
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1999

An Interactive Tool for Refining Software Specifications from a An Interactive Tool for Refining Software Specifications from a

Formal Domain Model Formal Domain Model

Gary L. Anderson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Anderson, Gary L., "An Interactive Tool for Refining Software Specifications from a Formal Domain Model"
(1999). Theses and Dissertations. 5210.
https://scholar.afit.edu/etd/5210

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5210?utm_source=scholar.afit.edu%2Fetd%2F5210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/99M-01

AN INTERACTIVE TOOL FOR REFINING
SOFTWARE SPECIFICATIONS

FROM A FORMAL DOMAIN MODEL

THESIS
Gary L. Anderson, B.S.

Captain, USAF

AFIT/GCS/ENG/99M-01

Approved for public release; distribution unlimited

DTIC QUALITY INSPECTED 8 19990409 051

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U.S. Government

AFIT/GCS/ENG/99M-01

AN INTERACTIVE TOOL FOR REFINING SOFTWARE SPECIFICATIONS

FROM A FORMAL DOMAIN MODEL

THESIS

Presented to the Faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Gary L. Anderson, B.S.

Captain, USAF

March 1999

Approved for public release, distribution unlimited

AFIT/GCS/ENG/99M-01

AN INTERACTIVE TOOL FOR REFINING SOFTWARE SPECIFICATIONS

FROM A FORMAL DOMAIN MODEL

Gary L. Anderson, B.S.
Captain, USAF

Approved:

T-^-ri^Z—

Chairman

1 Member '

Ot^&L/ A
Member

5> A,^' im
date

S fo*,,A m°i
date

date

Acknowledgments

I want to thank my thesis advisor, Dr. Hartrum, for guiding me through the long and

challenging thesis process. He always made himself available and was pleasantly cordial but always

professional. I also thank my committee members, Major DeLoach and Major Graham, who often gave me

timely advice when I was "stuck".

I owe a debt of gratitude to my lovely wife, Rajni, and two children, Sheena and Kevin, who are

the greatest blessings of my life. They were always encouraging and understanding through many late

nights and working weekends. Most of all I want to thank the Lord Jesus. His strength helped me focus on

the task at hand, while maintaining a balance and keeping a healthy perspective on life.

in

Table of Contents

Page

Acknowledgments iii

List of Figures viii

Abstract x

1 Introduction 1

1.1 Background 1

1.2 Problem 3

1.3 Initial Assessment of Past Effort 4

1.4 Proposed Solution 5

1.5 Scope 6

1.6 Approach 7

1.7 Assumptions 8

1.8 Thesis Overview 8

2 Background 9

2.1 Languages Used 10

2.1.1 REFINE 10

2.2 The Abstract Syntax Tree 12

2.2.1 Accessing nodes in the tree 12

2.2.2 Saving the AST 13

2.3 Z Specification Language 13

2.4 The AFIT KBSE System Representation 14

2.4.1 Domain Object Model 14

2.4.2 Unified-Object Model 16

2.4.2.1 Input Grammar/parsing 17

2.4.2.2 Predicates 17

2.5 Rule-Based Artificial Intelligence 18

2.5.1 Forward Chaining 19

2.5.2 Backward Chaining 20

2.6 Data Dictionary 21

2.7 Eliciting Information Through a User Interface 23

2.8 Other Relevant Research 23

3 Requirements 25

IV

3.1 Philosophy Behind the Elicitor-Harvester Requirements 25

3.2 Input and Output Requirements 27

3.2.1 Elicitor-Harvester Inputs 27

3.2.1.1 Domain AST Input 28

3.2.1.2 Application Engineer Input 28

3.2.1.3 Rules 28

3.2.1.4 Inputs from the Data Dictionary 28

3.2.2 Elicitor-Harvester Outputs 29

3.2.2.1 Specification AST 29

3.2.2.2 History Database 30

3.2.2.3 Output to the Data Dictionary 30

3.3 Functional Requirements 30

3.3.1 Operational Capabilities 30

3.3.1.1 Primitive Classes 31

3.3.1.2 Class Attributes 32

3.3.1.3 Class Operations 32

3.3.1.4 States 32

3.3.1.5 Events 33

3.3.1.6 Transitions 33

3.3.1.7 Parameters 33

3.3.1.8 Predicates 33

3.3.1.9 Data Types 34

3.3.1.10 Constants 35

3.3.1.11 Inheritance 35

3.3.1.12 Associations 35

3.3.1.13 Aggregate Classes 36

3.3.1.14 Aggregate Operations 36

3.3.2 Prohibited and Restricted Actions 36

3.4 Clean-up Process 37

3.5 User Interface 37

3.6 Artificial Intelligence Techniques Employed 38

3.7 Modifications to ASTs 38

3.8 Sample Domains 39

3.9 Requirements Summary 40

4 Design 41

4.1 Data Dictionary Design 41

4.1.1 Data Dictionary Structure 41

4.1.2 Handling User Inputs 42

4.1.3 Using the Data Dictionary 43

4.2 User Interface Design 45

4.3 Starting Up EH 45

4.4 Specifying Domain Items 47

4.4.1 Selecting Objects for the Specification 49

4.4.1.1 Mapping Predicates to Domain Objects 52

4.4.2 Modifying Objects 54

4.5 Adding New Objects 58

4.5.1 Creating Objects Using Backward Reasoning 58

4.5.2 The Backward Chaining Rule Base 59

4.5.2.1 The Backward Chaining Database 60

4.5.2.2 Backward Reasoning Algorithm 62

4.5.3 Examples of Creating Objects 63

4.5.3.1 Creating an Operation 63

4.5.3.2 Creating a Data Type 67

4.5.4 Adding New Objects to the Specification 69

4.6 Viewing the Specification 69

4.7 Saving the Specification 70

4.8 Design Summary 71

5 Implementation and Evaluation 72

5.1 EH Functionality Implemented 72

5.2 Maps Added to the Domain Model 74

5.3 Implementation Difficulties Encountered 75

5.3.1 Parsing Predicates 75

5.3.2 Representing Function Calls in Z Predicates 75

5.3.3 Mapping Predicate Variables to Domain Objects 77

5.3.4 Selection of Specification Items 78

5.3.5 Map from the New Object to the Parent Object 78

5.3.6 Deleting Duplicate Types 79

5.3.7 Problems with POB save 79

5.4 Evaluation .-.■ 80

5.4.1 The Manual Process Defined 81

5.4.2 Standard Comparison Specifications 82

5.4.3 Evaluation Results 83

VI

5.4.3.1 Time Comparison 84

5.4.3.2 Correctness Comparison 84

5.4.3.3 Ease of Use 85

5.5 Implementation Summary 87

6 Conclusions and Recommendations 88

6.1 Conclusions 88

6.2 Future Recommendations 89

6.3 Final Comments 91

Bibliography 92

Appendix A: Output Specifications from Tests 94

Appendix B: Sample Domains 102

Appendix C: Compilation Configuration 110

Vita 112

Vll

List of Figures

Page

Figure 1 Formal Approach to Creation of Correct Domain-Specific Software 3

Figure 2 Declaring a REFINE data structure 11

Figure 3 Employee object class defined as an Abstract Syntax Tree 12

Figure 4 Transformation Process: From Formal Specification to Code 14

Figure 5 The Domain Object Model (DOM) AST Structure 15

Figure 6 Domain Tree inheritance hierarchy , 16

Figure 7 A Predicate AST parsed into the Unified-Object Model 18

Figure 8 Elicitor-Harvester Environment 27

Figure 9 Classes and Associations for the School Domain 39

Figure 10 Class Hierarchy for the Cruise Missile Domain 40

Figure 11 The structure of the Data Dictionary class 42

Figure 12 The Aword structure. The fact base used when matching input names to domain objects 42

Figure 13 List of domain objects matching the user input for fueljevel 44

Figure 14 The start up message and Main Menu 46

Figure 15 Screen Display: User prompts for the name of an input, output, or internal update 48

Figure 16 Screen Display: Choosing objects and the action options 49

Figure 17 Screen Display: Choosing to select an object or modify first 49

Figure 18 Structure of the Operation Subtree 51

Figure 19 CalcPropWt: an operation in the CRUISE MISSILE domain 52

Figure 20 Predicate AST in Unified-Object Model 53

Figure 21 Maps for processing predicates 53

Figure 22 EH-Object database declaration 55

Figure 23 Mod-Object database declaration 55

Figure 24 Screen Display: Modification options list 56

vm

Figure 25 Screen Display: Modifying the datatype of an attribute 57

Figure 26 AST created by REFINE to store a rule ; 59

Figure 27 Add-Object database declaration 61

Figure 28 Algorithm for the backward reasoning engine 62

Figure 29 Screen Display: Identifying a new operation 64

Figure 30 Sample rule used in the backward reasoning process 65

Figure 31 Screen Display: Defining a post-condition 65

Figure 32 Screen Display: Handling unidentified predicate variables 67

Figure 33 Screen Display: Creating a data type 68

Figure 34 Screen Display: A view of the selected specification in pretty print format 70

Figure 35 Screen Display: The Save sub menu 70

Figure 36 Capabilities implemented in this version of EH 72

Figure 37 Inconsistency between Graphical and code representation 76

Figure 38 Time in minutes to complete specification process and the speedups obtained 84

Fisure 39 The AFFITTOOL main menu and domain functions submenu 86

IX

Abstract

This work examines the process for refining a software specification from a formal object-oriented

domain model. This process was implemented with interactive software to demonstrate the feasibility and

benefits of automating what has been a tedious and often error-prone manual task.

The refinement process operates within the framework of a larger Knowledge-Based Software

Engineering system. A generic object-oriented representation is used to store a domain model, which

allows the specification tool to access, select, and manipulate the required objects to form a customized

specification. The specification is also stored as an object-oriented model, which in turn can be accessed

by a design tool to transform the specification into source code.

The tool has been designed as an interactive program that helps guide the user through the process

of building the specification. The tool has been named the Elicitor-Harvester because of the functions it

performs. It elicits application requirements from the user and harvests pre-existing knowledge from the

formal domain.

An Interactive Tool for Refining Software Specifications
from a Formal Domain Model

1 Introduction

This work examines a process for specifying software applications. An automated tool was built to

interactively guide a user through the process of refining software specifications from a formal object-oriented

domain model. The tool allows the user to choose the parts of the domain model needed for the application,

modify those parts as needed, and define new components to supplement the specification

1.1 Background

The article "No Silver Bullet", written in 1986, explained the difficulty the software industry was

having trying to keep up with the incredible performance increases the computer hardware industry has

achieved [19]. While the hardware industry continues to exploit new technologies and improve manufacturing

techniques, the software industry continues to grasp at many new techniques and methodologies, hoping to find

the "Silver Bullet", so to speak, that can kill the monster that plagues software development. The article

explains that all these efforts have focused on the accidental difficulties of software (those problems associated

with building the code) and not on the essential difficulties (inherent in the nature of the software). These

essential difficulties lie in the complexity, conformity, changeability, and invisibility of software. The hardest

part of software development lies in understanding, identifying, and specifying the requirements and rules of the

desired software solution, and in making upgrades and changes once the product is fielded [2]. Knowledge

Based Software Engineering (KBSE) is an attempt to address these essential difficulties.

KBSE is the study of representing information gained from domain knowledge and a problem

statement with a series of formal models in an attempt to apply automated manipulation to the software

development process. The formal representations can also allow Artificial Intelligence (AI) reasoning

techniques and formal methods to be applied to determine different levels of correctness and completeness of

the specification, design, and implementation [1]. By automating the transformations from formal specification

through design and implementation and into source code, software systems can be maintained at the formal

specification level instead of at the code level as it is currently. By maintaining provably correct

transformations from specification to code, the verification of source code is implicit and the need for

verification testing (building the system right) is eliminated. Validation testing (building the right system) then

becomes the main form of testing and would be an exercise of iteratively adjusting the specifications to meet the

end users' requirements. Each time the specification is changed, the automatic transformations rebuild the

source code to match the specification.

The goals of the Air Force Institute of Technology (AFIT) KBSE research are to address some of the

essential difficulties of software development by applying formal methods and automating the transformations

as much as possible to avoid problems as described by Grassmann and Tremblay.

During development of information systems, many problems arise from inadequacies of the notations that

are used to describe the software product at each stage of the development life cycle. Many of these

notations include natural language as a vehicle for describing the different artifacts. The notations that are

most dependent on natural language are those that are used upstream in the life cycle (i.e., in its early

phases of development). Also, in many development approaches to producing software, a different

notation is used for each phase of the life cycle, and because of the very "visible seams" between phases,

interface errors usually result [15].

The AFIT KBSE model consists of a series of stages beginning at the acquisition of knowledge from a

Domain Expert (probably the end user of proposed software system) and ending with executable code on the

fielded computers. In each stage, the knowledge data is transformed by a process that refines the knowledge

representation a step closer to the final goal of an executable system. The entire process is known as the AFIT

Forward Engineering Concept and is shown in Figure 1. Previous research at AFIT has demonstrated the ability

to build formal domain models with a formal specification language such as Z (pronounced zed) or an algebraic

language such as Larch or Slang, and parse them into a tree structure called an Abstract Syntax Tree (AST) [16]

[17] [18]. Once a domain is represented in an AST, it can be accessed and manipulated in software. The square

boxes in Figure 1 represent transformation processes that are candidates for automation.

As more emphasis is placed on the correctness of the specification, the transformation shown as

"Problem Setting" in Figure 1 becomes very critical. The Formal Specification model represents a complete

and concise description of the objects, methods, states, and events that will exist in the final system and

describes what they should do. The problem setting stage is performed by an application engineer who

manipulates the domain model knowledge based on a set of requirements found in the Problem Statement. The

Formal Specification specifies a customized application and will usually consist of a subset of the domain

model objects with several details defined for the specific application. Once the Formal Specification is

finalized, it passes into the Design Phase where the formal specification is transformed into a design

specification.

r Problem A
V Statement \ J

Domain
Modeling

T
Domain Expert

and
Domain Engineer

Problem
Setting

T
Application

Engineer

Code
Reuse

Library

C3 Z^j
Executable

Code

-► Code
Generation <

i i

uage
ice

X
Lang

Che
Test

Cases

Figure 1 Formal Approach to Creation of Correct Domain-Specific Software

As the need for representing a software specification becomes critical, the need to automate the

specification process increases. An application engineer can quickly become overwhelmed with the thousands

of specification details if the process is performed manually. A tool is needed to guide the engineer through the

process of identifying and refining specification components from the domain model. This research focuses on

defining the requirements and demonstrating the feasibility of a tool to automate the Problem Setting

Transformation process. Since the function of this tool is to elicit requirements from the application engineer

based on the problem statement, and harvest information and knowledge contained in the existing domain

model, the tool is called an Elicitor-Harvester (EH).

1.2 Problem

Elicitor-Harvester type tools have been developed for very restricted, well-defined applications such as

the XCON system developed by Digital Equipment Corporation to assist in the configuration of newly ordered

VAX computer systems [5]. The problem lies in trying to generalize the tool enough so it will work on a

General Object Model to be used as a knowledge store in a knowledge-based system like the one under

development at AFIT. The large number of rules needed for such a general system could cause an AI engine to

be overwhelmed. The question of how to represent the rules in the object model in such a way that an AI search

engine can correctly identify the many possible areas that need to be specified can be quite complex. The

hardest problem may be trying to determine how the tool should interact with the application engineer to

identify the parts of the domain model needed to implement the desired specification. If the application

engineer is not a domain expert, the EH needs to shield him or her from the confusing details about the

underlying domain AST. The EH needs to prompt for information in such a way that the user does not get

frustrated with the process. This research analyzes these problems and attempts to find some feasible solutions.

Problem Statement:

Demonstrate the feasibility of an Elicitor-Harvester tool using AI techniques to allow a user to create a

formal specification from a well-defined domain tree. The user may not know the details of the domain model,

so the EH must guide him or her through the process by prompting the user for necessary inputs. However, EH

must be able to harvest pertinent knowledge from the domain tree so as to avoid burdening the user with too

many questions.

1.3 Initial Assessment of Past Effort

Elicitor-Harvester has been the thesis topic of three AFIT Master's theses since 1995. Charles Wright

performed an analysis of EH in 1994-1995 before the AST structures were developed. He described the EH as

a tool to help build a software system by reusing existing components. The EH would elicit requirements from

the user and use AI techniques such as forward chaining and search methods to automatically select reusable

components that would meet the user requirements [3].

Jerry Cochran studied how an EH tool could be used to reuse object oriented components by applying

some rules and predicate logic. He created an object model of a pump system to use as an example [6]. His

research showed some positive results, but the capabilities of an EH need to be generalized to be able to work

on different domain models.

Timothy Karagias finished his follow-on research in December, 1996 [2]. He studied ways to apply

EH techniques to an object-oriented AST, which stored domain knowledge. His major goals were to define the

requirements for the EH, design a nominal system, and demonstrate the feasibility for implementing the EH.

He concluded that his goals were mostly met, but more work needed to be done in several areas.

• The EH needs better verification of new aggregates created during the specification process.

• A user interface should be built to help a user along in the complicated specification process.

• The EH should be extended to make it compatible with several types of formal languages.

• He also concluded that incorporation of AI is needed to select components of the domain AST that need

further specification from the user.

These three previous efforts demonstrated the feasibility and highlighted the usefulness of an EH tool.

However, there were many difficult and untested problems associated with a smart interactive tool. An

approach was needed that could lead the user through the entire process of identifying the input, output, and

internal operations of the system; selecting the domain items that support those operations; modifying the

existing operations or creating new ones to support the particular specification; then saving either the

specification in work or the selected objects of the final specification. The operations are probably the most

complex part of the domain model because of the formal predicates stored as pre-conditions and post-

conditions. These predicates can be stored in a wide variety of formats and contain variables that can represent

a variety of domain items such as input or output parameters, class attributes, classes, constants, or associations

- all of which are associated with a data type or class. Since operations are so complex and important to the

specification, an approach for handling operations in the EH process needed to be studied.

1.4 Proposed Solution

Without a tool to automate the specification process the engineer must use a manual process that is

slow, tedious, and error prone. The manual process would require the engineer to find and modify domain

description text files, check several separate files for consistency, compile the files and parse the specification

descriptions through a domain parser.

This research proposes to define an Elicitor-Harvester process to access domain knowledge acquired

during the requirements gathering phase, which is represented as an AST. This knowledge is then transformed

into a formal specification AST by eliciting the problem statement decisions from the application engineer and

harvesting knowledge from the existing domain. Through a series of questions an EH allows the application

engineer to select and refine the existing domain components into a formal specification that represents the final

software product.

1.5 Scope

A fully operational EH would need to have the capability handle all types of domain information

associated with object-oriented modeling. This information includes aggregate and primitive classes,

inheritance between sub and super-classes, associations between classes and their multiplicities, associative

classes, class attributes, class constraints, operations or methods with their pre and post conditions, parameters,

private and global constants, private and global data types, states, events, and state transitions. An EH would

also need a well-designed user interface with the associated error checking to interact with the user. The EH

would also need to perform many checks for consistency among the specification objects and perform various

initialization and cleanup functions. The task of implementing all functions needed for an EH was much too

large for this thesis effort.

The goal, therefore, was to thoroughly define the requirements of a general EH tool, while choosing a

challenging subset of the proposed functionality that could demonstrate successful design and implementation

of the EH concept. Operations and data types were the two parts of the domain model that were chosen for

demonstration purposes, since their representations are fairly complex and they can be defined in a large variety

of ways. Operations contain pre-conditions and post-conditions defined as formal predicates in the domain

model. These predicates and data types relate to many other parts of the domain model, which made them quite

complicated to implement, but very important in the specification process. A long-term goal for a user interface

would allow the user to input predicates as natural language descriptions and translate them into formal

language definitions with an expert system. This research had to limit the user to input predicates in proper Z1

specification notation that could be correctly parsed in by an existing Z parser.

This research effort also focused on incorporating Artificial Intelligence methods into the Elicitor-

Harvester, mainly to deal with the rules used for adding or modifying operations and data types. Since the EH

1 Z (Pronounce zed) is a formal specification language initiated by Jean-Raymond Abrial and subsequently developed by a team at Oxford
University. It is based on logic, sets, relations, and functions and is used for stating what a system should do and m what order it should
be done without stating how it should be done. [15]

needs a well-defined domain as an input, two existing domains that were already analyzed and defined at AFIT

were used for demonstration purposes - the School and the Cruise Missile domains. These AFIT defined

domains are represented as Z Schemas in LaTeX2 files and can be parsed into a Domain Object Model (DOM)

AST. While developing AI techniques for the EH on these specific test domains, operations that could be

generalized to any type of domain vs. methods that should be restricted to a specific domain were identified.

1.6 Approach

To meet the proposed research objectives the following approach was followed:

/. Became familiar with the current KBSE domain models and tools - Studied the current AFIT literature

available for the current KBSE resources. Became familiar with the structure of the domain AST and

the code that generates it. Also became familiar with analysis tools.

2. Studied previous EH research and analyzed existing EH software available at AFIT - Read the three

previous thesis efforts performed by AFIT graduate students to gain an understanding of areas needing

further research. Became familiar with the existing EH tool created by Karagias and Hartrum to

identify and narrow the scope of study.

3. Studied other research performed outside AFIT- Performed a literature search for other research in the

area of component reusability in general and EH techniques in particular.

4. Studied Artificial Intelligence techniques - Performed a literature search for AI tools and techniques

that could be integrated into an object-oriented EH tool. Sought guidance from committee members

concerning possible AI options.

5. Defined requirements for an EH tool — Several tasks needed to be performed to complete the

requirements definitions as listed below.

• Defined the specific goals this research tried to demonstrate.

• Documented requirements that identified the scope and expectations for the EH.

• Specified some test cases to validate the results.

• Identified formal domain models to be used to test the EH.

! LAT£X is a special version of the TEX, which is a trademark of the American Mathematical Society.

• Defined the structure of the domain AST to be used as input to the EH and the specification AST to

be output from the EH.

6. Designed and Implemented the EH tool - Used knowledge acquired from the previous steps to choose

the tools and languages to facilitate development of an EH. Then proceeded to design and code a tool

that met the requirements defined during step five.

7. Tested EH software on domain models - Used the test cases identified during step five to validate the

EH operations. Most testing was informal debugging and was an ongoing activity throughout the

design and implementation phase. Requested other students and committee members to use the tools

and provide feedback about the ease and understandability of the EH tool.

8. Analyzed results - Compared findings with the goals defined in step five and described how well the

results satisfied those goals. Analyzed whether or not the requirements were met or how close they

were to being met.

1.7 Assumptions

Well-defined object oriented domains were assumed to exist and to be available at AFIT. It was

assumed that the domain models used for testing the EH included aggregation. The domain AST was expected

to sufficiently support all types of domain model objects.

1.8 Thesis Overview

Chapter 2 describes the operating environment of the EH providing the reader with background

information necessary to understand the setting of the problem. The languages and data structures used, other

KBSE tools integrated, rule-based techniques used, and other relevant research are discussed. Chapter 3

discusses the functionality required for an EH and the philosophy that guided the decisions made about the

requirements. Chapter 4 describes the design of the EH and the reasons for the design choices. Chapter 5

identifies the functional capabilities actually implemented to demonstrate feasibility and several of the problems

encountered during implementation. The testing and evaluation of the EH is also discussed in Chapter 5.

Finally, Chapter 6 closes with remarks about the accomplishments of this work and recommends further study

in several areas relating to an EH.

2 Background

The purpose of the EH tool is to allow application engineers to develop their own customized software

to satisfy their particular needs. The EH should use the formal domain representation to extract parameters the

application engineer may need to identify for his or her particular system. The EH should interactively prompt

the application engineer to specify certain parameters for the system being created based on an end user's

requirements. AI techniques should be used to aid the application engineer in developing formal specifications

from a domain model and customer requirements. The EH should search the domain AST for incomplete

specifications or places where choices must be made. A user interface (preferably graphical) should guide the

user through the problem areas that require decisions. As the user inputs specifications, the EH should mark

portions of the domain model that need to be added to the specification model, helping it to evolve into a formal

specification AST [4].

For example, AFIT may decide to build an academic domain model as a baseline to develop

customized systems for various departments within AFIT. An object model would be built to describe the

important entities and relationships in AFIT. Once this domain model is completed, application engineers could

use the EH to identify the subset of objects, relationships, and operations they need for their particular software

sub-system. Let's say a user needs a tool to track student grades. The student's GPA could be used to identify

whether the student is in the top 10% or needs to be put on probation. During the process, the sub-system

designer would be prompted to enter specifications such as GPA threshold for probationary status. The EH

would build a formal specification AST, which could then be used to automatically create the executable code

for the grade tracking system.

In order to perform such intelligent functions, AI techniques must be incorporated into the EH to allow

it to search the AST for areas that need to be specified. The EH should help an application engineer

automatically find parts of the domain that were intentionally left unspecified because of the need for flexibility

in the specification phase. For instance, a knowledge-based system used to specify a computer system would

not know the specific power supply or hard drive required until a user is ready to design the system. The EH

should be able to find these instances of unspecified information and prompt the user for input. The EH should

iteratively add the knowledge provided by the user to the AST during this specification process. The EH should

also allow the user to query the knowledge base to check the current specifications.

