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Abstract 

A strict kinetic, two-dimensional model of the electron kinetics within a glow 

discharge positive column is developed. The problem is solved in cylindrical geometry 

using the standard two-term Legendre expansion of the electron velocity distribution 

function. The model establishes a steady state solution, such that the net ionization rate is 

exactly balanced by the wall loss. In addition to a thorough analytic development, we 

present the numerical techniques used to solve the resulting elliptic partial differential 

equation, including an efficient method to treat sparse banded matrices. The model is 

validated against published results, local and nonlocal kinetic approximations, and a 

previous Monte Carlo treatment. Having created a working model, we conduct an 

investigation into current flow within the solution area of a neon column, made possible 

by this 2-D treatment. Furthermore, we investigate the range of applicability of the 

earlier local and nonlocal kinetic approximations and finally present a short discussion on 

the effect different forms of wall loss have on the overall distribution function. 
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Numerical Solutions to the 

Two Dimensional Boltzmann Equation 

I. Introduction 

Based on its ubiquitous application in neon and florescent lamps, and more recent 

use in electric discharge lasers, one might expect the underlying glow discharge 

phenomenon to be thoroughly understood and computationally well modeled. We must, 

of course, have an accurate model of these devices in order to optimize their design 

efficiency. However, until recently, none of the available models accurately depicted the 

often dramatic effect of radial inhomogeneities within the glow discharge device. This 

research addresses and resolves that deficiency by implementing the latest modeling 

technique - a two-dimensional solution of the collisional Boltzmann equation (CBE), 

which we call the strict kinetic solution1. 

Prior to the strict solution, most researchers relied on two approximate kinetic 

methods. These solution methods, known as the local and nonlocal approximations, 

solve the CBE in the limit of high and low pressure, respectively. Until the 1970s the 

local (high-pressure) approximation was used almost exclusively, even though the 

assumptions were inherently incorrect in most realistic situations. In the past twenty 

years the nonlocal approximation gained favor as a more realistic model for low-pressure 



plasmas. Yet most of the experimental and commercial devices in use today operate in a 

parametric regime between the two where neither the local or nonlocal approximation is 

valid. 

Recent advances in computing power have facilitated the use of a strict kinetic 

solution that solves the complete CBE in two dimensions. By avoiding the assumptions 

inherent to the approximate methods, the strict solution is able to accurately treat spatial 

inhomogeneities and remain valid across a broad spectrum of pressures. The strict 

solution is in fact the most rigorous kinetic treatment available today. 

While the strict solution is an invaluable tool to probe the kinetics of the glow 

discharge, the Air Force is interested in it primarily as a first step toward much more lofty 

goals. Soviet research, extending over the past twenty years and summarized by Hilbun 

[1], has revealed anomalous shock structure and wave propagation in the presence of 

weakly ionized gases. These results recently spurred experimental investigations in the 

U.S. that have confirmed the Soviet findings [2, 3]; they include a reduction in shock 

strength, increased shock standoff distance, and a general broadening of the shock 

structure. Understanding and application of these phenomena could lead to a new class 

of hypersonic vehicles that utilize plasma effects to generate shocks characteristic of one 

half the true Mach number with a correspondingly significant decrease in vehicle drag! 

However, prior to designing a futuristic hypersonic fighter, we must thoroughly explore 

the plasma-aircraft interaction. This necessitates a refined plasma modeling capability 

that is able to solve the CBE in at least two dimensions. Furthermore, the model must be 

1 The term "kinetic" refers to any technique that solves the CBE directly. "Strict" refers to solving the 



benchmarked in a parametric regime where extensive experimental data are available; the 

glow discharge satisfies this requirement. With this goal in mind, the strict solution 

detailed in this thesis represents a first generation of the required modeling capability. 

Optimistic extrapolations aside, the main focus of this research is to develop, 

implement, and test a numerical solution to the spatially inhomogeneous CBE - the strict 

kinetic solution. As such, the body of this thesis focuses on the theoretical and numerical 

framework behind the strict solution, as well as the specific details of the model. The 

remaining chapters follow the model through its background, development, 

implementation, and validation. 

Chapter II covers background material leading to the strict solution. It 

specifically discusses the physics of the glow discharge, as well as giving a brief 

summary of the techniques and approximations previously used to model it. In Chapter 

III, we develop the strict solution method; the first half covers a theoretical treatment of 

the relevant equations, while the second discusses the numerical techniques used to solve 

them. The model takes shape in Chapter IV; here we present "status checks" at four 

phases of development, using analytic equations and physical reasoning to establish the 

solution's validity and accuracy. The next chapter is devoted to a validation of the 

complete model, comparing our solution to others. Chapter VI includes a short 

investigation into some interesting topics made possible by the strict solution. Finally, 

the last chapter discusses my ideas for future work, considering both expansion of the 

current model and modifications to treat related subjects. 

CBE completely, avoiding the local or nonlocal approximations. 



II. Background 

Elementary physics of the direct current (dc) glow discharge2 is the subject of 

numerous textbooks (see Nasser [4] and Howatson [5]), and we can only briefly review 

the basic concepts here. The first section in this chapter is an introduction to the glow 

discharge and the positive column in particular. The following two sections look more 

closely at previous kinetic approximations used to model the positive column and discuss 

their assumptions and range of applicability. 

2.1. Introduction to the Positive Column 

2.1.1. Glow Discharge Basics 

A simple glow discharge device consists of a cylindrical glass tube, filled with a 

gas (see Figure 1). Most tubes are one to two centimeters in diameter, and between ten 

and one hundred centimeters long. Within the tube, the gas pressure normally ranges 

from a few hundredths to tens of a Torr. The discharge is initiated and sustained by an 

external dc power supply. The discharge voltage is typically several hundred Volts, with 

corresponding currents of tenths to hundreds of milli-amperes [6]. The power is coupled 

to the plasma through two electrodes, one at each end of the tube. 

In very simple terms, the glow discharge is created as the externally provided 

power is converted into light and heat. The conversion occurs when electrons, 

accelerated by the applied axial electric field, collide with the neutral gas. Some of these 

2 This study considers only the direct current discharge. Suitable modifications to the model would allow 
us to account for an alternating current as well. 



energetic electrons have enough energy to excite the neutrals into higher electronic states. 

These neutrals in turn emit radiation as they relax to the ground state. This radiation is 

the glow. 
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Figure 1 Schematic of a typical neon discharge in a 50 cm tube at 1 Torr. Luminous regions are 
shown shaded, along with plots of luminosity, electric field, and charge density [4, pg 399]. 

Figure 1 illustrates a schematic of a typical glow discharge device, as well as 

relative values of important parameters along the length of the tube. Studying the figure, 

we note that the glow discharge can be divided into a number of physically meaningful 

regions [4, pp 397-425]. At the cathode end, the impact of heavy ions onto the cathode 

surface releases electrons into the system. At the time of their release, the electrons do 



not have enough energy to excite electronic levels in the neutrals; hence there is no 

radiative decay and no glow emission in this region, known as the Aston Dark Space. 

The strong axial electric field accelerates the freed electrons toward the anode, 

and their kinetic energy soon exceeds the excitation threshold of the neutral species. This 

marks the beginning of the Cathode Glow. Note that in this region the luminosity is still 

quite low, since the number of electrons is relatively low. The electrons continue to 

accelerate, achieving energies in excess of the neutral's ionization threshold at the 

Cathode Dark Space boundary. When this occurs, ionization begins to compete with 

excitation for electron energy, reducing the overall luminosity. The luminosity does not 

go to zero however; in fact all the dark regions have some luminosity, just at a lower 

level than their neighbors. 

The electrons released by ionization in the Cathode Dark Space are accelerated to 

excitation energies, and because of the increase in electron density, the Negative Glow is 

the brightest band in the entire tube. The large number of electrons in this region causes 

a weakening in the axial field strength, and it can actually reverse for a short distance [4, 

pg 412]. Because of the weak field, the acceleration in this region is not strong enough to 

keep the electrons above the excitation threshold, and the Faraday Dark Space results. In 

the Faraday Space, the number of electrons tapers off, and the axial electric field 

increases, until it is once again able to accelerate electrons to excitation energies. 

At this point, the Positive Column begins, maintaining a nearly uniform glow. 

