Internal updates do not directly result from input and 

do not directly cause an output. However, internal updates are often indirectly related to inputs and 

outputs. Consider an application being specified in the SCHOOL domain, for example. The input to 

the application may be the insertion of a new student record. The insertion event causes an internal 

update to an attribute called total_enrolled_students. This update may in turn trigger a function that 

outputs the number of male versus female students now enrolled. 

When choice (2), (3), or (4) is selected from the main menu, the function Process-Specs is called. 

Process-Specs has one argument of type string called stage, which indicates whether the user wants to specify 

an input, output, or some internal update function. Process-specs is designed to loop until the user wants to 

return to the main menu. Even though the user may be defining specifications for the input, output, or internals 

stage, the actual processing is the same in all cases.  During prototyping it was observed that there were very 
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few differences in the way items were specified during different stages, so the decision was made to combine 

the processing into one common function. Future study may show it to be more beneficial to separate the 

functionality, but for this version of EH, the distinction between stages is only in the user's mind and in the 

stage variable that remains for future enhancements. Depending on which choice the user picks from the main 

menu, one of the three prompts shown in Figure 15 will be displayed. 

Enter one of your desired INPUTS or return key to return to Main Menu 

Enter one of your desired OUTPUTS or return key to return to Main Menu 

Enter one of your desired INTERNALS or return key to return to Main Menu 

Figure 15 Screen Display: User prompts for the name of an input, output, or internal update. 

At this point the user can enter the name of a domain item that needs to be included in the 

specification. For example, suppose the user is using the CRUISE MISSILE domain and wants the level of the 

fuel tank as an output. The input from the keyboard, shown in bold, and the resulting matches from the data 

dictionary are shown in Figure 16. In this case, only one match was found for level, namely the fueljevel 

attribute in the FuelTank class, and that is the one the user wanted. When the user enters (1) to choose the 

correct object, the EH asks the user to indicate the action to be performed on that object. Figure 16 shows the 

actions the user can take for a chosen object. The actions include: 

1. REJECT - allows the user to back up to the previous prompt if the object was selected in error.  No 

changes occur in the specification. 

2. SELECT - the user can "select" the object for use in the specification.   Section 4.4.1 describes the 

processing that takes place when items are selected for inclusion in the specification. 

3. ADD - the user can decide he wants to create a new object instead of the one shown.   Section 4.5 

explains how new items can be created and added to the specification AST. 

4. MODIFY - the user can make changes to the object, such as renaming it or redefining the data type. 

Section 4.4.2 covers the methods used for modifying specification items. 
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Enter one of your desired INPUTS or return key to return to Main Menu 
level 

(0) None of these 
(1) ATTRIBUTE: FuelTank.fuel_level : Real 

Enter the number of an object you will want to to use for 'level'=> 1 
Object selected 

What is your preferred action on the object: 
ATTRIBUTE: FuelTank.fuel_level : Real 

(1) REJECT: Do not want this object 
(2) SELECT: Include this item in the Spec (you will have a chance to modify it) 
(3) ADD:   I want to create a new object 
(4) MODIFY: I want to change this object 
Enter your choice of action => : 

Figure 16 Screen Display: Choosing objects and the action options. 

4.4.1 Selecting Objects for the Specification 

When the user chooses to select an object for the specification, the object is passed to the Perform- 

Select-Actions function. This function calls Full-Obj-Description, which generates a pretty print description of 

the object to be selected. The Full-Obj-Description function is similar to the Obj-Description function 

described earlier, but produces a more complete object description for some objects. The user is given a chance 

to check the object for errors or possible modifications before finally selecting it, as shown in Figure 17. 

ATTRIBUTE: fuel_l evel : Real 

(0) None of these 
(1) SELECT to use 'as is' in the Specification 
(2) MODIFY it befo re SELECTing for the Specificat ion 
(3) DO NOT SELECT for use in the Specification 

What do yoi. want t o do with this object? => 

Figure 17 Screen Display: Choosing to select an object or modify first. 

If the object is acceptable as is, the user chooses (1) and the function Select-Spec-Items is called to set 

the eh-used attribute to true for the selected object. In addition to the object selected by the user, the EH 

automatically selects all required "supporting objects". Supporting objects are other objects needed in the 

specification to completely define the selected object. For example, if an attribute is selected, then the data type 

of the attribute should also exist in the specification. The EH decides which other objects are necessary 

depending on the type of object being selected. The following rules of thumb are applied when selecting 

supporting objects: 
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• 

• 

• 

• 

If the selected object is a class (a GOMT-Class7 in the domain AST): 

1. Select the ancestor classes through inheritance. Selecting these super-classes (or parent classes) from 

which a class is inherited is consistent with the object-oriented concept that all inherited attributes and 

methods should be accessible to an instantiated object. 

2. Select the aggregate ancestor classes. Selecting the aggregation parent class ensures that if a part of an 

aggregate system is selected, then the framework that houses that part is also placed in the 

specification. These objects are gathered by using the ancestors-of-class function. 

If the selected object is not a class: 

1. Select all objects contained in the subtree of the selected object including predicate objects.   These 

objects are gathered by using the descendants-of-class function. 

2. Select the object that is the aggregation parent object in the domain AST (named as the parent-expr 

attribute) of the selected object.  For example, the parent of the Parameter object of Figure 18 is the 

operation object identified as a GOMT-Op object. 

3. Select the aggregate ancestor classes.  For example, if the an operation in the FuelTank class of the 

CRUISE MISSILE domain shown in Figure 10 was selected, the PropulsionSystem class and the 

Missile class would be the ancestor class objects selected as supporting objects. 

If the selected object is a parameter, select the predicates that belong to the same operation as the 

parameter selected. These predicates are the pre-conditions and post-conditions of the operation and will 

most likely include the parameter as one of its identifiers. 

If the selected object or one of its supporting objects has a data type associated with it (the has-atype map 

is defined), select the data type object (a DomTypeObj in the domain AST) as a supporting object. Since 

data types are not defined as tree attributes, they are not part of the subtree and thus do not get selected in 

the preceding steps. 

If the selected object or one of its supporting objects has a class mapped to it through the has-aclass map, 

the connection-to-class map, or the has-associative-object map, then select the class object as a supporting 

7 A GOMT-Class is an object class defined in the DOM AST that represents a class in the object-orented sense. A class is a self-contained 
structure that represents some real-world object. The class contains definitions of attributes that describe the features of the class, 
operations describing the actions that can be performed on the class, the valid states of the class, and the events that can cause state 
changes in the class. 
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object. This case can occur when a class attribute or an operation parameter is defined as a class or a set of 

classes, such asfac : P Faculty. 

•     If a predicate is selected as a supporting object: 

1. Mark the predicate for the specification by setting the eh-pred-used map to True. 

2. Find all domain objects represented as identifiers in the predicate. This step is accomplished by calling 

the Map-ID-to-Obj function described in 4 

3. For each represented object, make a recursive call to the Select-Spec-Items function to mark all its 

supporting objects for the specification. 

For an example of selecting objects, refer to the attribute fueljevel shown in Figure 17. Besides fueljevel, 

other objects selected include FuelTcmk, the class that contains fueljevel; JetPropSys and Missile, the aggregate 

ancestors of FuelTcmk; and Real, theDomTypeObj that is the data type of fueljevel. 

Generally, when operations are selected to the specification, many supporting objects can also be 

selected automatically. The operation subtree is fairly complex, as shown in Figure 18, and several parts of the 

subtree are associated with other parts of the AST. For example, a predicate will usually contain identifiers that 

are stored as classes, class attributes, or constants elsewhere in the AST. Those identifiers as well as parameters 

have data types associated with them that are also stored elsewhere. The method for finding the objects 

represented by the predicate identifiers is explained in Section 4.4.1.1. Therefore, by helping the user to select 

the operations required for the application being specified, the EH can identify several parts of the domain tree 

needed for the specification. 

{GOMT-Op} 

has-name has-preds        has-parameters . has-ops 
I I I     L 

symbol {Predicate} [Parameter] {symbol} 

has-type-multiplicity       has-name     has-datatype 

TypeMultiplicity symbol symbol 

is-output 

boolean 

Figure 18 Structure of the Operation Subtree 
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4.4.1.1 Mapping Predicates to Domain Objects 

If an operation is selected for the specification, the predicates of the operation are also selected, since 

they are part of the subtree, as shown in Figure 18.   Predicates selected for the specification provide a rich 

opportunity to identify many other domain objects represented by the predicate identifiers that should also be 

included in the specification. Consider an operation called CalcPropWt, shown in Figure 19, which is defined 

in 

OPERATION:  CalcPropWt 
OUTPUT PARAMETER: prop_wt  IS: Real 
PREDICATE:  prop_wt! = fueltank.tank_weight + jetengine.engine_weight 

Figure 19 CalcPropWt: an operation in the CRUISE MISSILE domain 

the Propulsion System aggregate class in the CRUISE MISSILE domain. Since the predicate contains identifiers 

that refer to the classes FuelTank and JetEngine and the class attributes tank weight and engine_weight, those 

objects are also selected for the specification by recursively calling the Select-Spec-Items function for each of 

the predicate objects. 

The difficulty in finding the domain objects corresponding to the predicate identifiers lies in the fact 

that the IDname objects, which store predicate identifiers, do not currently have maps defined to the domain 

objects that they represent. Since predicates hold so much domain knowledge, it was important to create a 

function called Map-lD-to-Obj that maps IDname objects to the corresponding domain objects. There are many 

subtle problems in making the IDname to Obj-Object mapping. 

• There is currently no automated type checking performed on predicate identifiers when they are parsed 

in. Therefore, the names are not guaranteed to be spelled correctly. 

• There can also be attributes in different classes with the same name. 

• A predicate can use bound variables like s and c in the predicate: 

ms = #{s: Student, c: GradClass\ s e advised? A (S, C) e member _of A c.program ^ DS} 

that represent domain objects but whose names could not be directly matched to domain names. 

When mapping identifiers from a complex predicate like the one in the third bullet above, it is desirable to 

identify the context of each variable so that all variables, including bound variables, can be accounted for and 

mapped to the proper domain objects.    Bound variables can be used in three types of expression: basic 
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declarations {s:Student), element expression (s e advised?), and component expressions (c.program). These 

expression types are represented as predicate subtrees in the Unified-Object model. The bound variables s and 

c are stored in the IDname objects in the left branch of the subtrees shown in Figure 20. 

baskdedseq 
Klatiorall-pKed 

buk 
i 

—\—' 
anyl 

in 

ret 

component-expr 

identifi« 

—}  

vai-nacrw-fxpi 

^ any 

s*cond 

twpr v 

nsmw 

iderttifiei 

i 
dent \ 

l'dname 

var-name-(xpi 

vw 

name 

iäentifie* 

dent 

idname 

mx-namc-expi 

any 

expr3 

var-name-expr 

identifier 

~7 V 

name 
1 

dent       decoration 

input- decoration 

dent 
I 

Figure 20 Predicate AST in Unified-Object Model 

When the EH gathers the IDname objects from the predicate AST, it has no way of knowing which identifiers 

are bound variables or which objects are represented, so several maps were created, as shown in Figure 21, to 

aid in the mapping process. The Map-ID-to-Obj function first sets the ID-wrd map by using the data dictionary 

matching rules to find domain objects that perfectly match the names in the predicate. 

var id-obj :   map(IDname, Obj-Object)   =   {I|} 
var ID-wrd :   map(IDname, Aword)   =   {||} 
var is-BasicDecl-of :   map(IDname, IDname)   =   {11} 
var is-element-of :  map(IDname, IDname)   =   {||} 
var has-component-var :  map(IDname, IDname)   =   {11} 
var pred-mapped :   map(Predica te,   boolean)   =   {11} 

Figure 21 Maps for processing predicates 

The function then searches the predicate AST for instances of BasicDeclSeq, ElementOf, and Component-Expr 

nodes and sets the is-BasicDecl-of, is-element-of, and has-component-var maps so that each bound variable 

identifier is mapped to a name that should be identifiable in the domain. The algorithm to perform the 

mappings checks the ancestor nodes of each IDname for a BasicDeclSeq, ElementOf, and Component-Expr 

node. If one is found, the IDname is mapped to the other IDname identifier in the subtree. In the predicate 

AST of Figure 20 the IDname storing the first s would be mapped to the Student IDname through the is- 

BasicDecl-of 'map and the Student IDname would be mapped to the Student object in the domain through the id- 
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obj map. If any identifier, such as s, is found with an is-BasicDecl-of map defined, then all other identifiers in 

the predicate with the same name are mapped to the same domain object, i.e. the Student object. 

If there are no BasicDeclSeq nodes, but an ElementOf 'node is found, the bound variable will represent 

an element in some set of objects. In this case, the bound variable will be mapped to the same GOMT-Class 

object pointed at by the id-obj map of the associated IDname. For example, if the declaration s : Student 

was not present in the predicate, the expression s e advised would cause the advised IDname to be 

mapped through the id-obj map to the input parameter advised, which is declared as a set of Student. Then s 

would be mapped to the has-aclass attribute that identifies the GOMT-class, which is the type of the advised 

parameter. In the end, s is mapped to the Student object through s's id-obj map. 

Bound variables found in component expressions are assumed to have been previously identified in a 

basic declaration or element-of expression, and therefore should have already been mapped. In the case where a 

predicate contains ambiguous identifiers, they should be prefixed via dot notation with the GOMT-class name, a 

connection name, or a bound variable. If the ambiguous identifier is prefixed with a bound variable, the 

algorithm sets the ambiguous variable's id-obj to the class attribute of the same name that is contained in the 

GOMT-class mapped to the bound variable. If the algorithm fails to map all ambiguous variables in the 

predicate, the user is finally asked to enter the proper object. 