9

Once the formal specifications are complete, the KBSE system automatically transforms the

specifications into a formal design [1]. From there, an automatic code generator creates the executable code.

The knowledge based tool suite should also provide a means to test the final code against the requirements for

validation purposes.

This chapter describes research directly related to the Elicitor-Harvester. The key pieces that come

together to implement the EH include Knowledge Base Data Dictionary, user interface, rule-based inference

engines, rule bases, domain model, Abstract Syntax Trees (ASTs), REFINE™3 (the language used to implement

the EH), Common Lisp©4 (for string manipulation and file I/O), the KBSE environment and supporting

software (parse tools, grammar checker, POB save, domain definitions, Z notation), history maintenance, object

reuse, and object (knowledge) transformations.

Information directly related to EH is almost exclusively generated by AFIT research, which includes

three previous Master's theses, published papers, and several formal and informal papers and drafts. Articles in

the area of software reuse and AI were considered if they discussed the elicitation of domain knowledge or

knowledge based AI techniques.

2.1 Languages Used

To demonstrate the effectiveness of an automated EH process, it was necessary to use a computer

language that would provide the ability to manipulate information stored in the domain model. The majority of

the software currently supporting the AFIT KBSE program is written in the REFINE language. REFINE

provides many functions to store, create, and manipulate tree structures, which gives users great flexibility to

define the meta-model structures for formal specifications. REFINE is written in Common Lisp, which has an

extensive built-in library of functions that can be utilized in REFINE programs when needed.

2.1.1 REFINE

REFINE is a programming environment, which provides a programming language and a set of

language processing tools (parser, compiler, etc.). The REFINE language is the first programming language to

3 REFINE is the registered trademark of Reasoning Systems, Palo Alto, California.

4 COMMON LISP is copyrighted by the Digital Equipment Corporation, 1984.

10

provide an integrated treatment of set theory, logic, transformation rules, pattern matching, and procedure.

Because the language is executable and allows you to write programs at the specification level, the REFINE

system supports programming with "executable specifications" [20],

REFINE does not support most of the data structures that computer programmers are used to such as

arrays, records, or linked lists, but allows the user to define object classes and maps between objects and types,

which can simulate most data structures needed. A declared object class along with all its related maps can be

thought of as a record structure similar to those used in Third Generation Languages (3GLs) such as Pascal, C,

or Ada. Figure 2 shows comparable record declarations for Ada and REFINE.

TYPE DepArray IS
ARRAY (1..10) OF STRING

TYPE Employee is RECORD
ID : Integer;
Name : NameType;
Gender : CHARACTER;

var Employee
var ID
var Name
var Gender
var Dependent

var PayRate

: object-class subtype-of user-object
: map (Employee, Integer) = {I|}
: map (Employee, NameType) = {11}
: map (Employee, symbol) = (II)

s: map (Employee, set(string))
computed-using Dependents(x) = {}

: map (Employee, Real) = (II)

Dependents: DepArray;
PayRate : Float;

END RECORD;

var clerk :
var janitor :

Employee = make-object('Employee)
Employee = make-object('Employee)

Clerk : Employee;
Janitor: Employee;

ID(clerk) <- 1234

Clerk.ID := 1234;

Ada Record Equivalent REFINE structure

Figure 2 Declaring a REFINE data structure

If Employee is thought of as the object class, then the maps define the attributes of the object class. All

attributes of the instantiated clerk and janitor objects in Figure 2 are initially undefined, which means a value is

not currently mapped to the object class. REFINE supports sets and sequences of objects as shown in the

Dependents attribute. REFINE also allows the designer to define the object-oriented concept of inheritance by

declaring an Object-Class the subtype of another object class. The subtype will inherit all attributes from its

ancestors up the inheritance chain. Object classes and maps are used extensively in AFIT KBSE code. They are

the building blocks for Abstract Syntax Trees (ASTs), which are used to store object models, grammars, and

even the source code itself.

11

2.2 The Abstract Syntax Tree

Abstract Syntax Trees allow convenient and structured ways to store and represent data so it may be

operated on with software. The nodes of the tree are defined by declaring a variable as an object class type and

the connections between the nodes are defined by declaring a variable as a map between two nodes as shown in

Figure 2. The Employee structure as declared is not an AST. If a user wants the Employee class to be an AST,

the attributes must be identified in a Define-Tree-Attributes statement - then the Employee AST could be

represented as shown in Figure 3. Notice the NameType node could also be declared as an object-class and

could have tree attributes below it such as FirsfName, LastName, and Middlelnit mapped to strings.

Define-Tree-Attributes('Employee,
{'ID, 'Name, 'Gender, 'Dependents, PayRate})

Employee

TT

ID Name Gender

Integer NameType symbol

Dependents PayRate
J . _J

{string} Real

Figure 3 Employee object class defined as an Abstract Syntax Tree

When a structure has been declared as a tree, the REFINE tree traversal functions can be used on the

tree to perform searches, copies, comparisons, or other operations on the nodes of the tree. Not all attributes

must be declared as tree attributes in the Define-Tree-Attributes statement. Non-tree attributes can be accessed

the same as tree attributes, but they will not be visited during the tree traversal functions. Since the AST is the

main storage structure in REFINE, AFIT KBSE system employs them to represent all object models and

grammars.

2.2.1 Accessing nodes in the tre e

While a REFINE session is running, only one object instance can be the "current node". The current

node must be some object class type defined by the user or a REFINE defined object class. Attributes of the

current node can be set, changed, or deleted with assignment statements. For example, if an Employee object is

12

the current node, then PayRate (current_node) <- 14 . 75 would set the employees pay to $14.75.

Important nodes such as the root of an AST can declared as global variables with the var declaration shown in

Figure 2 as:

var clerk : Employee = make-object('Employee).

An attribute can be a set or sequence that can have new elements added to it. E.g. if the clerk had a new

baby, the Dependents set could be updated with this statement:

Dependents(clerk) <- Dependents(clerk) with "John Jr."

2.2.2 Saving the AST

Often when using an object base represented in an AST, it is desirable to save the object base to a

permanent file. REFINE provides the functionality to save objects and their tree and non-tree attributes to a file

called a Persistent Object Base (POB). The POB file can be parsed back into main memory to work on in a

later REFINE session. This ability is very important when working on a large domain that can't be finished in a

single session.

2.3 Z Specification Language

Z is a formal specification language based on logic, sets, relations, and functions for stating what a

system should do and in what order it should be done without stating how it should be done. Z, therefore, is

considered to be a declarative language, as compared to a procedural or imperative one such as Pascal. In

specifying a system in Z, issues concerning efficiency and implementability of the system are not of importance

at the specification stage of software development. Z has become one of the most popular specification

languages in recent years [15].

Z is used extensively in the AFIT KBSE system to specify various domains used as research examples

and in software engineering classes. The two domains used in testing this EH research, the cruise missile and

the school domains, are specified using Z notation. The Z descriptions are typed into a LaTeX text file template

then loaded into an AST using Z parser and grammar developed at AFIT [16]. The EH uses these Z tools when

reading in predicates typed in by the user to describe constraints and functions of a specification.

13

Of course, there are other formal methods for defining software specifications such as algebraic

languages like Slang and Larch, but this version of EH uses Z since it is the basis for the existing AFIT toolset,

and more complete domains are available for testing and analysis.

2.4 The AFITKBSE System R epresentation

Spec
Universal
Z Parser

Uzed-to-DOM
Transform

J DOM \
—*\ AST j

Elicitor-Harvester
Specification Tool

DOM
Spec
AST

Spec-to-Design
Transform

Design-to-Code
Transform

Refine
Ada
AST

Figure 4 Transformation Process: From Formal Specification to Code

The AFIT KBSE system uses many ASTs to store information at the various development stages.

Figure 4 shows the ASTs representing the development stages and the processes that transform knowledge

between the ASTs. The original Z-LaTeX Schemas are parsed into a Unified Object Model AST, which is

transformed into a Domain Object Model (DOM) AST. The DOM is the general representation that can store

any type of object-oriented domain no matter what formal specification language is used assuming the

transformation software exists. The EH operates on the DOM and generally uses a subset of the DOM objects

for the specification AST, although some components may be added or modified. The specification AST uses

the same meta-model as the DOM. During the design stage, the specification stored in the DOM format is

transformed into the Design Model, which represent a high-level design specification. During the DOM-to-

Design transform, state transitions and attribute constraints are changed into functions, and Get and Set

functions are created to retrieve and set the values for all class attributes.

2.4.1 Domain Object Model

The DOM, whose structure (meta-model) is shown in Figure 5, is the AST acted upon by the Elicitor-

Harvester. The DOM is the generic object-oriented representation of a domain and stores all knowledge about

14

the given domain deemed important enough to maintain for resulting software applications. The DOM is

typically populated by parsing in the Z Schemas that represent the domain knowledge through the Universal Z

parser and the Uzed-to-DOM transform, but can also be populated by other means using REFINE functions or

constructs called forms.

GOMT-DomainTheory

9
dom-predef-types dom-global-const dom-global-types

{DomTypeObj}

has-name type-values

{DomConstant} {DomTypeObj}

has-primitive-classes has-aggregate-classes has-domain-associations

{GOMT-Primitive-Class}

1 ^y
{GOMT-Aggregate-CIass}

symbol [symbol]

DomDerType

V

has-name dom-private-types is-concrete

symbol {DomTypeObj} boolean

_£
{Association}

I I 1
has-preds has-superclasses lias-transitions

{Predicate} {symbol}

i

{Transition}

lias-aggregate-associations

{Association}

has-components
~G~

DomBaseType

has-gomt-states has-events has-GOMT-ops
-I ,, I „ I

ä-pr«

{Predicate}

{State}

31
{Events} {GOMT-Op}

r
has-datatype has-states has-name

symbol {symbols} symbol

^=T
dom-priyate-const has-gomt-attrs lias-connections

{DomConstant} {Attribute} {Connection}

^>

has-name
 I

symbol

has-preds
I ill

{Predicate}

has-parameters has-ops has-name has-datatype has-avalue
, I I I , I ' I r i i

[Parameter]

Y
{symbol} symbol symbol symbol

associative-bject-name

symbol

has-type-multiplicity has-datatype

TypeMultiplicity symbol symbol

is-output has-qualifler has-name has-mult has-class-name has-role is-ordered
J

boolean Qualifier

3
symbol Mult

TypeSet TypeSequence

has-name has-datatype
 I , , 1_

symbol symbol One

X
symbol symbol boolean

Many Optional Plus

has-int

Specified [Spec-Range]

I£
has-valuel has-value2

integer integer integer

Figure 5 The Domain Object Model (DOM) AST Structure

The DOM stores global information such as classes, global types and global constants below the

Domain Theory (root) level. The class is the main component of the DOM and represents real-world entities or

concepts. The most significant parts of the class are the attributes and the operations that act on the attributes.

Classes also have states and events, which cause transitions between states. There can be two types of classes

in a domain: primitive classes and aggregate classes. An aggregate class contains attributes whose data type is

another class or set of classes in the domain. A primitive class has no references to other classes. Associations

represent some relationship between classes. Associations usually connect two classes and there is some

15

multiplicity represented in the connection; for example, a person can have zero, one, or more children. If a

connection is a set, it can be ordered.

The data type is another important part of the DOM. Attributes, constants, and parameters have data

types, which can be base types or derived from a base type. Type definitions can be quite flexible, which is

reflected in the complexity of the DomTypeObj subtree. A more thorough description of the DOM can be found

in An Object Oriented Formal Transformation System for Primitive Object Classes [1].

All object classes in the domain AST are subtypes of some parent object and thus inherit attributes.

The inheritance tree hierarchy is shown in Figure 6. The user-object is the standard REFINE object class from

which all user objects can inherit. All objects in the domain AST except the root node and predicates are

subtypes of the Obj-Object class and thus share many inherited attributes.

user-object

X £
GOMT-DomainTheory GOMT-Object

i
Unified-Object

Obj-Object

S"

£
Predicate

DomConstant Attribute GOMT-Op Parameter Event

J ._!

DomTypeObj Event-Map-Component Event-Map

Transition State Connection Association

DomBaseType DomDerType

X

TypeMuItiplicity Qualifier Mult Spec-Range GOMT-Class

TypeSet TypeSequence

X ¥
GOMT-Aggregate-Ciass GOMT-Primitive-Class

Figure 6 Domain Tree inheritance hierarchy

2.4.2 Unified-Object Model

The Unified-Object model is the AST structure that stores Z specifications when parsed from LaTeX

text files, shown as the Univ Z AST in Figure 4. Predicates are subtypes of Unified-Objects, which are defined

below the user-object in Figure 6.

16

2.4.2.1 Input Grammar/parsing

REFINE provides good support defining input and output grammars. A programmer defines a series

of productions that define acceptable patterns of text read from a file or input string. The grammar for the Z

parser and the Unified-Object model was created for the AFIT KBSE system by Wabiszewski [16]. Once the

domain is represented in the DOM, there is generally no more use for the Z parser. However, predicate objects

have not yet been separately defined in the DOM because they are very complex. For the sake of efficiency,

predicates from the Unified-Object model are grafted directly to the DOM object that contains them.

Since predicates are used to identify such important specifications as constraints on attributes, states,

events, and derived data types; pre and post conditions of operations; and guard conditions of transitions, a user

of an EH would certainly need to create or change them while defining a specification. For this reason, the Z

parser is employed by the EH to verify correct Z notation when an application engineer enters a new predicate.

2.4.2.2 Predicates

Z predicates are used in several contexts in the DOM. Since Z uses many special logical and

mathematical characters not recognized as ASCII text and the Z parser can only read from regular text, LaTeX

has defined certain text strings as substitutes for special characters. The following examples show the Z

notation and the actual text strings accepted by the parser for several types of predicates.

• Consider a derived data type called WeightType derived from type REAL. WeightType should consist

of only positive real numbers and zero. The Z predicate is Vx : WeightType \ x > 0 and the parser

accepts \forall x : WeightType | x \geq 0.

•

•

Consider the attribute GPA (Grade Point Avg.) that must be between 0 and 4.0. This invariant

constraint is defined with the Z predicate GPA>0.0 A GPA<4.0 and the parser accepts (GPA

\geq 0.0 \land GPA \leq 4.0).

Consider an operation called CalcTotalTankWeight, which calculates the output parameter

fuel_tank_weight by multiplying the amount of fuel with the fuel density then adding the weight of the

empty tank. This post condition is defined with the Z predicate:

fuel_tank_weight=fuel_levelxfuel_density+tank_weight and the parser will

accept exactly the same thing because there are no special characters.

Consider an operation in an aggregate class whose output parameter, ms, is the number of Master's

degree students in a set of students that is the input parameter called advised. Student and GradClass

17

are primitive classes in the domain and member_o/is the association between them. This post condition

can be defined with the Z predicate:

ms = #{s: Student; c : GradClass \ s e advised A (S, C) e member _ of A c.program & DS}
and the parser will accept ms! = \# \{ s: Student; c: GradClass | ((s \in

advised? \land (s, c) \in member_of) \land c.program \neq DS) \}.

Figure 7 shows the AST structure of the Z predicate:

prop_wt! = fueltank.CalcTotalWt + jetengine.engine_weight

var-name-expr

identifier

7~^r
aent cleceratior

idnsnie output-decoration

any
^one

expr

relationall -prsd

arij/1

in
rel

,sym

any

second
ewpr

addition-expr

equality
any ^
one

yexf>n

üDiiij]uneiil-£xpi'

\ .
cxp'3

var-name-expr

\
idhame

var
name
 L_
identifier

 1

dent
i

idname

\ any
second

exprl s.

componcnt-espr

/
any

var-nane-expr

Lltffll

idname

i
V£r

nane

identifier

dert
1

Figure 7 A Predicate AST parsed into the Unified-Object Model

It becomes obvious, after seeing a few examples, that there is a fairly steep learning curve associated with Z.

An application engineer would need to be well versed in Z to specify an application using the EH with the Z

parser. A better option would be to use an expert system to translate natural language specifications into Z

specifications, but that tool hasn't been built yet and is outside the scope of this thesis effort.

2.5 Rule-Based Artificial Inte lligence

The AFIT KBSE group has put great effort into building a general object model using REFINE ASTs

to represent knowledge bases. Although much work has been done in defining the domain model

18

representation, parsing in Zed specifications, and AST transformations, little research has been done to apply

Artificial Intelligence (AI) techniques to aid knowledge acquisition or specification refinement functions.

The Artificial Intelligence portion of a knowledge-based system consists of an inference engine and a

knowledge base. Closely associated with the intelligent program is a database or fact base [7], In a rule-based

system, the knowledge base is the set of rules and associated functions that act upon the database. The

inference engine is the functionality that controls how the rules are checked and performs conflict resolution to

decide which rule to execute if more than one rule is satisfied. The fact base or database maintains the current

status of the reasoning process. During the EH process the database is the DOM specification tree or some

other temporary object created to store information while performing rule-based reasoning.

The structure of a rule is usually in the form of an implication in predicate logic, that is, if a set of

premises in the antecedent evaluates to true then perform the actions given in the consequent.

REFINE rules are structured like this:

rule Modify-Name-Rule(X: object)
chosen-option(X) = "Change Name" & mod-done?(X) ~= True
—> Modify-Name(X) & mod-done?(X) = True & mod-name-done?(X) = True

A REFINE rule requires a name and consists of a single transform statement, which is actually a logical

implication. The premises of the implication make up the antecedent and the action is the consequent, which

often adds a new fact to the fact base. The parameter (X: object) is the object passed into the rule from the

inference engine. Rules operate on the parameter object, which is generally part of a fact base or database.

Since the rule can contain only a single transform statement, it is somewhat limited in the actions it can

perform. However, if the rule must perform several actions in the consequent or complex checks in the

premises, the rule can call functions, which can be as complex as desired.

Two different techniques are commonly used in rule-based systems: forward chaining, and backward

chaining. The following sections discuss the differences between these two approaches.

2.5.1 Forward Chaining

The forward reasoning concept starts from a set of data collected through observation and works

toward a conclusion. A set of rules is checked to see if the observed data satisfies the premises of any of these

rules. If a rule is satisfied, it is executed to derive new facts that might then satisfy the premises of other rules

to derive additional facts [7]. Since the reasoning progresses in a forward manner from the antecedent to the

19

consequent, and causes other rules to fire in a sort of chain reaction, the method is often called forward

chaining.

The REFINE language supports forward reasoning with built-in tree traversal functions and rule

constructs, but backward reasoning is not supported. REFINE has built-in tree traversal functions called

preorder-transform and postorder-transform, which essentially function as the inference engine. These

functions take two arguments: the first argument is an instance of some object (usually in an AST), and the

second argument is a list of rule names. These preorder-transform and postorder-transform functions will

traverse the AST starting at the given node in a pre-order or post-order fashion, applying the entire list of rules

to each node of the tree. REFINE attempts to apply the rules of the rule list in order and will continue looping

through the rule sequence until no more rules can be successfully applied. At this point the traversal function

moves on to the next object in the tree and iterates through the rules again. Each time a rule successfully

executes (fires), the rule consequent will perform some action, which generally consists of some adjustment to

an object in the database.

2.5.2 Backward Chaining

Backward reasoning is used instead of forward reasoning in the cases where little data is known about

the problem up front. The process starts with little or no data defined for attributes in the database. Instead, a

goal or list of goals (or possible conclusions) to be derived by the system must be provided [7]. The backward

chaining process starts off with a goal that needs to be achieved and attempts to derive that goal with the

following algorithm:

1. Form a temporary stack initially composed of all top-level goals defined in the system.

2. Set the goal to be traced equal to the top goal on the stack. If the stack is empty (i.e., all top-level goals

have been tried), halt and announce completion.

3. Gather all rules whose consequent satisfies the current goal.

4. Consider each of the rules in turn:

a. If all premises are satisfied (i.e., the value of each premise of the rule is defined in the database), then

fire this rule to derive its conclusions. Do not consider any more rules for this goal. Its value is now

given by the current rule's conclusion. If the goal presently being traced is a top-level goal, then

20

remove it from the stack, and return to step 2. If it is a subgoal, then remove this subgoal from the

stack and return to the processing of the previous goal that was temporarily suspended.

b. If a value for a premise is found in the database, but the database value does not match the premise

value, this rule fails to execute.

c. If any premise is not satisfied (that is, the premise value is not defined in the database), check for other

rules whose consequent can derive a value for that premise. If such rules exist, then consider this

premise value to be sub-goal, temporarily suspend the execution of the current rule, push the parameter

onto the top of the stack, and go back to step 2 recursively.

d. If step 4c is unable to find any rules to derive the specified value for the current parameter, ask the user

to enter its value and add it to the database; then go to step 4a and consider the next premise of the

rule.

5. If all rules that can satisfy the current goal have been attempted and all have failed to derive a value,

then this goal remains undetermined. Remove it from the stack and go back to step 2 [7].

In general the backward chaining algorithm looks first to the database for information, then to other rules that

may be able to derive the information, and finally, as a last resort, asks for input from the user. Instead of

initially observing facts about an object or situation and specifying all the facts up front, backward reasoning

allows the system to ask the user for facts when they become important in deriving results. This approach often

proves to be more effective since the user is not burdened with attempting to enter all information about the

situation that might prove useful.

Backward reasoning uses the same rules in the same format as forward reasoning, but the rules are

looked at backwards. The consequent of the rule is checked first to see if this rule is meant to solve the goal at

hand. If it is an applicable rule, the premises in the antecedent are checked to see if they can be satisfied with

available data. Since REFINE only provides built-in support for forward reasoning, a backward reasoning

inference engine had to be built to support some of the EH capabilities. This inference engine is discussed in

later chapters.

2.6 Data Dictionary

The data dictionary has become a very important tool for helping developers build applications from

database definitions. Relational databases are currently the most popular method for modeling data and there

21

are many commercial database management systems (DBMS). One problem in developing applications from

complex databases is that the developer has a very steep learning curve in understanding the database. A

developer who has not been on the project during the data modeling phase must ask others who are more

knowledgeable about the data to explain the data and relationships to him, or read through the development

documents, which aren't always kept current. Therefore a large need exists for an interactive tool that can help

the developer understand the database components and how they relate to each other. In a technical report

about an intelligent Information Dictionary [13], a tool is described that implements a graphical user interface

(GUI) using a hypertext type approach. The tool allows a user to mouse click on database table or relation

between tables to see a description of the item. The user can also look at a list of the columns (attributes) of a

table and view the description of a data column including the data type, unit of measurement, information

source, constraints, and code meanings. By clicking on a relationship the user can view the to and from tables

as well as the cardinality between them. As the user clicks on items of his choice, the tool harvests information

from the database meta-data and the data dictionary tables and displays the retrieved information in a separate

window.

The AFIT domain model has many conceptual similarities to a data model. Since data dictionaries are

typically a standard part of database developments and are useful in helping to identify the data elements, it

makes sense to provide similar capabilities to a knowledge-based system. The benefits of interactively

harvesting information from an AFIT domain tree and its associated dictionary should mirror those benefits for

database applications. Since the domain model stores more than just data information, such as states, events,

and operations, it may be better to refer to the dictionary as an object dictionary, domain dictionary, or a

knowledge dictionary. This paper refers to it as a data dictionary, since most readers are familiar with that term.

An EH is itself an interactive tool that must elicit specification requirements from the application engineer and

harvest knowledge existing in the domain model. During the specification process, the application engineer

will certainly need to view domain elements in a context that can be understood in order to make decisions

about the application under development. Having a data dictionary can provide descriptive information about

classes, attributes, associations, operations, states, events, and transitions to assist in the interactive

communication between the EH and user.

22

2.7 Eliciting Information Thro ugh a User Interface

One of the most difficult problems in software engineering is how to extract knowledge from users in a

way that doesn't burden them with too many details, confuse them with a complicated set of instructions, or

restrict them so much that they give up. Since the EH is a computer controlled process that needs extensive

interaction with a human user, an approach to the human-computer interface needed to be studied. As with any

interactive tool, an EH needs a well-designed user interface. Designing an effective interface is as much an art

as a science and volumes have been published on the subject. The book The Art of Human-Computer Interface

Design makes it clear how dissatisfied many computer users are with the existing interfaces [21]. Although it

seems as though the jump from text-based to graphical interfaces was a big improvement, Theodor Holm

Nelson, a software designer, writes: "Featuritis is a principal and well-known disease of software... You face a

screen littered with cryptic junk...you try to understand what the icon means...The disease of featuritis is the

unclarity and confusion that results from having too many separate, unrelated things to know and understand

[21]." These opinions suggest that more pictures are not necessarily better than a few words if they are not

designed intuitively.

The user interface will certainly be a very important part of the EH tool. At the very least it should

guide the user through the process of building the specification in a way that doesn't cause the user to get lost or

confused. It should allow enough latitude so the user can move around within the tool to view the progress,

save an interim specification, or make corrections.

2.8 Other Relevant Research

There is current research in the area of specification refinement. The University of Hawaii is currently

working with an Army interactive combat simulation system called ModSAF (Modular Semi-Automated Forces

[10]. Their work focuses in refining high-level specifications into more detailed specifications which can be

formed into executable simulation scripts. Many of their refinement tasks are analogous to EH tasks. Their

refinement process takes a user's high-level exercise training specification, a domain model of movement

operators, and a database with terrain descriptions as input and produces a detailed exercise specification

meeting the requirements as output. The domain model is basically a set of rule operators that add to the

refined simulation script when all preconditions are met.