Near the end of this column, the axial field begins to increase, and once again the 

electrons gain enough energy for ionization to strongly compete with excitation. The 

final two regions are analogous to the Cathode Dark Space and Negative Glow. In the 



Anode Dark Space the luminosity decreases due to ionization; in the Anode Glow newly 

formed electrons, accelerated by the increasing electric field, again reach the excitation 

threshold. 

Returning to the positive column region in Figure 1, we note a number of 

interesting features; the axial electric field, luminosity, electron number density, and 

current are all essentially constant. In addition, while the size of the other regions 

depends on the electron mean free path, the length of the positive column scales with the 

tube. As the tube grows longer, so does the positive column; if the tube is too short, the 

column may disappear altogether. The reason for this scaling comes from its purpose - it 

provides electrical continuity between the cathode and anode [6]. Because the positive 

column grows with tube length, it is often the largest of the glow discharge segments. 

These properties will be exploited later to simplify our model of the glow discharge. 

Although Figure 1 and the resulting discussion considered only axial 

characteristics of the discharge tube, radial variations exist as well. In Figure 2, we see 

plots of experimentally determined radial space charge potentials within the cylindrically 

symmetric positive column. These potentials form as relatively light electrons speed 

toward the tube wall, leaving the heavier ions behind. This charge separation creates a 

potential and hence a radial component to the electric field. Because of the radial 

potential, any model which hopes to accurately describe the glow discharge needs to 

consider not only axial variations, but radial ones as well. 
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Figure 2 Experimentally determined radial potential (-V[r] in Volts) as a function 
of normalized radius for neon and krypton at .62 and 4.8 Torr respectively [7]. 

Due to the shear numbers of particles involved, electrons in the system are often 

treated statistically and characterized using a distribution function. The electron velocity 

distribution function (EVDF), labeled/, represents the number of particles found at a set 

of coordinates, e.g./fo y, z, vx, vy, vz, t\. To find the total number of particles at a given 

spatial location the EVDF is integrated over velocity space, i.e. f~ f[r,v]dv = n [r]. 

By considering an electron distribution, we ignore the motions of individual 

particles, treating the plasma statistically. This approximation is justified for all but the 

most tenuous of gases, and it is certainly acceptable in our pressure range of interest, 0.1- 

10 Torr. Once the distribution function is known, we can derive all of the relevant 

macroscopic quantities using moments of the Boltzmann equation (see Appendix A). 

These quantities, such as the excitation collision rate (equation (44)), correspond directly 

to important measurable parameters like the luminosity. 



Often the distribution function is transformed from velocity to energy coordinates, 

and then referred to as the electron energy distribution function (EEDF). Figure 3 shows 

examples of four different EEDFs. The first two, (a) and (b), result from approximate 

solutions of the CBE, under the assumption of constant collision frequency and constant 

collision cross-section respectively. The third and fourth represent more physically 

realistic distributions, for the case of a noble gas, (c), and a simple molecular gas, (d). 

F0[r,e] F0[r,e] 

F0[r,e] F0[ne] 

energy energy 

Figure 3 Four examples of the electron energy distribution function plotted on a log/linear 
scale: (a) Maxwellian, (b) Druyvesteyn, (c) typical Noble Gas, (d) typical Molecular gas. 

2.1.2. Modeling the Glow Discharge 

When trying to realistically model the electron kinetics of a glow discharge, we 

are forced to make a number of significant simplifications. The first simplification is to 

recognize that while most of the glow's segments are fixed in length for a given set of 

conditions, the positive column grows and shrinks with the tube length (section 2.1.1). If 



the discharge tube is more than a few centimeters long, the positive column accounts for 

the majority of the discharge, and is thus considered the working section for most 

applications. To simplify our study, this treatment considers only the positive column3. 

Having chosen to model only the positive column region of the glow discharge, 

we can then make use of its cylindrical symmetry and axial homogeneity (section 2.1.1). 

Accounting for these two properties, the required spatial dimension of the solution is 

reduced from three to one - the radial dimension. 

Even with this simplification, modeling the dc positive column is extremely 

complicated; past authors have used a number of different techniques to tackle the 

problem. These techniques fall into three broad classes: Moment, Particle, and Kinetic 

methods. The moment methods include such classic treatments as Schottky's ambipolar 

diffusion theory and Tonks and Langmuir's free-fall theory. As the name suggests, 

moment methods use moments of the Boltzmann equation, treating the electrons as a 

fluid. These methods start with an assumed form for the EVDF, and use the resulting 

transport coefficients and collision frequencies to transform the problem into a set of 

fluid balance equations. Yet without experimental verification of the assumed 

distributions, the results are only qualitative. In spite of this, historically, most theoretical 

treatments of the positive column have relied on the moment method [8]. 

Particle methods, which include Monte Carlo and Particle-in-Cell, consider the 

forces and collisions acting on individual particles to predict their motions. Since it is 

currently impossible to account for the movement of over 1016 particles/cm3 (~ 1 Torr), 

3 Cathode to anode models exist which attempt to account for the physics along the entire length of the 

10 



these techniques attempt to create a representative sample, and apply probability theory 

to extrapolate the total answer. Even so, particle methods require significant 

computational effort to obtain a solution, and even then are subject to sampling errors. 

Due to the computation time required, recent authors have suggested that techniques such 

as Monte Carlo are best suited to serve as benchmarks for other, faster methods [9]. 

The third class, the kinetic method, is the subject of this thesis. Kinetic methods 

solve directly for the EVDF using the collisional Boltzmann equation, 

£fv-?/ + 5.?/ = (£) (1) 
-\f rJ   ^U    y vJ        \-.   >collision 

where / = f[r,v,t] is the EVDF. 

The Boltzmann equation is in essence a continuity equation in both configuration 

and velocity space. The first term in equation (1) represents temporal changes to the 

EVDF, which for steady state solutions is zero. The second and third terms denote 

convection in configuration and velocity space respectively, where Vr and Vv are the 

corresponding gradient operators. The acceleration, a, contains all of the forces acting 

on the electron, which in our study includes both a radial and axial electric field. The 

af- 
final term, (—)<.„„,■„•„„ , accounts for all of the collisions. It acts as both a source and a 

loss, depending on the type of collision and region of velocity space considered. A 

discussion of the various collisions included in this model is presented in section 3.1.2. 

Because of the difficulty associated with solving equation (1) directly, early 

pioneers of the kinetic method looked to further simplify the problem. They did this by 

discharge tube, but this treatment considers only the positive column. 

11 



considering limiting forms for the CBE in the high and low-pressure range. These two 

limits correspond respectively to the local and nonlocal kinetic approximations. While 

the treatment in this thesis uses a strict kinetic solution, which is valid in both pressure 

regimes, we will gain significant insight by first reviewing the approximate solutions. 

2.2. The Local Approximation 

One of the first solutions using the kinetic method was published in 1946 by 

Holstein [10]. In this work, Holstein investigated the properties of a discharge in which 

he assumed the electric field to be everywhere homogeneous. Under these conditions, 

the spatial gradient of the distribution function must be zero, and the expansion of 

equation (1) results in an ordinary differential equation (ODE). The ODE is given below, 

\2 

^^£^^e])+^±(e2Naeme]) + S' = 0 (2) 
de   3NQ[e] de MN de 

where N is the neutral number density, Q[s] the total collision cross section, and S' 

accounts for inelastic collisions. F[e] is the EEDF, normalized such that 

rF[£]eU2d£ = l. 
JO 

If we consider only certain types of collisions, equation (2) can be solved 

analytically. Neglecting inelastic collisions and assuming a constant elastic collision 

frequency, the analytic result is the Maxwellian distribution shown in Figure 3a. If, on 

the other hand, elastic collisions are represented with a constant collisional cross section, 

the solution is a Druyvesteyn distribution given by, 

F»ruW= 2 
( 'Xwi W \rnel V 

T[3/4] 
3m NQe 

\     °     z    ) 

12 

exp 
-3m(NQel)2e 

MN(e0Ej 

2 

2 (3) 

12 



where Qel refers now to the elastic cross section only. The Druyvesteyn distribution is 

shown in Figure 3b. Although these analytic solutions exist, in practice equation (2) is 

solved numerically using a complete set of experimentally consistent elastic and inelastic 

cross-sections [11]. 