4.4.2 Modifying Objects 

There will be times when the application engineer wants to change some item while defining the 

specification. The application engineer may want to tighten constraints or complete constant or data types 

definitions that were left incomplete in the domain model. In most cases, before a domain item is selected for 

use in the specification, a description of the item is displayed and the user is given the chance to modify the 

item. Of course the ability to modify given parts of the domain can be restricted by the knowledge base 

administrator based on the requirements of Chapter 3. 

The menus shown in Figure 16 and Figure 17 have an option for making modifications to specification 

items. Before finally selecting items for use in a specification, the user is given the opportunity to make 

changes if necessary. The allowable changes are defined in Chapter 3. In thefueljevel example of Figure 17, 

if the selected object is not specified the way the application engineer wants it, he has the choice to modify the 

object before adding it to the specification AST.   If the modify option is chosen, the object is passed to the 
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Perform-Modify-Actions function. The function first creates a database instance for the modification rules to 

use. The database is defined by the EH-Object of Figure 22 and the subtype called Mod-Object shown in Figure 

23. 

% superclass of Add-object and Mod-object 
var EH-Object 
var has-obj-object 
var has-stage 
var has-idnames 

object-class subtype-of GOMT-Aggregate-Class 
map(EH-Object, Obj-Object) = {11} 
map(EH-Object, string) = {11} 
map(EH-Object, set(IdName)) 
computed-using has-idnames(x) = {} 

Figure 22 EH-Object database declaration 

The object to be modified is pointed to by the has-obj-object map, and the Mod-Object database is 

passed to the modification rules, called mod-obj-rules, by the forward reasoning preorder-transform function. 

The first time the Mod-Object passes through the rules, the set of rules check the attributes of the object under 

modification that are allowed to be changed and append an appropriate string to the options map sequence. 

var Mod-Object object-class subtype-of EH-Object 

var prev-name map(Mod-Object, symbol) = {1 1) 
var options map(Mod-Object, seq(string)) 

computed-using options(x ) = [] 
var chosen-option map(Mod-Obj ect, string) = {1 1} 
var List-mod-name? map(Mod-Object, boolean) = {||} 

var List-Mod-Avalue? map(Mod-Object, boolean) = {11} 
var List-Mod-Datatype? map(Mod-Object, boolean) = { 1 1 } 
var List-Mod-ClassType? map(Mod-Object, boolean) = {||} 

var List-Mod-TypeMult? map(Mod-Object, boolean) = {||} 

var List-Mod-Param? map(Mod-Object, boolean) = {11} 
var List-Mod-Pred? map(Mod-Object, boolean) = {11} 
var List-Mod-class? map(Mod-Object, boolean) = {||} 

var List-Mod-TypeMultiplicity? map (Mod-Object, boolean) = {||} 

var List-Mod-Attr? map(Mod-Object, boolean) = {11} 
var List-Mod-Connection? map(Mod-Object, boolean) = { 1 1 } 
var List-Mod-Connection-Class? map(Mod-Object, boolean) = {||} 

var List-Mod-Connection-Mult? map(Mod-Object, boolean) = {||} 

var List-Mod-Assoc? map(Mod-Object, boolean) = {||} 

var List-Mod-Constant? map(Mod-Object, boolean) = {11} 
var List-Mod-Operation? map(Mod-Object, boolean) = {1 1} 

var List-Add-Operation? : map(Mod-Object, boolean) = { 1 1 } 
var List-Add-Datatype? : map(Mod-Object, boolean) = {||} 

var List-Add-Param? : map(Mod-Object, boolean) = {11} 
var List-Add-Pred? : map(Mod-Object, boolean) = {11} 
var List-Add-Attr? : map(Mod-Object, boolean) = {11} 
var List-Add-Connection? : map(Mod-Object, boolean) = {111 
var List-Add-Assoc? : map(Mod-Object, boolean) = {11} 

var List-Del-Operation? : map(Mod-Object, boolean) = { 1 1 } 
var List-Del-Param? : map(Mod-Object, boolean) = { 1 1 } 
var List-Del-Pred? : map(Mod-Object, boolean) = {11} 

var mod-done? : map(Mod-Object, boolean) = { 1 1 } 
% flag for data-dictionary upd ate when name changed 
var mod-name-done? : map(Mod-Object, boolean; =   \ 1 1 } 

Figure 23 Mod-Object database declaration 
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Each rule that adds a string to the options map sets the corresponding boolean map (for example, list-mod- 

paraml) to true, which prevents that rule from firing again. The list of strings held in options is passed to the 

OPERATION:  CalcPropWt 
OUTPUT PARAMETER: prop_wt  IS: Real 
PREDICATE:  prop_wt! = fueltank.wieght + jetengine.engine_weight 

(0) None of these 
(1) Change Name 
(2) Modify Parameter 
(3) Modify Predicate 
(4) Add Parameter 
(5) Add Predicate 
(6) Delete Parameter 
(7) Delete Predicate 

How would you like to modify 'CalcPropWt'? => 

Figure 24 Screen Display: Modification options list 

Print-String-List to be displayed for the user.  Figure 24 shows a screen display of the possible modifications 

that can be made to the operation CalcPropWt, and the prompt asking for the user to input a choice. 

The string corresponding to the number chosen by the user (e.g. "Modify Parameter") is set as the 

value in the chosen-option map of Mod-Object. If the user choice was not (0), the preorder-transform function 

is called again to check the mod-obj-rules. The rule looking for the string held in chosen-option will fire and 

call a function to perform the appropriate actions for the option chosen to be modified. For example, if the user 

chooses to "Modify Parameter", the rule Modify-Parameter-rule would fire causing the Modify-F'ammeter 

function to execute. If the option chosen relates to a domain object that has a subtree, i.e. is not a leaf node, 

such as a parameter, the function will recursively call P erform-Modify-Actions so the user can pick the part of 

the chosen option to modify. If the chosen option does relate to a leaf node, such as the name or value of a class 

attribute like fuellevel, the appropriate function will control the user interface to request needed information 

from the user. Some cases may be as simple as printing out 

Enter the new name for ,fuel_level' => 

and reading in the string, but other cases may lead into much more involved interactions. 

Consider an example where the application engineer wants to change the data type of fuellevel from 

type Real to a more specific data type called FUEL_LEVEL_TYPE that has enumerated values. Figure 25 

shows a series of interactions between the EH and the user. After the prompt How would you like to 

modify   ' fuel_level' ?   =>, the Modify-Datatype function takes control and searches for predicates that 
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contain fueljevel as an identifier. The function gathers the set of all data types of the named identifiers in the 

predicates and prints out that list of data types for the user to view. The reason for this first subset of data types 

is to minimize the amount of information given to the user by some intelligent heuristic. Predicates often 

contain identifiers of similar data type, especially if the predicate defines a mathematical calculation. If the 

first list of data types doesn't contain the desired choice, the entire list of domain data types is printed out. This 

list could be quite long in a large domain; thus the use of better heuristics in these situations is desirable and an 

open area for further study. 

What is your preferred action on the object: 
ATTRIBUTE: FuelTank.fuel_level : Real 

(1) REJECT: Do not want this object 
(2) SELECT: Include this item in the Spec (you will have a chance to modify it) 
(3) ADD:   I want to create a new object 
(4) MODIFY: I want to change this object 
Enter your choice of action => :2 

ATTRIBUTE:  fuel_level : Real 

(0) None of these 
(1) SELECT to use 'as is' in the Specification 
(2) MODIFY it before SELECTing for the Specification 
(3) DO NOT SELECT for use in the Specification 

What do you want to do with this object? => 2 

ATTRIBUTE:  fuel_level : Real 

(0) None of these 
(1) Change Name 
(2) Modify Datatype 

How would you like to modify 'fuel_level'? => 2 

(0) None of these ' 
(1) DATATYPE: Real, VALUES: 

Choose the new datatype for 'fuel_level: Real' => 0 

(0) None of these 
(1) DATATYPE: Boolean, VALUES: 
(2) DATATYPE: Digit, VALUES: 
(3) DATATYPE: Char, VALUES: 
(4) DATATYPE: Integer, VALUES: 
(5) DATATYPE: Nat_l, VALUES: 
(6) DATATYPE: Nat, VALUES: 
(7) DATATYPE: AF_MODELS, VALUES: 
(8) DATATYPE: KILOMETER, VALUES: 
(9) DATATYPE: KPH, VALUES: 
(10) DATATYPE: RADIAN1, VALUES: 
(11) DATATYPE: RADIAN2, VALUES: 
(12) DATATYPE: DEGREE, VALUES: 
(13) DATATYPE: SIMTIME, VALUES: 
(14) DATATYPE: MODELJTYPE, VALUES: 
(15) DATATYPE: SEQ_Char, VALUES: 

Choose the new datatype for 'fuel_level: Real' => 0 

Must Create type for 'fuel_level' 

Figure 25 Screen Display: Modifying the data type of an attribute 

In this example, the user still doesn't see the data type he wants, so he chooses (0) again. 
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At this point, the EH knows the data type does not exist and must be created. A new database called Add- 

Object is initialized and passed to the function Perf orm-Add-Actions, which is responsible for creating new 

specification items and adding them to the AST. The method for creating new objects is discussed in the 

following sections. 

After the second pass through the mod-obj-rules, the mod-name-done? map of the Mod-Object 

database is checked to see whether the object name was changed. If so, the function Update-Data-Element- 

Name is called to update the data dictionary with the new name. Finally, the new object description is printed 

out by calling the Full-Obj-Description function; and the modified object is passed from the Perform-Modify- 

Actions function. 

4.5 Adding New Objects 

There are many cases when an application engineer may want to create new items for the specification 

that were not defined in the domain. A new application may require operations to be defined at a lower level 

than were needed in the domain. It may be beneficial to create more specific data types to define constraints on 

certain data. New constants may make the specification more clear and understandable. Associations between 

objects may make sense for specific applications, but not for the overall domain. After new items are created, 

they must be grafted onto the existing specification AST in the correct location. This section describes the 

techniques used for creating new specification items and adding them to the specification tree. 

4.5.1 Creating Objects Using Backward Reasoning 

Adding items to the specification tree is a good situation for using backward reasoning, because very 

little is known about the new item to be created. A great deal of information already exists in the domain tree 

that can be used to infer much of the data needed when adding new items to the specification. The process of 

adding a new operation to a specification can be used as a good example of how backward reasoning can be 

applied. All that is initially known about a new operation is the name of an input or output, which the user has 

typed in. The input and output parameters, data types, pre-conditions, post-conditions, and name are needed to 

completely define the new operation. 

The EH guides the user through the process of defining the operation by first asking for the post- 

conditions (predicates) that define the output of the operation (most operations will have a single output, which 
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essentially makes them a function). Once a predicate is parsed, the EH can search through the specification 

AST for information relating to the predicate. For example, the EH may search for objects whose names match 

the identifiers in the predicate, data types or class types of those identifiers, classes to which the identifiers 

belong, and identifiers that may be candidates for input parameters. Of course the user must make some choices 

and validate the choices made by the EH, but by using backward chaining, the EH restricts the number of 

choices to a manageable level for the user and guides the user through the process one step at a time. 

The backward reasoning process requires three main components, which are discussed in the following 

sections: a database to store information discovered during the process, a set of rules that access and update the 

database, and a reasoning engine that controls the execution of the rules. 

4.5.2 The Backward Chaining R ule Base 

The rules are implemented as REFINE rule constructs. The rules used for the backward chaining are 

designed so that each rule only solves a small piece of the problem. The rules are designed to use the recursive 

nature of the backward chaining algorithm to incrementally add information to the database in a certain order so 

as to get the most use out of each piece of data acquired. The backward reasoning engine works its way through 

applicable rules to achieve a goal. Figure 26 shows the REFINE code of a rule and the AST structure used to 

store the rule. The engine tries to fire rules that have the current goal in the consequent by making all the 

rule-op 

binding 

rule Modify-Name-Rule(X: object) 
chosen-option(X) = "Change Name" S mod-done?(X) 
—> Modify-Name(X) & mod-done?(X) = True 

S mod-name-done?(X) = True 

ruleexpr 

True 

rule-impl-op 

and-op 
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conjuncts conjuncts 
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Figure 26 AST created by REFINE to store a rule 
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premises true. For the rule in the figure to be chosen as a candidate rule, the goal would be to find a value for 

mod-done?. Once the applicable rules are found, the engine checks the premises to see if they are defined by 

the database. 

In Figure 26, the premises are chosen-option (X) = "Change Name" and mod-done? (X) 

~= True and are stored as the equal-op and not-equal-op subtrees below the antecedent map in the AST. The 

database {Mod-Object in this example) defines the maps chosen-option and mod-done?, which map to a literal 

string and a boolean operator values respectively. If one of these maps is undefined (not yet given a value), the 

engine makes the undefined premise a subgoal and recurses to look for other rules that may be able to derive 

that subgoal and so on until a rule is found where all premises are satisfied. For a premise to be satisfied the 

corresponding database map must have a value defined and the value must cause the premise to be true. In this 

example, chosen-value must map to the string "Change Name" and mod-done? must map to false to make both 

premises evaluate to true. When all premises of a rule are satisfied, the rule can execute the consequent portion 

of the rule, which usually includes a call to a function that performs some type of database update action. In 

this example, the rule would call the function Modify-Name. These functions use information harvested from 

the specification AST and user inputs to make updates to the database. The updates to the database often cause 

premises of other rules to be satisfied. When a rule fires, the engine returns to the previous unfinished rule, as 

expected from a recursive function, to see if any database updates have satisfied its premises. 