23

Their approach is a plan-based AI technique being applied to a very restricted domain. Even with a

very restricted domain, the potential for combinatorial explosion of possible rule searches exists. They

therefore used a hierarchical planning scheme that maintains rules at different levels of abstraction and operates

on those subsets of rules in a controlled order.

An approach like this may be useful for guiding an application engineer through the specification

process with the EH. Essentially, the EH is a tool to help the application engineer refine the knowledge stored in

a domain into a more descriptive set of specifications. Theoretically, it should be possible to create an

automated process to transform the domain description into a low-level software specification with minimal

human effort by dividing rules into related sets and breaking down the process into smaller sub-processes that

look at a certain part of the domain model. It should be reasonable to start with more high-level specifications,

such as identifying operations, classes, and associations required, and work down to the very detailed

specifications like data type definitions, constraints on attributes, and multiplicities of associations.

During the specification refinement process, it is often necessary or preferable to change or transform

the structure of the object model into a different form that better fits the specification. Several data model

transformations are explained in a paper by Blaha and Premerlani [12]. Some of the transformations explained

include adding or removing constructs, restricting multiplicity, partitioning or merging constructs, composing

associations, moving attributes among generalizations, and various other inheritance manipulations. When such

a transformation takes place, the new form should be equivalent to the old form and no information should be

lost. An EH user may not necessarily understand the need or reason for these transformations, so heuristics can

be applied to find the needed transformations and recommend them to the user.

24

3 Requirements

The purpose of this chapter is to define the requirements of an EH (Elicitor-Harvester) process that

would fit into the framework of the object oriented knowledge base system being studied at AFIT. First,

Section 3.1 discusses the thought processes that went into defining the requirements. Next, the inputs and

outputs of the EH are described in the Section 3.2. The largest part of this chapter, Sections 3.3 and 3.4, focuses

on the requirements of the functional capabilities, which include the actions allowed during the specification

phase; the restricted or prohibited actions; and the clean-up process, which purges the unnecessary parts

remaining in the specification. Section 3.5 discusses the interaction requirements between the user and the EH

along with various possible approaches to a user interface. Following the User Interface Section is a section

about the benefits and uses of AI (Artificial Intelligence) techniques in the EH process. Additional domain and

specification AST (Abstract Syntax Tree) components required by the features of the EH are described. Finally,

the sample domain models used for explanation, implementation, and testing are discussed.

3.1 Philosophy Behind the Elicitor-Harvester Requirements

The concept of an Elicitor-Harvester is still fairly new, so the requirements and expectations of such a

process have not yet been well defined. As KBSE matures and commercial tools become available, the

capabilities of an EH will certainly evolve so it smoothly integrates into the overall framework of the

knowledge based tool set. The requirements described in this chapter are somewhat limited in scope to support

this thesis effort. There is certainly room for further improvements and refinements that would improve

performance or ease the use of an EH tool. Some suggested improvements are discussed in the

Recommendation section of Chapter 6.

Despite many philosophical discussions, it is difficult to agree upon what should or should not be

allowed during the specification process. It is generally agreed that the EH process should not allow changes to

the domain description, otherwise any application engineer could override the decisions of the domain expert,

thus affecting future specifications built from that domain. On the other hand, it may be too restrictive to

prohibit the application engineer from creating new objects not included in the domain, but required for a

specific application. It also may be too restrictive to prohibit the modification of domain components into a

form more suitable for the specified application. It is certainly not reasonable to expect a domain expert to have

25

enough foresight to anticipate every possible event or data element that may be needed for all future

applications.

One way to help protect the domain and allow flexibility for the application engineer is to create a

distinct specification AST that is separate from the domain AST for each application developed. The

application engineer would then have the freedom to modify existing objects and operations and create new

ones where necessary as long as those changes do not violate constraints defined in the domain.

Previous EH thesis studies at AFIT, Cochran [6], Wright [3], and especially Karagias [2], have

attempted to define specific changes and transformations that should and should not be allowed during the

specification phase. While this is certainly a desirable long range goal, the KBSE field is still too immature to

nail down all the specific requirements of an EH tool. Since the specification phase is in the middle of the

KBSE process, it is affected by the completeness of the domain description and it has the ability to cause

problems downstream in the design and implementation phases. In relation to the domain AST, the EH should

allow the application engineer to add or modify domain components if the knowledge represented in the domain

model is not adequate to support the specification requirements. It should also be possible to clean up the

specification AST by deleting unnecessary attributes, constants, data types, etc. at the end of the specification

phase.

With regard to the design and implementation phases, changes made to the model during specification

could affect interface issues between resulting applications. For example, say an application engineer selects an

object class named person from the domain model and uses it as is for application 1 (Al). A second application

engineer creates application A2, which also uses the person class, except the engineer removes the address

attribute and changes the data type for age to Months instead of Years. Later, it is decided that Al and A2

should interface with each other; but because the two data structures storing the person records are different, the

person records could not be easily merged. Even though both applications started with the same structure for

person, some translation functions would now be needed between the two applications.

It is probably impossible to prevent all scenarios of this type, and there is obviously a trade-off

between specialization and standardization. The final decision between the two will depend on the management

philosophy of the organization using the KBSE system. The multitude of such issues begs for an approach to

specification that allows as much latitude as possible without violating deliberate domain constraints. Therefore,

26

an EH tool should provide great flexibility for the application engineer and leave the standardization issues to

configuration management.

A production EH tool should provide a knowledge base administrator the capability to define

restrictions to be placed on certain specification functions. Similar to how a database administrator can set

access privileges for database users, the knowledge base administrator could set the preferences of an EH to

allow or prohibit certain specification abilities. With these thoughts in mind, the following sections define the

requirements and scope of this version of an Elicitor-Harvester.

3.2 Input and Output Requirements

A good way to begin describing a process is to define the inputs and the outputs. The following

paragraphs first look at the inputs, which consist of the domain AST, rules, the data dictionary; and inputs from

the application engineers, and finish up with the outputs, which include the specification AST, user messages,

data dictionary updates, and history database. Figure 8 shows the operating environment of the EH.

Application
4^ Engineers

>

Domain AST

v Specification AST

^

\ Code j

Rules fl ^
History DB

CT 35 "> J

Data
Dictionary

Figure 8 Elicitor-Harvester Environment

3.2.I Elicitor-Harvester Inputs

The EH receives inputs from the domain AST, the users or application engineers, rules, and the data

dictionary. These inputs are explained in the following paragraphs.

27

3.2.1.1 Domain AST Input

The main input to the EH is a domain AST, which stores knowledge about a particular domain. The

representation used by the domain AST is generic enough to handle most types of domains. Although the

sample domains available at AFIT are not complete domain descriptions, it is assumed that the domain being

operated on by the EH is a reasonably complete model that has been thoroughly defined by a Domain Engineer

with the aid of a Domain Expert.

3.2.1.2 Application Engineer Input

The application engineer, who will be called the user, is the person who operates the EH for the

purpose of creating a specification for a new application. The EH communicates with the user through a user

interface, which is discussed more thoroughly later in this chapter. The EH queries the user for information

about the new specification and the user provides that information by keying in a response.

3.2.1.3 Rules

The rule base supplies the EH with derived values based on the objects passed to the rules and the data

available in the domain and specification ASTs. Input from rules is usually indirect. A rule, if executed,

generally updates some object or a field in a data structure, which is called a fact base. The EH can access

those updated items and act on the new information accordingly.

3.2.1.4 Inputs from the Data Dictionary

The data dictionary stores aliases for names of components declared in the domain. Since a user may

not know the names of the objects in the domain, the responses keyed in may not match the object names. If the

user enters a term not recognized as a domain identifier, the EH queries the data dictionary for synonymous

terms that may match the user's input. Since domain names are often abbreviated, the EH uses a set of rules or

heuristic functions to generate reasonable abbreviations, which often help match user input to domain names.

During the domain-engineering phase, domain items (data elements) should have their descriptions and

synonyms stored in the data dictionary section of the domain.

28

3.2.2 Elicitor-Harvester Outputs

The outputs of the EH include a specification AST for a particular application, a history database, and

new entries to the data dictionary. Its outputs must also include informative messages and data requests to the

application engineer via the user interface.

3.2.2.1 Specification AST

The main output of the EH is the specification AST. If the specification is defined properly and

thoroughly, it should allow for an efficient automated transformation to the design phase. The specification tree

should contain all associations, classes, attributes, attribute restrictions, operations, pre and post conditions,

events, states, transitions, data types, and constants. Of course, not all details are specified at this stage. The

specification identifies what needs to be done, but not necessarily how to do it. Particular data structures, file

formats, algorithms to optimize performance, and temporary variables are a few examples of software that do

not get defined until the design phase.

There are two approaches to creating the specification AST. One way is to build it from the ground up

by adding components as they are identified as necessary to the specification. The second way is to make a

copy of the entire domain AST, make required changes, and then prune the parts not necessary for the

specification. A disadvantage of the first approach is that it requires the maintenance of two ASTs during the

EH process - the harvesting of the domain tree, and the building of the specification tree. The advantage is that

the clean-up process is simpler because only a subset of the domain AST is added to the specification AST.

The advantage of the second approach is that it only requires one AST (the copy of the domain AST), which is

augmented with new components then pruned of the unnecessary items. Although the pruning (during clean up)

is more extensive, the advantage of working with a single AST that contains everything probably outweighs the

disadvantage of extra pruning. Here is the subtle kicker: as the application engineer adds to and modifies

components in the domain model, the specification AST begins to contain items that should be checked and

harvested for further refinements during the specification phase. By using two ASTs, the EH must perform

searches on both the domain AST and the specification AST while harvesting for knowledge. This (first)

approach can become an implementation nightmare. For this reason, the second approach was chosen. Objects

in the AST need an extra flag or two to indicate when they have been selected as a required part of the new

specification. These flags are also used during clean up to help identify which parts to prune from the tree.

29

3.2.2.2 History Database

During EH processing, many decisions are made and many actions performed. There may be times

when the user wants to change or delete one or more of those actions, similar to how an "undo" function works.

There needs to be a way to log the activities performed during the EH process so that each time a specification

item is selected, added, modified, or deleted, the description of that action is stored. The history database

fulfills these requirements. It is a repository of EH activities stored in such a way that a sequence of actions can

be viewed for editing. The long-term aspects of such a feature would allow a user to go back and undo specific

actions by selecting from a list of prior actions. An entire specification could also be replayed, which would

allow the application engineer to fine-tune the specification. Imagine, for example, that an application engineer

has completed the specification process and finds out only a few minor changes are needed. The application

engineer could access the history database, modify a couple of historical actions, and rerun the specification

process from the history database without having to go through the entire EH process again.

For this research, the history database has been limited to simply storing in chronological order the

actions that caused a change to the specification AST and providing a mechanism to view it. Other

functionality should be studied and is discussed in the recommendations section of Chapter 6

3.2.2.3 Output to the Data Dictionary

When the user keys in identifying names of domain tree objects desired for the specification under

construction, there are cases when no matching synonym is found in the data dictionary. It is desirable for the

EH to have the ability to add new synonyms to the data dictionary for future use. The EH would appear to

"learn" new synonyms for the domain objects. This learning functionality is outside the scope of this research

and is discussed in the Recommendations section of Chapter 6.

3.3 Functional Requirements

Now that the input and output requirements have been defined, the following sections discuss the

functions allowed and prohibited during the transformation from domain AST to specification AST.

3.3.1 Operational Capabilities

This section outlines the actions an EH should be able to perform. In describing capabilities of the EH

a method similar to one describing DBMS (Database Management System) functions will be used. The actions

30

allowed on database tables are Create, Retrieve, Update, and Delete (CRUD). These terms, which have been

borrowed and changed to Create, Select, Modify, and Delete, describe the actions allowed on AST components

and are defined below. As mentioned before, a knowledge base administrator should be able to set the

restrictions for many of the functions depending on the management philosophy of the using organization.

Therefore, an additional term called "Restrictable" is also defined. A generic term is needed to identify a part of

the AST that could refer to a class, attribute, state, constant, data type, or any other part of the domain. Since

the word "components" can lead to ambiguity, the word "item" is used instead.

• Create - Ability to create a new item that needs to be added to the specification.

• Select (Retrieve) - Ability to use the item as defined in the domain model. All items are assumed to

have the ability to be selected unless otherwise stated.

• Modify (Update) - Ability to change the item by applying some transform to the item such as merging

or generalizing as described by Blaha [12]. Modify also includes adding, deleting, or changing

anything in the subtree of the item. For instance, if the data type of an attribute within a class is allowed

to be changed (not restricted), then that is considered an allowable modification to the class.

• Delete - Ability to remove an item from the specification tree during specification or clean-up

functions.

• CAUTION! If not performed properly many Delete functions can cause problems because the item

being deleted may be referred to in other parts of the domain. Therefore, these functions should be used

at the end of the specification phase during the clean-up process to ensure necessary items are not

deleted in the specification phase.

• Restrictable - This means an item can be restricted from create, modify, or delete actions by the

knowledge base administrator. Management may decide certain functions should be restricted to

maintain consistency between different applications developed from the same domain.

3.3.1.1 Primitive Classes

• Create - New classes can be created; however, this may be a restricted function if the domain is

considered complete. In some cases, a new class can be created as a sub-class in an inheritance tree.

This approach is a good way to add attributes or items to a class, which may be the preferred alternative

to changing an existing class.

31

• Modify - Classes may be modified by changing items in the class subtree. These changes can include

adding, modifying, or deleting the class name, type declarations, constants, attribute names or types,

predicates (invariants), operations, states, transitions, or events. Modification of some or all items may

be restricted.

• Delete - Classes may be deleted from the specification AST if they are not used in the specification or

if the deletion results from merging two classes in a transformation. This function may be restricted.

3.3.1.2 Class Attributes

• Create - New attributes can be added to a class. This function may be restricted if the chosen

alternative for extending classes is to inherit new sub-classes.

• Modify - The name or type of a class attribute can be modified. Modify functions can be restricted.

• Delete - Attributes can be deleted if not used in the specification.

3.3.1.3 Class Operations

• Create - New operations on a class can be created.

• Modify - An operation can be modified by changing the name; adding, changing, or deleting

parameters or predicates (pre or post-conditions); and/or changing the sub-operations. These functions

can be restricted.

• Delete - Class operations can be deleted if not used in specification.

3.3.1.4 States

• Create - New states can be created since new attributes are allowed to be created. The state of an

object depends on its attribute values. This function can be restricted.

• Modify - States can be modified by changing the name, or by adding or changing the predicates (state

invariants). This function can be restricted.

• Delete - States can be deleted if the attributes identified in the invariants have been removed from the

specification.

32

3.3.1.5 Events

Since events are defined in classes, the mapping between sending and receiving events must be

specified at a higher level. These event mappings will need to be defined at the domain level after all class

events have been specified.

• Create - New events generated by an object or events to which the object or responds can be created.

If the object must respond to the new event, states and transitions associated with the new event must

also be created or modified.

• Modify - The name, parameters (arguments), and predicates (parameter constraints) may be changed.

These functions can be restricted.

• Delete - Events can be deleted from the specification tree if not applicable, but great care needs to be

taken to assure associated states and transitions are properly handled.

3.3.1.6 Transitions

• Create - New transitions will need to be created if new states or events have been added.

• Modify - Transitions can be modified by changing the predicates (guard conditions) or operations

(actions). This function can be restricted.

• Delete - A transition may be deleted if any of the following do not appear in the specification: caused-

by-event, from-state, to-state, attributes identified in the predicates. It may be wise to produce an error

message if items are missing from the transition sub-tree.

3.3.1.7 Parameters

• Create - New parameters can be created when added to the parameter list of an operation or event.

• Modify - The name, type, and output flag can be changed. Modify functions can be restricted.

• Delete - Parameters can be removed from the parameter list of operations or events.

3.3.1.8 Predicates

• Create - New predicates can be created when adding constraints to an event, guard conditions to a

transition, invariants to a class, or pre and post-conditions in an operation. Restrictions may be placed

on predicate creation and will depend on the restrictions to the items of which the predicate is a part.

33

•

New predicates should be checked for correctness to be sure that the variables in the predicate

correspond to existing domain items.

Modify - Since many predicates define constraints on the domain model, the only changes allowed to a

predicate should be ones that further restrict the constraint for a particular application. It may be very

difficult to ascertain whether a change to a predicate constitutes further restriction or not. Because

predicates are quite complex and flexible, the AI abilities would have to be very sophisticated to decide

if a change resulted in further restriction. This degree of sophistication is beyond the scope of this

research, therefore the designer of an EH may choose to prohibit modification of constraint predicates.

In some cases, constraints can be implemented by restricting the range of a data type, which may be

preferable over a predicate. Changing pre-conditions and post-conditions in operations is allowed in

order to allow refinement of functionality. Modified predicates should also be checked for correctness

to be sure the variables in the predicate correspond to existing domain items.

Delete - A predicate can be removed during clean up if none of the items named in the predicate remain

in the specification. Predicates defining domain constraints should not be deleted if applicable to the

specification.

3.3.1.9 Data Types

Data types can be defined at the global level (dom-global-type attribute of GOMT-DomainTheory) or locally

within the class (dom-private-types attribute of the GOMT-Class). An application engineer should have the

ability to move data type definitions between the local and global levels if desired. If more than one class

declares the same data type, it would make sense to move the type declaration up to the global level. On the

other hand, a global data type should be moved down to the class level if it is only used in one class.

• Create - New data types can be created. It may be useful to create derived or sub-types to help define

constraints. These definitions can sometimes replace predicates such as class invariants.

• Modify - Data types can be modified by changing name, the enumerated list of type values, the

predicate (usually the data range), and type multiplicity. Data types are often named but not defined in

the domain model, and therefore should be defined more clearly in the specification if possible. These

functions can be restricted for certain data types, which the domain engineer wants to keep as is. See

Section 3.3.2 for more details.

• Delete - Data types can be deleted during clean up if not needed in the specification.

34

3.3.1.10 Constants

Constants, like data types, can be defined at the global or class level; the same issues mentioned under

data types also apply to constants. It is possible that two or more constants could have the same name and may

or may not have the same meaning. The EH will depend on the application engineer to decide whether to move

constants between global and class levels.

• Create - Constants can be created if the application engineer finds it useful.

• Modify - Constants can be modified by changing the name, type, or value. Since constants can be

declared in the domain model with just a name, the type and value can and should be added during the

specification phase if possible. These functions can be restricted for certain constants the domain

engineer wants to keep as is. See the Section 3.3.2 for more details.

• Delete - Unneeded constants can be deleted from the specification during clean up.

3.3.1.11 Inheritance

Inheritance can be used as a method for extending class definitions by adding a new sub-class instead

of modifying the existing class. This alternative may be preferred in cases where items need to be added to a

domain class, but management wants to maintain consistency of the domain class definitions.

• Create - New sub-classes that inherit all items from the super-class can be created, and can have more

items added to them in order to meet the specification requirements.

• Modify - Many transforms can be applied to inheritance structures [12]. An abstract super-class may

have several sub-classes representing choices for the application engineer. Once the choices are

selected, the abstract class may no longer be necessary and can be deleted from the tree leaving just the

chosen sub-class in the specification. Class attributes or operations can also be moved between the

super-class and sub-classes, but this function can be restricted.

• Delete - An inheritance class can be deleted if not needed in the specification.

3.3.1.12 Associations

• Create - Associations between classes can be added to allow description of relationships that were not

thought of or included in the domain model. New associations must have the multiplicities defined, as

well as attributes if necessary.

35

• Modify - Attributes of the association can be added, modified or deleted. Multiplicity of existing

associations can be tightened, but not made less stringent. See Section 3.3.2.

• Delete - An association need not exist between two classes in the specification if not required in the

application, so it can be deleted.

3.3.1.13 Aggregate Classes

Aggregates are classes that contain other classes. Aggregation is a special type of association that

models the has-a relationship; i.e., the class has a component. The relationship is modeled in the AST with the

has-components and has-aggregate-associations attributes. Aggregates may also include regular association

definitions between classes in the domain. These classes are sometimes called system classes.

• Create - New aggregates can be created. The new aggregate can be the result of assembling several

parts of the domain, or creating a sub-class of an aggregate class, which inherits the components of the

parent class, plus adds more items to further specialize the aggregate.

• Modify - Aggregates can be modified, since the aggregate is made up of many other items that can be

modified. Classes, associations, and operations can be added to or removed from the aggregate as long

as no prohibited or restricted functions are performed.

• Delete - Aggregates can be deleted from the specification if not needed.

3.3.1.14 Aggregate Operations

Whereas primitive class operations have limited scope to the class in which they are defined, aggregate

operations can perform actions on multiple classes. The EH tries to identify aggregate operations early in the

specification process in order to infer the classes and associations needed for the specification.

• Create - New aggregate operations can be created.

• Modify - Aggregate operations can be modified by changing the name; adding, changing, or deleting

parameters or predicates (pre or post-conditions); and/or changing the sub-operations. These functions

can be restricted.

• Delete - Aggregate operations can be deleted if not used in specification.

3.3.2 Prohibited and Restricted Actions

With the EH philosophy in mind, the actions restricted or prohibited for this EH are outlined.

36

• Predicates in classes often describe invariants intended to restrict attribute value ranges. When these

constraints are restricted, they should not be allowed to be relaxed during the specification phase.

• Multiplicity of associations defined in the domain cannot be expanded. E.g. a one-to-one relation

cannot be expanded to a one-to-many relation. An association can be constrained further. E.g. a zero-

or-one-to-many can be re-defined in the specification to be one-to-three.

• Constants with defined values generally should not be changed and can be restricted. However, if a

constant with the same name but different values or data types appears in more than one class, the user

will be allowed to move the constant to the global level and choose between the two values.

• Constants, data types and other items are sometimes carefully defined by the Domain Engineer with the

intent that the item should not be changed during future phases. Such cases can be identified in the

domain model to prohibit the EH from changing those items. See Section 3.7 for recommended AST

changes to support this requirement.

3.4 Clean-up Process

. After the application engineer finishes with the specification, many parts of the AST that are

unnecessary for the application being specified still remain. These extra parts are removed from the

specification AST during the clean-up process. Depending on the kind of item being removed, the EH checks

the parts of the domain that may use the item to make sure a required item is not deleted. During the clean-up

process, the user is asked to verify the proper declaration level for data types and constants (global vs. local). If

inheritance structures exist, decisions about abstract vs. concrete classes and placement of their attributes are

made. After events have been cleaned up and only required events remain, the mappings between the from

events and the to events are made.

3.5 User Interface

Ideally, the user interface should help the user be as efficient as possible. Efficiency means that the

user gets a lot of work done with a small number of key strokes and mouse clicks. The interface should guide

the user through the specification process in such a way that the user is not confused and the EH gets the

information needed. The most common and accepted way of attaining efficiency in modern applications is with

a Graphical User Interface (GUI), with which a user can make selections from menus and lists by clicking the

mouse cursor on the selected items. Of course, many GUI development tools exist today and the Intervista GUI

37

software is provided with the REFINE package, but developing GUI interfaces can be very time consuming.

Since the main thrust of this research of building a smarter EH methodology does not require a GUI, and after

considering the time needed for the various options, a text-based interface was chosen. The basic requirements

of a text-based interface are the ability to accept user input from the keyboard and print important information

to the screen.

3.6 Artificial Intelligence Tec hniques Employed

AI techniques are utilized in the EH to help remove the burden of the many of the specification details

from the application engineer. AI is mainly manifested in rule-based reasoning and heuristic functions. Rule

bases have been created as a way to apply actions to the specification tree. Because there are so many different

types of objects in the AST, trying to uniquely process each type of object would cause the source code to get

very messy. Rule bases help simplify the code and keep it more structured. Heuristics are "rules of thumb" that

are applied to infer the best action from the given circumstances. Heuristics have been implemented in the rule

base and in algorithmic functions. The representation of the knowledge base as an object oriented AST and the

search methods used over the tree also fit into the category of AI. These techniques are used in the EH to match

terms in the data dictionary, select objects from the domain tree for use in the specification tree, make

recommendations to the user, validate modifications and check restrictions, and help perform the clean-up

functions.

3.7 Modifications to ASTs

Additions to the domain and specification AST were determined to be helpful to the EH process.

• Section 3.3.2 describes how some items of the domain need to be marked as restricted from change. To

support these cases an extra attribute is needed in the GOMT-Object class to indicate whether this

particular item is allowed to be changed or not. The Domain Engineer can set this attribute to prohibit

the EH from making changes to an item.

• The data dictionary components are needed in the domain to provide the ability to store the string name

of the domain element, multiple synonyms, a description of the domain element, and a pointer to the

domain object to which the element refers.

• As mentioned in the last paragraph of Section 3.2.2.1, an additional boolean flag is needed for all Obj-

Objects to indicate whether this item has been selected for use in the specification.

38

• A Library-Ops class is needed in the domain AST to accommodate pure operations (general operations

that don't belong to any particular class in the domain, such as math functions like SquareRootix)).

