
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-15-1999

Analysis of N-Tier Architecture Applied to Distributed-Database Analysis of N-Tier Architecture Applied to Distributed-Database

Systems Systems

Alexandre G. Valente

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Valente, Alexandre G., "Analysis of N-Tier Architecture Applied to Distributed-Database Systems" (1999).
Theses and Dissertations. 5190.
https://scholar.afit.edu/etd/5190

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholar.afit.edu%2Fetd%2F5190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5190?utm_source=scholar.afit.edu%2Fetd%2F5190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ANALYSIS OF N-TIER

ARCHITECTURE APPLIED TO

DISTRIBUTED-DATABASE SYSTEMS

THESIS

Alexandre G. Valente, l" Lt., BAF

AFIT/GCS/ENG/99J-04

19990701 001
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCE/ENG/99J-04

ANALYSIS OF N-TIER

ARCHITECTURE APPLIED TO

DISTRIBUTED-DATABASE SYSTEMS

THESIS

Alexandre G. Valente, 1st Lt, BAF

AFIT/GCE/ENG/99J-04

Approved for public release, distribution unlimited

AFIT/GCE/ENG/99J-04

ANALYSIS OF N-TIER

ARCHITECTURE APPLIED TO

DISTRIBUTED-DATABASE SYSTEMS

THESIS

Presented to the Graduate School of Engineering

of Air Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Alexandre Valente, B.S.C.E.

1st Lieutenant, Brazilian Air Force

June, 1999

Approved for public release, distribution unlimited

11

AFIT/GCE/ENG/99J-04

ANALYSIS OF N-TIER

ARCHITECTURE APPLIED TO

DISTRIBUTED-DATABASE SYSTEMS

THESIS

Alexandre G. Valente, 1st Lt, BAF

Approved:

fjyzm. 'll
ary B. Kamont, Ph. B^tChairman) Date

Maj. Richard A. Raines, Ph.D. Date

Maj. Michael L. Talbert, Ph.D. Date

in

Acknowledgements

I wish to thank my Thesis Advisor, Dr. Gary B. Lamont for all the guid-

ance provided during my research effort. Also, I want to thank my Thesis Com-

mittee and everybody who contributed to the success of this work.

Thanks to my colleagues of work in the AFIT Parallel lab, especially to

Cap. Luiz Fernando Silva.

Special thanks to my family, my parents, and particularly, to my wife

Helen, who always provided support and encouragement.

IV

Table of Contents

Acknowledgements jv

List of Figures vjjj

List of Tables x

Abstract ^

Abstract ^

I. Introduction j

1.1 BACKGROUND INFORMATION 3
1.1.1 Client/Server Systems Development in the Brazilian Air Force 3
1.1.2 Current BAF Status in System Development 4
1.1.3 BAF Network Backbone g

1.2 RESEARCH OBJECTIVES 8
1.3 SIGNIFICANCE OF THE RESEARCH 9
1.4 APPROACH AND ORGANIZATION 10
1.5 ASSUMPTIONS, SCOPE AND LIMITATIONS 11
1.6 SUMMARY 12

II. Literature Review 23

2.1 INTRODUCTION 13

2.2 PARALLEL AND DISTRIBUTED DATABASE SYSTEMS 13
2.3 CLIENT/SERVER SYSTEMS 16

2.3.1 Historical Notes y/j
2.3.2 Client/Server Model JJ

2.3.3 Distributed Databases 20
2.3.3.1 Replication 21
2.3.3.2 Fragmentation 23
2.3.3.3 Two-Phase Commit 24

2.4 N-TIER ARCHITECTURE 25
2.4.1 Distributed Objects Architecture 26
2.4.2 CORBA 29
2.4.5 DCOM - 32

2.4.6 Comparing CORBA and DCOM 36
2.5 SUMMARY 3 8

III. Methodology 3P

3.1 INTRODUCTION 39

3.2 DETAILED RESEARCH OBJECTIVES 40

3.2.1 Discussion of Objectives - AJ
3.3 ENVIRONMENT . 42

3.3.1 Platform - 42
3.3.2 Operating System ^
3.3.3 Use of DCOM in this Research Effort 43
3.3.4 Use of Microsoft SQL Server as RDBMS 44
3.3.5 Development Tools 44

3.4 DESIGN AND IMPLEMENTATION 45

3.4.1 Database Design 4*
3.4.1.1 Consistency Rules . 40

3.4.1.2 Transactions 50
3.4.2 Client/Server Model 50

3.4.2.1 Front-End 51
3.4.2.2 Database 51

3.4.3 N-tier Model 57
3.4.3.1 Data Layer 52
3.4.3.2 Business Layer 53
3.4.3.3 Interface Layer 54
3.4.3.4 Topologies 56

3.5 DESIGN OF EXPERIMENTS 59
3.5.1 Parameters 61
3.5.2 Factors — 61
3.5.3 Metrics - — 62

3.5.3.1 TPC-C Transactions 62
3.5.3.2 Application Model and Topology 63

3.5.4 Experiments — - 63
3.5.4.1 Measurement Confidence 63

3.6 SUMMARY 65

IV. Implementation 66

4.1 INTRODUCTION 66
4.2 DATABASE IMPLEMENTATION 66

4.2.1 Database Population 67
4.2.2 Experiment Platform 67

4.3 CLIENT/SERVER SYSTEM MODEL IMPLEMENTATION 70
4.3.1 Database Implementation - — 70

4.3.1.1 Replication 70
4.3.1.2 New Order Transaction 71
4.3.1.3 Payment Transaction 73
4.3.1.4 Order Status Transaction 73
4.3.1.5 Delivery Transaction 74
4.3.1.6 Stock Level Transaction 75

4.3.2 Front-End Implementation 75
A A N-TIER SYSTEM MODEL IMPLEMENTATION 77

4.4.1 Database Implementation 77
4.4.2 Data-Tier Implementation 77
4.4.3 Middle-Tier Implementation 78

4.4.3.1 New Order Transaction 79
4.4.3.2 Payment Transaction 79
4.4.3.3 Order Status Transaction 80
4.4.3.4 Delivery Transaction 80
4.4.3.5 Stock Level Transaction 81
4.4.3.6 Modules 81

4.4.4 Front-End Implementation 82
4.5 EXPERIMENTS IMPLEMENTATION AND MEASUREMENTS 82
4.6 SUMMARY g4

V. Data Analysis 85

5.1 INTRODUCTION 85
5.2 COLLECTED DATA ANALYSIS 85

5.2.1 Data Analysis 87
5.2.1.1 Part A - Transaction 1 - New Order 87
5.2.1.2 Part A - Transaction 2 - Payment 90
5.2.1.3 Part A - Transaction 3 - Order Status 92
5.2.1.4 Part A - Transaction 4 - Delivery 96
5.2.1.5 Part A - Transaction 5 - Stock Level 98
5.2.1.6 Part B -Transaction 1 -New Order 99

5.3 GENERAL ANALYSIS 104
5.4 EFFICIENCY DISCUSSION 105

VI

5.5 SUMMARY ! 06

VI. Conclusions and Recommendations 107

6.1 Future Directions JJQ

Bibliography U2

Appendix A - Acronyms 120

Appendix B - Database SQL Scripts 123

Appendix C - Visual Basic Programs 133

1. DATABASE DATA GENERATOR 133
2. CLIENT/SERVER TRANSACTIONS FRONT-END 139
3. N-TIER DATA OBJECTS 143
4. N-TIER BUSINESS OBJECTS 151
5. N-TIER BUSINESS OBJECTS (MTS) 155
6. N-TIER FRONT END 158

Vll

List of Figures

Figure 1.1 - Proposed Brazilian Air Force RCDMA [2] 8

Figure 1.2 - Brazilian Air Force Materiel System Units [2] _10

Figure 2.1 - Classical Client/Server Model _18

Figure 2.2 - One-Way Data Replication 22

Figure 2.3 - State Diagram of Two-Phase Commit Protocol 25

Figure 2.4 - CORBA Architecture 32

Figure 2.5 - Typical COM object representation. 33

Figure 2.6 - DCOM overall architecture [50]. 34

Figure 3.1 - Database Diagram 47

Figure 3.2 - Standard Client/Server Topology 51

Figure 3.3 - Data Objects Layer 55

Figure 3.4 - Data Objects Layer 56

Figure 3.5 - N-tier Topology 1 57

Figure 3.6 - N-tier Topology 2 58

Figure 3.7 - N-tier Topology 3 5g

Figure 3.8 - N-tier Topology 4 60

Figure 4.1 - Client/Server Model Layout 68

Figure 4.2 - N-Tier Model Layout 69

Figure 3.2 - Database Diagram 76

Figure 4.3 - Testing Client/Server Model User Interface 76

Figure 4.4 - Testing Client/Server Model User Interface 78

Figure 5.1 - Transaction 1 (Part A) Execution Times 88

Figure 5.2 - Transaction 1 (Part A) Bandwidth Utilization 89

Figure 5.3 - Transaction 2 Execution Times 91

Figure 5.4 - Transaction 2 Bandwidth Utilization 92

Figure 5.5 - Transaction 3 Execution Times 94

Figure 5.6 - Transaction 3 Bandwidth Utilization _95

Figure 5.7 - Transaction 4 Execution Times 96

Figure 5.8 - Transaction 4 Bandwidth Utilization 97

Vlll

Figure 5.9- Transaction 5 Execution Times 99

Figure 5.10 - Transaction 5 Bandwidth Utilization 100

Figure 5.11 - Transaction 1 (Part B) Execution Times 101

Figure 5.12 - C/S Front-End Bandwidth Utilization 103

Figure 5.13 - C/S Remote Server Bandwidth Utilization 103

Figure 5.12 - N-Tier Front-End Bandwidth Utilization 104

IX

List of Tables

Table 3.1 - Database Cardinality 47

Table 3.2 - Part A Experiments 64

Table 3.3 - Part B Experiments 65

Table 5.1 - Results of Part A - Execution Times 86

Table 5.2 - Results of Part B - Execution Times 86

Abstract

N-tier architecture has been more commonly used as a methodology for

developing large database applications. This work evaluates the use of this ar-

chitecture instead of the classical Client/Server architecture in developing corpo-

rate applications based on distributed databases. The comparison between ar-

- chitectures is performed using applications that execute transactions similar to

those defined in the Transaction Process Council Type C benchmark (TPC-C).

The environment used for development and testing was the AFIT Bimodal

Cluster (ABC) - an heterogeneous cluster of PCs, running Microsoft Windows

NT 4.0 OS. The comparative experimental analysis demonstrated that the N-tier

architecture allows more efficient bandwidth utilization between client and

server machines, with similar performance. Results led to conclusion that the N-

tier architecture is better suited than the Client/Server for use in corporate sys-

tems interconnected by low-bandwidth Wide-Area-Networks (WANs), such as

the Internet.

XI

ANALYSIS OF N-TIER ARCHITECTURE APPLIED

TO DISTRIBUTED-DATABASE SYSTEMS

I. Introduction

The Brazilian Air Force's Computer Science and Statistics Directorate

(DIRINFE), among other tasks, is responsible for creating standards and defining

the way software development should be done in the Brazilian Air Force (BAF).

These standards usually specify hardware platform, such as network servers,

application servers and workstations; and the software platform to be used, such

as Network Operating Systems (NOS) and Database Management Systems

(DBMSs).

But computer technology is a fast moving target; keeping up with new

releases and creating the appropriate standards to deal with it is an overwhelm-

ing task. Therefore, technicians and engineers from DIRINFE spend a large part

of its time learning how to use and apply new software methodologies.

In the last few years, one new technology, generically known as Distrib-

uted Systems, has become commercially available and has been subject of "evan-

gelization" by the largest software companies such as Microsoft [3] and Sun [44].

The concept behind Distributed Systems is to develop software as a set of

small components. These components are called distributed objects and they can

run at different application Servers, accessing different databases. In this type of

system, tasks are divided in 3 or more tiers: a thin interface layer, which interacts

with the user; one or more middle tiers that hold the application business logic;

and a data tier. Because of this disposition, this technology is also called N-Tier

development model [25, 27, 31, 33, 60]. In this thesis investigation, the terms Dis-

tributed Systems, Distributed Objects or N-tier model will be interchangeable.

Distributed systems advocates affirm that this technology could provide

several advantages over the existent Client/Server model, such as better soft-

ware maintenance, smaller development time and better resource utilization and

scalability [27, 31, 60]. Of course, new technologies also have disadvantages,

which are not usually clear because of the marketing hype.

If Distributed Systems benefits could be validated, this technology could

be especially useful to BAF's large corporate systems. These systems have to deal

with Brazil's continental distances and usually low-bandwidth network connec-

tions.

The goal of this research effort is to compare the use of the Distributed

Objects in large distributed database systems against the standard Client/Server

methodology. Among the items being measured are network utilization, scal-

ability and easy of implementation and use of this type of solution.

This chapter provides a background on BAF networks and on one of its

corporate systems. It also describes the specific problem, research objectives,

methodology, assumptions, scope and limitations, significance of research, and

expected results.

1.1 Background Information

1.1.1 Client/Server Systems Development in the Brazilian Air Force

Except for the last 6 years, all corporate systems in the Brazilian Air Force

(BAF) have been developed to work in some kind of mainframe. There were

three computer centers (CCA - Air Force Computing Center) - CCA-SJ, CCA-RJ

and CCA-BR - that had mainframes that hosted corporate software. These cen-

ters also were responsible for maintaining hardware and developing software.

The computer center at Rio (CCA-RJ), has a large number of programmers which

sole purpose was to maintain corporate software in use at BAF [1].

In the early 90's, LANs started to become widespread in the BAF. Novell

Netware was the standard LAN Network Operating System and MS Windows

were the standard PC OS. With the available PCs, some systems started to be de-

veloped targeting PCs only. Usually these systems were developed in DBASE m

or Clipper, and later, in FoxPro1.

With PCs becoming more and more common, BAF started to plan the de-

velopment of corporate systems totally based on PCs. To be consistent with the

"downsizing" wave, common at that time, it was decided by DIRINFE that the

system would be based on the Client/Server model, using a relational database

server. It was also decided that it would be constructed using a 4th generation

development tool, and the Oracle CASE Designer was selected in 1991. Since the

CASE used was Oracle, the database server chosen was also Oracle, to minimize

possible software "impedances". The first system to be built using this new tech-

nology and paradigms would be a critical system to the BAF, the SILOMS -

Services, Material and Logistics Integrated System.

Following the tradition of the mainframe, BAF decided that it would de-

velop all its corporate computer systems in an "in-house" manner. The reasons

for this type of development are mainly concerns about security and control of

the source code of these systems. Although this has been proven to work in some

cases, this model also brought to the BAF all the problems related to developing

and maintaining large corporate programs.

The advent of new environments such as the Internet posed new chal-

lenges to the development of the BAF corporate systems. The necessity of inter-

connection of the different bases and to provide up-do-date information caused

the review and adaptation of most of BAF projects.

1.1.2 Current BAF Status in System Development

All major BAF corporate systems are today being ported to the Cli-

ent/Server model and the problems encountered are basically the same in all

them: Client/Server technology alone wasn't enough to guarantee the success of

the new "downsized" systems. Problems such as lack of experience using the

Client/Server model or overstatement of its capabilities caused several projects

' Information derived from the author's own experience working in the DIRINFE

to go over budget and over the expected development time. SILOMS is still un-

der construction after more than 5 years of work2.

BAF currently has standardized Oracle as the relational Database Server,

and Oracle Designer 2000 as the tool for development of Client/Server corporate

systems. The standard NOS changed from Novell Netware to Microsoft Win-

dows NT, basically because of the incompatibilities encountered when running

Oracle in older Netware servers. The use of Windows in desktops brought with it

some new RAD tools such as Delphi, Visual Basic and PowerBuilder [1]. Also,

due to the use of NT, Microsoft SQL Server is sometimes used as the intermedi-'

ate relational database server. Today, in non-corporate systems, Delphi or Pow-

erBuilder are being used to construct front-ends. These tools are also used to

provide alternative front-ends to corporate databases.

But even with these RAD development tools, the adopted model is still

the standard Client/Server model. The typical scenario in this model is a "fat"

client program running everything, from presentation to business logic; and Ora-

cle or other relational database as the backend, running many complex stored

procedures. This model of development has been causing many problems with

deployment, maintenance and Internet compatibility. New technologies and

models have to be applied to solve part of these problems and this research effort

try to address some of these issues.

! Information based on author's own experience working in the SILOMS Project

Another problem encountered by BAF developers is how to effectively

integrate distributed databases. In the standard Client/Server approach, Oracle

is used to replicate data among various data sites. But this makes it difficult to

have up-to-date information, since it takes time to synchronize the data. Also,

having multiple data sites implies the use of mechanisms such as "two-phase

commit", which slows down considerably the system. Finally, many locations

don't have a fast network connection, therefore replication and two-phase com-

mit mechanisms do not work well, leading to data inconsistency and poor sys-

tem response time.

Finally, the greater problem is scalability. Scaling Client/Server systems

means being able to support a large number of users accessing a single server.

Today, the only solution of this problem is to increase the processing power of

the server and its available bandwidth. But this solution is an expensive one,

since it means buying expensive server hardware and high-speed channels. This

problem is also addressed in this research effort.

1.1.3 BAF Network Backbone

In order to analyze the distributed systems in use in BAF, it is necessary to

know the layout of the backbone of BAF as well as the available bandwidth and

resources.

The corporate BAF network is based on a backbone that is available to

most of BAF's units [2]. One of its largest customers is the Materiel Command,

because its SILOMS is the largest Client/Server being used today [1].

Since Brazil has the fourth largest territory in the world in continuous sur-

face (exceeded only by Russia, Canada and China), BAF has huge distances to

cover in its network backbone. SILOMS, for example, has to reach the BAF's

main five depots and several bases located in regions of difficult access, such as

in the Amazonian rain forest. The distances between points of presence can reach

several thousand kilometers.

Currently, BAF employs several X.25 links between the units in Säo Paulo,

Rio Grande do Sul, Brasilia, Pernambuco, Para, and Amazonas to the concentra-

tor located at Rio de Janeiro. This network backbone is called RCDMA (Air Force

Data Communications Network) and it is supposed to connect all BAF's LANs

and MANs [1,2].

The commands that are using the RCDMA today are DAC (Civil Aviation

Department), DIRMA (Materiel Directorate), DIRINT (Administration Director-

ate), DIRSA (Directorate), DIRENG (Engineering Directorate), and all units of the

COMGAP (Support Command).

A recent study by [2] proposed a layout for the RCDMA, shown in Figure

1.1. This research assumes that this layout will be adopted and the necessary in-

frastructure is in place. The reason for this assumption is the lack of up-to-date

information of the RCDMA, since it is being currently upgraded and the ultimate

goal is the layout proposed by [2] or something very similar.

II Routers

© X.25 Network Adapter

ss
© CABW • WASHIHGTOH, USA
&CABE-LOHDOH, UK

DIRMA ® »AAf

0DIRIHrC £BASC

QPAHAGL 0BAGL
0PAMAAF 0DIRMAB
0DARJ $ PAMBGL

PAHASP SASP0
0CABSP

Figure 1.1 - Proposed Brazilian Air Force RCDMA [2]

1.2 Research Objectives

This research effort addresses one issue that has been debated in BAF in

the last years: the advantages or disadvantages of adopting a N-tier development

model for corporate systems, instead of using the standard Client/Server ap-

proach. This research uses a model of a typical a corporate system as data set.

Thus, the conclusions that are derived could be extended to any other major

system being used or developed today in BAF.

1.3 Significance of the Research

This research by BAF as a first analysis of the use Distributed Systems

model in corporate systems. The objective is to have to provide some experi-

mental insights of how a Distributed Systems uses network bandwidth and

computer resources, compared to the standard Client/Server model. These re-

sults could serve to justify or not changes in the way BAF develops software.

As an example, one of the most important corporate systems in use in BAF

is the SILOMS - Services, Material and Logistics Integrated System. This system

is still in development and it is supposed to provide online Logistics information

where needed [1].

SILOMS is being developed using the standard Client/Server model.

Therefore, for the reasons described in Chapter 2, it needs high-bandwidth con-

nections and demands considerable local computing resources.

Figure 1.2 shows all units that have to be integrated with the main Depots

by SILOMS. Most of these units have low-bandwidth network connections and

small local computer resources. Therefore, it a huge investment is necessary to be

able to make all these units part of SILOMS.

If N-tier technology could minimize these necessities, it would help mak-

ing corporate systems faster and cheaper to deploy and maintain. Like SILOMS,

many other applications could potentially benefit from this technology. This re-

search is a first step to validate (or not!) the use of Distributed Objects in BAF.

»AP*

North

' 500 Km '

OVERSEAS:

CABW- WASNIHGTOH, USA

CABE - LONDON, UK

■
PAMAH

»A»E •
■ATI

•

•
IATM

■
PAH ART

« *HIMAER
• «A**

»AAH

■ASV

•
•ACC •

PAMAIS
DIRMA •AAT

•
ATA

!> /mmm
/ PAMAGL

■ASC

BAGL

W »AST V
PAMAAF

■ARJ

MRHAB

PAMSGL

•
<■>

•
(ATL

\ PAMASP

CA»SP

■ASP

Figure 1.2 - Brazilian Air Force Materiel System Units [2]

1.4 Approach and Organization

To compare the use of the N-tier architecture with the standard Cli-

ent/Server, the following steps are required:

1. Design a database model that exemplifies the workload and the data

distribution of a typical corporate system.

2. Design an application using the chosen model, and implement it, using

the Client/ Server and the Distributed Objects methodologies, in an

environment similar to the ones in use in BAF.

10

3. Design a set of experiments to reflect the tasks commonly executed in a

corporate database and the respective metrics.

4. Obtain statistical results for these metrics, for both methodologies.

5. Analyze the data and derive conclusions.

All these steps are present in the following chapters of this research effort.

Chapter 2 provides a theoretical background about the technologies used in this

research; Chapter 3 details the adopted methodology; Chapter 4 describes met-

rics and experiments implementation; Chapter 5 contains the results; and in the

Chapter 6 are the conclusions and recommendations.

1.5 Assumptions, Scope and Limitations

All the BAF systems references used in this thesis investigation do not

necessarily reflect exact systems currently in use in BAF. This research assumes a

common-sense solution where there is no sufficient information about the real

system.

Also, all conclusions derived in this research may not be directly applica-

ble to production systems. Different hardware and software platforms could sig-

nificantly alter the results obtained in this research platform.

Although there are several different factors that affect performance and

resource utilization, due to a limited time frame, only the most common were

used in this research. Chapter 4 details the chosen factors and the reasoning be-

hind the decisions.

11

This research also assumes that developers could freely switch between

the Client/Server and Distributed Objects model. This does not entirely reflect a

real system, were developers would have to be trained in the new technologies.

This could take a considerable time, since usually new technologies have a steep

learning curve.

1.6 Summary

This chapter provides a general overall description of this research effort.

The research objectives and significance are explained. Also, this chapter details

the research approach and how this research work is organized. Finally, some

assumptions and scope limitations are listed.

12

II. Literature Review

2.1 Introduction

This chapter covers the literature background necessary to this research

effort. Three main topics are addressed: parallel and distributed database sys-

tems, standard Client/Server development model and n-tier development. Stan-

dards such as CORBA [35] and DCOM [49] are also detailed.

2.2 Parallel and Distributed Database Systems

The idea behind parallel systems is to divide a task among different work-

ers in order to achieve better execution time or to be able to deal with problems of

a greater size [22]. By using parallel processing, an application can achieve some

speedup in parts of the task, allowing better response times and better use of re-

sources. Usually, parallelism can be exploited at different levels. For example, in

a DBMS, parallelism can be used at a query level, by using many processors to

join or filter some relation; or at the application level, by using multiple threads

to attend concurrent users.

This research effort is based on the use of large, distributed databases.

Therefore, this discussion of parallel systems will be limited to the use of paral-

lelism in databases and distributed database systems.

Parallel Database Systems, are, according to [22], MIMD systems - Multi-

ple instruction-streams, Multiple data-streams. This means that different data

sets are used as processing base for multiple processors. In a modern Database

13

System, many servers work cooperatively, each one with its own portion of the

data.

According to [21], two main measures of performance of a database sys-

tem are: response time and throughput. By performing subtasks in parallel, a

database system can improve response time because the task can be done faster

and concurrently; and throughput, because more tasks can be executed at the

__ same time.

It is not possible to parallelize all tasks executed by a DBMS, though. Even

at the query level, the type of query and the physical distribution of the data

dictates the amount of parallelism that can be achieved.

Three architectural models [21] are relevant in a Parallel Database System:

Shared Memory, where all tasks share a common memory, Shared Disk, where

the processors share a common disk; and Shared nothing. An example of the first

model is multiple threads executing a single query in a Symmetrical Multiproc-

essor (SMP) machine. Multiple instances of a server accessing the same database

in some shared physical media is an example of the second model, and different

DBMSes integrated in a single database application by some network exemplify

the last. Of course, all these models can occur in any large distributed database

system.

All modern DBMSes exploit parallelism at multiple levels. It is common to

find database servers that have many processors (SMPs), using shared memory

14

architecture. This type of machine is expensive and usually there is a limit on the

number of processors that the DBMS or OS can support.

Shared disk is also a very common type of architecture in parallel data-

base systems, where Redundant Array of Inexpensive Disks (RAID) is shared

among different servers. This architecture usually does not scale beyond a certain

point due to the disk bottleneck. The last type of architecture, shared nothing, is

the most common one. In this category are included systems based on Cli-

ent/Server or N-tier models.

On Client/Server or N-tier systems, processing tasks are divided among

the existing processors. Client/Server systems usually have one or more data-

base servers that are responsible for heavy processing tasks and multiple clients

providing user interface and validating data. N-tier systems also have multiple

databases and multiple clients but usually heavy processing and data validation

are performed in application servers.

When multiple databases, at different physical locations, are part of the

same application, this application is called a Distributed Database System. All

modern DBMSes are capable of dealing with multiple databases and integrating

them in some form to provide distributed capabilities.

The use of distributed and parallel technologies in database systems has

been a common place in recent versions of commercial DBMSes, such as Micro-

soft SQL Server [47] and Oracle [48]. These DBMSes make use of the multithread

capabilities of Windows NT and Unix OSes to be able to exploit local parallel

15

processing; and they make use of the network infrastructure to provide distrib-

uted database capabilities.

The following sections describe in detail the two models being comparing

in this research effort: Client/Server and N-tier. Also, Distributed Database sys-

tems are detailed.

2.3 Client/Server Systems

2.3.1 Historical Notes

The Client/Server model originated from the old concept of centralized

computers, where "dumb" terminals accessed a large mainframe. This model

was used because computational power was very expensive and it was necessary

to share it among many simultaneous users in order to minimize the mainframe

cost.

After the PC revolution, in the middle 80's, computational cost dropped

considerably and users started to use their own machines to run their programs.

This brought some new problems to companies, since each PC started to accu-

mulate its own data in a particular program format, making cross-application

data exchange a difficult task. Later in the decade, LAN's started to proliferate

and, with them, the need to put together all this dispersed data in a common file

server.

In the beginning of the 90's, LAN's file servers were used to store data

files, which were used by applications running on workstations. Therefore, these

16

servers often became an application bottleneck since they worked like scaled

down mainframes, providing data integrity, concurrency control, etc. Worksta-

tions hosted all the applications, therefore networks have to support high net-

work traffic and it was necessary to have workstations with significant computa-

tional power. These problems were the main reason for the rising of the Cli-

ent/Server model.

2.3.2 Client/Server Model

According to [8], the "Client/Server technology is a paradigm, or model,

for the interaction between concurrently executing software processes". This

model applies to one or more machines. This means that it is possible to have a

Client/Server system in a single machine, if there are different processes for cli-

ent and server tasks.

Although the Client/Server model can be used in different contexts and

infrastructures, such as inside the local operating system or network, the most

frequent use of it is in networked database environment. In this case, a server

processes are running in the database server, and the client process is running in

some workstation, connected to the database server by some network.

The Client/Server model solved the problem of inter-application commu-

nication by storing all data in a single server database and providing standard

data retrieving methods. The server also alleviated the need of powerful work-

stations because it hosted all the application's heavy-processing tasks.

17

Worksiation

(E -Ethernet-

IT::..*!

Server
)

Figure 2.1 - Classical Client/Server Model

In the Client/Server model, a client send requests and a server responds

to these requests by doing some processing and returning results (see Fig. 2.1).

This "interaction between the Client and Server is a cooperative, transactional

exchange in which the client is the proactive and the server is reactive"[8].

In Client/Server Database Systems, data is stored in the data server in a

relational and specialized application. This application is often called SQL

Server, and it is responsible for providing access to multiple, concurrently users.

Usually, multiple applications such as spreadsheets or business graphic software

are connected to a database at the same time, each one requesting data and

posting transactions. The database server also is responsible for maintaining data

integrity, dealing with error recovery and security.

The client program, in a Client/Server database system, provides the fol-

lowing functions:

18

■ Windows and screen manipulations - such as dialog box con-

trols;

■ Keyboard or mouse entry;

■ Sound and video displaying and management;

■ Data entry and some level of data validation;

■ Error and Help displaying.

Users do not have to know that there is a network and a database server

running in the background, he or she only interacts with the client console.

According to [12], the server program has the following main attributes:

■ Provides a method of data access to the client - normally done

by using a standard data access language, such as Structured

Query Language (SQL);

■ Provides some Data Definition Language (DDL) to retrieve

meta-information about the stored data and to create and de-

stroy data objects;

■ Has the ability to measure the data access performance and

provide means of changing critical parameters;

■ Controls Data integrity and guarantees entity and referential

consistency of the data;

■ Process Transactions and guarantees that data updates occur in

a consistent manner;

19

■ Controls Concurrency to allow a large number of users to work

at the same time in the same database;

■ Provides Security and authorization checking;

■ Provides Backup, recovery and other database administration

functions.

2.3.3 Distributed Databases

Distributed Databases is the term used to describe a collection of data

which is logically viewed as one but actually is physically located at different,

connected nodes [7]. These nodes are loosely coupled [21] and can be connected

by any physical mean. This interconnection medium is usually a WAN, such as

the Internet. Each node that participates in a Distributed Database may issue

transactions that span many one or more other nodes.

A Distributed Database Management System - DDBMS - is a DBMS

server that is capable of managing many connected databases to create a cen-

tralized, unique view of all connected databases. To be able to perform this task,

the DBMS has to deal with many factors, such as Distributed Update Propaga-

tion, Distributed Catalog Management, Distributed Concurrency Control and

Distributed Query Optimization [7]. To correctly address all these issues, the

DDBMS has to have local autonomy, sustain continuous operation, allow multi-

ple control sites, support data location independence, and provide distributed

transaction management.

20

A Distributed Database System relies on a mechanism called two-phase

commit. This allows an update to happen in the correct order in multiple loca-

tions. By using two-phase commit mechanism, the DBMS ensures that the data

referential integrity is preserved in all locations affected by the transaction [19].

In a Distributed Database, transactions that span more than one database

have to maintain the same characteristics of single database transaction. In other

_ words, a distributed database transaction has to be: Atomic - that means that the

transaction happens in all nodes or in none; Consistent - meaning than a trans-

action will always execute in the same manner, being reproducible; Isolated -

which means that all data involved in a transaction is protected from external

changes during the transaction; and Durable - meaning that once the transaction

is committed, the data is secured and the changes can't be reversed [6].

According to [21], there are several ways of storing data in a distributed

database: through replication, fragmentation or using both. In the following

section these concepts are explained in more detail.

2.3.3.1 Replication

Data Replication is the mechanism of copying data from one to location to

one or more destinations. With this mechanism, the data located in one node can

be provided to multiple users. Therefore, the Data Replication mechanism is

used in Distributed Database to move the data among the various nodes.

Data Replication mechanisms also guarantee that each update is propa-

gated to all the copies; therefore preserving the data consistency. The synchroni-

21

zation of the replicated data can be achieved by different ways: Immediately -

when the updated is executed, the DDBMS starts copying the changed data to its

replicated copies; Scheduled - all the changes are propagated at a specified time;

Triggered - happens when a certain event occurs (such as the number of up-

dated entries reaches a certain limit); and Manual - the administrator starts the

process [6].

Replication

fZ-J^\
Tabl« 1 jc=a

'! 1

Jj/

-»-«!:

ütSl w~\j-^
Replica

Server 1 Servor2
E I—Ethernet-

Figure 2.2 - One-Way Data Replication

When two or more different nodes update a record that is physically rep-

licated at two or multiple sites, a collision or conflict is said to happen. In this

case, the DDBMS has to decide which copy will prevail over the other. There are

different ways of solving this problem; the common approach is to implement

rules (based on timestamps or other priorities) to resolve the conflicts; or to have

22

the database administrator to resolve manually each conflict. There are DDBMS

tools that automate part of this process.

The main disadvantage of the Data Replication mechanism is that one

cannot be assured of the real state of the global database at a given time. The data

can be different on the various locations and only after synchronization; the data

at all sites will reflect the actual global state. But since the data is always chang-

ing, the local copy is almost never up-to-date. Therefore, data replication cannot

be used on critical systems, such as in a seat reservation system; otherwise two

customers could reserve the same seat.

2.3.3.2 Fragmentation

Fragmentation is the other way to store data in a distributed database. In-

stead of copying relations among the nodes, the relation is split and the relation

itself can be dispersed through many nodes.

Depending on the way we split the data, the fragmentation is called hori-

zontal or vertical. In the horizontal fragmentation, different tuples are assigned

to different nodes. On the other hand, vertical fragmentation breaks the relation

by assigning columns to different locations, decomposing the original relation

scheme [21].

In real system, a mixture of vertical and horizontal fragmentation is used

where appropriate, depending on the type of the system and how the data is

dispersed.

23

2.3.3.3 Two-Phase Commit

To ensure atomicity, when a transaction is issued in a distributed system,

all nodes must agree on the final result of the transaction [21]. The common pro-

tocols used to achieve this atomicity are the two-phase commit and the three-

phase commit protocols. The three-phase commit has some advantages over the

two-phase commit but the major database vendors usually only implement the

two-phase commit protocol in their products.

The two-phase commit protocol occurs in the following way (Figure 2.3):

1. The first node starts the transaction, writes the prepare statement

in the local log and sends a prepare message to all other nodes

involved in the transaction. All nodes that receive the prepare

message, add a ready statement in their local log and reply with

a ready message. If any node cannot execute the prepare com-

mand, it sends back an abort message.

2. If all the nodes respond positively to the prepare message before

a timeout, the initial node issues a commit to its log and sends a

commit message to all the participating nodes. All nodes that re-

ceive this message also commit their local databases. If any of

the nodes issued an abort message in the previous phase, the

initial node aborts its transaction and sends an abort message to

all participating nodes.

24

Send Prepare
to all nodes

Send Abort
to all nodes

Transaction ^_
Failed f*"

Figure 2.3 - State Diagram of Two-Phase Commit Protocol

2.4 N-tier Architecture

As discussed in the previous section, Client/Server has several advan-

tages, but it also has several disadvantages, as described below [27]:

■ There is no middleware involved in the Client/Server model; therefore

integrating different vendors is a very difficult task, since each server

has to maintain its own copy of application logic, often in different

languages.

■ There is no support for rich data such as images or videos in the stan-

dard relational database servers. Although some vendors do provide

some types of functionality, integrating those in the Client/Server

model is not a straightforward operation.

25

■ The server has to be increasingly powerful as the application scales.

This leads to a very expensive, mainframe-like hardware.

■ Since the client usually plays an active role in the business logic im-

plementation, it has the necessity of a high-bandwidth network. And

this necessity grows as the number of simultaneous users increases.

■ Scalability in a Client/Server means increasing the processing and

bandwidth power and thus increasing the server price. Also, in this

type of system the server becomes a single point of failure, increasing

the price of disaster recovery solutions.

To address these disadvantages, N-tier model uses the concept of distrib-

uted application processing. The idea is to exploit the available computational

power of different servers by breaking the application in several components.

The N-tier architecture can solve many of the listed C/S problems by in-

troducing intermediate layers of software between the client and the server.

These layers will act as middleware that implement all the applications business

logic providing application scalability by increasing the number of application

servers. In the following sections these concepts are explained in more detail.

2.4.1 Distributed Objects Architecture

The middle layers of a N-tier application are comprised by Business Ob-

jects. These objects act as a "bridge" between the client and the server, being re-

sponsible to carry out transactions that can span across multiple servers.

26

Each of these objects usually implements a "Business Rule". Business

Rule, or Logic, is any type of function that executes one or more task of the com-

pany's application. Data validation, database transactions and query processing

are example of business rules [32].

The business objects can act alone or in cooperation among with other

business objects. Each one can be viewed as a single entity; therefore they are

usually implemented as a binary software object. The collection of these objects

in the middle-layer of a N-tier application is called Distributed Objects Archi-

tecture.

Distributed Objects Architecture is model where software is developed

using Component-Based development. Component-Based Development is an

evolution of previous paradigms of software development, such as modular de-

velopment, subroutine libraries, Client/Server and object-oriented development.

In the pure object-oriented approach, the reuse and inheritance is re-

stricted to the source code level. If a developer has to change a class definition, he

or she would have to change and recompile the entire application. The idea of

components is to promote the binary reuse of software. In a Distributed Objects

Environment, the component is a unit of packing, distribution, maintenance and

development [28]. The application is a composed by a collection of run time in-

terconnected components. Each component can be modified and replaced with-

out the need to recompile the entire application. The component supports all

characteristics of objects, such as polymorphism, encapsulation and inheritance.

27

The use of objects provides the possibility of fine-grained tuning in the

computing architecture by moving or copying objects to appropriate nodes of the

network, hence the term "Distributed". Also, components can be located at sev-

eral different servers to achieve load-balancing capabilities.

Distributed objects communicate with each other using messages and

specified interfaces. The component acts as a service server, by responding to

^messages addressed to its interfaces; the implementation of these interfaces is

hidden from the clients. Components may change independently and transpar-

ently, provided that their interfaces are maintained.

To support a Distributed Objects application, it's necessary to have an in-

frastructure to handle tasks such as object creation, destruction and intercommu-

nication. This infrastructure acts like a bus, connecting the different components

and providing a common interface that exposes the component services.

OMG's Object Management Architecture (OMA) is an example of such ar-

chitecture. It is intended to support distributed enterprise computing applica-

tions [35] and includes the following components:

■ A global object model to define how the heterogeneous resources

that makes up the system can be modeled as objects.

■ The Object Request Broker (ORB), an object messaging bus that en-

ables distributed objects to transparently send and received re-

quests and responses.

28

■ Object Services, which support basic functions such as program que-

ries, transactions, and event notification, for using and implement-

ing objects;

■ Common Facilities, which provide end-user oriented capabilities that

useful across multiple application domains.

■ Domain Objects, which are likely to be used only in specific vertical

application domains, such as telecommunications or manufactur-

ing.

■ Application Objects, which are built specifically for a particular ap-

plication.

The bus that interconnects the objects also provides mechanisms that let

components exchange metadata and discover each other.

Three commercial architectures are currently widely used as an infra-

structure to Distributed Objects: Microsoft DCOM [35], Object Management

Group (OMG) CORBA [49] and Java Enterprise Java Beans (EBJ) [51], by Sun

Corporation. In the following sections, the first two architectures are described.

Since EJB was released during this research effort, it is not analyzed here.

2.4.2 CORBA

CORBA stands for Common Object Request Broker Architecture [36]. It is

controlled by OMG, which have over 700 member companies, such as IBM, SUN

and Oracle. The most recent CORBA specification is the 2.1. Many products, such

29

as Iona Orbix, IBM SOM and Inprise's (former Borland) Visibroker, have an ORB

that adheres to this specification.

CORBA Objects are packed binary components that remote clients can ac-

cess via method invocations [35]. The language and compiler used to create

server objects are totally transparent to clients. The clients don't need to know in

what operating system or computer the component resides.

The CORBA components publish an interface that acts as a binding be-

tween clients and servers. The Interface Definition Language (IDL) is used to spec-

ify the published interfaces. The IDL-specified methods could be written in

Smalltalk, C, C++ or Java. IDL provides operating system and programming lan-

guage independent interfaces to all services that a component offers.

The Object Request Broker (ORB) provides the object bus. It also provides a

set of distributed services to let objects discover each other at run time and in-

voke each other's services1. It does that by mediating the transfer of messages

from an object to another. When a client invokes a service from a CORBA object,

the ORB redirects the function call across the network to the target object (see

Figure 2.4).

The ORB offers some object services that are used to do maintenance func-

tions. The most important ones are:

■ Life Cycle Services - used for creating, copying, moving and deleting

components;

30

■ Persistence Service - provides interface for storing components per-

sistently;

■ Naming Service - allows the components to locate each other;

■ Event Service - allows components to register and unregister itself for

receiving events;

■ Concurrency Control Service - provides a resource lock manager;

■ Transactional Service - provides two-phase commit using transactions;

■ Relationship Service - allows the creation of dynamic relations among

components;

■ Externalization Service - provides a way of getting data in or out a

component;

■ Query Service - provides query operations for objects;

■ Licensing Service - controls the use of objects;

■ Properties Service - provides a mechanism to alter component's at-

tributes.

To call a member function of a CORBA object, the client needs only to

know the standard ORB Services and the object IDL. The creation of a CORBA

Application involves the following steps:

1. Define the interfaces to the objects, using the CORBA IDL.

2. Compile these interfaces using a IDL Compiler, which produces a stub

code for the client objects and a skeleton code fort the server object;

3. Develop Server programs that will implement the defined interfaces;

31

4. Register the Server object in the ORB;

5. Develop Client programs that use the defined interfaces;

Figure 2.4 - CORBA Architecture

2.4.5 DCOM

COM stands for Component Object Model [49]. COM is a Microsoft's binary

standard and it specifies how to build components that can dynamically interact.

DCOM stands for Distributed COM and it is an extension to the COM model that

allows the objects to exist across a network. DCOM simply replaces the standard

COM inter-process communication by a network protocol. Usually the terms

COM and DCOM are interchangeable, but COM is more adequate to a single

machine application and DCOM to a network application.

32

Similarly to CORBA, a COM object exposes its services by defining the

interfaces through a Interface Definition Language (IDL). Although COM IDL is

very similar to CORBA IDL, they have some differences that prevent one for be-

ing compiled by the other.

Figure 2.5 - Typical COM object representation.

COM Components are created as an executable code, distributed either as

Win32 dynamic link libraries (DLLs) or as executables (EXEs). A COM compo-

nent also supports the usual object-oriented characteristics, such as polymor-

phism, encapsulation and interface inheritance. One thing that COM does not

support is the implementation inheritance, but it supports binary reuse through

Containment and Aggregation. I diagrams, a COM component is usually

represented as in Figure 2.5. The little "lollypops" represent interfaces that the

object exposes.