While the assumption of a homogeneous electric field greatly simplifies the CBE, 

it is rarely true in a physical discharge device. As discussed in section 2.1.1, we can treat 

the positive column as having a homogeneous axial electric field, but Figure 2 

demonstrates that radial inhomogeneities do exist. However, under certain conditions, it 

is possible to neglect the effect of these radial variations, and justify the use of equation 

(2). If the pressure in the discharge is high enough, the electrons will undergo sufficient 

collisions to lose all of their energy (relax in energy space) prior to traveling an 

appreciable distance radially. Assuming the radial distance traveled is small enough, the 

electrons will not "see" any variation in the electric field. Under these conditions, the 

energy distribution of electrons is determined solely by the local electric field and 

equation (2) is justified. This assumption is called the Local Approximation. 

In order for the local approximation to be accurate, the electron energy relaxation 

length must be much shorter than the characteristic length for field variations. One way 

to quantify this requirement is through the PR value, where P is the pressure in Torr, and 

R is the tube radius in centimeters4. Using a random walk analysis and the fact that an 

4 A more appropriate measure would be NR where N is the number of molecules and R the radius, but I 
will follow the convention of Ingold [8] and use PR. 
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2/?t 
electron loses only a small fraction, , of its energy per elastic collision, the electron 

MN 

energy relaxation length L is given by 

ll}) = ¥-*-N-1Q-1   t (4) \      /        I-. ^momentum 
£VYl transfer 

where Q is the average momentum transfer cross-section in angstroms squared and N the 

neutral number density. Taking the characteristic distance for field variations to be the 

tube radius R, we can approximate the "PR" delimiter as 

NR»60/TjMN/mQ-mlmenmm 
transfer 

PR » 0.2^ MN/mQ;imemum (5) 
transfer 

where T is 300K. Applying equation (5) to neon gas, the relaxation length requirement is 

met if PR »17 Torr-cm. Given that lamps and electric discharge lasers operate at PR 

values on the order of one Torr-cm, this requirement is rarely satisfied in practice. 

Further difficulties exist in applying the local approximation to realistic devices. 

In deriving equation (5) we chose the characteristic distance for field variations to be the 

tube radius. But as shown in Figure 2, the radial potential, and hence its derivative, the 

radial electric field, vary rapidly near the tube wall. These rapid changes invalidate the 

earlier approximation of the electrons not "seeing" field variations. We will find that 

even when the requirement of equation (5) is satisfied, the local approximation is never 

accurate near the tube wall. 

2.3. The Nonlocal Approximation 

When the PR value is much less than equation (5), the electrons are able to 

repeatedly traverse the discharge tube before relaxing in energy space. For this low- 
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pressure regime, the electrons sample the entire tube and carry with them a "memory" of 

the electric field variations throughout. Because of this, their energy distribution is no 

longer a function of the local electric field, rather it is a function of the average electric 

field and its variation. In this case a new, approximate solution is available - the 

Nonlocal Approximation. Bernstein and Holstein were the first to explore this low- 

pressure limit, publishing a paper in 1954 [12]. 

Taking into account the radial potential shown in Figure 2, the expansion of 

equation (1) results in a partial differential equation (PDE) in two dimensions, energy and 

radius. Much like the local case, the nonlocal approximation simplifies the problem to an 

ODE in energy only. In this instance, however, the transformation is achieved by 

averaging over the spatial derivatives, rather than neglecting them [6]. In order to justify 

the radial averages, the electron energy relaxation length must greatly exceed the tube 

radius. In other words, the pressure or PR of the system must be low, which is the 

opposite of the condition in equation (5). 

After averaging, the CBE becomes 

de 
(e0Ez)

2  d 
3N    de 

\ 
{p[£]F[e]) + ^J_(q[e]F[£]) + S' = 0 (6) 

MN de 

Jo Q[e-(p[r]] 
•r0   (e-(p[r]) 
0 Q[e-(p[r]] 

q[e] = r (e - (p[r]f Q[e - (p[r]]r dr 
JO 

where Q is again the total collision cross section, but S" is now an averaged inelastic 

collision term. The two additional terms, p[e] and q[e], calculate the necessary averages 

over the dimensions of the tube, and involve the electron motive, <p[r] = -V[r]. With the 

addition of a radial potential, the kinetic energy, u, depends not only on e, but r as well. 
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Equation (6) looks very similar to (2) for the local approximation, and as in that 

case analytic solutions exist under certain conditions. Assuming no inelastic collisions 

and a constant elastic cross section we arrive at a modified Druyvesteyn distribution, 

Nonlocal 
Dm 

[£] = 
'2m^ 

3/4 

r[3/4] M, 

rNQel ^ 

e E v   »   z ) 

in 

exp 
■2m(NQe!J, 

MN(e0Ezf 
(7) 

where we have assumed a quadratic potential (the solution is slightly different depending 

on the form of the potential). Bernstein and Holstein [12] first derived equation (7) in 

planar geometry, but we have converted it to cylindrical coordinates for this treatment. 

While the local and nonlocal approximations adequately describe discharge 

kinetics in their respective pressure regimes, the regimes are not well defined. In 

addition, there exists a significant gap between the two approximations where neither is 

very accurate. Most physical glow discharge devices live in this gap and are thus, at 

present, poorly described. Only through a strict solution of the complete, expanded CBE 

can we accurately model the middle pressure regime. The remainder of this thesis 

investigates that strict kinetic solution. 
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III. Methodology of the Strict Kinetic Solution 

This chapter develops the theoretical equations used to model the positive column 

region of a dc glow discharge, then presents the numerical techniques used to solve the 

resulting partial differential equation. The development in section 3.1.1 is necessarily 

condensed, and focuses on understanding the assumptions made and resulting terms in 

the equations. A more thorough derivation is provided in Appendix B. 

3.1. Theoretical Development of Solution Equations 

3.1.1. Expansion of the Collisional Boltzmann Equation 

Using the strict kinetic method, we solve for the distribution of electrons within 

the positive column as a function of position and velocity (or energy). As stated in 

section 2.1.2, the starting point for the derivation is the collisional Boltzmann equation, 

^+v-Vr/ + a-Vv/ = (^)C0„,,„ (8) 

where f-f[7,v,t] is the electron velocity distribution function normalized to the 

electron density, i.e. F f[r,v]dv = ne[r]. 

Reiterating the discussion of section 2.1.2, the Boltzmann equation is an electron 

continuity equation in both configuration and velocity space. In our steady-state 

treatment, the first term, representing temporal changes to the EVDF, is zero. The 

remaining terms balance the divergence of the electron flux with gains and losses due to 

collisions. A complete discussion of the various collisions included in the model is 

presented in section 3.1.2. 
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By writing a Boltzmann equation only for the electrons and not the other 

"secondary" constituents (e.g. ground state neutrals, ions, etc.), we are essentially 

assuming a form for their distributions. In this treatment we treat the secondary species 

as being uniformly distributed spatially, and as having negligible temperature. This is a 

reasonable assumption given the large mass ratio between the secondary constituents and 

electrons, and considering the relatively low neutral gas temperatures observed within the 

plasma. Making it allows us to de-couple an otherwise complicated system. We are left 

with the single Boltzmann equation, albeit in six dimensions, describing an EVDF that 

contains all of the phenomenon of interest in the system [13]. 

Solving the Boltzmann equation in six dimensions is a daunting task, so further 

assumptions are made to simplify the problem. The next widely used assumption is to 

assert that for the conditions of interest the EVDF is nearly isotropic. This allows us to 

expand the EVDF in spherical harmonics in velocity space, keeping only the first two 

terms. 

/F,v] = £^(a>s[0])/;(F,v) 

£/„[r,v] + ^l (9) 

v ■ f, Here f0 is the isotropic part of the EVDF, while L refers to the anisotropic part. 
v 

Notice that fx is a vector, which can be resolved into radial and axial components, fr and 

fz respectively. Further simplifications are made by moving from v => v , incorporating 

the vector information directly into the equations. By recognizing the cylindrical 

symmetry and axial homogeneity of the positive column (section 2.1.1) we finally reduce 

the problem from six dimensions down to two, one radial and one speed. 
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The previous two-term expansion is valid if: the energy gained from the electric 

field between collisions is small, and the total number of elastic collisions is significantly 

greater than the inelastic ones. These conditions ensure the electrons are well distributed 

in velocity space, i.e. isotropic, and for the conditions of interest are generally considered 

valid [14, pg 2]. 