3.8 Sample Domains

In order to test the EH functions, an actual sample domain and specification should be used. It is

preferable to use as close to a real world example as possible. During previous research at AFIT, domains

modeled in object-oriented architecture have tended to fall into different categories. Domains that model

something to be built are aggregation oriented, such as the CRUISE MISSILE domain, which consists of the

various parts of a cruise missile. Some domains are biased toward states and events, such as the TRAFFIC

LIGHT INTERSECTION model. Some models consist of many primitive classes related through associations

with domain level operations acting on multiple classes, such as the SCHOOL and TRAIN domains. Since it

was difficult to come up with a single domain that could exercise all parts of the EH, it was necessary to use

two domains as examples. The AFIT KBSE group had several incomplete domains already defined. Since

creating a new domain can be very time consuming, the pre-existing AFIT domains were used. The

incompleteness of the domains actually helped this research because it was easy to come up with examples for

most types of additions and modifications.

Person

X
Course

Faculty

Quarter

< > Offering

teaching
taught as

Room ' ►

Section

graded' ■By]

Book

assigned

Gradeable

n
grade

n Student

GradClass

Figure 9 Classes and Associations for the School Domain

39

The SCHOOL domain, shown in Figure 9, was chosen as one example domain since it is fairly

extensive and there existed a well-defined specification for a scheduling application. The SCHOOL domain was

used to test the actions performed on primitive classes, and their attributes, constraints, constants, data types,

and operations. The SCHOOL domain helped exercise the inheritance functionality since Faculty and Student

classes are subtypes of the Person class. It was also used for associations and pure operations. Since there is no

has-parts aggregation in the SCHOOL domain, the CRUISE MISSILE domain, shown in Figure 10, was used

when aggregate manipulation functions needed to be tested. For more detailed information about the sample

domains, refer to the Z-schemas in Appendix B.

Cruise Missile

I
Airframe Propulsion

System

I
Throttle Jet Engine Fuel Tank

Figure 10 Class Hierarchy for the Cruise Missile Domain

3.9 Requirements Summary

This chapter described several components required for an intelligent, user-friendly Elicitor-Harvester

tool. The domain AST, data dictionary, rule bases, inference engine, fact bases, and history database all need to

be orchestrated within the user interface to provide the user with a clear and intuitive way to build

specifications. The input and output requirements were defined along with the actions allowed on the various

types of domain items. Chapter 4 discusses the approach used to integrate the components of the EH into a

useful, interactive tool. The design details used in building the EH tool are described along with the philosophy

behind them. Chapter 5 discusses the functionality actually implemented, some of the difficulties encountered

during development, and an evaluation of the implemented tool.

40

4 Design

Since the area of eliciting and harvesting of a domain model is still in the early stages of research, the

development of an EH (Elicitor-Harvester) tool could not follow the traditional waterfall method of the

sequential requirements, design, implementation, and testing stages. The requirements in Chapter 3 were kept

fairly general because it was not known if this research effort could meet those requirements. Approaches to

user-computer interaction were very vague, and attempts to lay out a design usually brought out more questions

than answers. Given this scenario, it would have been imprudent to try to completely design an automated EH

process without knowing whether many of the details would work. As a better alternative to a waterfall

approach, it was decided that iterative prototype development would be more effective.

The main philosophical point kept in mind during each design decision was always to try to use the

knowledge built into the domain or try to infer information from the domain before asking the user for input.

The EH should take as much burden off the user as possible by limiting the number of choices when an input is

requested. This chapter discusses the approach used to design the EH.

4.1 Data Dictionary Design

An application engineer may not always know the names of all domain objects, so when asked to enter

the name of a domain item, the user may type in a different name. Further complicating the problem are the

various methods of naming identifiers. Names are often abbreviated (prod_ID instead of product identifier)

and multiple word identifiers may have no space between them or may have underscores, hyphens, or dots (for

example, prod-id, prod.ID, ProductID). Realizing that identifier ambiguity could pose a problem during user

interaction with the EH, the use of a data dictionary was considered. This section discusses the design of the

data dictionary structure, the associated rules, functions, and fact base, and its uses.

4.1.1 Data Dictionary Structure

The AFIT KBSE system had no data dictionary capabilities except an unused description attribute that

could be used to store a text description for each object. Therefore, to aid the application engineer during the

specification process, a simple data dictionary structure, as shown in Figure 11, was built to store data elements

corresponding to domain items. As part of the feasibility evaluation, functions were written to populate the data

dictionary with the data element name, synonyms of the name, an optional description, and a pointer to the

41

actual domain object described. Ideally, a data dictionary would be populated during the domain-engineering

phase. The system should be able to automatically create a data element for each domain item, but the domain

engineer should supply descriptions and synonymous terms for each item. Later, during EH processing, the

data dictionary can be searched to help match names entered by the application engineer to domain objects.

Data-Dictionary

Y
has-elements
 I

{Data-Element}

~V

has-name-string

string

has-synonyms

{string}

has-descrip

string

member-of
 i

{Obj-Object}

Figure 11 The structure of the Data Dictionary class

4.1.2 Handling User Inputs

To help match names to actual domain objects, a small set of rules was written to act on a fact base

called Aword as shown in Figure 12. When the EH needs to match a word from the user's input to a domain

object, the set of match rules are used to find objects with similar names. When the user inputs text, the EH

Aword

77
whole-name

i

string

abbreviations
 I

{string}

object-seq

[Obj-Object]

has-sel-objs

Selected-Obj

2
perfect-matches

{Obj-Object}

syn-matches

{Obj-Object} {Obj-Object}

abbrev-matches
 I

partial-matches

{Obj-Object}

has-an-obj has-action

Obj-Object symbol

Figure 12 The Aword structure. The fact base used when matching input names to domain objects

must parse the text string and store it in the Aword structure for further processing. The string of text, which

can be a single word or multiple words, is read into a string and passed to the Sthng-to-Seq function. The

String-to-Seq function removes commas from the string, separates the words into a sequence of strings, then

42

Stores them in a sequence of Aword objects called Phrase. Some text processing functions, such as String-to-

Seq, employ calls to Common Lisp functions since REFINE is not very rich in string and character

manipulation capabilities. The REFINE system is generally case insensitive, but when trying to match strings,

the case becomes important.

Once the user's input has been parsed into the sequence of Aword structures, the EH calls apreorder-

transform function to traverse the data dictionary while applying rules to the data elements. The function

essentially searches the data dictionary for domain object names that match the input word in various ways.

There are four basic ways the input can match a data element. Ordered from most desired to least desired, these

possible matches are: a perfect match, a synonym match, an abbreviation match, or a partial match and their

descriptions are given here:

1. Perfect Match - The input string exactly matches an element name in the has-name-string attribute of

the data dictionary.

2. Synonym Match - The input string exactly matches a name from a has-synonyms attribute of the data

dictionary.

3. Abbreviation Match - An abbreviation created from the user input matches the name or synonym of a

data dictionary element. The abbreviations are created from the user input by using the first three, four,

five, or six letters of the word (if the word is at least two letters larger than the abbreviation); and an

abbreviation is created by removing all vowels except for a leading vowel. All abbreviations must be at

least two characters long.

4. Partial Match - The user input or abbreviation matches a sub-string of a name or synonym in the data

dictionary. The Lisp function called Search is used to make these comparisons, and each time a sub-

string is matched, a counter is incremented, which can be used to measure how good a match it is.

When a matching data dictionary element is found, the domain object that is pointed to by the member-of

attribute of the data element is added to the set of matching objects in the Aword structure. Each object in the

matched sets in Aword are candidate objects for the user with the perfect matches being the most likely

candidates and the partial matches being the least likely.

4.1.3 Using the Data Dictionary

Often during processing the EH will request information from the user such as the name of a domain

item needed for the specification or a predicate for a new operation. The EH needs to ensure that the objects it

43

selects are indeed the same objects the user wants for the specification. The function Match-Word is called

which creates the Aword structure and starts the rule-processing engine. The rules add objects to the Aword

structure that match the user input in the four ways mentioned earlier. The set of matched objects is passed to

the Sequence-Objects function where they are sequenced by object type in preparation for a pretty print to the

screen. The list of objects is passed to the Print-Obj-List function, which prints the list of candidate object

matches to the screen as shown in Figure 13, and asks the user to choose the proper object.

Enter one of your desired OUTPUTS or return key to return to Main Menu
fuel_level

(0) None of these
(1) CLASS: FuelTank

HAS-ATTRIBUTES: tank_sim_time; input_flow_rate; output_flow_rate;
fuel_level; capacity; tank_weight; fuel_density;
fuel_tank_weight;

(2) CONNECTION: JetPropulsionSys.fueltank : FuelTank
(3) ATTRIBUTE: FuelTank.fuel_level : Real
(4) ATTRIBUTE: Throttle.actual_flow_rate : Real
(5) ATTRIBUTE: Throttle.maximum_flow_rate : Real
(6) ATTRIBUTE: JetEngine.current_fuel_flow_rate : Real
(7) ATTRIBUTE: JetEngine.maximum_fuel_flow_rate : Real
(8) ATTRIBUTE: FuelTank.fuel_tank_weight : Real
(9) ATTRIBUTE: FuelTank.fuel_density : Real
(10) ATTRIBUTE: FuelTank.output_flow_rate : Real
(11) ATTRIBUTE: FuelTank.input_flow_rate : Real
(12) ATTRIBUTE: JetPropulsionSys.prop_fuel : Real
(13) OPERATION: DetermineFuelWeight

HAS-PARAMETERS: fuel_weight;
(14) OPERATION: CalculateNetFlow

HAS-PARAMETERS: net_flow_rate;
(15) OPERATION: InitFuelTank

HAS-PARAMETERS:
(16) OPERATION: LoadFuel

HAS-PARAMETERS: fuel_load;
(17) INPUT PARAMETER: flow_rate IS: Real
(18) INPUT PARAMETER: fuel_Weight IS: Real
(19) INPUT PARAMETER: fuel_load IS: Real
(20) OUTPUT PARAMETER: fuel_tank_weight IS: Real
(21) OUTPUT PARAMETER: fuel_weight IS: Real
(22) OUTPUT PARAMETER: net_flow_rate IS: Real
(23) OUTPUT PARAMETER: overflow_event_time IS: SIMTIME

Enter the number of an object you will want to to use for 'fuel_level'=>

Figure 13 List of domain objects matching the user input for fueljevel.

The user enters the item number desired and the number is returned to the calling function where the chosen

object can be used as needed. Figure 13 shows many objects in the CRUISE MISSILE domain found to be

possible matches for fueljevel, even though a perfect match was found in choice (3). The other objects were

partial matches that had a sequence of at least two characters in common with fueljevel. These results

demonstrate the usefulness and feasibility of a data dictionary. However, on large domains, this method of

displaying all matches causes the list to be too long, which detracts from the ease of use of the interface. This

44

version of EH does not use the full power of the matching schemes, but simply lumps all four matching sets

together when executing. A fuller version of the EH would check the matched sets in sequence in an effort to

decrease the number of choices for the user.

4.2 User Interface Design

The interface functions as an integral part of many sub-functions of the EH, and as such cannot be

described as a component or separate module of the EH tool. Since the interface is basically the user's window

into the EH, the screens controlled by the interface are used to guide the reader through the functionality of the

EH. Describing what EH does with the information keyed in and how it derives the information displayed on

screen should aid the reader in understanding the EH process.

The user-computer interaction basically consists of the EH printing inquiries to the screen prompting

the user to key in required information. The main purpose of the user interface is to methodically pull

information from the user in a way that elicits input from the user only when the knowledge cannot be harvested

from the domain model. The process should flow in a reasonable way such that the user understands what

needs to be entered.

Several standard functions were built to give the screen displays a common look. Often the user

directs the control flow of the process by choosing one option from a menu or list of actions printed to the

screen, as shown in Figure 14. Other times the user is asked to pick from a list of objects to be acted upon, as

shown in Figure 13. Two functions, Print-String-List and Print-Obj-List, take a sequence of strings or objects

respectively and an informational message string as arguments. The functions print out a numbered list of

choices, print out the message string, which usually instructs the user what to do, and return the number selected

by the user. Choice (0) is consistently printed as "None of these" in all lists printed to the screen. By choosing

(0), the user can usually back out of this screen gracefully if it's not where he wants to be or none of the other

choices are satisfactory. Print-Obj-List calls the Obj-Description function, which formats a short description of

each object in the list. Figure 13 shows the format that Obj-Description creates for several object types.

4.3 Starting Up EH

The EH takes the root node of a domain AST (i.e. a GOMT-DomainTheory object) as its only

argument. The input argument can be the root object of the entire domain AST in the case when a new

45

specification is being created, or it can be the root of a partially finished specification that was saved from a

previous session. The main driver function is named EH and is designed as a while loop that executes until the

user chooses the "EXIT Elicitor-Harvester" options from the main menu. Before entering the loop, the Init-

Spec-Tree, Fill-Data-Dict, and Print-Welcome-Message functions are called. Init-Spec-Tree creates a class

called Op-Library that is used to store pure functions5.

*** Welcome to the Elicitor-Harvester! ***

The spec is: #4<Missile - a GOMT-DOMAINTHEORY>
Your Working Specification is: Missile

You will be asked a series of questions about your specification
Type in your responses giving names of domain objects if possible.
If you're not sure of the domain name, enteir one' you think is close.

MAIN MENU

(0) None of these
(1) EXIT Elicitor-Harvester
(2) Specify System INPUTS
(3) Specify System OUTPUTS
(4) Specify INTERNAL UPDATE functions of System
(5) Perform CLEAN-UP Functions
(6) SAVE Sub-Menu
(7) PRINT Specification

Choose the Specification function you want to perform =>

Figure 14 The start up message and Main Menu

When the EH tool starts up with a new specification, the initialization rules named init-eh-ruleset

perform several tasks on the domain objects. The eh-used and eh-pred-used attributes are reset; the connection-

to-class maps are set for GOMT-aggregate-class objects; and duplicate global data types6 are purged from the

AST. The Fill-Data-Dict function will execute only for a new specification that doesn't have a data dictionary

defined yet.

5 Pure functions are operations that simply act on the input arguments and return some value. Pure functions differ from domain operations
in that they don't act on domain attributes. Pure functions are often mathematical functions such as SquareRoot(x), which takes a number
as its input argument and returns the square root of the number.

6 Global data types are stored in the dom-global-types map as DomTypeObj objects. At the time of this research, all data types loaded
through the Z parser were put in the global area. Therefore, data types declared in more than one class would end up as duplicates in the
domain.

46

The interface starts by showing the main menu as shown in Figure 14. Choices (2), (3), and (4) take

the user to the heart of the EH functionality where domain items can be created, modified, and selected for the

specification. Choice (5) helps the user "clean up the specification" by moving constants and data types from

the global level to a private level within a class if desired. Choice (6) brings up the sub menu of save options,

and Choice (7) prints the objects currently selected for use in the specification.

4.4 Specifying Domain Items

Options (2), (3), and (4) are used for specifying the required parts of an application.

• Option (2) allows the user to identify the domain items needed to accommodate new data that is to be

input to the application. Data is usually put into an application through input operations like set-

attribute functions. Option (2) helps the user choose which operations can accept input data and which

attributes are required to store the new data. For example, an input could be the insertion of a new

record into a database.

• Option (3) allows the user to identify the domain items needed to output data from the application to an

output medium such as a report, a screen display, or another application. Output Data is usually

accessed through an operation like a get-attribute function, which reads an attribute or set of values

from a domain object, possibly performs some processing on the data, then outputs the result in some

defined format.

• Option (4) allows the user to identify the domain items needed to support internal updates to the

application. Internal updates refer to changes in the state of the system and usually occur when an event

causes the value of some attribute to be changed. Internal updates do not directly result from input and

do not directly cause an output. However, internal updates are often indirectly related to inputs and

outputs. Consider an application being specified in the SCHOOL domain, for example. The input to

the application may be the insertion of a new student record. The insertion event causes an internal

update to an attribute called total_enrolled_students. This update may in turn trigger a function that

outputs the number of male versus female students now enrolled.

When choice (2), (3), or (4) is selected from the main menu, the function Process-Specs is called.

Process-Specs has one argument of type string called stage, which indicates whether the user wants to specify

an input, output, or some internal update function. Process-specs is designed to loop until the user wants to

return to the main menu. Even though the user may be defining specifications for the input, output, or internals

stage, the actual processing is the same in all cases. During prototyping it was observed that there were very

47

few differences in the way items were specified during different stages, so the decision was made to combine

the processing into one common function. Future study may show it to be more beneficial to separate the

functionality, but for this version of EH, the distinction between stages is only in the user's mind and in the

stage variable that remains for future enhancements. Depending on which choice the user picks from the main

menu, one of the three prompts shown in Figure 15 will be displayed.

Enter one of your desired INPUTS or return key to return to Main Menu

Enter one of your desired OUTPUTS or return key to return to Main Menu

Enter one of your desired INTERNALS or return key to return to Main Menu

Figure 15 Screen Display: User prompts for the name of an input, output, or internal update.

At this point the user can enter the name of a domain item that needs to be included in the

specification. For example, suppose the user is using the CRUISE MISSILE domain and wants the level of the

fuel tank as an output. The input from the keyboard, shown in bold, and the resulting matches from the data

dictionary are shown in Figure 16. In this case, only one match was found for level, namely the fueljevel

attribute in the FuelTank class, and that is the one the user wanted. When the user enters (1) to choose the

correct object, the EH asks the user to indicate the action to be performed on that object. Figure 16 shows the

actions the user can take for a chosen object. The actions include:

1. REJECT - allows the user to back up to the previous prompt if the object was selected in error. No

changes occur in the specification.

2. SELECT - the user can "select" the object for use in the specification. Section 4.4.1 describes the

processing that takes place when items are selected for inclusion in the specification.

3. ADD - the user can decide he wants to create a new object instead of the one shown. Section 4.5

explains how new items can be created and added to the specification AST.

4. MODIFY - the user can make changes to the object, such as renaming it or redefining the data type.

Section 4.4.2 covers the methods used for modifying specification items.

48

Enter one of your desired INPUTS or return key to return to Main Menu
level

(0) None of these
(1) ATTRIBUTE: FuelTank.fuel_level : Real

Enter the number of an object you will want to to use for 'level'=> 1
Object selected

What is your preferred action on the object:
ATTRIBUTE: FuelTank.fuel_level : Real

(1) REJECT: Do not want this object
(2) SELECT: Include this item in the Spec (you will have a chance to modify it)
(3) ADD: I want to create a new object
(4) MODIFY: I want to change this object
Enter your choice of action => :

Figure 16 Screen Display: Choosing objects and the action options.

4.4.1 Selecting Objects for the Specification

When the user chooses to select an object for the specification, the object is passed to the Perform-

Select-Actions function. This function calls Full-Obj-Description, which generates a pretty print description of

the object to be selected. The Full-Obj-Description function is similar to the Obj-Description function

described earlier, but produces a more complete object description for some objects. The user is given a chance

to check the object for errors or possible modifications before finally selecting it, as shown in Figure 17.

ATTRIBUTE: fuel_l evel : Real

(0) None of these
(1) SELECT to use 'as is' in the Specification
(2) MODIFY it befo re SELECTing for the Specificat ion
(3) DO NOT SELECT for use in the Specification

What do yoi. want t o do with this object? =>

Figure 17 Screen Display: Choosing to select an object or modify first.

If the object is acceptable as is, the user chooses (1) and the function Select-Spec-Items is called to set

the eh-used attribute to true for the selected object. In addition to the object selected by the user, the EH

automatically selects all required "supporting objects". Supporting objects are other objects needed in the

specification to completely define the selected object. For example, if an attribute is selected, then the data type

of the attribute should also exist in the specification. The EH decides which other objects are necessary

depending on the type of object being selected. The following rules of thumb are applied when selecting

supporting objects:

49

•

•

•

•

If the selected object is a class (a GOMT-Class7 in the domain AST):

1. Select the ancestor classes through inheritance. Selecting these super-classes (or parent classes) from

which a class is inherited is consistent with the object-oriented concept that all inherited attributes and

methods should be accessible to an instantiated object.

2. Select the aggregate ancestor classes. Selecting the aggregation parent class ensures that if a part of an

aggregate system is selected, then the framework that houses that part is also placed in the

specification. These objects are gathered by using the ancestors-of-class function.

If the selected object is not a class:

1. Select all objects contained in the subtree of the selected object including predicate objects. These

objects are gathered by using the descendants-of-class function.

2. Select the object that is the aggregation parent object in the domain AST (named as the parent-expr

attribute) of the selected object. For example, the parent of the Parameter object of Figure 18 is the

operation object identified as a GOMT-Op object.

3. Select the aggregate ancestor classes. For example, if the an operation in the FuelTank class of the

CRUISE MISSILE domain shown in Figure 10 was selected, the PropulsionSystem class and the

Missile class would be the ancestor class objects selected as supporting objects.

If the selected object is a parameter, select the predicates that belong to the same operation as the

parameter selected. These predicates are the pre-conditions and post-conditions of the operation and will

most likely include the parameter as one of its identifiers.

If the selected object or one of its supporting objects has a data type associated with it (the has-atype map

is defined), select the data type object (a DomTypeObj in the domain AST) as a supporting object. Since

data types are not defined as tree attributes, they are not part of the subtree and thus do not get selected in

the preceding steps.

If the selected object or one of its supporting objects has a class mapped to it through the has-aclass map,

the connection-to-class map, or the has-associative-object map, then select the class object as a supporting

7 A GOMT-Class is an object class defined in the DOM AST that represents a class in the object-orented sense. A class is a self-contained
structure that represents some real-world object. The class contains definitions of attributes that describe the features of the class,
operations describing the actions that can be performed on the class, the valid states of the class, and the events that can cause state
changes in the class.

50

object. This case can occur when a class attribute or an operation parameter is defined as a class or a set of

classes, such asfac : P Faculty.

• If a predicate is selected as a supporting object:

1. Mark the predicate for the specification by setting the eh-pred-used map to True.

2. Find all domain objects represented as identifiers in the predicate. This step is accomplished by calling

the Map-ID-to-Obj function described in 4

3. For each represented object, make a recursive call to the Select-Spec-Items function to mark all its

supporting objects for the specification.

For an example of selecting objects, refer to the attribute fueljevel shown in Figure 17. Besides fueljevel,

other objects selected include FuelTcmk, the class that contains fueljevel; JetPropSys and Missile, the aggregate

ancestors of FuelTcmk; and Real, theDomTypeObj that is the data type of fueljevel.

Generally, when operations are selected to the specification, many supporting objects can also be

selected automatically. The operation subtree is fairly complex, as shown in Figure 18, and several parts of the

subtree are associated with other parts of the AST. For example, a predicate will usually contain identifiers that

are stored as classes, class attributes, or constants elsewhere in the AST. Those identifiers as well as parameters

have data types associated with them that are also stored elsewhere. The method for finding the objects

represented by the predicate identifiers is explained in Section 4.4.1.1. Therefore, by helping the user to select

the operations required for the application being specified, the EH can identify several parts of the domain tree

needed for the specification.

{GOMT-Op}

has-name has-preds has-parameters . has-ops
I I I L

symbol {Predicate} [Parameter] {symbol}

has-type-multiplicity has-name has-datatype

TypeMultiplicity symbol symbol

is-output

boolean

Figure 18 Structure of the Operation Subtree

51

4.4.1.1 Mapping Predicates to Domain Objects

If an operation is selected for the specification, the predicates of the operation are also selected, since

they are part of the subtree, as shown in Figure 18. Predicates selected for the specification provide a rich

opportunity to identify many other domain objects represented by the predicate identifiers that should also be

included in the specification. Consider an operation called CalcPropWt, shown in Figure 19, which is defined

in

OPERATION: CalcPropWt
OUTPUT PARAMETER: prop_wt IS: Real
PREDICATE: prop_wt! = fueltank.tank_weight + jetengine.engine_weight

Figure 19 CalcPropWt: an operation in the CRUISE MISSILE domain

the Propulsion System aggregate class in the CRUISE MISSILE domain. Since the predicate contains identifiers

that refer to the classes FuelTank and JetEngine and the class attributes tank weight and engine_weight, those

objects are also selected for the specification by recursively calling the Select-Spec-Items function for each of

the predicate objects.

The difficulty in finding the domain objects corresponding to the predicate identifiers lies in the fact

that the IDname objects, which store predicate identifiers, do not currently have maps defined to the domain

objects that they represent. Since predicates hold so much domain knowledge, it was important to create a

function called Map-lD-to-Obj that maps IDname objects to the corresponding domain objects. There are many

subtle problems in making the IDname to Obj-Object mapping.

• There is currently no automated type checking performed on predicate identifiers when they are parsed

in. Therefore, the names are not guaranteed to be spelled correctly.

• There can also be attributes in different classes with the same name.

• A predicate can use bound variables like s and c in the predicate:

ms = #{s: Student, c: GradClass\ s e advised? A (S, C) e member _of A c.program ^ DS}

that represent domain objects but whose names could not be directly matched to domain names.