COM components are language independent and most commercial devel-

opment environments support it, including C++, Visual Basic, Delphi and Java.

COM library API provides the common component management services. This

COM infrastructure, shown in Figure 2.6, is present in all Microsoft OSes, such

Windows 98 and Windows NT.

33

Client

Client machine

SCM(s)
& registry

SCM

registry registry

RPC Channel

OXID
resolver —D—

Ping dient —-[) Ping server

class
factory

Server machine

Figure 2.6 - DCOM overall architecture [50].

The client application uses COM objects through COM interfaces. During

the first request (or at a time specified by the client), the server object is activated

and the requested interface is sent back to the client. All COM interfaces are de-

rived from a standard interface: IUnknow. An object can implement one or more

interfaces.

There are two types of server objects: in-process and out-of-process ob-

jects. The former executes inside the client's address space and is packaged by a

DLL.

Out-of-process objects can reside in the same machine, in a different ad-

dress space, or in a different machine. To allow a client accesses an interface of

this type of object, it's necessary to use piece of COM infrastructure called proxy-

34

stub pair. Their purpose is to transfer the parameters and return values across the

different address spaces or machines. This process is called marshaling.

All COM components are registered in the Microsoft Operating System

registry. This enables the client to find the objects that they require. All interfaces

have a unique identifier number called IID (interface ID) and the object package

has a CLSID (class Ids). These IDs are Global Unique Identifiers (GUID), gener-

_ ated by an algorithm that uses the network board physical address, time and

other variables to ensure that the generated ID is unique.

Differently from CORBA, where calls can be defined as synchronous or

asynchronous, all COM calls are synchronous. Therefore, COM calls are not scal-

able by themselves, since a client must wait a complete method execution before

being able to execute a subsequent task. To address this issue, most current

COM-based systems also use Microsoft Message Queue Server (MSMQ) [65]. The

MSMQ Server is a message-based server middleware that can provide asynchro-

nous capabilities to COM applications. The upcoming COM version, COM+, will

have MSMQ integrated into the core COM framework. This will make asynchro-

nous COM calls transparent to users. COM+ will be available with Microsoft

Windows 2000, which is currently in Beta test.

It is also common to implement COM systems in conjunction with Micro-

soft Transaction Server (MTS) [66]. MTS provides better scalability to COM sys-

tems by using resource pooling and object caching. Also, MTS can coordinate

transactions among different database servers, making it possible to business

35

objects in middle-tier to issue multi-database transactions. As MSMQ, MTS will

be also part of the COM+ framework.

2.4.6 Comparing CORBA and DCOM

COM and CORBA define objects as a collection of methods and data. Both

allow access to an object only through specific interfaces, and both provide an

Interface Definition Language (IDL) that can be used to define that interface. But

they have some differences, and in the following paragraphs some of this differ-

ences will be described.

The main difference between the two architectures is the use of interfaces.

In CORBA, each object presents a single interface to its clients, and each client

holds one object reference to the object as a whole. In COM, an object can present

two or more interfaces to its clients. A client usually holds multiple interface

pointers to the same object. Unlike CORBA, COM clients invoke methods

through a specific pointer to the interface containing that method rather than via

a single reference to the entire object.

One other difference is the way of creating and managing objects. In

CORBA, an object is typically created by a call to the ORB. This call generates an

object reference to the new object, a reference that can be used by clients to in-

voke methods on that object. When a client invokes a method on an object that's

currently active (i.e., the object's code and data are in memory), the ORB passes

the request to the running object. If the target object is not currently active, the

ORB loads it, then hands it the client's request. Clients don't need to inform an

36

object when they are done using it, and exactly when an object stop running is

not defined by the CORBA standard. Instead, some CORBA implementations re-

quire the client to explicitly tell the ORB that an object should be deleted. Until

this is done, the ORB is perfectly willing to start and stop the object as needed.

In COM, a client can create an object via a call to the standard COM li-

brary. Among other parameters to this call, the client specifies the CLSID of the

object it wants to create and the desired IID. To efficiently create many objects of

the same class, a client can instead acquire a pointer to a class factory for that

class. A client gets its first interface pointer to a new object as part of the creation

process. It then gets any other pointers as it needs, by asking the object for them

directly. When the client is finished using the object, it informs this fact by calling

the Release method on the interface pointer. When all clients have released all

pointers on all of an object's interfaces, the object usually destroys itself.

A third, and perhaps, the most controversial architectural difference be-

tween CORBA and COM, refers to one aspect of object-orientation: inheritance.

COM does not support for multiple interface inheritance, due to COM imple-

mentation specifics. Although it is very rare to find applications that need multi-

ple interface inheritance, this is a major argument of CORBA followers against

COM.

37

2.5 Summary

This chapter reviews the theoretical background for the topics used in this

research effort. The concept of parallel and distributed systems architectures ap-

plied to large database systems is discussed.

The two main distributed objects standards, CORBA and DCOM, are ex-

plained. These two standards are also compared and its main differences high-

lighted.

38

III. Methodology

3.1 Introduction

As described in the historical background (Chapter 1), the Client/Server

model alone hasn't been enough to guarantee the success of the corporate sys-

tems developed at BAF. This research effort analyzes the consequences of using

the N-tier development model instead of the Client/Server. The particular inter-

est is with respect to changes in the system scalability and network utilization.

One of main steps when developing a N-tier development is to isolate all

the business processes in the corporation and implement them as middle-layer

components, using one of the available distributed-objects technologies (see pre-

vious chapter). The N-tier client application is usually designed to be a thin inter-

face, which communicates with the business objects in the middle layers. The

business objects implement the corporate business logic, and communicate with

other business objects or use the data layer for storing and retrieving data.

As advocated by N-tier vendors [3, 35, 44], by using the N-tier model,

better scalability could be possible because business objects could be replicated to

different servers and activated by some server load balancing mechanism. They

also say that N-tier systems require less network bandwidth between clients and

servers because all data manipulation occurs between the middle and the data

tier.

But this is a relatively new model and development teams are afraid of

what impact on overall system performance would this technology bring. Also,

39

although the development time could in theory be reduced, all development

teams would have to be trained to use new development tools and models. Fi-

nally, what would be the real benefits in the scalability of the produced software?

The improvement in scalability would have to be big enough to justify such a

transition.

In this chapter, the design of two models is detailed: a standard Cli-

ent/Server model and an N-tier model. Both models use the same underlying

database, which is also detailed. Finally, the metrics to compare these models

and the experiments to measure them are explained.

3.2 Detailed Research Objectives

In this research effort, the comparison between Client/Server and N-tier

architectures is being addressed. Specifically, trying to identify and measure the

advantages or disadvantages of adopting a N-tier development model for corpo-

rate systems instead of using the standard Client/Server approach. The items

considered in order to achieve this major goal are:

1. Investigate the current research in component-based development.

2. Investigate the current research in parallel computer systems.

3. Investigate and learn how to use components to develop a large N-tier

corporate system.

4. Design and install an environment to simulate a corporate distributed

database system.

40

5. Design and implement a program using the standard Client/Server

methodology.

6. Design and implement a program using the N-tier methodology.

7. Design a set of metrics to be used to compare the two methodologies

and the respective experiments to measure them.

8. Develop a testing plan to be used to run the proposed experiments and

measure the developed metrics in both models.

3.2.1 Discussion of Objectives

Component based development is developed around the two standards

being used by the industry, CORBA and DCOM. The knowledge of these stan-

dards is useful to BAF because it can provide a better ground for discussion if

BAF decides to pursue this technology.

The second objective is important to understand the some of the issues

related to the development of parallel systems, and to apply these concepts in the

development of database distributed systems.

Objective 3 is necessary to know how to use component-based software to

build N-tier systems, with emphasis in the development of large corporate sys-

tems.

The objectives 4 to 6 are accomplished when setting up an environment

and building up the models for both the standard Client/Server and the N-tier

systems. The environment set up includes the installation and configuration of a

41

Relational Database Server and clients, and a component-based infrastructure

using Windows NT, SQL Server and DCOM

Finally, the last two objectives are important to be able to develop the

metrics and the experiments to compare the models, by gathering statistical data.

3.3 Environment

. 3.3.1 Platform

Corporate systems are based on multiple LANs, each one with multiple

servers (file server, database and application servers, etc), interconnected by a

WAN. This research effort uses the ABC Bimodal PC Cluster in the Parallel Lab,

for development and testing. It was chosen because of it availability and because

it has the necessary number of server to resemble a corporate LAN. Although it

is a single LAN, WAN traffic can be estimated by measuring network traffic

between client and servers and among servers.

The ABC NT Cluster consists of 4 Pentium II 333 MHz, 7 Pentium II 400

MHz computers and a Pentium II 450MHz, all with at least 128M of memory and

interconnected by a Fast-Ethernet network (100Mbits/s) using a central Intel

switch [70]. Each machine is able to dual-boot to Linux [70] or Windows NT [71].

3.3.2 Operating System

This research effort uses only the NT operating system version 4.0, Service

Pack 4. The reason for this choice is primarily to be consistent with BAF's envi-

ronment, which uses NT as OS for database servers, as discussed in Chapter 1.

42

Also, the workload to install and conFigure a DCOM or a CORBA framework in

a mixed environment, such as Linux-NT, is beyond the scope of this work.

3.3.3 Use of DCOM in this Research Effort

The alternatives to implement distributed objects, as discussed in chapter

2, are CORBA, DCOM or EJB. DCOM is the choice for this research effort because

of:

1. Most corporate systems in the BAF run on Windows Operating Sys-

tems (Windows 98 and NT). The exceptions are legacy systems that are

currently in process of conversion to a standard C/S application.

2. BAF's environment is almost all based on Microsoft Operating Systems

and Development Tools. The only exceptions are the Oracle Database

Server [4] and some development tools such as Delphi or Power-

Builder [43]. But even these tools have the necessary support for

DCOM.

3. Developer tools for DCOM are much more common than the ones for

CORBA. Particularly, the Microsoft tools that are used in this research

effort, such as Visual C++ and Visual Basic [3], have native support for

DCOM development.

4. The use of CORBA ORB instead of DCOM would have to be tied to

one specific vendor, since different vendor ORBs hardly interface with

each other. To choose one of the available ORBs would make this re-

43

search too specific, since BAF does not currently use any ORB imple-

mentation and a possible choice is not known at this time.

5. Finally, the research results can be extrapolated to any Distributed

Objects Architecture, such as CORBA or EJB, since they all share the

common methodology.

3.3.4 Use of Microsoft SQL Server as RDBMS

PC-based corporate system uses one of the commercially available SGBDs

for this platform, such as Oracle SQL Server [48], Microsoft SQL Server [47] and

others. This research effort uses MS SQL Server as the Relational Database

Server. Although this is not the main RDBMS in use at BAF (the most common is

Oracle, as discussed in chapter 1), it was the choice because it has a better inte-

gration with Windows NT (such as administration tools, DCOM support, net-

work and security integration [47]) and because of the author's familiarity with it

The results derived from this research effort do not depend on the rela-

tional DBMS used; therefore this choice is irrelevant to the achievement of the

research objectives.

3.3.5 Development Tools

In this research effort, two different software systems have to be designed

and built: the Client/Server front-end and the DCOM Objects. There are many

available software tools that can be used to build front-ends, such as Inprise's

Delphi [43], Sybase's PowerBuilder [6], Microsoft Visual Basic [3], etc. For this

44

research effort, MS Visual Basic 6.0 Service Pack 1 is chosen to build the front-

ends of the Client/Server and the N-tier model. The reason for this choice is sim-

ply due to the author's familiarity with it. The research results are independent

of the front-end used.

For building DCOM Objects, Visual Basic and Microsoft Visual C++ 6.0

Service Pack 1 are used. Visual Basic is used when performance was not a critical

issue, since, based on this author's experience, it is simpler to create DCOM ob-

jects in VB than in VC. When VC is used, the Automation Template Library

(ATL) [51] was used to create the DCOM framework. There was not much choice

in this case; of the available C++ frameworks such as Inprise's C++ Builder [43],

Symantec C++ [72], only MS Visual C++ has a library to automate the process of

creating COM objects.

The choice of a development tool is not a factor that affects the results of

this research effort; the Distributed Objects can be built using any development

tool that support these architectural concepts.

3.4 Design and Implementation

To evaluate and compare N-tier against the Client/Server models, it is

necessary to have some set of metrics that can be applied independently of the

model being used. These metrics have to be based on distributed databases and

have to simulate real-world scenarios. The Transaction Processing Council [37]

TPC-C benchmark has exactly these characteristics, therefore its metrics were

chosen to be used in this research effort.

45

TPC-C benchmark basically measures transaction response time, as de-

scribed later in this chapter. In this research effort, bandwidth utilization is also

an important factor to be measured. Therefore, network-monitoring tools were

used for determining the bandwidth utilization of both models.

All TPC-C benchmark's transactions use an underlying database, which

design is specified in the TPC-C benchmark. This database models a warehouse,

with sub-districts, items, stock and clients. The following section details this da-

tabase and its implementation.

3.4.1 Database Design

The database specified in the TPC-C benchmarks is one that represents a

business that "manage, sell or distribute a product or service" [37]. The database

models a company that has many districts, in different locations, associated with

a central warehouse. The warehouse has 10,000 items in stock and 10 different

districts, and each district has 3,000 consumers. Customers place new orders,

with an average of 10 order lines in average. They can also request the status of

any existing order [37]. The database diagram is shown in Figure 3.2. The Order

table in the TPC-C specification was changed to District_Order because in some

tools, "Order" is a reserved word.

Some TPC-C clauses, described in sections 1.5 and 2.3 of [73], concerning

integrity, isolation and some ACID properties were not considered in this re-

search effort because all commercial RDBMS already ensure these characteristics.

46

Warehouse

W ID

W_NAME
W_STREET_1
W_STREET_2
W_CITY
W_STATE
W_ZIP
WJÄX
W YTD

District

r<

History

H_C_ID (FK)
H_C_D_ID (FK)
H_C_W ID (FK)
H_D_ID (FK)
H_W_ID (FK)
H_DATE
H_AMOUNT
H DATA

D_ID
D_W_ID (FK)

D_NAME
D_STREET_1
D_STREET_2
D CITY
D STATE
D_ZIP
D_TAX
D_YTD
D NEXT 0 ID

Customer

CJD
C_D_ID (FK)
C_W_ID (FK)

District Order

C_FIRST
C_MIDDLE
C_LAST
C_STREET_1
C_STREET_2
C_CITY
C_STATE
C_ZIP
C_PHONE
C_SINCE
C_CREDIT
C CREDIT UM
C DISCOUNT
C_BALANCE
C_YTD_PAYMENT
C_PAYMENT_CNT
C_DELIVERY_CNT
C DATA

ID
DJD (FK)
W_ID (FK)

CJD (FK)
ENTRY_DATE
CARRIERJD
OL_CNT
ALL LOCAL

New Order

>J

S_QUANTITY
S_DIST_01
S_DIST_02
S DIST_03
S_DIST 04
S_DIST_05
S_DIST_06
S_DIST_07
S_DIST_08
S_DIST_09
S_DIST_10
S_YTD
S_ORDER_CNT
S_REMOTE_CNT
S DATA

Order Line T
OL 0 ID (FK) I
OL D ID (FK) I
OL W ID (FK)
OL_NUMBER I
OL I ID (FK)
OL SUPPLY W ID (FK)
OL DELIVERY D
OL QUANTITY
OL AMOUNT
OL DIST INFO

Figure 3.1 - Database Diagram

Table Name Cardinality Size (bytes)

Warehouse 1 89
District 10 950
Customer 30,000 19,650,000
History 30,000 1,380,000
Order 30,000 720,000
New_Order 9,000 72,000
OrderJLine 300,000 16,200,000
Stock 100,000 30,600,000
Item 100,000 8,200,000

Total 76,823,039

Table 3.1 - Database Cardinality

47

3.4.1.1 Consistency Rules

The TPC-C benchmark specifies how the database has to be populated.

The cardinality of the tables and the expected table size are shown in table 3.1.

The actual physical size can be different due to index implementations. It also

specifies some integrity rules that have to be enforced at the database all the time

to ensure database consistency. These consistency requirements are:

1) Warehouse Entity: W_YTD = sum(D_YTD)

2) District, District_Order and NewJDrder entities: D_NEXT_ID -1 =

max(0_ID) = max(NoJD)

3) District, District_Order and New_Order entities:

D_NEXT_ID -1 = max(0_ID) = max(NoJD)

4) NewJDrder Entity:

max(NO_0_ID) = min(NO_0_ID) +1 = [number of rows in

New_Order for this district]

5) District_Order and Order_Line entities:

sum(0_OL_CNT) = [number of rows in the Order_Line for this Dis-

trict]

6) District_Order Table:

0_CARRIER_ID = Null <=> There is a entry in New_Order such as

(0_W_ID, 0_D_ID, OJD) = (NO_W_ID, NO_D_ID, NO_0_ID)

48

7) Order_Line Table:

OL_DELIVERY_ID = Null <=> O.CARRIERJD = Null if (0_WJD,

0_D_ID, 0_ID) = (OL_W_ID, OL_D_ID, OL_0_ID)

8) Warehouse and History entities:

W_YTD = sum(H_AMOUNT)

9) District and History entities:

D_YTD = sum(H_AMOUNT) when (D_W_ID, D_ID) = (H_W_ID,

H_D_ID)

10) Customer, History, District_Order and Order_Line entities:

C_BALANCE = sum(OL_AMOUNT) - sum(H_AMOUNT) where

(C_W_ID, C_D_ID, C_ID) = (H_C_W_ID, H_C_D_ID, H_C_ID)

(OL_W_ID, OL_D_ID, OL_0_ID) = (0_W_ID, 0_D_ID, 0_ID)

(0_W_ID, 0_D_ID, 0_C_ID) = (C_W_ID, C_D_ID, C_ID)

OL_DELIVERY_ID is not Null

11) Customer, District_Order and New_Order entities:

(count(*) from District_Order) - (count(*) from New_Order) =

sum(C_DELIVERY_CNT) where

(0_W_ID, 0_D_ID) = (NO_W_ID, NO_D_ID) = (C_W_ID, C_D_ID)

12) Customer and OrderJLine entities:

C_BALANCE + C_YTD_PAYMENT = sum(OL_AMOUNT) where

OL_DELIVERY_ID is not null

49

3.4.1.2 Transactions

The five transactions specified in the TPC-C benchmark are New Order,

Payment, Order Status, Delivery and Stock Level. For a detailed explanation of the

transactions and the intermediate steps, refer to [73] and [37].

The New Order is a read-write, high processing transaction that repre-

sents the act of entering a new order by some customer. It affects almost all tables

of the database and it is the most resource demanding transaction of all specified

TPC-C transactions.

The Payment transaction is also a read-write transaction, but not as heavy

as the New Order. It affects the District_Order, Order_Line, History and Cus-

tomer tables.

The Order Status and Stock Level are read only transactions that return

few records. The Stock Level transaction, though, is a processing intensive trans-

action because it requires queries that may scan many entries in the Stock Table.

The Delivery is a read-write transaction with medium resource usage. But

it has to be spanned in an asynchronous manner, activated by the user.

3.4.2 Client/Server Model

The Client/Server (see chapter 2) model is constructed using the standard

2-tier architecture, client front-end and database server. Its transaction routines

are constructed using database triggers whenever possible, to optimize perform-

ance. Figure 3.3 shows the standard Client/Server topology.

50

3.4.2.1 Front-End

The front-end is responsible for acquiring user data, spanning the trans-

action and displaying the results. The front-end may also do some processing

whenever transactions are too complex to construct using a trigger or a stored

procedure. In this case, all actions occur inside the same transaction.

^wP 1 IIüMI 1 %.

Client Program
implements
Interface
Logic and
some Business
Rules

Executes SQL
Statements
directly on the
database

Program

^B^^^«! iK^Ki^li.

Some Business
Rules Implemented
as Triggers

WKF %m. WS^WRWIlF^ITO'^BP^Üfr' ■-

Figure 3.2 - Standard Client/Server Topology

3.4.2.2 Database

The database server is responsible for holding all the data, maintaining

ACID properties and running all stored procedures and triggers. All application

programs are written using Transact-SQL and batch instructions. Asynchronous

routines are constructed using logged events and database alerts. When more

than one server is used, distributed transactions are coordinated by the DTC -

51

Distributed Transaction Coordinator, using two-phase commit protocols and

data replication.

3.4.3 N-tier Model

The N-tier model has at least 3 layers: the data layer, comprised by the

RDBMS and the necessary Data Objects; the business layer, with its Business

Objects; and the interface layer. More than one intermediate layers can exist, and

Business Objects can invoke methods from different middle layers. These layers

can be located at one or more computers, and the this location topology is dis-

cussed in the subsequent sections.

All objects from the different layers are designed using the Microsoft Vis-

ual Modeler [3], which is present in the Visual Studio 6.0. This tool is used to

generate the code for the objects implementation and it also provides object Uni-

fied Modeling Language (UML) diagrams [39].

3.4.3.1 Data Layer

The Data layer, as in the Client/Server model, has one or more database

servers that act as data storage. But differently from the Client/Server Model,

database servers don't perform business actions. There are few or no stored pro-

cedures and few functions are implemented as triggers. The only function per-

formed by the RDBMS is to maintain data and referential integrity. The access to

the database server is done through the Data Objects, shown in Figure 3.4.

52

The Data Objects are used by the Business Objects to perform transactions

and by the interface to query and access results. They are designed to resemble

the data structure of the system database (the TPC-C database). There are objects

for each of the entities, and all data relationships are reflect in the objects rela-

tionships.

In an object-oriented system, an Object-Oriented Database Management

Server (OODBMS) would be a better model to implement the data services [45],

since it is also object-oriented. However, there is no widely used commercial ver-

sion of an OODBMS for Windows NT and, since OODBMSs are still a new tech-

nology, there is no available information about its benefits in corporate systems

[75]. Therefore, in this research effort uses a standard RDBMS as underlying data

storage for the N-tier system.

To be able to use an RDBMS as underlying storage, all data Objects use

special methods specially designed to create the object from a specific record in a

table, and to store itself back into the table. A data object can only be altered in-

side a transaction operation. Although this is not enforced by the architecture it-

self, all the systems layers are designed to work following this rule.

3.4.3.2 Business Layer

The Business Objects are responsible for executing all business operations.

In this research scenario, they implement all the 5 TPC-C transactions. The inter-

face layer triggers the transactions, and the objects from the Data Layer are used

53

as elements of data during the transaction. The diagram of the Business layer,

with its business objects is shown in Figure 3.5.

There are 3 objects in the Business Layer: GenRand, LastNameGen and

Transactions. The GenRand is responsible for providing all the random functions

that are necessary for the diverse TPC-C functions. LastNameGen is responsible

for encapsulating all the functions that generates the Last Name of the Customer

-field, as specified in the TPC-C Benchmark. Finally, the Transactions object is re-

sponsible to implement all the TPC-C transactions, as specified in the TPC-C

benchmark.

Microsoft Transaction server can encapsulate business objects, providing

database resource pooling and object caching. Therefore, it could improve the

system scalability. This alternative is explored in the design of the topologies, as

described in the following sections.

3.4.3.3 Interface Layer

The interface layer in the N-tier model is a very thin one. It doesn't im-

plement any business functions; its only purpose is to span these transactions by

activating the appropriate business object. Also, this layer is responsible to dis-

play the transactions results and to accept user interaction.

54

<<Class Module>>
History

Ä^mdatDate : Date
SfemsngAmount : Single
fi^msData : String

*Save()
♦«Let»
♦«Get»
♦«Let»
♦«Get»
♦«Let»
♦«Get»
♦«Set»
♦«Get»
♦«Set»
♦«Get»

DATAO
DATAO
AmountO
AmountO
EntryDate()
EntryDateO
DistrictO
DistrictO
CustomerO
Customer^)

-mDistrict

-mCustomer

<<ClassModule>>
District

^mlld : Long
SfcmsngTax : Single
SpmlNextOrderld : Long
%msStreetl : String
SpmsStreet2 : String
SpmsCity : String
SpmsState : String
S&msZIP : String
^msName : String

/

<<ClassModule>>
Customer

^mlld : Long
fi^msFirst: String
^msLast : String
SpmsMiddle : String
SpmsStreetl : String
SpmsStreet2: String
fipmsCity : String
^pmsState : String
fi^msZIP : String
^msPhone : String
S&mdatSince : Date
fifemsCredit: String
femsngUmit: Single
%msngDiscount : Single
^msngBalance : Single
fipmsngYTD_Payment: Single
^miPayment_CNT : Integer
§^rniDelivery_CNT : Integer

String

A

■mDistrict

♦«Let» NameO
♦«Get» Name()
♦«Let» ZIP()
♦«Get» ZIPO
♦«Let» StateO
♦«Get» Statef)
♦«Let» Qty()
♦«Get» Qty()
♦«Let» Street2()
♦«Get» Street2()
♦«Let» StreetlO
♦«Get» StreetlO
♦«Let» NextOrderId()
♦«Get» NextOrderldO
♦«Let» Tax()
♦«Get» TaxO
♦«Get» WarehouseO
♦«Let» Id()
♦«Get» Id()
♦OpenWithO

mCustomer

♦«Let» DATAO
♦«Get» DATAO
♦«Let» Delivery_CMt()
♦«Get» Delivery/CNT()
♦«Let» Payment_CNT()
♦«Get» PaVment_CNTO
♦< <Let> > yrD_Payment()
♦«Gets* YTD_Payment()
♦«Let» BalanceO
♦«Set» BalanceO
♦^<Let>> DiscountO
«Get» DiscountO
♦«Let» Limit()
♦«Get» LimitO
♦«Let» CreditO
♦«Get» CreditO
♦«Let» SinceO
♦«Get» SinceO
♦«Let» PhoneO
♦«Get» PhoneO
♦«Let» ZIPO
♦«Get» ZIPO
♦«Let» StateO
♦«Get» StateO
♦«Let» City()
♦«Get» City()
♦<<L9t>> Str9Qt2()
♦<<Get>> Street2()
♦<<Let>> StreetlO
♦«Get» StreetlO
♦«Let» MiddleO
♦<<Get>> MiddleO
♦«Let» Last()
♦«Get>> LastO
♦«Let» First()
♦«Get>> FirstO
♦<<Get>> DistrictO
♦«Let» Id()
♦«Get>> Id()
♦OpenWithLastO
♦OpenWithO
♦Save()

<<Class Module>>
Warehouse

^mlld : Long
%msngTax : Single
^msStreetl: String
5pmsStreet2 : String
^msCity : String
S^msState : String
yniiZIP : Slriny
~ msName : String

♦<<Let>> NameO
♦<<Get>> NameO
♦«Let» ZIP()
♦«Get» ZIPO
♦«Let» StateO
♦«Get» StateO
♦«Let» City()
♦«Get» CityO
♦«Let» Street2()
♦<<Get>> Street2()
♦«Let>> StreetlO
♦«Get» StreetlO

.-mWarehouse<<l-et>> Tax()
"»«Get» Tax()
♦<<Let>> Id()
♦<<Get>> Id()
♦OpenWithO

<<ClassModule>>
Stockltem

^>msData : String
SpmiQuantity : Integer
S^msngYTD : Single
%miOrder_CNT : Integer
SfemsDistOl: String
flpmsDisKG : string
S&msDist03 : String
^msDistCM : String
GpmsDistCE : String
^msDist06 : String.
%msDist07 : String

mWarehousep"150^08 : String
e^msDist09 : String
S^msDistlO : String

<<ClassModule>>
Order

^»mCol: Collection
Cpmlld : Long
äfcmdatEntryDate : Date
SpmlCarrlerld : Long
^miOL_CNT : Integer
^mbAIILocal: Boolean
SpmsngTotal: Single

\ ♦<<Let>> TotalO
♦<<Get>> TotalO
♦«Let» AIILocalO
♦<<Get» AIILocalO
♦«Let» OL_CNT()
♦«Get» G1_CNT()
♦<<Let>> CarrierlDO
♦<<Get>> CarrierlDO
♦<<L9t>> EntryDateO
♦«Get» EntryDateO
♦«Set» Customer0
♦«Get» CustomerO
♦<<Let>> Id()
♦<<Get>> Id()
♦Add()
♦«Get» ItemO
♦<<Get>> CountO
♦RemoveO
♦<<Get>> NewEnumO

^Class_lnitialize() '
*Class_Terminate ();
^OpenWithO
♦saveO

♦«Get>> DistlnfbO
♦<<Set>> ItemO
♦<<Get>> Item()
♦«Let» Order_CNT()
♦«Get>> Order_CNT()
♦<<Let>> YTDO
♦«Get>> YTDO
♦<<Get>> WarehouseO
♦«Let» QuantityO
♦<<Get>> QuantityO
♦«Let» DATAO
♦«Get» DATAO
♦Save()
♦OpenWithO

-mstockltem

<<Class Module>>
OrderLine

„ (Quantity : Integer
%mbBG : Boolean
%mlNumber: Integer
S^msngTotal: Single
%mvarDeliveryDate : Date
fi&mvarSupplyWId : Long

■mOrder

m"?mLet» SupplyWIdO
♦«Get» SupplyWIdO
♦<<Let>> DeliveryDateO
♦«Get» DeliveryDateO
♦«Let» TotalO
♦«Get» TotalO
♦«Let» NumberO
♦«Get» NumberO
♦«Set» OrderO
♦«Get» OrderO

jfCheckBGO
*SaveO
♦<<Get>> BGO
♦<<Set>> StockltemO
♦«Get» StockltemO
♦«Let» QuantityO
♦«Get» QuantityO
♦«Set» Item()
♦«Get» ItemO

«Class Module»
 Item

Sfcmlld : Long
SpmsName : String
SfemsngPrice : Single
fi^msData : String

/

♦OpenWithO
♦<<Let>> DATAO
♦«Get» DATAO
♦<<Let>> PrteO
♦<<Get>> PriceO
♦<<Let>> Name()
♦<<Get>> NameO
♦«Let» IdO
♦«Get>> IdQ

mltem

Figure 3.3 - Data Objects Layer

55

<< Class Module >>
LastNameGen

^LNSyllables : String

^ClassJnitializeO
^GenerateLastNameStr ()

<< Class Module »
GenRand

^Random ()
%JURand()
*GenerateStr()

<< Class Module >>
Transactions

^GetStockLevelO
*GetMaxOrder()
Payment ()
%slewOrder()

^ClassJnitializeQ

Figure 3.4 - Data Objects Layer

3.4.3.4 Topologies

Although in a typical N-tier system, business objects are located at a dedi-

cated application server, this research also analyses other topologies. The goal is

to measure the overhead caused by the use of objects in the client and server ma-

chines. Therefore, four different topologies are evaluated:

1) Topology 1 - In this topology (Figure 3.6), all objects reside in the

client machine; the server only contains the RDMS. This topology is

not common in N-tier systems but it will serve to evaluate the over-

head of using objects as opposed to the Client/Server model.

2) Topology 2 - This is a common N-tier implementation for small ap-

plications. The Client contains only the interface and the server con-

tains the database and all the remaining layers (see Figure 7). The

server may use a Transaction Server to encapsulate the Business Ob-

jects. This topology resembles the Client/Server model, the only dif-

ferences are that all business logic is in the server and the server ap-

56

plication is multi-layered. Small intranet web applications usually

use this topology.

V#Ill*lHi

Client Program
only implements
Interface Logic

Program

Business

Data
Objects

Database contains
no procedures
implementing
business rules

Figure 3.5 - N-tier Topology 1

3) Topology 3 - This topology, shown in Figure 3.7, is the typical N-tier

system using a Transaction server. In this topology, the Data Objects

are located at the database server and a dedicated Application Server

hosts the Business Objects (Figure 3.7).

57

^■^■■■■^Mq WM

^H ^^ « *%i#« II ^ 1
HfeHHHHMMMMHI ■
1 WIKSllI, ;.,:■. E

k^^^^^^^^^^^^^^^^^m

Server

UDjGCtS

Figure 3.6 - N-tier Topology 2

Figure 3.7 - N-tier Topology 3

58

4) Topology 4 - This is the most advanced topology and it's the one

supposed to have better scalability (Figure 3.8). Clients communicate

to Business Objects directly or through MSMSQ as appropriate, and

the Business Objects are running inside MTS in an application server.

Multiple application servers and database servers can be used.

3.5 Design of Experiments

The method chosen to evaluate and compare the Client/Server with the

N-tier model is the TPC-C benchmark. To accomplish this, all the TPC-C bench-

mark transactions are implemented in both models, using the methodologies ap-

propriate to each one.

This section describes the set of experiments designed to investigate these

implementations by measuring execution time and used network bandwidth.

The experiments are divided in two parts: Part A is uses the 5 TPC-C

benchmarks in both models against a single database server. This part serves to

investigate both models in local network environment.

Part B has only the first TPC-C transaction and has the purpose of investi-

gating both models in a multi-database environment. Two TPC-C databases are

interconnected according to the appropriate architecture and network bandwidth

utilization between the servers is also measured. This experiment simulates an

application executing in a WAN environment, with multiple servers. Transac-

tions 2 to 5 were not used because they don't demand enough database resources

59

to cause enough inter-server communication. In Part B, only Topology 4 is used

since it is the one that implements fully the N-tier architecture.

Figure 3.8 - N-tier Topology 4

60

3.5.1 Parameters

The parameters for both Part A and B experiments are the following:

1) TPC-C Transaction: One of the 5 transactions of the TPC-C benchmark

that is being executed.

2) Application Model being used: Client/Server of N-tier application;

3) N-tier topology (in Part B, only the Topology 4 is used);

4) Software: Environment software as described, SQL Server, Transac-

tion Server;

5) Compilers: Compilers used to build the applications, such as Visual

Basic or Visual C++;

6) Network: Type of network being used and network utilization during

the experiment.

7) Operating System: OS Software, such as version of the Windows NT,

and OS utilization.

3.5.2 Factors

The factors selected from the available parameters are the first three items

- TPC-C Transactions, Application Model and N-tier topology. All other pa-

rameters are defined as described in the start of this chapter.

61

To try to obtain unbiased results, the network utilization is kept to mini-

mum during the execution of the experiments. The same is valid for the Operat-

ing System; no user applications are running other than the experiment itself.

3.5.3 Metrics

To achieve the proposed objectives, the following metrics are used in this

research effort (see discussion in section 3.4):

1) Client to Server Network Bandwidth: the amount of network band-

width used by each model between the client and servers when exe-

cuting each of the TPC-C benchmark transactions.

2) Server to server Network Bandwidth: In Part B, bandwidth between

database servers is also measured.

3) Response Time: the interval between the user's request and the sys-

tem response, measured until the receipt of the last character of the

system's response [44].

3.5.3.1 TPC-C Transactions

The 5 transactions defined in the TPC-C benchmark are used as factors to

the experiments. The workload provided is different for each transaction; the

first one is a heavy load transaction and the 3rd and 4th transactions are light-

weight ones.

62

3.5.3.2 Application Model and Topology

The Application Model, Client/Server or N-tier, is also used as a factor to

the experiments. The implementations of the transactions are different in each

model although they accomplish exactly the same results. This leads to different

execution times and different bandwidth usage.

The N-tier application can be used with different topologies, the differ-

ence among then being the location of the Data and Business Objects. Therefore,

another factor in the experiments is the N-tier topology used in the N-tier Model

design, as described, earlier in this chapter in section 3.4.3.4.

The first 3 topologies are used to measure the potential overhead of using

a N-tier technology. But only Topology 4 has all elements of a N-tier system,

therefore the final comparison between the Client/Server and an N-tier model is

made using this topology.

3.5.4 Experiments

The experiments are devised using the combination of all specified factors.

The resulting grid and number of experiments for Part A are shown in table 3.2.

Table 3.3 shows the grid of Part B experiments.

3.5.4.1 Measurement Confidence

To achieve a high level of confidence it is necessary to have a "reasonable"

number of experiment executions. As described in [44], the number of necessary

63

experiments to achieve a specified confidence level is given by the following

equation:

n = (IOOZJ^

rx

Experiments
Part A

TPC-C
Transaction

Model Topology

1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

New Order

Payment

Order-Status

Delivery

Client/Server
N-Tier

Stock-Level

Client/Server
N-Tier

Client/Server
N-Tier

Client/Server
N-Tier

Client/Server

N/A
Topology 1
Topology 2
Topology 3

N-Tier

Topology 4
N/A

Table 3.2 - Part A Experiments

Topology 1
Topology 2
Topology 3
Topology 4

N/A
Topology 1
Topology 2
Topology 3
Topology 4

N/A
Topology 1
Topology 2
Topology 3
Topology 4

N/A
Topology 1
Topology 2
Topology 3
Topology 4

64

Experiments
PartB

TPC-C
Transaction

Model Topology

1 New Order Client/Server N/A
2 N-Tier Topology 4

Table 3.3 - Part B Experiments

In this equation, z is the normal quantile for the desired confidence level, s

is the standard deviation of the samples, r is the desired accuracy, and x is the

mean of the samples collected.

The complete analysis of the necessary number of experiments and the as-

sociated confidence level associated with mean and variance is presented in the

next chapter.

3.6 Summary

This chapter describes the methodology of this research effort. It provided

details about the models being compared, Client/Server and N-tier, and their re-

spective topologies. This chapter also explains the method of comparison, the

TPC-C benchmark, and the factors being measured. The design of the TPC-C

transactions implementation in both models is explained, according with the to-

pology used.

The last part of the chapter lists the experiments being performed and

details the measurement confidence and number of experiments.

65

IV. Implementation

4.1 Introduction

This chapter describes the implementation of both Client/Server and NT-

tier models, based on the design discussed in Chapter 3. It also details the im-

plementation of the supporting databases and replication schema.

Also addressed are the configuration of software applications and frame-

works such as DCOM, MTS and MSMQ, as well as the techniques used to gather

experimental. The network monitoring tools used to measure network utilization,

are also detailed.

4.2 Database Implementation

Logic Works Erwin® 2.6 modeling tool [67] is used to model the database

described in the TPC-C specification. This application also generates the SQL

Script that was executed in the SQL Server to generate the database structure.

In the Client/Server model, all integrity constraints where implemented

using triggers. The resulting SQL Code is shown in Appendix B, which contains

all the scripts to produce the database.

All the primary keys and foreign keys are indexed in the database. Al-

though those indexes require a large amount of disk space, they improve execu-

tion times in most query executions.

66

4.2.1 Database Population

According to TPC-C specification [37], the database has to be populated

using a certain pattern of random strings and numbers, combined to some spe-

cific data. These rules are implemented in a Visual Basic program that is listed in

Appendix C.

The execution of this program in an environment such as the ABCNT

Cluster takes 3 to 8 hours, depending on the rate of utilization of the server and

the network. The resulting database is about 168 Mbytes in size, and it is conFig-

ured to be located on a single SQL Server 7 data file.

4.2.2 Experiment Platform

To execute all defined experiments, it was necessary to allocate 5 different

ABCNT machines. To ensure a fair comparison, 5 machines were chosen with the

exact same configuration: ABNCT05, ABCNT06, ABCNT07, ABCNT08 and

ABCNT09. All are Pentium II - 400MHz machines, with 128M of memory and

4G available disk space (after software installation). They are all interconnected

by the ABC 100Mbps switch. All machines were part of the ABCNT domain,

which has ABNCT01 as domain controller.

The machines are classified according with its role in the experiment. In

the Client/Server experiments, ABCNT05 is the client; ACNT09 and ABNCT08

are the database servers (Figure 4.1). In the N-Tier experiments, ABCNT05 is the

client; ABCNT09 and ABCNT08 are database servers; and ABNCT06 and

ABCNT07 are application servers (Figure 4.2).

67

ABCNT05
NTW 4.0 SP5

Z

Bandwitdh
Measurement

Replication (Part B Only)

< ►
ABCNT09

NTES4.0SP5
MSSQLSrv7

ABCNT08
NTES 4.0 SP5
MSSQLSrv7

/

t "1 .

«• jot

■» -mm 9

Bandwitdh
Measurement
(PartB Only)

100 Mbps
Switch

Figure 4.1 - Client/Server Model Layout

The OS of all database and application servers is Windows NT Enterprise

version 4.0, with Service Pack 5. All database servers have MS SQL Server 7 En-

terprise version and also MSMQ and MTS 2.0 (from Option Pack 4.0). The Client

machine has Windows NT Workstation 4.0, SP5, and administrative tools for

SQL Server 7, MSMQ and MTS. In the N-Tier experiments, the database servers

have a MSMQ client installation and the MSMQ controller is located at the appli-

cation servers.

68

ABCNT09
NTES 4.0 SP5
MSSQLSrv7

/ A
* ^^s^ÄsFJSP'

«Sij
ISS»
1 1
I "1

me ?' *m
***«■' ^ <$MI *-' —
■»■ «M

Dats
srver 1

Switch

/. M

m

Application
Server

ABCNT07
NTES 4.0 SP5
MSSQLSrv7

MSMQ Controller

/ ■IB

Vat"

i "i

Mb Mi — <~ -.

Database
srver 2

fart B Only)

ABCNT08
NTES 4.0 SP5
MSSQLSrv7

Bandwitdh
Measurement

/

Client

ABCNT05
NTW 4.0 SP5

Figure 4.2 - N-Tier Model Layout

All database and application servers were also running Network Moni-

toring Tools from Windows NT, for bandwidth measurement. Although this

69

poses some communication overhead, it does not affect the comparison, since it

equally impairs all servers during all experiments

4.3 Client/Server System Model Implementation

4.3.1 Database Implementation

In the Client/Server model, the database server has to execute most of the

transaction processing tasks. This is accomplished by using triggers and stored

procedures that are activated when some database action occurs, such as a table

insert or delete. To implement the transactions specified in the TPC-C protocol,

triggers were built and associated with appropriate events. All triggers and

stored procedures used are listed in the Appendix B.

4.3.1.1 Replication

In the experiments of Part B, two similar databases, A and B, were con-

structed in different servers. The only difference between them is the warehouse

identification, W_ID, which is "1" in database A and "2" in database B.

MS SQL Server 7 Enterprise version supports 3 types of replication: Snap-

shot, Transactional and Merge. Snapshot and Merge are the models described in

chapter 2, with read-only and read-write replicas, respectively. The Transactional

is a special type that provides one-way replication but integrated with a 2-phase

commit protocol (see chapter 2).

Since the only TPC-C transaction tested in a multi-database environment

was Transaction 1 (New Order), a replication scenario was installed to support it.

70

The difference between the standard and distributed version of Transaction 1 is

that in the distributed version, an order can be filled with order items of a differ-

ent supplier warehouse. Therefore, a new order could update stock tables in the

local and remote databases.