4.5.2.1 The Backward Chaining Datab ase 

The database used by the backward reasoning engine, a subtype of EH-Object called Add-Object, is 

shown in Figure 27. The state of the database changes after each rule execution until it contains all data needed 

to complete the final goal or return a message indicating failure to achieve the goal. The goal of the backward 

reasoning process is to create a new specification item such as an operation or data type. The engine usually 

works through several subgoals in the process of solving the main goal. For example, before creating a new 

operation, the pre-conditions, post-conditions, input and output parameters, and operation name must all be 

created. Many of these subgoals are broken down into still smaller subgoals. Each time a rule is fired and a 

subgoal is achieved, a map in the database is given a value. 

For example, a subgoal may be to have a predicate defined for the post-condition of an operation. A 

goal called predicate-retrieved? matches the consequent in the rule Retrieve-Predicate-Rule and since all the 

60 



premises of Retrieve-Predicate-Rule are satisfied, the rule fires. When the rule fires, it calls the function 

Retrieve-Predicate, which parses in the predicate string typed in by the user. The new predicate is placed into 

the has-apred map of the database; and the predicate-retrieved? map is set to true. As the subgoals are 

object-class subtype-of EH-Object 
map(Add-Object, string) = {I I} 

string) = {I I} 
symbol) = {|1} 

var Add-Object 
var add-obj-name 
var has-stage 
var is-class-type 

var new-item-names 

var has-postcond 
var has-preconds 

var has-inparams 

var has-outparam 
var has-apred 
var has-set-of-types 

var has-set-of-classes 

var var-list 

var outparam-name 
var inparam-names 

var has-goal 
var goal-list 

var aword-seq 

var derived-from 

var DomConstant-done? 
var predicate-retrieved? 
var idnames-retrieved? 
var derived-types-retrieved? 
var derived-classes-retrieved? 
var outparam-name-retrieved? 
var unmatched-vars-retrieved? 
var pred-vars-identified? 
var Inparams-chosen? 
var Inparams-done? 
var aword-seq-done? 
var derived-from-done? 
var type-chosen? 
var postcond-done? 
var precond-done? 
var Predicate-done? 
var GOMT-Op-done? 
var Outparam-done? 
var Inparam-done? 
var has-class-name? 
var has-name? 
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set(string)) 
new-item-names(x) = 
Predicate) = {|I} 
set(Predicate)) 

has-preconds(x) = {} 
set(Parameter)) 

has-inparams(x) = {} 
Parameter) = {||} 
Predicate) = {I I} 
set(DomTypeObj)) 

has-set-of-types(x) = 
set(GOMT-Class)) 

has-set-of-classes(x) 
seq(string)) 

var-list(x) = [] 
symbol)  = {|1} 
set(symbol)) 

inparam-names(x) 
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goal-list(x) = [] 
seq(Aword)) 

aword-seq(x)   =   [] 
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Figure 27 Add-Object database declaration 
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satisfied, database values are filled in until all values needed for the original goal are present and the new 

specification item can be added to the AST. 

4.5.2.2 Backward Reasoning Algorithm 

The backward chaining engine designed was modeled after the standard algorithm found on pages 96- 

97 of [7]. Since REFINE does not support backward chaining, the algorithm had to be built manually and 

adapted to the REFINE language. Backward chaining requires the ability to access the premises and values 

coded into the REFINE rules, which REFINE parses into an AST as shown in Figure 26. 

Several functions were written to manipulate the rule subtree to access the values stored in it. The algorithm is 

shown in Figure 28. 

GLOBALS: goal list, rule list, database object 

make list of top-level goals 
loop while goal list not empty 

SATISFY-GOALO 
set current goal to first goal 
make list of candidate rules for current goal 
goal satisfied = False 
loop while goal not satisfied by rule or candidate rule list empty 

set current candidate to first candidate 
make list of premises of current candidate 
premise satisfied = true 
loop while premise list not empty and premise satisfied 

set current premise to first premise 
if premise parameter defined in database then 

if premise parameter = database value then 
premise satisfied = True 
delete first premise from list 

else premise satisfied = False 
else 

if rules exist to derive premise then 
prepend premise argument to goal list as a subgoal 
recurse to SATISFY-GOAL for new goal 

else 
ask user for value of premise parameter 
add value to the database 

end loop 
if premise satisfied 

fire rule 
goal satisfied = True 

else 
delete first rule from candidate list 

end loop 
empty list of candidate rules 
delete first goal from goal list 

END SATISFY-GOAL 
end loop 
return database 

Figure 28 Algorithm for the backward reasoning engine 
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4.5.3 Examples of Creating Obj ects 

The next two sections take the reader through the process of creating an example operation and data 

type using the CRUISE MISSILE domain. The process for creating new domain items varies from the 

approach used for modification. Recall how the modification method created a new database for each object 

while recursively calling P erform-Modify-Actions for each lower level object until a leaf node was reached. 

Each object was acted upon independent of the parent and sibling objects. When creating a new domain item 

such as an operation, child objects often need to know information about other child objects, even though they 

have not been created yet. For instance, a parameter should appear in a predicate, and the predicates need to 

check parameter data types, creating a sort of circular dependence. Also, the operation cannot be added to the 

specification tree until the reasoning engine is done creating the entire operation because subtree objects are 

generally processed from the bottom up. Therefore, the creation process was designed to operate on the entire 

item as a whole instead of the sub-objects individually. The Add-Object database stores data for the child 

objects temporally until the entire item is ready to be built and added to the specification. Sometimes while 

processing one item, it is discovered that another item needs to be created to support the current item. For 

example, an operation predicate may contain a call to another operation. In this case, the current item process is 

suspended and Perform-Add-Actions is called recursively to create the other item and return to the original upon 

completion. 

4.5.3.1 Creating an Operation 

Assuming the CRUISE MISSILE domain is loaded and the user has selected choice (3) from the main 

menu (Specify system outputs), the EH calls the function Process-Specs, which prints out the first prompt 

shown in Figure 29. 

When the user enters "Prop_Wt" (propulsion system weight), the Get-Phrase function reads in the 

string, creates an Aword structure for PropWt, and accesses the data dictionary through the Match-Word 

function, which makes four matches to domain objects. Control passes to the function Get-Actions, which finds 

out whether the user wants to perform a SELECT, ADD, or MODIFY action on the object chosen. Get-Actions 

calls the function Choose-Objects, which prints out the matched objects using the Print-Obj-List function. The 

JetPropulsionSys aggregate class does have an attribute called prop_weight, but for this example, assume the 
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Enter one of your desired OUTPUTS or return key to return to Main Menu 

Prop_Wt 

(0) None of these 
(1) CLASS: JetPropulsionSys 

HAS-ATTRIBUTES: prop_weight;  prop_fuel; 
(2) CONNECTION: Missile.propsys : JetPropulsionSys 
(3) ATTRIBUTE: JetPropulsionSys.prop_fuel : Real 
(4) ATTRIBUTE: JetPropulsionSys.prop_weight : Real 

Enter the number of an object you will want to to use for 'Prop_Wt'=> 0 
No object selected would you like to create one? y 

(0) None of these 
(1) A new Primitive Class 
(2) A new Aggregate Class 
(3) A new Attribute of an existing class 
(4) An output Operation 
(5) An input Operation 
(6) A new Data Type 
(7) A new Constant 

What kind of object should 'Prop_Wt' be created as? 4 

Figure 29 Screen Display: Identifying a new operation 

user wants to define an operation to calculate the propulsion weight from other attributes. When the user enters 

(0), the Get-Actions function has no objects to work with, so it asks if the user wants to create one. When the 

user enters 'y' for yes, a Selected-Obj object is created with its has-action map set to ADD to indicate the desire 

to create a new object; and Selected-Obj is added to the has-sel-objs map of the Aword structure. Control then 

returns to Process-Specs where the has-actions map is checked. The ADD value causes Perform-Add-Actions 

function to be called, which is the main driving function for adding new specifications. Perform-Add-Actions 

takes as its argument an Add-Object initialized by the calling function. The calling function will fill in whatever 

values are known when creating the Add-Object database. In this example only the add-obj-name ("PropWt") 

and the stage ("OUTPUT") are initially defined. The EH doesn't know what the user wants to create, so the 

function Get-Add-Object-Type is called which prints out the menu shown in Figure 29 along with a prompt. 

The user enters '4', which sets the is-class-type map to "GOMT-Op" and the has-goal map to 'GOMT-Op- 

done?8 in the database. The Add-Object is then passed to the backward reasoning engine with a function call to 

Perform-Backward-Chaining. 

8  REFINE uses a data type called a symbol for most object names and other identifiers.  Symbols are generally case insensitive and are 
identified by placing a tick mark in front of the name. 
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rule Create-Output-GOMT-Op-Rule(X:   object) 
has-goal(X)   =   'GOMT-Op-done?  &  has-stage(X)   =  "OUTPUT"   & 
Postcond-done?(X)   = True  & Outparam-done?(X)   = True  & 
Precond-done?(X)   = True  &  Inparams-done?(X)   = True 

—>  GOMT-Op-done?(X)   = True  &  Create-GOMT-Op(X) 

Figure 30 Sample rule used in the backward reasoning process 

When the reasoning engine searches for rules with a consequent expression matching the goal 'GOMT- 

Op-done?, it finds Create-Output-GOMT-Op-Rule shown in Figure 30. As the reasoning engine parses through 

the premises, it finds that the has-goal and has-stage premises are already satisfied in the database, however, 

Postcond-done?, Outparam-done?, Precond-done?, and Inparams-done? are undefined and become a series of 

subgoals, which must be satisfied before this rule can execute. Each subgoal recursively chains through several 

rules, which in essence break down a large task into several smaller manageable subtasks. The first subtask in 

this example is to parse in a post-condition predicate, which the user types in using Z notation, as shown Figure 

31, and place it in the has-apred map. 

Return key to quit this action 

Enter a Post Condition for Prop_Wt 
=> : prop_wt! = fueltank.fuel_weight + jetengine.engine_weight 

(0) 

(1) 

(2) 

(3) 

(4) 
(5) 

(6) 

(7) 

(8) 
(9) 
(10 

(11 
(12 

(13 

None of these 
CLASS: FuelTank 

HAS-ATTRIBOTES: tank_sim_time;  input_flow_rate;  output_flow_rate; 

fuel_level;  capacity;  tank_weight;  fuel_density; 

fuel_tank_weight; 
CONNECTION: JetPropulsionSys.fueltank : FuelTank 

ATTRIBUTE: JetEngine.current_fuel_flow_rate : Real 

ATTRIBUTE: JetEngine.engine_weight : Real 
ATTRIBUTE: FuelTank.fuel_tank_weight : Real 

ATTRIBUTE: FuelTank.fuel_density : Real 
ATTRIBUTE: FuelTank.tank_weight : Real 
ATTRIBUTE: FuelTank.fuel_level : FUEL_LEVEL_TYPE 

ATTRIBUTE: JetPropulsionSys.prop_weight : Real 

) ATTRIBUTE: Airframe.attached_weight : Real 
) ATTRIBUTE: Airframe.airframe_weight : Real 

) OPERATION: CalcTotalWeight 
HAS-PARAMETERS: fuel_weight;  fuel_tank_weight; 

) OPERATION: DeterinineFuelWeight 
HAS-PARAMETERS: fuel_weight; 

Enter the number of an object you will want to to use for 'fuel_weight'=> 5 

Figure 31 Screen Display: Defining a post-condition 

Several subtasks then process the post-condition as follows: 

1.    Place the set of IDnames found in the predicate into the has-idnames map. 
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2. Check predicate variables for the decorations ', ?, !, which indicate a final variable9, an input 

parameter, and an output parameter respectively, then set the maps fmalparam-names, inparam-names, 

and outparam-name accordingly. 

3. Identify the output parameter in the post-condition if not already found in previous step. 

4. Create a sequence of Aword structures, one for each IDname in the predicate, to help search the data 

dictionary for matching objects. For each IDname, have the user identify the proper domain object to 

match the predicate identifier. The spelling of the predicate identifier will be changed to that of the 

matched domain object. As the screen display of Figure 31 shows, the user selected option (5), which 

means the identifier originally typed in as fuel_weight will be changed to fuel_tank_weight in the 

predicate 

5. Store the names of all predicate identifiers not matched to a domain object in step #4. These identifiers 

may be input parameters or the name of some other object that needs to be created. 

6. Print out the list of unmatched predicate identifiers and prompt the user to identify those that are input 

parameters. For an example, assume the user thought a function called CalcTankWeight calculated the 

current weight of the fuel tank, but this function is not in the domain. The screen display in Figure 32 

shows the user rejecting CalcTankWeight as an input parameter. 

7. For each input parameter identified, ask the user to choose the data type and multiplicity (single, set or 

sequence), create a Parameter object, and store it in the database. 

8. Print out the list of unmatched predicate identifiers and ask the user if they are objects that need to be 

created as shown in Figure 32. For each identifier chosen, initialize a new Add-Object database and 

pass it to the function Perform-Add-Actions to create the new item. 

9. Gather all predicate variables that have been matched to domain objects into a set. 

10. Gather the data types from the set formed in step #9 into a set of types. 

11. Gather into a set of GOMT-Classes the data types that are classes of the set from step #9. 

12. Add the predicate in the has-apred map to the set of post-conditions in the has-postconds map. Ask the 

user if there are more post-conditions. If "yes", then reset the has-goal to ' Postcond-done? and the 

other maps for the post-condition rules to undefined, which will cause the post-condition rules to repeat 

for the next post-condition. 

' A predicate identifier marked with a final decoration indicates a class attribute that is changed by the function as a side effect. 
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13. Ask the user to choose the data type and multiplicity for the output parameter. 

14. Create Parameter object for the output parameter and place it in the has-outparams map. 

Next, the pre-conditions are processed in generally the same way as post-conditions except the output parameter 

is not dealt with. New input parameters identified during the pre-condition processing are handled as in step #7. 