When mapping identifiers from a complex predicate like the one in the third bullet above, it is desirable to

identify the context of each variable so that all variables, including bound variables, can be accounted for and

mapped to the proper domain objects. Bound variables can be used in three types of expression: basic

52

declarations {s:Student), element expression (s e advised?), and component expressions (c.program). These

expression types are represented as predicate subtrees in the Unified-Object model. The bound variables s and

c are stored in the IDname objects in the left branch of the subtrees shown in Figure 20.

baskdedseq
Klatiorall-pKed

buk
i

—\—'
anyl

in

ret

component-expr

identifi«

—}

vai-nacrw-fxpi

^ any

s*cond

twpr v

nsmw

iderttifiei

i
dent \

l'dname

var-name-(xpi

vw

name

iäentifie*

dent

idname

mx-namc-expi

any

expr3

var-name-expr

identifier

~7 V

name
1

dent decoration

input- decoration

dent
I

Figure 20 Predicate AST in Unified-Object Model

When the EH gathers the IDname objects from the predicate AST, it has no way of knowing which identifiers

are bound variables or which objects are represented, so several maps were created, as shown in Figure 21, to

aid in the mapping process. The Map-ID-to-Obj function first sets the ID-wrd map by using the data dictionary

matching rules to find domain objects that perfectly match the names in the predicate.

var id-obj : map(IDname, Obj-Object) = {I|}
var ID-wrd : map(IDname, Aword) = {||}
var is-BasicDecl-of : map(IDname, IDname) = {11}
var is-element-of : map(IDname, IDname) = {||}
var has-component-var : map(IDname, IDname) = {11}
var pred-mapped : map(Predica te, boolean) = {11}

Figure 21 Maps for processing predicates

The function then searches the predicate AST for instances of BasicDeclSeq, ElementOf, and Component-Expr

nodes and sets the is-BasicDecl-of, is-element-of, and has-component-var maps so that each bound variable

identifier is mapped to a name that should be identifiable in the domain. The algorithm to perform the

mappings checks the ancestor nodes of each IDname for a BasicDeclSeq, ElementOf, and Component-Expr

node. If one is found, the IDname is mapped to the other IDname identifier in the subtree. In the predicate

AST of Figure 20 the IDname storing the first s would be mapped to the Student IDname through the is-

BasicDecl-of 'map and the Student IDname would be mapped to the Student object in the domain through the id-

Si

obj map. If any identifier, such as s, is found with an is-BasicDecl-of map defined, then all other identifiers in

the predicate with the same name are mapped to the same domain object, i.e. the Student object.

If there are no BasicDeclSeq nodes, but an ElementOf 'node is found, the bound variable will represent

an element in some set of objects. In this case, the bound variable will be mapped to the same GOMT-Class

object pointed at by the id-obj map of the associated IDname. For example, if the declaration s : Student

was not present in the predicate, the expression s e advised would cause the advised IDname to be

mapped through the id-obj map to the input parameter advised, which is declared as a set of Student. Then s

would be mapped to the has-aclass attribute that identifies the GOMT-class, which is the type of the advised

parameter. In the end, s is mapped to the Student object through s's id-obj map.

Bound variables found in component expressions are assumed to have been previously identified in a

basic declaration or element-of expression, and therefore should have already been mapped. In the case where a

predicate contains ambiguous identifiers, they should be prefixed via dot notation with the GOMT-class name, a

connection name, or a bound variable. If the ambiguous identifier is prefixed with a bound variable, the

algorithm sets the ambiguous variable's id-obj to the class attribute of the same name that is contained in the

GOMT-class mapped to the bound variable. If the algorithm fails to map all ambiguous variables in the

predicate, the user is finally asked to enter the proper object.

4.4.2 Modifying Objects

There will be times when the application engineer wants to change some item while defining the

specification. The application engineer may want to tighten constraints or complete constant or data types

definitions that were left incomplete in the domain model. In most cases, before a domain item is selected for

use in the specification, a description of the item is displayed and the user is given the chance to modify the

item. Of course the ability to modify given parts of the domain can be restricted by the knowledge base

administrator based on the requirements of Chapter 3.

The menus shown in Figure 16 and Figure 17 have an option for making modifications to specification

items. Before finally selecting items for use in a specification, the user is given the opportunity to make

changes if necessary. The allowable changes are defined in Chapter 3. In thefueljevel example of Figure 17,

if the selected object is not specified the way the application engineer wants it, he has the choice to modify the

object before adding it to the specification AST. If the modify option is chosen, the object is passed to the

54

Perform-Modify-Actions function. The function first creates a database instance for the modification rules to

use. The database is defined by the EH-Object of Figure 22 and the subtype called Mod-Object shown in Figure

23.

% superclass of Add-object and Mod-object
var EH-Object
var has-obj-object
var has-stage
var has-idnames

object-class subtype-of GOMT-Aggregate-Class
map(EH-Object, Obj-Object) = {11}
map(EH-Object, string) = {11}
map(EH-Object, set(IdName))
computed-using has-idnames(x) = {}

Figure 22 EH-Object database declaration

The object to be modified is pointed to by the has-obj-object map, and the Mod-Object database is

passed to the modification rules, called mod-obj-rules, by the forward reasoning preorder-transform function.

The first time the Mod-Object passes through the rules, the set of rules check the attributes of the object under

modification that are allowed to be changed and append an appropriate string to the options map sequence.

var Mod-Object object-class subtype-of EH-Object

var prev-name map(Mod-Object, symbol) = {1 1)
var options map(Mod-Object, seq(string))

computed-using options(x) = []
var chosen-option map(Mod-Obj ect, string) = {1 1}
var List-mod-name? map(Mod-Object, boolean) = {||}

var List-Mod-Avalue? map(Mod-Object, boolean) = {11}
var List-Mod-Datatype? map(Mod-Object, boolean) = { 1 1 }
var List-Mod-ClassType? map(Mod-Object, boolean) = {||}

var List-Mod-TypeMult? map(Mod-Object, boolean) = {||}

var List-Mod-Param? map(Mod-Object, boolean) = {11}
var List-Mod-Pred? map(Mod-Object, boolean) = {11}
var List-Mod-class? map(Mod-Object, boolean) = {||}

var List-Mod-TypeMultiplicity? map (Mod-Object, boolean) = {||}

var List-Mod-Attr? map(Mod-Object, boolean) = {11}
var List-Mod-Connection? map(Mod-Object, boolean) = { 1 1 }
var List-Mod-Connection-Class? map(Mod-Object, boolean) = {||}

var List-Mod-Connection-Mult? map(Mod-Object, boolean) = {||}

var List-Mod-Assoc? map(Mod-Object, boolean) = {||}

var List-Mod-Constant? map(Mod-Object, boolean) = {11}
var List-Mod-Operation? map(Mod-Object, boolean) = {1 1}

var List-Add-Operation? : map(Mod-Object, boolean) = { 1 1 }
var List-Add-Datatype? : map(Mod-Object, boolean) = {||}

var List-Add-Param? : map(Mod-Object, boolean) = {11}
var List-Add-Pred? : map(Mod-Object, boolean) = {11}
var List-Add-Attr? : map(Mod-Object, boolean) = {11}
var List-Add-Connection? : map(Mod-Object, boolean) = {111
var List-Add-Assoc? : map(Mod-Object, boolean) = {11}

var List-Del-Operation? : map(Mod-Object, boolean) = { 1 1 }
var List-Del-Param? : map(Mod-Object, boolean) = { 1 1 }
var List-Del-Pred? : map(Mod-Object, boolean) = {11}

var mod-done? : map(Mod-Object, boolean) = { 1 1 }
% flag for data-dictionary upd ate when name changed
var mod-name-done? : map(Mod-Object, boolean; = \ 1 1 }

Figure 23 Mod-Object database declaration

55

Each rule that adds a string to the options map sets the corresponding boolean map (for example, list-mod-

paraml) to true, which prevents that rule from firing again. The list of strings held in options is passed to the

OPERATION: CalcPropWt
OUTPUT PARAMETER: prop_wt IS: Real
PREDICATE: prop_wt! = fueltank.wieght + jetengine.engine_weight

(0) None of these
(1) Change Name
(2) Modify Parameter
(3) Modify Predicate
(4) Add Parameter
(5) Add Predicate
(6) Delete Parameter
(7) Delete Predicate

How would you like to modify 'CalcPropWt'? =>

Figure 24 Screen Display: Modification options list

Print-String-List to be displayed for the user. Figure 24 shows a screen display of the possible modifications

that can be made to the operation CalcPropWt, and the prompt asking for the user to input a choice.

The string corresponding to the number chosen by the user (e.g. "Modify Parameter") is set as the

value in the chosen-option map of Mod-Object. If the user choice was not (0), the preorder-transform function

is called again to check the mod-obj-rules. The rule looking for the string held in chosen-option will fire and

call a function to perform the appropriate actions for the option chosen to be modified. For example, if the user

chooses to "Modify Parameter", the rule Modify-Parameter-rule would fire causing the Modify-F'ammeter

function to execute. If the option chosen relates to a domain object that has a subtree, i.e. is not a leaf node,

such as a parameter, the function will recursively call P erform-Modify-Actions so the user can pick the part of

the chosen option to modify. If the chosen option does relate to a leaf node, such as the name or value of a class

attribute like fuellevel, the appropriate function will control the user interface to request needed information

from the user. Some cases may be as simple as printing out

Enter the new name for ,fuel_level' =>

and reading in the string, but other cases may lead into much more involved interactions.

Consider an example where the application engineer wants to change the data type of fuellevel from

type Real to a more specific data type called FUEL_LEVEL_TYPE that has enumerated values. Figure 25

shows a series of interactions between the EH and the user. After the prompt How would you like to

modify ' fuel_level' ? =>, the Modify-Datatype function takes control and searches for predicates that

56

contain fueljevel as an identifier. The function gathers the set of all data types of the named identifiers in the

predicates and prints out that list of data types for the user to view. The reason for this first subset of data types

is to minimize the amount of information given to the user by some intelligent heuristic. Predicates often

contain identifiers of similar data type, especially if the predicate defines a mathematical calculation. If the

first list of data types doesn't contain the desired choice, the entire list of domain data types is printed out. This

list could be quite long in a large domain; thus the use of better heuristics in these situations is desirable and an

open area for further study.

What is your preferred action on the object:
ATTRIBUTE: FuelTank.fuel_level : Real

(1) REJECT: Do not want this object
(2) SELECT: Include this item in the Spec (you will have a chance to modify it)
(3) ADD: I want to create a new object
(4) MODIFY: I want to change this object
Enter your choice of action => :2

ATTRIBUTE: fuel_level : Real

(0) None of these
(1) SELECT to use 'as is' in the Specification
(2) MODIFY it before SELECTing for the Specification
(3) DO NOT SELECT for use in the Specification

What do you want to do with this object? => 2

ATTRIBUTE: fuel_level : Real

(0) None of these
(1) Change Name
(2) Modify Datatype

How would you like to modify 'fuel_level'? => 2

(0) None of these '
(1) DATATYPE: Real, VALUES:

Choose the new datatype for 'fuel_level: Real' => 0

(0) None of these
(1) DATATYPE: Boolean, VALUES:
(2) DATATYPE: Digit, VALUES:
(3) DATATYPE: Char, VALUES:
(4) DATATYPE: Integer, VALUES:
(5) DATATYPE: Nat_l, VALUES:
(6) DATATYPE: Nat, VALUES:
(7) DATATYPE: AF_MODELS, VALUES:
(8) DATATYPE: KILOMETER, VALUES:
(9) DATATYPE: KPH, VALUES:
(10) DATATYPE: RADIAN1, VALUES:
(11) DATATYPE: RADIAN2, VALUES:
(12) DATATYPE: DEGREE, VALUES:
(13) DATATYPE: SIMTIME, VALUES:
(14) DATATYPE: MODELJTYPE, VALUES:
(15) DATATYPE: SEQ_Char, VALUES:

Choose the new datatype for 'fuel_level: Real' => 0

Must Create type for 'fuel_level'

Figure 25 Screen Display: Modifying the data type of an attribute

In this example, the user still doesn't see the data type he wants, so he chooses (0) again.

57

At this point, the EH knows the data type does not exist and must be created. A new database called Add-

Object is initialized and passed to the function Perf orm-Add-Actions, which is responsible for creating new

specification items and adding them to the AST. The method for creating new objects is discussed in the

following sections.

After the second pass through the mod-obj-rules, the mod-name-done? map of the Mod-Object

database is checked to see whether the object name was changed. If so, the function Update-Data-Element-

Name is called to update the data dictionary with the new name. Finally, the new object description is printed

out by calling the Full-Obj-Description function; and the modified object is passed from the Perform-Modify-

Actions function.

4.5 Adding New Objects

There are many cases when an application engineer may want to create new items for the specification

that were not defined in the domain. A new application may require operations to be defined at a lower level

than were needed in the domain. It may be beneficial to create more specific data types to define constraints on

certain data. New constants may make the specification more clear and understandable. Associations between

objects may make sense for specific applications, but not for the overall domain. After new items are created,

they must be grafted onto the existing specification AST in the correct location. This section describes the

techniques used for creating new specification items and adding them to the specification tree.

4.5.1 Creating Objects Using Backward Reasoning

Adding items to the specification tree is a good situation for using backward reasoning, because very

little is known about the new item to be created. A great deal of information already exists in the domain tree

that can be used to infer much of the data needed when adding new items to the specification. The process of

adding a new operation to a specification can be used as a good example of how backward reasoning can be

applied. All that is initially known about a new operation is the name of an input or output, which the user has

typed in. The input and output parameters, data types, pre-conditions, post-conditions, and name are needed to

completely define the new operation.

The EH guides the user through the process of defining the operation by first asking for the post-

conditions (predicates) that define the output of the operation (most operations will have a single output, which

58

essentially makes them a function). Once a predicate is parsed, the EH can search through the specification

AST for information relating to the predicate. For example, the EH may search for objects whose names match

the identifiers in the predicate, data types or class types of those identifiers, classes to which the identifiers

belong, and identifiers that may be candidates for input parameters. Of course the user must make some choices

and validate the choices made by the EH, but by using backward chaining, the EH restricts the number of

choices to a manageable level for the user and guides the user through the process one step at a time.

The backward reasoning process requires three main components, which are discussed in the following

sections: a database to store information discovered during the process, a set of rules that access and update the

database, and a reasoning engine that controls the execution of the rules.

4.5.2 The Backward Chaining R ule Base

The rules are implemented as REFINE rule constructs. The rules used for the backward chaining are

designed so that each rule only solves a small piece of the problem. The rules are designed to use the recursive

nature of the backward chaining algorithm to incrementally add information to the database in a certain order so

as to get the most use out of each piece of data acquired. The backward reasoning engine works its way through

applicable rules to achieve a goal. Figure 26 shows the REFINE code of a rule and the AST structure used to

store the rule. The engine tries to fire rules that have the current goal in the consequent by making all the

rule-op

binding

rule Modify-Name-Rule(X: object)
chosen-option(X) = "Change Name" S mod-done?(X)
—> Modify-Name(X) & mod-done?(X) = True

S mod-name-done?(X) = True

ruleexpr

True

rule-impl-op

and-op

consequent

conjuncts conjuncts

and-op

equal-op

argl arg2

conjuncts conjuncts conjuncts

not-equal-op

operation literal-string-op

X
/ \

arg2

operation

operation

aps
-1-

aps

true-op

/
aps

equal-op equal-op

binding-ref

/
argl

\
ara2

1 \
argl arg 2

operation true-op operation true-op

I 1

binding-ref binding-ref binding-ref binding-ref

Figure 26 AST created by REFINE to store a rule

59

premises true. For the rule in the figure to be chosen as a candidate rule, the goal would be to find a value for

mod-done?. Once the applicable rules are found, the engine checks the premises to see if they are defined by

the database.

In Figure 26, the premises are chosen-option (X) = "Change Name" and mod-done? (X)

~= True and are stored as the equal-op and not-equal-op subtrees below the antecedent map in the AST. The

database {Mod-Object in this example) defines the maps chosen-option and mod-done?, which map to a literal

string and a boolean operator values respectively. If one of these maps is undefined (not yet given a value), the

engine makes the undefined premise a subgoal and recurses to look for other rules that may be able to derive

that subgoal and so on until a rule is found where all premises are satisfied. For a premise to be satisfied the

corresponding database map must have a value defined and the value must cause the premise to be true. In this

example, chosen-value must map to the string "Change Name" and mod-done? must map to false to make both

premises evaluate to true. When all premises of a rule are satisfied, the rule can execute the consequent portion

of the rule, which usually includes a call to a function that performs some type of database update action. In

this example, the rule would call the function Modify-Name. These functions use information harvested from

the specification AST and user inputs to make updates to the database. The updates to the database often cause

premises of other rules to be satisfied. When a rule fires, the engine returns to the previous unfinished rule, as

expected from a recursive function, to see if any database updates have satisfied its premises.

4.5.2.1 The Backward Chaining Datab ase

The database used by the backward reasoning engine, a subtype of EH-Object called Add-Object, is

shown in Figure 27. The state of the database changes after each rule execution until it contains all data needed

to complete the final goal or return a message indicating failure to achieve the goal. The goal of the backward

reasoning process is to create a new specification item such as an operation or data type. The engine usually

works through several subgoals in the process of solving the main goal. For example, before creating a new

operation, the pre-conditions, post-conditions, input and output parameters, and operation name must all be

created. Many of these subgoals are broken down into still smaller subgoals. Each time a rule is fired and a

subgoal is achieved, a map in the database is given a value.

For example, a subgoal may be to have a predicate defined for the post-condition of an operation. A

goal called predicate-retrieved? matches the consequent in the rule Retrieve-Predicate-Rule and since all the

60

premises of Retrieve-Predicate-Rule are satisfied, the rule fires. When the rule fires, it calls the function

Retrieve-Predicate, which parses in the predicate string typed in by the user. The new predicate is placed into

the has-apred map of the database; and the predicate-retrieved? map is set to true. As the subgoals are

object-class subtype-of EH-Object
map(Add-Object, string) = {I I}

string) = {I I}
symbol) = {|1}

var Add-Object
var add-obj-name
var has-stage
var is-class-type

var new-item-names

var has-postcond
var has-preconds

var has-inparams

var has-outparam
var has-apred
var has-set-of-types

var has-set-of-classes

var var-list

var outparam-name
var inparam-names

var has-goal
var goal-list

var aword-seq

var derived-from

var DomConstant-done?
var predicate-retrieved?
var idnames-retrieved?
var derived-types-retrieved?
var derived-classes-retrieved?
var outparam-name-retrieved?
var unmatched-vars-retrieved?
var pred-vars-identified?
var Inparams-chosen?
var Inparams-done?
var aword-seq-done?
var derived-from-done?
var type-chosen?
var postcond-done?
var precond-done?
var Predicate-done?
var GOMT-Op-done?
var Outparam-done?
var Inparam-done?
var has-class-name?
var has-name?

map(Add-Obj ect
map(Add-obj ect

map(Add-obj
computed-u

map(Add-Obj
map(Add-Obj
computed-us
map(Add-Obj
computed-us
map(Add-Obj
map(Add-Obj
map(Add-Obj
computed-us
map(Add-Obj
computed-us
map(Add-obj
computed-us
map(Add-Obj
map(Add-obj
computed-us
map(Add-Obj
map(Add-obj
computed-us
map(Add-Obj
computed-us
map(Add-Obj
computed-us
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj
map(Add-Obj

ect
sing
ect
ect
ing
ect
ing
ect
ect
ect
ing
ect
ing
ect
ing
ect
ect
ing
ect
ect
ing
ect
ing
ect
ing
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect
ect

set(string))
new-item-names(x) =
Predicate) = {|I}
set(Predicate))

has-preconds(x) = {}
set(Parameter))

has-inparams(x) = {}
Parameter) = {||}
Predicate) = {I I}
set(DomTypeObj))

has-set-of-types(x) =
set(GOMT-Class))

has-set-of-classes(x)
seq(string))

var-list(x) = []
symbol) = {|1}
set(symbol))

inparam-names(x)
symbol) = (I|}
seq(symbol))

goal-list(x) = []
seq(Aword))

aword-seq(x) = []
set(Obj-Object))

{}

(}

{}

{}

derived-from
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =
boolean) =

{}

Figure 27 Add-Object database declaration

61

satisfied, database values are filled in until all values needed for the original goal are present and the new

specification item can be added to the AST.

4.5.2.2 Backward Reasoning Algorithm

The backward chaining engine designed was modeled after the standard algorithm found on pages 96-

97 of [7]. Since REFINE does not support backward chaining, the algorithm had to be built manually and

adapted to the REFINE language. Backward chaining requires the ability to access the premises and values

coded into the REFINE rules, which REFINE parses into an AST as shown in Figure 26.

Several functions were written to manipulate the rule subtree to access the values stored in it. The algorithm is

shown in Figure 28.

GLOBALS: goal list, rule list, database object

make list of top-level goals
loop while goal list not empty

SATISFY-GOALO
set current goal to first goal
make list of candidate rules for current goal
goal satisfied = False
loop while goal not satisfied by rule or candidate rule list empty

set current candidate to first candidate
make list of premises of current candidate
premise satisfied = true
loop while premise list not empty and premise satisfied

set current premise to first premise
if premise parameter defined in database then

if premise parameter = database value then
premise satisfied = True
delete first premise from list

else premise satisfied = False
else

if rules exist to derive premise then
prepend premise argument to goal list as a subgoal
recurse to SATISFY-GOAL for new goal

else
ask user for value of premise parameter
add value to the database

end loop
if premise satisfied

fire rule
goal satisfied = True

else
delete first rule from candidate list

end loop
empty list of candidate rules
delete first goal from goal list

END SATISFY-GOAL
end loop
return database

Figure 28 Algorithm for the backward reasoning engine

62

4.5.3 Examples of Creating Obj ects

The next two sections take the reader through the process of creating an example operation and data

type using the CRUISE MISSILE domain. The process for creating new domain items varies from the

approach used for modification. Recall how the modification method created a new database for each object

while recursively calling P erform-Modify-Actions for each lower level object until a leaf node was reached.

Each object was acted upon independent of the parent and sibling objects. When creating a new domain item

such as an operation, child objects often need to know information about other child objects, even though they

have not been created yet. For instance, a parameter should appear in a predicate, and the predicates need to

check parameter data types, creating a sort of circular dependence. Also, the operation cannot be added to the

specification tree until the reasoning engine is done creating the entire operation because subtree objects are

generally processed from the bottom up. Therefore, the creation process was designed to operate on the entire

item as a whole instead of the sub-objects individually. The Add-Object database stores data for the child

objects temporally until the entire item is ready to be built and added to the specification. Sometimes while

processing one item, it is discovered that another item needs to be created to support the current item. For

example, an operation predicate may contain a call to another operation. In this case, the current item process is

suspended and Perform-Add-Actions is called recursively to create the other item and return to the original upon

completion.

4.5.3.1 Creating an Operation

Assuming the CRUISE MISSILE domain is loaded and the user has selected choice (3) from the main

menu (Specify system outputs), the EH calls the function Process-Specs, which prints out the first prompt

shown in Figure 29.

When the user enters "Prop_Wt" (propulsion system weight), the Get-Phrase function reads in the

string, creates an Aword structure for PropWt, and accesses the data dictionary through the Match-Word

function, which makes four matches to domain objects. Control passes to the function Get-Actions, which finds

out whether the user wants to perform a SELECT, ADD, or MODIFY action on the object chosen. Get-Actions

calls the function Choose-Objects, which prints out the matched objects using the Print-Obj-List function. The

JetPropulsionSys aggregate class does have an attribute called prop_weight, but for this example, assume the

63

Enter one of your desired OUTPUTS or return key to return to Main Menu

Prop_Wt

(0) None of these
(1) CLASS: JetPropulsionSys

HAS-ATTRIBUTES: prop_weight; prop_fuel;
(2) CONNECTION: Missile.propsys : JetPropulsionSys
(3) ATTRIBUTE: JetPropulsionSys.prop_fuel : Real
(4) ATTRIBUTE: JetPropulsionSys.prop_weight : Real

Enter the number of an object you will want to to use for 'Prop_Wt'=> 0
No object selected would you like to create one? y

(0) None of these
(1) A new Primitive Class
(2) A new Aggregate Class
(3) A new Attribute of an existing class
(4) An output Operation
(5) An input Operation
(6) A new Data Type
(7) A new Constant

What kind of object should 'Prop_Wt' be created as? 4

Figure 29 Screen Display: Identifying a new operation

user wants to define an operation to calculate the propulsion weight from other attributes. When the user enters

(0), the Get-Actions function has no objects to work with, so it asks if the user wants to create one. When the

user enters 'y' for yes, a Selected-Obj object is created with its has-action map set to ADD to indicate the desire

to create a new object; and Selected-Obj is added to the has-sel-objs map of the Aword structure. Control then

returns to Process-Specs where the has-actions map is checked. The ADD value causes Perform-Add-Actions

function to be called, which is the main driving function for adding new specifications. Perform-Add-Actions

takes as its argument an Add-Object initialized by the calling function. The calling function will fill in whatever

values are known when creating the Add-Object database. In this example only the add-obj-name ("PropWt")

and the stage ("OUTPUT") are initially defined. The EH doesn't know what the user wants to create, so the

function Get-Add-Object-Type is called which prints out the menu shown in Figure 29 along with a prompt.