Therefore, it's necessary for the databases to have access to the Ware-

house, District and Stock tables of each other. Warehouse and District is a read-

only replica, with low frequency of updates. Stock is read-write in both servers,

with a high update frequency. To support this scenario, the following replication

steps were implemented:

1. Warehouse and District were implemented as a Transactional repli-

cation type, with horizontal fragmentation based on the W_ID.

2. Stock was implemented as a Merge replication type, from

ABCNT08 to ABCNT09. Replication conflicts were set to be stored

for further resolution.

The replication chosen for Stock could let to replication conflicts, since two

clients could update the same stock item at about the same time. In a real-world

system, some complex conflict resolution procedure would have to be imple-

mented to deal with this situation.

4.3.1.2 New Order Transaction

The new order transaction is a resource demanding transaction because it

affects most of the tables in the database. When a user inserts a new order, the

following actions occur: [37]

71

1) The chosen Warehouse Tax is retrieved;

2) The chosen District Tax and Next_Order_Id are retrieved;

3) The Customer matching the last name is selected, with the respective

Discount and Credit Status;

4) A new record is inserted in the District_Order, table, with the OJD

matching the Next_Order_Id;

5) For each OrderJLine:

1) In Part B, randomly choose the supplier warehouse.

2) The chosen Item Price is retrieved, the Amount calculated, and a

new record is inserted in the Order_Line table;

3) Update the Stock Quantity appropriately;

4) Search the Item and the Stock information for a specific string;

6) Compute the total amount of the order and display all the order in-

formation;

7) A new entry is placed at the New_Order table;

8) Update the District Next_Order_Id.

An insert trigger in the Order_Line table performs the Stock, New_Order

and District alterations. The client performs all order computations, by issuing

multiple select statements to the database.

In the experiments of Part B, the products' W_ID is chosen to be the one of

the remote server. Therefore, the customer is local but the products in the trans-

action are remote.

72

4.3.1.3 Payment Transaction

The payment transaction is a read-write transaction that has a medium re-

source demand. The steps of this transaction are:

1) The chosen Warehouse address and YTD is retrieved;

2) The chosen District address and YTD is retrieved;

3) The Customer is retrieved based on a last name search, the address,

credit limit, YTD, credit status and discount are retrieved;

4) The Customer Balance is decreased by the Amount;

5) An entry in the History table is made;

6) If the Customer has a Bad Credit, a specific string is added to the

Customer DATA;

7) The Transaction details are shown to the user.

A trigger in the History table does the Customer alteration. All other cal-

culations are performed by the Front-End.

4.3.1.4 Order Status Transaction

This is a read-only transaction, having the following steps:

1) A Customer is selected by a last name search or by a random selected

C_ID;

2) The most recent order is retrieved from the District_Order table;

3) The corresponding Order Lines are retrieved;

4) The results are shown to the user.

73

This transaction is executed by using multiple SQL statements, defined in

the Front-End.

4.3.1.5 Delivery Transaction

This is a read-write transaction with medium demand of processing re-

sources. It must be set up to executed in deferred mode, triggered by a user ac-

tion. At least 90% of the transactions have to be completed in an 80 second inter-

val. The steps in this transaction are:

1) The user starts the transaction by issuing a specific command speci-

fying the Warehouse and the Carrier;

2) In deferred mode, the following actions are executed:

1) For the chosen warehouse, for each of the 10 districts, chose the

oldest order placed by searching the New_Order table;

2) The entry in New_Order is deleted;

3) The respective Order is updated with the Carrier;

4) The corresponding Order Lines have the Delivery date updated;

5) The respective Customer has the Balance and Delivery Counter

updated.

This transaction is implemented by using a stored procedure. This proce-

dure is triggered by a database alert that happens when a record is inserted in

the Scheduled_Jobs, a table constructed specifically for this purpose. Since this is

an alert, not a trigger, the execution occurs after some seconds and the control

74

returns immediately to the user after the insertion. The results of the Store Pro-

cedure executed are stored in the Excuted Jobs, a table built to store this data.

4.3.1.6 Stock Level Transaction

This is a read-only, processing intensive transaction that scans the stock

table for items that are below a specified threshold. The steps are:

1) Chose a random Warehouse, District and Threshold (between 10 and

20);

2) Retrieve the last 20 Orders for the given District, and for each Order

Line, check if the item stock level is below the chosen threshold;

3) Display the results.

Although this transaction is implemented basically with a single SQL

Statement, it takes a reasonable amount of time to execute because it has to scan

about 200 entries in the Stock table.

4.3.2 Front-End Implementation

The front end is implemented in the Visual Basic 6.0, using a standard

Win32 Exe file. The transactions were implemented as subroutines and the list-

ings are shown in the Appendix C.

The client user interface for transaction testing purposes is shown in Fig-

ure 4.1. Each button can trigger one specific transaction, and the time used to

execute that transaction is shown in the screen after the transaction results.

75

The results were displayed using the terminal layout according to the

TPC-C specification. The transaction output can be disabled or redirected to a

file.

Transactions Manager - Client/Server Model HEUES

New Older Piment Oidet Statut Oeivegi Stock-Lave)

New Order
Warehouse: 0001 District: 03 Date: 30-12-1899 14:03:1
Customer: 1408 Name: PRICALLYATION Credit: BC »Disc: 10.00
Order Number: 00024009 Number of Lines: 10 W tax: 06.SO D tax: 20.OC

Supp_U Item Id Item Name Qty Stock B/G Price Amount
0001 06S491 GQKSTJUITNDDHHDPSUGGXWI 10 039 G $069.37 $693.70
0001 061440 WLOKHQBARHYKUGHtl 08 045 G $017.32 $138.56
0001 020160 ITWDWUGIOKJITKSNRMGXUM 07 017 G $050.54 $353.78
0001 089584 WUHYSBQWAKHFOKHIH 04 077 G $087.68 $350.72
0001 002256 XCETHÜQVAKAIP.Ü 08 013 G $039.12 $312.96
0001 076964 DNGHTTESDBTYKJHBPK 05 093 G $085.90 $429.50
0001 044416 RSVSHOWGKNONNILHJ 01 022 G $008.63 $008.63
0001 091760 XEOKKYSNHQEDHOUUDXHGW 04 083 B $051.94 $207.76
0001 067648 QUEBKSAIXHVFHDK 02 032 G $081.01 $162.02
0001 051195 CTHSTJMDYUCHXDNNKD 03 065 G $024.71 $074.13

Execution Status: Ok Time Elapsed • 00: 05 Total: $2731.76

Figure 4.3 - Testing Client/Server Model User Interface

The database connections used in the program were the Microsoft ActiveX

Data Objects (ADO) [68]. ADO is a library of COM objects that provides access to

any database supporting OLEDB or ODBC standards. Although ADO calls are

not as fast as the one from a pure RDBMS driver, it was chosen because it pro-

vides the easiest programming environment and it is well integrated with Visual

Basic and Visual C++.

76

4.4 N-tier System Model Implementation

4.4.1 Database Implementation

In the N-Tier model, the database server has no participation in transac-

tion processing tasks. It only acts as persistent data storage for objects. Therefore,

the database was implemented with only the definitions of the data structures

(tables and indexes) from the TPC-C specifications.

In Part B, no replication was set up for this model. Multi-database trans-

actions used objects located at different application servers, each accessing its

own database server. In a real-world scenario, some type of read-only replication

could be used to allow faster query execution.

4.4.2 Data-Tier Implementation

The data-tier objects are responsible for communicating with the database,

storing and retrieving data as appropriate. The objects described in chapter 3

were implemented using Visual Basic in a single Din-process COM module,

ThesisDO.DLL.

All data objects share a single database connection, implemented using

ADO. The database connection is only open during storing or retrieving opera-

tions. After the data retrieval, the object manipulates the data using ADO dis-

connected recordsets.

There exist two versions of ThesisDO.DLL, one for out-of-process COM

servers (internally called ThesisDO) and one for MTS servers (called Thesis-

77

DOMTS). The first one doesn't have implicit transaction handling, therefore in

ThesisDO an external ADO database connection is used to handle database

transactions; this connection is passed to the data objects for use in the data up-

date.

On the other hand, ThesisDOMTS doesn't have to deal with database

transactions, since MTS is responsible for handling it. Therefore, in this version,

no ADO connection is necessary during data storage or retrieval operations. Fig-

ure 4.2 shows the complete set of modules developed and the listings are shown

in Appendix C.

Middle-Tier
Objects

Data-Tier
Objects

ThesisQP.DLL
ThesisQP.EXE

ThesisBO.DLL

DeliveryRcv

Transactions

LastNameGen

GenRand

Figure 4.4 - Testing Client/Server Model User Interface

4.4.3 Middle-Tier Implementation

All transactions in the N-tier model are implemented using middle-tier

objects. Each transaction is considered to be a "Business Logic" that is activated

by the client process.

78

4.4.3.1 New Order Transaction

This transaction executes the same actions described in the Client/Server

implementation. In the N-Tier implementation, the following processing steps

are taken:

1) The Warehouse object is instantiated with the appropriate W_ID;

2) The chosen District object is instantiated;

3) A customer object matching the last name is instantiated;

4) A new object Order is created, using the District and Customer objects

as parameters;

5) Several Order_Line objects are created and appended in the Order

object. For each Order_Line:

5) A specified Item object is instantiated;

6) The correspondent Stock object is instantiated and its quantity

changed appropriately;

6) The new Order object is saved.

7) Display all the order information.

When the object is saved, it executes all the underlying functions de-

scribed in the TPC-C specification, such as inserting a record in the New_Order

table, altering the Warehouse's Stock, etc.

4.4.3.2 Payment Transaction

The steps of this transaction in the N-Tier model are:

1) The chosen Warehouse object is instantiated;

79

2) The chosen District object is instantiated;

3) The Customer object is instantiated based on the provided last name;

4) The Customer Balance is decreased by the Amount;

5) The Transaction details are shown to the user.

The participating objects are responsible for making the appropriate

changes, such as inserting the record in the History table and altering the Cus-

tomer properties, according to the TPC-C specification.

4.4.3.3 Order Status Transaction

The steps performed are:

1) A Customer object is instantiated by using the last name or C_ID pro-

vided;

2) The most recent Order object is instantiated from a specified Dis-

trict_Order object;

3) The results are shown to the user.

4.4.3.4 Delivery Transaction

Since this must be executed in deferred mode, it is implemented in the N-

tier model as an asynchronous function call. MSMQ is used to store the customer

request, and a middle tier object is responsible for reading from the queue and

processing the transaction. The steps in this transaction are:

1) The user starts the transaction by sending a message to the appropri-

ate MSMQ queue;

80

2) The middle-tier object receives the message and executes the transac-

tion as described in the Client/Server model;

4.4.3.5 Stock Level Transaction

The steps in the N-Tier model are:

1) Instantiate a random Warehouse, District objects and choose a

Threshold value between 10 and 20;

2) Instantiate the last 20 Orders for the given District, and for each Or-

der Line, check if the item stock level is below the chosen threshold;

3) Display the results.

4.4.3.6 Modules

A single object, called Transactions, implements all above transactions.

This object is implemented inside a single module, ThesisBO.DLL or The-

sisBO.EXE. The executable is an out-of-process COM component to be executed

in remote machines. There are two versions of the DLL, one for use in the client

process and the other for use with MTS.

The in-process and the out-of-process versions are exactly the same. The

difference in the MTS version is the way the object handles transactions: in the

MTS version, the MTS Context object controls transactions, while in the other

versions, transactions use the standard BeginTrans and CommitTrans database

methods.

81

There are other two modules defined in the middle-tier. ThesisB02.exe

contains the code responsible for generating random numbers and last names,

according to the TPC-C specification. ThesisQP.DLL (with its out-of-process

equivalent, ThesisQP.EXE) is responsible for receiving the request from the

MSMQ and executing the TPC-C Transaction 4. Figure 4.2 shows the middle-tier

modules and the listings are shown in Appendix C.

4.4.4 Front-End Implementation

The front end is implemented in the Visual Basic 6.0, using a standard

Win32 Exe file. The front end executes the transactions by issuing the appropri-

ate calls to the middle-tier object Transactions. Listings are shown in the Appen-

dix C.

4.5 Experiments Implementation and Measurements

The machines ABCNT05 to ABCNT09 are used to implement the experi-

ments described in Chapter 3. For all topologies, the number of experiments are

calculated using the formula n = (lOOzs / rx)2. Some pilot experiments were exe-

cuted to find x, s and r. From this data, to achieve at least 95% precision in within

about 1% of the mean value, a minimum of 300 experiments is necessary. Al-

though this is the worst case (for most experiments, a lower number would suf-

fice), this number of experiments is used in all topologies and all cases.

82

A special program, developed for this purpose, executes and gathers the

execution time for all experiments, since it is necessary to run 300x(5 topologies x

5 transactions + 2 Part B) = 6,600 experiments. The program automates the task of

starting the experiment, executing it and recording the data. It also automatically

stores the data in an Excel spreadsheet, filling in the appropriate locations. The

spreadsheet is automated to calculate and show standard deviations, variance

and comparison charts. The code for this driver program is listed in Appendix C.

MS Windows NT Performance Monitor is used to measure the network

bandwidth. Two services have to be installed in the NT Server to measure net-

work utilization: SMP Service and Network Monitoring Tools. To gather the

data, the Performance Monitor is conFigured to run in Log mode, recording all

data related to the Network Segment. This data is then converted to a chart view

and exported to an Excel Spreadsheet.

The execution of all experiments takes about 5 hours to execute. Some

user interaction is necessary when changing from one topology to another. Part B

was not executed in the same batch due the required database configuration.

Also, the location of the middle-tier objects has to be changed from one

topology to another. This is accomplished by using the MTS administrator and

the DCOM configuration utility (dcomcnfg). The experiment driver program in-

terrupted the experiment batch and prompted the user to manually execute these

configurations when switching from one topology to another.

83

4.6 Summary

This chapter addresses the implementation of both Client/Server and NT-

tier models. The software and hardware platform used are detailed and the re-

quired software configuration listed. This chapter also provides details about the

modules of the Client/Server system and the layers of the N-Tier implementa-

tion.

The database implementation used to host these models and the TPC-C

Transactions and the replication mechanisms used to simulate a distributed-

database environment are also covered.

The last sections of this chapter explain the experiments implementation

and the tools used to collect and store the data.

84

V. Data Analysis

5.1 Introduction

This chapter describes the results of the experiments executed, according

to the design and implementation seen in the previous chapters, in sections 3.4,

3.5 and 4.2 to 4.5. The general partial results of each transaction are analyzed,

comparing the Client/Server and N-tier models in terms of execution time and

network utilization.

In the final section, a general analysis of the results is performed, discuss-

ing the advantages and disadvantages of each model in executing TPC-C Trans-

actions, and in real-world applications in general.

5.2 Collected Data Analysis

As explained in chapter 4, all execution time data is consolidated in an Ex-

cel spreadsheet. The summary or execution times for Part A and B are shown in

Table 5.1 and Table 5.2 respectively.

The bandwidth data collected are also consolidated in an Excel spread-

sheet and the resulting charts are show in the following sections. All execution-

time charts show error bars corresponding to the standard deviation of the ex-

periments.

85

TPC-C Transac-
tion

Item Client/
Server

N-Tier
Client

N-tier
Server

N-Tier
App

Server

N-Tier
MTS

Server
1 Iterations: 300 300 300 300 300

Mean (sec): 0.68 0.73 0.672 0.678 2.328
Variance: 0.03119 0.00126 0.00316 0.00126 0.08745
Std Deviation: 0.17662 0.03554 0.05621 0.03548 0.29573
Precision (95%): 0.01999 0.00402 0.00636 0.00401 0.11234

2 Iterations: 300 300 300 300 300
Mean (sec): 0.156 0.175 0.161 0.165 0.704

Variance: 0.0009 0.00244 0.00233 0.002 0.00741
Std Deviation: 0.02995 0.04941 0.04825 0.04475 0.0861
Precision (95%): 0.00339 0.05246 0.06085 0.04896 0.0524

3 Iterations: 300 300 300 300 300
Mean (sec): 0.108 0.149 0.125 0.130 1.172

Variance: 0.00062 0.00156 0.00175 0.00168 0.06274
Std Deviation: 0.02499 0.03951 0.04178 0.04095 0.25049
Precision (95%): 0.00283 0.00447 0.00473 0.00463 0.02834

4 Iterations: 300 300 300 300 300
Mean (sec): 0.040 0.0055 0.0046 0.0050 0.0065

Variance: 0.00075 2.2E-05 3.1E-08 6.3E-07 4.9E-05
Std Deviation: 0.02737 0.00464 0.00017 0.00079 0.00703
Precision (95%): 0.0031 0.00053 2E-05 9E-05 0.0008

5 Iterations: 300 300 300 300 300
Mean (sec): 0.032 0.035 0.031 0.033 0.261

Variance: 0.00024 0.00035 0.00074 0.00024 0.00695
Std Deviation: 0.01539 0.01871 0.02715 0.01548 0.08335
Precision (95%): 0.00174 0.00212 0.00307 0.00175 0.00943

Table 5.1 - Results of Part A - Execution Times

TPC-C Transaction Item Client/
Server

N-Tier
MTS

Server
1 Iterations: 300 300

Mean (sec): 0.67 1.453
Variance: 0.047 0.00785
Std Deviation: 0.2167 0.08863
Precision (95%): 0.0245 0.10114

Table 5.2 - Results of Part B - Execution Times

86

5.2.1 Data Analysis

5.2.1.1 Part A - Transaction 1 - New Order

This is the most demanding TPC-C Transaction in terms of processing re-

sources. Therefore, its execution time is the highest among all five transactions.

The execution times in the Client/Server and in the four N-Tier topologies are

shown in Figure 5.1. The used bandwidth is shown in Figure 5.2.

The Client/Server implementation of this transaction is very different

from the N-Tier one. In the Client/Server, processing is about evenly distributed

between Client and Server. But, since the client has to execute several SQL state-

ments, the network bandwidth used is high, with a mean value of 0.6% - al-

though this is a low number, it represents a high utilization, relatively speaking,

since 0.6% in a 100 Mbps network is equal to 600 Kbps, more than what's avail-

able in most WANS.

On the other hand, the N-Tier implementation has all the processing per-

formed by the middle Tier. Therefore, the segment between client and middle

tier requires less network bandwidth than the segment between the Middle-Tier

and the Data-Tier.

From Figure 5.1, it's possible to conclude that there is not much variation

in execution times among the Client/Server and N-Tier topologies 1 to 3. Among

those, N-Tier topology 1 has a slight worse execution time, of 0.73 sec. per trans-

action, compared to the 0.68 sec. per transaction in the Client/Server model. This

is explained by the overhead of having all layers in the Client-Machine.

87

Time (s)

3.00

Execution Time Transaction 1 Part A

2.50

2.00

1.50

1.00

0.50

0.00 -I

11111
%mmmmf/

mc/s
EN-Tier (Client)

0N-Tier (Server)

EN-Tier(App)

QN-Tier(MTS)

Figure 5.1 - Transaction 1 (Part A) Execution Times

N-Tier Topology 2 has the best execution time, 0.67 sec. (although within

the standard deviation of the Client/Server model and Topology 3), which is ex-

plained by little communication overhead (all layers are located at the server) of

this implementation. This result could only happen in a lightly loaded server; if

processing resources start to become an issue, this topology could potentially

start to have worse results.

The N-tier Topology 4 has worst execution time, of 2.34 sec. per transac-

tion. This is almost 4 times the execution time of the Client/Server version. This

is caused by the overhead of using MTS. Since MTS has to handle generic, multi-

database transactions, it cannot be as efficient as a transaction executed with na-

tive SQL Server 7 drivers. Although this was the worst topology in terms of exe-

cution time, it was the one that used the least network bandwidth, with mean of

0.01% (10 Kbps).

88

5" 1 _

Bandwidth Client/Server
Transaction 1 Part A

or
k

U
til

iz
at

io
n

(<

o

 i»
.

fco

in

-

. ULuPwy¥ r ~ '• 1' ", ' "

3
■S o- z u

c) 40 80 120 160 200 240

Time (s)

8? 1 i

Bandwidth N-Tier Topology 1
Transaction 1 Part A

0 0.8-

1 0.6 -

5 0.4-
■X

9 0.2

I n.

IllkllfelUjUU '■* h kihlllMlllMii llill afcillfell il ||
WIV^.: L*tA*lM.7i\ , uAiUiLM.^:ji.iiL. 1'iiiii

M I I

0 40 80 120 160 200 240

Time (s)

Bandwidth N-Tier Topology 2
Transaction 1 Part A

£ 1

.1 0.8
■

I 0.6
3 0.4

§ 0.2

I 0 MMnlhA%M wifl>*0M^iMW"wfwrdfcdW4U^Jfr«Vl

40 80 120 160

Time (s)

200 240

& 1

o 0.8

| 0.6

= 0.4

| 0.2

3 0*

Bandwidth N-Tier Topology 4
Transaction 1 Part A

Bandwidth N-Tier Topology 3
Transaction 1 Part A

a-

40 80 120 160

Time (s)

200 240

o 0 8 -

S 06-
3 0 4 - ■x
9 0 2-

4! ni I
0 40 80 120 160 200 240

Time (s)

Figure 5.2 - Transaction 1 (Part A) Bandwidth Utilization

As shown in Figure 5.2, the topologies 2, 3 and 4 have a network utiliza-

tion of about 10 times lower than the Client/Server version. This is explained by

the position of the middle-tier. Since it is not in the client, all the heavy database

89

communication occurs among the servers, the client only issues requests and re-

ceives results.

The spike in the network utilization (about 1% utilization) in the begin-

ning of the program in Topology 4 is caused by the first activation of MTS ob-

jects. Posterior activations don't cause this behavior, since MTS caches the used

objects.

In terms of cost/benefit, the best architecture for this particular transac-

tion is Topology 3. It has the second best execution time, 0.678 s, second best

bandwidth utilization (0.14%) and has no scalability impacts on the database

server because the processing is done in the application server. But 0.14% utili-

zation (140 Kbps) is still a high value for most WANs. In environments such as

the Internet, only Topology 4 is viable.

5.2.1.2 Part A - Transaction 2 - Payment

This is the second most demanding TPC-C Transaction in terms of proc-

essing resources. The execution times in the Client/Server and in the four N-Tier

topologies are shown in Figure 5.3. The used bandwidth is shown in Figure 5.4.

The results for this Transaction are very similar to the ones of the Trans-

action 1. In this Transaction, the Client/Server version has the best execution

time, 0.16 sec. per transaction, but within the standard deviation of the 3 first N-

Tier topologies.

90

Time

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

(s)
Execution Time Transaction 2

s
"—

E3C/S

BN-Tier (Client)

0N-Tier (Server)

SN-Tier(App)

EN-Tier(MTS)

Figure 5.3 - Transaction 2 Execution Times

For the same reasons explained in Transaction 1, the worst execution time

is the N-Tier Topology 4, 0.70 sec. per transaction, with more than 4 times the

execution time of the Client/Server version. Again, Topology 4 was the one that

uses least bandwidth, mean of 0.03% (30 Kbps), while the Client/Server version

has a mean of 0.84% (840 Kbps).

In this experiment, the spike in the beginning of the execution of N-tier

Topology 4 is less significant than in transaction 1, only about 0.3%. This is be-

cause this transaction is simpler, requiring fewer object instantiations. Compar-

ing N-tier topologies 3 and 4, it is also noticeable that the former uses about two

times more network bandwidth, although both use an application server to host

the middle-tier. MTS object caching is reason of this behavior.

The best topology for this transaction, in terms of cost/benefit, is again

Topology 3. It presents the third best result, 0.165 sec. per transaction and the

second best network utilization, 0.1% (100 Kbps).

91

Bandwidth Client/Server
Transaction 2

10 20 30 40

Time (s)

50

Bandwidth N-Tier Topology 2
Transaction 2

£. 1.2

§ 1

jjj 0.6

£ 0.4
| 0.2
2 0

10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 1
Transaction 2

20 30 40

Time (s)

50

Bandwidth N-Tier Topology 3
Transaction 2

£. 1.2

1

S 0.8

jjj 0.6

* 0.4

I 0.2
ps*^-**- ■^■■ä^V

10 20 30 40

Time (s)

50

Bandwidth N-Tier Topology 4
Transaction 2

£. 1.2

5 0-8
£ 0.6

0.4

0.2
fc

10 20 30 40

Time (s)

50

Figure 5.4 - Transaction 2 Bandwidth Utilization

5.2.1.3 Part A - Transaction 3 - Order Status

This is a light transaction in terms of processing resources. It basically

sends a series of SQL Statements to the database. The execution times in the Cli-

92

ent/Server and in the four N-Tier topologies are shown in Figure 5.5. Bandwidth

use is shown in Figure 5.6.

Again the same execution times pattern of the previous transactions hap-

pens in this one. The Client/Server and the first 3 N-Tier topologies have very

similar execution times, with the Client/Server version slightly faster, 0.108 sec.

per transaction.

But N-Tier Topology 4 did not present the same behavior of the other

transactions. Client/Server and N-Tier topologies 1 to 3 shows improved execu-

tion times compared to the previous executions which is expected; since the

transaction is not actually updated data, the data is simple read from the data-

base.

But, as can be seen in Figure 5.5, the N-Tier Topology 4 execution time in-

creased, compared to the previous transaction, to 1.17 sec. per transaction. This

behavior is explained by the characteristics of MTS and the way the Transactions

object is implemented (see section 4.4.3).

The Transactions object is a single DCOM component, which responsible

for executing all 5 transactions. Since there are some transactions that require

database updates, this component was registered in MTS as a component that

"requires transaction". Therefore, MTS starts a transaction every time a method

is executed, even if the transaction is a simple database read, as happens in this

case. This is why N-Tier Topology 4 has the highest execution time; it is execut-

ing a database transaction while the other versions are not.

93

Execution Time Transaction 3

EC/S

E N-Tier (Client)

0 N-Tier (Server)

S N-Tier (App)

□ N-Tier(MTS)

Figure 5.5 - Transaction 3 Execution Times

An analysis of network bandwidth utilization shows that Client/Server

uses 0.48% bandwidth, Topology 1,1.25% and Topology 2, 0.13%. And since this

transaction requires extensive data reading, the overhead of using objects instead

plain SQL statements is more easily noticeable. Comparing the Client/Server

against N-Tier topology 1 shows that the later requires almost 3 times more net-

work bandwidth. Again, MTS object caching cause low network utilization for

this transaction, about 0.018%.

The better architecture for this transaction is again N-Tier topology 3, al-

though the Client/Server version, with use of more efficient SQL Statements, can

be also considered. In a real world scenario, where the data retrieved would be

far more complex, a pure SQL solution is probably be the best solution for this

type of transaction.

94

Bandwidth Client/Server
Transaction 3

c 1.5
$ 1.25
N 1
5 0.75
^ 0.5
p 0.25
I 0

f^w^f^wH/- V"<^y~ \

0 10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 2
Transaction 3

c 1.5
•2 1.25
.M 1
5 0.75
^ 0.5
0 0.25
1 0

10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 1
Transaction 3

Time (s)

Bandwidth N-Tier Topology 3
Transaction 3

c 1.5
5 1-25

2= 0.75
* 0.5
o 0.25

! ° M~*~ "^•^A"*^^»

10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 4
Transaction 3

c 1-5
% 1.25
is ., N 1
| 0.75
* 0.5
0 0.25

1 °
z

JL
10 20 30

Time (s)
40 50

Figure 5.6 - Transaction 3 Bandwidth Utilization

95

5.2.1.4 Part A - Transaction 4 - Delivery

This is a deferred transaction, the request is queued and the some server

component executes the process at a later time. Figure 5.7 shows the execution

time and Figure 5.8 shows the bandwidth utilization.

Execution Time Transaction 4

Time (s)

0.080

0.070

0.060

0.050

0.040

0.030

0.020

0.010

0.000

rjc/s

E N-Tier (Client)

0 N-Tier (Server)

S N-Tier (App)

El N-Tier (MTS)

Figure 5.7 - Transaction 4 Execution Times

The implementation of the Client/Server version is very different from the

N-Tier topologies for this transaction. In the Client/Server model, the request is

logged in a table alert activates the server agent. In the N-Tier model, a MSMQ

message is sent to a specific object in the middle tier, which in turn executes the

transaction asynchronously. So, while the Client/Server model executes a table

update, the N-Tier model just uses an asynchronous.

This difference of implementation justifies the time results. The Cli-

ent/Server version takes 0.04 sec. per transaction, while all the N-tier topologies

takes from 0.046 sec. to 0.065 s. The error bar in the Client/Server in Figure 5.7 is

96

very significant. This is caused by the server background execution of the agent

code, which competes for the same processing resources as the transaction itself.

£ 2-,
5 1-75
•S 1.5
N 1.25-
5 1 -
^ 0.75-
5 0.5-
| 0.25
2 oJ

Bandwidth Client/Server
Transaction 4

y^A
/V \
/ i \

0 10 20 30 40 50

Time (s)

is 2 -,

Bandwidth N-Tier Topology 2
Transaction 4

S 1-75
% 1.5
8 1.25

2 0.75-
S 0.5-
I 0.25 -
5 0 - -/^ v Z u

0 10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 1
Transaction 4

& 2
£ 1-75
% 1.5
N 1.25

5 1
^ 0.75
S 0.5
B 0.25
Z 0

3
10 20 30

Time (s)

40 50

Bandwidth N-Tier Topology 3
Transaction 4

£. 2
c 1.75

1.5
1.25

1
0.75

0.5
0.25

0 ZZL
10 20 30 40 50

Time (s)

Bandwidth N-Tier Topology 4
Transaction 4

2. 2
1.75 c

■2 1.5
N 1.25

0.75
0.5

0.25 I
z fiS:

10 20 30 40 50

Time (s)

Figure 5.8 - Transaction 4 Bandwidth Utilization

97

In this transaction, the last 3 N-Tier Topologies have the best execution

times, between 0.046 sec. and 0.065 sec. per transaction. This is expected since the

use the basically the same code.

The analysis of the bandwidth utilization shows that an MSMQ message

uses very little bandwidth. N-tier Topology 2 is the one that uses more band-

width among all N-tier versions. This reason is that the middle-tier server that

processes MSMQ messages is located at the client machine. Therefore, all mes-

sages are returned to the sender machine for processing. This explains the higher

bandwidth usage, 0.89%, and why the network continues to be used long after

the transactions are over (the 300 iterations takes less than 10 seconds).

The best choice for this transaction is Topology 3. It is the one has the best

execution time, 0.046s per transaction, and least bandwidth utilization, 0.12%

(120 Kbps).

5.2.1.5 Part A - Transaction 5 - Stock Level

This is a read-only transaction that executes a series of SQL Statements.

The execution times in the Client/Server and in the four N-Tier topologies are

shown in Figure 5.9. Bandwidth use is shown in Figure 5.10.

These results show basically the same behavior seen in Transactions 2 and

3: the Client/Server version is slightly faster than the N-Tier, and the MTS pre-

sented the worst performance, about 10 times the Client/Server execution time.

98

Time

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.050

0.000

(s)
Execution Time Transaction 5

s

EC/S

O N-Tier (Client)

0 N-Tier (Server)

E N-Tier (App)

□ N-Tier (MTS)

Figure 5.9- Transaction 5 Execution Times

Also in this case, MTS enforces the transaction, causing the N-Tier Topol-

ogy 4 to perform poorly (0.261 sec. per transaction) compared to the others

(about 0.03 sec. per transaction). The bandwidth utilization pattern is also very

similar to Transaction 3. Again, the caching mechanisms of MTS make a very ef-

ficient use of the network bandwidth cause Topology 4 to use 0.026% while the

other version use between 0.12 and 0.50% network bandwidth.

As in the previous transactions, the N-Tier topology 3 is the one that pro-

vides the best cost/benefit ration, with a good execution time, 0.033 sec. per

transaction, and the second lowest network utilization, 0.128%.

5.2.1.6 Part B - Transaction 1 - New Order

This transaction access and updates records in two databases. It simulates

a real world scenario of a distributed database application. The Client/Server

version uses replication and two-phase commit protocol to update data and en-

99

sure data integrity. The N-tier uses the distributed transaction capabilities of

MTS to coordinate the transactions:

S?" P -,

Bandwidth Client/Server
Transaction 5

c 1.75 -
£ 1.5-
S 1.25-
5 1 -
^ 0.75-
5 0.5-
I 0.25 -
a n

/ ^
/ \
/ \ z °
0 10 20 30 40

Time (s)

s?" ? -,

Bandwidth N-Tier Topology 2
Transaction 5

5 1.75-
5 1.5-
N 1.25
5 1 -
^ 0.75-
5 0.5 -
1 0.25 -
S oJ

^.
>-*"^ \

/ \

0 10 20 30 40

Time (s)

S? 9 -

Bandwidth N-Tier Topology 1
Transaction 5

c 1.75-
£ 1.5
S 1.25-

^ 0.75 -
S 0.5-
1 0.25 -
2 oJ

-* ''—' \ y V

0 10 20 30 40

Time (s)

Bandwidth N-Tier Topology 3
Transaction 5

£. 2
c 1.75

I 1"5
N 1.25

S 1
^ 0.75
S 0.5
I 0.25
£ o A— X_

10 20

Time (s)

30 40

a?" 2 -,

Bandwidth N-Tier Topology 4
Transaction 5

c 1.75
£ 1.5
S 1.25

^ 0.75
S 0.5
1 0.25 -
JS n A
Z 0

0 10 20 30 40

Time (s)

Figure 5.10 - Transaction 5 Bandwidth Utilization

100

Time (s)

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Execution Time Transaction 1 Part B

mas

m N-Tler (MTS)

Figure 5.11 - Transaction 1 (Part B) Execution Times

Figure 5.11 shows the execution times of the Client/Server and N-Tier

implementation. The Client /Server version has a clear advantage; with an exe-

cution time almost three times lower than the N-Tier version.

The execution times are 0.67 sec. in the Client/Server, and 1.453 sec. in the

N-tier. This difference is explained by two factors: first, the MTS distributed

transaction coordinator (MS-DTC) is not as efficient as the SQL Server 7 drivers,

since MTS has to work with any generic database. Second, the SQL Server 7 has

advantages in the way it implements the transaction in the distributed scenario.

It first updates the local database, allowing the client to continue in its work, and

then executes the transaction in the remote database. If some merge problem oc-

curs, the SQL Server rollbacks the transaction and generates a replication merge

conflict. This conflict has to be solved by the administrator or by a specialized

101

routine. In MTS, once the transaction is committed, it is guaranteed to be com-

mitted in all participating database.

This fact can also explain the network bandwidth utilization, shown in

Figures 5.12 to 5.14. It can be seen in Figure 5.13 that the network continues to be

used long after the client finishes its work. The chart shows the exact times the

Replication Agent in the SQL Server process a batch of records, sending them to

the remote database.

The charts also show that the network utilization of the N-Tier client,

mean value of 0.02% (20 Kbps), is much lower compared to the Client/Server

version, which has a mean value of 0.60%. As explained in the previous transac-

tions, this is happens because most traffic occurs between the application server

and the database server; the client only issues the command and receives the re-

sults.

It can be seen in Figure 5.12 that the N-Tier version uses 30 times less

bandwidth than the Client/Server counterpart. When the system is activated, the

usual object activation can reach up to 2% network utilization, but after that, it

stays at about 0.02%.

102

c
o

0.9
0.8
0.7
0.6

I
5 0.5

0.4

0.3
0.2
0.1

Bandwidth Client/Server
Transaction 1 Part B

40 80 120

Time (s)

160 200 24C

0.9

0.8

0.7

0.6

5 0.5

I
0.4
0.3

0.2
0.1

0

Figure 5.12 - CyS Front-End Bandwidth Utilization

Bandwidth Client/Server
Transaction 1 (Part B) Remote Database Server

iliJwAln1 JJAAuuJj ItJdAuhLhJri
0 40 80 120 160 200 240 280 320 360 400 440

Time (s)

Figure 5.13 - CyS Remote Server Bandwidth Utilization

103

Bandwidth N-Tier
Transaction 1 (Part B)

3

i
z

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4 -I
0.2 -I
.IM, M<MAllriMM»11M»tM.l.i.i.-.M....li *. "-""■»■ff

0 40 80 120 160 200 240 280 320 360 400 440

Time (s)

Figure 5.12 - N-Tier Front-End Bandwidth Utilization

In this transaction, the best model is not clearly defined, since one is faster

but the other uses less network bandwidth. The best solution in a real world sce-

nario would depend on the application requirements (speed vs. available net-

work bandwidth).

5.3 General Analysis

From the collected data detailed in the previous sections, it is possible to

derive some general conclusions about the models being compared.

First, the Client/Server model uses more bandwidth than the N-tier to-

pologies in almost all scenarios (exceptions are small, read-only transactions,

such as Transaction 3). When compared to MTS implementation, it uses much

more bandwidth the N-tier versions, in all cases tested.

104

Second, the N-Tier topologies with middle-tier located apart from the

front-end performs as well, or better in some cases, than the Client/Server

model. The COM overhead is only noticeable in quick transactions, with low

processing requirements.

Third, MTS poses a serious overhead in all tested cases. Its use of a generic

distributed transaction coordinator causes it to perform poorly compared to

transactions using native SQL Server drivers. The advantages are an easier to

implement solution to distributed databases and more efficient network utiliza-

tion, due to caching mechanisms. The replication capabilities of SQL Server do

not provide the same functionality of the two-phase commit characteristics of

MTS.

Fourth, MSMQ brings good benefits to asynchronous method calls. It

poses no noticeable overhead and provides a very efficient use of network

bandwidth, compared to Client/Server solutions.

Of course these findings apply to the specific transactions used in this re-

search effort. But since TPC-C is based on real-world applications, these findings

can be applied to other distributed database systems with reasonable confidence.

5.4 Efficiency Discussion

Although it would be interesting to compare the efficiency of the Cli-

ent/Server and N-tier topologies, this analysis, with the measurement tools used

in the research effort, is currently not possible.

105

In Client/Server or N-tier systems, a more efficient system is the one that

can support a larger number of simultaneous clients in a single server (or serv-

ers). Therefore, the less processing resources an implementation uses, the more

capable of supporting clients it will be (assuming that each new client uses the

same amount of processing resources), and therefore, more efficient.

But to measure the processing utilization of a server in a lightly loaded

environment such as the one in this research effort is an impractical task. The ex-

periments described in this chapter do not cause the SGBDs, which have to sup-

port all clients, to use enough processing resources to make it possible to perform

accurate measurements. Therefore, a processor utilization analysis would be not

conclusive.

To solve this problem, it would be necessary to develop some specific

measurement technique or to create a workload to cause a higher server utiliza-

tion (using many simultaneous clients, for example). Both alternatives are be-

yond the scope of this research.

5.5 Summary

This chapter provides an analysis of the experimental data collected.

Based on the resulting charts for each TPC-C Transaction, the Client/Server and

N-Tier models are compared, and their advantages or disadvantages listed.

The last sections provide a general summary of the findings derived from

the data analysis, about the Client/Server and the N-Tier topologies. A discus-

sion of efficiency of the models being tested is also performed.

106

VI. Conclusions and Recommendations

The goal of this research effort is to analyze the use of Distributed Objects

against the standard Client/Server model in Distributed databases. The imple-

mentation of the models and metrics chosen provided quantitative and qualita-

tive results that serve as basis for a series of conclusions, meeting the detailed

objectives described in section 3.2.

A general statistical finding is that the N-Tier model uses lower network

bandwidth than standard Client/Server. This is due to the location of the busi-

ness logic implementation - in application servers, instead of in the client or in

the database server. In corporate systems that are based on low-speed communi-

cation links, such as the ones being developed in BAF, this implies that the dis-

tributed objects technology can provide better results than standard the Cli-

ent/Server architecture.

The common conception that distributed-objects overhead causes N-Tier

systems to perform worse than Client/Server systems was not validated: in all

tested cases, the N-Tier topologies, without using MTS, presented execution

times close to the Client/Server implementation in most cases, with better results

in particular types of transactions. Even in the case where all N-Tier layers are

located at the client, the execution times were mostly within the standard devia-

tion of the ones from Client/Server implementation. This result implies that N-

Tier technology could be used in most corporate database systems without seri-

107

ous performance penalties. The typical advantages of the N-tier objected-

oriented development, such as code reuse, easier maintenance, and better ab-

straction, could justify the overhead encountered.

Another conclusion derived from the experimental data is that the MTS

does pose a significant overhead. Its Distributed Transaction Coordinator causes

the execution to be several times slower than the client/server or other N-tier to-

pologies. This overhead should be weighted against the capabilities demon-

strated by MTS, which is capable of handling transactions across multiple data-

bases with no source code changes. This can be especially useful when dealing'

with high-volume, multi-database systems. To implement these functionalities

without MTS would mean to write code to manage simultaneous two-phase

commit transactions and specialized procedures to deal with replication con-

flicts. Another qualitative fact to be pondered is that the upcoming Windows

2000 incorporates MTS and the DCOM infrastructure at the operating system

level, possibly diminishing the MTS overhead.

Although the use of pure DCOM instead of MTS provided execution

times comparable to the Client/Server one, this solution is not as scalable, since

objects are not shared among clients, and there are no MTS-provided database

resource and object caching.

N-Tier systems were found to handle asynchronous and deferred transac-

tions more efficiently than the Client/Server implementations, in terms of exe-

cution time and network utilization. The use of a message application server

108

such as MSMQ can bring benefits even to standard Client/Server systems. It

poses no noticeable overhead and it uses less network bandwidth. In standard

Client/Server systems, the only way to implement deferred transactions is by

using database internal alerts and agents [47]. This implies developing special-

ized stored procedures and using complex configuration steps in each database

server. MSMQ can be used to provide a single point of management with little

coding.

A general disadvantage of the N-Tier model is the learning curve. In the

DCOM framework, a developer has to be familiar with Windows NT, MTS,

MSQM, DCOM configuration, database configuration and NT integrated secu-

rity. The same is valid for any other distributed-object architecture, such as

CORBA or EJB. In the client/server model, usually knowledge of the DBMS is

sufficient for developing applications. This situation tends to gets worse as dis-

tributed objects vendors increment their framework with more layers of applica-

tions, making the environment even more complex.

Another disadvantage is the environmental configuration. To properly

setup a DCOM infrastructure, one has to conFigure Windows NT (with is multi-

ple Service Packs, installed in the proper order), SQL Server, Option Pack, MTS,

MSMQ, DCOM security and client policies. This was found to be an over-

whelming task; a considerable part of this research effort was spent learning the

proper configuration and installation of these components. Again, these configu-

109

ration procedures are supposed to be easier in Windows 2000, since DCOM, MTS

and MSQM will already be provided by the operating system.

As a final conclusion, both models were found to be an effective model for

development corporate systems. The main advantage of Distributed Objects ar-

chitecture is the more efficient use of the network bandwidth. Therefore, this

model is recommended to be used in situations were network bandwidth is an

issue. In other situations, several factors such as technical expertise, number and

type of database servers, type of development methodology (objected-oriented or

not), and scalability should be considered.