As derived in Appendix B, the solution continues by substituting (9) into (8), 

expanding the V operators, and keeping just the zeroth and first order terms. We also 

consider the source/loss terms in the collision integral, adding the contributions from 

elastic and inelastic collisions, as well as electron production arising from collisions 

between excited state neutrals. 

With further manipulations, the final result is a single elliptic PDE. In this 

transformed state, the solution is a function of radial position and total energy; in other 

words, f0 is now the electron energy distribution function. The CBE for the strict kinetic 

method becomes 

r or  3K[r,E\dr d£   3K[r,e] de de 

where 

G[r,£]^2^2NkQl'[u] (11) 
k    Mk 

k     I k     I k 

K[r,£]^NkQ
e

k'[u] + H[r,£] (13) 
k 

S0[r,u,f0] = XX u'u Nk QTasWa-\ f0[r,u'kl] (14) 
k     I 
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These term definitions follow the formalism of Uhrlandt and Winkler [7, pg 520]. 

Specific parameters include: Ez - the axial electric field; Nk - the number density, where 

k refers not only to different neutral species, but also to different excited states of the 

same species; m - mass of the electron; Mk - mass of the neutral species k; and 

Qk!
rocess[u] - the collisional cross section, which depends not only on the process 

involved, but the kinetic energy and collision partners. 

Interpreting equations (11)-(17), G[r,e] is the scaled elastic momentum transfer 

term. H[r,e] sums the three inelastic collisions (excitation, de-excitation, and ionization), 

becoming the total inelastic term, while K[r,e] includes both elastic and inelastic 

collisions, giving the total momentum transfer term.  SQ[r,e,f0] is a source term, adding 

electrons at energy u based on inelastic collisions taking place at other energies u . 

Upon closer inspection, we recognize that (10), like (8), is a continuity equation. 

The first term, -—(—— — fn), represents the divergence of the radial flux; as u 
rdr  3K[r,£]dr   ° 

increases, the flux increases, while as K[r,e] (the total collision term) increases, the radial 

^i {        XT'   \^      Ü 

flux decreases. The second term, —tu^e°  z'—— 7), denotes the divergence in energy 
de   3K[r,e] de  ° 

space of an electric field driven flux; again this flux tends to increase as u increases, yet 

diminishes as K[r,e] increases. The next term, —(G[r,e]f0), is also the divergence of an 
de 

energy flux, but this time due to elastic collisions. Finally, the last two terms are the 

losses and sources due to inelastic collisions; —uH[r,e]f0 accounts for the losses at a 
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given r and e that occur due to the various inelastic collisions. Corresponding gains from 

other energies appear in 50[r,e,/0]. 

In the course of deriving equation (10), the following relationships for the 

components of /, arise (see Appendix B): 

1      3 ~ 
K[r,e]dr' 

fr[r,e] = -7^-;—f0[r,e] (15) 

7jr,e]=-^-^-/0[r,e] (16) 
K[r,e]de 

Equations (15) and (16) are used initially to formulate boundary conditions, and after 

solving the problem, to calculate macroscopic quantities of interest such as the particle 

and energy currents, radial and axial heating, and local particle and energy balances (see 

Appendix A). 

Although the development of the CBE is complete, we have not yet specified 

exactly which collisions will be considered. In addition, the form for S0 is still general. 

The next section addresses these issues. 
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to V                 from V 

Excitation De-excitation 
to /             from / 

T 

Figure 4 Energy level diagram depicting three types of inelastic electron 
collisions involving neutral species k and excited states / and /'. 

3.1.2. Discussion of Collision Terms 

Careful consideration of the relevant collision mechanisms is required to achieve 

a robust and flexible simulation, yet it is not necessary to include every possible type of 

collision in order to create a quantitatively accurate model of the system. Many of the 

collisions, such as electron/electron, rarely occur in the weakly ionized gases considered 

and therefore contribute little to the overall electron distribution. By disregarding 

negligible terms, the model remains accurate and relatively simple to implement. 

Our treatment considers three classes of inelastic collisions: excitation, de- 

excitation, and ionization. We ignore volumetric recombination, choosing instead to 

assume that all recombination occurs at the wall as part of the wall loss boundary 

condition. This is a reasonable assumption for the low electron/ion densities considered 

as well as the relatively high electron temperature that results. In the case of elastic 

collisions, we include only electron/neutral and disregard electron/ion and 
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electron/electron collisions. This again limits the treatment to weakly ionized plasmas in 

which these types of collisions are negligible. 

Collision of 1st Kind (Excitation) Ionization Collision 
e + N-> e' + N* e + N -> 2e + N+ 

u'=2u + u"""za"0" 

Collision of 1st and 2nd kind involve shifting one 
„i .      . electron. Ionization creates an electron and shifts 

Collision of 2   Kind (De-excitation)    another 
e + N* -» e' + N 

Figure 5 Electron scattering in three types of inelastic electron collisions. 

The inelastic collisions considered in this model are represented in Figure 4 and 

Figure 5. Figure 4 illustrates the effect inelastic collisions have on the neutral species' 

internal energy levels. The complementary view in Figure 5 shows the effect of the same 

collisions on the kinetic energy of the electrons. 

Excitation, or a collision of the first kind, inelastically scatters energetic electrons 

to lower energies, while promoting the colliding atom or molecule to a higher internal 

energy state. The electron's energy loss is equal to the excitation threshold of the neutral 

species. Because the plasma in this treatment is weakly ionized, excitation of ions is 

neglected. The density of excited state neutrals is also relatively small; thus any further 

excitation to higher electronic levels is also neglected. 

The reverse process is de-excitation, a collision of the second kind, or a super- 

elastic collision. In this case, collisions occur between electrons and excited state 

neutrals, scattering the electrons to higher energies as the excitation energy of the neutral 

is transferred to kinetic energy in the electron. Once again the ion density is considered 

too small for excited-state ion/electron collisions to contribute to the solution. 
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In the case of ionizing collisions, we consider two types: between energetic 

electrons and ground state neutrals (Figure 4 and Figure 5), and between excited state 

neutrals (Penning ionization). As in the case of excitation, collisions between electrons 

and excited state neutrals (step-wise ionization) are disregarded. 

The Penning ionization term is very important, from both a physical and 

computational standpoint. Consider the homogenous nature of equation (10), where 

every term depends on/0; this means there are an infinite number of proportional 

solutions. In contrast, the Penning term depends only on the number density of excited 

state neutrals and the rate coefficient of electron production. Introduction of this term 

adds an inhomogeneity to the equation set, and resolves the solution. An inhomogeneous 

term can also arise through the introduction of certain boundary conditions, but not all 

boundary conditions produce this effect. It is therefore important to include the Penning 

ionization in order to obtain an absolute solution. 

Returning to equation (10), the expression for S0 is now expanded to show the 

contribution of each inelastic collision: 

S0[r,u,f0] = ^ P- NkNk*zkk* ö[uPemi»t] (17) 

+ XX (" + "«) Nk Q5[u + u%] f0[r,u + u%] 
k      I 

+ X4 (2u + u?) Nk Q^lu + ui0] f0[r,2u + u[°] 
k 

+ II(»-"«)^Ö>-<] Ur,u-ud
kn 

k     I 

Ignoring for a moment the Penning term, the other three are strikingly similar, combining 

a collisional interaction energy, neutral number density, cross section, and/0. The major 

difference between them is the interaction energy. This energy is the amount required for 
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the scattered electron to end up with kinetic energy u. For example, under excitation, the 

electron collides with a neutral, transferring energy equal to the excitation threshold (see 

Figure 4 and Figure 5). Therefore, for the electron to end up with kinetic energy u after 

the collision, it must have energy u + uexc,mwn before the collision. The rationale is 

reversed for de-excitation. In the special case of ionization a new electron is formed, thus 

the interaction energy must be sufficient to overcome the ionization threshold and 

provide kinetic energy u to both electrons. By giving both electrons kinetic energy u, we 

have assumed that they equally share the excess energy. 