The user enters '4', which sets the is-class-type map to "GOMT-Op" and the has-goal map to 'GOMT-Op-

done?8 in the database. The Add-Object is then passed to the backward reasoning engine with a function call to

Perform-Backward-Chaining.

8 REFINE uses a data type called a symbol for most object names and other identifiers. Symbols are generally case insensitive and are
identified by placing a tick mark in front of the name.

64

rule Create-Output-GOMT-Op-Rule(X: object)
has-goal(X) = 'GOMT-Op-done? & has-stage(X) = "OUTPUT" &
Postcond-done?(X) = True & Outparam-done?(X) = True &
Precond-done?(X) = True & Inparams-done?(X) = True

—> GOMT-Op-done?(X) = True & Create-GOMT-Op(X)

Figure 30 Sample rule used in the backward reasoning process

When the reasoning engine searches for rules with a consequent expression matching the goal 'GOMT-

Op-done?, it finds Create-Output-GOMT-Op-Rule shown in Figure 30. As the reasoning engine parses through

the premises, it finds that the has-goal and has-stage premises are already satisfied in the database, however,

Postcond-done?, Outparam-done?, Precond-done?, and Inparams-done? are undefined and become a series of

subgoals, which must be satisfied before this rule can execute. Each subgoal recursively chains through several

rules, which in essence break down a large task into several smaller manageable subtasks. The first subtask in

this example is to parse in a post-condition predicate, which the user types in using Z notation, as shown Figure

31, and place it in the has-apred map.

Return key to quit this action

Enter a Post Condition for Prop_Wt
=> : prop_wt! = fueltank.fuel_weight + jetengine.engine_weight

(0)

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)
(9)
(10

(11
(12

(13

None of these
CLASS: FuelTank

HAS-ATTRIBOTES: tank_sim_time; input_flow_rate; output_flow_rate;

fuel_level; capacity; tank_weight; fuel_density;

fuel_tank_weight;
CONNECTION: JetPropulsionSys.fueltank : FuelTank

ATTRIBUTE: JetEngine.current_fuel_flow_rate : Real

ATTRIBUTE: JetEngine.engine_weight : Real
ATTRIBUTE: FuelTank.fuel_tank_weight : Real

ATTRIBUTE: FuelTank.fuel_density : Real
ATTRIBUTE: FuelTank.tank_weight : Real
ATTRIBUTE: FuelTank.fuel_level : FUEL_LEVEL_TYPE

ATTRIBUTE: JetPropulsionSys.prop_weight : Real

) ATTRIBUTE: Airframe.attached_weight : Real
) ATTRIBUTE: Airframe.airframe_weight : Real

) OPERATION: CalcTotalWeight
HAS-PARAMETERS: fuel_weight; fuel_tank_weight;

) OPERATION: DeterinineFuelWeight
HAS-PARAMETERS: fuel_weight;

Enter the number of an object you will want to to use for 'fuel_weight'=> 5

Figure 31 Screen Display: Defining a post-condition

Several subtasks then process the post-condition as follows:

1. Place the set of IDnames found in the predicate into the has-idnames map.

65

2. Check predicate variables for the decorations ', ?, !, which indicate a final variable9, an input

parameter, and an output parameter respectively, then set the maps fmalparam-names, inparam-names,

and outparam-name accordingly.

3. Identify the output parameter in the post-condition if not already found in previous step.

4. Create a sequence of Aword structures, one for each IDname in the predicate, to help search the data

dictionary for matching objects. For each IDname, have the user identify the proper domain object to

match the predicate identifier. The spelling of the predicate identifier will be changed to that of the

matched domain object. As the screen display of Figure 31 shows, the user selected option (5), which

means the identifier originally typed in as fuel_weight will be changed to fuel_tank_weight in the

predicate

5. Store the names of all predicate identifiers not matched to a domain object in step #4. These identifiers

may be input parameters or the name of some other object that needs to be created.

6. Print out the list of unmatched predicate identifiers and prompt the user to identify those that are input

parameters. For an example, assume the user thought a function called CalcTankWeight calculated the

current weight of the fuel tank, but this function is not in the domain. The screen display in Figure 32

shows the user rejecting CalcTankWeight as an input parameter.

7. For each input parameter identified, ask the user to choose the data type and multiplicity (single, set or

sequence), create a Parameter object, and store it in the database.

8. Print out the list of unmatched predicate identifiers and ask the user if they are objects that need to be

created as shown in Figure 32. For each identifier chosen, initialize a new Add-Object database and

pass it to the function Perform-Add-Actions to create the new item.

9. Gather all predicate variables that have been matched to domain objects into a set.

10. Gather the data types from the set formed in step #9 into a set of types.

11. Gather into a set of GOMT-Classes the data types that are classes of the set from step #9.

12. Add the predicate in the has-apred map to the set of post-conditions in the has-postconds map. Ask the

user if there are more post-conditions. If "yes", then reset the has-goal to ' Postcond-done? and the

other maps for the post-condition rules to undefined, which will cause the post-condition rules to repeat

for the next post-condition.

' A predicate identifier marked with a final decoration indicates a class attribute that is changed by the function as a side effect.

66

13. Ask the user to choose the data type and multiplicity for the output parameter.

14. Create Parameter object for the output parameter and place it in the has-outparams map.

Next, the pre-conditions are processed in generally the same way as post-conditions except the output parameter

is not dealt with. New input parameters identified during the pre-condition processing are handled as in step #7.

Finally the Create-GOMT-Op-Rule premises are all satisfied and the Create-GOMT-Op function is called,

which gets the operation name from the user, creates a GOMT-Op object and places it in the has-obj-object map

of the database.

(0) None of these
(1) CalcTankWeight

Choose the number of an identifier that should be an input parameter => 0

(0) None of these
(1) CalcTankWeight

Do any of these unidentified predicate variables need to be created? => 1

Figure 32 Screen Display: Handling unidentified predicate variables

4.5.3.2 Creating a Data Type

The DomTypeObj is another item in the domain model that has a fairly complex subtree. A new data

type can be created as a new base type or derived from an existing base type by restricting its range with some

type of constraint. The call to create an item can come during a modify process as seen in Figure 25. Figure 33

continues the example at the point where the Modify-Datatype function calls Perform-Add-Actions to create the

new data type. The following sub-tasks are performed by the backward reasoning engine and the applicable

rules:

1. Ask the user for the name of the new data type.

2. Display a list of domain data types. If the user chooses (0) the rule for creating a DomBaseType object

will be accessed; if the user chooses one of the existing data types, the rule for creating a DomDerType

will guide the user through creating a new derived type.

3. In this example, the user chooses to create a new base type and is asked if it will be an enumerated type.

The user enters 'y' for yes. If a derived type was to be created, the user would be asked to input the

constraint predicate and would be asked if the data type was to be a set or sequence.

67

Must Create type for 'fuel_level'

Enter the name of the new type: FUEL_LEVEL_TYPE

(0) None of these
(1) DATATYPE: SEQ_Char, VALUES:
(2) DATATYPE: Real, VALUES:
(3) DATATYPE: Boolean, VALUES:
(4) DATATYPE: Digit, VALUES:
(5) DATATYPE: Char, VALUES:
(6) DATATYPE: Integer, VALUES:
(7) DATATYPE: Nat_l, VALUES:
(8) DATATYPE: Nat, VALUES:
(9) DATATYPE: MODELJTYPE, VALUES:
(10) DATATYPE: SIMTIME, VALUES:
(11) DATATYPE: DEGREE, VALUES:
(12) DATATYPE: RADIAN2, VALUES:
(13) DATATYPE: RADIAN1, VALUES:
(14) DATATYPE: KPH, VALUES:
(15) DATATYPE: KILOMETER, VALUES:
(16) DATATYPE: AF_MODELS, VALUES:

Will 'FUEL_LEVEL_TYPE' be derived from (subset of) one of the above types?
Choose which one or (0) to create new Base Type => 0

Is this new type 'FUEL_LEVEL_TYPE' an enumerated type? => y

Enter one of the enumerated values or return when done =>
Enter one of the enumerated values or return when done =>
Enter one of the enumerated values or return when done =>
Enter one of the enumerated values or return when done =>
Enter one of the enumerated values or return when done =>
Enter one of the enumerated values or return when done =>

EMPTY
QUARTER
HALF
THREE_QUARTER
FULL

Do you want to enter synonyms for 'FUEL_LEVEL_TYPE'? n

DATATYPE: FUEL_LEVEL_TYPE VALUES: EMPTY QUARTER HALF THREE_QUARTER FULL

(0) None of these
(1) SELECT to use 'as is1 in the Specification
(2) MODIFY it before SELECTing for the Specification
(3) DO NOT SELECT for use in the Specification

What do you want to do with this object? => 1

OBJECT MODIFIED NEW DESCRIPTION IS:

ATTRIBUTE: fuel level : FUEL LEVEL TYPE

Figure 33 Screen Display: Creating a data type

4. The tool iterates through the list of enumerated values, placing each one entered into the type-values

map.

5. A new DomBaseType or DomDerType is created and placed into the has-obj-object map.

6. The Add-Object database is returned to the Perform-Add-Actions function for further processing.

68

4.5.4 Adding New Objects to th e Specification

After the backward chaining engine returns the database to the Perform-Add-Actions function, the Add-

Obj-To-Tree function is called to find the proper place in the specification AST for the new item. If the new

item is an operation, the function Add-GOMT-op-To-Tree is called to find the GOMT-Class that should store

the new operation. This function tries to infer the proper class for the operation by mapping its predicates via

the map-ID-to-Object function, described earlier, and getting the set of GOMT-Classes that hold the objects

mapped to the predicate identifiers. If only one class is found, the operation is placed there. If no classes are

found, it must be a pure operation and is placed into the Op-Library class. If more than one class is represented

in the operation predicates, a complex while loop finds the lowest level aggregate class that includes all classes

represented in the operation predicates. If all attempts to place the operation fail, the user is asked to choose the

class.

New data types are simply added to the set of domain global types, and GOMT-Classes are added to

the has-primitive-classes or has-aggregate-classes maps as appropriate. If a new item is the result of a

modification action, the parent object that gets the new item is generally known and is identified in the has-

parent-objs map of the Add-Object and can therefore be easily added to the AST below the parent object. If the

new item created was a predicate by itself, which could happen when modifying the predicate of an operation,

the predicate object is returned to the calling function and does not pass through the Add-Obj-To Tree function.

Except for predicates, the data dictionary is updated with the names of the objects in the subtree of the

new item with a call to the Add-to-Data-Dict function. While in Add-to-Data-Dict, the user is asked if he wants

to enter synonyms for the new objects, as shown in Figure 33. Finally, Per form-Select-Actions is called, which

displays the new item on screen and asks the user if the new item should be selected for the specification or

modified first, again shown in Figure 33.

4.6 Viewing the Specification

By choosing choice (7) from the main menu, the user can view the objects currently selected for the

specification. The Print-the-Spec function is called to print the objects with the eh-used flag set to true. First

the global data types are printed, then the global constants, followed by aggregate classes and primitive classes,

and finally associations. The Full-Selected-Obj-Description function formats the object descriptions into

69

strings that are printed by the Print-the-Spec function. Figure 34 shows a printout of the specification after the

example CalcPropWt function was created and added to the specification.

SELECTED PARTS FOR CURRENT SPECIFICATION

DATATYPE: Real
DATATYPE: FUEL_LEVEL_TYPE VALUES: EMPTY QUARTER HALF THREE_QUARTER FULL

AGGREGATE CLASS: JetPropulsionSys IS CONCRETE CLASS
CONNECTION: fueltank IS EXACTLY ONE 'FuelTank'
CONNECTION: jetengine IS EXACTLY ONE 'JetEngine'
OPERATION: CalcPropWt

OUTPUT PARAMETER: prop_wt : Real
PREDICATE: prop_wt ! =fueltank.tank_weight + jetengine.engine_weight

PRIMITIVE CLASS: FuelTank IS CONCRETE CLASS
ATTRIBUTE: fuel_level : FUEL_LEVEL_TYPE
ATTRIBUTE: tank_weight : Real

PRIMITIVE CLASS: JetEngine IS CONCRETE CLASS
ATTRIBUTE: engine_weight : Real

Figure 34 Screen Display: A view of the selected specification in pretty print format

4.7 Saving the Specification

Choice (6) on the main menu takes the user to a sub menu with three options as shown in Figure 35.

Choices (1) and (2) save the specification AST to a POB (Persistent Object Base) which can be loaded back into

memory in a later REFINE session. The user is asked to enter a name for the POB file and the REFINE

function pob-dump-file is called to perform the actual save.

(0) None of these
(1) Save 'In-Work' Speci fication to POB file
(2) Save Final (Cl eaned- up) Speci fication to POB file
(3) Save Text Desc ription of Spec ification to fil e

Cho Dse the Save function you want to perform =>

Figure 35 Screen Display: The Save sub menu.

Choice (1) saves all unmodified objects from the original domain AST plus any new or modified items

resulting from EH processing. This choice allows the user to save work in progress and return later to continue

working on the specification where he left off. Before saving the file, the user is asked to give the specification

a name, which is placed in the spec-name map of the GOMT-DomainTheory object. The next time the

specification is loaded back into REFINE and passed to EH, the Init-Spec-Tree function checks the spec-name.

70

If the spec-name is defined, some initialization functions, such as deleting duplicate types, can be skipped

because they were done on the initial run.

Choice (2) is used when the user is confident the application has been completely specified and wants

to keep only the selected objects without the rest of the unselected domain objects. Before saving the

specification to the POB file, a function called Purge-Spec deletes unused objects from the AST and removes

the data dictionary subtree. This save should be chosen only after the clean-up functions have been run on the

specification to ensure consistency. The specification AST resulting from the final save would then become the

input to the design phase of development.

Choice (3) pretty prints the selected specification to a text file instead of to the screen.

4.8 Design Summary

This design chapter discussed the details of integrating the various parts of the EH tool. The AI

techniques and algorithms used to make intelligent decisions were described, and several screen displays were

shown to give the reader a feel for the user interface and the flow of the process. Chapter 5 discusses the

functionality actually implemented, some problems encountered during implementation, and the methods used

to evaluate the tool.

71

5 Implementation and Evaluation

This chapter describes the progress made during implementation and several issues that had to be dealt

with. The method used for testing the EH and evaluation of its usefulness is also discussed.

5.1 EH Functionality Impleme nted

Not all EH requirements outlined on Chapter 3 were implemented in this version due to time

constraints. Data types and operations have been particularly hard to define when working with the KBSE

domain model because they contain predicates that can be very complex. For this reason, data types and

operations received the most time and effort during implementation; and therefore, other types of domain items

were implemented only partially or not at all. Figure 36 compares the EH requirements defined in Chapter 3

with the capabilities actually implemented in this version. A slash means the requirement has been partially

implemented, for example, .some parts of a class can be modified such as attributes and operations, but not

states and events.

Section Item Type Select Create Modify Delete

3.4.1.1 Primitive Classes X /

3.4.1.2 Class Attributes / /

3.4.1.3 Class Operations X X X /

3.4.1.4 States

3.4.1.5 Events

3.4.1.6 Transitions

3.4.1.7 Parameters X X X /

3.4.1.8 Predicates X X X /

3.4.1.9 Data Types X X X

3.4.1.10 Constants X X X

3.4.1.11 Inheritance

3.4.1.12 Associations / /

3.4.1.13 Aggregate Classes / /

3.4.1.14 Aggregate Operations X X X /

Figure 36 Capabilities implemented in this version of EH

The Class attributes receive only a partial selection rating on select and modify because the EH should

be able to find and select the constraints that limit the value of the attribute. Association objects can be

selected, but there is no capability to select the classes that are the connections of the association. The

connections of associations and aggregate classes can be modified, but not all parts of an association class can

be modified. The name of any object can be changed and the data dictionary will be updated; however the

72

capability to find and update all occurrences of the name in predicates is not complete. The capability exists to

delete parameters, predicates, or entire operations; however, the tool does not do any safety checking to be sure

the object being deleted is not used by other domain items.

The history database was not implemented. As mentioned in Chapter 3, a very simple history list

could be implemented by creating an output text file to store descriptions of EH actions performed. The most

likely place to perform the file writes would be in the functions P erform-Select-Actions, Perform-Modify-

Actions, and Perform-Add-Actions, because those functions control changes made to the specification tree. A

simple implementation like this would only provide the user with a chronological list of changes made to the

AST. A more robust and useful history tool would allow the user to interactively view, undo, and redo

specification actions, but was well beyond the scope of this research.

The clean-up functionality mentioned in Chapter 3 was partially implemented by the Purge-Spec

function called by the Save-Final-Spec function. Purge-Spec calls the preorder-transform function to search

the specification AST while applying the Purge-Rule-Set of forward reasoning rules. When a purge rule finds

an object with the eh-usedmap set to false, it calls the Remove-Object function to erase the object and adjust the

map that pointed to the erased object. If the map that contained the erased object was a set or sequence, the map

to the erased object gets removed from the set or sequence. If the map only consists of a single object, the map

is set to undefined. These functions take care of getting rid of the unnecessary objects, but other clean-up

activities such as defining incomplete constant and data type declarations, and placing those constants and data

types at the proper level were not implemented.

The capability to restrict certain actions on an object was not implemented. Marking an object as

restricted against modification or deletion could done fairly easily by adding a map from Obj-Objects to a coded

symbol, which would indicate if a restriction exists and if so, on what actions. A restriction map may

alternatively be placed in the Data-Elements of the data dictionary. Implementing the restrictions in the EH

would be much harder, because the restrictions would have to be checked in several places in the code. When a

list of objects is displayed to the user, the restrictions would have to be checked and either printed out with the

object description, or inhibit the objects from being displayed at all. More research needs to be done on this

issue.

73

5.2 Maps Added to the Domain Model

Several maps were defined to help the EH perform its job. The map names and their purpose are

described below.

• has-aclass - added as a non-tree attribute to Parameter objects to store a pointer to a GOMT-Class used

as a data type of a parameter. E.g. students : P Student. The map has-type-multiplicity would

also be used in this example to indicate students is a set. The has-atype map points to a DomTypeObj

for those parameters declared as a data type.

• has-DD - added as the map from the root of the domain (GOMT-DomainTheory) to the root of the data

dictionary (Data-Dictionary).

• spec-name - added to hold the name of the specification if the user decided to suspend the EH session

and save the in-work specification until later.

• eh-used - added to all Obj-objects as a flag to indicate if the object has been selected to be included in

the specification.

• eh-pred-used - added to all Predicate objects as a flag to indicate if the predicate has been selected to

be included in the specification.

• pred-mapped - added to Predicate objects whose identifiers have been mapped to domain objects by

the Map-ID-to-Obj function.

• ID-wrd- added to predicate IDname objects to aid the data dictionary in finding matching names in the

domain.

• id-obj - added to predicate IDname object to point to the domain object it represents.

• is-element-qf'- added to predicate IDname objects to map the two identifiers of an 'e 'expression, for

example, s e students.

• is-BasicDecl-of - added to predicate IDname objects to map the two identifiers of a declaration

expression, for Example, f: FuelTank.

• has-component-var - added to predicate IDname objects to map the two identifiers of a component

expression, for example, FuelTank. fuel_level.

74

5.3 Implementation Difficulties Encountered

This section describes some technical and coordination issues that arose during the prototyping phase

of this research.

5.3.1 Parsing Predicates

The EH needed some method for the user to enter predicates such as invariants and especially pre-

conditions and post-conditions. Since the user interface is text based, the options were to build some kind of

parsing grammar or try to use something that already existed. The U-zed parser built by Wabiszewski [16] was

already built and being used for parsing Z Schemas from LaTeX files in a batch mode. The problem was how to

get a text string typed in by the user during run time into a predicate tree that could be manipulated by the EH.

There are two REFINE functions available for parsing, parse-from-file and parse-from-string. The parse-from-

string function has three parameters, the string to be parsed, the grammar to be used, and a flag to indicate how

errors are handled. Since the EH only needs to parse predicates, a subset of the existing grammar used for

domain parsing was needed. The previous grammar files called UtoolKit and Uzedwere modified to just handle

predicate theory and renamed PredToolKit and Upred. These two new grammar files are compiled before the

EH code files and so become the grammar that EH uses for parsing predicates. This approach may not be

completely satisfying since the user must enter predicates in proper Z notation. It does provide a sound,

structured way to implement and test the feasibility of this version of the EH.

5.3.2 Representing Function Calls in ZPredicates

Representing function calls in the transformation from the graphical functional model to the Z schema

to the domain AST was the cause of some confusion. Consider the example in Figure 37. The Data Flow

Diagram shows the output of DetermineFuelWeight going to the input of CalcTotalWeight and is reflected in

the Z Schemas. However, when parsed into the domain tree, there is an implicit requirement made that the

name of the input parameter must match the name of the corresponding output parameter. Indeed, if the name

of the output parameter of DetermineFuelWeight was changed, the CalcTotalWeight function would have no

idea where its input would come from. A common way to implement these functions is shown in the REFINE

code implementation of Figure 37. The CalcTotalWeight function uses a function call to the

75

DetermineFuelWeight to get the fueljweight rather than expecting the value to be passed in as a parameter. The

problem was the misunderstanding of how the U-Zed parser handled functions in predicates.

Data Flow Diagram

fueMank-weight

Z functional Schemas

■ DetermineFuelWeight

"BFuelTank
fuel'_w'eight!: R

fuel weight! =fiiel level *fael density

FuelTank

• CalcTolalWeight —

EFuelTank
fuelweight?: R
fuel_tank_weight!: R

fuel tank weight! =fitel weight? + tank weight
REFINE code implementation

function DetermineFuelWeight(): Real
Let (fuel_weight: real = FuelTank.fuel_level * FuelTank.fuel_density)
fuel_weight

function CalcTotalWeight(): Real
Let (fuel_tank_weight: Real =

FuelTank.DetermineFuelWeight + FuelTank.tank_weight)
fuel_tank_weight

Figure 37 Inconsistency between Graphical and code representation

The Z notation allows for most of the arithmetic, relational, and logical expressions to be written using

Infix notation, e.g. X = Y + Z. There are, of course, many standard and defined operations represented in

Prefix notation such as SquareRoot (x), or power (x, n). There was some early confusion about if and

how prefix operations would parse into the predicate tree. After some study and testing, it was discovered that

the parser uses two slightly different notations concerning prefix operations. If there is only a single input

parameter, simply put a space between the operation name and the parameter e.g. Y = SquareRoot x. If

there are more than one input parameter, the parser parses them in as a single tuple entity using the familiar

parentheses representation: W = Power (x, n). Given either form of function call, the functions are parsed

into a FunctionApp-Expr subtree in the Unified-Object model. Discovering this capability helped eliminate

some uncertainty in the specification model. However, if a function has no input parameters, the parser has no

way to distinguish between a function name and any other variable type. In this case the function name is

placed into a var-name-expr subtree, so some ambiguity still exists in this issue.

76

5.3.3 Mapping Predicate Variables to Domain Objects

It became apparent during prototyping that a great deal of knowledge could be gleaned from predicates

if the domain objects they represent could be accessed. Choosing the data type of a parameter to be modified is

one reason why the object corresponding to the predicate identifiers would be needed. The EH could initially

limit the choices of data types to those types and classes represented in the related predicates, assuming that the

parameter will often be the same type as other variables in the predicate. If the proper data type is not found in

the initial set, the entire list of data types are displayed for the user. Another situation where the objects of the

predicate identifiers are needed is when an operation is selected for use in the specification. Because the

predicate identifiers represent other objects such as attributes and operations, those represented items should

also be selected for use in the specification. For example, the predicate in the CalcTotalWeight operation may

be fuel_tank_weight = DetermineFuelWeight + tank_weight. The identifier tank_weight

represents an attribute in the FuelTcmk class and should be selected for the specification. The identifier

DetermineFuelWeight represents another operation, which in turn has a predicate fuel weight =

fuel_level * fuel_density. The operation DetermineFuelWeight and the attributes fueljevel and

fuel_density should also be selected for the specification. Mapping identifiers to their corresponding domain

objects was very important in implementing these capabilities.

The problem was that the predicates are implemented in the Unified Object model and the predicate

variables were not mapped or associated to the domain objects they represent except by name. Therefore, in

order to gather the data types represented by the predicates, some processing code had to be created that would

search the data dictionary for perfect matches in order to find the related domain objects. The domain objects

represented by the predicate variables could be attributes, constants, operations, parameters, classes,

connections, or locally bound variables. Usually there will be only one perfect match, but bound variables

would have no match, and attributes, constants, and parameters can possibly have more than one match if the

name is used in different classes. For the case of bound variables, it is assumed there will be a declaration of

the variable in the predicate, e.g. f: FuelTank • f.fuel_level <= f. capacity. Since the

declaration parses in as a BasicDeclSeq expression in the predicate tree, the type or class of the bound variable

can be found by looking at its declaration.

77

In the cases where more than one perfect match is found, the variable should be part of a component-

expr, e.g. f:FuelTank j: JetEngine • total_weight = f.weight+j .weight. In this

example, the attribute weight is defined in two classes, but each is prefixed with the bound variable indicating it

is a component of a declared class. By getting the class associated with the bound variable, the attribute type

can be found by looking to the matched attribute object that is in the class of the bound variable.