6.1 Future Directions

There are several lines of research that could follow this research work.

An analysis of different Distributed Objects frameworks such as CORBA or EJB

would be useful to compare performance issues and easy of use of the different

solutions. A cross-platform study could also provide useful insights of if Distrib-

uted Technology could be successfully applied to mixed environments.

The use of Windows 2000 could also be considered as a research effort.

Since the new OS will incorporate the entire DCOM framework, an analysis of

performance and configuration issues could extend the conclusion of this work.

Also, different implementations, using other database models, could be used for

further investigation.

Although MSMQ is a relatively old product (was release more than 2

years ago), very few real world systems use it as a transactional component.

110

Transactional queues could provide better performance is some type of transac-

tions by allowing than to execute asynchronously. An analysis of the situations

where this technology could apply and the possible benefits from it could prove

to be valuable.

Ill

Bibliography

1) Brazilian Air Force. Description of the Brazilian Air

Force Information System. WWWeb,

http://www.maer.mil.br. August 1998.

2) Guerra, A. & Silva, G. N. Feasibility Study on the Use

of the Internet for Traffic of Unclassified Data. MS

thesis, AFIT/GLM/LAL/98S-7. School of Engineering, Air

Force Institute of Technology, Wright-Patterson Air

Force Base, 1998.

3) Microsoft Web Site. Microsoft Developer Network.

WWWeb, http://www.microsoft.com/msdn.

4) Oracle Web Site. Oracle White Papers. WWWeb,

http://www.oracle.com.

5) 15 Seconds. 15 Seconds Forums and Papers. WWWeb,.

http://www.15seconds.com.

6) Sybase Web Site. Sybase White Papers. WWWeb,

http://www.Sybase.com.

7) Dewire, D. Application Development for Distributed En-

vironments . McGraw-Hill, 1994

112

8) Renaud, P. Introduction to Client/Server Systems: a

practical guide for systems professionals. John Willey

& Sons, 1993.

9) Smith, P. Client/Server Computing. SAMS Publishing,

1992.

10) Bell, D & Grimson, J. Distributed Database Systems.

Addison-Wesley, 1992.

11) Silvio P. et all. Distributed Relational Database.

Prentice-Hall, 1996.

12) Khoshafian, S. et all. Client/Server SQL Applications.

Morgan-Kaufmann, 1992.

13) Vaugh, W. R. Hitchhicker's Guide to Visual Basic & SQL

Server. 5th edition, Microsoft Press, 1997.

14) Thompson, Charles. Database Replication, DBMS Maga-

zine, May 1997

15) Bobrowski, Steve. Implementing Data Replication, Ora-

cle Magazine, May/June WWWeb,

http://www.oramag.com/archives/3 6client.html

16) Fradkov, Sergey. Current Issues in Data Replication,

WWWeb, http://www.unifx.com/article.html

113

17) Clegg, Peter. Avoid Data Distribution Pitfalls - Lan-

times online, WWWeb

http://www.wcmh.com/lantimes/archive/5 0lb03 9a.html

18) Allan, Tony et al. Duplicate Data in a Distributed

Document Database, WWWeb

http://yallara.cs.rmit.edu.au/~junweic/link_cs445/Dist

ributed/index.html#authors

19) Avital, Orly G & Avital, Oren. Distributed Databases,

WWWeb http://techst02.technion.ac.il/~s2490610/dbe/

20) Beel, David & Grimson, Jane. Distributed Database Sys-

tems, Addison-Wesley, 1992

21) Siblerschatz, A.; Korth, H.; Sudarshan, S. Database

Systems Concepts. McGraw-Hill, 1997.

22) Flynn, Michael J. Very High-Speed Computing Systems,

Proceedings of the IEEE 54:12 (December 1966), ppl901-

1909.

23) Rogerson, D. Inside COM. Microsoft Press, 1997

24) Li, S. & Economopoulos, P. Professional COM Applica-

tions with ATL. Wrox Press, 1998.

25) Lhotka, R. Professional Visual Basic 5 Business Ob-

jects. Wrox Press, 1997.

114

26) Platt, D. The Essence of COM with ActiveX. 2nd Ed.

Prentice-Hall, 1998.

27) Orfali, R.; Harkey, D. & Edwards, J. The Essential

Distributed Objects Survival Guide. John Willey &

Sons, 1996.

28) Box, D. Essential COM. Addison-Wesley, 1998.

29) Eddon G. & Eddon H. Inside Distributed DCOM. Microsoft

Press, 1998.

30) Grimmes, R. Professional DCOM Programming. Wrox Press,

1997.

31) Session, R. COM and DCOM: Microsoft's Vision for Dis-

tributed Objects. John Willey & Sons, 1998.

32) Pinnock, J. Professional DCOM Application Development.

Wrox Press, 1998.

33) Redmond III, F. DCOM: Microsoft Distributed Component

Object Model. IDG Books, 1997.

34) Homer, Alex & Sussman, David. Professional MTS and

MSMQ with VB and ASP. Wrox Press, 1998.

35) Object Management Group - OMG & X/Open. The Common Ob-

ject Request Broker - Architecture and Specification.

OMG, 1992

36> CORBA Internet Site. WWWeb, http//www.corba.org.

115

37) TPC-C Specification. TPC - Transaction Processing Per-

formance Council. WWWeb, http://www.tpc.org

38) Grimes, R. ATL COM Programming. Wrox Press, 1998.

39) Muller, P. Instant UML. Wrox Press, 1997.

40) Vinoski, S. New Features for CORBA 3.0. Communications

of the ACM, Vol. 41, pag. 10, pg. 44-52.

41) Miller, K. Professional NT Services, Wrox Press 1998.

42) Grimes, R et al, Beginning ATL COM Programming, Wrox

Press 1998.

43) Inprise Web Site. Applications, PowerBuilder and Del-

phi. WWWeb, http://www.inprise.com.

44) Sun Web Site. WWWeb: http://wwww.sun.com.

45) Jain, Raj, The Art of Computer Systems Performance

Analysis - Techniques for Experimental Design, Meas-

urement, Simulation, and Modeling. John Wiley & Sons,

1991.

46) Won, K - Modern Database Systems. ACM Press, 1995

47) Microsoft SQL Server Site. WWWeb:

http://www.microsoft.com/sql.

48) Oracle Database Server. WWWeb:

http://www.oracle.com/database.

116

49) DCOM Specifications. WWWeb:

http://www.microsoft.com/com.

50) Chung, P. E. et al, DCOM and CORBA Side by Side, Step

By Step, and Layer by Layer, C++ Report,. Sept. 1997.

51) Rector B. , Sells C, ATL Internals. Addis on-Wesley, '

1999.

^52) Box, D. et al, Effective COM. Addison-Wesley, 1999.

53) Otey, M. & Conte, P., SQL Server 7 Developer's Guide.

Osborne-McGraw Hill, 1999.

54) Dickman, A., Designing Applications with MSMQ.

Addison-Wesley, 1999.

55) Schildt, H., STL Programming. Osborne-McGraw

Hill,1999.

56) Meyers, S., Effective C++ CD. Addison-Wesley, 1999.

57) Major, A., COM IDL & Interface Design. Wrox Press,

1999.

58) Spenik, M. et al, Microsoft SQL Server 7 DBA Survival

Guide. SAMS Publishing, 1999.

59) Pattison, T., Programming Distributed Applications

with COM and Microsoft Visual Basic 6.0. Microsoft

Press, 1999.

117

60) Kirtland, M., Designing Component-Based Applications.

Microsoft Press, 1999.

61) Soukoup, R. & Delaney, K., Inside Microsoft SQL Server

7.0. Microsoft Press, 1999.

62) McGehee, B. et al, Using SQL Server 7.0. QUE, 1999.

63) Gamma, E. et al, Design Patterns - Elements of Reus-

able Objected-Oriented Software. Addison-Wesley, 1995.

64) McConnel, S., Code Complete: A Practical Handbook of

Software Construction. Microsoft Press, 1993.

65) Microsoft Message Queue Server. WWWeb,

http://www.microsoft.com/ntserver/appservice/exec/over

view/MSMQ_Overview.asp.

66) Microsoft Transaction Server. WWWeb,

http://www.microsoft.com/ntserver/appservice/exec/over

view/Trans_Overview.asp.

67) ErWin Web Page. WWWeb,

http://www.platinum.com/products/appdev/erwin_ps.htm.

68) ADO Web Page. WWWEb, http://www.microsoft.com/data.

69) Intel web Page. WWWeb, http:///www.intel.com.

70) Linux Web Site. WWWeb, http://www.linux.org.

118

71) NT Server Web Page. WWWeb,

http://www.microsoft.com/ntserver.

72) Symantec Web Site. WWWeb, http://www.symantec.com.

73) TPC Benchmark Specification, Revision 3.4. WWWeb,

http://www.tpc.org. August 15, 1998

74) Kim, Won. Modern Database Systems : The Object Model,

Interoperability, and Beyond. Addison-Wesley, 1995.

119

Appendix A - Acronyms

ACID

ADO

AFA

BAF

C/S

CAB-SP

CAB-L

CAB-W

CASE

CCA-RJ

CCA-SJ

CCA-BR

CATRE

COM

COMGAP

CORBA

DAC

DAO

DBMS

DCOM

Atomicity, Consistency, Isolation and Durability

ActiveX Database Objects

Brazilian Air Force Academy

Brazilian Air Force

Client/Server

Brazilian Air Force Procurement Commission at Säo Paulo

Brazilian Air Force Procurement Commission at London

Brazilian Air Force Procurement Commission at Washington

Computer Aided Software Engineering

Brazilian Air Force Computing Center at Rio de Janeiro

Brazilian Air Force Computing Center at Säo Jose dos Campos

Brazilian Air Force Computing Center at Brasilia

Tactical Air Force Training Center

Component Object Model

Brazilian Air Force Support Command

Common Object Request Broker Architecture

Brazilian Air Force Civil Aviation Department

Database Access Objetcs (Jet Library)

Database Management System

Distributed Component Object Model

120

DDBMS Distributed Database Management System

DDL Data Definition Language

DEPV Brazilian Air Force Air Traffic Directorate

DIRENG Brazilian Air Force Engineering Directorate

DIRINFE Brazilian Air Force Computer Science and Statistics Directorate

DIRMA Brazilian Air Force Materiel Directorate

DIRMAB Brazilian Air Force Munitions Directorate

DIRSA Brazilian Air Force Healthcare Directorate

DTC Distributed Transaction Coordinator

LAN Local-Area Network

MAN

MINAER

MTS

MSMQ

NOS

ORB

ODBC

OODBMS

PAMA-AF

PAMA-GL

PAMA-LS

PAMA-SP

Metropolitan-Area Network

Brazilian Air Force Administrative Headquarters

Microsoft Transaction Server

Microsoft Message Queue Server

Network Operating System

Object Request Broker

Open Database Connectivity Library

Object-Oriented DataBase Management Server

Brazilian Air Force Aeronautical Depot at Afonsos

Brazilian Air Force Aeronautical Depot at Galeäo

Brazilian Air Force Aeronautical Depot at Lagoa Santa

Brazilian Air Force Aeronautical Depot at Säo Paulo

121

PAMA-RF Brazilian Air Force Aeronautical Depot at Recife

RCDMA Brazilian Air Force Data Communications Network

SILOMS Brazilian Air Force Logistics, Materiel, and Services Information

System

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

VB

VB

WAN

WWW

X.25

Microsoft Visual Basic

Microsoft Visual C++

Wide-Area Network

World Wide Web

Packet-switching CCITT protocol standard

122

Appendix B - Database SQL Scripts

/* Microsoft SQL Server - Scripting
/* Database: Thesis

*/
/* Creation Date 12/11/1998 12:58:32 PM

*/
set quoted_identifier OFF
GO

/* Microsoft SQL Server - Scripting
/* Server: HELEN

*/
/* Database: Thesis

•/
/* Creation Date 12/11/1998 11:05:25 AM

setuser N'dbo'

EXEC sp_addtype N'ORDER_LINE_DOMAIN', N'char (18)', N'null'

setuser N'dbo'

EXEC sp_bindrule N'[dbo].[ORDER_LINE_VAL)'
N'[ORDER_LINE_DOMAIN]'

CREATE RULE ALL_LOCAL_VAL
AS Ocol BETWEEN 0 AND 9

CREATE RULE CREDIT_VAL
AS 0COl IN {'GC, 'BC'j

setuser N'dbo'

EXEC sp_addtype N'QUANTITY_DOMAIN', N'smallinf, N'null'

CREATE RULE DISTRICT_VAL
AS 9col BETWEEN 1 AND 20

CREATE RULE ORDER_LINE_VAL
AS Öcol BETWEEN 0 AND 15

CREATE RULE QUANTITY_VAL
AS flcol BETWEEN 1 AND 99

setuser N'dbo"
GO

create default [ZERO_VALUE] as 0
GO

create default [ONE_VALUE] as 1
GO

EXEC sp„addtype N'ALL_LOCAL_DOMATN', N'char (18)', N'null'

setuser N'dbo'

EXEC sp_bindrule N'[dbo].[QUAKTITY_VAL]', N'[QUANTITY_DOMAIN]'

GO

CREATE TABLE [dbo].[Warehouse] (
[W_ID] [int] NOT NULL ,
[W_NAME] [varchar] (10) NOT NULL ,
[W_STREET_1] [varchar] (20) NOT NULL ,
[W_STREET_2J [varchar] (20) NULL ,
[W_CITY] [varchar] (20) NOT NULL ,
[W_STATE] [varchar] (2) NOT NULL ,
[W_ZIP] [varchar) (9) NOT NULL ,
[W_TAX] [real] NULL ,
[W_YTD] [real] NULL ,
PRIMARY KEY CLUSTERED

<
[W_ID]

} ON [PRIMARY]

setuser N'dbo' setuser N'dbo'

EXEC sp_bindrule N'[dbo].[ALL_LOCAL_VAL]*, N'[ALL_LOCAL_DOMAIN]' EXEC sp„bindefault N'[dbo].[ZERO_VALUE]', N'[Warehouse].[W_YTD]

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]', N'[Warehouse].[W_TAXJ'

setuser N'dbo'

EXEC sp_addtype N'CREDIT_DOMAIN', N'char (18)', N'null'

setuser N'dbo'

EXEC sp_bindrule N'[dbo].[CREDIT_VAL]', N'[CREDIT_DOMAIN]'

setuser N'dbo'

EXEC sp_addtype N'DISTRICT_DOMAIN', N'char (18)', N'null'

GO

CREATE TABLE [dbo].[District] (
[D_ID] [smallint] NOT NULL ,
[D_W_ID] [int] NOT NULL ,
[D_NAME] [varchar] (10) NOT NULL ,
[D_STREET_1] [varchar] (20) NOT NULL
[D_STREET_2] [varchar] (20) NULL ,
[D_CITYJ [varchar] (20) NOT NULL ,
[D_STATE] [varchar] (2) NOT NULL ,
[D__ZIP] [varchar] (9) NOT NULL ,
[D_TAX] [real] NULL ,
[D_YTD] [real] NULL ,
[D_NEXT_0_ID] [int] NULL ,
PRIMARY KEY CLUSTERED

(
[D_ID],
[D_W_ID]

) ON [PRIMARY] ,
FOREIGN KEY

(
[D_W_ID]

) REFERENCES [dbo].[Warehouse] <
[W_ID]

setuser N'dbo'

EXEC sp_bindrule N'[dbo].[DISTRICT_VAL]', N'[DISTRICT_DOMAIN]'
CREATE INDEX [DistrictWarehouse] ON [dbo].[District]([D_W_ID])

ON [PRIMARY]

setuser N'dbo'

123

EXEC sp_bindrule N'[dbo].[DISTRICT_VAL]', N'[District].[D_ID]'
GO

EXEC sp_bindefault N'Idbo].[2ERO_VALUE]', N'[District].[D_TAX]•
GO

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]', N'[DISTRICT].[D_YTD]'

EXEC sp_bindefault N'[dbo].[ONE_VALUE]
N'[DISTRICT].[D„NEXT_0_ID]'

CREATE TABLE [dbo].[Customer] (
[C_ID] [int] NOT NULL ,
[C_D_ID] [smallint] NOT NULL ,
[C_W_ID] [int] NOT NULL ,
[C_FIRST] [varchar] (16) NOT NULL ,
[C_MIDDLE] [varchar] (2) NULL ,
[C_LAST) [varchar] (16) NOT NULL ,
[C_STREET_1] [varchar] (20) NOT NULL
[C_STREET_2] [varchar] (20) NULL ,
[C_CITY] [varchar] (20) NOT NULL ,
[C_STATE] [varchar] (2) NOT NULL ,
[C_ZIP] [varchar] (9) NOT NULL ,
[C_PHONE] [varchar] (16) NULL ,
[C_SINCE] [datetime] NULL ,
[C_CREDIT] [varchar] (2) NULL ,
[C_CREDIT_LIM] [real] NULL ,
[C_DISCOUNT] [real] NULL ,
[C_BALANCE] [real] NULL ,
[C_YTD_PAYMENT] [real] NULL ,
[C_PAYMENT_CNT] [real] NULL ,
[C_DELIVERY_CNT] [real] NULL ,
[C^DATA] [text] NULL ,
PRIMARY KEY CLUSTERED

(
[C_ID],
[C_D_ID],
[C_W_ID]

) ON [PRIMARY] ,
FOREIGN KEY

(
[C_D_ID] ,
tC_W_ID]

) REFERENCES [dbo].[District] (
[D^ID],
[D_W_ID]

)

CREATE INDEX [CustomerDistrict] ON [dbo].[Customer]([C_D_ID],
[C_W„ID]} ON [PRIMARY]

setuser N'dbo'

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]'
N'[Customer].[C_CREDIT_LIM]'

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]'
N'[Customer].[C_DISCOUNT]'

EXEC Sp_bindefault N'[dbo].(ZERO_VALUE]'
N'[Customer].[C_BALANCE]'

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]'
N'[Customer].[C_YTD_PAYMENT]'

) ON [PRIMARY] ,
FOREIGN KEY

(
[0_C_ID] ,
[0_D_ID],
[0_W_ID]

) REFERENCES [dbo].[Customer] (
[C_ID],
[C_D__ID],
[C_W_ID]

FOREIGN KEY

[0_D_ID],
[0_W_ID]

) REFERENCES [dbo].[District] (
[D_ID],
[D_W_ID]

)

CREATE INDEX [DistrictOrderDistrict] ON
[dbo].[District_Order]([0_D_ID], [0_W_ID]) ON [PRIMARY]

CREATE INDEX [DistrictOrderOrder] ON
[dbo].[District_Order]([0„D_ID], [0_W_ID1,

etuser N'dbo'

EXEC sp_binde£ault N'[dbo].[ZERO_VALUE]
N'[District_Order].[0_0L_CNT]'

EXEC sp_bindrule N'[dbo].[ALL_LOCAL_VAL]'
N'[District_Order].[0_ALL_LOCAL]'

EXEC sp_bindrule N'[dbo].[DISTRICT_VAL]',
N'[District_Order].[0_D_ID]'

CREATE TABLE [dbo].[History] (
[H_C_ID] [int] NULL ,
[H_C_D_ID] [smallint] NULL ,
[H_C_W_ID] [int] NULL ,
[H_D_IDJ [smallint] NULL ,
[H_W_ID] [int] NULL ,
[H_DATE] [datetime] NULL ,
[H_AMOUNT] [real] NULL ,
[H_DATA] [varchar] (24) NULL ,
FOREIGN KEY

(
[H_D_ID],
[H_W_ID]

) REFERENCES [dbo].[District] (
[D_ID],
[D_W_ID]

>,
FOREIGN KEY

(
[H_C_ID] ,
[H_C_D_ID],
[H_C_W_ID]

) REFERENCES [dbo].[Customer] (
[C_ID],
[C_D_ID],
[C_W_ID]

)

[0_C_ID]} ON [PRIMARY]

) ON [PRIMARY]

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]
N'[Customer].[C_PAYMENT_CNT]'

CREATE INDEX [Historydistrict] ON [dbo].[History]([H_D_ID],
[H__W_ID]) ON [PRIMARY]

EXEC sp_bindefault N'[dbo].[ZERO„VALUE]'
N'[Customer].[C_DELIVERY„CNT]■
GO

CREATE INDEX [HistoryCustomer] ON [dbo].[History]([H_C_ID],
[H_C_D_ID], [H_C_W_ID]) ON [PRIMARY]

EXEC sp_bindrule N'[dbo].[CREDIT_VAL]', N'[Customer].[C_CREDIT]'
GO

EXEC sp_bindrule N'[dbo].[DISTRICT„VAL)', N'[Customer].[C_D_ID]■
GO

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]',
N'[Customer].[C_DELIVERY_CNT]'

setuser N'dbo"
GO

EXEC Sp_bindrule N'[dbo].[DISTRICT_VAL]'
GO

EXEC sp_bindrule N'[dbo].[DISTRICT_VAL]'

N'[History].[H_c_D_ID]'

N'[History].[H_D_ID]'

GO

CREATE TABLE [dbo].[District_Order] (
[0_ID] [int] NOT NULL ,
[0_D_ID] [smallint] NOT NULL ,
[0_W_ID] [int] NOT NULL ,
[0_C_ID] [int] NULL ,
[0_ENTRY_DATE] [datetime] NULL ,
[0_CARRIER_ID] [char] (18) NULL
[0_OL_CNT] [smallint] NULL,
[0_ALL_LOCAL] [tinyint] NULL ,
PRIMARY KEY CLUSTERED

<
[O^ID],
[0_D_ID],
[0_W_ID]

CREATE TABLE [dbo].[Item] (
[I_ID] [int] NOT NULL ,
[I_IM_ID] [char] (18) NULL ,
[I_NAME] [varchar] (24) NULL
[I_PRICE] [real] NULL ,
[I_DATA] [varchar] (50) NULL
PRIMARY KEY CLUSTERED

(
[I_ID]

) ON [PRIMARY]
)
GO

124

GO

CREATE TABLE [dbo].[Stock] (
[S_I_ID] [int] NOT NULL ,
[S_W_ID] [int] NOT NULL ,
[S_QUANTITY) [smallint] NULL ,
[S_DIST_01] [varchar] (24) NULL
[S_DIST_02]
1S_DIST_03]
tS_DIST_04]
[S_DIST_05]
[S_DIST_06]
[S_DIST_07]
[S_DIST_08J
[S„DIST_09]
[S_DIST_10]

[varchar)
[varchar]
[varchar)
[varchar]

(24) NULL .
(24) NULL .
(24) NULL ,
(24) NULL .

[varchar] (24) NULL
[varchar] (24) NULL

(24) NULL
(24) NULL
(24) NULL

[varchar!
[varchar]
(varchar]

[S_YTD] (real] NULL ,
[S_ORDER_CNT] [smallint] NULL
[S_REMOTE_CNT] (smallint] NULL
[S_DATA] [varchar] (50) NULL ,
PRIMARY KEY CLUSTERED

(
[S_I_ID],
[S_W_ID]

ON [PRIMARY] ,
FOREIGN KEY-

(
[S„I_ID]

) REFERENCES [dbo].[Item] (
[I_ID]

),
FOREIGN KEY

(
[S_W_ID]

) REFERENCES [dbo].[Warehouse)
[W_ID]

[OL_NUMBER] [char] (18) NOT NULL ,
[OL_I_ID] [int) NULL ,
[OL_SUPPLY_W_ID] [int] NULL ,
(OL_DELIVERY_DJ [datetime] NULL ,
[OL_OUANTITY] [smallint] NULL ,
[OL_AMOUNT] [real) NULL ,
[OL_DIST_INFO] [varchar] (24) NULL ,
PRIMARY KEY CLUSTERED

<
(OL_0_ID),
[OL_D_ID],
[OL_W_ID],
[OL_NUMBER]

) ON [PRIMARY) ,
FOREIGN KEY

(
[OL_I_ID] ,
[OL_SUPPLY_W_ID]

) REFERENCES [dbo].[Stock] <
(S_I_ID],
[S_W_ID]

),
FOREIGN KEY

(
[OL_0_ID],
[OL_D_ID],
[OL_W_ID]

) REFERENCES [dbo].[District_Order] (
(0_IDJ,
[0_D_ID],
[0_W_ID]

)

CREATE INDEX [Order_LineDistrict_Order] ON
[dbo].[Order_Line]([OL_0_ID], [OL_D_ID], [OL_W_ID]) ON [PRIMARY]

setuser N'dbo'
CREATE INDEX [Order_LineStock] ON [dbo].[Order_Line]([OL_I__ID],
(OL_SUPPLY_W_ID)) ON [PRIMARY]

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]■, N'[Stock).[S_YTD]' setuser N'dbo'

EXEC sp_bindefault N'[dbo].[ZERO_VALUE]
N'[Stock).[S_ORDER_CNTJ'

EXEC sp_bindrule N'[dbo].[DISTRICT_VAL]',
N'[Order_Line].[OL_D_ID]'

EXEC sp_bindefault N*[dbo).[ZERO_VALUEJ
N'[Stock].[S_REMOTE_CNT]'

EXEC sp_bindrule N"[dbo].[QUANTITY_VAL]'
N'[Order_Line].[OL_QUANTITY]'

EXEC sp_bindefault N'[dbo].[2ER0_VALUE]', N'[Stock].[S_QUANTITY]

CREATE INDEX [Stockltem] ON [dbo].[stock]([S_I_ID]) ON
[PRIMARY]

CREATE INDEX [StOCkWarehouse] ON [dbo].[Stock]([S_W_ID]) ON
[PRIMARY]

CREATE TABLE [dbo].[New_Order] (
[NO_0_ID] [int] NOT NULL ,
[NO_D_ID] [smallint] NOT NULL ,
fNO_W_ID] [int] NOT NULL ,
PRIMARY KEY CLUSTERED

(
[NO_0_ID],
[NO_D_ID],
[NO_W_ID]

) ON [PRIMARY] ,
FOREIGN KEY

(
[N0_O_ID],
[NO_D_ID],
[NO_W_ID]

) REFERENCES [dbo].[District_Order] (
[0_ID],
[0_D_ID],
[0_W_ID]

)

CREATE INDEX [New_OrderDistrictOrder] ON
[dbo].[New_0rder]([NO_0_ID), [NO_D_ID], [NO_W_ID]) ON [PRIMARY]

create trigger tD_Customer on Customer for DELETE as
/* ERwin BuiItin Wed Nov 11 13:37:55 1998 */
/* DELETE trigger on Customer */
begin

declare flerrno int,
8errmsg varchar(255)

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Customer R/22 District_Order ON PARENT DELETE SET NULL
i£ exists(select 0_ID
from District_Order,deleted
where

/* %JoinFKPK(District_Order,deleted,■ = -," and-) */
District_Order.O_C_ID = deleted.C_ID and
District_Order.O_D_ID = deleted.C_D_ID and
District_Order.O_W_ID = deleted.C_W_ID)

begin
select Oerrno = 30007,

flerrmsg = 'Cannot DELETE "Customer" because
"District_Order" exists.'

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Customer R/9 History ON PARENT DELETE SET NULL */
if exists(select H„C_ID

from History,deleted
where

/* %JoinFKPK(History,deleted," = "," and") */
History.H_C_ID = deleted.C_ID and
History.H_C_D_ID = deleted.C__D_ID and
History.H_C_W_ID = deleted.C_W_ID)

begin
select Serrno = 30007,
flerrmsg = 'Cannot DELETE "Customer" because

"History" exists."
goto error

end

CREATE INDEX
FILLFACTOR = 50

setuser N'dbo'

;iX_NO_0_ID] ON [dbo].[New_Order]{[NO_0_ID)) WITH
ON [PRIMARY]

EXEC sp_bindrule N'[dbo]
N'[New_Order].[NO_D_ID]'

[DISTRICT_VAL]

CREATE TABLE [dbo].[Order_Line] (
tOL_0_ID] [int] NOT NULL ,
[0L_D_ID] [smallint] NOT NULL
[OL_W_ID] [int] NOT NULL ,

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror Qerrno flerrmsg
rollback transaction

end

GO
create trigger tI_Customer on Customer for INSERT <
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* INSERT trigger on Customer */
begin

declare Qnumrows int,
flnullcnt int,
flvalidcnt int,
«errno int,
flerrmsg varchar(255)

125

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 199B */
/* District R/8 Customer ON CHILD INSERT RESTRICT */
if

/* %ChildFK(" or",update) */
update(C_D_ID) or
update(C_W_ID>

begin
select flnullcnt = 0
select flvalidcnt = countf*)

from inserted,District
where

/* %JoinFKPK(inserted,District) */
inserted.C_D__ID = District.D_ID and
inserted.C_W_ID = District.D_W_ID

/* %NotnullFK{inserted,■ is null","select flnullcnt = <
from inserted where'," and") */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT "Customer" because

"District" does not exist."
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
create trigger tU_Customer on Customer for UPDATE as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* UPDATE trigger on Customer */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
9insC_ID int,
8insC_D_ID smallint,
8insC_W_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Customer R/22 District_Order ON PARENT UPDATE SET NULL '
if

/* %ParentPK(" or",update) */
update(C_ID) or
update(C_D_ID) or
update(C_W_ID)
begin

select flerrno
flerrmsg =

goto error
end

/* %JoinFKPK(Customer,deleted," = "," and*) */
Customer.C_D_ID = deleted.D_ID and
Customer.C_W_ID = deleted.D_W_ID

-

30007,
'Cannot UPDATE 'Customer" primary key.

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tD_District on District for DELETE as
/• ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* DELETE trigger on District */
begin

declare flerrno int,
flerrmsg varchar(255)

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District R/21 District_Order ON PARENT DELETE RESTRICT *7
if exists (
select * from deleted,District_Order
where

/* %JoinFKPK(District_Order,deleted," = "," and") */
District_Order.O_D_ID = deleted.D_ID and
District„Order.o_w_lD = deleted.D_W„ID

)
begin

select flerrno = 30001,
flerrmsg = "Cannot DELETE "District" because

"District_0rder" exists.'
goto error

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District R/ll History ON PARENT DELETE SET NULL */
if exists(select H_D_ID
from History,deleted
where
History.H_D_ID = deleted.D_ID and
History.H_W_ID = deleted.D_W_ID)
/* %JoinFKPK(History,deleted," = "," and") */

begin
select flerrno = 30001,

flerrmsg = 'Cannot DELETE "District" because
"History" exists.'

goto error
end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District R/8 Customer ON PARENT DELETE RESTRICT */
if exists (
select * from deleted,Customer
where

begin
select flerrno = 30001,

flerrmsg = 'Cannot DELETE "District* because
"Customer" exists.'

goto error
end

update Warehouse set W_YTD = W_YTD - deleted.D_YTD
from Warehouse, deleted

where Warehouse.W_ID = deleted.D_W_ID

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

CREATE trigger tI_District on District for INSERT as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* INSERT trigger on District */
begin
declare flnumrows int,

flnullcnt int,
flvalidcnt int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Warehouse R/5 District ON CHILD INSERT RESTRICT */
if

/* %ChildFK(" or",update) */
update(D_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count)*)

from inserted,Warehouse
where

/* %JoinFKPK(inserted,Warehouse) */
inserted.D_W_ID = Warehouse.W_ID

/* %NotnullFK(inserted," is null","select flnullcnt = <
from inserted where"," and") */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT "District" because

"Warehouse" does not exist."
goto error

end
end

update Warehouse set W_YTD = W_YTD + inserted.D_YTD
from Warehouse, inserted
where Warehouse.W_ID = inserted.D_W_ID

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tU_District on District for UPDATE as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* UPDATE trigger on District */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flinsD_ID smallint,
9insD_W_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District R/21 District_Order ON PARENT UPDATE RESTRICT */
if

/* %ParentPK(" or",update) */
update(D_ID) or
update(D_W_ID)

begin
select flerrno = 30005,

flerrmsg = "Cannot UPDATE "District" primary key.
goto error

end

/" Warehouse Constraint YTD */
if update(D_W_ID) or update(D_YTD)

begin
update Warehouse set W_YTD = W_YTD - deleted.D_YTD
from Warehouse, deleted

where Warehouse.W_ID = deleted.D_W_ID
update Warehouse set W_YTD = W_YTD + inserted.D_YTD
from Warehouse, inserted
where Warehouse.W_ID = inserted.D_w_lD

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

126

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO

CREATE trigger tD_District_Order on District_Order for DELETE as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* DELETE trigger on District_Order */
begin

declare flerrno int,
flnumrows int,

flerrmsg varchar(255)

select flnumrows = flflrowcount

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District_Order R/29 Order_Line ON PARENT DELETE RESTRICT */
if exists (
select * from deleted,Order_Line
where

/* %JoinFKPK{Order_Line,deleted,■ = ■,■ and") */
Order_Line.OL_0_ID = deleted.0_ID and
Order_Line.OL_D_ID = deleted.0_D_ID and
Order_Line.OL_W_ID = deleted.0_W_ID

)
begin

select flerrno = 30001,
flerrmsg = 'Cannot DELETE

■Order_Line" exists.'
goto error

end

30007,
'Cannot INSERT ■District_Order" because

District_Order" because

/* ERwin Builtin Wed Nov'll 13:37:55 1998 */
/* District_Order R/28 New_Order ON PARENT DELETE RESTRICT '
if exists (
seiect * from deleted,New_Order
where

/* %JoinFKPK(New_Order,deleted,■ = ■,■ and"} */
New_0rder.N0_0_ID = deleted.0_ID and
New_Order.NO_D_ID = deleted.0_D_ID and
New_0rder.N0_W_iD = deleted.0_W_1D

)
begin

select flerrno
flerrmsg :

"New_Order" exists.'
goto error

end

30001,
'Cannot DELETE ■District_Order- because

update Customer
set C_DELIVERY_CNT = C_DELIVERY_CNT + flnumrows
from Customer, deleted
where Customer.C_W_ID = deleted.0_W_ID and

Customer.C_D_ID = deleted.0_D_ID and
Customer.C_1D = deleted.0_C_ID

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO

CREATE trigger tI_District_0rder on District Order for
INSERT as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* INSERT trigger on District_Order */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Customer R/22 District_Order ON CHILD INSERT SET NULL */

if not exists(select D_ID from District, inserted where
District.D_NEXT_0_ID = inserted.0_ID)

begin
select flerrno = 30502,

flerrmsg = 'Cannot INSERT "District_Order" because
"0_ID" does not match with "D_NEXT_o_ID".'

goto error
end

update District
set D_NEXT_0_ID = D_NEXT_0__1D + 1
from District, District_Order
where District.D_ID = District_0rder.0_D_ID

select 0_ID, 0_D_ID, 0_W_ID from

if
/* %ChildFK(" or',update) */
update(0_C_ID) or
update(0_D_ID) or
update(o_w_iD)

begin
if not exists (

select * from Customer, inserted
where

/* %JoinFKPK(inserted,Customer," = ","
inserted.0_C_ID = Customer.C_ID and
inserted.0_D_ID = Customer.C__D_ID and
inserted.0_W_ID = Customer.c_W ID

)

begin
select flerrno =

flerrmsg =
"CUSTOMER" does exist.

goto error
end

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/' District R/21 District_Order ON CHILD INSERT RESTRICT V

/* %ChildFKC or",update) */
update(0_D_ID} or
update(0_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count{*)

from inserted,District
where

/* %JoinFKPK(inserted,District) */
inserted.0_D_ID = District.D_ID and
inserted.0_W_ID = District.D_W_ID

%NotnullFK(inserted," is null","select flnullcnt = count(')
and") */ inserted where"

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT "District_Order" because

"District" does not exist.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 •/
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO

create trigger tU_District_Order on District_order for UPDATE as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* UPDATE trigger on District_Order */
begin
declare flnumrows int,

flnullcnt int,
flvalidcnt int,
flinso_iD int,
8insO_D_ID smallint,
flinsO_W_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District_Order R/29 Order_Line ON PARENT UPDATE RESTRICT */
if

/* %ParentPK{" or-,update) */
update (0__ID) or
update(0_D_ID) or
update(0_W_ID)

begin
if exists (
select * from deleted,Order_Line
where

/* %JoinFKPK(Order_Line,deleted," = ■,* and") */
Order_Line.OL_0_ID = deleted.0„ID and
Order_Line.OL_D_ID = deleted.0_D_ID and
Order_Line.0L„W_ID = deleted.0_W_ID

)
begin

select flerrno =
flerrmsg =

"Order_Line" exists.'
goto error

end
end

30005,
'Cannot UPDATE "District_Order"

if

ERwin Builtin Wed Nov 11 13:37:55 1998 */
District_Order R/28 New„Order ON PARENT UPDATE RESTRICT */

/* %ParentPK{" or",update) */
update(0_ID) or
update(0_D_ID) or
update (0_W__ID)

begin
if exists (
select * from deleted,New_Order
where

/* %JoinFKPK(New_Order,deleted," = ",« and") */
New_order.NO_0_ID = deleted.0_ID and
New_0rder.N0_D_ID = deleted.0_D_ID and
New_0rder.N0_W__ID = deleted.o W ID

)
begin

select flerrno = 30005,

flerrmsg = 'Cannot UPDATE "District_Order" because
"New_Order" exists.'

goto error
end

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* Customer R/22 Distrlct_Order ON CHILD UPDATE SET NULL */

/* %ChildFK(" or",update) */
update(0_C_ID) or
update(0_D_ID) or
update(0_W_ID)

127

begin
update District_Order

set
/* %SetFK(District_Order,NULL) */
District_Order.O_C_ID = NULL,
District_Order.0_D_ID = NULL,
District_Order.O_W_ID = NULL

from District_Order,inserted
where

/* %JoinPKPK(District_Order,inserted," = "," and"
District_0rder.0_ID = inserted.0_ID and
District_Order.O_D_ID = inserted.0„D_ID and
District_Order.O_W_ID = inserted.0_W_ID and
not exists (

select * from Customer
where

/* %JoinFKPK(inserted,Customer," = ",* and")
inserted.0_C_ID = Customer.C_ID and
inserted.0_D„ID = Customer.C_D_ID and
inserted.O_W_ID = Customer.C_W_ID

)
end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 •/
/* District R/21 District_Order ON CHILD UPDATE RESTRICT '
if

/* %ChildFK(" or",update) */
update(0_D_ID) or
update(0_W_ID)

begin
select Bnullcnt = 0
select Bvalidcnt = count(*)

from inserted,District
where

/* %JoinFKPK(inserted,District) */
inserted.0_D_ID = District.D_ID and
inserted.0_W_ID = District.D_W_ID

/* %NotnullFK(inserted,■ is null\"s
from inserted where"," and") */

Bnullcnt = count(*)

if Bvalidcnt + Bnullcnt != Bnumrows
begin

select Berrno = 30007,
Oerrmsg = "Cannot UPDATE "District_Order" because

•District" does not exist.'
goto error

end
end

if update(0_C_ID) or
update(0_W_ID) or
update(0_D_lD)
begin

if not exists (
select * from Customer, inserted
where

/* %JoinFKPK(inserted,Customer,* = "," and") */
inserted.0_C_ID = Customer.C_ID and
inserted.0_D_ID = Customer.C_D_ID and
inserted.0_W_ID = Customer.C_W_ID)

begin
select Berrno = 30502,

Berrmsg = "Cannot UPDATE "District_Order"
because "Customer" does not exist."

goto error
end
update Customer
set C_DELIVERY_CNT = C_DELIVERY_CNT - 1
from Customer, deleted
where

deleted.0_C_ID = Customer.C_ID and
deleted.0_D_ID = Customer.C_D_ID and
deleted. 0_W__ID = Customer .C_W_1D

insert into New_Order select 0_ID, 0_D_ID, 0_W_ID from
inserted

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
return

error:
raiserror Berrno Oerrmsg
rollback transaction

end

GO
CREATE trigger tU_History on History for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:03 1998 */
/* UPDATE trigger on History */
begin

declare Bnumrows int,
Bnullcnt int,
Bvalidcnt int,
Berrno int,
Berrmsg varchar(255)

end
if update{H_AMOUNT)
begin

update District
set D_YTD = D_YTD - deleted.H_AM0UNT
from District, deleted
where District.D„ID = deleted.H_D_ID and

District.D_W_ID = deleted.H_W_ID

update District
set D_YTD = D_YTD + inserted.H_AMOUNT
from District, inserted
where District.D_ID = inserted.H_D_ID and

District. D_W__TD = inserted. H_W„ID

update Customer
set C_BALANCE = C_BALANCE + deleted.H_AM0UNT
from customer, deleted
where Customer.C_W_ID = deleted.H_C_W_ID and

Customer-C_D_ID = deleted.H_C_D_ID and
Customer.C_ID = deleted.H_C_ID

update Customer

set C_BALANCE = C_BALANCE - inserted.H_AMOUNT
from customer, inserted
where Customer.C_W_ID = inserted.H_C_W_ID and

Customer.C_D_ID = inserted.H_C_D_ID and
Customer.C_ID = inserted.H_C_ID

end

/* ERwin Builtin Wed Nov 11 13:38:03 1998
return

error:
raiserror Berrno Berrmsg
rollback transaction

end

GO
CREATE trigger tI_History on History for INSERT as
/* ERwin Builtin Wed Nov 11 13:37:55 1996 */
/* INSERT trigger on History */
begin

declare Bnumrows int,
Bnullcnt int,
Bvalidcnt int,
Berrno int,
Berrmsg varchar(255)

select Bnumrows = BSrowcount
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* District R/ll History ON CHILD INSERT SET NULL */
if

/* %ChildFK(" or",update) */
update(H_D_ID) or
update(H_W_ID)

begin
if not exists (

select * from District, inserted
where

/* %JoinFKPK(inserted,District," = -," and")
inserted.H_D_ID = District.D„ID and
inserted.H_W_ID = District.D_W_ID

)
begin

select Berrno = 30456,
Berrmsg = 'Cannot insert' "Histo

because "District does not exist.'
goto error

end

/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/• Customer R/9 History ON CHILD INSERT SET NULL */
if

/* %ChildFK(" or",update) */
update(H_C_ID) or
update(H_C_D„ID) or
update(H_C_W_ID)

begin
if not exists {

select * from Customer, inserted
where

/* %JoinFKPK(inserted,Customer,■ = "," and") */
inserted.H_C_ID = Customer.C_ID and
inserted.H_C_D_ID = Customer.C_D_ID and
inserted.H_C_W_ID = Customer.C_W_ID

)
begin

select Berrno = 30945,
Berrmsg = 'Cannot insert "History

ecause "Customer" does not exist.'
goto error

end

select Bnumrows = BSrowcount

/* ERwin Builtin Wed Nov 11 13:38:03 1998 */
/* Customer R/9 History ON CHILD UPDATE SET NULL '
if