Unlike excitation and de-excitation, the ionization term contains a prefactor of 4. 

This 4 is actually comprised of two parts: a factor of two to account for the newly 

released electron and a second factor of two that relates to the energy bin spacing. 

Consider the case of excitation, in that collision the scattered electron maps directly from 

one energy bin (u + u
excm"m) to another («). In ionization, however, the electron starts in 

an energy bin (2u + u"""m"on) that is twice as wide as the destination bin («). The second 

factor of two accounts for this difference in bin widths. 

Returning to the case of Penning ionization, the number of electrons produced at 

energy u is a function of the number density of excited state neutrals and rate coefficient 

of electron production, zkk*. The delta function, ö[uPenmng ], represents the assumption 

that all Penning electrons are produced at a single kinetic energy5, uPennins. When the 

excited state neutrals collide, they relax to their ground states; the released energy frees 

5 Some authors [7] choose to spread the Penning electrons out across a range of energies, but that is not 
done in this model. 
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an electron, with any remaining energy going into electron kinetic energy. Thus uPennins 

is equal to the sum of excitation thresholds of the colliding neutrals, minus the ionization 

threshold of the gas species. 

3.1.3. Boundary Conditions to the Solution Equation 

Before attempting a numerical solution to (10), the only remaining task is to 

specify boundary conditions to the solution area detailed in Figure 6. The four 

boundaries correspond to r = 0, r = i?wall, emax, and u = 0, since the kinetic energy of an 

electron can not be negative as the total energy goes to zero. 

Total 
Energy 

(eV) 

(1) r = 0 

/ 

t (4) r = R wall 

(3) e. 
^ 

-V. wall 

Radius (cm) 

Figure 6 Diagram of typical solution area including the four boundaries. 
Boundaries (2)-(4) are determined at run-time by the input conditions. 
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Two of the boundaries are relatively straightforward. First, for the cylindrical systems 

usually associated with the positive column, the radial anisotropy,/r, must be zero at 

r = 0 in order to remain symmetric around the axis. 

fr[r,e] = 
1 

K[r,£] dr 
a 7r    ^ 

= 0 (18) 

For the u = 0 boundary we expand (10) and take the limit as u -> 0 to obtain the second 

condition. This leads to 

(e0Ez)
2^--e0Er[r]^- 

de dr 
foir,e] = 0 (19) 

e=-e0V[r] 

The third boundary is not as straightforward. We require the EEDF to go to zero 

as e -> °o , and this is in fact the boundary condition chosen by Uhrlandt and Winkler [7, 

pg 522]. Unfortunately, the numerical solution grid must end at some finite (preferably 

small) upper limit, and in that case the EEDF is not zero. We ran simulations of this 

boundary condition using a simple model that had an analytic answer. These simulations 

demonstrated that forcing the EEDF to zero prematurely introduced significant errors. 

The condition 70[
r>emax ] = 0 is not valid unless the model is run to extremely high 

energies, but doing so exponentially increases the computer memory requirements and 

processing time. These same simulations lead to the resolution. 

The analytic simulations showed that while setting the last energy bin to zero 

introduced significant errors, setting it to a fraction of the previous bin did not. Choosing 

the fraction amounts to specifying the slope of the EEDF at the highest energies [15, pg 

282], and allows us to write Jot./™* ] = ^/oÜ™* ~1] where; refers to the energy index 

and A the fraction. Early versions of the model considered only elastic collisions with a 
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constant collisional cross section and no radial potential. Under these assumptions, (10) 

has an analytic solution, the Druyvesteyn distribution (section 2.2). This analytic result 

initially provided an excellent slope for the top boundary condition. However, once we 

included inelastic collisions into the model, the distribution became distorted enough 

from a Druyvesteyn to require a new functional form. 

In order to successfully utilize the fraction A as an upper boundary condition, we 

needed an analytic function that reflected the contribution from inelastic collisions. At 

the highest energies, equation (10) takes on a limiting form in which the field driven flux 

toward higher energy is balanced by inelastic collisional losses. This equation can be 

solved approximately, providing an excellent choice for A. The derivation is found in 

Appendix C. With it, the third boundary condition becomes, 

MrJ^AfarJ^-l] (20) 

A = expr— B(u.     —u-     ,)1 

It is important to note that when implemented as written in (20), the boundary 

condition broke down near the wall. As r approaches #wall, the kinetic energy u at emax 

decreases. This constriction in energy space violates the earlier assumption of field 

driven flux balancing collisional losses. To overcome the problem, we used wmax[r=0] 

instead of wmaxM when calculating both ß and A. Another possible fix would be to find a 

new limiting form for the distribution that holds true near the wall. But this would also 

require merging the two boundary conditions at an intermediate r. As it stands, the 
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current method works well for the parameters of interest, and is superior to assuming 

folr,£naJ = 0. 

The last boundary condition at r = i?wall is also difficult. Electrons with sufficient 

total energy may overcome the radial potential (e > -e0V[rwall]) and be "absorbed" at the 

wall and hence lost to the system. Thus, at the wall, we need to include some form of 

loss mechanism; this loss will also balance the gains from ionization to produce the 

steady state. Again, initially following the paper of Uhrlandt and Winkler [7], we set the 

radial anisotropy equal to a proscribed loss function at the wall. 

frKaii^ = -— -—(f0[rwall,e])=Acxp[-au2[rwall,£]] (21) 
K[rwall,£]dr 

where the parameters a and A are available to adjust the total amount of loss (see section 

4.4). 

Uhrlandt and Winkler experimented with a number of different wall loss 

functions, most variations of the exponential form in (21) [16]. They came to the 

conclusion that except for the region very near to the wall, the solution to the EEDF 

yields essentially the same results independent of the loss function, provided that the 

integrated strength is the same [7, pg 524]. 

The Uhrlandt formalism is helpful because it provides inhomogeneous terms to 

resolve our solution, lessening the reliance on Penning ionization (see section 3.1.2). 

However the loss function form is only loosely physically based. The search for a more 

realistic wall loss mechanism led to recent work by Alves, et al. [17] in which they 

presented a more physically based boundary condition called the wall loss cone (see 
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Figure 7). Their derivation is, in turn, an extension of the previous work by both Busch 

and Kortshagen [15] and Tsendin and Golubovskii [18]. 

Uhrlandt and Winkler 
Loss Function 

Jr\-rwall'£i ~ 8\.rwall »^J 

Alves, et al. 
Loss Cone 

frKa,n£] = <;Mf0[rwall,e] 

-V. wall 

Figure 7 Comparison of the two types of wall loss boundary conditions. 

Using the loss cone formalism, electrons must have enough kinetic energy 

perpendicular to the wall to surmount the wall potential. An additional parameter, the 

wall loss coefficient, permits only a fraction of the penetrating electrons to be lost. 

Unlike the previous wall loss development by Uhrlandt and Winkler, this formalism 

includes a region known as the plasma sheath, illustrated in Figure 7, which is found at 

the tube wall. The plasma sheath is assumed to be infinitely thin, and its main property 

of interest is the drop in potential that occurs across it. In the work by Alves, the sheath 

potential is taken to add and additional -4 to -8 eV to the wall potential [17, pg 899]. 

We wanted to consider both types of wall loss conditions in this treatment and 

therefore attempted to integrate both into the code. To do so, we chose to ignore the 

addition of the sheath potential, A(p, at the wall. Since our treatment can accept any 

arbitrary radial potential (section 3.2.1), we are always able to add an effective sheath 
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potential by modifying the input near the wall. This allows us to mimic the conditions 

considered by Alves, while including the Uhrlandt formalism as well. 

Taking A<p = 0, the modified loss cone boundary condition is, 

7'[r-£]=-Ä^^»[r-£))=!S^)7o[r-£]     (22) 

where % is the reflection coefficient, which runs from 0 to 1. Like the parameters a and 

A in (21), % adjusts the total amount of loss occurring at the wall 

Unlike the Uhrlandt formalism, the loss cone does not provide an inhomogeneous 

term for our solution set. This leaves only the Penning term to resolve the system. But in 

some cases, the contribution from Penning ionization is too small to accurately drive the 

system, resulting in an unstable solution. When this happens we choose to accept the 

homogeneous equations, and resolve the system by assigning the EEDF a value at a 

particular point in the system, e.g. set f0[r,pecial,sspecial] = 1. This allows us to solve the 

homogenous system rather than trying to force a suspect inhomogeneous solution. 