The function Map-ID-to-Obj sets a non-tree pointer from the IDname object of the predicate to the

domain object it represents. It was discovered during prototyping that this function came in very handy during

selection actions. When an operation is selected for use in the specification, the other domain objects

represented by the predicate variables must also be selected for the specification. The Map-ID-to-Obj function

finds those domain objects so their eh-used flags can be set.

5.3.4 Selection of Specification Items

When selecting an item with predicates, the objects represented by the predicate variables are also

selected. These selected objects often have other objects in their subtree such as data types and other predicates.

Since these selection actions turn out to be a recursive process, the Select-Spec-Items function is called

recursively until all related objects are selected. Initially, it was assumed that the predicate objects would not

need an eh-used flag to indicate selection, however, it is possible that the recursive selection functions could

encounter the same predicate twice and end up in an infinite loop. Therefore, an eh-pred-used map was added

to the predicate object and checked in the Select-Spec-Items function before processing the predicate variables

to avoid infinite recursion.

5.3.5 Map from the New Object to the Parent Object

While developing the functionality for adding and modifying AST items, a problem arose regarding

the information known about the action in progress. Sometimes when adding an item to the specification, very

little is known about where the new item will be placed in the tree, but other times the parent objects, data types,

or values may already be present in the AST. For example, when a new system output is identified and an

operation must be created, it is not known to which class the new operation will belong. But, if the user is

modifying a class and indicates that a new operation for the class is needed, then the EH should have the

flexibility to use some information from the parent class while creating the new operation. The has-parent-obj

78

map was added to the Add-Object database to store the parent object if known. This map can be used when

adding the new item to the specification and when looking for other domain information related to the new

item.

5.3.6 Deleting Duplicate Types

During the initialization function, the Delete-Duplicate-Types-Rule calls Delete-Duplicate-Types

function when two duplicate global data types are found in the domain. Duplicates can happen when two or

more LaTeX files containing Z domain Schemas with duplicate data type declarations are parsed into the

domain tree. For every declared data type, a new DomTypeObj is created in the domain tree without checking

for duplicates. When processing in the EH, duplicate data types can show up in object lists and cause

confusion. It should have been fairly simple to look for duplicate global types by using the REFINE function

called term-equal?. The term-equal? takes two arguments, which are object base trees, and returns true if its

two arguments are isomorphic and all map values are equal. When term-equal? is true the Delete-Duplicate-

Types function deletes one of the data type objects. The term-equal? function did not work as advertised in this

case. It would not return true for duplicate objects; therefore, this functionality was disabled until a working

solution could be found.

5.3.7 Problems with POB save

Saving the specification AST to a file as a POB (Persistent Object Base) was another problem area.

The general way of saving a POB is to declare a dump-descriptor variable for each AST or subtree that should

be saved. The dump-descriptor identifies a set of class names and a sequence of maps for each class that should

be saved. Since this approach can get very tedious for large domains, REFINE provides a function called make-

dump-desc-for-class-tree, which claims to automatically save all defined maps of all objects below the root

node passed in to the function. This function is supposed to be a convenient short cut to actually naming every

map in the domain the user wants to save. Two other optional arguments of make-dump-desc-for-class-tree,

atts-always-to-dump and atts-never-to-dump, allow the user to specify AST objects as exceptions when saving

the POB. This function did not work as advertised. It would only save AST objects if all the desired maps were

actually named in the argument list. Three such dump-descriptors had to be defined because of the differing

inheritance paths: one for GOMT-DomainTheory, one for GOMT-Objects, and one for Unified-Objects. These

79

three descriptors are then merged with a function called merge-input-dump-descs that returns a dump-descriptor

containing the three merged descriptors. This merged descriptor is then used as the argument to the pob-dump-

file function that writes the POB to a file.

5.4 Evaluation

Although it is generally claimed that automation of a manual process will improve productivity, the

claim cannot be substantiated without performing some sort of metrics evaluation. Several metrics could be

used to evaluate the performance of an automated EH. Possible methods include:

• Use several domains and written specifications and compare the averages of the total time taken to

produce a specification AST using a manual process versus using the EH.

• Have several people try the tool and take a survey of their opinions on ease of use, timesavings,

suggested improvements, etc.

• Observe a few people who are familiar with the AFIT KBSE system while they use EH and log the

comments they make as a way to get feedback on the usefulness and ask their opinion as to whether

they would prefer an EH tool over the previous manual method

• Make a smaller scale test by breaking down the manual process of creating a specification item into its

subtasks. Perform several specification actions on various items while timing each of the subtasks

using a manual method. Then, perform the same actions with the EH. Since the subtasks of the two

methods are different, the manual tasks would need to be summed and compared to the total EH time.

The first two methods were not possible because there are currently very few detailed specifications, there are

few people who are familiar enough with the AFIT KBSE system to get a good sampling, and the functionality

of this EH version was not complete enough to produce entire specifications. The third method is good for

soliciting feedback; however, opinions are subjective and hard to quantize into meaningful metrics. Therefore,

the fourth method seemed like the most promising way to objectively evaluate the EH.

One problem with comparing the manual "old" way creating specifications from a domain to the

"new" automated tool, was the lack of a manual process to begin with. There is fuzzy line between a domain

tree and a specification tree. Ideally, the domain is more general and could be used to create several

specifications for applications within that domain. Since there was not a well defined algorithm for building a

specification from the domain, and since the AST structure is the same for both the domain and the

80

specification, in practice the software development process usually started by defining the specification

requirements directly. Before meaningful metrics could be made, the manual process for refining a

specification from a domain needed to be defined.

5.4.1 The Manual Process Defined

The manual process for defining a specification assumes a domain has been created and is fairly

complete. The domain definitions generally begin as Z schemas written on paper as they are created. Once on

paper, the domain engineer enters the Z schema information into a template (one GOMT-Class per template)

that can be read by a LaTeX parser and understood by the U-Zed parser. After successful parsing, the LaTeX

files are saved for future updates and the domain information resides in the domain AST where it can be saved

to a POB file. The most likely specification process would start with the saved LaTeX files and the engineer

should have some written requirements for his particular problem.

1. Locate the directory and LaTeX file that defines the class needed. This assumes the engineer is quite

familiar with the domain since he must know the class needed to add new operations. He would

probably need to refer to Z schema printouts and pictures of the domain object model.

2. Open the LaTeX file in a text editor, key in the definitions needed for the specification, and save the file

under a new name. This requires the engineer to understand LaTeX syntax and the peculiarities of the

U-Zed parser.

3. Open the printDD file; update with the name of the new specification file, and save it. The printDD file

defines the title page and other configuration if the Z schemas are printed out. This step is not required

if a graphical print out of the Z specification is not needed.

4. Run the new file through the LaTeX compiler. If the compiler fails because of errors, repeat steps two

and four until successful. Repeat steps 1-4 for each file that needs to be updated for the specification.

5. Start up REFINE then start up Afittool. Choose to parse the new LaTeX file into the new domain, then

iteratively append all other new specification files to the domain tree.

6. When all files have been appended, choose to save the domain to a POB file and give it a name; or

besin the transformation to the design AST.

When finished with these steps, the specification should theoretically be ready for the design phase. However,

some problems may occur due to the lack of consistency checks on the specification. Unless the engineer

manually checks for and corrects them, the following problems will show up in the design AST.

• Predicate names are not checked for correct spelling or consistency with the names of the objects they

represent. To overcome this problem, the engineer would probably need to print out the Z Schemas of

the domain for reference to the existing domain item names.

• Items such as class attributes or data types not used or needed in the application will not be purged from

the specification AST. The engineer may not care if there are extra unnecessary objects in the design.

But they could cause confusion downstream in the development when a designer decides to use one of

those objects for another purpose since it is "there anyway". It could increase storage requirements and

hinder performance if extra fields are kept in a database table with a million records. To avoid this

problem, the engineer may need to perform a search through all the files for each domain object to see

if it is required by a predicate somewhere, which would be extremely time consuming and error prone.

The problem begs for some type of automated approach.

• Data types and constants declared in two or more class files will be duplicated in the specification AST.

To avoid this duplication, the engineer would have to purposefully compare the class files or Z printouts

and delete the duplicates from all but one file.

Checking these problems manually can add a great deal of time to the specification process and can be tedious,

which adds to the risk of human error.

5.4.2 Standard Comparison Specifications

Since the EH was working for only a limited set of object types and actions, the specifications chosen

as standards for comparison purposes had to be implementable using the EH. The Cruise Missile and the

School were chosen as the two domains used as input when building the partial specifications described below.

For the Cruise Missile, perform the following refinements and selections:

1. Make all the weights a data type called KGS (kilograms), which is a real number >= zero

2. Make all fuel rates a data type called LITERS/SEC, which is a real number >= 0

3. Define a data type called FUEL_LEVEL_TYPE for fueljevel to be a real number >= 0 and <= 1.

4. Define a data type for capacity to be LITERS, which is a real number.

82

5. Create an output function to calculate the current fuel amount in Liters from (fuel_level * capacity).

6. Delete the predicate fuel_level <= capacity from the FuelTank class.

7. Change the predicate in the DetermineFuelWeight function to use a call to the function defined in the

previous bullet (5) instead of the fuel level variable.

8. Create a function that outputs the total weight of the CRUISE MISSILE in KGS calculated from the

weights of its components then select this function for use in the specification.

9. Create and select an internal function that synchronizes the flow rates of the fuel tank and jet engine to

the actualJlow_rate of the throttle

For the School, select the domain items required to:

1. Output the set of students advised given a faculty member.

2. Output the number of Master's degree students advised by a given faculty member.

3. Output the set of sections taught by a given faculty member.

4. Output the total number of students taught by a given faculty member.

Since the partial specifications above require Z predicates to be defined, it is assumed that the proper parseable

predicates have already been formulated on paper, so neither approach is penalized for the time it takes trying to

figure out the proper syntax.

5.4.3 Evaluation Results

The two sample specifications outlined in Section 5.4.2 were built using the six steps of the manual

process described in Section 5.4.1 and the time taken for each step of the specification was logged. Next, the

same two specifications were created using the EH tool, keeping track of the time taken for each step. After

each specification process, the domain descriptions were printed out using an option provided by the

AFITTOOL software. The descriptions list all the objects present in the specification AST. Appendix A first

shows the objects selected during the EH version of the CRUISE MISSILE specification, followed by a list of

additional objects in the manual specification that are not required. These additional objects remain in the

specification because there is no way to purge unnecessary objects in the manual method unless the engineer

removes them from the Z schemas in the LaTeX files. The SCHOOL specifications are also shown in

83

Appendix A. Since the dynamic model was not implemented in the EH, the states, events and transitions

associated with the domain models were ignored during this evaluation.

This small test certainly does not have enough sampling points to perform any kind of statistical

analysis, but several reasonable observations can be made from the results.

5.4.3.1 Time Comparison

Figure 38 summarizes the results of creating the manual version of the specifications versus the EH

version using the same set of requirements. The speedup indicates how many times faster an enhanced method

is versus the original method and is defined as Execution time0id /Execution timenew. In both tests the EH

method was a little more than twice as fast as the manual method, which shows some consistency.

Cruise Missile School

Manual Method 82 54
Elicitor-Harvester 40 25

Speedup 2.05 2.16

Figure 38 Time in minutes to complete specification process and the speedups obtained

This time test could be statistically validated given a large enough sampling space. Ideally, five or six

people could each perform this time comparison on five or six different specifications. The results would be

averaged with the lowest and highest single times thrown out. The times should form a normal distribution and

a confidence interval could be calculated.

5.4.3.2 Correctness Comparison

During the manual process, the specification was not required to be purged of unselected objects,

which resulted in a specification containing many unnecessary parts. Although these excess items may not

immediately affect the specification, it is unnecessary overhead and could cause confusion downstream in the

design phase. In Appendix A, the sections labeled as UNSPECIFIED MISSILE/SCHOOL COMPONENTS

REMAINING IN MANUAL SPECIFICATION show several pages of excess parts of the domain that should

be removed by the engineer to maintain correctness. Notice that there are also come duplicate data types

defined in the list of global data types. These duplicates occur because they are defined in the Z Schemas of

more than one class and the U-Zed parser places all data types in the global area. Removing these excess items

would be a tedious task that would add a lot of time to the manual process.

84

Checking for correctness is an area where automated tools generally excel. Just as a compiler checks

the correctness of source code semantics, an EH could check the formal language semantics of domain

predicates. Although extensive correctness checking capabilities have not been built into this EH version, some

predicate checking was implemented as described in Sections 5.3.3 and 5.3.4. Predicate variables in newly

created operations and data types as well as variables in predicates selected for the specification are compared

to data dictionary elements to be sure of consistent spelling and to assure the objects represented by those

variables are also selected for use in the specification. When the name of an object is modified, the EH updates

the data dictionary and searches the specification tree to update predicate variables that map to the object being

changed. In the manual process, it is quite possible that a predicate variable could be spelled differently than

the object it represents and pass through the specification phase undetected - possibly causing confusion in the

design phase.

Checking for errors and correctness are tasks generally performed much more efficiently with an EH

than by a manual method. The benefit of automation grows as the size of the specification grows. For a small

specification, a human may be able to manually check for errors and correctness, but as the number of classes in

the specification grows, the number of details becomes overwhelming. As long as the error and correctness

checking tasks can be described with an algorithm or a set of rules, an automated tool such as an EH will be

able to perform the tasks much more quickly and accurately. Comparing the accuracy of the two methods

would require extensive monitoring of the design process as well as verification and validation testing at the end

of development for several applications. An evaluation would require an accurate count of the number of errors

and inconsistencies encountered as a result of the specification process. Unfortunately, implementing such a

test was beyond the scope of this thesis effort.

5.4.3.3 Ease of Use

Another way the EH demonstrates improvement is by simplifying the specification process. The

manual method of creating a specification was loosely defined as a six-step process in Section 5.4.1. The first

four steps require the engineer to find, open, modify, and save all LaTeX files containing Z Schemas necessary

for the specification. Step 5 indicates that the user needs to start up REFINE and AFITTOOL to parse the

LaTeX files into the specification AST. The EH process starts at Step 5 except that the domain should be saved

in a POB file and the engineer would choose option 12 from the AFITTOOL submenu, shown in Figure 39, and

85

enter the name of the domain POB file to load into the specification AST. The user would then back up to the

main menu, also shown in Figure 39, and start up the EH by choosing option 2, which guides the user through

the specification process.

Welcome to the AFIT Software Transformation System
Version 0.4a

What would you like to do?
0 - Exit AFITtool.
1 - Perform Domain operations.
2 - Perform Elicitor-Harvestor operations.
3 - Perform Design operations.
4 - Perform C++ Code Generation operations.

ENTER YOUR CHOICE : 1

Welcome to the AFIT Software Transformation System
>DOMAIN MODELER<

What would you like to do?
0 - Return to main menu.
1 - Zstrip, parse, and create a domtree (2, 3, 4)

2 - Zstrip a LaTeX domain file to zstrip.out.tex
3 - Parse a Z-stripped file into a uzed AST.
4 - Create a DOM AST from a uzed AST.

5 - Parse a Z-stripped file and create a DOM (3 - 4).
6 - Append to the DOM AST from a uzed AST.

7 - Append to the DOM AST from Latex file (2,3,12).
8 - Display the current domain model.
9 - Output the domain model as .out file.

10 - Save the domain model as a POB file.
11 - Zap the current domain model.
12 - Load the domain model from a POB file.
13 - Display the current domain using grammar.
14 - Output the domain using grammar as .1st file.
15 - Output the domain using architecture language Acme.

ENTER YOUR CHOICE :

Figure 39 The AFFITTOOL main menu and domain functions submenu.

Measuring the ease of use metric can be somewhat imprecise and was not performed in this research

because there were not enough qualified people for a good statistical sampling. Assuming there were enough

people for this test, the ease of use could be measured subjectively by asking each person to create a small

specification with both the manual method and the EH, then ask them to fill out an opinion survey about their

experience with both methods. The survey would ask them to rate the ease of use and intuitiveness of the two

methods on a scale of one to five. The survey results would then be averaged out to come up with a single

86

rating number for each method and the two numbers could be compared to give an indication of which method

was easier for the user.

5.5 Implementation Summary

The chapter described the parts of the EH that were successfully implemented. Several changes made

to the domain model to support the EH were listed and difficulties encountered during implementation were

discussed. Methods used to try to evaluate the usefulness and effectiveness of the tool were described as well as

metrics that could have been used given a larger sample space. Chapter 6 has some concluding remarks and

lists several ideas for future research.

87

6 Conclusions and Recommendations

The quest for a robust Elicitor-Harvester continues to be a challenge. Although previous work

declared an EH tool as feasible and promising, many parts of the tool remain unproven and unimplemented.

Previous thesis work of Wright [3] and Cochran [6] was limited to a small single domain and illustrated the

concept of choosing reusable components from a specific domain. However, for a knowledge-based system to

be useful, it must be generic enough to store and allow manipulation of most domain types. Because an EH

must operate within the framework of a larger KBSE system, truly proving feasibility of a generic EH requires a

well-defined domain theory, or meta-model that can store all types of domain knowledge and a variety of

domains to allow for testing of various aspects of differing specifications. Wright and Cochran did not have the

luxury of a pre-existing generic domain model as a framework to build upon and had to create their own,

forcing them to restrict the scope of research. Karagias's work [2] was performed after the DOM meta-model

had been partially defined and so was able to study the problem with well represented object-oriented domains.

The implementation examples of the previous thesis work focused on building something like a pump, a queue,

or a propulsion system. Generally, the user was prompted to input some description or requirement about the

object to be built and the EH would supply a list of parts that met the requirement and asked the user to select

the part desired. This approach works well for domains where some aggregate object is being built. However,

many real world specifications require identification of operations acting upon the objects, states of the system,

and the events that trigger operations and state changes. Identifying these actions are usually the most difficult

part of defining a specification; but by identifying operations, the objects and attributes required can usually be

determined by an intelligent EH without bothering the user for such details.

6.1 Conclusions

The scope of this research was not broad enough to explore states and events, but an in-depth study of

operations was performed. This work uncovered many complex problems encountered while manipulating

operations and especially predicates, but has also shown some promising results. Several benefits of this

research are summarized below.

1. The simple data dictionary prototype, with its associated rules and functions, proved very useful in

matching user input to existing domain items. A well-established data dictionary would allow a user to

create a specification without the need to refer to hard-copy Z-schema definitions of the domain.

88

2. An inference engine was built in REFINE, which successfully performed backward chaining on a set of

rules. Backward reasoning provided a good method for creating specification items such as operations.

The recursive nature of the backward chaining algorithm allows for other objects needed for the

specification, such as a new data type or another operation, to be created in the meantime while creating

the original item. For example, while creating a new operation, it is discovered that the output

parameter has a data type that doesn't exist in the domain. A DomTypeObj becomes the new goal and

the backward chaining engine is called recursively to create the new data type then return to the

operation creation process when complete.

3. Forward reasoning was successfully used to modify specification objects. The REFINE transform

functions were used first to access rules to determine the modifiable attributes of an object, then to find

the rules needed to guide the user through the modification process.

4. It was shown that many objects could automatically be marked as selected for the specification when

the user selects a single operation. Mapping predicate variables to the domain objects they represent is

the key to this task. If a predicate is deemed necessary for a specification, then all the objects

represented in that predicate as well as their data types and the classes to which they belong are also

selected for the specification.

5. The ability to save the in-work specification or the final specification to a POB file was successfully

implemented. Saving the in-work specification was fairly simple. One just needs to save all objects

currently in the specification. However, saving the final version was more difficult because the

unneeded objects had to be removed from the specification AST. Completing this task required

searching the tree for unmarked objects, accessing the parent object, setting the parent pointer to

undefinedTor a one-to-one map or removing the object from the set or sequence for a one-to-many map,

and finally erasing the object.

6. Although this prototype is not complete enough to specify entire applications, analyzing its

implemented capabilities indicates several observable improvements over the previous manual method

of creating specifications. Small preliminary tests show that specifications can be created faster, with

better error checking, and without extraneous objects by using the EH tool instead of the manual

method.

6.2 Future Recommendations

The EH process is still a rich area for research. Following are several recommendations for future

study.

89

A Graphical User Interface (GUI) would allow more information to be displayed on each screen than

the current text-based user interface. It could allow a user to select multiple objects in cases where the

same action needed to be performed on several objects, for example, to change the data type of several

attributes. The object model could be displayed graphically and the parts of a class could be viewed

with mouse clicks on the class object box. Modifications could be made inside the object model boxes,

data dictionary elements could be viewed and updated and relationship cardinality could be changed.

There are currently very good data modeling tools on the market that perform similar functions for

database development such as Erwin by Logicworks. An EH GUI may have many features of a data

modeling tool in addition to object-oriented functionality to handle operations, states and events.

A big drawback of formal methods is the general lack of expertise within the computer industry. There

is a steep learning curve and they are generally difficult to understand. The need exists for an interface

that can get the formal mathematical models out of the face of users and allow them to interact with the

tool in a more natural language. This problem is exhibited in the EH when the user is asked to input a

predicate in proper Z syntax. Obviously the user is required to have some knowledge of Z and set

notation. A natural language interpreter could accept a user's description of a predicate in natural

language and translate it into Z or another formal language. Of course there would need to be some

structure imposed on the user's input, since natural language is so ambiguous.

The history database is an important part of the EH, but was not implemented in this version. Any

interactive tool should provide the user with the ability to undo certain actions if a mistake was made or

requirements changed. The history database functionality, described in Section 3.2.2.2, still needs to be

studied.

The data dictionary is a tool that could have a function outside of the EH process. In fact, the data

dictionary would stay with the domain AST and be available for all EH sessions using the domain. It

could provide the ability to parse descriptions, synonyms, and maybe abbreviations of GOMT-Objects

during the domain-engineering phase as objects are created. The data dictionary could also be

expanded to allow the tool to learn new synonyms automatically during EH processing when the user

matches an input to a domain object. Many improvements are needed for the data dictionary matching

techniques to make them more efficient and precise.

The role of the Elicitor-harvester could be expanded to become more of a "domain editor". The domain

engineer could use it as a domain building/maintenance tool. The domain could be built from scratch

without the need for Z-schemas, LaTeX files or parsing software. Updates could be made to the

domain via the domain editor, and it could still be used as a specification tool. Within the domain

editor the knowledge base administrator could set the restrictions on domain objects to allow or

disallow certain actions on them. The restriction functionality also needs to be studied.

90

• As shown in Figure 36 of Section 5.1, there is a significant amount of functionality that has not been

designed and implemented. There are still many more challenges to be faced with the dynamic model -

the states, events, and transitions, as well as associations, classes and inheritance.

6.3 Final Comments

As Knowledge-Based Software Engineering matures, the need for automated tools to perform

specification refinement will increase. By creating specifications that are complete and correct and building

transformation software that automatically creates source code from the specification, application software can

be maintained at the specification level. This ability will have a profound impact on way software is maintained

and upgraded. A commercial grade Elicitor-Harvester tool is probably still a few years away, but it has

certainly been proven feasible. The possible benefits of automation at the specification level of software

demand further study in this promising field.

91

Bibliography

1. Hartrum, Thomas C. An Object Oriented Formal transformation System for Primitive Object Classes.
AFIT School of Engineering draft report, March 19, 1998.

2. Karagias, Timothy. "Elicitation of Formal Software Specifications from an Object-Oriented Domain
Model", Master's thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec 1996.
AFIT/GCS/ENG/96D-14, AD-A320 698.

3. Wright, Charles A. "Implementing an Elicitor-Harvester for the Automatic Reuse of Software
Components", Master's thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March
1995. AFIT/GCS/ENG/95M-02.

4. Thomas C. Hartrum, Timothy Karagias, "Generation of Object-Oriented Formal Software Specifications",
Proceedings of IEEE 1997 National Aerospace and Electronics Conference (NAECON 97), Nov 1997.

5. McDermott, J. "Rl: A Rule-Based Configurer of Computer Systems." Artificial Intelligence, vol. 19 no.l,
September, pp.39-88.

6. Cochran, Jerry D. "A Knowledge-Based Elicitor-Harvester: Automating the Selection of Object-Oriented
Components for Reuse", Master's thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
Dec 1995. AFIT/GCS/ENG/95D-02, AD-A305 776.

7. Avelino Gonzalez, Douglas Dankel. The Engineering of Knowledge-Based Systems, Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

8. Brooks, Fredrick P. "No Silver Bullet", Computer, 10-18 (Apr 1987).

9. James Rumbaugh, Michael Blaha, William Primerlani Frederick Eddy, William Lorensen. Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

10. David Pautler, Steven Woods, Alex Quilici. "Exploiting Domain-Specific Knowledge To Refine
Simulation Specifications", Proceedings of the 12th IEEE International Conference on Automated Software
Engineering. 117-124. November 1-5,1997.

11. Winston, Patrick Henry. Artificial Intelligence, Third Edition. Addison-Wesley Publishing Company,
1992.

12. Michael Blaha, William Premerlani. "A Catalog of Object Model Transformations", Presented at 3rd
Working Conference on Reverse Engineering, Monterey, California, November 1996.