Finally the Create-GOMT-Op-Rule premises are all satisfied and the Create-GOMT-Op function is called, 

which gets the operation name from the user, creates a GOMT-Op object and places it in the has-obj-object map 

of the database. 

(0) None of these 
(1) CalcTankWeight 

Choose the number of an identifier that should be an input parameter => 0 

(0) None of these 
(1) CalcTankWeight 

Do any of these unidentified predicate variables need to be created? => 1 

Figure 32 Screen Display: Handling unidentified predicate variables 

4.5.3.2 Creating a Data Type 

The DomTypeObj is another item in the domain model that has a fairly complex subtree. A new data 

type can be created as a new base type or derived from an existing base type by restricting its range with some 

type of constraint. The call to create an item can come during a modify process as seen in Figure 25. Figure 33 

continues the example at the point where the Modify-Datatype function calls Perform-Add-Actions to create the 

new data type. The following sub-tasks are performed by the backward reasoning engine and the applicable 

rules: 

1. Ask the user for the name of the new data type. 

2. Display a list of domain data types. If the user chooses (0) the rule for creating a DomBaseType object 

will be accessed; if the user chooses one of the existing data types, the rule for creating a DomDerType 

will guide the user through creating a new derived type. 

3. In this example, the user chooses to create a new base type and is asked if it will be an enumerated type. 

The user enters 'y' for yes. If a derived type was to be created, the user would be asked to input the 

constraint predicate and would be asked if the data type was to be a set or sequence. 
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Must Create type for 'fuel_level' 

Enter the name of the new type: FUEL_LEVEL_TYPE 

(0) None of these 
(1) DATATYPE: SEQ_Char, VALUES: 
(2) DATATYPE: Real, VALUES: 
(3) DATATYPE: Boolean, VALUES: 
(4) DATATYPE: Digit, VALUES: 
(5) DATATYPE: Char, VALUES: 
(6) DATATYPE: Integer, VALUES: 
(7) DATATYPE: Nat_l, VALUES: 
(8) DATATYPE: Nat, VALUES: 
(9) DATATYPE: MODELJTYPE, VALUES: 
(10) DATATYPE: SIMTIME, VALUES: 
(11) DATATYPE: DEGREE, VALUES: 
(12) DATATYPE: RADIAN2, VALUES: 
(13) DATATYPE: RADIAN1, VALUES: 
(14) DATATYPE: KPH, VALUES: 
(15) DATATYPE: KILOMETER, VALUES: 
(16) DATATYPE: AF_MODELS, VALUES: 

Will 'FUEL_LEVEL_TYPE' be derived from (subset of) one of the above types? 
Choose which one or (0) to create new Base Type =>  0 

Is this new type 'FUEL_LEVEL_TYPE' an enumerated type? => y 

Enter one of the enumerated values or return when done => 
Enter one of the enumerated values or return when done => 
Enter one of the enumerated values or return when done => 
Enter one of the enumerated values or return when done => 
Enter one of the enumerated values or return when done => 
Enter one of the enumerated values or return when done => 

EMPTY 
QUARTER 
HALF 
THREE_QUARTER 
FULL 

Do you want to enter synonyms for 'FUEL_LEVEL_TYPE'? n 

DATATYPE: FUEL_LEVEL_TYPE VALUES:  EMPTY QUARTER HALF THREE_QUARTER FULL 

(0) None of these 
(1) SELECT to use 'as is1 in the Specification 
(2) MODIFY it before SELECTing for the Specification 
(3) DO NOT SELECT for use in the Specification 

What do you want to do with this object? =>  1 

OBJECT MODIFIED NEW DESCRIPTION IS: 

ATTRIBUTE:  fuel level : FUEL LEVEL TYPE 

Figure 33 Screen Display: Creating a data type 

4. The tool iterates through the list of enumerated values, placing each one entered into the type-values 

map. 

5. A new DomBaseType or DomDerType is created and placed into the has-obj-object map. 

6. The Add-Object database is returned to the Perform-Add-Actions function for further processing. 
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4.5.4 Adding New Objects to th e Specification 

After the backward chaining engine returns the database to the Perform-Add-Actions function, the Add- 

Obj-To-Tree function is called to find the proper place in the specification AST for the new item. If the new 

item is an operation, the function Add-GOMT-op-To-Tree is called to find the GOMT-Class that should store 

the new operation. This function tries to infer the proper class for the operation by mapping its predicates via 

the map-ID-to-Object function, described earlier, and getting the set of GOMT-Classes that hold the objects 

mapped to the predicate identifiers. If only one class is found, the operation is placed there. If no classes are 

found, it must be a pure operation and is placed into the Op-Library class. If more than one class is represented 

in the operation predicates, a complex while loop finds the lowest level aggregate class that includes all classes 

represented in the operation predicates. If all attempts to place the operation fail, the user is asked to choose the 

class. 

New data types are simply added to the set of domain global types, and GOMT-Classes are added to 

the has-primitive-classes or has-aggregate-classes maps as appropriate. If a new item is the result of a 

modification action, the parent object that gets the new item is generally known and is identified in the has- 

parent-objs map of the Add-Object and can therefore be easily added to the AST below the parent object. If the 

new item created was a predicate by itself, which could happen when modifying the predicate of an operation, 

the predicate object is returned to the calling function and does not pass through the Add-Obj-To Tree function. 

Except for predicates, the data dictionary is updated with the names of the objects in the subtree of the 

new item with a call to the Add-to-Data-Dict function. While in Add-to-Data-Dict, the user is asked if he wants 

to enter synonyms for the new objects, as shown in Figure 33. Finally, Per form-Select-Actions is called, which 

displays the new item on screen and asks the user if the new item should be selected for the specification or 

modified first, again shown in Figure 33. 

4.6 Viewing the Specification 

By choosing choice (7) from the main menu, the user can view the objects currently selected for the 

specification. The Print-the-Spec function is called to print the objects with the eh-used flag set to true. First 

the global data types are printed, then the global constants, followed by aggregate classes and primitive classes, 

and finally associations.    The Full-Selected-Obj-Description function formats the object descriptions into 
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strings that are printed by the Print-the-Spec function. Figure 34 shows a printout of the specification after the 

example CalcPropWt function was created and added to the specification. 

SELECTED PARTS FOR CURRENT SPECIFICATION 

DATATYPE: Real 
DATATYPE: FUEL_LEVEL_TYPE VALUES:  EMPTY QUARTER HALF THREE_QUARTER FULL 

AGGREGATE CLASS: JetPropulsionSys  IS CONCRETE CLASS 
CONNECTION: fueltank IS EXACTLY ONE 'FuelTank' 
CONNECTION: jetengine IS EXACTLY ONE 'JetEngine' 
OPERATION:  CalcPropWt 

OUTPUT PARAMETER: prop_wt : Real 
PREDICATE:   prop_wt ! =fueltank.tank_weight + jetengine.engine_weight 

PRIMITIVE CLASS: FuelTank  IS CONCRETE CLASS 
ATTRIBUTE:  fuel_level : FUEL_LEVEL_TYPE 
ATTRIBUTE:  tank_weight : Real 

PRIMITIVE CLASS: JetEngine  IS CONCRETE CLASS 
ATTRIBUTE:  engine_weight : Real 

Figure 34 Screen Display: A view of the selected specification in pretty print format 

4.7 Saving the Specification 

Choice (6) on the main menu takes the user to a sub menu with three options as shown in Figure 35. 

Choices (1) and (2) save the specification AST to a POB (Persistent Object Base) which can be loaded back into 

memory in a later REFINE session. The user is asked to enter a name for the POB file and the REFINE 

function pob-dump-file is called to perform the actual save. 

(0) None of these 
(1) Save 'In-Work' Speci fication to POB file 
(2) Save Final (Cl eaned- up) Speci fication to POB file 
(3) Save Text Desc ription of Spec ification to fil e 

Cho Dse the Save function you want to perform => 

Figure 35 Screen Display: The Save sub menu. 

Choice (1) saves all unmodified objects from the original domain AST plus any new or modified items 

resulting from EH processing. This choice allows the user to save work in progress and return later to continue 

working on the specification where he left off. Before saving the file, the user is asked to give the specification 

a name, which is placed in the spec-name map of the GOMT-DomainTheory object. The next time the 

specification is loaded back into REFINE and passed to EH, the Init-Spec-Tree function checks the spec-name. 
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If the spec-name is defined, some initialization functions, such as deleting duplicate types, can be skipped 

because they were done on the initial run. 

Choice (2) is used when the user is confident the application has been completely specified and wants 

to keep only the selected objects without the rest of the unselected domain objects. Before saving the 

specification to the POB file, a function called Purge-Spec deletes unused objects from the AST and removes 

the data dictionary subtree. This save should be chosen only after the clean-up functions have been run on the 

specification to ensure consistency. The specification AST resulting from the final save would then become the 

input to the design phase of development. 

Choice (3) pretty prints the selected specification to a text file instead of to the screen. 

4.8 Design Summary 

This design chapter discussed the details of integrating the various parts of the EH tool. The AI 

techniques and algorithms used to make intelligent decisions were described, and several screen displays were 

shown to give the reader a feel for the user interface and the flow of the process. Chapter 5 discusses the 

functionality actually implemented, some problems encountered during implementation, and the methods used 

to evaluate the tool. 
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5 Implementation and Evaluation 

This chapter describes the progress made during implementation and several issues that had to be dealt 

with. The method used for testing the EH and evaluation of its usefulness is also discussed. 

5.1 EH Functionality Impleme nted 

Not all EH requirements outlined on Chapter 3 were implemented in this version due to time 

constraints. Data types and operations have been particularly hard to define when working with the KBSE 

domain model because they contain predicates that can be very complex. For this reason, data types and 

operations received the most time and effort during implementation; and therefore, other types of domain items 

were implemented only partially or not at all. Figure 36 compares the EH requirements defined in Chapter 3 

with the capabilities actually implemented in this version. A slash means the requirement has been partially 

implemented, for example, .some parts of a class can be modified such as attributes and operations, but not 

states and events. 

Section Item Type Select Create Modify Delete 

3.4.1.1 Primitive Classes X / 

3.4.1.2 Class Attributes / / 

3.4.1.3 Class Operations X X X / 

3.4.1.4 States 

3.4.1.5 Events 

3.4.1.6 Transitions 

3.4.1.7 Parameters X X X / 

3.4.1.8 Predicates X X X / 

3.4.1.9 Data Types X X X 

3.4.1.10 Constants X X X 

3.4.1.11 Inheritance 

3.4.1.12 Associations / / 

3.4.1.13 Aggregate Classes / / 

3.4.1.14 Aggregate Operations X X X / 

Figure 36 Capabilities implemented in this version of EH 

The Class attributes receive only a partial selection rating on select and modify because the EH should 

be able to find and select the constraints that limit the value of the attribute. Association objects can be 

selected, but there is no capability to select the classes that are the connections of the association. The 

connections of associations and aggregate classes can be modified, but not all parts of an association class can 

be modified.  The name of any object can be changed and the data dictionary will be updated; however the 
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capability to find and update all occurrences of the name in predicates is not complete. The capability exists to 

delete parameters, predicates, or entire operations; however, the tool does not do any safety checking to be sure 

the object being deleted is not used by other domain items. 

The history database was not implemented. As mentioned in Chapter 3, a very simple history list 

could be implemented by creating an output text file to store descriptions of EH actions performed. The most 

likely place to perform the file writes would be in the functions P erform-Select-Actions, Perform-Modify- 

Actions, and Perform-Add-Actions, because those functions control changes made to the specification tree. A 

simple implementation like this would only provide the user with a chronological list of changes made to the 

AST. A more robust and useful history tool would allow the user to interactively view, undo, and redo 

specification actions, but was well beyond the scope of this research. 

The clean-up functionality mentioned in Chapter 3 was partially implemented by the Purge-Spec 

function called by the Save-Final-Spec function. Purge-Spec calls the preorder-transform function to search 

the specification AST while applying the Purge-Rule-Set of forward reasoning rules. When a purge rule finds 

an object with the eh-usedmap set to false, it calls the Remove-Object function to erase the object and adjust the 

map that pointed to the erased object. If the map that contained the erased object was a set or sequence, the map 

to the erased object gets removed from the set or sequence. If the map only consists of a single object, the map 

is set to undefined. These functions take care of getting rid of the unnecessary objects, but other clean-up 

activities such as defining incomplete constant and data type declarations, and placing those constants and data 

types at the proper level were not implemented. 

The capability to restrict certain actions on an object was not implemented. Marking an object as 

restricted against modification or deletion could done fairly easily by adding a map from Obj-Objects to a coded 

symbol, which would indicate if a restriction exists and if so, on what actions. A restriction map may 

alternatively be placed in the Data-Elements of the data dictionary. Implementing the restrictions in the EH 

would be much harder, because the restrictions would have to be checked in several places in the code. When a 

list of objects is displayed to the user, the restrictions would have to be checked and either printed out with the 

object description, or inhibit the objects from being displayed at all. More research needs to be done on this 

issue. 
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5.2 Maps Added to the Domain Model 

Several maps were defined to help the EH perform its job.   The map names and their purpose are 

described below. 

• has-aclass - added as a non-tree attribute to Parameter objects to store a pointer to a GOMT-Class used 

as a data type of a parameter. E.g. students : P Student. The map has-type-multiplicity would 

also be used in this example to indicate students is a set. The has-atype map points to a DomTypeObj 

for those parameters declared as a data type. 

• has-DD - added as the map from the root of the domain (GOMT-DomainTheory) to the root of the data 

dictionary (Data-Dictionary). 

• spec-name - added to hold the name of the specification if the user decided to suspend the EH session 

and save the in-work specification until later. 