/* %ChildFK(" or",update) */
update(H_C_ID) or
update<H_C_D_ID) or
update(H_C_W_ID) or
update(H_D_ID) or
update(H_W_ID)

begin
ele

customer.

flerrno = 30804,
Berrmsg = 'Cannot change "History" district or

update District
set D_YTD = D_YTD + inserted.H_AMOUNT
from District, inserted
where District.D_ID = inserted.H_D_ID and

District.D_W_ID = inserted.H_W_ID

update Customer
set C_BALANCE = C_BALANCE - inserted.H_AMOUNT
from Customer, inserted
where

/* %JoinFKPK(inserted,Customer," = "," and";
inserted.H_C_ID = Customer.C_ID and
inserted.H_C_D_ID = Customer-C_D_ID and
inserted.H_C_W_ID = Customer.C_W_ID

128

/* ERwin Bui Itin Wed Nov 11 13:37:55 1998
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tD_History on History for DELETE as
/* ERwin Builtin Wed Nov 11 13:37:55 1998 */
/* INSERT trigger on History */
begin
declare flnumrows int,

flerrno int,
flerrmsg varchar(255)

update District
set D_YTD = D_YTD - deleted.H_AMOUNT
from District, deleted
where District.D_ID = deleted.H__D_1D and

District.D_W_ID = deleted.H_W_ID

update Customer
set C_BALANCE = C_BALANCE + deleted.H_AMOUNT
from Customer, deleted
where

/* %JoinFKPK(inserted,Customer," = "," and")
deleted.H_c_ID = Customer.C_ID and
deleted.H_C_D_ID = Customer.C_D_ID and
deleted. H__C_W_ID = Customer .C_W_ID

/* ERwin Builtin Wed Nov 11 13:37:55 1998
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

create trigger tI_New_Order on New_Order for INSERT as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* INSERT trigger on New_Order */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* District_Order R/28 New_Order ON CHILD INSERT RESTRICT */
if

/* %ChildFK(" or",update) */
update(NO_0_ID) or
update(NO_D_ID) or
update(NO_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count(*)

from inserted,District_Order
where

/* %JoinFKPK(inserted,District_Order) */
inserted.NO_0_ID = District_Order.0_ID and
inserted.NO_D_ID = District_Order.0_D_ID and
inserted.N0_W_ID = District_Order.0_W_ID

/* %NotnullFK(inserted,* is null-,"select flnullcnt = count(*)
from inserted where-,■ and") */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT -New_Order" because

"District_Order" does not exist.'
goto error

end
end

GO
create trigger tD_Item on Item for DELETE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* DELETE trigger on Item */
begin

declare flerrno int,
flerrmsg varchar(255)

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Item R/30 Stock ON PARENT DELETE RESTRICT */
if exists {
select * from deleted,stock
where

%JoinFKPK(Stock,deleted,"

)
Stock.S_I_ID = deleted.I_ID

begin
select flerrno

flerrmsg :
exists.'

goto error
end

30001,
'Cannot DELETE

and")

Item" because "Stock-

/* ERwin Builtii
return

Wed Nov 11 13:38:20 1998

raiserror flerrno flerrmsg
rollback transaction

GO '
create trigger tU_Item on Item for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* UPDATE trigger on Item */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flinsI_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Item R/30 Stock ON PARENT UPDATE RESTRICT */
if

/* %ParentPKf or ".update) */
update(I_ID)

begin
if exists (
select * from deleted,Stock
where

/* %JoinFKPK(Stock,deleted,■ = -,- and") */
Stock.S_I_ID = deleted.I_ID

)
begin

select flerrno = 30005,
flerrmsg = 'Cannot UPDATE -Item" because

exists.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

raiserror flerrno flerrmsg
rollback transaction

GO
create trigger tU_New_order on New_Order for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* UPDATE trigger on New_Order */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
9insNO_0_ID int,
8insN0_D_ID smallint,
8insNO_W_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* District_Order R/28 New_Order ON CHILD UPDATE RESTRICT '
if

/* %ChildFK(" or-,update) */
update(NO„0_ID) or
update(N0_D_ID) or
update(N0_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count(*)

from inserted, District__Order
where

/* %JoinFKPK(inserted,District„Order) */
inserted.NO_0__ID = District_Order.o_ID and
inserted.NO_D_ID = District_Order.O_D_ID and
inserted.NO_W„ID = District_Order.O_W_ID

/* %NotnullFK(inserted,■ is null-,-select flnullcnt = coui
from inserted where",■ and") */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30007,
flerrmsg = 'Cannot UPDATE "New_Order" because

"District_Order" does not exist.'
goto error

end
end

Wed Nov 11 13:38:20 1998 /* ERwin Built:
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tD_New_0rder on New_Order for DELETE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* INSERT trigger on New_Order */
begin

declare flnumrows int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount

update Customer
set C_DELIVERY_CNT = C_DELIVERY_CNT + flnumrows
from Customer, deleted, District_Order
where District_Order.O_W_ID = deleted.NO_W_ID and

129

District_Order.O_D_ID = deleted.NO_D_ID and
District_Order.O_ID = deleted.NO_0_ID and
Customer.C_W_ID = deleted.NO_W_ID and
Customer.C_D_ID = deleted.NO_D_ID and
Customer.C_ID = District_Order.O_C_ID

/* ERwin Bui Itin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tI_Order_Line on Order_Line for INSERT as
/* ERwin Bulltin Wed Nov 11 13:38:20 1998 */
/* INSERT trigger on Order„Line */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Stock R/32 Order_Line ON CHILD INSERT SET NULL */
if

/* %ChildFK(" or",update) */
update (OL_I__ID) or
update(OL_SUPPLY_W_ID)

begin
if not exists (

select * from Stock, inserted
where

/* *JoinFKPK(inserted,Stock,■ = "," and") */
inserted.OL_I_ID = Stock.S_I_ID and
inserted.OL_SUPPLY_w_ID = Stock.S_W_ID)

begin
select flerrno = 30007,

flerrmsg = 'Cannot INSERT "Order_Line" because
"Stock" does not exist.'

goto error
end

end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* District_Order R/29 Order_Line ON CHILD INSERT RESTRICT '
if

/* %ChildFK(" or",update) */
update(OL_0_ID) or
update(OL_D_ID) or
update(OL_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count{*)

from inserted,Distrlct_Order
where

/* %JoinFKPK(inserted,District_Order) •/
inserted.OL_0_ID = District_Order.O_ID and
inserted.0L_D_ID = District_Order.O_D_ID and
inserted.OL_W_ID = District_Order.O_W_iD

/* %NotnullFK(inserted,■ is null","select flnullcnt = couni
from inserted where"," and") */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT "Order_Line" because

"District_Order" does not exist.'
goto error

end
end

update District_Order
set 0_OL_CNT = 0_OL_CNT + flnumrows
from District_Order, inserted
where District_Order.0_W_ID = inserted.OL_W_ID and

District_order.0_D_ID = inserted.OL_D_ID and
District_Order.O_ID = inserted.0L_O_ID

update Customer
set C_BALANCE = C_BALANCE + inserted.OL_AMOUNT
from Customer, inserted, District_Order
where

Customer.C_ID = District_Order.O_C_ID and
Customer.C_W_ID = District_Order.O_W_ID and
Customer.C_D_ID = District_Order.0_D_ID and
inserted.OL_W_ID = District_Order.O_W„ID and
inserted.OL_D_ID = District_Order.O_D_ID and
inserted.OL_0_ID = District_Order.O_ID

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

flerrno int,
flerrmsg varchar(255)

ilect flnumrows = flflrowcount
ERwin Builtin Wed Nov 11 13:38:20 1998 */
Stock R/32 Order_Line ON CHILD UPDATE SET NULL

if
/* %ChildFK{" or",update) */ ■
Update(OL_I_ID) or
update(OL_SUPPLY_W_ID)

begin
select flerrno = 30007,

flerrmsg = 'Cannot UPDATE "Order_Line" because
"Stock" cannot change."

goto error
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* District_Order R/29 Order_Line ON CHILD UPDATE RESTRICT n

if
/* %ChildFK(" or",update) */
update(OL_0_ID) or
update(OL_D_ID) or
update(OL_W_ID)
begin

select flerrno = 30007,
flerrmsg = 'Cannot UPDATE "Order_Line" because

"District_Order" cannot change.'
goto error

end

update Customer
set C_BALANCE = C_BALANCE + inserted.OL_AMOUNT
from Customer, inserted, District_Order
where

Customer.C_ID = District_Order-0_C_ID and
Customer.C_W_ID = District_Order.0_W_ID and
Customer.C_D_ID = District_Order.0_D__ID and
inserted.OL_W_ID = District_Order.O_W_ID and
inserted.OL_D_ID = District_Order-0_D_ID and
inserted.OL_0_ID = District_.0rder.0_ID

update Customer
set C_BALANCE = C_BALANCE - deleted.OL_AMOUNT
from Customer, deleted, District_Order
where

Customer.C_ID = District_Order.O_C_ID and
Customer.C„W_ID = District_Order.0_W_ID and
Customer.C_D_ID = District_0rder.0_D_ID and
deleted.OL_W_ID = District_Order.O_W_ID and
deleted.OL_D_ID = District_0rder-0_D_1D and
deleted.OL_0_ID = District_Order.O_ID

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
CREATE trigger tD_Order_Line on Order_Line for DELETE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* INSERT trigger on Order_Line •/
begin

declare flnumrows int,
flerrno int,
flerrmsg varchar(255)

select flnumrows flflrowcount

raiserror flerrno flerrmsg
rollback transaction

update District__0rder
set 0_OL_CNT = o_OL_CNT - flnumrows
from District_0rder, deleted
where District_Order.O_W_ID = deleted.OL_W_ID and

District_Order.O_D_ID = deleted.OL_D_ID and
District_Order.O__ID = deleted. 0L_O_ID

update Customer
set C_BALANCE = C_BALANCE - deleted.OL_AMOUNT
from Customer, deleted, District_Order
where

Customer.C_ID = District_0rder-0_c_ID and
Customer.C_W_ID = District_Order.O_W_ID and
Customer.C_D_ID = District_Order.0_D_ID and
deleted.OL_W_ID = District_Order.0_W_ID and
deleted.OL_D_ID = District_Order.0_D_ID and
deleted.OL_0_ID = District_Order.O_ID '

/* ERwin Builtin Wed Nov 11 13:38:20 1998
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

CREATE trigger tU_Order_Line on Order_Line for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* UPDATE trigger on Order_Line "/
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
flinsOL_0_ID int,
8insOL_D_ID smallint,
flinsOL_W_ID int,
flinsOL_NUMBER char(18),

GO
create trigger tD_stock on Stock for DELETE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/" DELETE trigger on Stock */
begin

declare flerrno int,
flerrmsg varchar(255)

/* ERwin Builtin Wed Nov 11 13:38:20 1998 *
return

error:
raiserror flerrno flerrmsg
rollback transaction

130

create trigger tI_Stock on Stock for INSERT as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/• INSERT trigger on Stock */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
9errno int,
flerrmsg varchar(255)

select Snurarows » flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Warehouse R/31 Stock ON CHILD INSERT RESTRICT */
if

/* %ChildFK{' or-,update) */
update<S_W_ID)

begin
select flnullcnt = 0
select flvalidcnt = count(*)

from inserted,Warehouse
where

/* %JoinFKPK(inserted,Warehouse) */
inserted.S_W_ID = Warehouse.W_ID

/* %NotnullFK(inserted,■ is null','select flnullcnt = countf*)
from inserted where',' and") */

if flvalidcnt + flnullcnt ! = flnumrows

30002,
'Cannot INSERT

begin
select flerrno

flerrmsg
does not exist.'

goto error
end

end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Item R/30 Stock ON CHILD INSERT RESTRICT '
if

/* %ChildFK(" or',update) •/
update(S_I_ID)

begin
select flnullcnt = 0
select flvalidcnt = count(*)

from inserted,Item
where

/* %JoinFKPK(inserted,Item) */
inserted.S_I_ID = Item.I_ID

/* %NotnullFK(inserted,■ is null"
from inserted where",■ and") */

'Stock' because 'Warehouse

'select flnullcnt = count(*)

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30002,
flerrmsg = 'Cannot INSERT 'Stock" because "Item- does

not exist.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
create trigger tU_Stock on Stock for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* UPDATE trigger on Stock */
begin
declare flnumrows int,

flnullcnt int,
flvalidcnt int,
8insS_I_ID int,
flinsS_W_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Stock R/32 Order„Line ON PARENT UPDATE SET NULL *
if

/* %ParentPK(" or',update) */
update(S_I_ID) or
update(S_W_ID}

begin
update Order_Line

set
/* %SetFK(Order_Line,NULL) */
Order_Line.OL_I_ID = NULL,
Order_Line.OL_SUPPLY_W_ID = NULL

from Order_Line,deleted
where

/* %JoinFKPK(Order_Line,deleted," = ',' and")
Order_Line.OL_I_ID = deleted.S_I_ID and
Order_Line.OL_SUPPLY_W_ID = deleted.S„W_ID

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/• Warehouse R/31 Stock ON CHILD UPDATE RESTRICT '
if

/* %ChildFK<" or',update) */
update<S_W_ID)

begin
select flnullcnt = 0
select ovalidcnt = count(*)

from inserted,Warehouse
where

/* %JoinFKPK(inserted,Warehouse) */
inserted.S_W_ID = Warehouse.W_ID

/* %NotnullFK(inserted," is null",'select flnullcnt = count(*)
from inserted where"," and') */

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30007,
flerrmsg = 'Cannot UPDATE "Stock" because "Warehouse"

does not exist.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Item R/30 Stock ON CHILD UPDATE RESTRICT */
if

/* %ChildFK{" or",update) */
update(S_I_ID)

begin
select flnullcnt = 0
select flvalidcnt = count(*)

from inserted,Item
where

/* %JoinFKPK{inserted,Item) */
inserted.S_I_ID = Item.I_ID

/* %NotnullFK(inserted," is null"
from inserted where',' and") */

'select flnullcnt = count(*)

if flvalidcnt + flnullcnt != flnumrows
begin

select flerrno = 30007,
flerrmsg = 'Cannot UPDATE "Stock" because 'Item' does

not exist.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
create trigger tD_Warehouse on Warehouse for DELETE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* DELETE trigger on Warehouse */
begin

declare flerrno int,
flerrmsg varchar(255)

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/• Warehouse R/31 Stock ON PARENT DELETE RESTRICT */
if exists (
select * from deleted,Stock
where

/* %JoinFKPK(Stock,deleted,■ = ■,- and') */
Stock.S_W_ID = deleted.W„ID

)
begin

select flerrno = 30001,
flerrmsg = 'Cannot DELETE "Warehouse" because "Stock"

exists.'
goto error

end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Warehouse R/5 District ON PARENT DELETE RESTRICT */
if exists (

select * from deleted,District
where

/• %JoinFKPK(District,deleted," = ',' and") */
District.D_W_ID = deleted.W_ID

)
begin

select flerrno = 30001,
flerrmsg = 'Cannot DELETE "Warehouse" because

■District" exists.'
goto error

end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror flerrno flerrmsg
rollback transaction

end

GO
create trigger tU„Warehouse on Warehouse for UPDATE as
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* UPDATE trigger on Warehouse */
begin

declare flnumrows int,
flnullcnt int,
flvalidcnt int,
9insW_ID int,
flerrno int,
flerrmsg varchar(255)

select flnumrows = flflrowcount
/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Warehouse R/31 Stock ON PARENT UPDATE RESTRICT */
if

/* %ParentPK(" or",update) */
update(W_ID)

begin
if exists (
select * from deleted,Stock
where

131

/* %JoinFKPK(Stock,deleted,"
Stock.S_W_ID = deleted.W_ID

)
begin

select Serrno = 30005,
Berrmsg = 'Cannot UPDATE "Warehouse" because "Stock-

exists. '
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
/* Warehouse R/5 District ON PARENT UPDATE RESTRICT */
if

/* %ParentPK(" or",update) */
update(W_ID)

begin
if exists {
select * from deleted,District
where

/* %JoinFKPK(District,deleted," = •," and") */
District.D_W_ID = deleted.W_ID

D«iv«ry_Job

begin
Declare 8D_ID int,

SSkipped int,
8Job_Id int ,
8NO_ID int,
9CAR_ID int,
8W_ID int ,
90L_Sum float,
9ErrNum int

select 9D_ID = 1
select flErrNum = 0
select flSkipped =0

begin transaction
While flD_ID<=10
begin

select 9Job_ID = min(SC_lD>, BW_ID = min(SC_W_ID),
flCAR_ID = min(SC_CARRIER_ID) from

Scheduled_Jobs

if 89Error >0 Select 9ErrNum = flErrNum + 1

if existsfselect NO_0_ID from New_Order where
NO_D_ID = 9D_ID and NO_W_ID = flW„ID)

begin
select 8NO_ID = min(NO_o_ID) from New_Order where

NO_D_ID = 8D_ID and NO_W_ID = 8W_ID

if flSError >0 Select SErrNum = SErrNum + 1

update District_Order
set 0_CARRIER_ID = 9CAR_ID
from District_Order
where 0_ID = 8NO_ID and 0_D_ID = 8D_ID

and 0_W_ID = 8W_ID

if 88Error >0 select OErrNum = flErrNum + 1

select 90L_Sum = SUM(OL_AMOUNT)
from Order_Line
where OL_0„ID = 9NO_ID and OL_D_ID =

9D_ID and OL_W_lD = 9W_ID

if 98Error >0 Select 9ErrNum = 8ErrNum + 1

30005,
■Cannot UPDATE "Warehouse* because

>
begin

select Serrno
Berrmsg =

"District" exists.'
goto error

end
end

/* ERwin Builtin Wed Nov 11 13:38:20 1998 */
return

error:
raiserror Serrno 9errmsg
rollback transaction

end

GO

update Customer
set C^BALANCE = 90L_SUM,

C__DELIVERY_CNT = C_DELIVERY_CNT + 1
from Customer, Order_Line,

District_Order
where 0_ID = 9NO_ID and 0_D_ID = 9D_ID

and 0_W_ID = 8W_ID and
0_C_ID = C_ID and 0_D_ID = C_D_ID

and 0_W_ID = C_W_ID and
OL_0_ID = 9N0_ID and OL_D_ID =

9D_ID and OL_W_ID = 9W„ID

if 89Error >0 Select SErrNum = 8ErrNum + 1

update Order_Line
set OL_DELIVERY_D = GetdateO
from Order_Line
where OL_0_ID = 9N0_ID and OL_D_ID =

9D_ID and OL_W_ID = 9W_ID

delete New_0rder where NO„0_ID = 9N0_Id and NO_D_ID
= BD_ID and NO_W_ID = 8W_1D

if 98Error >0 Select 9ErrNum = 9ErrNum + 1
end
else select flSkipped = SSkipped + 1
select 8D_ID = 9D_ID + 1

end

insert into Executed_Jobs {J_EXEC_D, J_SKIPPED, J_SCHEDULED_D,
J_W_ID, J_CARRIER_ID)

select getdate(), 9Skipped , SC_DATE, SC_W_ID, SC„CARRIER_ID
from Scheduled_Jobs

where SC_ID = 8Job_Id

if 98Error >0 Select 9ErrNum = flErrNum + 1

delete Scheduled_Jobs where SC_ID = 9Job_Id

if 98Error >0 Select 9ErrNum = SErrNum + 1

if SErrNum :
begin

end
else

rollback transaction
delete Scheduled_Jobs where SC_ID = 9Job_Id

commit transaction

132

Appendix C - Visual Basic Programs

1. Database Data Generator

Option Explicit
Const MAX_ITEM = 100000#
Const MAX_CUSTOMER = 3000
Const MAX_ORDER = 3000
Const ORDER_THRESHOLD = 2101
Const CUSTOMER_THRESHOLD = 999

Private LNSyllables(0 To 9) As String

Private Function GenerateLastNameStr(sCode As String) As String
Dim iIndex As Long
Dim sAux As string

ilndex = Val(Right(sCode, 1))
sAux = LNSyllables(ilndex)
If Len(sCode) = 2 Then

ilndex = Val(Left(sCode, 1))
sAux = LNSyllables(ilndex) & sAux

Eiself Len(sCode) > 2 Then
ilndex = Val(Mid(sCode, 2, 1))
sAux = LHSyllables(ilndex) & sAux
ilndex = Val(Left(sCode, 1))
sAux = LNsyllables(ilndex) k sAux

End If
GenerateLastNameStr = sAux

End Function

Private Function GenerateStr(iLen As Long) As string
Dim i As Long
Dim sAux As String
Dim cAux As string

For i = 1 To iLen
CAux = Chr{lnt(58 * Rnd) + 32)
sAux = sAux & cAux

Next
GenerateStr = sAux
End Function

prgComplete = 7
DoEvents
ThesisEnv.ItemDelete
prgComplete = 8
DoEvents
ThesisEnv.WarehouseDelete
prgComplete = 9
DoEvents
prgComplete = 0
If Not bNoMessages Then
MsgBox "Data deleted!", vblnformation
End If

Case 1:
■// Item
With ThesisEnv.rsltemlnput
prgComplete.Max = MAX_ITEM
.Open
For i = 1 To MAX_ITEM

prgComplete = i
DoEvents
sAuxl = ■"
sAux2 = ■■
.AddNew

Randomize
!I_ID = i
!I_IM_ID = IntflOOOl * Rnd + 1)

[1 . . 10,000]
!I_NAME = GenerateNamestr(Int(ll

24]

'// [2G

!I_PRICE
10.00J

iLength =

Int(10001 Rnd ■

lnt(25 Rnd ■
50]

26)

GenerateNumberStrfiLen As Long) As String Private Functi'
Dim i As Long
Dim sAux AS String
Dim cAux As String

For i = 1 To iLen
cAux = Chr(Int(10 * Rnd) + 48)
sAux = sAux & cAux

Next
GenerateNumberStr = sAux
End Function

Private Function GenerateNameStr(iLen As Long) As String
Dim i As Long
Dim sAux As String

For i = 1 To iLen
sAux = sAux & Chr(Int(25 * Rnd) + 65)

Next
GenerateNameStr = sAux
End Function
Private Sub cmdGen_Click(index As Integer)
Dim i As Long
Dim j As Long
Dim k As Long
Dim 1 As Long
Dim iLength As Long
Dim iPos As String
Dim sAuxl As String
Dim sAux2 As string
Static bNoMessages As Boolean

Screen.MousePointer = vbHourglass
Select Case index

Case 0:
'// Delete all

prgComplete.Max = 9
ThesisEnv.OrderLineDelete
prgComplete = 1
DoEvents
ThesisEnv.NewOrderDelete
prgComplete = 2
DoEvents
ThesisEnv.OrderDelete
prgComplete = 3
DoEvents
ThesisEnv.HistoryDelete
prgComplete = 4
DoEvents
ThesisEnv.CustomerDelete
prgComplete = 5
DoEvents
ThesisEnv.DistrictDelete
prgComplete = 6
DoEvents
ThesisEnv.StockDelete

sAuxl = GenerateStr(iLength)
If Int(100 * Rnd + 1) <= 10 Then

'// 10% of the cases
iPos = Int(iLength * Rnd + 1)
If iPos > 42 Then iPos = 42

*// Otherwise, ORIGINAL wouldn't fit
If iPos > 1 Then

SAUX2 = Left(sAuxl, iPos)
End If
SAUX2 = sAux2 & "ORIGINAL"
If iPos + 8 < iLength Then

sAux2 = sAux2 & Right(sAuxl, iLength
iPos ■ 8)

End If
sAuxl = sAux2

End If
!I_DATA = sAUXl

.Update
Next
.Close
DoEvents
prgComplete = 0
End With
If Not bNoMessages Then

MsgBox "Item generated!", vblnformation
End If

Case 2:
'11 Warehouse
With ThesisEnv.rsWarehouseInput
.Open
■AddNew
!W_ID = 1
!W_NAME = "Warehousel"
!W_STREET_1 = "1234 Noname St."
!W_STREET_2 = "12th Floor Room 1345"
!W__ciTY = "Washington"
IW_STATE = "OH"
!W_ZIP = 454311111
!W_TAX =0.065
!W_YTD = 0
.Update
.Close
If Not bNoMessages Then

MsgBox "Warehouse generated!", vblnformation
End If
End With

Case 3:
•// stock
With ThesisEnv.rsStocklnput
prgComplete.Max = MAX_ITEM
.Open
For i = 1 To MAX_ITEM

prgComplete = i
DoEvents
sAuxl = ■■
sAux2 = ""
.AddNew

Randomize
!S_I_ID = i
!S_W_ID = 1
!S_QUANTITY = Int(90 * Rnd + 10)

[10 .. 100]

!S_DIST_01 = GenerateNameStr(24)

133

!S__DIST_02 = GenerateNameStr(24)
!S_DIST_03 = GenerateNameStr(24)
!S_DIST_04 = GenerateNameStr{24)
!S_DIST_05 = GenerateNameStr(24)
!S_DIST_06 = GenerateNameStr(24)
!S_DIST_07 = GenerateNameStr(24)
!S_DIST_08 = GenerateNameStr(24)
!S_DIST_09 = GenerateNameStr(24)
!S_DIST_10 = GenerateNameStr(24)
iLength = Int(25 * Rnd +■ 26)

'// [26 .. 50]
sAuxl = GenerateStrfiLength)
If Int(100 * Rnd * 1) <= 10 Then

'// 10% of the cases
ipos = int(iLength * Rnd + 1)
If iPos > 42 Then iPos = 42

■// Otherwise, ORIGINAL wouldn-t fit
If iPos > 1 Then

sAux2 = Left<sAuxl, iPos)
End If
sAux2 = SÄUX2 & "ORIGINAL"
If iPos + 8 < iLength Then

EAUX2 = sAux2 k Right(sAuxl, iLength ■
iPos - 8)

End If
sAuxl = sAux2

End If
!S_DATA = sAuxl
!S_YTD = 0
!S_ORDER„CNT = 0
!S_REMOTE_CNT = 0

-Update
Next
.Close
Do Events
prgComplete = 0
End With
If Not bNoMessages Then

MsgBox "Stock generated!", vblnformation
End If

Case 4:
'// District
With ThesisEnv.rsDistrictlnput
prgComplete.Max = 10
.Open
For i = 1 To 10

Randomize
prgComplete = i
.AddNew
!D„ID = i
1D_W_ID = 1
!D_NAME = GenerateNameStr(Int(5 * Rnd + 6))

'// [6 .. 10J
!D_STREET_1 = GenerateNameStr(Int(11 * Rnd + 101)

'// [10 .. 20)

!D_STREET_2 = GenerateNameStr(Int(11 * Rnd + 10)1
■// [10 .. 20]

!D_CITY = GenerateNameStr(Int(ll * Rnd + 10))
'// 110 .. 20]

!D_STATE = GenerateNameStr(2)
!D_ZIP = Int(89999 * Rnd + 10000) & "1111"
!D_TAX = Int(3 * Rnd) / 10

'// [0.0 .. 0.2]
!D_YTD = 30000
!D_NEXT_0_ID = 1
.Update

Next
-Close
If Not bNoMessages Then

MsgBox "District generated!", vblnformation
End If
prgComplete = 0
End With

Case 5:
'// Customer
With ThesisEnv.rsCustomerlnput
prgComplete.Max = 10 * MAX_CUSTOMER
.Open
For i = 1 To 10
For j = 1 To MAX_CUSTOMER

DoEvents
Randomize
prgComplete = (i - 1) * MAX_CUSTOMER + j
.AddNew
!C_ID = j
!C_D_ID = i
!C_W_ID = 1
!C_FIRST = GenerateNameStr(Int(9 * Rnd +8))

'// [8 .. 16]
!C_MIDDLE = "OE"
If j > CUSTOMER_THRESHOLD Then

!C_LAST = GenerateLastNameStrfStr(j))
Else

!C__LAST = GenerateLastNameStr(Str(lnt(999 *
Rnd))) ■// [000 .. 999]

End If

!C_STREET_1 ='GenerateNameStr(Int(11 * Rnd + 10))
■// [10 .. 20]

!C_STREET_2 = GenerateNameStr(Int(11 * Rnd + 10))
'// [10 .. 20]

!C_CITY = GenerateNameStr(Int(ll * Rnd ♦ 10))
'// [10 .. 20]

!C_STATE = GenerateNameStr(2)
!C_ZIP = lnt(90000 * Rnd + 10000) & "1111"

'// [10000 .. 99999]
1C_PH0NE = GenerateNumberStr(16)
!C_SINCE = Format(Date, "mm/dd/yyyy)
If IntflOO * Rnd + 1) <= 10 Then

'// 10% of the cases
!C_CREDIT = "BC"

Else
!C_CREDIT = "GC

End If
!C_CREDIT_LIM = 50000«

!C_DISCOUNT = Int(6 * Rnd) / 10
'// [0.00 .. 0.5]

!C_BALANCE = 0
!C_YTD_PAYMENT = 10
!C_PAYMENT_CNT = 1
!C_DELIVERY_CNT = 0
!C_DATA = GenerateStr(Int(201 * Rnd + 300))

'// [200 .. 500]
.Update

Next
Next
.Close
If Not bNoMessages Then

MsgBox "Customer generated!", vblnformation
End If
prgComplete = 0
End With

Case 6:
'// History
With ThesisEnv.rsHistorylnput
prgComplete.Max = 10 * MAX_CUSTOMER
.Open
For i = 1 To 10
For j = 1 To MAX_CUSTOMER

DoEvents
Randomize
prgComplete = (i - 1) * MAX_CUSTOMER + j
.AddNew
!H_C_ID = j
!H_C_D_ID = i
!H_C_W_ID = 1
!H_D_ID = i
!H_W_ID = 1
!H_DATE = FormatfDate, "mm/dd/yyyy)
!H_AMOUNT = 10
!H_DATA = GenerateStr(Int(13 * Rnd + 12))

'// [12 .. 24]
.Update

Next
Next
.Close
If Not bNoMessages Then

MsgBox "History generated!", vblnformation
End If
prgComplete = 0
End With

Case 7:
*// Order
With ThesisEnv.rsOrderlnput
prgComplete.Max = MAX_ORDER * 10
-Open
For i s 1 To 10
For j = 1 To MAX_ORDER

DoEvents
Randomize
prgComplete = (i - 1) * MAX_ORDER + j
.AddNew
!0_ID = j
!0„C_ID = Int(MAX_CUSTOMER * Rnd + 1) ■ '// [1

MAX_CUSTOMER]
!0„D_ID = i
!0_W_ID = 1
! 0_ENTRY_DATE = Format(Date, "mm/dd/yyyy)
If j < ORDER_THRESHOLD Then

i0_CARRIER_ID = Int(11 * Rnd +1) <//
[1 .. 10]

End If
!0_ALL_LOCAL = 1
!0_OL_CNT = 0
.Update

Next
Next
-Close
If Not bNoMessages Then

MsgBox "Order generated!", vblnformation
End If
prgComplete = 0
End With

Case 8:
'// New_Order
ThesisEnv.NewOrderAdjust ORDERJTHRESHOLD
If Not bNoMessages Then

MsgBox "New Order adjusted!", vblnformation
End If

Case 9:
■// Order_Line
With ThesisEnv.rsOrderLinelnput
prgComplete.Max = MAX_ORDER * 10
-Open
For i = 1 To 10
For j = 1 To MAX_ORDER
k = int(11 * Rnd +5) ■// [5 ..

For 1 = 1 To k
DoEvents
Randomize
prgComplete = (i - 1) * MAX_ORDER + j
.AddNew
!OL_0_ID = j
!OL_D_ID = i
!OL_W_ID = 1
!OL_NUMBER = 1
!0L_I_1D = Int(MAX_ITEM * Rnd + 1) ■// [1

MAX_ITEM]
!OL_SUPPLY_W_ID = 1
If j < ORDER_THRESHOLD Then

!OL_DELIVERY_D = Date
!OL_AMOUNT = 0

Else
!OL_AMOUNT = Int(999999 * Rnd + 1) / 100 '//

(0.1 .. 9,999.99]
End If
!OL_QUANTITY = 5
!OL_DIST__INFO = GenerateStr (24)

134

.Update
Next

Next
Next
.Close
If Not bNoMessages Then

MsgBox "Order_Line generated!
End If
prgComplete = 0
End With

Case 10:
bNoMessages = True
For i = 0 To 9

cmdGen_Click (i)
Next
bNoMessages = False

vblnformation

End Select
Screen.MousePointer = v
End Sub
Private Sub Form_Load()
LNSyllables(O) = "BAR"
LNSyllables(l)
LNSyllables(2)
LNSyllables(3)
LNSyllables(4]
LNSyllables(5)
LNSyllables(6)
LNSyllables(7)
LNSyllables{8)
LNSyllables(9)
End Sub

'OUGHT"
'ABLE"
'PRI"
'PRES"
'ESE"
'ANTI"
CALLY"
'ATION"
'EING-

Client/Server Transactions Front-End
Option Explicit
Const STOCK_QUERY_NUMBER = 24
Private LNSyllablesfO To 9) As string

Private sub PrintResult(sText, Optional iSpaces As Integer = 0,
Optional SizeToFit As Integer = 0, Optional bLineFeed As Boolean
= False)
Static bOldLine As Boolean

If Not bOldLine Then
iSpaces = iSpaces + 1
bOldLine = True

End If
txtResult = txtResult & Space(iSpaces)
txtResult = txtResult fc sText
If SizeToFit > 0 Then

If Len(sText) < SizeToFit Then
txtResult = txtResult & Space(SizeToFit - Len(sText))

End If
End If
If bLineFeed Then

txtResult = txtResult k vbCrLf
bOldLine = False

End If
End Sub
Private Function Stock_Level(W_ID As Long) As Boolean
On Error GoTo SError
Dim iMinThreshold As Integer
Dim 1D_ID As Long
Dim 1N0_ID As Long
Dim bTransaction As Boolean
Dim datStartTime As Date
Dim lseconds As Long
Dim iMinutes As Integer

datStartTime = Time
DoEvents
Randomize
Stock_Level = False

iMinThreshold = Int(Rnd * 11) + 10
'// District
1D_ID = Int(Rnd() * 10) + 1

'// Begin Transaction
ThesisEnv.ThesisConn.BeginTrans
bTransaction = True
DoEvents

■// Get Next_Order_ID
ThesisEnv.DistrictQuery 1D_ID, W_ID
1N0_ID = ThesisEnv.rsDistrictQuery!D_NEXT__0_ID - 21

'// Check Stock
ThesisEnv.stockLevelQuery 1D_ID, W_ID, 1N0_ID, iMinThreshold

PrintResult "Stock-Level", 32, , True
PrintResult "Warehouse: " & Format(W_ID, "0000")
PrintResult "District: " s, Format(lD_ID, "00"), 3, , True
PrintResult "", , , True
PrintResult "Stock Level Threshold: " & Format(iMinThreshold,
"00"), , , True
PrintResult ■■, , , True
PrintResult "Low Stock: • &
Format(ThesisEnv.rsStockLevelQuery!Low_stock, "00"), , , True
PrintResult "", , , True

Stock_Level = True

lseconds = DateDiff("s", datStartTime, Time)
iMinutes = lseconds / 60
lseconds = ISeconds - iMinutes * 60
PrintResult "Time Elapsed: " & Format(iMinutes, "00") & ■:• &
Format(lseconds, "00")

bTransaction = False
ThesisEnv.ThesisConn.CammitTrans

SEnd:
On Error Resume Next
With ThesisEnv
.rsDistrictpuery.Close
.rsStockLevelQuery.Close
End With
Exit Function

SError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End If
MsgBox Error, vbCritical
Resume SEnd

End Function

Private Function Delivery(W_ID As Long) As Boolean
On Error GoTo DError
Dim bTransaction As Boolean
Dim lCarrier_ID As Long
Dim datStartTime As Date
Dim lseconds As Long
Dim iMinutes As Integer

datStartTime = Time
DoEvents
Randomize
Delivery = False

lcarrier_ID = Int(Rnd{) 10)

With ThesisEnv.rsScheduledJobsInput
.Open
.AddNew
iSC_W_ID = W_ID
!SC_CARRIER_ID = lCarrier_ID
!SC_DATE = Time
.Update

End With

PrintResult "Order-Status", 35, , True
PrintResult "Warehouse: ■ k Format(W_ID, -0000"), , , True
PrintResult ■■, , , True
PrintResult "Carrier Number: " & Format(lCarrier_ID, "00"),
True
PrintResult "", , , True
PrintResult "Execution Statuos: Delivery has been queued.".
True
PrintResult ■■, , , True

Delivery = True
'MsgBox 1D_ID & 6 1C_ID

ISeconds = DateDiff("s", datStartTime, Time)
iMinutes = ISeconds / 60
ISeconds = lseconds - iMinutes * 60
PrintResult 'Time Elapsed: " & Format(iMinutes, "00") &
Format{ISeconds, ■00■)

DEnd:
On Error Resume Next
With ThesisEnv
-rsScheduledJobsInput.Close
End With
Exit Function

DError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.Ro1IbackTrans

End If
MsgBox Error, vbCritical
Resume DEnd

End Function

Private Function Order_Status(W„lD As Long) As Boolean
On Error GoTo OSError
Dim bTransaction As Boolean
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim 10_ID As Long
Dim i As Integer
Dim j As Integer
Dim sLastName As String
Dim datStartTime As Date
Dim ISeconds As Long
Dim iMinutes As Integer
Dim sSql As String
Dim rstOrder As New ADODB.Recordset
Dim rstOrderLine As New ADODB.Recordset

Randomize
Order__Status = False

'// District
1D_ID = Int(Rndf) * 10) + 1

'// Customer
•If Int(Rnd() * 10) + 1 > 6 Then

'// Uses ID
1C_ID = NURand(1023, 1, 3000)

■Else
'// Query Last Name
1C_ID = 0
Do While 1C_ID B 0

j = NURand{255, 0, 999)

135

sLastName = GenerateLastNameStr(Str(j))
ThesisEnv.CustomerQueryLast sLastName, W_ID,
With ThesisEnv.rsCustomerQueryLast

If .RecordCount > 0 Then
i = -RecordCount / 2
.Move i
1C_ID = !C_ID

End If
.Close

End With
Loop

'End If

'// Get the order with max 0_ID
ThesisEnv.OrderQuery 1C_ID, W_ID, 1D_ID
If Not IsNull(ThesisEnv.rsOrderQuerylMaxId) Then

Exit Do
Else

ThesisEnv.rsOrderQuery.Close
End If

datStartTime = Time
DoEvents
10_ID = ThesisEnv.rsOrderQuerylMaxId

'// Open Customer
ThesisEnv.customerQuery2 1C_ID, W_ID, 1D_ID

'// Get the Order
sSql = -Select 0_ID, 0_ENTRY_DATE, 0_CARRIER_ID from
district_order where ■
ssql = ssql & -0_ID ■ ■ k 10_ID & ■ and 0_W_ID=" k W_ID k ■ and
0_D_ID=" k 1D_ID
rstOrder.Open sSql, ThesisEnv.ThesisConn, adOpenForwardOnly,
adLockReadOnly

'// Get the order line items
SSql = -Select OL_SUPPLY_W_ID, OL_I_ID, OL_QUANTITY, OL_AMOUNT,
OL_DELIVERY_D from Order_Line "
sSql = sSql ft 'where OL_0_ID=" k 10_ID k ■ and OL_W_ID=" k W_ID &
■ and OL_D_ID=" k 1D_ID
rstOrderLine.Open sSql, ThesisEnv.ThesisConn, adOpenForwardOnly,
adLockReadOnly

'// Print Results
PrintResult "Order-Status", 33, , True
PrintResult "Warehouse: ■ k Format(W_ID, "0000")
PrintResult "District: " k Format{lD_ID, "00"), 3, , True
PrintResult "Customer: " k Format(lc_ID, "0000")
PrintResult ThesisEnv.rsCustomerQuery2!C_FIRST, 3, 16
PrintResult ThesisEnv.rsCustomerQuery2!C_MIDDLE, 1
PrintResult ThesisEnv.rsCustomerQuery2!C_LAST, 1, 16, True
PrintResult "Cust-Balance: ■
PrintResult •$" k Fortnat(ThesisEnv.rsCustomerQuery2!C_BALANCE,
"000000000.00"), , , True
PrintResult ■■, , , True

PrintResult "Order-Number: ■ & Format(rstorder!o_id, "00000000")
PrintResult "Entry-Date: ■ k Format(rstOrderlo_entry_date, "dd-
mm-yyyy hh:mm:ss") , 3
PrintResult "Carrier-Number: •, 2
If Not IsNull(rstOrder!o_carrier_id) Then

PrintResult Format(rstOrder!o_carrier id, "00") True
Else

PrintResult "NULL", , , True
End If
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult True

Supp_W
Item_Id", 7
Qty, 4
Amount", 5
Delivery-Date", 6

Do While Not rstOrderLine.EOF
With rstOrderLine
PrintResult Formatf !OL_SUPPLY__W_ID, "0000"), 1
PrintResult Format(lOL_I_ID, "000000"), 6
PrintResult Format(!OL_QUANTITY, "00"), 5
PrintResult Format(!OL_AMOUNT, "$00000.00"), 5
If Not IsNulK !OL_DELIVERY_D) Then

PrintResult Format(!OL_DELIVERY_D, "dd-mm-yyyy"),
True

Else
PrintResult "NULL", 6, , True

End If
.MoveNext
End With

Loop

lSeconds = DateDiff("s", datStartTime, Time)
iMinutes = lSeconds / 60
lSeconds = lSeconds - iMinutes * 60
PrintResult "Time Elapsed: " k Format(iMinutes,
Format(lSeconds, "00")

Order_Status = True
"MsgBox 1D_ID k " • k 1C_ID

OSEnd:
On Error Resume Next
With ThesisEnv
.rsCustomerQuery2-Close
.rsOrderQuery.Close
End With
rstOrderLine.Close
rstOrder.Close
Exit Function

OSError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End If
MsgBox Error, vbCritical
Resume OSEnd

End Function

Private Function Payment(W_ID As Long) As Boolean
On Error GoTo PError
Dim bTransaction As Boolean
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim i As Integer
Dim j As Integer
Dim sAux As String
Dim sLastName As String
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As Integer
Dim sngAmount As Single
Dim sData As String

datStartTime = Time
DoEvents
Randomize
Payment = False

'// District
1D_ID = lnt(Rnd() * 10) 1

PrintResult "Payment", 33, , True
PrintResult ■Date: ■ k Format(Time
True
PrintResult "", , , True

'// Customer
■If IntfRndf) * 10) + 1 > 6 Then

'// Uses ID
1C_ID = NURand{1023, 1, 3000)

'Else
'// Query Last Name
1C_ID = 0
Do While 1C_ID = 0

j = NURand<255, 0, 999)
sLastName = GenerateLastNameStr(Str(j))
ThesisEnv.CustomerQueryLast sLastName, W_ID, 1D_ID
With ThesisEnv.rsCustomerQueryLast