With the equations developed, and the boundary conditions formed, we are ready 

to find a numerical solution to the elliptic differential equation. 

3.2. Numerical Method of Solution 

The numerical method used to solve (10) is clearly described in numerical 

analysis textbooks such as Burden and Faires [19]. We start by forming a grid over the 

solution space. This grid specifies all of the solution points within the space, as well as 

the boundary points. Next, the CBE and boundary conditions are discretized. This 

allows us to form an equation for each solution point involving its neighbors. The 
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complete set of equations corresponds to a linear system of the form A x = b, which is 

solved for x (fQ) using Gaussian Elimination. 

While the brief outline above points to the simplicity of the numerical method, a 

number of challenges arise during implementation that are presented in the following 

sections. The first is how to form a grid over the solution space (shown in Figure 8). The 

technique used to do this is covered in section 3.2.1. In forming the grid, we use unequal 

spacing in both the radial and energy directions. This unequal spacing requires a more 

complicated set of differencing equations than those used for equal grid spacing. Section 

3.2.2 details this. Finally, the linear system depends on a matrix A, which is sparse 

banded. While simple Gaussian Elimination can be used to solve it, a more sophisticated 

technique discussed in section 3.2.3 is employed which speeds the solution and reduces 

memory requirements. 

NJ,en 

Energy 
(/') 

NI 

SPEC 

"V  ^ J 
V 

uniform spacing Ar non-uniform 

"T uniform 
_£ spacing AF. 

1 
^^" ^-V[r] 

>  non-unii orm 
^^-~~**' 

 i 
, =_1 ' 

-V, wall 

SPEC 

Radius (i) 

NI, Rwall 

Figure 8 Diagram of basic parameters used in forming the solution grid. 
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3.2.1. Forming the Solution Grid 

The first step in the numerical solution is to create a grid overlying the solution 

space. However, in our case, the shape of the solution space depends on the problem 

considered. Figure 6 shows that the lower boundary (u = 0) depends on the radial 

potential (-V[r]), which in turn depends on the specific parameters of the discharge; so 

the gridding technique must be able to handle a "general" input potential. 

Although using a uniform mesh is desirable, a number of problems immediately 

arise. First, the grid points do not necessarily intersect the u = 0 boundary. This would 

force us to interpolate the boundary condition and solution in this region. Second, the 

shape of the potential dictates that some regions require a finer grid than others do. This 

is especially true near the wall, where the potential can change rapidly. These difficulties 

convince us to forgo uniform spacing and employ a non-equidistant mesh. 

To create the grid, first consider Figure 8, which shows the relationship between 

the various grid parameters. In the diagram, NI and NJ refer to the maximum bin index 

in the radial and energy directions respectively. SPEC is a special value chosen to 

optimize the density of grid lines; during implementation SPEC is normally set to be 

NI/2. Using Figure 8 we can write equations which relate the various parameters. 

SPEC ■ Ar + rnon_mifom = Rwall (23) 

r       -i non-uniform 

NI 

=   £(l-rH) (24) 
i=SPEC+\ 

(NI - SPEQAe + £non_miform = -Vwall (25) 

SPEC-X 

^non-uniform ~    £j^   j+l ~    i> 

= -V[SPECAr] (26) 
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At this point the equation set is underdetermined. In order to resolve the system, 

we choose to enforce a relationship between the two uniformly spaced regions. We force 

the normalized distance between 0 and SPEC on the radial axis and SPEC and NI on the 

energy axis to be the same. This relationship produces equation (27), and with the use of 

(23)-(26) allows us to solve for Ae. 

SPEC Ar    (NI-SPEC)Ae 

R -V ivwa// y wall 

R.. 

(27) 

-ywa„ +V[^f^(NI-SPEC) Ae] 
Ae = -^  (28) 

NI-SPEC 

With these six equations we now have a method to generate the grid: 

a) Input the parameters NI, SPEC, /?wall, Vwall, emax. Input -V[r] as a set of data 
points, this will also permit calculation of the inverse, -V1!/]. 

b) Calculate Ae using the transcendental equation (28). 

c) Find Ar using (27) and NJ = £™*+V™* + NI 
Ae 

d) Create part of the radius grid. From i=\ to SPEC, radius[i]=radius[i-l]+Ar 

e) Create the energy grid. Fromy'=l to SPEC, energy\j]= -V[radius\j]]. And for 
j=SPEC+l to NJ, energy\j]=energy\j-l]+Ae. 

f) Finish the radius grid. From r=SPEC+l to NI, radius[i]= -VA[energy[i]]. 

After completing steps a) through f), the grid is formed. 

As mentioned earlier, each intersection on the grid corresponds to either a 

solution point or boundary point. The distinction is that every solution point has a 

corresponding equation assigned to it, while the boundary points are used only to form 

the equations of their neighbors. In this treatment we decided to include three of the 
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boundaries in the solution space, reserving the top boundary, emax, solely as a boundary 

condition. 

Figure 9 shows the solution grid in i-j space; notice that unlike the radius-energy 

grid in Figure 8, the spacing is uniform. In addition, the u = 0 boundary is always a 

straight line, regardless of the input potential (-V[r]). For these reasons, it is often easier 

to think of the solution grid in i-j space rather than radius-energy. 

NJ 

i i i i i i 

<r 1 4 4 4—4 j ^ 
!    m+l 

m-INCDOWN 

!       !   \ 

s m = DIM 

!       !   / 

m+INCUP 

Solution point 
m 

Figure 9 A schematic of the grid in///'space. Solution points, m, 
are numbered sequentially from 1 to DIM. 

The solution points are numbered sequentially starting at the origin, m = 1, and 

proceeding up the energy axis to the last bin, A/7-1. The count continues in the next radial 

bin, starting at / = j, and continuing to the last point when i = NI and y = N7-1.   This last 

point corresponds to the total number of equations and solution points in the grid, and is 

referred to as DIM, the dimension of the solution. When we employ the finite 

differencing scheme (section 3.2.2) we will need to refer to the points surrounding every 
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solution point. In the energy (j) direction we can simply add or subtract one to reference 

the surrounding solution points. In the radial direction however, the enumeration is not 

that simple, and we must use counting variables INCUP and INCDOWN. There are also 

occasions where we must refer to points two radial bins away from a solution point; in 

those cases we use the variables INC2UP and INC2DOWN. With the help of Figure 9, 

we derive the following expressions for the variables in the counting scheme, 

m = j-i + l + iNJ-^^- (29) 
2 

„„,    2NJ-NI + 2NINJ-NI2 ,,m DIM =  (JU) 
2 

INCUP = NJ-i-l (31) 

INCDOWN = NJ-i (32) 

INC2UP = 2NJ -2i-3 (33) 

INC2DOWN = 2NJ - 2i +1 (34) 

Now that each solution point has a label, m, and we have a mechanism to 

reference the surrounding points, we are ready to transform the equations into a finite 

differencing form. 

3.2.2. Finite Differencing on the Non-Uniform Grid 

In order to write an equation for each solution point in the grid, equation (10) 

must be transformed from an analytic PDE into a differenced equation. In the case of 

uniform grid spacing this means using well known formulae such as the three point 

equation, 

,/[^+1,eJ-2/[r„e;] + /[rM,ey.] 3   f[r,e] 
dr 

(35) 
. . n 
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-\2 

which approximates the second order derivative, —-/[r;,£.], on a uniform grid with 
or 

step-size h. Since the grid spacing in our treatment is not uniform, we require slightly 

more complicated versions of (35). 

This analysis follows the example of Uhrlandt and Winkler [7, pg 528], 

employing a three point central-differencing scheme except at the boundaries, where we 

invoke either forward or backward differencing. The equations are derived using the 

Method of Undetermined Coefficients, outlined in most numerical analysis textbooks. 