• eh-used - added to all Obj-objects as a flag to indicate if the object has been selected to be included in 

the specification. 

• eh-pred-used - added to all Predicate objects as a flag to indicate if the predicate has been selected to 

be included in the specification. 

• pred-mapped - added to Predicate objects whose identifiers have been mapped to domain objects by 

the Map-ID-to-Obj function. 

• ID-wrd- added to predicate IDname objects to aid the data dictionary in finding matching names in the 

domain. 

• id-obj - added to predicate IDname object to point to the domain object it represents. 

• is-element-qf'- added to predicate IDname objects to map the two identifiers of an 'e 'expression, for 

example, s   e   students. 

• is-BasicDecl-of - added to predicate IDname objects to map the two identifiers of a declaration 

expression, for Example, f: FuelTank. 

• has-component-var - added to predicate IDname objects to map the two identifiers of a component 

expression, for example, FuelTank. fuel_level. 
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5.3 Implementation Difficulties Encountered 

This section describes some technical and coordination issues that arose during the prototyping phase 

of this research. 

5.3.1 Parsing Predicates 

The EH needed some method for the user to enter predicates such as invariants and especially pre- 

conditions and post-conditions. Since the user interface is text based, the options were to build some kind of 

parsing grammar or try to use something that already existed. The U-zed parser built by Wabiszewski [16] was 

already built and being used for parsing Z Schemas from LaTeX files in a batch mode. The problem was how to 

get a text string typed in by the user during run time into a predicate tree that could be manipulated by the EH. 

There are two REFINE functions available for parsing, parse-from-file and parse-from-string. The parse-from- 

string function has three parameters, the string to be parsed, the grammar to be used, and a flag to indicate how 

errors are handled. Since the EH only needs to parse predicates, a subset of the existing grammar used for 

domain parsing was needed. The previous grammar files called UtoolKit and Uzedwere modified to just handle 

predicate theory and renamed PredToolKit and Upred. These two new grammar files are compiled before the 

EH code files and so become the grammar that EH uses for parsing predicates. This approach may not be 

completely satisfying since the user must enter predicates in proper Z notation. It does provide a sound, 

structured way to implement and test the feasibility of this version of the EH. 

5.3.2 Representing Function Calls in ZPredicates 

Representing function calls in the transformation from the graphical functional model to the Z schema 

to the domain AST was the cause of some confusion. Consider the example in Figure 37. The Data Flow 

Diagram shows the output of DetermineFuelWeight going to the input of CalcTotalWeight and is reflected in 

the Z Schemas. However, when parsed into the domain tree, there is an implicit requirement made that the 

name of the input parameter must match the name of the corresponding output parameter. Indeed, if the name 

of the output parameter of DetermineFuelWeight was changed, the CalcTotalWeight function would have no 

idea where its input would come from. A common way to implement these functions is shown in the REFINE 

code   implementation   of  Figure   37.      The   CalcTotalWeight  function   uses   a   function   call   to   the 
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DetermineFuelWeight to get the fueljweight rather than expecting the value to be passed in as a parameter. The 

problem was the misunderstanding of how the U-Zed parser handled functions in predicates. 

Data Flow Diagram 

fueMank-weight 

Z functional Schemas 

■ DetermineFuelWeight   

"BFuelTank 
fuel'_w'eight!: R 

fuel weight! =fiiel level *fael density 

FuelTank 

• CalcTolalWeight — 

EFuelTank 
fuelweight?: R 
fuel_tank_weight!: R 

fuel tank weight! =fitel weight? + tank weight 
REFINE code implementation 

function DetermineFuelWeight(): Real 
Let (fuel_weight: real = FuelTank.fuel_level * FuelTank.fuel_density) 
fuel_weight 

function CalcTotalWeight(): Real 
Let (fuel_tank_weight: Real = 

FuelTank.DetermineFuelWeight + FuelTank.tank_weight) 
fuel_tank_weight 

Figure 37 Inconsistency between Graphical and code representation 

The Z notation allows for most of the arithmetic, relational, and logical expressions to be written using 

Infix notation, e.g. X = Y + Z. There are, of course, many standard and defined operations represented in 

Prefix notation such as SquareRoot (x), or power (x, n). There was some early confusion about if and 

how prefix operations would parse into the predicate tree. After some study and testing, it was discovered that 

the parser uses two slightly different notations concerning prefix operations. If there is only a single input 

parameter, simply put a space between the operation name and the parameter e.g. Y = SquareRoot x. If 

there are more than one input parameter, the parser parses them in as a single tuple entity using the familiar 

parentheses representation: W = Power (x, n). Given either form of function call, the functions are parsed 

into a FunctionApp-Expr subtree in the Unified-Object model. Discovering this capability helped eliminate 

some uncertainty in the specification model. However, if a function has no input parameters, the parser has no 

way to distinguish between a function name and any other variable type. In this case the function name is 

placed into a var-name-expr subtree, so some ambiguity still exists in this issue. 
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5.3.3 Mapping Predicate Variables to Domain Objects 

It became apparent during prototyping that a great deal of knowledge could be gleaned from predicates 

if the domain objects they represent could be accessed. Choosing the data type of a parameter to be modified is 

one reason why the object corresponding to the predicate identifiers would be needed. The EH could initially 

limit the choices of data types to those types and classes represented in the related predicates, assuming that the 

parameter will often be the same type as other variables in the predicate. If the proper data type is not found in 

the initial set, the entire list of data types are displayed for the user. Another situation where the objects of the 

predicate identifiers are needed is when an operation is selected for use in the specification. Because the 

predicate identifiers represent other objects such as attributes and operations, those represented items should 

also be selected for use in the specification. For example, the predicate in the CalcTotalWeight operation may 

be fuel_tank_weight = DetermineFuelWeight + tank_weight. The identifier tank_weight 

represents an attribute in the FuelTcmk class and should be selected for the specification. The identifier 

DetermineFuelWeight represents another operation, which in turn has a predicate fuel weight = 

fuel_level * fuel_density. The operation DetermineFuelWeight and the attributes fueljevel and 

fuel_density should also be selected for the specification. Mapping identifiers to their corresponding domain 

objects was very important in implementing these capabilities. 

The problem was that the predicates are implemented in the Unified Object model and the predicate 

variables were not mapped or associated to the domain objects they represent except by name. Therefore, in 

order to gather the data types represented by the predicates, some processing code had to be created that would 

search the data dictionary for perfect matches in order to find the related domain objects. The domain objects 

represented by the predicate variables could be attributes, constants, operations, parameters, classes, 

connections, or locally bound variables. Usually there will be only one perfect match, but bound variables 

would have no match, and attributes, constants, and parameters can possibly have more than one match if the 

name is used in different classes. For the case of bound variables, it is assumed there will be a declaration of 

the variable in the predicate, e.g. f: FuelTank • f.fuel_level <= f. capacity. Since the 

declaration parses in as a BasicDeclSeq expression in the predicate tree, the type or class of the bound variable 

can be found by looking at its declaration. 
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In the cases where more than one perfect match is found, the variable should be part of a component- 

expr, e.g. f:FuelTank j: JetEngine • total_weight = f.weight+j .weight. In this 

example, the attribute weight is defined in two classes, but each is prefixed with the bound variable indicating it 

is a component of a declared class. By getting the class associated with the bound variable, the attribute type 

can be found by looking to the matched attribute object that is in the class of the bound variable. 

The function Map-ID-to-Obj sets a non-tree pointer from the IDname object of the predicate to the 

domain object it represents. It was discovered during prototyping that this function came in very handy during 

selection actions. When an operation is selected for use in the specification, the other domain objects 

represented by the predicate variables must also be selected for the specification. The Map-ID-to-Obj function 

finds those domain objects so their eh-used flags can be set. 

5.3.4 Selection of Specification Items 

When selecting an item with predicates, the objects represented by the predicate variables are also 

selected. These selected objects often have other objects in their subtree such as data types and other predicates. 

Since these selection actions turn out to be a recursive process, the Select-Spec-Items function is called 

recursively until all related objects are selected. Initially, it was assumed that the predicate objects would not 

need an eh-used flag to indicate selection, however, it is possible that the recursive selection functions could 

encounter the same predicate twice and end up in an infinite loop. Therefore, an eh-pred-used map was added 

to the predicate object and checked in the Select-Spec-Items function before processing the predicate variables 

to avoid infinite recursion. 

5.3.5 Map from the New Object to the Parent Object 

While developing the functionality for adding and modifying AST items, a problem arose regarding 

the information known about the action in progress. Sometimes when adding an item to the specification, very 

little is known about where the new item will be placed in the tree, but other times the parent objects, data types, 

or values may already be present in the AST. For example, when a new system output is identified and an 

operation must be created, it is not known to which class the new operation will belong. But, if the user is 

modifying a class and indicates that a new operation for the class is needed, then the EH should have the 

flexibility to use some information from the parent class while creating the new operation. The has-parent-obj 
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map was added to the Add-Object database to store the parent object if known. This map can be used when 

adding the new item to the specification and when looking for other domain information related to the new 

item. 

5.3.6 Deleting Duplicate Types 

During the initialization function, the Delete-Duplicate-Types-Rule calls Delete-Duplicate-Types 

function when two duplicate global data types are found in the domain. Duplicates can happen when two or 

more LaTeX files containing Z domain Schemas with duplicate data type declarations are parsed into the 

domain tree. For every declared data type, a new DomTypeObj is created in the domain tree without checking 

for duplicates. When processing in the EH, duplicate data types can show up in object lists and cause 

confusion. It should have been fairly simple to look for duplicate global types by using the REFINE function 

called term-equal?. The term-equal? takes two arguments, which are object base trees, and returns true if its 

two arguments are isomorphic and all map values are equal. When term-equal? is true the Delete-Duplicate- 

Types function deletes one of the data type objects. The term-equal? function did not work as advertised in this 

case. It would not return true for duplicate objects; therefore, this functionality was disabled until a working 

solution could be found. 

5.3.7 Problems with POB save 

Saving the specification AST to a file as a POB (Persistent Object Base) was another problem area. 

The general way of saving a POB is to declare a dump-descriptor variable for each AST or subtree that should 

be saved. The dump-descriptor identifies a set of class names and a sequence of maps for each class that should 

be saved. Since this approach can get very tedious for large domains, REFINE provides a function called make- 

dump-desc-for-class-tree, which claims to automatically save all defined maps of all objects below the root 

node passed in to the function. This function is supposed to be a convenient short cut to actually naming every 

map in the domain the user wants to save. Two other optional arguments of make-dump-desc-for-class-tree, 

atts-always-to-dump and atts-never-to-dump, allow the user to specify AST objects as exceptions when saving 

the POB. This function did not work as advertised. It would only save AST objects if all the desired maps were 

actually named in the argument list. Three such dump-descriptors had to be defined because of the differing 

inheritance paths: one for GOMT-DomainTheory, one for GOMT-Objects, and one for Unified-Objects. These 
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three descriptors are then merged with a function called merge-input-dump-descs that returns a dump-descriptor 

containing the three merged descriptors. This merged descriptor is then used as the argument to the pob-dump- 

file function that writes the POB to a file. 

5.4 Evaluation 

Although it is generally claimed that automation of a manual process will improve productivity, the 

claim cannot be substantiated without performing some sort of metrics evaluation. Several metrics could be 

used to evaluate the performance of an automated EH. Possible methods include: 

• Use several domains and written specifications and compare the averages of the total time taken to 

produce a specification AST using a manual process versus using the EH. 

• Have several people try the tool and take a survey of their opinions on ease of use, timesavings, 

suggested improvements, etc. 

• Observe a few people who are familiar with the AFIT KBSE system while they use EH and log the 

comments they make as a way to get feedback on the usefulness and ask their opinion as to whether 

they would prefer an EH tool over the previous manual method 

• Make a smaller scale test by breaking down the manual process of creating a specification item into its 

subtasks. Perform several specification actions on various items while timing each of the subtasks 

using a manual method. Then, perform the same actions with the EH. Since the subtasks of the two 

methods are different, the manual tasks would need to be summed and compared to the total EH time. 

The first two methods were not possible because there are currently very few detailed specifications, there are 

few people who are familiar enough with the AFIT KBSE system to get a good sampling, and the functionality 

of this EH version was not complete enough to produce entire specifications. The third method is good for 

soliciting feedback; however, opinions are subjective and hard to quantize into meaningful metrics. Therefore, 

the fourth method seemed like the most promising way to objectively evaluate the EH. 

One problem with comparing the manual "old" way creating specifications from a domain to the 

"new" automated tool, was the lack of a manual process to begin with. There is fuzzy line between a domain 

tree and a specification tree. Ideally, the domain is more general and could be used to create several 

specifications for applications within that domain. Since there was not a well defined algorithm for building a 

specification from the domain, and since the AST structure is the same for both the domain and the 
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specification, in practice the software development process usually started by defining the specification 

requirements directly. Before meaningful metrics could be made, the manual process for refining a 

specification from a domain needed to be defined. 

5.4.1 The Manual Process Defined 

The manual process for defining a specification assumes a domain has been created and is fairly 

complete. The domain definitions generally begin as Z schemas written on paper as they are created. Once on 

paper, the domain engineer enters the Z schema information into a template (one GOMT-Class per template) 

that can be read by a LaTeX parser and understood by the U-Zed parser. After successful parsing, the LaTeX 

files are saved for future updates and the domain information resides in the domain AST where it can be saved 

to a POB file. The most likely specification process would start with the saved LaTeX files and the engineer 

should have some written requirements for his particular problem. 

1. Locate the directory and LaTeX file that defines the class needed. This assumes the engineer is quite 

familiar with the domain since he must know the class needed to add new operations. He would 

probably need to refer to Z schema printouts and pictures of the domain object model. 