If -RecordCount > 0 Then
i = .RecordCount / 2
-Move i
1C_ID = !C_ID

End If
.Close

End with
Loop

■endi f

'// Amount
sngAmount = Int(Rnd() * 500000) / 100 + 1

'// Begin Transaction
ThesisEnv.ThesisConn.BeginTrans
bTransaction = True
DoEvents

"dd-mm-yyyy hh:mm:ss"),

'// Open Warehouse
ThesisEnv.WarehouseQuery2 W_ID
PrintResult "Warehouse: " & Format(W_ID, '0000")

■// Get Next Order ID
ThesisEnv.DistrictQuery2 W_ID, 1D_ID
PrintResult "District: " k Format(lD_ID, "00"), 25, , True

PrintResult ThesisEnv.rsWarehouseQuery2!W_STREET_l, , 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STREET_1, 20, 20, True
PrintResult ThesisEnv.rsWarehouseQuery2!W_STREET_2, , 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STREET_2, 20, 20, True
PrintResult ThesisEnv.rsWarehouseQuery2!W_CITY, , 20
PrintResult ThesisEnv.rsWarehouseQuery2!W_STATE, 1
PrintResult Left(ThesisEnv.rsWarehouseQuery2!W_ZIP, 5) k ■-" k
Right(ThesisEnv.rsWarehouseQuery2!W_ZIP, 4), 1
PrintResult ThesisEnv.rsDistrictQuery2!D_CITY, 6, 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STATE, 1
PrintResult Left(ThesisEnv.rsDistrictQuery2!D_ZIP,. 5) & >-■ &
Right(ThesisEnv.rsDistrictQuery2!D_ZIP, 3), l, , True
PrintResult "", , , True

'// Open Customer
ThesisEnv.CustomerQuery2 1C_ID, W_ID, 1D_ID
sData = ThesisEnv.rsCustomerQuery2!C_DATA

'// Check Customer Credit
If ThesisEnv.rsCustomerQuery2!C_CREDIT = "BC" Then

sAux = "Entry: " k 1C_ID k ', • k 1D_ID k '; ■ & W_ID & "; ■
k 1D_ID & "; • k W_ID £.';"& sngAmount k ". •

If Len(sData) - Len(sAux) > 500 Then

ThesisEnv.rsCustomerQuery2!C_DATA = sAux k Left(sData
500 - Len(sAux))

SData a sAux k Left(sData, 500 - Len(sAux))
Else

ThesisEnv.rsCustomerQuery2!C_DATA = sAux k sData
sData = sAux k sData

End If
ThesisEnv.rsCustomerQuery2.Update

End If

k Format(lC_ID, -0000"), PrintResult "Customer:
PrintResult "Name:
PrintResult ThesisEnv.rsCustomerQuery2!C_FIRST, , 16
PrintResult ThesisEnv.rsCustomerQuery2!C_MIDDLE, 1
PrintResult ThesisEnv.rsCustomerQuery2!C_LAST, 1, 16
PrintResult "Since: ■ k
Format(ThesisEnv.rsCustomerQuery2!C_SINCE, "dd-mm-yyyy") 5
True ' ' '

PrintResult ThesisEnv.rsCustomerQuery2!C_STREET_1, 8, 20
PrintResult "Credit: " & ThesisEnv.rsCustomerQuery2!C_CREDIT 21
, True '

PrintResult ThesisEnv.rsCustomerQuery2!C_STREET_2, 8, 20

136

PrintResult "%Disc: ■ &
Format(ThesisEnv.rsCustomerQuery2!C_DISCOUNT * 100, "00.00"), 21
, True '

PrintResult ThesisEnv.rsCustomerQuery2!C_CITY, 6, 20
PrintResult ThesisEnv.rsCustomerQuery2!C_STATE, 1
PrintResult Left(ThesisEnv.rsCustomerQuery2!C_ZIP, 5) & <•-• &
Right(ThesisEnv.rsCustomerQuery2!C_ZIP, 3), 1
PrintResult "Phone: ■ & Left(ThesisEnv.rsCustomerQuery2!C_PHONE,
6) & "-" & Mid(ThesisEnv.rsCustomerQuery21C_PHONE, 7, 3) & •-■ &
Mid(ThesisEnv.rsCustomerQuery2!C_PHONE, 10, 3) & ■-■ &
Right(ThesisEnv.rsCustomerQuery2!C_PHONE, 4), 8, , True
PrintResult ■", , , True

PrintResult "Amount Paid:"
PrintResult Format(sngAmount, "$0000.00"), 10
PrintResult "New Cust-Balance:", 6
PrintResult "$■ & Format(ThesisEnv.rsCustomerQuery2!C_BALANCE -
sngAmount, "000000000.00"), 1, , True
PrintResult "Credit Limit:"

PrintResult "$■ & Format(ThesisEnv.rsCustomerQuery2!C CREDIT LIM
■000000000.00"), 4, , True
PrintResult "", , , True

If ThesisEnv.rsCustomerQuery2!C„CREDIT = "BC" Then
PrintResult "Cust-Data:"
PrintResult Left(sData, 50), 1, , True
PrintResult MidfsData, 51, 50), 11, , True
PrintResult MidfsData, 101, 50), 11, , True
PrintResult MidfsData, 151, 50), 11, , True
PrintResult "", , , True

End If

With ThesisEnv.rsHistorylnput
-Open
.AddNew
!H_C_ID = 1C_ID
!H_C_D_ID = 1D_ID
!H_C_W_ID = W_ID
!H_D_ID = 1D_ID
!H_W_ID = W_ID
iH_DATE = Date
!H_AMOUNT = sngAmount

!H_DATA = ThesisEnv.rsWarehouseQuery2IW_.NAME & ■ ■ &
ThesisEnv.rsDistrictQuery2!D_NAME

.Update
End with

lSeconds = DateDif£("s", datStartTime, Time)
iMinutes = lSeconds / 60
lSeconds = lSeconds - iMinutes * 60
PrintResult "Time Elapsed: " & Format(iMinutes, "00") & ■•■ &
Format(lSeconds, "00")

bTransaction = False
ThesisEnv.ThesisConn.CommitTrans

Payment = True
'MsgBox 1D_ID & " ■ 6 1C_ID

PEnd:
On Error Resume Next
With ThesisEnv
.rsCustomerQuery2.Close
.rsHistorylnput.Close
.rsDistrictQuery2.Close
.rsWarehouseQuery2.close
End With
Exit Function

PError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End If
MsgBox Error, vbCritical
Resume ■PEnd

End Function

Private Function ClientTransactionfW_lD As Long) As Boolean
On Error GoTo CTError
Dim bTransaction As Boolean
Dim iOrd@r_Cnt As Integer
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim 10_ID As Long
Dim 1I_ID As Long
Dim i As Integer
Dim j As Integer
Dim bBg As Boolean
Dim iQuantity As Integer
Dim sSql As String
Dim sngTotal As Single
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As Integer

datStartTime = Time
DoEvents
Randomize
ClientTransaction = False

'// Number of lines [5..15]
iOrder_cnt = lnt(Rnd() * 11) + 5

'// District
1D_ID = Int(Rnd(> * 10) + 1

'// Customer
1C_ID = NURand(1023, 1, 3000)

ThesisEnv.Commands(STOCK_QUERY_NUMBER).CommandText = sSql

'// Begin Transaction
ThesisEnv.ThesisConn.BeginTrans
bTransaction = True
DoEvents

PrintResult "New Order", 33, , True

'// Open Warehouse
ThesisEnv.WarehouseQuery W_ID
PrintResult "Warehouse: ■ & FormatfW_lD, "0000")

'// OpenCustomer
ThesisEnv.CustomerOuery 1C_ID, W_ID, 1D_ID

'// Get Next Order ID
ThesisEnv.DistrictQuery 1D_1D, W_ID
10_ID = ThesisEnv.rsDistrictQuery!D_NEXT__o_ID
PrintResult "District: " u Format<1D„ID, "00"), 3

PrintResult
True
PrintResult
PrintResult
16), 3, 21
PrintResult
PrintResult
Format (Thesi;
True
PrintResult
PrintResult
PrintResult
100, "00.00'
PrintResult
100, "00.00'
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult

■Date: ■ & FormatfTime, "dd-mm-yyyy hh:iran:ss"), 23,

■Customer: ■ & Format(lC_ID, "0000")
■Name: " t Left(ThesisEnv.rsCustomerQuery!C_LAST,

"Credit: " & ThesisEnv.rsCustomerQuery!C_CREDIT, 3
"%Disc: ■ k
sEnv.rsCustomerQuery!C_DISCOUNT * 100, "00.00"), 3,

"Order Number: ■ & Format(lo_ID, "00000000")
■Number of Lines: ■ & Format(iOrder_Cnt, -00"), 2
"W_tax: " & Format(ThesisEnv.rsWarehouseQueryiW TAX
), 7
■D_tax: ■ & Format(ThesisEnv.rsDistrictQuery!D_TAX *
), 3, , True
"", , , True
"Supp_W", 1
■Item_Id", 2
"Item_Name", 2
"Qty", 16
"Stock", 2
"B/G", 2
"Price", 2
"Amount", 4, , True

'// Insert District_Order
With ThesisEnv.rsOrderlnput

.Open

.AddNew
!o_id = 10_ID
!0_C_ID = 1C_ID
!0_D_ID = 1D_ID
!0_W_ID = W_ID
!o_entry_date = Format(Date, "mm/dd/yyyy")
!0_ALL_LOCAL = 1
!0_0L_CNT = 0
.Update

End With-

With ThesisEnv.rsOrderLinelnput
.Open
sngTotal = 0
For i = 1 To iOrder_Cnt

'// Find the item
1I_ID = NURand(8191, 1, 100000)
'// Quantity
iQuantity = Int(Rnd() * 10) + 1

'// Open Item
ThesisEnv.ItemQuery 1I_ID

'// Open Stock
ThesisEnv.StockQuery U_ID, W_ID

'// Update STOCK table

If ThesisEnv.rsStockQuery!S„QUANTITY >= iQuantity + 10 Then
ThesisEnv.rsStockQuery!S_QUANTITY =

ThesisEnv.rsStockQuery!S_QUANTITY - iQuantity
Else

ThesisEnv.rsStockQuery!S_QUANTITY =
ThesisEnv.rsStockQuery!S_QUANTITY + 91

End If

ThesisEnv.rsStockQuery!S_YTD = ThesisEnv.rsStockQueryJS YTD .
iQuantity ~~

ThesisEnv.rsStockQuery!S_ORDER_CNT =
ThesisEnv.rsStockQuery!S_ORDER_CRT + 1

ThesisEnv.rsStockQuery.Update

'// Check for B/G
bBg = False

If mstr(ThesisEnv.rsItemQuery!I_DATA, "ORIGINAL") > 0 Then
If InStr(ThesisEnv.rsStockQuery!S_DATA, "ORIGINAL") > 0

Then
bBg

End If
End If

True

'// Fix SQL Statement for Stock
SSql = "Select S_QUANTITY, S_DATA, S_ORDER_CNT, S__YTD, S DIST " &
Format(1D_ID, "00") & ■ as S_DIST"
sSql = sSql & ■ from Stock where S_I_ID=? and S_W_ID=?"

'// Insert Order_Line
.AddNew
!OL_0_ID = 10_ID
!OL_D_ID = 1D_ID
!OL_W_ID = W_ID
!OL_NUMBER = i
!OL_I_ID = 1I_ID
iOL_SUPPLY_W_ID = W_ID
!OL_AMOUNT = iQuantity ■
!OL_QUANTITY = iQuantity
!OL_DIST_INFO = ThesisEnv.rsStockQuery!S_DIST
.Update

ThesisEnv.rsItemQuery!I_PRICE

sngTotal = sngTotal +■ iQuantity
ThesisEnv.rsItemQuery!I_PRICE

137

PrintResult Format(W_ID, "0000"), 2
PrintResult Format{1I_ID, "000000"), 3
PrintResult Left(ThesisEnv.rsItemQuery!I_NAME, 23), 3, 23
PrintResult Format(iQuantity, "00"), 2

PrintResult Format(ThesisEnv.rsStockQuery!S__QUANTITY, "000"),
4

PrintResult IlffbBg, "B", "G"), 4
PrintResult Format(ThesisEnv.rsItemQuery!I_PRICE, "$000.00"),

PrintResult Format(ThesisEnv.rsItemQuery!I_PRICE * iQuantity
"$000.00"), 2, , True

DoEvents

'// Close Item and Stock
ThesisEnv.rsItemQuery.Close
ThesisEnv.rsStockQuery.Close

datStartTime, Time)

Next

ISeconds = DateDif£("
iMinutes = ISeconds /
ISeconds = ISeconds - iMinutes * 60
PrintResult "Execution status: ok"
PrintResult "Time Elapsed: " & Format(iMinutes, "00")
Format(ISeconds, "00"), 10
PrintResult "Total: ■ & Format(sngTotal, "$0000.00"),

bTransaction = False
ThesisEnv.ThesisConn.CommitTrans

ClientTransaction :
'MsgBox 1D_ID & "

True
k 1C_ID

CTEnd:
On Error Resume Next
With ThesisEnv
.rsWarehouseQuery.Close
.rsDistrictQuery.Close
.rsCustomerQuery.Close
-rsOrderLinelnput.Close
.rsOrderInput.Close
End With
Exit Function

CTError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End IE
MsgBox Error, vbCritical
Resume CTEnd

End Function

Private Sub cmdTransacti*
Dim bResult As Boolean

i_Click(Index As Integer)

txtResult = ""
Screen.MousePointer = vbHourglass
Select Case Index

Case 0
bResult = ClientTransaction(l)

Case 1
bResult = Payment(l)

Case 2
bResult = Order_Status(l)

Case 3
bResult = Delivery(l)

Case 4
bResult = Stock_Level(l)

End Select
Screen.MousePointer = vbNormal

End Sub

Private Function GenerateLastNameStr(sCode As String) As String
Dim iIndex As Long
Dim sAux As String

ilndex = Val(Right(Trim(sCode), 1))
sAux = LNSyllables(ilndex)
If Len(sCode) = 2 Then

ilndex = Val(LeftfTrim(sCode), 1))
sAux = LNSyllables(ilndex) & sAux

Elself Len(sCode) > 2 Then
ilndex = Val{Mid{Trim(sCode), 2, 1))
sAux = LNSyllables(ilndex) & sAux
ilndex = Val(Left(Trim(sCode), 1))
sAux = LNSyllables(ilndex) & sAux

End If
GenerateLastNameStr = sAux

End Function
Private Sub Form_Load()
Thes isEnv.Thes i sConn.Open
LNSyllables(O)
LNSyllables(1)
LNSyllables(2)
LNSyllablesO)
LNSyllables(4)
LNSyllables(S)
LNSyllables(6)
LNSyllables(7)
LNSyllables(8) =
LNSyllablesO) =
End Sub

'BAR"
■OUGHT"
'ABLE"
■PRI"
■PRES"
•ESE"
■ANTI"
■CALLY"
■ATION"
'EING"

138

2. Client/Server Transactions Front-End

Option Explicit'// ModiJe General

Public Function Randomfx As Long, y As Long) As Long
Randomize
Random = Int(Rnd() * (y - x)) + x
End Function

Public Function NURand(A As Long, x As Long, y As Long) As Long
Dim C As Long

C = A / 2
NURand = (((Random(0, A) Or Randomfx, y)}

End Functio:

C> Mod (y - x + 1))

Private Function GenerateStr(iLen As Long) As String
Dim i As Long
Dim sAux As String
Dim cAux As String

For i = 1 To iLen
cAux = Chr(Int{58 * Rnd) + 32)
sAux = sAux & cAux

Next
GenerateStr = sAux
End Function

Option Explicit
Const STOCK_QUERY_NUMBER = 24
Private LNSyllablesfO To 9) As string

Private Sub PrintResult(sText, Optional iSpaces As Integer = 0,
Optional SizeToFit As Integer = 0, Optional bLineFeed As Boolean
= False)
Static bOldLine As Boolean

If Not bOldLine Then
iSpaces = iSpaces +■ 1
bOldLine = True

End If
txtResult = txtResult k Space(iSpaces)
txtResult = txtResult k sText
If SizeToFit > 0 Then

If Len(sText) < SizeToFit Then
txtResult = txtResult & space(SizeToFit - Len(sText))

End If
End If
If bLineFeed Then

txtResult = txtResult & vbCrLf
bOldLine = False

End If
End Sub
Private Function Stock_Level(W_ID As Long) As Boolean
On Error GoTo SError
Dim iMinThreshold As Integer
Dim 1D„ID As Long
Dim 1N0_ID As Long
Dim bTransaction As Boolean
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As Integer

datStartTime = Time

Randomize
Stock_Level = False

iMinThreshold = Int(Rnd * 11) + 10
'// District
1D_ID = Int(Rnd() * 10) +1

■// Get Next_Order_ID
ThesisEnv.DistrictQuery 1D„ID, W_ID
1N0_ID = ThesisEnv.rsDistrictQuery!D_NEXT_0_ID - 21

'// Check Stock
ThesisEnv.StockLevelQuery 1D_ID, W_ID, 1N0_ID, iMinThreshold

PrintResult "Stock-Level", 32, , True
PrintResult "Warehouse: " & Format(W_ID, "0000")
PrintResult "District: ■ k Format(lD__ID, "00"), 3, , True
PrintResult ■■, , , True
PrintResult "Stock Level Threshold: ■ k Format(iMinThreshold,
■00"), , , True
PrintResult "", , , True
PrintResult "Low stock: " &
Format(ThesisEnv.rsStockLevelQuery!Low_Stock, *00"), , , True
PrintResult "", , , True

bTransaction = False
ThesisEnv.ThesisConn.Ro1IbackTrans

End If
MsgBox Error, vbCritical
Resume SEnd

End Function

Private Function Delivery(W_ID As Long) As Boolean
On Error GoTo DError
Dim bTransaction As Boolean
Dim lCarrier_ID As Long
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As Integer

datStartTime : Time

Randomize
Delivery = False

lCarrier_ID = Int(Rnd() 10)

With ThesisEnv.rsScheduledJobsInput
.Open
.AddNew
!SC_W_ID = W_ID
!SC_CARRIER_ID = lCarrier_ID
!SC_DATE = Time
.Update

End With

\ PrintResult "Order-Status", 35, , True
PrintResult "Warehouse: • & Format(W_ID, "0000"), , , True
PrintResult ■■, , , True
PrintResult "Carrier Number: " & Format(lCarrier_ID, "00"),
True
PrintResult "■, , , True
PrintResult "Execution Statuos: Delivery has been queued.",
True
PrintResult ■', , , True

Delivery = True
'MsgBox 1D_ID £. ' & 1C_ID

lSeconds = DateDiff("s", datStartTime, Time)
iMinutes = lSeconds / 60
lSeconds = lSeconds - iMinutes * 60
PrintResult "Time Elapsed: ■ k Format(iMinutes, "00") &
Format(lSeconds, "00")

DEnd:
On Error Resume Next
With ThesisEnv
.rsScheduledJobsInput.Close
End With
Exit Function

DError:
If bTransaction Then

bTransaction = False
Thes i sEnv.ThesisConn.Ro1IbackTrans

End If
MsgBox Error, vbCritical
Resume DEnd

End Function

Private Function Order_Status(W_ID As Long) As Boolean
On Error GoTo OSError
Dim bTransaction As Boolean
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim 10_ID As Long
Dim i As Integer
Dim j As Integer
Dim sLastName As String
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As integer
Dim sSql As String
Dim rstOrder As New ADODB.Recordset
Dim rstOrderLine As New ADODB.Recordset

datStartTime :

Randomize
Order_Status

Time

Stock_Level = True

SEnd:
On Error Resume Next
With ThesisEnv
.rsDistrictQuery.Close
.rsStockLevelQuery.Close
End With
Exit Function

SError:
If bTransaction Then

'// District
1D_ID = Int(Rnd(> 10)

'// Customer
■If Int(Rnd<) • 10) + 1 > 6 Then

■// Uses ID
1C_ID = NURand(1023, 1, 3000)

'Else
'// Query Last Name
1C_ID = 0
Do While 1C_ID = 0

j = NURand(255, 0, 999)
sLastName = GenerateLastNameStr(Str(j))

139

ThesisEnv.CustomerQueryLast sLastName, W_ID, 1D_ID
With ThesisEnv.rsCustomerQueryLast

If .RecordCount > 0 Then
i = .RecordCount / 2
-Move i
1C_ID = !C_ID

End If
.Close

End With
Loop

•End If

'// Get the order with max 0_ID
ThesisEnv.OrderQuery 1C_ID, W_ID, 1D_ID
If Not IsNull(ThesisEnv.rsOrderQuery!MaxId) Then

Exit Do
Else

ThesisEnv.rsOrderQuery.Close
End If

Private Function Payment(W_ID As Long) As Boole
On Error GoTo PError
Dim bTraiisaction As Boolean
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim i As Integer
Dim j As Integer
Dim sAux As String
Dim sLastName As String
Dim datStartTime As Date
Dim lSeconds As Long
Dim iMinutes As Integer
Dim sngAmount As Single
Dim sData As String

datStartTime = Time

Randomize
Payment = False

10_ID = ThesisEnv.rsOrderQuerylMaxId

'// Open Customer
ThesisEnv.CustomerQuery2 1C_ID, W_ID, 1D_ID

'// Get the Order
sSql = -Select 0_ID, 0_ENTRY_DATE, 0_CARRIER_ID from
district_order where "
sSql = sSql k "0_ID =" k 10_ID k " and 0_W_ID=" & W_ID J. * and
0_D_ID=- It 1D_ID
rstOrder.Open sSql, ThesisEnv.ThesisConn, adOpenForwardOnly,
adLockReadOnly

■// Get the order line items
SSql = "Select OL_SUPPLY_W_ID, OL_I_ID, OL_QUANTITY, OL_AMOUNT,
0L_DEL1VERY_D from Order_Line ■
sSql = sSql k "where OL_0_ID=" & 10_ID & " and OL_W_ID=" & W_ID &
" and OL_D„ID=" & 1D_ID
rstOrderLine.Open sSql, ThesisEnv.ThesisConn, adOpenForwardOnly,
adLockReadOnly

■0000')
True

'// Print Results
PrintResult "Order-Status-, 33, , True
PrintResult "Warehouse: ■ k Format(W_ID,
PrintResult -District: ■ & Format(1D_ID,
PrintResult -Customer: " k Format(1C_ID, "0000-)
PrintResult ThesisEnv.rsCustomerQuery2!C_FIRST, 3, 16
PrintResult ThesisEnv.rsCustomerQuery2!C_MIDDLE, 1
PrintResult ThesisEnv.rsCustomerQuery2!C_LAST, 1, 16, True
PrintResult "Cust-Balance: ■
PrintResult -$■ k Format(ThesisEnv.rsCustomerQuery2!C_BALANCE,
■000000000.00"), , , True
PrintResult -■, , , True
PrintResult "Order-Number: " k Format(rstOrder!o_id, -00000000")
PrintResult "Entry-Date: " & Format(rstOrder!o_entry_date, -dd-
nan-yyyy hh:mm:ss"), 3
PrintResult -Carrier-Number: ", 2
If Not IsNull(rstOrder!o_carrier_id) Then

PrintResult Format(rstOrder!o_carrier_id, -00"), , True
Else

PrintResult -NULL", , , True
End If
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult True

"Supp_W
"Item_Id", 7
"Qty, 4
■Amount", 5
"Delivery-Date", 6,

Do While Not rstOrderLine.EOF
With rstOrderLine
PrintResult Format(!OL_SUPPLY_W_ID, "0000"), 1
PrintResult Format(!OL„I_ID, "000000"), 8
PrintResult Format(!OL_QUANTITY, -00"), 5
PrintResult Format{!0L_AMOUNT, "$00000.00"), 5
If Not IsNulK!OL_DELIVERY_D) Then

PrintResult Format(!OL_DELIVERY_D, "dd-mm-yyyy">,
True

Else
PrintResult -NULL-, 6, , True

End If
.MoveNext
End With

Loop

lSeconds = DateDifffs", datStartTime, Time)
iMinutes = lSeconds / 60
lSeconds = lSeconds - iMinutes * 60
PrintResult "Time Elapsed: ■ k Format(iMinutes, -00")
Format(lSeconds, -00")

Order_Status = True
•MsgBox 1D_ID k ■ • & 1C_ID

OSEnd:
On Error Resume Next
With ThesisEnv
.rsCustomerQuery2.Close
.rsOrderQuery.Close
End With
rstOrderLine.Close
rstOrder.Close
Exit Function

OSError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End If
MsgBox Error, vbCritical
Resume OSEnd

'// District
1D_ID = Int{Rnd() * 10) * 1

'// Customer
■If Int(Rnd() * 10) + 1 > 6 Then

•// Uses ID
1C_ID = NURand{1023, 1, 3000)

'Else
'// Query Last Name
1C_ID = 0
Do While 1C_ID = 0

j = NURand(255, 0, 999)
sLastName = GenerateLastNameStr(Str(j))
ThesisEnv.CustomerQueryLast sLastName, W_ID, 1D_ID
With ThesisEnv.rsCustomerQueryLast

If .RecordCount > 0 Then
i = .RecordCount / 2
.Move i
1C_ID = !C_ID

End If
.Close

End With
Loop

■endi f

'// Amount
sngAmount = Int(Rnd() * 500000) / 100 + 1

'// Begin Transaction
ThesisEnv.ThesisConn.BeginTrans
bTransaction = True

PrintResult
PrintResult
True
PrintResult

'Payment", 33, , True
Date: ■ k FormatfTime. •dd-mm-yyyy hh:i

'// Open Warehouse
ThesisEnv.WarehouseQuery2 W_ID
PrintResult "Warehouse: " & Format(W_ID, "0000-)

'// Get Next Order ID
ThesisEnv.DistrictQuery2 W_ID, 1D_ID
PrintResult "District: ■ k Format(lD_ID, ■00-), 25,

End Functio

PrintResult ThesisEnv.rsWarehouseQuery2!W_STREET_l, , 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STREET_1, 20, 20, True
PrintResult ThesisEnv.rsWarehouseQuery2!W_STREET_2, , 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STREET_2, 20, 20, True
PrintResult ThesisEnv.rsWarehouseQuery2!W_CITY, , 20
PrintResult ThesisEnv.rsWarehouseQuery2!W_STATE, 1
PrintResult Left(ThesisEnv.rsWarehouseQuery2!W_ZIP, 5) & ■-" &
Right(ThesisEnv.rsWarehouseQuery2!W_ZIP, 4), 1
PrintResult ThesisEnv.rsDistrictQuery2!D_CITY, 6, 20
PrintResult ThesisEnv.rsDistrictQuery2!D_STATE, 1
PrintResult Left(ThesisEnv.rsDistrictQuery2!D„ZIP, 5) k ■-" k
Right(ThesisEnv.rsDistrictQuery2!D_ZIP, 3), 1, , True
PrintResult ■-, , , True

'// Open Customer
ThesisEnv.CustomerQuery2 1C_ID, W_ID, 1D_ID
sData = ThesisEnv.rsCustomerQuery2!C_DATA

'// Check Customer Credit
If ThesisEnv.rsCustomerQuery2iC_CREDIT = "BC* Then

sAux = "Entry: ■ & 1C_ID £■",-& 1D_ID k '; " & W_ID & ■; ■
& 1D_ID k •; ■ & W_ID fc ■,- " & sngAmount & ■. ■

If Len(sData) - Len(sAux) > 500 Then
ThesisEnv.rsCustomerQuery2!C_DATA = sAux £ LeftfsData,

500 - Len(sAux))
sData = sAux k LeftfsData, 500 - Len(sAux))

Else

ThesisEnv.rsCustomerQuery2!C_DATA = sAux k sData
sData = sAux k sData

End If
ThesisEnv.rsCustomerQuery2.Update

End If

PrintResult -Customer: " k Format(1C_ID, "0000"),' , , True
PrintResult "Name: "
PrintResult ThesisEnv.rsCustomerQuery2!C_FIRST, , 16
PrintResult ThesisEnv.rsCustomerQuery2!C_MIDDLE, 1
PrintResult ThesisEnv.rsCustomerQuery2!C_LAST, 1, 16
PrintResult -since: ■ k
Format(ThesisEnv.rsCustomerQuery2!C_SINCE, -dd-mm-yyyy-), 5, ,
True

PrintResult ThesisEnv.rsCustomerQuery2!C_STREET_1, 8, 20
PrintResult 'Credit: ■ & ThesisEnv.rsCustomerQuery2!C_CREDIT, 21,
, True

PrintResult ThesisEnv.rsCustomerQuery2!C_STREET_2, 8, 20

140

PrintResult "%Disc: ■ k
Format(ThesisEnv.rsCustomerQuery2!C_DISCOUNT * 100, "00.00"), 21,
, True

PrintResult ThesisEnv.rsCustomerQuery2!C_CITY, 8, 20
PrintResult ThesisEnv.rsCustomerQuery2!C_STATE, 1
PrintResult Left(ThesisEnv.rsCustomerQuery2!C_ZIP, 5) fc ■-■ fc
Right(ThesisEnv.rsCustomerQuery2!C_ZIP, 3), 1
PrintResult "Phone: • & Left(ThesisEnv.rsCustomerQuery2IC..PHONE,
6) fc '-" fc Mid(ThesisEnv.rsCustomerQuery2!C_PHONE, 7, 3) fc ■-" fc
Mid(ThesisEnv.rsCustomerQuery2JC_PHONE, 10, 3) k ■-• &
Right(ThesisEnv.rsCus tomerQuery2!C_PHONE, 4) , 8, , True
PrintResult "", , , True

PrintResult "Amount Paid:"
PrintResult Format(sngAmount, "$0000.00"), io
PrintResult "New Cust-Balance:■, 6
PrintResult '$" & Format{ThesisEnv.rsCustomerQuery2!C_BALANCE -
sngAmount, "000000000.00"), 1, , True
PrintResult "Credit Limit:'
PrintResult ■$" fc Format(ThesisEnv.rsCustomerQuery2!C_CREDIT_LIM
"000000000.00"), 4, , True
PrintResult ■", , , True
If ThesisEnv.rsCustomerQuery2!C_CREDIT = "BC" Then

PrintResult "Cust-Data:"
PrintResult Left(sData, 50), 1, , True
PrintResult Mid(sData, 51, 50), 11, , True
PrintResult Mid(sData, 101, 50), 11, , True
PrintResult Mid(sData, 151, 50), 11, , True
PrintResult "", , , True

End If

With ThesisEnv.rsHistorylnput
.Open
.AddNew
!H_C„ID = 1C_ID
!H_C_D_ID = 1D_ID
!H_C_W_1D = W_ID
!H_D_ID = 1D_ID
!H_W_ID = W_ID
!H_DATE = Date
JH_AMOUNT = sngAmount
!H_DATA = ThesisEnv.rsWarehouseQuery2!W_NAME fc " • fc

ThesisEnv.rsDistrictQuery2!D_NAME
.Update

End With

lSeconds = DateDiff("s", datstartTime, Time)
iMinutes = lSeconds / 60
lSeconds = lSeconds - iMinutes * 60
PrintResult "Time Elapsed: ■ k Format(iMinutes, "00") k ':" k
Format(lSeconds, "00•)

bTransaction = False
ThesisEnv.ThesisConn.CommitTrans

Payment = True
'MsgBox 1D_ID fc " ' & 1C_ID

PEnd:
On Error Resume Next
With ThesisEnv
.rsCustomerQuery2.Close
.rsHistorylnput.close
.rsDistrictQuery2.Close
.rsWarehouseQuery2.Close
End With
Exit Function

PError:
If bTransaction Then

bTransaction = False
Thes isEnv.Thes i sConn.RolIbackTrans

End If
MsgBox Error, vbCritical
Resume 'PEnd

End Function

Private Function ClientTransaction(W_ID As Long) As Boolean
On Error GoTo CTError
Dim bTransaction As Boolean
Dim iOrder_Cnt As Integer
Dim 1D_ID As Long
Dim 1C_ID As Long
Dim 1O_ID As Long
Dim 1I_ID As Long
Dim i As Integer
Dim j As Integer
Dim bBg As Boolean
Dim iQuantity As Integer
Dim sSql As String
Dim sngTotal As Single
Dim SUPP_W_ID As Integer

Randomize
ClientTransaction = False

'// Number of lines [5..15]
■//iOrder_cnt = Int(Rnd() * 11) + 5

iOrder_Cnt = 8

'// District
1D_ID = Int(Rndf) * 10) + 1

'// Customer
1C_ID = NURand(1023, 1, 3000)

■// Fix SQL Statement for Stock
SSql = "Select S_QUANTITY, S_DATA, S_ORDER_CNT, S_YTD, S_DIST_" k
Format(1D_ID, "00") k ■ as S_DIST"
sSql = sSql k • from Stock where S„I_ID=? and S_W_ID=?"
ThesisEnv.Commands(STOCK_QUERY_NUMBER).CommandText = sSql

'// Begin Transaction
ThesisEnv.ThesisConn.BeginTrans
bTransaction = True

PrintResult "New Order", 33, , True

'// Open Warehouse
ThesisEnv.WarehouseQuery W_ID
PrintResult "Warehouse: ■ k Format(W_ID, "0000")

'// OpenCustomer
ThesisEnv.CustomerQuery 1C_ID, W_ID, 1D_ID

'// Get Next Order ID
ThesisEnv.DistrictQuery 1D_ID, W_ID
10_ID = ThesisEnv.rsDistrictQuery!D_NEXT_0_ID

PrintResult
PrintResult
True
PrintResult
PrintResult
16), 3, 21
PrintResult
PrintResult
Format(Thes
True
PrintResult
PrintResult
PrintResult
100, "00.00
PrintResult
100, "00.00
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
PrintResult

■District: " fc Format(1D_ID, "00"), 3
■Date: " fc Format(Time, "dd-mm-yyyy hh:mm:ss"), 23,

■Customer: ■ & Format(lc_ID, "0000")
"Name: " k Left(ThesisEnv.rsCustomerQuerylC_LAST,

"Credit: " fc ThesisEnv.rsCustomerQuery!C_CREDIT, 3
"%Disc: • k

isEnv.rsCustomerQuery!C_DISCOUNT * 100, "00.00"), 3,

■Order Number: • fc Format(10_ID, "00000000")
"Number of Lines: " fc Format(iOrder_Cnt, -00") , 2
"W_tax: ■ k Format(ThesisEnv.rsWarehouseQuery!W_TAX
), 7
■D_tax: " & Format(ThesisEnv.rsDistrictQuery!D_TAX *
), 3, , True
"", , , True
"Supp_W", 1
"Item_Id", 2
"Item_Name", 2
"Qty", 16
"Stock", 2
"B/G", 2
"Price", 2
"Amount", 4, , True

'// Insert District_Order
With ThesisEnv.rsOrderlnput

.Open

.AddNew
!o_id = 10_ID
10_C_ID = 1C_ID
!0_D_ID = 1D_ID
!0_W_ID = W_ID
!o_entry_date = Format(Date, "mm/dd/yyyy)
!0_ALL_L0CAL = 1
JO_OL_CNT = 0
.Update

End With

With ThesisEnv.rsOrderLineInput
.Open
sngTotal = 0
For i = 1 To iOrder_Cnt

'// Find the item
1I_ID = NURand(8191, 1, 100000)
'// Quantity
iQuantity = Int(Rnd() * 10) + l

'// Open Item
ThesisEnv.ItemQuery 1I_ID

'// Find the Supplier
SUPP_W_ID = lnt(Rnd() * 2) + 1

'// Open Stock
ThesisEnv.StockQuery 1I_ID, SUPP_W_ID

'// Update STOCK table
If ThesisEnv.rsStockQuery!S_QUANTITY >= iQuantity + 10 Then

ThesisEnv.rsStockQuery!S_QUAWTITY =
ThesisEnv.rsStockQuery!S_QUANTITY - iQuantity

Else
ThesisEnv.rsStockQuery!S_QUANTITY =

ThesisEnv.rsStockQuery!S_QUANTITY + 91
End If

ThesisEnv.rsStockQuery!S_YTD = ThesisEnv.rsStockQuery!S_YTD ■
iQuantity

ThesisEnv.rsStockQuery!S_ORDER_CNT =
ThesisEnv.rsStockQuery!S_ORDER_CKT + 1

ThesisEnv.rsStockQuery.Update

'// Check for B/G
bBg = False
If InStr(ThesisEnv.rsItemQuery!I_DATA, "ORIGINAL") > 0 Then

If InStr(ThesisEnv.rsStockQuery!S_DATA, "ORIGINAL") > 0
Then

bBg = True
End If

End If

■// Insert Order_Line
.AddNew
!OL_0_ID = 10_ID
!OL_D_ID = 1D_ID
!OL_W_ID = W_ID
!OL_NUMBER = i
!OL_I_ID = 1I_ID
!OL_SUPPLY_W_ID = SUPP_W_ID
!OL_AMOUNT = iQuantity * ThesisEnv.rsItemQuery!I_PRICE
!OL_QUANTITY = iQuantity
1OL_DIST_INFO = ThesisEnv.rsStockQuery!S_DIST
.Update

141

sngTotal = sngTotal + iQuantity *
ThesisEnv.rsItemQuery!I_PRICE

PrintResult Format(SUPP_W_ID, "0000"), 2
PrintResult Format(lI_ID, "000000"), 3
PrintResult Left(ThesisEnv.rsItemQuery!I_NAME, 23), 3, 23
PrintResult Format(iQuantity, "00"), 2
PrintResult Format(ThesisEnv.rsStockQuery!S_QUANTITY, "000"),

4
PrintResult IIf(bBg, "B", "G"), 4
PrintResult Format(ThesisEnv.rsItemQuery!I^PRICE, "$000.00"),

PrintResult Format(ThesisEnv.rsItemQuery!I_PRiCE * iQuantity
•$000.00"), 2, , True

'// Close Item and Stock
ThesisEnv.rsItemQuery.Close
ThesisEnv.rsStockQuery.Close

Next

PrintResult "Total: ■ I Format(sngTotal, "$0000.00"), 11, , Tr
PrintResult "Execution Status: Ok"
End With

bTransaction = False
Thes i sEnv.Thes isConn.Commi tTrans

ClientTransaction = True
■MsgBox 1D_ID & ■ ■ & 1C_ID

CTEnd:
On Error Resume Next
With ThesisEnv
.rsWarehouseQuery.Close
-rsDistrictQuery.Close
.rsCustomerQuery.Close
.rsOrderLinelnput.Close
.rsOrderInput.Close
End With
Exit Function

CTError:
If bTransaction Then

bTransaction = False
ThesisEnv.ThesisConn.RollbackTrans

End If
MsgBox Error, vbCritical
Resume CTEnd
End Function

Private Sub cmdTransaction_Click(index As Integer)
Dim bResult As Boolean
Dim W_ID As Long

W_ID = 2

txtResult = ■■
Screen.MousePointer = vbHourglass
Select case index

Case 0

bResult = ClientTransaction(W_ID)
Case 1

bResult = Payment(W_ID)
Case 2

bResult = Order_Status(W_iD)
Case 3

bResult = Dellvery(W_iD)
Case 4

bResult = Stock_Level(W_ID)
End Select
Screen.MousePointer = vbNormal

End Sub

Public Function ExecuteTransactionfindex As Integer)
cmdTransaction_Click index

End Function

Private Function GenerateLastNameStr(sCode As String) As String
Dim ilndex As Long
Dim sAux As String

sCode = Trim(sCode)
If Len(sCode) < 3 Then

sCode = Space(3 - Len(sCode)) & sCode
End If
ilndex = Val(Right(sCode, 1))
sAux = LNSyllables(ilndex)
If Len(sCode) = 2 Then

ilndex = Val(Left(sCode, 1))
sAux = LNSyllables(ilndex) & sAux

Elself Len(sCode) > 2 Then
ilndex = Val(Mid(sCode, 2, 1))
sAux = LNSyllables(ilndex) & sAux
ilndex = Val(LeftfsCode, 1))
sAux = LNSyllables(ilndex) & sAux

End If
GenerateLastNameStr = sAux

End Function
Private Sub Form__Load()
LNSyllables(0) = "BAR"
LNSyllables(l) = "OUGHT"
LNSyllables(2) = "ABLE"
LNSyllables(3) = "PRI"
LNSyllables(4) = "PRES"
LNSyllables(5) = "ESE"
LNSyllables(6) = "ANTI"
LNSyllables(7) = "CALLY"
LNSyllables(8) = 'ATION"
LNSyllables(9) = "EING"
End Sub

142

3. N-Tier Data Objects

option Explicit

'// Customer

'local siable(s) to hold property value(s)
Private mild As Long 'local copy
'local siable(s) to hold property value(s)
Private mDistrict As District 'local copy
"local siable(s) to hold property value(s)
Private msFirst As String 'local copy
Private msLast As String 'local copy
Private msMiddle As String 'local copy
Private msStreetl As String 'local copy
Private rasStreet2 As String 'local copy
Private msCity As String 'local copy
Private msState As string 'local copy
Private msZIP As String 'local copy
Private tnsPhone As String 'local copy
■local variable(s) to hold property value(s)
Private mdatsince As Date 'local copy
Private msCredit As String 'local copy
Private msngLimit As single 'local copy
Private msngDiscount As Single 'local copy
Private msngBalance As Single 'local copy
Private msngYTD_Payment As Single 'local copy
Private miPayment_CNT As Integer 'local copy
Private miDelivery_CNT As Integer 'local copy
Private rasData As String 'local copy

Public Property Let DATA(ByVal vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.DATA = 5

msData = vData
End Property

Public Property Get DATAf) As String
•used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.DATA

DATA = msData
End Property

Public Property Let Delivery_CNT(ByVal vData As Integer)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Delivery_CNT = 5

miDelivery_CNT = vData
End Property

Public Property Get Delivery_CNT() As Integer
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Delivery_CNT

Delivery_CNT = miDelivery_CNT
End Property

Public Property Let Payment_CNT(ByVal vData As Integer)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Payment_CNT = 5

miPayment_CNT = vData
End Property

Public Property Get Payment_CNT() As Integer
•used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug,Print X.Payment_CNT

Payment_CNT = miPayment_CNT
End Property

Public Property Let YTD_Payment(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.YTD_Payment = 5

msngYTD_Payment = vData
End Property

Public Property Get YTD_Payment{) As single
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.YTD_Payment

YTD_Payment = msngYTD_Payment
End Property

Public Property Let Balance(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Balance = 5

msngBalance = vData
End Property

Public Property Get Balance() As Single
■used when retrieving value of a property, on the right side of
an assignment.
•Syntax.- Debug.Print X.Balance