13. Stephanie Cammarata, Darrell Shane, Prasad Ram. "IID: An Intelligent Information Dictionary for
Managing Semantic Metadata", Technical Report No. R-3856-DARPA prepared for the Defense
Advanced Reasearch Projects Agency by RAND, Santa Monica, California, 1991.

14. Stephen J. Andriole, Charlton A. Monsanto, Lee Scott Ehrhart. "Knowledge-Based User-computer
Interface Design, Prototyping and Evaluation - The Design Pro Advisory System", Technical Report No.
AFRL-IF-RS-TR-1998-142 prepared for Air Force Research Laboratory, Rome, NY, by Drexel University,
Philadelphia, PA, 1998.

15. Winfried Grassmann, Jean-Paul Tremblay. Logic and Discrete Mathematics, A Computer Science
Perspective, Prentice Hall, Upper Saddle River, New Jersey, 1996.

92

16. Wabiszewski, Kathleen M. Unification of Larch and Z-Based Object Models to Support Algebraically-
Based Design Refinement: The Z Perspective. MS thesis, Air Force Institute of Technology, Wright-
Patterson AFB, OH, Dec 1994. AFIT/GCS/ENG/94D-24, AD-A289 234.

17. Beem, Charles G. Extending the Formal Object Transformation Process to Support Algebraically-Based
Design Refinement: The Larch Perspective. MS thesis, Air Force Institute of Technology, 1995.
AFIT/GCS/ENG/95D-01, AD-A303 748

18. DeLoach, Scott A. Formal Transformations from Graphically-Based Object-Oriented Representations to
Theory-Based Specification. PhD thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
June 1996. AFIT/DS/ENG/96-05, AD-A310 608.

19. Brooks, Fredrick P. "No Silver Bullet", Computer, 10-18 (Apr 1987).

20. REFINE User's Guide, Reasoning Systems, Palo Alto, California.

21. Laurel, Brenda. The Art of Human-Computer Interface Design, Addison-Wesley Publishing Company, Inc.,
1991.

93

Appendix A: Output Specifications from Tests

CRUISE MISSILE EH SPECIFICATION

DOMAIN: Missile

global data types
Real
LITERS

SUPERTYPE: Real
FUEL_LEVEL_TYPE

SUPERTYPE: Real
LITERPERSEC

SUPERTYPE: Real
KGS

SUPERTYPE: Real

primitive concrete class FuelTank
attributes

output_flow_rate: LITERPERSEC;
fuel_level: FUEL_LEVEL_TYPE;
capacity: LITERS;
tank_weight: KGS;
fuel_density: Real;

end attributes
Operations:

GetFuelAmount (IN ;OUT current_fuel_amount)
Predicates:
current_fuel_amount! = (#3Ka MULTIPLICATION-EXPR>)

DetermineFuelWeight (IN ;OUT fuel_weight)
Predicates:
fuel_weight!=(#32<a MULTIPLICATION-EXPR>)

CalcTotalWeight (IN ;OUT fuel_tank_weight)
Predicates:
fuel_tank_weight!=DetermineFuelWeight + tank_weight

primitive concrete class JetEngine
attributes

engine_weight: KGS;
maximum_fuel_flow_rate: LITERPERSEC;
thrust_factor: Real;
current_fuel_flow_rate: LITERPERSEC;
current_thrust: Real;

end attributes
Constraints:

engine_weight>0
maximum_fuel_flow_rate>0
thrust_factor>0
current_thrust>=0
current_fuel_flow_rate>=0
current_fuel_flow_rate<=maximum_fuel_flow_rate
current~thrust=(#33<a MULTIPLICATION-EXPR>)

primitive concrete class Throttle
attributes

94

position_index: Real;
maximum_flow_rate: LITERPERSEC;
actual_flow_rate: LITERPERSEC;

end attributes
Constraints:

position_index>=0.0
position_index<=l.0
actual_flow_rate=(#34<a MULTIPLICATION-EXPR>)

aggregate concrete class JetPropulsionSys
attributes

prop_weight: KGS;
end attributes
components:

fueltank: FuelTank;
throttle: Throttle;
jetengine: JetEngine;

end components:
Constraints:

prop_weight=(#35<a COMPONENT-EXPR>) + (#36<a COMPONENT-EXPR>)
States:
Class Events:
Operations:

SynchronizeFlowRates (IN ;OUT)
Predicates:
Predicate - #37<a CONJUNCT-PRED>

aggregate concrete class Airframe
attributes

airframe_weight: KGS;
end attributes
Constraints:

airframe_weight>=0.0

aggregate concrete class Missile
components:

propsys: JetPropulsionSys;
airframe: Airframe;

end components:
Operations:

CalcMissileWeight (IN ;OUT missile_weight)
Predicates:
missile_weight!=(#38<a COMPONENT-EXPR>) + (#39<a COMPONENT-EXPR>)

95

UNSPECIFIED MISSILE COMPONENTS REMAINING IN MANUAL SPECIFICATION

Global data types
Boolean
Digit
Char
Integer
Nat_l
Nat
LiterperSEC
MODELJTYPE
LITERperSEC
KGS
AF_MODELS
KILOMETER
KPH
RADIAN1
RADIAN2
DEGREE
KGS
KGS

primitive concrete class Throttle
Operations:

InitThrottle (IN ;OUT)
Predicates:
position_index'=0.0

primitive concrete class JetEngine
attributes
manufacturer: SEQ_Char;
model_num: MODELJTYPE;

Operations:
SetRate (IN flow_rate ;OUT)
Predicates:
current_fuel_flow_rate'=flow_rate?
current_thrust'=(#178<a MULTIPLICATION-EXPR>)

primitive concrete class FuelTank
attributes

tank_sim_time: SIMTIME;
input_flow_rate: LiterperSEC

Operations:
InitFuelTank (IN ;OUT)
Predicates:
tank_sim_time'=0
input_flow_rate'=0
output_flow_rate'=0
fuel_level'=0
capacity'=0
tank_weight'=0
fuel_density'=0

PredictTankFullTime (IN ;OUT overflow_event_time)
Predicates:
overflow_event_time!=tank_sim_time + capacity - (#179<a DIVISION-
EXPR>)

CalculateNetFlow (IN ;OUT net_flow_rate)

96

Predicates:
net_flow_rate!=input_flow_rate - output_flow_rate

PredictTankEmptyTime (IN ;OUT tank_empty_event_time)
Predicates:
tank_empty_event_time!=tank_sim_time + (#180<a DIVISION-EXPR>)

aggregate concrete class JetPropulsionSys
attributes

prop_fuel: Real;
Constraints:
prop_fuel=(#185<a COMPONENT-EXPR>)
Predicate - #186<an IMPLICATION-PRED>
Predicate - #187<an IMPLICATION-PRED>
(#188<a COMPONENT-EXPR>) =(#18 9<a COMPONENT-EXPR>)
(#190<a COMPONENT-EXPR>) =(#191<a COMPONENT-EXPR>)

Operations:
LoadFuel (IN fuel_load ;OUT)
Predicates:
(#198<a COMPONENT-EXPR>) =fuel_load?

aggregate concrete class Airframe
attributes

airframe_simtime: SIMTIME;
model: AF_MODELS;
drag_coef: Real;
turn_coef: Real;
attached_weight: KGS;
applied_thrust: Real;
R_{EARTH}: KILOMETER;
af damage: Nat;

KILOMETER
KILOMETER
KILOMETER

V_x: KPH
V_y: KPH
V z: KPH
A x Real;
A y Real;
A z Real;
theta: RADIAN2;
phi RADIAN1;
theta d: RADIAN2;
phi d RADIAN1;
lat 0 DEGREE;
Ion 0 DEGREE;
speed KPH;
X E KILOMETER
Y E KILOMETER
Z E KILOMETER
R E I KILOMETER

components:
tail_num: [ALPHANUM];

Constraints:
R_{EARTH}=6378.137
drag_coef>=0.0
turn_coef>=0.0
attached weight>=0.0

97

applied_thrust>=0.0
(#200<a MULTIPLICATION-EXPR>) =(#201<a MULTIPLICATION-EXPR>) +

(#202<a MULTIPLICATION-EXPR>) + (#203<a MULTIPLICATION-EXPR>)
X_E=(#204<a MULTIPLICATION-EXPR>) - (#205<a MULTIPLICATION-EXPR>)

+ (#206<a MULTIPLICATION-EXPR>) + (#207<a MULTIPLICATION-EXPR>)
Y_E=(#208<a MULTIPLICATION-EXPR>) - (#209<a MULTIPLICATION-EXPR>)

+ (#210<a MULTIPLICATION-EXPR>) + (#211<a MULTIPLICATION-EXPR>)
Z_E=(#212<a MULTIPLICATION-EXPR>) + (#213<a MULTIPLICATION-EXPR>)

+ (#214<a MULTIPLICATION-EXPR>)
(#215<a FUNCTIONAPP-EXPR>) =(#216<a FUNCTIONAPP-EXPR>) + (#217<a

FUNCTIONAPP-EXPR>) + (#218<a FUNCTIONAPP-EXPR>)

)
Operations:

InitAirframe (IN ; OUT
Predicates:
af damage'1 =0
airframe s Lmtime '=0.
tail num'=ABC123
model'=V99
airframe weight= 0.0
drag coef = =0.0
turn coef = =0.0
attached weight' =0.0
applied thrust'= 0.0
X'=0.0
Y'=0.0
Z'=0.0
V x'=0.0
V_y'=0.0
V z'=0.0
A x'=0.0
A y'=0.0
A z'=0.0
theta'=0.0
phi'=0.0
theta d'=0 0
phi d'=0.0

98

SCHOOL EH SPECIFICATION

DOMAIN: School

global data types
Nat

primitive concrete class Faculty-

primitive concrete class Student

primitive concrete class Section

primitive concrete class GradClass
attributes

program: PROGTYPE;
end attributes

aggregate concrete class WorkloadSystem
components:

stu: {Student};
end components:
associations:

assigned: stu (Student) (0..n) <—> (0..n) sect (Section);
member_of: stu (Student) (0..n) <--> (1..1) grad (GradClass);
r_advises: stu (Student) (0..n) <—> (0..n) fac (Faculty);
teaching: fac (Faculty) (0..n) <—> (0..n) sect (Section);

end associations:
Operations:

GetNumberStudentsTaught (IN faculty ;OUT num_students_taught)
Predicates:
num_students_taught! = (#4Ka CARDINALITY-EXPR>)

GetSectionsTaught • (IN faculty ;OUT sections_taught)
Predicates:

sections_taught!=(#42<a SET-COMP-EXPR>)
GetNumberMSStudents (IN ;OUT number_ms_students) ■

Predicates:
number_ms_students!=(#4 3<a CARDINALITY-EXPR>)

GetStudentsAdvised (IN faculty ;OUT students_advised)
Predicates:

students advised!=(#44<a SET-COMP-EXPR>)

99

UNSPECIFIED SCHOOL COMPONENTS REMAINING IN MANUAL SPECIFICATION

global data types
Real
Boolean
Digit
Char
Integer
Nat_l
PERNAMES
SSAN
GENDER
DATE
ACADEMIC_RANK = (Instr Asst Assoc Prof)
MONTH
YEAR
DATE
PROGTYPE
PROGTYPE = (GCS GCE GE GSS DS)
SEQ_Char

SUPERTYPE: Char
CONSTRAINTS: None.
Has sequence multiplicity

SEQ_Digit
SUPERTYPE: Digit
CONSTRAINTS: None.
Has sequence multiplicity

CTYPE
CNUM
ALPHANUM

primitive concrete class Person
attributes

lastname: PERNAMES;
initial: Char;
firstname: PERNAMES;
birthdate: DATE;
ssan: SSAN;
sex: GENDER;
height: Nat_l;
weight: Nat_l;
age: Nat_l;

end attributes
Constraints:

age=(#23<a FUNCTIONAPP-EXPR>)

primitive concrete class Faculty subclass of Person
attributes

academic_rank: ACADEMIC_RANK;

primitive concrete class Student subclass of Person
attributes

gpa: Real;
Constraints:

gpa>=0.0
gpa<=4.0
age=(#24<a FUNCTIONAPP-EXPR>)

100

primitive concrete class GradClass
attributes

year: YEAR;
month: MONTH;
graduate: DATE;
designator: SEQ_Char;

primitive concrete class Section
attributes

number: SEQ_Digit;
Constraints:

(#25<a CARDINALITY-EXPR>) =2

aggregate concrete class WorkloadSystem
components:

fac: {Faculty};
sect: {Section};
grad: {GradClass};
curr: {Course};
offer: {Offering};
quarter: {Quarter};
taught_as: sect (Section) (0..n) <—> (1..1) offer (Offering);
offered: curr (Course) (0..n) <—> (0..n) quarter (Quarter) —>
Offering;

101

Appendix B: Sample Domains

Z-Schema Definitions Used for

CRUISE MISSILE DOMAIN

Missile System Structure Definition

,— Missile
propsys: JetPropulsionSys
airframe; Airframe

Jet Propulsion System Structure Definition
— JetPropulsionSys
fueltank: FuelTank
throttle : Throttle
jetengine : seq JetEngine
propweight: R
propjiiel: R

prop_weight = fueltank .CalcTotalWeight + jetengine. engine _weight
propjiiel = fueltank.fueljevel
(fueltank.fueljevel = 0 => throttle.maximumJlow_rate = 0)
(fueltank.fuel_level > 0 => throttle.maximum Jlow_rate = jetengine.maximumJuelJlow_rate)
fueltank.outputJlow_rate = throttle, actualJlowjrate
throttle, actualJlow_rate = jetengine. inputJlow rate

Jet Propulsion Functional Definition
,— LoadFuel

A JetPropulsionSys
fueljoadl: R

fueltank'.fuelJevel = fueljoadl

Throttle Structure Definition
Throttle

positionJndex: R
maximum Jlow_rate: R
actualJlow_rate : R

position Jndex > 0
position index < 1.0
actual Jlow rate = position Jndex * maximumJlow_rate

102

Airframe Structure Definition

[AFJAODELS, KILOMETER, KPH, RADIAN 1, RADIAN2, DEGREE]

. Airframe
airframe_simtime: SIMTIME
tailjium : seq ALPHANUM
model: AFJAODELS
airframe_weight: R
dragcoef: R
turn_coef: R
attachedjweight: R
appliedJhrust: R
REARTH: KILOMETER
afjdamage: N
X: KILOMETER
Y: KILOMETER
Z: KILOMETER
VX:KPH
Vy: KPH
V2:KPH
AX:R
Ay:R
AZ:R
theta : RADIAN2
phi: RADIAN1
thetaj: RADIAN2
phij: RADIAN1
lato ■ DEGREE
lon0: DEGREE
speed: KPH
X,.:: KILOMETER
Y,;: KILOMETER
ZE: KILOMETER
RE: KILOMETER

REARTH= 6378.137
airframe_\veight > 0.0
drag_coef> 0.0
turn_coef> 0.0
attached_\veight > 0.0
applied Jhrust > 0.0
(speed * speed) = (Vx * Vx +Vy * Vy + Vz * Vz)
XK - -1 * sin lon0 * X- sin latn * Y + cos lon0 * cos lat0 * Z + REARTH * cos lon0 * cos latn

YE = cos lon0 * X - sin lon0 * sin lat0 * Y + sin lon0 * cos lat0 * Z + REARTH * s'n l°no * cos lato
ZE = cos lato * Y + sin lat0 * Z + REARTH * s'n ^ato
square RE = square XE + square YE + square ZE

103

Fuel Tank Structure Definition
[SIMTIME]

— FuelTank
tanksimjime : SIMTIME
input Jlow_r ate : R
outputJlowjrate : R
fueljevel: seq R
capacity: R
tankjweight: R
fuel_density: R

fueljevel < capacity

FuelTank Functional Definitions

— Determine Interval
E FuelTank
E SimClock
interval] : SIMTIME

interval] = sim time - tanksimjime

, PredictTankFullTime
E FuelTank
overflow eventtimel : SIMTIME

overflow_event_time! = tanksimjime + capacity -fueljevel div inputjlowj-ate

— PredictTankEmptyTime

S FuelTank
tank empty event time\ : SIMTIME

tankjempty event time! = tank_simtime + fueljevel div outputJlow rate

,— CalculateNetFlow

E FuelTank
net Jlow rate] : R

netJlow rate] = input Jlow rate - output Jlow rate

104

,— CalculateNewLevel
A FuelTank
E SimClock
net_flow_rate!: R
Intervall : SIMTIME

fuellevel' =fuel_level + interval! * netJlow rate!
tank sim time' = sim time

— DetermineFuelWeight
S FuelTank
fiielweightl : R

fiie!_weight\ =fuel_level * fuel_density

i— CalcTotalWeight -
S FuelTank
fiiel_tank_\veight\ : R

fiiel_tank_weight\ = DetermineFuelWeight + tankjweight

— Setlnflow -
A FuelTank
E SimClock
flowrate! : R

inputJlow_rate' =flow_rate!
tank sim time' = sim time

— SetOutflow
A FuelTank
E SimClock
flow_rate! : R

output Jlow_rate' =flow_rate!
tank sim time' = sim time

105

Jet Engine Structure Definition
[MODEL TYPE]

JetEngine
manufacturer: seq CHAR
modeljrurn : MODEL_TYPE
engine_weight: R
maximum Jueljowjate : R
thrust Jactor: R
currentjueljow jate : R
current thrust: R

engine_weight > 0
maximum jueljow rate > 0
thrust Jactor > 0
currentjhrust > 0
current Jueljow jate > 0
currentJueljow rate < maximum jueljlow rate
current Jhrust = thrust jactor * current Jueljow rate

Jet Engine Functional Definition

— SetRate —
A JetEngine
flow rate!: R

current jueljow rate' =flo\v_ratel
current Jhrust' = thrust Jactor * current Jueljow rate'

106

Z-Schemas Definitions Used for

SCHOOL DOMAIN

WorkLoad System Structure Definition

,— WorkLoadSystem

fac : P Faculty
stu: P Student
sect: P Section
grad: P GradClass
curr : P Course
offer: P Offering
quarter: P Quarter
assigned: (stu <-> sect)
member_of: (stu -* grad)
r advises : (stu <~*fac)
taught'as : (sect -» offer)
teaching : (fac <-> sect)
offered: (curr x quarter -> Offering)

Person Structure Definition

[PERN AMES, SSAN, GENDER, DATE]

Person
lastname : PERNAMES
initial: CHAR
flrstname : PERNAMES
birthdate -.DATE
ssan : SSAN
sex : GENDER
height: N\
weight: N\
age : N\

age = yearinterval(birthdate, TODAY)

Faculty Structure Definition

ACADEMIC_RANK ::= Instr \ Asst \ Assoc \ Prof

,— Faculty
academicjank: ACADEMIC_RANK

Person

107

Student Structure Definition

— Student
gpa:R

Person

gpa > 0.000
gpa < 4.000
age = yearinterval(birthdate, TODAY)

[OFFERING_CODE]

Offering
code : OFFERING CODE

Offering Structure Definition

Section
number: seq DIGIT

#namber = 2

Section Structure Definition

GradClass Structure Definition

{MONTH, YEAR, DATE. PROGTYPE]

PROGTYPE ::= GCSI GCE I GE I GSS I DS

GradClass
program : PROGTYPE
year: YEAR
month: MONTH
graddate -.DATE
designator: seq CHAR

108

Quarter Structure Definition

[QYEAR, DATE, QNAME]

QYEAR : seq DIGIT

QYEAR = 2

QNAME ::= SU \ FA\ WI\ SP \SS\ FS

Quarter
qname : QNAME
qyear: QYEAR
start: DATE
end: DATE

start < end

Course Structure Definition

[CTYPE, CNUM, ALPHANUM]

CNUM: seq DIGIT

#CNUM = 3

,— Course
ctype : CTYPE
cnum : CNUM
ctitle : seq ALPHANUM
cdesc : seq ALPHANUM
creditHours : N
lectureHours : N
labHours : N
abetDes : N
abetSci: N
abetMath : N
abetOther : N

creditHours = abetDes + abetSci + abetMath + abetOther
creditHours = lectureHours + labHours / 3

109

Appendix C: Compilation Configuration

The EH system can be compiled using the following order:

require-system "DIALECT")
require-system "intervista")
require-system "workbench")
compile-and-load-lisp-file "lisp-utilities")
compile-and-load-file "read-utilities")
The next group supports the domain modeling effort,
compile-and-load-file "uzed-dm2")
compile-and-load-file "uzed-gram2")
compile-and-load-file "utoolkit-dm")
compile-and-load-file "utoolkit-gram")
compile-and-load-file "utility")
compile-and-load-file "zstrip")
The next group supports both domain modeling and specification (EH).
compile-and-load-file "domain")
compile-and-load-file "analyze")
compile-and-load-file "domlist")
compile-and-load-file "uzed2dom")
compile-and-load-file "dom-grammar")
compile-and-load-file "domsave")
compile-and-load-file "dummyfcts")

These following files are not needed for EH but you may get an error
/when compiling AFITTOOL if they are not available

The following is for use with domain model counter3.tex only.
(compile-and-load-file "testcnt3")
(compile-and-load-file "domtool")
The above are sufficient to populate the domain tree.

Can be invoked from menu by also including afittool (below).

(compile-and-load-file "ehtool")
The above are sufficient to generate domain specifications.

Can be invoked from menu by also including afittool (below)

(compile-and-load-file "xforms")
(compile-and-load-file "dom-refine")
(compile-and-load-file "destool")
The above are sufficient to transform specs to REFINE designs.

Can be invoked from menu by also including afittool (below)

;(load "~hartrum/kbse/code/d2c")

(compile-and-load-file "afittool")

;The following files are needed to run the EH
(compile-and-load-file "eh_pred_gram")
(compile-and-load-file "eh_predtoolkit_gram")
(compile-and-load-file "eh_dummyfcts")
(compile-and-load-file "eh_DD")
(compile-and-load-file "eh_domain")
(compile-and-load-file "eh_domsave")
(compile-and-load-file "eh_functions")

110

(compile-and-load-file "eh_fact_base")
(compile-and-load-file "eh_rule_base")
(compile-and-load-file "eh_back_eng")
(compile-and-load-file "eh")

File descriptions:
eh_pred_gram.re - Pulled the predicate part of the grammer from the uzed-gram2.re file and made a couple of
other changes to accommodate reading predicate strings from the user during runtime.

eh_predtoolkit_gram.re - Copied from the utoolkit-gram.re file but with some minor changes to accommodate
the eh_pred grammer.

eh_dummyfcts.re - function headers definitions to allow compilation. Cures the circular referencing of
functions between two files.

eh_domain.re - The EH definitions added to the domain AST created by the domain.re file

ehdomsave.re - This is the latest version of the domsave.re utility for saving POB files

eh_functions.re - Several supporting functions for the EH

eh_fact_base.re - The structures used as the fact bases or databases

ehrulebase.re - The sets of rules used during reasoning when adding and modifying objects.

eh_back_eng.re - The backward chaining engine that controls the manipulation of Add rules.

eh.re - The main functions used for the EH.

The Elicitor-Harvester can be started from the AFITTOOL menu.
First start AFITTOOL from the REFINE prompt with

.> (runtool)

Load a domain model by choosing the "Perform Domain Operations" option from the AFITTOOL main menu,
then either load a domain from a saved POB file or create a domain by parsing in LaTeX files by choosing the
corresponding option.

After the domain is loaded, back up to the main menu and select the option to "Perform Elicitor-Harvester
Operations".

Ill

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

, REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999 Master's Thesis
4. TITLE AND SUBTITLE

AN INTERACTIVE TOOL FOR REFINING SOFTWARE SPECIFICATIONS
FROM A FORMAL DOMAIN MODEL
6. AUTHOR(S)

Gary L. Anderson, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
Wright-Patterson AFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Roy F. Stratton
AFRL/IFTD
525 Brooks Rd.
Rome NY 13441-4505

(315) S3Q£3Q2i.

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-01

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Thomas C. Hartrum, Ph.D.
(937) 255-3636 X4581
Thomas. Hartrum@afit. af. mil
12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This werk examines the process for refining a software specification from a formal object-oriented domain model. This
process was implemented with interactive software to demonstrate the feasibility and benefits of automating what has been a
tedious and often error-prone manual task.
The refinement process operates within the framework of a larger Knowledge-Based Software Engineering system. A
generic object-oriented representation is used to store a domain model, which allows the specification tool to access, select,
and manipulate the required objects to form a customized specification. The specification is also stored as an object-oriented
model, which in turn can be accessed by a design tool to transform the specification into source code.
The tool has been designed as an interactive program that helps guide the user through the process of building the
specification. The tool has been named the Elicitor-Harvester because of the functions it performs. It elicits application
requirements from the user and harvests pre-existing knowledge from the formal domain.

14. SUBJECT TERMS
Specification, Refinement, Formal Method, Knowledge Base, Domain Model, Domain Editor,
KBSE, Elicitation, Rule Base, Software Engineering.

15. NUMBER OF PAGES

124
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev.
Prescribed by ANSI Std. 239.18..

2-89) (EG)
DeVigned~usihg WföVm Prö7 WHS/DIOR, Oct 94

	An Interactive Tool for Refining Software Specifications from a Formal Domain Model
	Recommended Citation

	/tardir/tiffs/A361745.tiff