2. Open the LaTeX file in a text editor, key in the definitions needed for the specification, and save the file 

under a new name. This requires the engineer to understand LaTeX syntax and the peculiarities of the 

U-Zed parser. 

3. Open the printDD file; update with the name of the new specification file, and save it. The printDD file 

defines the title page and other configuration if the Z schemas are printed out. This step is not required 

if a graphical print out of the Z specification is not needed. 

4. Run the new file through the LaTeX compiler. If the compiler fails because of errors, repeat steps two 

and four until successful. Repeat steps 1-4 for each file that needs to be updated for the specification. 

5. Start up REFINE then start up Afittool. Choose to parse the new LaTeX file into the new domain, then 

iteratively append all other new specification files to the domain tree. 

6. When all files have been appended, choose to save the domain to a POB file and give it a name; or 

besin the transformation to the design AST. 



When finished with these steps, the specification should theoretically be ready for the design phase. However, 

some problems may occur due to the lack of consistency checks on the specification. Unless the engineer 

manually checks for and corrects them, the following problems will show up in the design AST. 

• Predicate names are not checked for correct spelling or consistency with the names of the objects they 

represent. To overcome this problem, the engineer would probably need to print out the Z Schemas of 

the domain for reference to the existing domain item names. 

• Items such as class attributes or data types not used or needed in the application will not be purged from 

the specification AST. The engineer may not care if there are extra unnecessary objects in the design. 

But they could cause confusion downstream in the development when a designer decides to use one of 

those objects for another purpose since it is "there anyway". It could increase storage requirements and 

hinder performance if extra fields are kept in a database table with a million records. To avoid this 

problem, the engineer may need to perform a search through all the files for each domain object to see 

if it is required by a predicate somewhere, which would be extremely time consuming and error prone. 

The problem begs for some type of automated approach. 

• Data types and constants declared in two or more class files will be duplicated in the specification AST. 

To avoid this duplication, the engineer would have to purposefully compare the class files or Z printouts 

and delete the duplicates from all but one file. 

Checking these problems manually can add a great deal of time to the specification process and can be tedious, 

which adds to the risk of human error. 

5.4.2 Standard Comparison Specifications 

Since the EH was working for only a limited set of object types and actions, the specifications chosen 

as standards for comparison purposes had to be implementable using the EH. The Cruise Missile and the 

School were chosen as the two domains used as input when building the partial specifications described below. 

For the Cruise Missile, perform the following refinements and selections: 

1. Make all the weights a data type called KGS (kilograms), which is a real number >= zero 

2. Make all fuel rates a data type called LITERS/SEC, which is a real number >= 0 

3. Define a data type called FUEL_LEVEL_TYPE for fueljevel to be a real number >= 0 and <= 1. 

4. Define a data type for capacity to be LITERS, which is a real number. 
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5. Create an output function to calculate the current fuel amount in Liters from (fuel_level * capacity). 

6. Delete the predicate fuel_level  <= capacity from the FuelTank class. 

7. Change the predicate in the DetermineFuelWeight function to use a call to the function defined in the 

previous bullet (5) instead of the fuel level variable. 

8. Create a function that outputs the total weight of the CRUISE MISSILE in KGS calculated from the 

weights of its components then select this function for use in the specification. 

9. Create and select an internal function that synchronizes the flow rates of the fuel tank and jet engine to 

the actualJlow_rate of the throttle 

For the School, select the domain items required to: 

1. Output the set of students advised given a faculty member. 

2. Output the number of Master's degree students advised by a given faculty member. 

3. Output the set of sections taught by a given faculty member. 

4. Output the total number of students taught by a given faculty member. 

Since the partial specifications above require Z predicates to be defined, it is assumed that the proper parseable 

predicates have already been formulated on paper, so neither approach is penalized for the time it takes trying to 

figure out the proper syntax. 

5.4.3 Evaluation Results 

The two sample specifications outlined in Section 5.4.2 were built using the six steps of the manual 

process described in Section 5.4.1 and the time taken for each step of the specification was logged. Next, the 

same two specifications were created using the EH tool, keeping track of the time taken for each step. After 

each specification process, the domain descriptions were printed out using an option provided by the 

AFITTOOL software. The descriptions list all the objects present in the specification AST. Appendix A first 

shows the objects selected during the EH version of the CRUISE MISSILE specification, followed by a list of 

additional objects in the manual specification that are not required. These additional objects remain in the 

specification because there is no way to purge unnecessary objects in the manual method unless the engineer 

removes them from the Z schemas in the LaTeX files.   The SCHOOL specifications are also shown in 
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Appendix A.   Since the dynamic model was not implemented in the EH, the states, events and transitions 

associated with the domain models were ignored during this evaluation. 

This small test certainly does not have enough sampling points to perform any kind of statistical 

analysis, but several reasonable observations can be made from the results. 

5.4.3.1 Time Comparison 

Figure 38 summarizes the results of creating the manual version of the specifications versus the EH 

version using the same set of requirements. The speedup indicates how many times faster an enhanced method 

is versus the original method and is defined as Execution time0id /Execution timenew.   In both tests the EH 

method was a little more than twice as fast as the manual method, which shows some consistency. 

Cruise Missile School 

Manual Method 82 54 
Elicitor-Harvester 40 25 

Speedup 2.05 2.16 

Figure 38 Time in minutes to complete specification process and the speedups obtained 

This time test could be statistically validated given a large enough sampling space. Ideally, five or six 

people could each perform this time comparison on five or six different specifications. The results would be 

averaged with the lowest and highest single times thrown out. The times should form a normal distribution and 

a confidence interval could be calculated. 

5.4.3.2 Correctness Comparison 

During the manual process, the specification was not required to be purged of unselected objects, 

which resulted in a specification containing many unnecessary parts. Although these excess items may not 

immediately affect the specification, it is unnecessary overhead and could cause confusion downstream in the 

design phase. In Appendix A, the sections labeled as UNSPECIFIED MISSILE/SCHOOL COMPONENTS 

REMAINING IN MANUAL SPECIFICATION show several pages of excess parts of the domain that should 

be removed by the engineer to maintain correctness. Notice that there are also come duplicate data types 

defined in the list of global data types. These duplicates occur because they are defined in the Z Schemas of 

more than one class and the U-Zed parser places all data types in the global area. Removing these excess items 

would be a tedious task that would add a lot of time to the manual process. 
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Checking for correctness is an area where automated tools generally excel. Just as a compiler checks 

the correctness of source code semantics, an EH could check the formal language semantics of domain 

predicates. Although extensive correctness checking capabilities have not been built into this EH version, some 

predicate checking was implemented as described in Sections 5.3.3 and 5.3.4. Predicate variables in newly 

created operations and data types as well as variables in predicates selected for the specification are compared 

to data dictionary elements to be sure of consistent spelling and to assure the objects represented by those 

variables are also selected for use in the specification. When the name of an object is modified, the EH updates 

the data dictionary and searches the specification tree to update predicate variables that map to the object being 

changed. In the manual process, it is quite possible that a predicate variable could be spelled differently than 

the object it represents and pass through the specification phase undetected - possibly causing confusion in the 

design phase. 

Checking for errors and correctness are tasks generally performed much more efficiently with an EH 

than by a manual method. The benefit of automation grows as the size of the specification grows. For a small 

specification, a human may be able to manually check for errors and correctness, but as the number of classes in 

the specification grows, the number of details becomes overwhelming. As long as the error and correctness 

checking tasks can be described with an algorithm or a set of rules, an automated tool such as an EH will be 

able to perform the tasks much more quickly and accurately. Comparing the accuracy of the two methods 

would require extensive monitoring of the design process as well as verification and validation testing at the end 

of development for several applications. An evaluation would require an accurate count of the number of errors 

and inconsistencies encountered as a result of the specification process. Unfortunately, implementing such a 

test was beyond the scope of this thesis effort. 

5.4.3.3 Ease of Use 

Another way the EH demonstrates improvement is by simplifying the specification process. The 

manual method of creating a specification was loosely defined as a six-step process in Section 5.4.1. The first 

four steps require the engineer to find, open, modify, and save all LaTeX files containing Z Schemas necessary 

for the specification. Step 5 indicates that the user needs to start up REFINE and AFITTOOL to parse the 

LaTeX files into the specification AST. The EH process starts at Step 5 except that the domain should be saved 

in a POB file and the engineer would choose option 12 from the AFITTOOL submenu, shown in Figure 39, and 
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enter the name of the domain POB file to load into the specification AST. The user would then back up to the 

main menu, also shown in Figure 39, and start up the EH by choosing option 2, which guides the user through 

the specification process. 

Welcome to the AFIT Software Transformation System 
Version 0.4a 

What would you like to do? 
0 - Exit AFITtool. 
1 - Perform Domain operations. 
2 - Perform Elicitor-Harvestor operations. 
3 - Perform Design operations. 
4 - Perform C++ Code Generation operations. 

ENTER YOUR CHOICE : 1 

Welcome to the AFIT Software Transformation System 
***>DOMAIN MODELER<*** 

What would you like to do? 
0 - Return to main menu. 
1 - Zstrip, parse, and create a domtree (2, 3, 4) 

2 - Zstrip a LaTeX domain file to zstrip.out.tex 
3 - Parse a Z-stripped file into a uzed AST. 
4 - Create a DOM AST from a uzed AST. 

5 - Parse a Z-stripped file and create a DOM (3 - 4). 
6 - Append to the DOM AST from a uzed AST. 

7 - Append to the DOM AST from Latex file (2,3,12). 
8 - Display the current domain model. 
9 - Output the domain model as .out file. 

10 - Save the domain model as a POB file. 
11 - Zap the current domain model. 
12 - Load the domain model from a POB file. 
13 - Display the current domain using grammar. 
14 - Output the domain using grammar as .1st file. 
15 - Output the domain using architecture language Acme. 

ENTER YOUR CHOICE : 

Figure 39 The AFFITTOOL main menu and domain functions submenu. 

Measuring the ease of use metric can be somewhat imprecise and was not performed in this research 

because there were not enough qualified people for a good statistical sampling. Assuming there were enough 

people for this test, the ease of use could be measured subjectively by asking each person to create a small 

specification with both the manual method and the EH, then ask them to fill out an opinion survey about their 

experience with both methods. The survey would ask them to rate the ease of use and intuitiveness of the two 

methods on a scale of one to five.   The survey results would then be averaged out to come up with a single 
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rating number for each method and the two numbers could be compared to give an indication of which method 

was easier for the user. 

5.5 Implementation Summary 

The chapter described the parts of the EH that were successfully implemented. Several changes made 

to the domain model to support the EH were listed and difficulties encountered during implementation were 

discussed. Methods used to try to evaluate the usefulness and effectiveness of the tool were described as well as 

metrics that could have been used given a larger sample space. Chapter 6 has some concluding remarks and 

lists several ideas for future research. 
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6 Conclusions and Recommendations 

The quest for a robust Elicitor-Harvester continues to be a challenge. Although previous work 

declared an EH tool as feasible and promising, many parts of the tool remain unproven and unimplemented. 

Previous thesis work of Wright [3] and Cochran [6] was limited to a small single domain and illustrated the 

concept of choosing reusable components from a specific domain. However, for a knowledge-based system to 

be useful, it must be generic enough to store and allow manipulation of most domain types. Because an EH 

must operate within the framework of a larger KBSE system, truly proving feasibility of a generic EH requires a 

well-defined domain theory, or meta-model that can store all types of domain knowledge and a variety of 

domains to allow for testing of various aspects of differing specifications. Wright and Cochran did not have the 

luxury of a pre-existing generic domain model as a framework to build upon and had to create their own, 

forcing them to restrict the scope of research. Karagias's work [2] was performed after the DOM meta-model 

had been partially defined and so was able to study the problem with well represented object-oriented domains. 

The implementation examples of the previous thesis work focused on building something like a pump, a queue, 

or a propulsion system. Generally, the user was prompted to input some description or requirement about the 

object to be built and the EH would supply a list of parts that met the requirement and asked the user to select 

the part desired. This approach works well for domains where some aggregate object is being built. However, 

many real world specifications require identification of operations acting upon the objects, states of the system, 

and the events that trigger operations and state changes. Identifying these actions are usually the most difficult 

part of defining a specification; but by identifying operations, the objects and attributes required can usually be 

determined by an intelligent EH without bothering the user for such details. 

6.1 Conclusions 

The scope of this research was not broad enough to explore states and events, but an in-depth study of 

operations was performed.   This work uncovered many complex problems encountered while manipulating 

operations and especially predicates, but has also shown some promising results.   Several benefits of this 

research are summarized below. 

1. The simple data dictionary prototype, with its associated rules and functions, proved very useful in 

matching user input to existing domain items. A well-established data dictionary would allow a user to 

create a specification without the need to refer to hard-copy Z-schema definitions of the domain. 
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2. An inference engine was built in REFINE, which successfully performed backward chaining on a set of 

rules. Backward reasoning provided a good method for creating specification items such as operations. 

The recursive nature of the backward chaining algorithm allows for other objects needed for the 

specification, such as a new data type or another operation, to be created in the meantime while creating 

the original item. For example, while creating a new operation, it is discovered that the output 

parameter has a data type that doesn't exist in the domain. A DomTypeObj becomes the new goal and 

the backward chaining engine is called recursively to create the new data type then return to the 

operation creation process when complete. 

3. Forward reasoning was successfully used to modify specification objects. The REFINE transform 

functions were used first to access rules to determine the modifiable attributes of an object, then to find 

the rules needed to guide the user through the modification process. 

4. It was shown that many objects could automatically be marked as selected for the specification when 

the user selects a single operation. Mapping predicate variables to the domain objects they represent is 

the key to this task. If a predicate is deemed necessary for a specification, then all the objects 

represented in that predicate as well as their data types and the classes to which they belong are also 

selected for the specification. 