Balance = msngBalance
End Property

Public Property Let Discount(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Discount = 5

msngDiscount = vData

the right side of

End Property

Public Property Get Discount!) As Single
'used when retrieving value of a property,
an assignment.
'Syntax: Debug.Print X.Discount

Discount = msngDiscount
End Property

Public Property Let Limit(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Limit = 5

msngLimit = vData
End Property

the right side of
Public Property Get Limit{) As Single
'used when retrieving value of a property,
an assignment.
'Syntax: Debug.Print X.Limit

Limit = msngLimit
End Property

Public Property Let Credit(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
"Syntax: X.Credit = 5

msCredit = vData
End Property

Public Property Get Credit() As String
■used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Credit

Credit = msCredit
End Property

Public Property Let Since(ByVal vData As Date)
■used when assigning a value to the property, on the left side of
an assignment.
"Syntax: X.Since = 5

mdatsince = vData
End Property

Public Property Get Since() As Date
•used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Since

Since = mdatsince
End Property

Public Property Let PhonefByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Phone = 5

msPhone = vData
End Property

Public Property Get Phonef) As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Phone

Phone = msPhone
End Property

Public Property Let ZIPfByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.ZIP = 5

msZIP = vData
End Property

Public Property Get ZIP() As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.ZIP

ZIP = msZIP
End Property

Public Property Let State(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.State = 5

msState = vData
End Property

Public Property Get stated As string
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print x.State

State = msState
End Property

Public Property Let city(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.City = 5

msCity = vData
End Property

Public Property Get City() As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.City

143

City = msCity
End Property

Public Property Let Street2(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Street2 = 5

msStreet2 = vData
End Property

Public Property Get Street2() As String
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Street2

Street2 = msStreet2
End Property

Public Property Let Streetl(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Streetl = 5

msStreetl = vData
End Property

the right side of
Public Property Get Streetl() As String
'used when retrieving value of a property,
an assignment.
'Syntax: Debug.Print X.Streetl

Streetl = msStreetl
End Property

Public Property Let Middle(ByVal vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Middle = 5

msMiddle = vData
End Property

Public Property Get Middled As String
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Middle

Middle = msMiddle
End Property

Public Property Let Last(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Last = 5

msLast = vData
End Property

Public Property Get Last() As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Last

Last = msLast
End Property

Public Property Let First(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.First = 5

msFirst a vData
End Property

Public Property Get First() As String
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.First

First = msFirst
End Property

Public Property Get District() As District
"used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.District

Set District = mDistrict
End Property

Public Property Let Id(ByVal vData As Long)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Id = 5

mild = vData
End Property

Public Property Get Id() As Long
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Id

Id = mild
End Property

Public Function OpenWithLastfLastName As string, Dist As
ThesisDO.District, en As ADODB.Connection) As Boolean
Dim dbcmdCustomer As New ADODB.Command
Dim rstCustomer As ADODB.Recordset

Set mDistrict = Dist
If mDistrict Is Nothing Then Exit Function

With dbcmdCustomer
.CommandText = "Select
C_D_ID= ■ k Dist.Id & '
Set .ActiveConnection :
.Parameters(0).Value =

Set rstCustomer = .Exe<
End With

With rstCustomer
If Not .EOF Then

If .RecordCount > (

* from Customer where C_LAST = ? and
and C_W_ID=" k Dist.Warehouse.Id

.Move .RecordCount / 2
End If
mild = !C_ID
msFirst = !C_FIRST
msMiddle = !C_MIDDLE
msLast = !C_LAST
msStreetl = !C_STREET_1
msStreet2 = !C_STREET_2
msCity = !C_CITY
msziP a !C_ZIP
msstate = 1C_STATE
msPhone = !C_PHONE
mdatsince = !C_SINCE
msCredit = iC_CREDIT
msngLimit = !C_CREDIT_LIM
msngDiscount = !C_DISCOUNT
msngBalance = !C_BALANCE
msngYTD_Payment = !C_YTD_PAYMENT
miPayment_CKT = !C_PAYMENT_CNT
miDelivery_CNT = !C_DELIVERY_CNT
msData = IC_DATA
OpenWithLast = True

End If
End With

End Function

Public Function OpenWith(C_ID As Long, Dist As ThesisDO.District,
en As ADODB.Connection) As Boolean
Dim rstCustomer As New ADODB.Recordset

Set mDistrict = Dist
If mDistrict Is Nothing Then Exit Function

With rstCustomer
.Open -Select * from Customer where C_ID = ■ k C_ID & ■ and
C_D_ID= ■ k Dist.Id fc " and C_W_ID=" k Dist.Warehouse.Id, en,
adOpenForwardOnly, adLockReadOnly
If Not .EOF Then

mild B !C_ID
msFirst = !C_FIRST
msMiddle = !C„MIDDLE
msLast = !C_LAST
msStreetl = !C_STREET_1
msStreet2 = !C_STREET_2
msCity = !C_CITY
msZIP = !C_ZIP
msState = !C_STATE
msPhone = tC_PH0NE
mdatsince = !C_SINCE
msCredit = !C__CREDIT
msngLimit = !C_CREDIT_LIM
msngDiscount = !C_DISCOUNT
msngBalance = !C_BALANCE
msngYTD_Payment = !C_YTD_PAYMENT
miPayment_CNT = ! C__PAYMENT_CNT
miDelivery_CNT = !C_DELIVERY_CNT
msData = !C_DATA

End If
End With
OpenWith = True
End Function

Public Function Savefcn As ADODB.Connection) As Boolean
On Error GoTo SErrors
Dim rstCustomer As New ADODB.Recordset

If mDistrict Is Nothing Then Exit Function

With rstCustomer
10: .Open "Select * from Customer where C_ID
C_D_ID= ■ & mDistrict.Id & " and C_W_ID=" k
mDistrict.Warehouse.Id, en
If .EOF Then Exit Function
!C_DATA = msData
!C_BALANCE = msngBalance
!C_DELIVERY_CNT = miDelivery_CNT
20: .Update
End With
Save = True
SFim:
Exit Function

& mild k " and

adOpenDynamic, adLockPessimistic

SErrors:
MsgBox Erl k
Resume SFim
End Function

k Err.Number & k Err.Description, vbCritical

Option Explicit

'// District

Private mild As Long 'local copy
■local variable(s) to hold property value(s)
Private mWarehouse As Warehouse 'local copy
Private msngTax As Single 'local copy
■local variable(s) to hold property value(s)
Private mlNextOrderld As Long 'local copy
Private msStreetl As string 'local copy
Private msStreet2 As String 'local copy
Private msCity As String 'local copy
Private msState As String 'local copy
Private msZIP As String 'local copy
Private msngYTD As single
'local variable(s) to hold property value(s)
Private msName As String 'local copy

Public Property Get YTD() As Single
YTD = msngYTD

End Property

Public Property Let YTD(sngVal As Single)

144

mWarehouse.YTD = mWarehouse.YTD ■
msngYTD = sngVal

End Property

msngYTD + sngVal

Public Property Let Name{Byval vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Name = 5

msName = vData
End Property

Public Property Get Name{> As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Name

Name = msName
End Property

Public Property Let ZIP(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.ZIP = 5

msZIP = vData
End Property

Public Property Get ZIP() As string
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.ZIP

ZIP = msZIP
End Property

^ Public Property Let State(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.State = 5

msstate = vData
End Property

Public Property Get State() As String
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.State

State = msstate
End Property

Public Property Let CityfByVal vData As string)
•used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.City = 5

msCity = vData
End Property

Public Property Get CityO As String
■used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.City

City = msCity
End Property

Public Property Let Street2(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Street2 = 5

msStreet2 = vData
End Property

Public Property Get Street2() As String
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Street2

Street2 = msstreet2
End Property

Public Property Let Streetl(ByVal vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Streetl = 5

msStreetl = vData
End Property

Public Property Get Streetl() As String
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Streetl

Streetl = msStreetl
End Property

Public Property Let NextOrderld(ByVal vData As Long)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.NextOrderld = 5

mlNextOrderld = vData
End Property

Public Property Get Nextorderldf) As Long
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.NextOrderld

NextOrderld = mlNextOrderld
End Property

Public Property Let TaxfByVal vData As Single)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Tax = 5

msngTax = vData
End Property

Public Property Get Tax{) As Single
■used when retrieving value of a property, on the right side of
an assignment.
"Syntax: Debug.Print X.Tax

Tax = msngTax

End Property

Public Property Set Warehouse(w As Warehouse)
Set mWarehouse = w

End Property

Public Property Get Warehouse)) As Warehouse
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Warehouse

Set Warehouse = mWarehouse
End Property

Public Property Let Id(ByVal vData As Long)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Id = 5

mild = vData
End Property

Public Property Get Id() As Long
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Id

Id = mild
End Property

Public Function OpenWith(D_ID As Long, War As ThesisDO.Warehouse,
en As ADODB.Connection) As Variant
Dim rstDistrict As New ADODB.Recordset

If D_ID <= 0 Then Exit Function
Set mWarehouse = War

and D_W_ID

With rstDistrict
.Open -Select * from District where D_ID=- & D_ID & '
= ■ k War.Id, en, adOpenForwardOnly, adLockReadOnly
If Not .EOF Then

mild = D_ID
msStreetl = !D_STREET_1
msStreet2 = !D_STREET_2
msCity = !D_CITY
msZIP = !D_ZIP
msstate = !D„STATE
msName = !D_NAME
msngTax = JD_TAX
msngYTD = !D_YTD
mlNextOrderld = !D_NEXT_0_ID
OpenWith = True

End If
■Close
End With
End Function

Public Function Save(cn As ADODB.connection) As Boolean
Dim rstDistrict As New ADODB.Recordset

With rstDistrict
.Open "Select * from District where D_ID=" & mild & ■ and D_W_ID
= ■ & mWarehouse.Id, en, adOpenDynamic, adLockPessimistic
If Not .EOF Then

!D_NEXT_0_ID = mlNextOrderld
!D_YTD = msngYTD
.Update

End If
•Close
End With
Save = True
End Function

Option Explicit

'// History

'local variable(s) to hold property value(s)
Private mCustomer As Customer 'local copy
Private mDistrict As District 'local copy
Private mdatDate As Date 'local copy
Private msngAmount As Single 'local copy
Private msData As String 'local copy

Public Function Savefcn As ADODB.Connection) As Boolean
Dim rstHistory As New ADODB.Recordset

If mCustomer Is Nothing Then Exit Function
If mDistrict Is Nothing Then Exit Function

With rstHistory
.Open "Select * from History where H_C_ID = 0", en,
adOpenDynamic, adLockPessimistic
■AddNew
!H_C_ID = mCustomer.Id
!H_C_D_ID = mCustomer.District.Id
!H_C_W_ID = mCustomer.District.Warehouse.Id
!H_D_ID = mDistrict.Id
!H_W_ID = mDistrict.Warehouse,id
!H_DATE = mdatDate
!H_AMOUNT = msngAmount
!H_DATA = msData
.Update
End With

Save = True
End Function

Public Property Let DATA(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.DATA = 5

msData = vData
End Property

Public Property Get DATA() As String

145

the right side of

■used when retrieving value of a property, on the right side of
an assignment.
•Syntax: Debug.Print X.DATA

DATA = tnsData
End Property

Public Property Let Amount(ByVal vData As Single)
•used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Amount = 5

msngAmount = vData
End Property

Public Property Get Amount() As single
■used when retrieving value of a property,
an assignment.
'Syntax: Debug.Print X.Amount

Amount = msngAmount
If Not mDistrict Is Nothing Then

mDistrict.YTD = mDistrict.YTD + msngAmount
End If
If Not mCustomer Is Nothing Then

mCustomer.Delivery_CNT = mCustomer.Delivery__CNT + 1
mCustomer.YTD_Payment = mCustomer.YTD_Payment +

msngAmount

mCustomer.Balance = mCustomer.Balance - msngAmount
End If

End Property

Public Property Let EntryDatefByVal vData As Date)
'used when assigning a value to the property, on the left side of
an assignment.
"Syntax: X.EntryDate = 5

mdatDate = vData
End Property

Public Property Get EntryDateO As Date
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.EntryDate

EntryDate = mdatDate
End Property

Public Property Set District(Dist As ThesisDO.District)
Set mDistrict = Dist
'// Set District YTD
If msngAmount > 0 Then

mDistrict.YTD = mDistrict.YTD + msngAmount
End If

End Property

Public Property Get District!) As District
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.District

Set District = mDistrict
End Property

Public Property Set Customer(ByVal vData As Customer)
■used when assigning an Object to the property, on the left side
of a Set statement.
"Syntax: Set x.Customer = Forml

Set mCustomer = vData
If msngAmount > 0 Then

mCustomer.Delivery_CNT = mCustomer.Delivery_CNT + 1
mCustomer.YTD_Payment = mCustomer.YTD_Payment +

msngAmount

mCustomer.Balance = mCustomer.Balance - msngAmount
End If

End Property

Public Property Get Customer() As Customer
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Customer

Set Customer = mCustomer
End Property

Private Sub Class_Initialize()
Set mDistrict = Nothing
Set mCustomer = Nothing
msngAmount = 0

End Sub

option Explicit

'// Item

■local variable(s) to hold property value(s)
Private mild As Long 'local copy
Private msName As String 'local copy
Private msngPrice As Single 'local copy
Private msData As String 'local copy
'local variable(s) to hold property value(s)

Public Function OpenWith(I_lD As Long, en As ADODB.Connection)
Dim rstltem As New ADODB.Recordset

With rstltem
-Open "Select * from Item where I_ID :
adOpenForwardOnly, adLockReadOnly
If Not rstltem.EOF Then

mild = !I_ID
msName = !IJName
msngPrice = !l_Price
msData = !I_DATA

End If
End With
OpenWith = True
End Function

& I_ID, en.

'Syntax: X.Data = 5
msData = vData

End Property

Public Property Get DATAO As String
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Data

DATA = msData
End Property

Public Property Let Price(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Price = 5

msngPrice = vData
End Property

Public Property Get Pricef) As Single
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Price

Price = msngPrice
End Property

Public Property Let Name(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.ItemName = 5

msName = vData
End Property

Public Property Get Name() As string
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.ItemName

Name = msName
End Property

Public Property Let Id(ByVal vData As Long)
•used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Id = 5

mild = vData
End Property

Public Property Get Id() As Long
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Id

Id = mild
End Property

Option Explicit

'// New Order

■local variable(s) to hold property value(s)
Private mOrder As Order 'local copy

Public Function Savefcn As ADODB.Connection) As Boolean
Dim rstNewOrder As New ADODB.Recordset

If mOrder Is Nothing Then Exit Function

With rstNewOrder
.Open "Select * from New_Order where NO_0_ID = 0", en,

adOpenDynamic, adLockPessimistic
.AddNew
!NO__0_ID = mOrder. Id
!N0_D_ID = mOrder.Customer.District.Id
!N0_W_ID = mOrder.Customer.District.Warehouse.Id
.Update
.Close

End With
Set rstNewOrder = Nothing
Save = True
End Function

Public Property Set Order(ByVal vData As Order)
•used when assigning an Object to the property, on the left side
of a Set statement.
■Syntax: Set x.Order = Forml

Set mOrder = vData
End Property

Public Property Get Order() As Order
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Order

Set Order = mOrder
End Property

Public Property Let DATA(ByVal vData As String)
'used when assigning a value to the property, on the left side <
an assignment.

Option Explicit

'// Order

■local variable to hold collection
Private mCol As Collection
Private mild As Long "local copy
'local variable(s) to hold property value(s)
Private mCustomer As Customer 'local copy
'local variable(s) to hold property value(s)
Private mdatEntryDate As Date ■local copy
Private mlCarrierld As Long 'local copy
Private miOL_CNT As Integer 'local copy
Private mbAllLocal As Boolean 'local copy
■local variable(s) to hold property value(s)
Private msngTotal As Single ■local copy

Public Property Let Total(ByVal vData As Single)

146

■used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Total = 5

msngTotal = vData
End Property

Public Property Get Total() As Single
■used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Total

Total = msngTotal
End Property

Public Property Let AllLocal(ByVal vData As Boolean)
■used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.AllLocal = 5

mbAllLocal = vData
End Property

Public Property Get AllLocal() As Boolean
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.AllLocal

AllLocal = mbAllLocal
End Property

Public Property Let OL_CNT(ByVal vData As Integer)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.OL_CNT = 5

miOL_.CNT E vData
End Property

Public Property Get OL_CNT() As Integer
■used when retrieving value of a property, on the right side of
an assignment.
•Syntax: Debug.Print X.OL_CNT

OL_CNT = miOL_CNT
End Property

Public Property Let CarrierID(ByVal vData As Long)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.CarrierlD = 5

mlcarrierld = vData
End Property

Public Property Get CarrierlDO As Long
•used when retrieving value of a-property, on the right side of
an assignment.
■Syntax: Debug.Print X.CarrierlD

CarrierlD » mlcarrierld
End Property

Public Property Let EntryDatefByVal vData As Date)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.EntryDate = 5

mdatEntryDate = vData
End Property

Public Property Get EntryDate() As Date
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.EntryDate

EntryDate = mdatEntryDate
End Property

Public Property Set Customer(ByVal vData As Customer)
•used when assigning an Object to the property, on the left side
of a Set statement.
■Syntax: Set x.Customer = Forml

Set mCustomer = vData
'// Get the Id
If mild = 0 Then

mild = vData.District.NextOrderld
vData.District.Nextorderld = mild + 1

End If
End Property

Public Property Get Customer() As customer
•used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Customer

Set Customer = mCustomer
End Property

the left side of

Public Property Let Id(ByVal vData As Long)
'used when assigning a value to the property,
an assignment.
■Syntax: X.Id = 5

mild = vData
End Property

Public Property Get Id() As Long
'used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Id

Id = mild
End Property

Public Function OpenOLsfcn As ADODB.Connection, Optional
Withltems As Boolean = True, Optional WithStocklterns As Boolean =
False) As Boolean
Dim rstOrderLine As New ADODB.Recordset
Dim oOL As ThesisDO.OrderLine
Dim oltem As ThesisDO.Item
Dim oStockltem As ThesisDO.Stockltem

If mild a 0 Then Exit Function
If mCustomer Is Nothing Then Exit Function
If mCustomer.District Is Nothing Then Exit Function

With rstOrderLine
'// Open Order
.Open "Select * from Order_Line where OL_0_ID = • & mild & "

and OL_D_ID = • & mCustomer.District.Id & ■ and OL_W_ID=" &
mCustomer.District.Warehouse.Id, en, adOpenForwardOnly,
adLockReadOnly

Do While Not .EOF
Set oOL = CreateObjectfThesisDO.OrderLine")
oOL.Id = !OL_0__ID
oOL.Number = !OL_NUMBER
oOL.SupplyWId = !OL_SUPPLY_W_ID
OOL.Total = !OL_AMOUNT
oOL.Quantity = !OL_QUANTITY
If Withltems Then

Set oltem = CreateObject("ThesisDO.Item-)
oltem.OpenWith !OL_I_ID, en
Set oOL.Item = oltem

End If
If WithStocklterns And Withltems Then

Set ostockltem = CreateObjectCThesisDO.Stockltem-)
oStockltem.OpenWith oltem,

mCustomer.District.Warehouse, en
Set oOL.Stockltem = oStockltem

End If
Add oOL
Set oOL = Nothing
Set oltem = Nothing
Set oStockltem = Nothing
.HoveNext

Loop
End With

Set rstOrderLine = Nothing
OpenOLs = True

End Function

Public Function Add{objNewMember As ThesisDO.OrderLine, Optional
sKey As string) As OrderLine

Set objNewMember.Order = Me
objNewMember.Number = mCol.count + 1
msngTotal = msngTotal + objNewMember.Total

If Len(sKey) = 0 Then
mCol.Add objNewMember

Else
mCol.Add objNewMember, sKey

End If

'Set the dependent values
miOL_CNT = miOL_CNT + 1
mCustomer.Balance = mCustomer.Balance objNewMember.Total

■return the object created
Set Add = objNewMember

End Function

Public Property Get Item(vntIndexKey As Variant) As OrderLine
'used when referencing an element in the collection
'vntlndexKey contains either the Index or Key to the

collection,
'this is why it is declared as a Variant
'Syntax: Set foo = x.Item(xyz) or Set foo = x.Item(5)

Set Item = mCol(vntlndexKey)
End Property

Public Property Get Count() As Long
'used when retrieving the number of elements in the
'collection. Syntax: Debug.Print x.Count
Count = mCol.Count

End Property

Public Sub Remove(vntlndexKey As Variant)
■used when removing an element from the collection
■vntlndexKey contains either the Index or Key, which is why
■it is declared as a Variant
•Syntax: x.Remove(xyz)
mCol.Remove vntlndexKey

End Sub

Public Property Get NewEnumO As lUnknown
'this property allows you to enumerate
■this collection with the For...Each syntax
Set NewEnum = mCol.[_NewEnum)

End Property

Private Sub Class_Initialize()
■creates the collection when this class is created
Set mCol = New Collection
mild = 0

End Sub

Private Sub Class_Terminate()
'destroys collection when this class
Set mCol = Nothing

End Sub

is terminated

Public Function OpenWith(Id As Long, Cust As ThesisDO.Customer,
en As ADODB.Connection) As Variant
Dim rstOrder As New ADODB.Recordset

If Cust Is Nothing Then Exit Function

Set mCustomer = cust
With rstOrder

'// Open Order

.Open -Select 0_CARRIER_ID, 0_ENTRY_DATE from District_Order
where 0_ID = " & Id fc ' and 0_D_ID = ■ k Customer.District.Id t ■
and 0_W_ID=" & Customer.District.Warehouse.Id, en,
adOpenForwardOnly, adLockReadOnly

147

If -EOF Then Exit Function
mild = Id
If Not IsNull(!0_CARRIER_ID) Then mlCarrierld = !0_CARRIER_ID
mdatEntryDate = !0_ENTRY_DATE
.Close

End With

Set rstOrder = Nothing
OpenWith = True

End Function

Public Function OpenWithD(Id As Long, Dist As ThesisDO.District,
en As ADODB.Connection) As Variant
Dim rstOrder As New ADODB.Recordset
Dim Cust As ThesisDO.Customer

If Dist Is Nothing Then Exit Function

With rstOrder
■ '// Open Order
-Open 'Select 0_CARRIER_ID, 0_ENTRY_DATE, 0__C_ID from

District_order where 0_ID = " t id s ■ and o_D_ID = ■ & Dist.Id k
' and 0_W_ID=" & Dist.Warehouse.Id, en, adOpenForwardOnly,
adLockReadOnly

If .EOF Then Exit Function
mild = Id
Set Cust = CreateObjectCThesisDO.Customer")
If Not cust.OpenWith(!0_c_ID, Dist, en) Then Exit Function
Set mCustomer = Cust
If Not IsNulK!0_CARRIER_ID) Then mlCarrierld = !0_CARRIER_ID
mdatEntryDate = !0_ENTRY_DATE
If Not OpenOLsfcn, False) Then Exit Function

End With

Set rstOrder = Nothing
OpenWithD = True

End Function

Public Function Save(cn As ADODB.Connection) As Boolean
Dim rstOrder As New ADODB.Recordset

If mCustomer Is Nothing Then Exit Function

With rstOrder
.Open "Select * from District_Order where 0„ID = ■ & mild t ■

and 0_D_ID = • & mCustomer.District.Id & * and 0_W_ID=" &
mCustomer.District.Warehouse.Id, en, adOpenDynamic,
adLockPessimistic

If .EOF Then
.AddNew
!0_ID = mild
!0_C_ID = mCustomer.Id
!0_D_ID = mCustomer.District.Id
!0_W_ID = mCustomer.District.Warehouse.Id

End If
!0_ENTRY_DATE = mdatEntryDate
!0_ALL_LOCAL = 1
!0_OL_CNT = mCol.Count
If mlCarrierld > 0 Then !0_CARRIER_ID = mlCarrierld
.Update

End With

Set rstOrder = Nothing
Save = True
End Function

Option Explicit

'// Order Line

•local variable(s) to hold property value(s!
Private mltern As Item 'local copy
'local variable(s) to hold property valuefs!
Private miQuantity As Integer "local copy
■local variable(s) to hold property valuefs:
Private mStockltem As Stockltem 'local copy
Private mbBG As Boolean 'local copy
'local variable(s) to hold property value(s
Private mOrder As Order 'local copy
'local variable(s) to hold property valuefs
Private miNumber As Integer 'local copy
■local variable(s) to hold property valuets
Private msngTotal As Single 'local copy
'local variable(s) to hold property valuefs
Private mdatDeliveryDate As Date 'local copy
Private mlSupplyWId As Long 'local copy
Private mild As Long

Public Property Let IdtByVal vData As Long)
mild = vData

End Property

Public Property Get Id() As Long
Id = mild

End Property

Public Property Let SupplyWId(ByVal vData As Long)
'used when assigning a value to the property, on the left side o
an assignment.
'Syntax: X.SupplyWId = 5

mlSupplyWId = vData
End Property

Public Property Get SupplyWIdO As Long
"used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.SupplyWId

SupplyWId s mlSupplyWId
End Property

Public Property Let DeliveryDate(ByVal vData As Date)

'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.DeliveryDate = 5

mdatDeliveryDate = vData
End Property

Public Property Get DeliveryDate() As Date
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.DeliveryDate

DeliveryDate = mdatDeliveryDate
End Property

Public Property Let Total(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Total = 5

msngTotal = vData
End Property

Public Property Get Total{) As Single
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Total

Total = msngTotal
End Property

Public Property Let Number(ByVal vData As Integer)
■used when assigning a value to the property, on the left side of
an assignment,
"Syntax: X.Number = 5

miNumber = vData
End Property

Public Property Get Number!) As Integer
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax.- Debug.Print X.Number

Number = miNumber
End Property

Public Property Set Order(ByVal vData As Order)
'used when assigning an Object to the property, on the left side
of a Set statement.
'Syntax: Set x.Order = Forml

Set mOrder = vData
End Property

Public Property Get Ordert) As Order
■used when retrieving value of a property, on the right side of
an assignment.
■Syntax: Debug.Print X.Order

Set Order = mOrder
End Property

Private Sub CheckBGO
'// Check for B/G

mbBG = False
If mltem Is Nothing Then Exit Sub
If mStockltem Is Nothing Then Exit Sub

If InStr(mItem.DATA, "ORIGINAL") > 0 Then
If InStrtmStockltem.DATA, "ORIGINAL") > 0 Then

mbBG = True
End If

End If

End Sub

Public Function Savefcn As ADODB.Connection) As Boolean
Dim rstOrderLine As New ADODB.Recordset

If mStockltem Is Nothing Then Exit Function
If mltem Is Nothing Then Exit Function
If mOrder Is Nothing Then Exit Function

With rstOrderLine
.Open "Select * from Order_Line where OL_0_ID = " & mOrder.Id

& " and OL_D_ID=" & mOrder.Customer.District.Id & * and OL_W_ID="
& mOrder.Customer-District.Warehouse.Id & ■ and OL_NUMBER=" &
miNumber, en, adOpenDynamic, adLockPessimistic

If -EOF Then
.AddNew

End If

■// Update Order Line
!OL_0_ID = mOrder.Id
!OL_D_ID = mOrder.Customer.District.Id
!OL_W_ID = mOrder.Customer.District.Warehouse.Id
!OL_NUMBER = miNumber
!OL_I_ID = mltem.Id
!OL_SUPPLY_W_ID = mOrder.Customer.District.Warehouse.Id
!OL_AMOUNT = msngTotal
! OL__QUANTITY = miQuantity
!OL_DIST_INFO =

mStockltem.DistInfo(mOrder.Customer.District.Id)
If mdatDeliveryDate > 0 Then

!OL_DELIVERY_DATE = mdatDeliveryDate
End If
.Update
'// Save Stock
Save = mStockltem.Save(cn)

End With

Set rstOrderLine = Nothing
Save = True

End Function

Public Property Get BG() As Boolean
■used when retrieving value of a property, on the right side of
an assignment.

148

■Syntax: Debug.Print X.BG
BG = mbBG

End Property

Public Property Set StockltemfByval vData As Stockltem)
'used when assigning an Object to the property, on the left side
of a Set statement.
'Syntax: Set X.Stockltem = Forml

Set mStockltem = vData
CheckBG

End Property

Public Property Get StockItem() As stockltem
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Stockltem

Set Stockltem = mStockltem
End Property

Public Property Let Quantity(ByVal vData As Integer)
•used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Quantity = 5

miQuantity = vData
If mltem Is Nothing Then Exit Property
msngTotal = mltem.Price * miQuantity

End Property

Public Property Get Quantity!) As Integer
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Quantity

Quantity = miQuantity
End Property

Public Property Set Item(ByVal vData As Item)
'used when assigning an Object to the property, on the left side
of a Set statement.
'Syntax: Set x.Item = Forml

Set mltem = vData
CheckBG
msngTotal = mltem.Price * miQuantity

End Property

Public Property Get ItemO As Item
'used when retrieving value of a property,
an assignment.
'Syntax: Debug.Print X.Item

Set Item = mltem
End Property

Private Sub Class_Initialize()
mdatDeliveryDate = 0

the right side of

Option Explicit

'// Stock Item

'local variable(s) to hold property value(s)
Private msData As String 'local copy
Private miQuantity As Integer 'local copy
Private mWarehouse As Warehouse 'local copy
Private msngYTD As Single 'local copy
Private miOrder_CNT As Integer 'local copy
Private mltem As Item "local copy
Private msDistOl As String
Private msDist02 As String
Private msDist03 As String
Private msDist04 As string
Private msDistOS As String
Private msDist06 As String
Private msDist07 As String
Private msDistOS As String
Private msDist09 As String
Private msDistlO As string

Public Property Get Distlnfo(District As Integer) As String
Select Case District

Distlnfo = msDistOl
Distlnfo = msDist02
Distlnfo = msDist03
Distlnfo = msDist04
Distlnfo = msDistOS
Distlnfo = msDistOS
Distlnfo = msDist07
Distlnfo = msDistOS
Distlnfo = msDist09
Distlnfo = msDistlO

Case 1:
Case 2:
Case 3:
Case 4:
Case 5:
Case 6:
Case 7:
Case 8:
Case 9:
Case 10:

End Select
End Property

Public Property Set Item(ByVal vData As Item)
'used when assigning an Object to the property, on the left, side
of a Set statement.
■Syntax: Set x.Item = Forml

Set mltem = vData
End Property

Public Property Get ItemO As Item
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Item

Set Item = mltem
End Property

Public Property Let Order_CNT(ByVal vData As Integer)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Order_CNT = 5

miOrder_CNT = vData
End Property

Public Property Get Order_CNT() As Integer
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Order_CKT

0rder_CNT = miorder_CNT
End Property

Public Property Let YTD(ByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.YTD = 5

msngYTD = vData
End Property

Public Property Get YTD() As Single
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.YTD

YTD = msngYTD
End Property

Public Property Get Warehouse() As District
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.District

Set Warehouse = mWarehouse
End Property

Public Property Let Quantity(ByVal vData As Integer)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Quantity = 5

miQuantity = vData
End Property

Public Property Get Quantity{) As Integer
'used when retrieving value of a property, on the right side of
an assignment.
•Syntax: Debug.Print X.Quantity

Quantity = miQuantity
End Property

Public Property Let DATA(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Data = 5

msData = vData
End Property

Public Property Get DATAf) As String
'used when retrieving value of a property, on the right side of
an assignment.
•Syntax: Debug.Print X.Data

DATA = msData
End Property

I) As Boolean Public Function Save(cn As ADODB.Connectio
Dim rststock As New ADODB.Recordset

If mWarehouse Is Nothing Then Exit Function

With rststock
.Open -Select S_QUANTITY, S_YTD, S_ORDER_CNT from Stock

where S_I_ID = " k mltem.Id k " and S_W_ID=" k mWarehouse.Id,
adOpenDynamic, adLockPessimistic

If -EOF Then Exit Function
!S_QUANTITY = miQuantity
!S_YTD = msngYTD
!S_ORDER_CNT = miOrder_CNT
•Update

End With

Set rststock = Nothing
Save = True

End Function
Public Function OpenWith(Item As ThesisDO.Item, Warehouse As
ThesisDO.Warehouse, en As ADODB.Connection) As Variant
Dim rststock As New ADODB.Recordset

Set mWarehouse = Warehouse
If mWarehouse Is Nothing Then Exit Function
If Item Is Nothing Then Exit Function
Set mltem = Item

With rststock
.Open "Select * from Stock where S_I_ID = ' k Item.Id k ■ and
S_W_ID=" k mWarehouse.Id, en, adOpenForwardOnly, adLockReadOnly
If Not .EOF Then

miQuantity = !S_QUANTITY
msDistOl = !S_DIST_01
msDist02 = !S_DIST_02
msDist03 = !S_DIST_03
msDist04 = !S_DIST__04
msDist05 = !S_DIST_05
msDist06 = !S_DIST_06
msDist07 = !S_DIST_07
msDistOS = !S„DIST„08
msDist09 = !S_DIST_09
msDistlO = !S_DIST_I0
msngYTD = !S_YTD
miOrder_CNT = !S_ORDER_CNT
msData = !S_DATA

End If
End With
OpenWith = True
End Function

Option Explicit

'// Warehouse

149

Private mild As Long 'local copy
'local variable(s) to hold propGrty value(s)
Private msngTax As Single 'local copy
'local variable(s) to hold property value(s)
Private rasStreetl As String 'local copy
Private msStreet2 As String 'local copy
Private mscity As String 'local copy
Private msState As String 'local copy
Private msZIP As String ■local copy
Private msName As string
Private msngYTD As Single

Public Property Get YTD{) As Single
YTD = msngYTD

End Property

Public Property Let YTDfsngVal As Single)
msngYTD = sngval

End Property

Public Property Let Name(s As String)
msName = s

End Property

Public Property Get Named As String
Name = msName

End Property

Public Property Let ZIP(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.ZIP = 5

msZIP = vData
End Property

Public Property Get ZIP<) As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.ZIP

ZIP = msZIP
End Property

Public Property Let State(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.State = 5

msState = vData
End Property

Public Property Get State{) As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.State

State = msState /
End Property

Public Property Let City(ByVal vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.City = 5

mscity = vData
End Property

Public Property Get CityO As string
'used when retrieving value of a property,
an assignment.
■Syntax: Debug.Print X.City

City = mscity
End Property

Public Property Let Street2(ByVal vData As String)
'used when assigning a value to the property, on the left side of
an assignment.
■Syntax: X.Street2 = 5

msStreet2 = vData
End Property

Public Property Get Street2(> As String
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Street2

Street2 = msstreet2
End Property

the right side of

Public Property Let Streetl(ByVal vData As String)
■used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Streetl = 5

msstreetl = vData
End Property

Public Property Get Streetl() As String
■used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Streetl

Streetl = msStreetl
End Property

Public Property Let TaxfByVal vData As Single)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Tax = 5

msngTax = vData
End Property

Public Property Get Tax() As single
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Tax

Tax = msngTax
End Property

Public Property Let Id(ByVal vData As Long)
'used when assigning a value to the property, on the left side of
an assignment.
'Syntax: X.Id = 5

mild = vData
End Property

Public Property Get Id() As Long
'used when retrieving value of a property, on the right side of
an assignment.
'Syntax: Debug.Print X.Id

Id = mild
End Property

Public Function OpenWith(W_ID As Long, en As ADODB.Connection) As
Variant
Dim rstWarehouse As New ADODB.Recordset

If W_ID • 0 Then Exit Function

With rstWarehouse
-Open "Select * from Warehouse where W_ID = " & W_ID, en,
adOpenForwardOnly, adLockReadOnly
If Not .EOF Then

mild = W_ID
msStreetl = !W_STREET_1
msStreet2 = !W_STREET_2
mscity = !W_CITY
msZIP = JW_ZIP
msstate = !W_STATE
msngTax = !W_TAX
msName = !W_NAME
msngYTD = !W_YTD
OpenWith = True

End If
End With
End Function

Public Function Save(cn As ADODB.Connection) As Boolean
Dim rstWarehouse As New ADODB.Recordset

With rstWarehouse
.Open "Select * from Warehouse where W_ID = • & mild, en,
adOpenDynamic, adLockPessimistic
If Not .EOF Then

!W_YTD = msngYTD
.Update

End If
.Close
End With
Save = True
End Function

150

4. N-tier Business Objects
Option Explicit

'// Transaction

Dim mcnThesis As ADODB.Connection
Dim msResult As String
Dim mDelivery As New ThesisQP.DeliveryRcv

Public Function isOkt) As Boolean
IsOk = True

End Function

Public Function GetStockLevelfByVal W_ID As Long, ByVal D_ID As
Long, ByVal Threshold As Integer, sResult As String) As Boolean
On Error GoTo GSError
Dim bTransaction As Boolean
Dim rstStockLevel As New ADODB.Recordset
Dim sSql As String
Dim iStocJcLevel As Integer
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObjectfThesisDO.District")

mcnThesis.Open

'// Warehouse
oWarehouse.Id = W_ID

'// District
Set oDistrict.Warehouse = oWarehouse
oDistrict.OpenWith D„ID, oWarehouse, mcnThesis

sSql = 'SELECT COUNTf) as Low_Stock FROM Order_Line INNER JOIN
Stock ON "
sSql = sSql & "Order_Line.OL_I_ID = Stock.S„I_ID And
Order_Line.OL„SUPPLY_W_ID = "
sSql = sSql & -Stock.S_W_ID WHERE OL_D_ID =" s, oDistrict.Id s. *
AND OL_W„ID = "
sSql = sSql & oDistrict.Warehouse.Id & ■ AND OL_0_ID > ■ &
oDistrict.NextOrderld - 21
SSql = sSql k " AND " i "S_QUANTITY < " & Threshold

With rstStockLevel
.Open sSql, mcnThesis, adOpenForwardOnly, adLockReadOnly
iStockLevel = !Low_Stock
End With
mcnThesis.Close

msResult a ■■
PrintResult "Stock-Level", 32, , True
PrintResult "Warehouse: " & Format(W_ID, "0000")
PrintResult "District: ■ & FormatfoDistrict.Id, "00"), 3, , True
PrintResult "", , , True
PrintResult "Stock Level Threshold: " £. Format(Threshold, "00"),
, , True
PrintResult *■, , , True
PrintResult "Low stock: " & Format(iStockLevel, "00"), , , True
PrintResult "", , , True

sResult = msResult
GetStockLevel = True

GSFim:
Exit Function

GSAbort:
mcnThesis.Close
GoTo GSFim

GSError:
MsgBox Error, vbCritical
Resume GSFim

End Function

Public Function GetMaxOrder(ByVal W_ID As Long, ByVal D__ID As
Long, ByVal C_LAST As String, sResult As String) As Boolean
On Error GoTo GMError
Dim bTransaction As Boolean
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oMaxOrder As ThesisDO.Order
Dim oltem As ThesisDO.Item
Dim oOrderLine As ThesisDO.OrderLine
Dim rstOrder As New ADODB.Recordset
Dim IMaxId As Long

Set oWarehouse = CreateObject("ThesisDO.Warehouse"}
Set oDistrict = CreateObjectfThesisDO.District")
Set oCustomer = CreateObject("ThesisDO.Customer")
Set oMaxOrder = CreateObject("ThesisDO.Order")

mcnThes i s.Open

'// Warehouse
oWarehouse.Id = W_ID

*// District
Set oDistrict.Warehouse = oWarehouse
oDistrict.Id = D_ID

'// Customer
oCustomer.OpenWithLast C_LAST, oDistrict, mcnThesis

With rstOrder
'// Get Maximum Order
.Open "Select Max(0_ID) as MaxOlD from District_Order where

0_D_ID = " L oCustomer.District.Id & ■ and 0_W_ID=" &
oCustomer.District.Warehouse.Id, mcnThesis, adOpenForwardOnly,
adLockReadOnly

If .EOF Then GoTo GMAbort
IMaxId = JMaxOID

End With

'// Open Order
If Not oMaxOrder.OpenWith(IMaxId, oCustomer, mcnThesis) Then GoTo
GMAbort

'// Open Order Lines
oMaxOrder.OpenOLs mcnThesis
mcnThesis.Close

'// Print Results
msResult = ""
PrintResult "Order-Status
PrintResult "Warehouse: "
PrintResult "District:
PrintResult "Customer:
With oCustomer
PrintResult .First, 3, 16
PrintResult .Middle, 1
PrintResult .Last, 1, IS

33, , True
& Format(W_ID, "0000")

& Format(oDistrict.Id, '
& Format(oCustomer.Id,

00"), 3,
"0000")

True
Cust-Balance: ■
S" & Format(.Balance,
", , , True

PrintResult
PrintResult
PrintResult
End With
With oMaxOrder
PrintResult "Order-Number:
PrintResult "Entry-Date: "
hh:mm:ss"), 3
PrintResult "Carrier-Number: ■, 2
If Not IsNull(.CarrierlD) Then

PrintResult Format(.carrierlD
Else

PrintResult "NULL", , , True
End If
PrintResult "Supp_W"
PrintResult "Item_Id", 7
PrintResult "Qty", 4
PrintResult "Amount", 5

"000000000.00"),

" t Format(.Id, "00000000")
& Format(-EntryDate, "dd-mm-yyyy

True PrintResult "Delivery-Date"
End With
For Each oOrderLine In oMaxOrder

With oOrderLine
PrintResult Format(.SupplyWId, "0000"), 1
PrintResult Format(.Item.Id, "000000"), 8
PrintResult Format(.Quantity, "00"), 5
PrintResult Format(.Total, "$00000.00"), 5
If .DeliveryDate = 0 Then

PrintResult "NULL", 6, , True
Else

PrintResult Format(.DeliveryDate, "dd-mm-yyyy"),
True

End If
End With

sResult = msResult
GetMaxOrder = True

GMFim:
Exit Function

GMAbort:
mcnThesis.close
GoTo GMFim

GMError:
MsgBox Error, vbCritical
Resume GMFim

End Function

Public Function Payment(ByVal W_ID As Long, ByVal D_ID As Long,
ByVal C_LAST As String, ByVal Amount As Single, sResult As
String) As Boolean
On Error GoTo PAError
Dim bTransaction As Boolean
Dim sAux As string
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oHistory As ThesisDO.History