The results are presented below, along with a number of step relations used to simplify 

the expressions. 

d 
or 

t,j 

-f/[r,e] 
or 

j-flr,£] or 

i-lj 

= \. = B,(a, ■ (fi+hj - fu)-/?(/,,„• - fu)) (36) 

= V,,y = Bt (-«,. • (fMJ - fu) - (A + 2)(/Hj - fUj)) (37) 

= hMJ = B,((2 + at)(fMJ - /,,,) - j8(/wj - fu)) (38) 

where h is introduced as a shorthand notation, and 

B,=l/{rM-rM) 

a,=(r,-rM)/{rM-r) (39) 

Similar expressions are also developed for —f[r,e] where B, a, and ß become C, y, 
de 

and 8 respectively. Equations (36)-(38) are used further to develop expressions for the 

second derivative. In the case of central differencing, this becomes 
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dr or 
= B, (a, {PMJhMJ - P^j)- ß, (PHJVu " 1 A,))       W 

ij 

where P[r,e] is an arbitrary function. Again, very similar expressions arise for the second 

derivative with respect to energy. 

Using (40) and the corresponding equation for energy, we can transform (10) into 

finite differenced form. At the grid boundaries, care is taken to use either a forward or 

backward differencing equation such as (37) or (38), and to substitute in the appropriate 

boundary condition. The complete set of differenced equations is rather long, so it is 

presented in Appendix D. 

Once the CBE is transformed, it can be evaluated at each solution point. Each 

solution point then has a corresponding equation, and we are ready to solve the resulting 

linear system. 

3.2.3. Solving the Sparse Banded Matrix 

Once every solution point in the grid has an equation associated with it, the entire 

problem is reduced to solving a linear system of equations of the form A x = b.  These 

systems are readily solved using Gaussian elimination, and many algorithms are available 

which implement this technique. However, simple Gaussian elimination is rather slow 

since the number of operations required is proportional to the cube of the number of 

matrix elements. Early test runs on a Pentium 166 took approximately one hour to solve 

a system with only 50 radial and 70 energy (50 X 70) bins. Our goal was to do 

"production" runs with approximately 300 X 500 bins, which, using equation (30), 

corresponds to an A matrix with over 1010 elements. This would have severely taxed 

currently available super-computing resources. 
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(b) 

Figure 10 Sparse Banded Matrix in traditional storage (a) and reduced storage (b) as 
required by DGBSV routine. Zero elements are not shown. 

But the A matrix is special. As with most numerical PDE solutions, the A matrix 

is sparsely populated along the main diagonal. This special form is called sparse banded 

(see Figure 10). We can take advantage of the abundance of zeros in the matrix to reduce 

both the program's memory requirements and time of execution. 

The obvious way to decrease the memory requirement is to store only the non- 

zero bands of the matrix. This requires special algorithms to create, initialize, and access 

the matrix elements, which adds time to the overall process, but the reward is a dramatic 

reduction in the amount of memory required. In the case of a 300 X 500 grid, the number 

of matrix elements held in storage falls from 1010 to 108 using this technique. 

Advance knowledge of the many zeros in the matrix can also dramatically reduce 

the number of operations needed to solve the system. The system is still solved by 

Gaussian elimination, except the algorithm is fine-tuned to speed the solution as much as 

possible. The specific algorithm used in this work is called "DGBSV" and comes from 

the LAP AC set of routines made available on the National Institute of Standards and 

Technology Internet site. 

DGBSV requires the A matrix be transformed to a special form as shown in 

Figure 10. Under the transformation, each diagonal in A becomes a row in A'. The new 
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matrix has the same number of columns as A, but the number of rows is reduced to 

2NL+NU+1. NL is the number of lower diagonals and NU the number of upper 

diagonals in A. The first NL rows of A' are filled with zeros initially, and used by the 

routine as a work space. 

The DGBSV routine comes from a family of algorithms created to solve special 

matrices. It calls two other functions, DGBTRF and DGBTRS; the first computes the LU 

decomposition of A', while the second performs back substitution using b to get the 

answer. This presents an opportunity to solve the problem quickly with multiple forcing 

vectors. Since the majority of the execution time is spent finding the LU decomposition 

of A', very little is added by calling DGBTRS multiple times. It also opens the window 

to efficiently implement a time dependent solution in the future. 

The final size of A', and hence the time required to solve it, depends directly on 

the number of diagonals in A, and the number of diagonals depends directly on the 

differencing scheme. In most cases, we use three point central differencing, which results 

in 2NJ-X diagonals in A. However, as described in section 3.2.2, the lower boundary 

requires backward differencing in the radial direction. If the three point scheme is used, 

it increases the number of diagonals in A to 3NJ-3, which is a significant increase for 

large NJ. To circumvent this problem, we chose to employ only two point differencing 

on the lower boundary, keeping the number of diagonals in A at 2NJ-1. While the two 

point scheme is less accurate than three point, it is only used on the lower boundary, 

which constitutes a small fraction of the solution points, and testing showed that 

deviations between the two methods appear only in the 7th significant digit of the result. 
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Using the DGBSV algorithm instead of straight Gaussian elimination 

dramatically reduced the program's run time. The 50 X 70 bin test case, which 

previously took about an hour on a home PC, now finishes in less than one minute. The 

largest grids (300 X 500) are run at the Major Shared Resource Center on a SGI/Cray 

Origin 2000 computer. In those cases, the program requires 2 Gb of memory and takes 

about 30 minutes to finish when using only one CPU. The execution time of the solution 

scales approximately as the square of the number of solution points. 
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IV. Implementation of the Strict Kinetic Solution 

In this chapter we step through four distinct phases of development and validation 

in the code. At each step we gain insight into the electron kinetics within the discharge, 

as well as establishing the capabilities and limitations of the model. The first phase treats 

the simple case of a homogeneous system, excluding inelastic collisions and assuming a 

constant elastic collision cross section. Under these restrictions, we have an analytic 

solution to validate the numerical solution; it is the Druyvesteyn distribution discussed 

earlier. Next, we add a non-trivial radial potential to the model, comparing the numerical 

results to an analogous analytic solution. In the third phase, we begin to add source and 

loss terms. While not physically representative collision terms, these point sources and 

losses demonstrate some of the capabilities of the model and elucidate behavior typical of 

the local and nonlocal regimes. Finally, we complete the development, adding the 

realistic collision terms as well as wall loss to the system. 

4.1. Phase I: Radially Homogeneous System 

This first version of the model neglects inelastic collisions and the influence of a 

radial electric field, and assumes a constant elastic cross section (ö[u]=ß). With these 

simplifications, (10) becomes 

19       ru      B ~    |   B   u(e0Ezf B  ~       B 
rBr 3K[r,e]Br  °     Be   3K[r,e] Be  °     Be 

— (^—T—/o) + —(T^T7—/o) + ^-(G[/",e]/o) = 0 (41) 

where u equals e, since the radial potential is assumed zero. As there are no volumetric 

sources in the system and a steady state solution is sought, there can be no loses, and thus 
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the wall boundary condition is set to perfect reflection. In other words the flux of 

electrons at the wall is set to zero, fr = 0. 
r=Rwall 

Because the system is homogeneous by design, we know that the local 

approximation is satisfied (see section 2.2). As noted previously, assuming a constant 

elastic cross section and no inelastic collisions the CBE has an analytic solution; it is the 

Druyvesteyn distribution given in equation (3) and shown in Figure 3b. Recall that in the 

local approximation, the radial term (-—(—— — 7 )) is assumed negligible and 
rdr 3K[r,e]dr   ° 

dropped, whereas in the numerical model it is included but, if implemented correctly, still 

yields the local result. 

We ran the model on a uniform grid with NI =10 and NJ = 100, using only ten 

radial bins since the system was radially homogeneous. In order to compare the model 

output (/„[>,£]) to the analytic result (F[r,e\), we normalized /„ at each solution point, 

i.e. F[r,e] = f0[r,£]/ne[r]. Comparing the numerical model output to the analytic result 

at each solution point, we obtained relative errors between the two no greater than 1%. 

The next step was to add a spatially varying radial potential. 

4.2. Phase II: Include Radial Potential 

Using the gridding technique presented in section 3.2.1, we added a general radial 

potential to the model. At this point, we still neglected all inelastic collisions; thus 

equation (41) remains valid. However, with the addition of the potential, the system is no 

longer radially homogeneous, and the local approximation does not necessarily hold. 