5. The ability to save the in-work specification or the final specification to a POB file was successfully 

implemented. Saving the in-work specification was fairly simple. One just needs to save all objects 

currently in the specification. However, saving the final version was more difficult because the 

unneeded objects had to be removed from the specification AST. Completing this task required 

searching the tree for unmarked objects, accessing the parent object, setting the parent pointer to 

undefinedTor a one-to-one map or removing the object from the set or sequence for a one-to-many map, 

and finally erasing the object. 

6. Although this prototype is not complete enough to specify entire applications, analyzing its 

implemented capabilities indicates several observable improvements over the previous manual method 

of creating specifications. Small preliminary tests show that specifications can be created faster, with 

better error checking, and without extraneous objects by using the EH tool instead of the manual 

method. 

6.2 Future Recommendations 

The EH process is still a rich area for research.   Following are several recommendations for future 

study. 
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A Graphical User Interface (GUI) would allow more information to be displayed on each screen than 

the current text-based user interface. It could allow a user to select multiple objects in cases where the 

same action needed to be performed on several objects, for example, to change the data type of several 

attributes. The object model could be displayed graphically and the parts of a class could be viewed 

with mouse clicks on the class object box. Modifications could be made inside the object model boxes, 

data dictionary elements could be viewed and updated and relationship cardinality could be changed. 

There are currently very good data modeling tools on the market that perform similar functions for 

database development such as Erwin by Logicworks. An EH GUI may have many features of a data 

modeling tool in addition to object-oriented functionality to handle operations, states and events. 

A big drawback of formal methods is the general lack of expertise within the computer industry. There 

is a steep learning curve and they are generally difficult to understand. The need exists for an interface 

that can get the formal mathematical models out of the face of users and allow them to interact with the 

tool in a more natural language. This problem is exhibited in the EH when the user is asked to input a 

predicate in proper Z syntax. Obviously the user is required to have some knowledge of Z and set 

notation. A natural language interpreter could accept a user's description of a predicate in natural 

language and translate it into Z or another formal language. Of course there would need to be some 

structure imposed on the user's input, since natural language is so ambiguous. 

The history database is an important part of the EH, but was not implemented in this version. Any 

interactive tool should provide the user with the ability to undo certain actions if a mistake was made or 

requirements changed. The history database functionality, described in Section 3.2.2.2, still needs to be 

studied. 

The data dictionary is a tool that could have a function outside of the EH process. In fact, the data 

dictionary would stay with the domain AST and be available for all EH sessions using the domain. It 

could provide the ability to parse descriptions, synonyms, and maybe abbreviations of GOMT-Objects 

during the domain-engineering phase as objects are created. The data dictionary could also be 

expanded to allow the tool to learn new synonyms automatically during EH processing when the user 

matches an input to a domain object. Many improvements are needed for the data dictionary matching 

techniques to make them more efficient and precise. 

The role of the Elicitor-harvester could be expanded to become more of a "domain editor". The domain 

engineer could use it as a domain building/maintenance tool. The domain could be built from scratch 

without the need for Z-schemas, LaTeX files or parsing software. Updates could be made to the 

domain via the domain editor, and it could still be used as a specification tool. Within the domain 

editor the knowledge base administrator could set the restrictions on domain objects to allow or 

disallow certain actions on them. The restriction functionality also needs to be studied. 
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• As shown in Figure 36 of Section 5.1, there is a significant amount of functionality that has not been 

designed and implemented. There are still many more challenges to be faced with the dynamic model - 

the states, events, and transitions, as well as associations, classes and inheritance. 

6.3 Final Comments 

As Knowledge-Based Software Engineering matures, the need for automated tools to perform 

specification refinement will increase. By creating specifications that are complete and correct and building 

transformation software that automatically creates source code from the specification, application software can 

be maintained at the specification level. This ability will have a profound impact on way software is maintained 

and upgraded. A commercial grade Elicitor-Harvester tool is probably still a few years away, but it has 

certainly been proven feasible. The possible benefits of automation at the specification level of software 

demand further study in this promising field. 
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Appendix A: Output Specifications from Tests 

CRUISE MISSILE EH SPECIFICATION 

DOMAIN: Missile 

global data types 
Real 
LITERS 

SUPERTYPE: Real 
FUEL_LEVEL_TYPE 

SUPERTYPE: Real 
LITERPERSEC 

SUPERTYPE: Real 
KGS 

SUPERTYPE: Real 

primitive concrete class FuelTank 
attributes 

output_flow_rate: LITERPERSEC; 
fuel_level: FUEL_LEVEL_TYPE; 
capacity: LITERS; 
tank_weight: KGS; 
fuel_density: Real; 

end attributes 
Operations: 

GetFuelAmount (IN ;OUT current_fuel_amount ) 
Predicates: 
current_fuel_amount! = (#3Ka MULTIPLICATION-EXPR>) 

DetermineFuelWeight (IN ;OUT fuel_weight ) 
Predicates: 
fuel_weight!=(#32<a MULTIPLICATION-EXPR>) 

CalcTotalWeight (IN ;OUT fuel_tank_weight ) 
Predicates: 
fuel_tank_weight!=DetermineFuelWeight + tank_weight 

primitive concrete class JetEngine 
attributes 

engine_weight: KGS; 
maximum_fuel_flow_rate: LITERPERSEC; 
thrust_factor: Real; 
current_fuel_flow_rate: LITERPERSEC; 
current_thrust: Real; 

end attributes 
Constraints: 

engine_weight>0 
maximum_fuel_flow_rate>0 
thrust_factor>0 
current_thrust>=0 
current_fuel_flow_rate>=0 
current_fuel_flow_rate<=maximum_fuel_flow_rate 
current~thrust=(#33<a MULTIPLICATION-EXPR>) 

primitive concrete class Throttle 
attributes 
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position_index: Real; 
maximum_flow_rate: LITERPERSEC; 
actual_flow_rate: LITERPERSEC; 

end attributes 
Constraints: 

position_index>=0.0 
position_index<=l.0 
actual_flow_rate=(#34<a MULTIPLICATION-EXPR>) 

aggregate concrete class JetPropulsionSys 
attributes 

prop_weight: KGS; 
end attributes 
components: 

fueltank: FuelTank; 
throttle: Throttle; 
jetengine: JetEngine; 

end components: 
Constraints: 

prop_weight=(#35<a COMPONENT-EXPR>)  + (#36<a COMPONENT-EXPR>) 
States: 
Class Events: 
Operations: 

SynchronizeFlowRates (IN ;OUT ) 
Predicates: 
Predicate - #37<a CONJUNCT-PRED> 

aggregate concrete class Airframe 
attributes 

airframe_weight: KGS; 
end attributes 
Constraints: 

airframe_weight>=0.0 

aggregate concrete class Missile 
components: 

propsys: JetPropulsionSys; 
airframe: Airframe; 

end components: 
Operations: 

CalcMissileWeight (IN ;OUT missile_weight ) 
Predicates: 
missile_weight!=(#38<a COMPONENT-EXPR>)  + (#39<a COMPONENT-EXPR>) 
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UNSPECIFIED MISSILE COMPONENTS REMAINING IN MANUAL SPECIFICATION 

Global data types 
Boolean 
Digit 
Char 
Integer 
Nat_l 
Nat 
LiterperSEC 
MODELJTYPE 
LITERperSEC 
KGS 
AF_MODELS 
KILOMETER 
KPH 
RADIAN1 
RADIAN2 
DEGREE 
KGS 
KGS 

primitive concrete class Throttle 
Operations: 

InitThrottle (IN ;OUT ) 
Predicates: 
position_index'=0.0 

primitive concrete class JetEngine 
attributes 
manufacturer: SEQ_Char; 
model_num: MODELJTYPE; 

Operations: 
SetRate (IN flow_rate ;OUT ) 
Predicates: 
current_fuel_flow_rate'=flow_rate? 
current_thrust'=(#178<a MULTIPLICATION-EXPR>) 

primitive concrete class FuelTank 
attributes 

tank_sim_time: SIMTIME; 
input_flow_rate: LiterperSEC 

Operations: 
InitFuelTank (IN ;OUT ) 
Predicates: 
tank_sim_time'=0 
input_flow_rate'=0 
output_flow_rate'=0 
fuel_level'=0 
capacity'=0 
tank_weight'=0 
fuel_density'=0 

PredictTankFullTime (IN ;OUT overflow_event_time ) 
Predicates: 
overflow_event_time!=tank_sim_time + capacity - (#179<a DIVISION- 
EXPR>) 

CalculateNetFlow (IN ;OUT net_flow_rate ) 
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Predicates: 
net_flow_rate!=input_flow_rate - output_flow_rate 

PredictTankEmptyTime (IN ;OUT tank_empty_event_time ) 
Predicates: 
tank_empty_event_time!=tank_sim_time + (#180<a DIVISION-EXPR>) 

aggregate concrete class JetPropulsionSys 
attributes 

prop_fuel: Real; 
Constraints: 
prop_fuel=(#185<a COMPONENT-EXPR>) 
Predicate - #186<an IMPLICATION-PRED> 
Predicate - #187<an IMPLICATION-PRED> 
(#188<a COMPONENT-EXPR>) =(#18 9<a COMPONENT-EXPR>) 
(#190<a COMPONENT-EXPR>) =(#191<a COMPONENT-EXPR>) 

Operations: 
LoadFuel (IN fuel_load ;OUT ) 
Predicates: 
(#198<a COMPONENT-EXPR>) =fuel_load? 

aggregate concrete class Airframe 
attributes 

airframe_simtime: SIMTIME; 
model: AF_MODELS; 
drag_coef: Real; 
turn_coef: Real; 
attached_weight: KGS; 
applied_thrust: Real; 
R_{EARTH}: KILOMETER; 
af damage: Nat; 

KILOMETER 
KILOMETER 
KILOMETER 

V_x: KPH 
V_y: KPH 
V z: KPH 
A x Real; 
A y Real; 
A z Real; 
theta: RADIAN2; 
phi RADIAN1; 
theta d: RADIAN2; 
phi d RADIAN1; 
lat 0 DEGREE; 
Ion 0 DEGREE; 
speed KPH; 
X E KILOMETER 
Y E KILOMETER 
Z E KILOMETER 
R E I KILOMETER 

components: 
tail_num: [ALPHANUM]; 

Constraints: 
R_{EARTH}=6378.137 
drag_coef>=0.0 
turn_coef>=0.0 
attached weight>=0.0 
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applied_thrust>=0.0 
(#200<a MULTIPLICATION-EXPR>) =(#201<a MULTIPLICATION-EXPR>)  + 

(#202<a MULTIPLICATION-EXPR>)  + (#203<a MULTIPLICATION-EXPR>) 
X_E=(#204<a MULTIPLICATION-EXPR>)  - (#205<a MULTIPLICATION-EXPR>) 

+ (#206<a MULTIPLICATION-EXPR>)  + (#207<a MULTIPLICATION-EXPR>) 
Y_E=(#208<a MULTIPLICATION-EXPR>)  - (#209<a MULTIPLICATION-EXPR>) 

+ (#210<a MULTIPLICATION-EXPR>)  + (#211<a MULTIPLICATION-EXPR>) 
Z_E=(#212<a MULTIPLICATION-EXPR>)  + (#213<a MULTIPLICATION-EXPR>) 

+ (#214<a MULTIPLICATION-EXPR>) 
(#215<a FUNCTIONAPP-EXPR>) =(#216<a FUNCTIONAPP-EXPR>)  + (#217<a 

FUNCTIONAPP-EXPR>)  + (#218<a FUNCTIONAPP-EXPR>) 

) 
Operations: 

InitAirframe (IN ; OUT 
Predicates: 
af damage'1 =0 
airframe s Lmtime '=0. 
tail num'=ABC123 
model'=V99 
airframe weight= 0.0 
drag coef = =0.0 
turn coef = =0.0 
attached weight' =0.0 
applied thrust'= 0.0 
X'=0.0 
Y'=0.0 
Z'=0.0 
V x'=0.0 
V_y'=0.0 
V z'=0.0 
A x'=0.0 
A y'=0.0 
A z'=0.0 
theta'=0.0 
phi'=0.0 
theta d'=0 0 
phi d'=0.0 
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SCHOOL EH SPECIFICATION 

DOMAIN: School 

global data types 
Nat 

primitive concrete class Faculty- 

primitive concrete class Student 

primitive concrete class Section 

primitive concrete class GradClass 
attributes 

program: PROGTYPE; 
end attributes 

aggregate concrete class WorkloadSystem 
components: 

stu: {Student}; 
end components: 
associations: 

assigned: stu (Student) (0..n)  <—>  (0..n) sect (Section); 
member_of: stu (Student) (0..n)  <-->  (1..1) grad (GradClass); 
r_advises: stu (Student) (0..n)  <—>  (0..n) fac (Faculty); 
teaching: fac (Faculty) (0..n)  <—>  (0..n) sect (Section); 

end associations: 
Operations: 

GetNumberStudentsTaught (IN faculty ;OUT num_students_taught ) 
Predicates: 
num_students_taught! = (#4Ka CARDINALITY-EXPR>) 

GetSectionsTaught • (IN faculty ;OUT sections_taught ) 
Predicates: 

sections_taught!=(#42<a SET-COMP-EXPR>) 
GetNumberMSStudents (IN ;OUT number_ms_students ) ■ 

Predicates: 
number_ms_students!=(#4 3<a CARDINALITY-EXPR>) 