Payment = False

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObjectfThesisDO. District")
Set oCustomer = CreateObject("ThesisDO.Customer")
Set oHistory = CreateObject("ThesisDO.History")

mcnThesis.open
mcnThes i s.BeginTrans
bTransaction = True

'// Warehouse
oWarehouse.OpenWith W_ID, mcnThesis

'// District

151

oDistrict.OpenWith D_ID, oWarehouse, mcnThesis

'// Customer
oCustomer.OpenWithLast C_LAST, oDistrict, mcnThesis

With oCustomer
'// Check Customer Credit and update data if necessary
If .Credit = "BC" Then

sAux = 'Entry: ■ k .Id & ■, • k .District.Id & •; "
.District.Warehouse.Id

sAux = sAux k "; " & .District.Id & ■; ■ &
-District.Warehouse.Id k ■; ■

sAux = sAux k Amount i ". *
If Len(.Data) - Len(sAux) > 500 Then

.Data = sAux k Left(.Data, 500 - Len(sAux))
Else

.Data = sAux & .Data
End If
If Not oCustomer.Save(mcnThesis) Then GoTo PAAbort

End If
End With

'// Save History
oHistory.Amount = Amount
oHistory.EntryDate = Date
Set oHistory.Customer = oCustomer
Set oHistory.District = oCustomer-District
oHistory.Data = oCustomer.District.Warehouse.Name k "
oCustomer.District.Name
If Not oHistory.Save(mcnThesis) Then GoTo PAAbort

'// Save Warehouse
If Not oWarehouse.Save(mcnThesis) Then GoTo PAAbort

'// Save District
If Not oDistrict.Save(mcnThesis) Then GoTo PAAbort

'// Save Customer
If Not oCustomer.Save(mcnThesis) Then GoTo PAAbort

mcnThesi s.Commi tTrans
bTransaction = False
mcnThesis.Close

33, , True
Format(Time, |-yyyy hh:mm:SS"),

Gt Format(W_ID, '0000")
Format(oDistrict.Id, "00"), 25, , True

k Right(oDistrict.ZIP,

msResult = •■
PrintResult "Payment
PrintResult "Date: "
True
PrintResult "", , , True
PrintResult 'Warehouse:
PrintResult 'District: ■
PrintResult oWarehouse.Streetl
PrintResult oDistrict.Streetl, 20, 20, True
PrintResult oWarehouse.Street2, , 20
PrintResult oDistrict.Street2, 20, 20, True
PrintResult oWarehouse.City, , 20
PrintResult oWarehouse.State, 1
PrintResult Left(oWarehouse.ZIP, 5) & "-■ k Right(oWarehouse.ZIP,
4), 1
PrintResult oDistrict.City, 6, 20
PrintResult oDistrict.state, 1
PrintResult Left(oDistrict.ZIP, 5)
3), 1, , True
PrintResult "", , , True
PrintResult "Customer: " & Format(oCustomer.Id, "0000'),
True
PrintResult 'Name:
With oCustomer
PrintResult .First, , 16
PrintResult
PrintResult
PrintResult "Since: * & Format(.Since, ■dd-mm-yyyy"), 5, , True
PrintResult
PrintResult
PrintResult
PrintResult "%Disc: " k Format(.Discount * 100, "00.00"), 21,
True
PrintResult -City, a, 20
PrintResult .State, 1
PrintResult Left(.ZIP, 5) k ■-■ k Right(.ZIP, 3), 1
PrintResult "Phone: ■ & Left(.Phone, 6) k "-" k Mid(.Phone, 7,
3) k "-" & Hid(.Phone, 10, 3) k "-" k Right(.Phone, 4), 8, , True
PrintResult "■, , , True
PrintResult "Amount Paid:"
PrintResult Format(Amount, "$0000.00"), 10
PrintResult "New Cust-Balance:", 6

$" k Format(.Balance - Amount, "000000000.00"), 1, ,

.Middle, 1

.Last, 1, 16
"Since: * & Format (.Since, ■dd-mm-yyyy"), 5,
.Streetl, e, 20
•Credit: • k .Credit, 21, , True
.Street2, e, 20
■%Disc: " k Format(.Discount * 100, "00.00")

PrintResult
True
PrintResult
PrintResult
PrintResult

"Credit Limit:"
"$" & Format).Limit,
"", , , True

"000000000.00"), 4,

If .Credit = -BC" Then
PrintResult "Cust-Data:"
PrintResult Left(.Data, 50), 1,
PrintResult Mid(.Data, 51, 50),
PrintResult Mid(.Data, 101, 50)
PrintResult Mid(.Data, 151, 50)
PrintResult "•, , , True

End If
End With

sResult = msResult
Payment = True

PAFim:
Exit Function

PAAbort:
If bTransaction Then

bTransaction = False
mcnThes i s.Ro1IbackTrans

End If
mcnThesis.Close

, True
11, , True
11, , True
11, , True

GoTo PAFim

PAError:
If bTransaction Then

bTransaction = False
mcnThesis.RollbackTrans

End If
MsgBox Error, vbCritical
Resume 'PAFim

End Function

Public Function NewOrder(ByVal W_ID As Long, ByVal D_ID As Long,
Byval C_ID As Long, ByVal OrderCnt As Integer, ByVal Items As
Variant, ByVal Qtys As Variant, sResult As String) As Boolean
On Error GoTo NOError

Dim bTransaction As Boolean
Dim i As Integer
Dim Itemf) As Long
Dim Qty() As Long

Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oStock As ThesisDO.Stockltem
Dim oNewOrder As ThesisDO.NewOrder
Dim oOrder As ThesisDO.Order
Dim oltem As ThesisDO.Item
Dim oOrderLine As ThesisDO.OrderLine

NewOrder = False

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObject("ThesisDO.District")
Set oCustomer = CreateObject("ThesisDO.Customer")
Set oStock = CreateObject("ThesisDO.Stockltem")
Set oNewOrder = CreateObject("ThesisDO.NewOrder")
Set oOrder = CreateObject("ThesisDO.Order")

mcnThes is.Open
mcnThes is.BeginTrans
bTransaction = True

'// Warehouse
oWarehouse.OpenWith W_ID, mcnThesis

'// District
oDistrict.OpenWith D_ID, oWarehouse, mcnThesis

'// Customer
oCustomer.OpenWith C_ID, oDistrict, mcnThesis

■// Order
Set oOrder.Customer = oCustomer

'// Order Lines
ReDim Itern(1 To OrderCnt)
ReDim Qty(l To OrderCnt)
Item = Items
Qty = Qtys

'// Generate
msResult = ■'
PrintResult '
PrintResult '
PrintResult '
PrintResult '
True
PrintResult '
PrintResult ■
PrintResult '
PrintResult '
"00.00"), 3,
PrintResult '
PrintResult '
PrintResult '
PrintResult ■
, True
PrintResult ■
PrintResult ■
PrintResult ■
PrintResult ■
PrintResult '
PrintResult *
PrintResult *
PrintResult ■
PrintResult ■

Results

New Order", 33, , True
Warehouse: " k Format(W_ID,
District: " & Format(D_ID,
Date: " & Format (Time, "dd-:

■0000-)
00"), 3
nn-yyyy hh:tnm:ss") ,

'Customer: " & Format(oCustomer.Id, "0000")
Name: " k Left(oCustomer.Last, 16), 3, 21
Credit: " k oCustomer.Credit, 3
%Disc: " £. Format (oCustomer.Discount * 100,
, True
Order Number: ■ & Format(oOrder-Id, "00000000")
Number of Lines: " k Format(OrderCnt, "00"), 2
W_tax: " k FormatfoWarehouse.Tax * 100, "00.00"),
D_tax: " k Format(oDistrict.Tax * 100, "00.00"),

", , , True
Supp_W", 1
Item_Id", 2
Item_Name■, 2
Qty*, 16
Stock", 2
B/G", 2
Price", 2
Amount", 4, , True

For i = 1 To OrderCnt
Set oltem = CreateObject("ThesisDO.Item")
oltem.OpenWith Item(i), mcnThesis

'// Order Line
Set oOrderLine = CreateObject{"ThesisDO.OrderLine")
With oOrderLine
Set .Item = oltem
.Quantity = Qty(i)

'// Update Stock
oStock.OpenWith .Item, oOrder.Customer-District.Warehouse

mcnThesis
Set .Stockltem = oStock
If oStock.Quantity > .Quantity + 10 Then

oStock.Quantity = oStock.Quantity - .Quantity
Else

oStock.Quantity = oStock.Quantity + 91
End If
oStock.YTD = oStock.YTD + .Quantity
oStock.Order_CNT = oStock.Order_CNT + 1

oOrder.Add oOrderLine

152

PrintResult Format(W_ID, "0000"), 2
PrintResult Format(.Item.Id, -000000"), 3
PrintResult Left(.Item.Name, 23), 3, 23
PrintResult Format(.Quantity, '00"), 2
PrintResult Format(.Stockltem.Quantity, "000"), 4
PrintResult Ilff.BG, -B", "G"), 4
PrintResult Format(.Item.Price, '$000.00'), 3
PrintResult Formatf.Item.Price * .Quantity, "$000.00"),

Set oOrderLine = Nothing
Set oltem = Nothing
End With

Next

With oOrder
'// Save District
If Not -Customer.District.Save(mcnThesis) Then GoTo NOAbort

.EntryDate = Format(Date, "mm/dd/yyyy")

.AllLocal = True
'// Save Customer

If Not .Customer.Save(mcnThesis) Then GoTo NOAbort
'// Save order
If Not .Save(mcnThesis) Then GoTo NOAbort
'// Save New Order
Set oNewOrder.Order = oOrder

If Not oNewOrder.Save(mcnThesis) Then GoTo NOAbort
End With

For i = 1 To OrderCnt
'// Update OrderLine
If Not oOrder(i).Save(mcnThesis) Then GoTo NOAbort

Next

PrintResult "Execution Status: Ok"
PrintResult "Total: ■ k Format(oOrder.Total, '$0000.00"), 11,
True

60: mcnThesis.CommitTrans
bTransaction = False
mcnThesis.Close
NewOrder = True •

sResult = msResult

NOFim:
Exit Function

NOAbort:
If bTransaction Then

bTransaction = False
mcnThesis.RolIbackTrans

End If
GoTo NOFim

NOError:
If bTransaction Then

bTransaction = False
mcnThesis.RolIbackTrans

End If
MsgBox Erl & ':• & Err.Number & '
vbcritical
Resume NOFim

End Function

' k Err.Description,

Private Sub Class_lnitialize()
Dim sConnection As String
Set mcnThesis = CreateObjectCADODB.Connection")
sConnection = "Provider=SQLOLEDB.l;Integrated
Security=SSPI;Persist Security Info=False; ■
sConnection = sConnection k "User ID=sa;Initial
Catalog=Thesis;Data Source=abcnt09a,-"
sConnection = sConnection k "Locale Identif ier=1046,-Connect
Timeout=15,-Use Procedure for Prepare=l;"
sConnection = sConnection k "Auto Translate=True;Packet
Size=4096;Workstation ID=ALEXANDRENT"
mcnThesis.ConnectionString = sConnection
mDelivery.Start
End Sub
Private Sub PrintResult(sText, Optional iSpaces As Integer = 0,
Optional SizeToFit As Integer = 0, Optional bLineFeed As Boolean
= False)
Static bOldLine As Boolean

If Not bOldLine Then
iSpaces = "iSpaces + 1
bOldLine = True

End If
msResult = msResult k Space(iSpaces)
msResult = msResult & sText
If SizeToFit > 0 Then

If Len(sText) < SizeToFit Then
msResult = msResult k SpacefSizeToFit - Len(sText))

End If
End If
If bLineFeed Then

msResult = msResult & vbCrLf
bOldLine = False

End If
End Sub

option Explicit

' // Gen Rand

Public Function Randomfx As Long, y As Long) As Long
Randomize
Random = Int(Rnd() * (y - x)) + x
End Function

Public Function NURandfA As Long, x As Long, y As Long) As Long
Dim C As Long

C = A / 2
NURand = (((Random(0, A) Or Random(x, y)) * c) Mod (y - x + U)
x
End Function

Public Function GenerateStr(iLen As Long) As String
Dim i As Long
Dim sAux As String
Dim cAux As String

For i = 1 To iLen
cAux = Chr(Int(58 * Rnd) + 32)
sAux = sAux fc cAux

Next
GenerateStr = sAux
End Function

Option Explicit

'// LastNameGen

Private LNSyllableslO To 9) As String

Private Sub Class_Initialize()
LNSyllables(O) = "BAH"
LNSyllables(l) = "OUGHT"
LNSyllables(2) = "ABLE"
LNSyllablesO) = 'PRI'
LNSyllables(4) = -PRES"
LNSyllables(5) = -ESE'
LNSyllables(6) = "ANTI"
LNSyllables(7) = "CALLY"
LNSyllables(S) = "ATION"
LNSyllablesO) = "EING"
End sub

Public Function GenerateLastNameStr(sCode As String) As String
Dim iIndex As Long
Dim sAux As string

sCode = Trim(scode)
If LentsCode) < 3 Then

sCode = Space(3 - Len(sCode)) k sCode
End If
ilndex = Val(RightfsCode, 1))
sAux = LNSyllables(ilndex)
If Len(sCode) = 2 Then

ilndex = Val(Left(sCode, 1))
sAux = LNSyllables(ilndex) i sAux

Elself Len(sCode) > 2 Then
ilndex = Val(Mid(sCode, 2, 1))
sAux = LNSyllables(ilndex) & sAux
ilndex = Val(LeftfsCode, 1))
sAux = LNSyllables(ilndex) & sAux

End If
GenerateLastNameStr = sAux

End Function

Option Explicit

'// DeliveryRcv

Private WithEvents EventThesis As MSMQEvent
Dim mQueue As MSMQQueue
Dim mcnThesis As ADODB.Connection

Public Function Start() As Boolean
Dim MQInfo As New MSMQQueuelnfo
Dim sConnection As String

Set mcnThesis = CreateObjectf"ADODB.Connection")
sConnection = "Provider=SQLOLEDB.1;Integrated

Security=SSPI,-Persist Security Info=False,- "
sConnection = sConnection k "User ID=sa;Initial

Catalog=Thesis,-Data Source=abcnt09a,- -
sConnection = sConnection k -Locale Identifier=1046;Connect

Timeout=15;Use Procedure for Prepare=l;-
sConnection = sConnection k "Auto Translate=True;Packet

Size=4096;Workstation ID=ALEXANDRENT*
mcnThesis.ConnectionString = sConnection

Set EventThesis = New MSMQEvent
MQInfo.PathName = "abcnt06b\thesis"
Set mQueue = MQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
mQueue.EnableNotification EventThesis

End Function

Private Sub EventThesis_Arrived(ByVal Queue As Object, ByVal
Cursor As Long)
On Error GoTo ArrError

Dim msgResp As MSMQMessage
Dim W_ID As Long
Dim CARRIER_ID As Long
Dim D_ID As Long
Dim 0_ID As Long
Dim rstNewOrder As New ADODB.Recordset
Dim oOrder As ThesisDO.Order
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oOL As ThesisDO.OrderLine
Dim fTransaction As Boolean

mcnThesis.Open
Set msgResp = mQueue.Receive
W_ID = Val(Left(msgResp.Body, 2))
CARRIER_ID = Val(Right(msgResp.Body, 2))
For D_ID = 1 To 10

With rstNewOrder
0_ID = 0

153

.Open -Select Min(NO_0__ID) as o_ID from New_Order where
NO_W_ID = * & W_ID & " and NO_D__ID = ■ & D_ID, mcnThesis,
adOpenForwardOnly, adLockReadOnly

If Not .EOF Then
If Not IsNull(!0_ID) Then 0_ID = !0_ID

End If
.Close
End With
If 0_ID > 0 Then

mcnThesis.BeginTrans
fTransaction = True

Set oOrder = CreateObject("ThesisDO.Order")
Set oDistrict = CreateObjectfThesisDO.District'}
Set oWarehouse = CreateObject("ThesisDO.Warehouse")

'// Set Warehouse
oWarehouse.Id = W_ID

'// Set District
oDistrict.Id = D_ID
Set oDistrict.Warehouse = oWarehouse

'// Open Order
If Not oOrder.OpenWithD(0_lD, oDistrict, mcnThesis)

Then GoTo ArrFail

'// Update order
oOrder.CarrierlD = CARRIER_ID
oOrder.Save mcnThesis

'// Update Customer
oOrder.Customer.Balance = oOrder.Customer.Balance -

oOrder.Total
oOrder.Customer-Delivery_CNT =

oOrder.Customer.Delivery_CNT + 1
oOrder.Customer.Save mcnThesis

For Each oOL In oOrder
'// Update Order Line
oOL.DeliveryDate = Date
oOL.Save mcnThesis

Next

'// Delete New Order
mcnThesis.Execute -Delete New_Order where NO_0_ID = ■

& 0_ID & " and NO_D_ID =■ & D_ID & ■ and NO_W_ID = ■ t W_ID

mcnThes i s.Commi tTrans
fTransaction = False-

End If

Set oOrder = Nothing
Set oDistrict = Nothing
Set oWarehouse = Nothing

Next

ArrFim:
mcnThesis.Close
mQueue.EnableNotification EventThesis
Exit Sub

ArrFail:

If fTransaction Then mcnThesis.RollbackTrans
GoTo ArrFim

ArrError:
MsgBox Err.Description, vbCritical
Resume ArrFail

154

5. N-tier Business Objects (MTS)
Option Explicit

'// Transactions (MTS)

Dim msResult As String
Dim mDelivery As ThesisQPMTS.DeliveryRcv
Dim miCounter As Integer
Dim miClients As Integer

Private Enum MyErrors
GeneralError = vbObjectError
NewOrderErr

End Enum

Public Property Get Counter() As Integer
Counter = miCounter

End Property

Public Property Get Clients!) As Integer
Clients = miClients

End Property

Public Function IsOk() As Boolean
IsOk = True

End Function

Public Function GetStockLevel(ByVal W_ID As Long, ByVal D_ID As
Long, ByVal Threshold As Integer, sResult As String) As Boolean
On Error GoTo GSError
Dim bTransaction As Boolean
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObject("ThesisDO.District")

'// Warehouse
oWarehouse.Id = W_ID

'// District
Set oDistrict.Warehouse = oWarehouse
oDistrict.OpenWith D_ID, oWarehouse

msResult = •■
PrintResult "Stock-Level", 32, , True
PrintResult "Warehouse: ■ Et Format(W_ID, "0000")
PrintResult "District: " & Format(oDistrict.Id, "00"), 3, , True
PrintResult ■■, , , True
PrintResult "Stock Level Threshold; " & Format(Threshold, "00"),
, , True
PrintResult "■, , , True
PrintResult "Low Stock: ■ & Format(oDistrict.LowStock(Threshold),
"00"), , , True
PrintResult ■•, , , True

sResult = msResult
GetStockLevel = True

GSFim:
Exit Function

GSAbort:
■mcnThesis.Close
GoTo GSFim

GSError:
MsgBox Error, vbCritical
Resume GSFim

End Function

Public Function GetMaxOrder(ByVal W_ID As Long, ByVal D_ID As
Long, ByVal C_LAST As String, sResult As String) As Boolean
On Error GoTo GMError
Dim bTransaction As Boolean
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oMaxOrder As ThesisDO.Order
Dim oltem As ThesisDO.Item
Dim oOrderLine As ThesisDO.OrderLine
Dim rstOrder As New ADODB.Recordset
Dim IMaxId As Long

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObject("ThesisDO.District")
Set oCustomer = CreateObjectfThesisDO.Customer")
Set oMaxOrder = CreateObject("ThesisDO.Order")

'mcnThes i s.Open

'// Warehouse
oWarehouse.Id = W_ID

'// District
Set oDistrict.Warehouse = oWarehouse
oDistrict.Id = D_ID

'// Customer
oCustomer.OpenWithLast C_LAST, oDistrict

'// Open Order
If Not oMax0rder.OpenWith(0, oCustomer) Then GoTo GMAbort

oMaxOrder.OpenOLs
'mcnThesis.Close

'// Print Results
msResult = ""
PrintResult "Order-Status", 33, , True
PrintResult "Warehouse: " k Format(W_ID, "0000")
PrintResult "District: " k Format(oDistrict.Id, "00"), 3,
PrintResult "Customer: " k Format(oCustomer-Id, "0000")
With oCustomer
PrintResult .First, 3, 16

.Middle, 1

.Last, 1, 16, True
■Cust-Balance: "
"$" k Format!.Balance, "000000000.00"), , , T
■", , , True

" & Formatf.Id, "00000000")
& Format(.EntryDate, "dd-mm-yyyy

"00"), True

True

6, True

PrintResult
PrintResult
PrintResult
PrintResult
PrintResult
End With
With oMaxOrder
PrintResult "Order-Number
PrintResult "Entry-Date:
hh:mm:ss") , 3
PrintResult "Carrier-Number: ", 2
If Not IsNull(.CarrierlD) Then

PrintResult Format(.CarrierlD,
Else

PrintResult "NULL", ,
End If
PrintResult "Supp_W"
PrintResult "Item_Id", 7
PrintResult "Qty", 4
PrintResult "Amount", 5
PrintResult "Delivery-Date
End With
For Each oOrderLine In oMaxOrder

With oOrderLine
PrintResult Format(.SupplyWId, "0000"), 1
PrintResult Format!.Item.Id, "000000"), 8
PrintResult Format!.Quantity, "00"), 5
PrintResult Format(.Total, "$00000.00"), 5
If .DeliveryDate = 0 Then

PrintResult "NULL", 6, , True
Else

PrintResult Format(.DeliveryDate, "dd-mm-yyyy"), 6, ,
True

End If
End With

Next

sResult = msResult
GetMaxOrder = True

GMFim:
Exit Function

GMAbort:
'mcnThesis.Close
GoTo GMFim

GMError:
MsgBox Error, vbCritical
Resume GMFim

End Function

Public Function Payment(ByVal W_ID As Long, ByVal D_ID As Long,
ByVal C_LAST As string, ByVal Amount As Single, sResult As
String) As Boolean
On Error GoTo PAError
Dim bTransaction As Boolean
Dim sAux As string
Dim oWarehouse As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oHistory As ThesisDO.History
Dim oContext As MTxAS.ObjectContext

Payment = False

Set oContext = GetObjectContext()
If oContext Is Nothing Then

MsgBox "oops"
End If

Set oWarehouse = CreateObject("ThesisDO.Warehouse")
Set oDistrict = CreateObject("ThesisDO.District")
Set oCustomer = CreateObject("ThesisDO.Customer")
Set oHistory = CreateObject("ThesisDO.History")

'mcnThesi s.Open
'mcnThesis.BeginTrans
bTransaction = True

'// Warehouse
oWarehouse.OpenWith W_ID

'// District
oDistrict.OpenWith D_ID, oWarehouse

'// Customer
oCustomer.OpenWithLast C_LAST, oDistrict

With oCustomer
'// Check Customer Credit and update data if necessary

'// Open Order Lines

155

sAux = -Entry: " k .Id k •, " k .District.Id k ";
-District.Warehouse.Id

sAux = sAux & •; ■ fc .District.Id & ■; ■ &
-District.Warehouse.Id & "; ■

sAux a sAux & Amount & "."
If Len(.Data) - Len(sAux) > 500 Then

.Data = sAux k Leftf.Data, 500 - Len(sAux))
Else

.Data = sAux & .Data
End IE
If Not oCustomer.Save Then GoTo PAAbort

End If
End With

'// Save History
oHistory.Amount = Amount
oHistory.EntryDate = Date
Set oHistory.Customer = oCustomer
Set oHistory.District = oCustomer.District
oHistory.Data = oCustomer.District.Warehouse.Name k ■
oCustomer.District.Name
If Not oHistory.Save Then GoTo PAAbort

'// Save Warehouse
If Not oWarehouse.Save Then GoTo PAAbort

'// Save District
If Not oDistrict.Save Then GoTo PAAbort

'// Save Customer
If Not oCustomer.Save Then GoTo PAAbort

■mcnThes is.Commi tTrans
bTransaction = False
"mcnThesis.Close
oContext.SetComplete

msResult = ■
PrintResult
PrintResult
True
PrintResult
PrintResult
PrintResult

' Payment"
'Date: " i

33, , True
Format(Time, "dd-mm-yyyy hh:i

20, True

20, True

"", , , True
■Warehouse: " k Format(W_ID, "0000")
■District: " k Format(oDistrict.Id, "00"),

PrintResult oWarehouse.Streetl, , 20
PrintResult oDistrict.streetl, 20,
PrintResult oWarehouse.street2,
PrintResult oDistrict.Street2, 2
PrintResult oWarehouse.City, , 2
PrintResult oWarehouse.State, 1
PrintResult LeftfoWarehouse.ZIP, 5)
4), 1
PrintResult oDistrict.City, 6, 20
PrintResult oDistrict.State, 1
PrintResult'Left(oDistrict.ZIP, 5) k
3), 1, , True
PrintResult "", , , True

PrintResult "Customer: ■ k Format(oCustomer.Id, "0000"),
True

k RightfoWarehouse.ZIP,

RightfoDistrict.ZIP,

PrintResult "Name: ■
With oCustomer
PrintResult -First, , 16
PrintResult -Middle, 1
PrintResult .Last, 1, 16
PrintResult "Since: ■ k Format(.
PrintResult .Streetl, 8, 20
PrintResult ■Credit: ■ & -Credit, , 21, , True
PrintResult .Street2, 8, 20
PrintResult "%Disc: " k Format(. .Discount * 100, "00.00'), 21
True
PrintResult .City, 8, 20
PrintResult .State, 1
PrintResult Left(.ZIP, 5) & ■-■ & Rightf.ZIP, 3), 1
PrintResult 'Phone: • k Left(.Phone, 6) k •-■ k Mid(.Phone, 7,
3) k ■-■ k Mid{.Phone,
PrintResult *■, , , True
PrintResult 'Amount Paid:'
PrintResult Format(Amount,
PrintResult "New Cust-Balai
PrintResult
True
PrintResult
PrintResult
PrintResult

k Right(.Phone, 4), 8,

"$0000.00'), 10

'$" k Format!.Balance - Amount, '000000000.00'),

'Credit Limit:"
'$" k Format(.Limit,
", , , True

'000000000.00"),

If .Credit = 'BC" Then
PrintResult "Cust-Data:"
PrintResult Leftf.Data, 50), 1,
PrintResult Mid(.Data, 51, SO), 11, , True
PrintResult Mid(.Data, 101, 50),
PrintResult Mid(.Data, 151, 50),
PrintResult '", , , True

End If
End With

sResult = msResult
Payment = True

PAFim:
Exit Function

PAAbort:
If bTransaction Then

bTransaction = False
'mcnThesis.RollbackTrans

End If
'mcnThesis.Close
GoTo PAFim

PAError:
If oContext.IsInTransaction Then

oContext.SetAbort
End If
If bTransaction Then

11, , True
11, , True

bTransaction = False
'mcnThesis.RollbackTrans

End If
MsgBox Error, vbCritical
Resume PAFim

End Function

Public Function NewOrder(ByVal W_ID As Long, ByVal D_ID As Long,
ByVal C„ID As Long, ByVal OrderCnt As Integer, ByVal Items As
Variant, ByVal Qtys As Variant, sResult As String, Optional ByVal
SUPP_W_ID As Long = 1) As Boolean
On Error GoTo NOError

Dim bTransaction As Boolean
Dim i As Integer
Dim Itern() As Long
Dim Qty{) As Long
Dim SUPP_W_ID2 AS Long

Dim oContext As MTxAS.ObjectContext
Dim oWarehouse As ThesisDO.Warehouse
Dim oSuppWar As ThesisDO.Warehouse
Dim oDistrict As ThesisDO.District
Dim oCustomer As ThesisDO.Customer
Dim oStock As ThesisDO.stockltem
Dim oNewOrder As ThesisDO.NewOrder
Dim oOrder As ThesisDO-Order
Dim oltem As ThesisDO.Item
Dim oOrderLine As ThesisDO.OrderLine

NewOrder = False
Set oContext = GetobjectContext(}
If oContext Is Nothing Then

MsgBox "oops"
End If
'oContext.SetComplete
'Exit Function
'With oContext
Set oWarehouse = New ThesisDO.Warehouse
Set oDistrict = New ThesisDO.District
Set oCustomer = New ThesisDO.Customer
Set oStock = New ThesisDO.Stockltem
Set oNewOrder = New ThesisDO.NewOrder
Set oOrder = New ThesisDO.Order
'End With

'mcnThes is.Open
'mcnThes is.BeginTrans
'bTransaction = True

'// Warehouse
oWarehouse.OpenWith W_ID

'// District
oDistrict.OpenWith D_ID, oWarehouse

'// Customer
oCustomer.OpenWith C_ID, oDistrict

'// Order
Set oOrder.Customer = oCustomer

'// Order Lines
ReDim Itern(1 To OrderCnt)
ReDim Qtyfl To OrderCnt)
Item = Items
Qty = Qtys

'// Generate
msResult = "'
PrintResult '
PrintResult '
PrintResult '
PrintResult '
True
PrintResult '
PrintResult '
PrintResult '
PrintResult '
■00.00'), 3,
PrintResult ■
PrintResult ■
PrintResult "
PrintResult *
, True
PrintResult ■
PrintResult ■
PrintResult "
PrintResult "
PrintResult •
PrintResult ■
PrintResult ■
PrintResult
PrintResult

Results

"New Order", 33, , True
"Warehouse: " k Format(W_ID, "0000')
■District: ' & Format(D_ID, "00"), 3
"Date: " k FormatfTime, "dd-mm-yyyy hh-.mm:ss") , 23

■Customer: • k Format(oCustomer.Id, "0000")
■Name: " k Left(oCustomer.Last, 16), 3, 21
•Credit: ■ k oCustomer.Credit, 3
"%Disc: ■ k Format(oCustomer.Discount * 100,

, True
"Order Number: ■ k Format(oOrder.Id, "00000000")
■Number of Lines: " k Format(OrderCnt, "00"), 2
•W_tax: • & Format(oWarehouse.Tax * 100, "00.00"),
■D_tax: " k Format(oDistrict.Tax * 100, "00.00"),

'", , , True
"Supp_W", 1
'Item_Id", 2
'Item_Name", 2
'Qty, 16
'Stock", 2
'B/G", 2
Price-, 2

1 Amoun t■, 4, , True

For i = 1 To OrderCnt
Set oltem = New ThesisDO.Item
Set oSuppWar = New ThesisDO.Warehouse

oltem.OpenWith Item(i)
*// Open the correct Warehouse
SUPP_W_ID2 = Int(Rnd() * 2) + 1

oSuppWar.Id = SUPP_W_ID2

New ThesisDO.OrderLine

'// Order Line
Set oOrderLine :
With oOrderLine
Set .Item = oltem
.Quantity = Qty(i)

'// Update stock
oStock.OpenWith .Item, oSuppWar

156

.Quantity

91

Set .Stockltem = ostock
If oStock.Quantity > .Quantity + 10 Then

oStock.Quantity = oStock.Quantity -
Else

oStock.Quantity = oStock.Quantity
End If
oStock.YTD = oStock.YTD + .Quantity
oStock.Order_CNT = oStock.Order_CNT +

oOrder.Add oOrderLine

'// Results
PrintResult Format(SUPP_W_ID2, "0000"), 2
PrintResult Format(.Item.Id, "000000"), 3
PrintResult Left(.Item.Name, 23), 3, 23
PrintResult Format(-Quantity, "00"), 2
PrintResult Format{.Stockltem.Quantity, "000"), 4
PrintResult IIf(.BG, "B", "G"), 4
PrintResult Format(.Item.Price, -$000.00"), 3
PrintResult Format(.Item.Price * .Quantity, '$000.00"),

Set oOrderLine = Nothing
Set oltem = Nothing
End With

Next

With oOrder
1// Save District
If Not .Customer.District.Save Then GoTo NOAbort

.EntryDate = Format (Date, ■mm/dd/yyyy)
-AllLocal = True

'// Save Customer
If Not .Customer.Save Then GoTo NOAbort

'// Save order
If Not .Save Then GoTo NOAbort
1// Save New Order
Set oNewOrder.Order = oOrder

If Not oNewOrder.Save Then GoTo NOAbort
End With

For i » 1 To OrderCnt
'// Update OrderLine
If Not oOrder(i).Save Then GoTo NOAbort

Next

PrintResult "Execution Status: Ok"
PrintResult "Total: ■ & FormatfoOrder.Total, "$0000.00"), 11,
True

' i = 5 / 0 ' => To fail transaction

'60: mcnThesis.CommitTrans
bTransaction = False
'oContext.SetComplete
"mcnThesis.Close
NewOrder = True

sResult = msResult
micounter = oWarehouse.counter
miClients = oWarehouse.Clients

Exit Function

NOAbort:

If bTransaction Then
bTransaction = False
'mcnThes i s.RolIbackTrans

End If
GoTo NOFim

NOError:
If oContext.IsInTransaction Then

oContext.SetAbort
End If
If bTransaction Then

bTransaction = False
■mcnThesis.RolIbackTrans

End If
Err.Raise NewOrderErr, "ThesisBOMTS - NewOrder", Erl & ":" &
Err.Number k ' - " & Err.Description, vbCritical
Resume NOFim

End Function

Private Sub Class_Initialize()
'Dim sConnection As String
■Set mcnThesis = CreateObjectCADODB.Connection")
■sConnection = "Provider=SQLOLEDB.1;Integrated
SecuritysSSPI;Persist Security Info=False; "
'sConnection = sConnection & "User ID=sa;Initial
Catalog=Thesis;Data Source=Helen;"
'sConnection = sConnection & "Locale Identifier=1046;Connect
Timeout=15;Use Procedure for Prepare=l;"
'sConnection = sConnection & "Auto Translate=True;Packet
Size=4096;Workstation ID=ALEXANDRENT"
■mcnThesis.ConnectionString = sConnection
'Set mDelivery = CreateObject("ThesisQPMTS.DeliveryRcv")
'mDelivery.Start
End Sub
Private Sub PrintResult(sText, Optional iSpaces As Integer = 0,
Optional SizeToFit As Integer = 0, Optional bLineFeed As Boolean
= False)
Static bOldLine As Boolean

If Not bOldLine Then
iSpaces = iSpaces + 1
bOldLine = True

End If
msResult = msResult & Space(iSpaces)
msResult = msResult & sText
If SizeToFit > 0 Then

If Len(sText) < SizeToFit Then
msResult = msResult & Space(SizeToFit - Len(sTextJ)

End If
End If
If bLineFeed Then

msResult = msResult & vbCrLf
bOldLine = False

End If
End Sub

NOFim:
Set oContext = Nothing

157

6. N-tier Front End
Option Explicit

•// frmTransactions

Dim moTrans As ThesisBOMTS.Transactions
Dim moTrans As ThesisB03.Transactions
Dim moRand As ThesisB02.GenRand
Dim moLastName As ThesisB02.LastNameGen
Dim mQueue As MSMQQueue

Private Sub PrintResult(sText, Optional iSpaces As Integer = 0,
Optional SizeToFit As Integer = 0, Optional bLineFeed As Boolean
= False)
Static bOldLine As Boolean

If Not bOldLine Then
iSpaces = iSpaces + 1
bOldLine = True

End If
txtResult = txtResult & Space(iSpaces)
txtResult = txtResult & sText
IE SizeToFit > 0 Then

If Len(sText) < SizeToFit Then
txtResult = txtResult & SpacefSizeToFit - Len(sText))

End If
End If
If bLineFeed Then

txtResult = txtResult & vbCrLf
bOldLine = False

End If
End Sub

Private Function Stock_Level(W_ID As Long) As Boolean
On Error GoTo SError
Dim D_ID As Long
Dim iMinThreshold As Integer
Dim bTransaction As Boolean
Dim sResult As String

Randomize
Stock_Level = False

iMinThreshold = IntfRnd * 11) + 10

'// District
D_ID = Int(Rnd() 10)

'// Check Stock
If Not moTrans.GetStockLevel(W_ID, D_ID, iMinThreshold, sResult)
Then

MsgBox 'Transaction Failed!", vbCritical
Exit Function

End If

txtResult = sResult
Stock_Level = True

SEnd:
On Error Resume Next
Exit Function

SError:
MsgBox Err.Description & Err.HelpFile E, Err.HelpContext,
vbCritical
Resume SEnd

End Function

Private Function Delivery(W_ID As Long) As Boolean
On Error GoTo DError
Dim bTransaction As Boolean
Dim lCarrier_ID As Long
Dim oMsg As New MSMQMessage

Randomize
Delivery = False

lCarrier_lD = lnt(Rnd() * 10) + l

oMsg.Label = "Delivery Message"
oMsg.Body = Format(W_lD, "00") s, ":" & Format(lCarrier_ID,
oMsg.SEnd mQueue

True
t{W_ID, "0000"), , , True

PrintResult "Order-Status", 35,
PrintResult "Warehouse: ■ & For
PrintResult "■, , , True
PrintResult "Carrier Number: ■ b Format(lCarrier_ID, "00")
True
PrintResult "", , , True
PrintResult "Execution Statuos: Delivery has been queued."
True
PrintResult "", , , True
Delivery = True

DEnd:
On Error Resume Next
Exit Function

DError:
MsgBox Error, vbCritical
Resume DEnd

End Function

Private Function Order_Status(W_ID As Long) As Boolean

On Error GoTo OSError
Dim D_ID As Long
Dim C_LAST As String
Dim sResult As string

Randomize
Order^Status = False

'// District
D_ID = Int(Rnd{) * 10) ♦ 1

'// Customer
C_LAST = moLastName.GenerateLastNameStr(Str(moRand.NURand(255, 0,
999)))

If Not moTrans.GetMaxOrder(W_ID, D_ID, C_LAST, sResult) Then
MsgBox "Transaction Failed!", vbCritical
Exit Function

End If

txtResult = sResult
Order_Status = True

OSEnd:
Exit Function

OSError:
MsgBox Error, vbCritical
Resume OSEnd

End Function

Private Function Payment(W_ID As Long) As Boolean
On Error GoTo PError
Dim D_ID As Long
Dim C_LAST As String
Dim sData As String
Dim sngAmount As Single
Dim sResult As String

Randomize
Payment = False

'// District
D_ID = Int(Rnd() * 10) * 1

'// Customer
C_LAST = moLastName.GenerateLastNameStr(Str(moRand.NURand(255, 0,
999)))

'// Payment Transaction
sngAmount = Int(Rnd() * 500000) / 100 + 1
Payment = moTrans.Payment(W_ID, D_ID, C_LAST, sngAmount, sResult)
If Not Payment Then

MsgBox "Transaction Failed!", vbCritical
Exit Function

End If

txtResult = sResult

Payment = True
PEnd:
Exit Function

PError:
MsgBox Error, vbCritical
Resume PEnd

End Function

Private Function ClientTransaction(W_lD As Long) As Boolean
On Error GoTo CTError
Dim iOrder_Cnt As Integer
Dim D_ID As Long
Dim C_ID As Long
Dim 0_ID As Long
Dim ItemO As Long
Dim Qty() As Long
Dim Items As Variant
Dim Qtys As Variant
Dim i As Integer
Dim sResult As string

Randomize
ClientTransaction = False

'// Number of lines [5..15]
iOrder_Cnt = 8 "IntfRndO * 11) + 5

'// District
D_ID = IntfRnd() * 10) + 1

'// Customer
C_ID = moRand.NURand(1023, 1, 3000)

*// Order Lines
ReDim Iternd To iOrder_Cnt) As Long
ReDim Qty(l To iOrder_Cnt) As Long
For i = 1 To iOrder^Cnt

'// Item
Item(i) = moRand.NURand(1023, 1, 3000)
Qty(i) = Int(Rnd() * 10) + 1

Next

'// Execute Transaction

158

Items = Item
Qtys = Qty
'Set moContext = GetObjectContext()
'Set moTrans = CreateObjectCThesisBOMTS.Transactions")
ClientTransaction = moTrans.NewOrder(W„ID, D_ID, C_ID,
iOrder_Cnt, Items, Qtys, sResult)
'MsgBox moTrans.Counter
'MsgBox moTrans.Clients
'Set moTrans = Nothing

If ClientTransaction Then

'// Print Results
txtResult = sResult

Else
MsgBox "Transaction Failed!", vbCritical

End If

CTEnd:
Exit Function

CTError:
MsgBox Error, vbCritical
Resume CTEnd
End Function

Private Sub cmdTransaction_Click(index As Integer)
Dim bResult As Boolean
Dim W_ID As Long

W_ID = 2

txtResult = ""
'MsgBox TypeName(moTrans)
"Exit Sub
Screen.MousePointer = vbHourglass
Select Case index

Case 0
bResult = ClientTransaction{W_ID)

Case 1
bResult = Payment(W_ID)

Case 2
bResult B Order„Status(W_ID)

Case 3
bResult = Delivery{W_ID)

Case 4
bResult = Stock_Level(W_ID)

End Select
Screen.MousePointer = vbNormal

End Sub

Public Function ExecuteTransactionfindex As Integer)
cmdTransaction_Click index

End Function

Private Sub Form_Load()
Dim MQInfo As New MSMQQueuelnfO
MQInfo.PathName = "abcnt06b\thesis"
Set mQueue = MQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
Set moRand = New ThesisB02.GenRand
Set moLastName = New ThesisB02.LastNameGen
' Set moTrans = CreateObject("ThesisBOMTS.Transactions-
Set moTrans = CreateObject("ThesisB03.Transactions")

' If Not moTrans.IsOk Then MsgBox "Error", vbCritical
End Sub

159

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

15 Jun 1999

3. REPORT TYPE AND DATES COVERED

Mater's Thesis
4. TITLE AND SUBTITLE

ANALYSIS OF N-TIER ARCHITECTURE APPLIED TO DISTRIBUTED-
DATABASE SYSTEMS

6. AUTHOR(S)
Alexandre Gomes Valente, 1st Lt., Brazilian Air Force

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street, Bldg 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCE/ENG/99J-04

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Brazilian Ministry of Aeronautics
Esplanada dos Ministerios
Brasilia - Distrito Federal
Brasil

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. Gary B. Lamont
COMM: (937) 255-3636 x4718 DSN: 785-3636 x4718

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
N-tier architecture has been more commonly used as a methodology for developing large database applications. This work
evaluates the use of this ar-chitecture instead of the classical Client/Server architecture in developing corpo-rate applications
based on distributed databases. The comparison between ar-chitectures is performed using applications that execute
transactions similar to those defined in the Transaction Process Council Type C benchmark (TPC-C). The environment used
for development and testing was the AFIT Bimodal Cluster (ABC) - an heterogeneous cluster of PCs, running Microsoft
Windows NT 4.0 OS. The comparative experimental analysis demonstrated that the N-tier architecture allows more efficient
bandwidth utilization between client and server machines, with similar performance. Results led to conclusion that the N-tier
architecture is better suited than the Client/Server for use in corporate sys-tems interconnected by low-bandwidth
Wide-Area-Networks (WANs), such as the Internet.

14. SUBJECT TERMS
N-TIER ARCHITECTURE, DISTRIBUTED DATABASES, DISTRIBUTED OBJECTS,
DCOM, CLUSTER OF PCS, WINDOWS NT, MTS, MSMQ

15. NUMBER OF PAGES

170
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Analysis of N-Tier Architecture Applied to Distributed-Database Systems
	Recommended Citation

	/tardir/tiffs/A364974.tiff