GetStudentsAdvised (IN faculty ;OUT students_advised ) 
Predicates: 

students advised!=(#44<a SET-COMP-EXPR>) 
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UNSPECIFIED SCHOOL COMPONENTS REMAINING IN MANUAL SPECIFICATION 

global data types 
Real 
Boolean 
Digit 
Char 
Integer 
Nat_l 
PERNAMES 
SSAN 
GENDER 
DATE 
ACADEMIC_RANK = (Instr Asst Assoc Prof) 
MONTH 
YEAR 
DATE 
PROGTYPE 
PROGTYPE = (GCS GCE GE GSS DS) 
SEQ_Char 

SUPERTYPE: Char 
CONSTRAINTS:     None. 
Has sequence multiplicity 

SEQ_Digit 
SUPERTYPE: Digit 
CONSTRAINTS:     None. 
Has sequence multiplicity 

CTYPE 
CNUM 
ALPHANUM 

primitive concrete class Person 
attributes 

lastname: PERNAMES; 
initial: Char; 
firstname: PERNAMES; 
birthdate: DATE; 
ssan: SSAN; 
sex: GENDER; 
height: Nat_l; 
weight: Nat_l; 
age: Nat_l; 

end attributes 
Constraints: 

age=(#23<a FUNCTIONAPP-EXPR>) 

primitive concrete class Faculty subclass of Person 
attributes 

academic_rank: ACADEMIC_RANK; 

primitive concrete class Student subclass of Person 
attributes 

gpa: Real; 
Constraints: 

gpa>=0.0 
gpa<=4.0 
age=(#24<a FUNCTIONAPP-EXPR>) 
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primitive concrete class GradClass 
attributes 

year: YEAR; 
month: MONTH; 
graduate: DATE; 
designator: SEQ_Char; 

primitive concrete class Section 
attributes 

number: SEQ_Digit; 
Constraints: 

(#25<a CARDINALITY-EXPR>) =2 

aggregate concrete class WorkloadSystem 
components: 

fac: {Faculty}; 
sect: {Section}; 
grad: {GradClass}; 
curr: {Course}; 
offer: {Offering}; 
quarter: {Quarter}; 
taught_as: sect (Section) (0..n)  <—>  (1..1) offer (Offering); 
offered: curr (Course) (0..n)  <—>  (0..n) quarter (Quarter) —> 
Offering; 
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Appendix B: Sample Domains 

Z-Schema Definitions Used for 

CRUISE MISSILE DOMAIN 

Missile System Structure Definition 

,—  Missile    
propsys: JetPropulsionSys 
airframe; Airframe 

Jet Propulsion System Structure Definition 
— JetPropulsionSys   
fueltank: FuelTank 
throttle : Throttle 
jetengine : seq JetEngine 
propweight: R 
propjiiel: R 

prop_weight = fueltank .CalcTotalWeight + jetengine. engine _weight 
propjiiel = fueltank.fueljevel 
(fueltank.fueljevel = 0 => throttle.maximumJlow_rate = 0) 
(fueltank.fuel_level > 0 => throttle.maximum Jlow_rate = jetengine.maximumJuelJlow_rate) 
fueltank.outputJlow_rate = throttle, actualJlowjrate 
throttle, actualJlow_rate = jetengine. inputJlow rate 

Jet Propulsion Functional Definition 
,—  LoadFuel   

A JetPropulsionSys 
fueljoadl: R 

fueltank'.fuelJevel = fueljoadl 

Throttle Structure Definition 
Throttle 

positionJndex: R 
maximum Jlow_rate: R 
actualJlow_rate : R 

position Jndex > 0 
position index < 1.0 
actual Jlow rate = position Jndex * maximumJlow_rate 
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Airframe Structure Definition 

[AFJAODELS, KILOMETER, KPH, RADIAN 1, RADIAN2, DEGREE] 

. Airframe    
airframe_simtime: SIMTIME 
tailjium : seq ALPHANUM 
model: AFJAODELS 
airframe_weight: R 
dragcoef: R 
turn_coef: R 
attachedjweight: R 
appliedJhrust: R 
REARTH: KILOMETER 
afjdamage: N 
X: KILOMETER 
Y: KILOMETER 
Z: KILOMETER 
VX:KPH 
Vy: KPH 
V2:KPH 
AX:R 
Ay:R 
AZ:R 
theta : RADIAN2 
phi: RADIAN1 
thetaj: RADIAN2 
phij: RADIAN1 
lato ■ DEGREE 
lon0: DEGREE 
speed: KPH 
X,.:: KILOMETER 
Y,;: KILOMETER 
ZE: KILOMETER 
RE: KILOMETER 

REARTH= 6378.137 
airframe_\veight > 0.0 
drag_coef> 0.0 
turn_coef> 0.0 
attached_\veight > 0.0 
applied Jhrust > 0.0 
(speed * speed) = (Vx * Vx +Vy * Vy + Vz * Vz) 
XK - -1 * sin lon0 * X- sin latn * Y + cos lon0 * cos lat0 * Z + REARTH * cos lon0 * cos latn 

YE = cos lon0 * X - sin lon0 * sin lat0 * Y + sin lon0 * cos lat0 * Z + REARTH * s'n l°no * cos lato 
ZE = cos lato * Y + sin lat0 * Z + REARTH * s'n ^ato 
square RE = square XE + square YE + square ZE 
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Fuel Tank Structure Definition 
[ SIMTIME ] 

—  FuelTank   
tanksimjime : SIMTIME 
input Jlow_r ate : R 
outputJlowjrate : R 
fueljevel: seq R 
capacity: R 
tankjweight: R 
fuel_density: R 

fueljevel < capacity 

FuelTank Functional Definitions 

—  Determine Interval 
E FuelTank 
E SimClock 
interval] : SIMTIME 

interval] = sim time - tanksimjime 

,   PredictTankFullTime    
E FuelTank 
overflow eventtimel : SIMTIME 

overflow_event_time! = tanksimjime + capacity -fueljevel div inputjlowj-ate 

—  PredictTankEmptyTime    

S FuelTank 
tank empty event time\ : SIMTIME 

tankjempty  event time! = tank_simtime + fueljevel div outputJlow rate 

,—   CalculateNetFlow 

E FuelTank 
net Jlow rate] : R 

netJlow rate] = input Jlow rate - output Jlow rate 
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,—   CalculateNewLevel 
A FuelTank 
E SimClock 
net_flow_rate!: R 
Intervall : SIMTIME 

fuellevel' =fuel_level + interval! * netJlow rate! 
tank sim time' = sim time 

—  DetermineFuelWeight 
S FuelTank 
fiielweightl : R 

fiie!_weight\ =fuel_level * fuel_density 

i—  CalcTotalWeight - 
S FuelTank 
fiiel_tank_\veight\ : R 

fiiel_tank_weight\ = DetermineFuelWeight + tankjweight 

—  Setlnflow  - 
A FuelTank 
E SimClock 
flowrate! : R 

inputJlow_rate' =flow_rate! 
tank sim time' = sim time 

—  SetOutflow 
A FuelTank 
E SimClock 
flow_rate! : R 

output Jlow_rate' =flow_rate! 
tank sim time' = sim time 
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Jet Engine Structure Definition 
[ MODEL TYPE ] 

JetEngine 
manufacturer: seq CHAR 
modeljrurn : MODEL_TYPE 
engine_weight: R 
maximum Jueljowjate : R 
thrust Jactor: R 
currentjueljow jate : R 
current thrust: R 

engine_weight > 0 
maximum jueljow rate > 0 
thrust Jactor > 0 
currentjhrust > 0 
current Jueljow jate > 0 
currentJueljow rate < maximum jueljlow rate 
current Jhrust = thrust jactor * current Jueljow rate 

Jet Engine Functional Definition 

—  SetRate  — 
A JetEngine 
flow rate!: R 

current jueljow rate' =flo\v_ratel 
current Jhrust' = thrust Jactor * current Jueljow rate' 
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Z-Schemas Definitions Used for 

SCHOOL DOMAIN 

WorkLoad System Structure Definition 

,—   WorkLoadSystem    

fac : P Faculty 
stu: P Student 
sect: P Section 
grad: P GradClass 
curr : P Course 
offer: P Offering 
quarter: P Quarter 
assigned: (stu <-> sect) 
member_of: (stu -* grad) 
r advises : (stu <~*fac) 
taught'as : (sect -» offer) 
teaching : (fac <-> sect) 
offered: (curr x quarter -> Offering) 

Person Structure Definition 

[ PERN AMES, SSAN, GENDER, DATE ] 

Person 
lastname : PERNAMES 
initial: CHAR 
flrstname : PERNAMES 
birthdate -.DATE 
ssan : SSAN 
sex : GENDER 
height: N\ 
weight: N\ 
age : N\ 

age = yearinterval(birthdate, TODAY) 

Faculty Structure Definition 

ACADEMIC_RANK ::= Instr \ Asst \ Assoc \ Prof 

,—  Faculty    
academicjank: ACADEMIC_RANK 

Person 
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Student Structure Definition 

—  Student 
gpa:R 

Person 

gpa > 0.000 
gpa < 4.000 
age = yearinterval(birthdate, TODAY) 

[ OFFERING_CODE ] 

Offering 
code : OFFERING CODE 

Offering Structure Definition 

Section 
number: seq DIGIT 

#namber = 2 

Section Structure Definition 

GradClass Structure Definition 

{MONTH, YEAR, DATE. PROGTYPE] 

PROGTYPE ::= GCSI GCE I GE I GSS I DS 

GradClass 
program : PROGTYPE 
year: YEAR 
month: MONTH 
graddate -.DATE 
designator: seq CHAR 
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Quarter Structure Definition 

[ QYEAR, DATE, QNAME ] 

QYEAR : seq DIGIT 

# QYEAR = 2 

QNAME ::= SU \ FA\ WI\ SP \SS\ FS 

Quarter 
qname : QNAME 
qyear: QYEAR 
start: DATE 
end: DATE 

start < end 

Course Structure Definition 

[ CTYPE, CNUM, ALPHANUM] 

CNUM: seq DIGIT 

#CNUM = 3 

,—  Course    
ctype : CTYPE 
cnum : CNUM 
ctitle : seq ALPHANUM 
cdesc : seq ALPHANUM 
creditHours : N 
lectureHours : N 
labHours : N 
abetDes : N 
abetSci: N 
abetMath : N 
abetOther : N 

creditHours = abetDes + abetSci + abetMath + abetOther 
creditHours = lectureHours + labHours / 3 
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Appendix C: Compilation Configuration 

The EH system can be compiled using the following order: 

require-system "DIALECT") 
require-system "intervista") 
require-system "workbench") 
compile-and-load-lisp-file "lisp-utilities") 
compile-and-load-file "read-utilities") 
The next group supports the domain modeling effort, 
compile-and-load-file "uzed-dm2") 
compile-and-load-file "uzed-gram2") 
compile-and-load-file "utoolkit-dm") 
compile-and-load-file "utoolkit-gram") 
compile-and-load-file "utility") 
compile-and-load-file "zstrip") 
The next group supports both domain modeling and specification (EH). 
compile-and-load-file "domain") 
compile-and-load-file "analyze") 
compile-and-load-file "domlist") 
compile-and-load-file "uzed2dom") 
compile-and-load-file "dom-grammar") 
compile-and-load-file "domsave") 
compile-and-load-file "dummyfcts") 

These following files are not needed for EH but you may get an error 
/when compiling AFITTOOL if they are not available 

The following is for use with domain model counter3.tex only. 
(compile-and-load-file "testcnt3") 
(compile-and-load-file "domtool") 
The above are sufficient to populate the domain tree. 

Can be invoked from menu by also including afittool (below). 

(compile-and-load-file "ehtool") 
The above are sufficient to generate domain specifications. 

Can be invoked from menu by also including afittool (below) 

(compile-and-load-file "xforms") 
(compile-and-load-file "dom-refine") 
(compile-and-load-file "destool") 
The above are sufficient to transform specs to REFINE designs. 

Can be invoked from menu by also including afittool (below) 

;(load "~hartrum/kbse/code/d2c") 

(compile-and-load-file "afittool") 

;The following files are needed to run the EH 
(compile-and-load-file "eh_pred_gram") 
(compile-and-load-file "eh_predtoolkit_gram") 
(compile-and-load-file "eh_dummyfcts") 
(compile-and-load-file "eh_DD") 
(compile-and-load-file "eh_domain") 
(compile-and-load-file "eh_domsave") 
(compile-and-load-file "eh_functions") 
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(compile-and-load-file "eh_fact_base") 
(compile-and-load-file "eh_rule_base") 
(compile-and-load-file "eh_back_eng") 
(compile-and-load-file "eh") 

File descriptions: 
eh_pred_gram.re - Pulled the predicate part of the grammer from the uzed-gram2.re file and made a couple of 
other changes to accommodate reading predicate strings from the user during runtime. 

eh_predtoolkit_gram.re - Copied from the utoolkit-gram.re file but with some minor changes to accommodate 
the eh_pred grammer. 

eh_dummyfcts.re - function headers definitions to allow compilation. Cures the circular referencing of 
functions between two files. 

eh_domain.re - The EH definitions added to the domain AST created by the domain.re file 

ehdomsave.re - This is the latest version of the domsave.re utility for saving POB files 

eh_functions.re - Several supporting functions for the EH 

eh_fact_base.re - The structures used as the fact bases or databases 

ehrulebase.re - The sets of rules used during reasoning when adding and modifying objects. 

eh_back_eng.re - The backward chaining engine that controls the manipulation of Add rules. 

eh.re - The main functions used for the EH. 

The Elicitor-Harvester can be started from the AFITTOOL menu. 
First start AFITTOOL from the REFINE prompt with 

.>   (runtool) 

Load a domain model by choosing the "Perform Domain Operations" option from the AFITTOOL main menu, 
then either load a domain from a saved POB file or create a domain by parsing in LaTeX files by choosing the 
corresponding option. 

After the domain is loaded, back up to the main menu and select the option to "Perform Elicitor-Harvester 
Operations". 
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