Although the system is no longer guaranteed to satisfy the local approximation, we can 

force it to this regime with a judicious choice of input parameters. Since we had already 
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validated Phase I against the local approximation, we chose here to compare to the 

nonlocal approximation. 

As noted in section 2.3, we can, under certain assumptions, analytically solve (41) 

using the nonlocal approximation. With no inelastic collisions, a constant elastic cross 

section, and a quadratic form for the radial potential, we arrive at the modified 

Druyvesteyn distribution, equation (7). It is important to note that this 1-D derivation 

assumes that all electrons have a total energy less than (p[Rwall\, which is effectively the 

same as assuming an infinite wall potential. Because our treatment is 2-D, it obviously 

includes a finite limit on (p at r = Rwall. To accommodate this difference, we reduced emax 

to <p[flwa„]- 

In the previous phase (section 4.1) the system was homogeneous, so we knew it 

satisfied the local approximation; but in this case we had to ensure the system was in the 

nonlocal regime. This meant setting the PR value such that the electron energy relaxation 

length was much greater than the tube radius, the opposite requirement of equation (4). 

We ran the model for hypothetical gas at a pressure of 0.1 Torr and r = 1cm 

(PR = 0.1). As required, this PR is much less than the 3 Torr-cm established on the 

right-hand-side of equation (5). The addition of the radial potential forced us to employ 

the non-uniform grid of section 3.2.1, and we chose to set NI= 100 and NJ = 105 in an 

effort to approximate the energy mesh density of Phase I. Using these parameters, we 

again obtained relative errors between the analytic and numerical results of less than 1% 

throughout the volume. 

Having added the radial potential into the system, we moved on to include 

volumetric sources and losses. 
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4.3. Phase III: Add Source and Loss Terms 

With the addition of inelastic collisions, the model would be complete. But 

before addressing these complicated terms, we investigated how the model reacts to very 

simple losses and gains. As in the previous section, we continued to neglect inelastic 

collisions, assume a constant elastic collision cross section, and use a quadratic radial 

potential. Equation (41) is used to describe the system, along with a "total reflection" 

wall boundary condition. 

We started by adding a simple point source to the volume at a given radius and 

energy. In this case the source term is an inhomogeneous addition to (41), e.g. +1014, at 

one particular solution point, /, £'. Since there are no losses at the boundaries, a 

volumetric loss is included to maintain a steady state. As with the source term, the loss is 

established at a single computational point, in this example /, e". While the source term 

is inhomogeneous, the loss is proportional to the local population. Global particle 

conservation then fixes the population at the loss point such that 1014 = Af0[r',e"], 

where A is the proscribed factor of proportionality. 

Based on physical reasoning alone, we expect that at the source and loss points 

the EEDF will display "deviations" from the unperturbed Druyvesteyn form (Figure 3b 

page 9). Since electrons are being added at the source point (/, e'), the distribution 

function there should be slightly higher than neighboring radial bins. Conversely, at the 

loss point (r, e")> where electrons are removed from the system, the distribution should 

show a deficit. We find in fact that this behavior is highly dependent on the pressure 

regime of the system. 
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Running the model at different pressures, we noticed a manifestation of local 

versus nonlocal behavior. In the local (high-pressure) case, the electron energy relaxation 

length is short; hence disturbances in the distribution function are confined to the radial 

location of the source/loss. In the nonlocal regime the opposite is true, and any 

disturbance in the distribution is propagated to all radii. Figure 11 illustrates these 

differences. 

source (r'e') 

loss (r',e") 

~S^~^ source ir',ef) 

"\\Joss (r'.e") 

Total Energy Total Energy 

Figure 11 Log/linear plots of the EEDF versus total energy at five neighboring radial bins 
demonstrating the effect of a volumetric point gain/loss in the local (a) and nonlocal (b) 
regimes. The plots are vertically offset in order to distinguish differences between them. 

In the figure above we see the results of the volumetric point gain/loss, and how 

its effect is propagated in radius. In both cases the solid line identifies the distribution at 

/, the radius at which the loss occurs, while on either side of it, the dashed lines show the 

distributions of four neighboring radial bins. The curves are vertically offset in order to 

distinguish the differences between them. For the local case (a), the distribution is 

reduced dramatically at the point of the loss, but only two radial bins away has recovered 

almost completed. In contrast, the nonlocal regime shows less depletion of the 

distribution at r' and the deficit is apparent at all r. The log scale of the figure masks the 

effect of the point source in both cases. 
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The results discussed above are different than those obtained in a one-dimensional 

solution, as shown in Figure 12. In a 1-D model, such as the local or nonlocal 

approximation, the distribution function is unable to recover from a point loss, and takes 

on a reduced form at all energies greater than e". In the examples of Figure 11, both 

distributions recover at higher energies because electrons are able to flow around the loss 

point. These electrons feed the high-energy tail of the distribution, maintaining its 

overall shape. In a 1-D model, there is no way for the electrons to flow around the loss 

point; thus the distribution never recovers from the loss. 

If point losses are included at all radial bins, generating a line-of-losses in the e-r 

space, we obtain results analogous to the 1-D models. As explained above, the reason the 

distribution functions in Figure 11 recover at higher energies is because electrons are able 

to flow around the loss point, feeding the tail. Extending our model from a point loss to a 

line-of-losses impedes this flow. Once the loss extends across all radii, there is no longer 

a path to the high-energy tail, and the distribution takes on a reduced form identical to a 

1-D result. 
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Legend 

Model Output 

Undisturbed Distribution 

Figure 12 Log/linear plot of the EEDF versus energy for the case of a point source and 
an uninterrupted line-of-losses within the 2-D strict model. Model output is also 

equivalent to the result of a 1-D model with a single point loss. Dashed lines show 
undisturbed Druyvesteyn distributions. 

Figure 12 displays model output for the case of a line-of-losses. Although only 

one radial location is shown, the effect is the same at all radii. In this figure, the solid 

line indicates the model output, while the dashed lines are undisturbed Druyvesteyn 

distributions. The lower curve has been shifted down to align it with the high-energy tail 

of the output. Notice that below 25 eV the output is unaffected by the loss-line. Where 

the loss occurs, there is a steep drop, then at energies above 30 eV the distribution 

recovers to the Druyvesteyn form, although reduced in magnitude. This is exactly the 

same behavior seen for a point loss in a 1-D model. 

These limiting examples demonstrate the ability of the model to react to losses 

and gains within the system. They also serve once again to illustrate differences between 

the local and nonlocal regimes. 
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4.4. Phase IV: Completion of the Model 

After gaining insight using artificial sources and losses, we were ready to add 

realistic collision terms and complete the model. This section discusses implementation 

details of the final solution. 

By including inelastic collisions, the model moves from equation (41) to the full 

CBE, equation (10), and the associated difference equations in Appendix D. The addition 

of volumetric ionization requires us to choose one of the wall loss formalisms, (21) or 

(22), in order to assure a steady state solution. Having added this final functionality, the 

model itself is complete. However, in order to accurately model physical systems we 

must also specify physically representative input parameters. 

A self-consistent model is one that uses only externally determined parameters 

such as the pressure in order to reach a solution. In the case of the positive column, a 

completely self-consistent model would require only: constituent gas data, gas partial 

pressures, axial field strength, and axial current. But the model, in its present form, is not 

self-consistent regarding three internal variables: the radial potential, excited state 

number density, and total wall loss. Therefore, in addition to the externally determined 

parameters, these three internal variables must be specified as well. 

In the present model, values for the radial potential are either assumed or 

measured experimentally. In this thesis we use assumed forms exclusively, usually 

quadratic or cubic. Experimental data, if available, are preferred, but their use is limited 

to the specific parameters of the experiment. Another option is to first run a self- 

consistent nonlocal model, and then use the calculated potential as input to the strict 
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solution. While this method is only an approximation, in most cases it is probably more 

accurate than simply assuming a form. 

A similar situation exists with the excited state number densities, which are used 

in the calculation of de-excitation collisions and Penning ionization (see section 3.1.2). 

These collisions can have a significant impact on the EEDF, if the excited state density is 

a large fraction of the total density. In most physically realistic cases however, we have 

seen that excited state neutrals represent a small fraction of the overall neutral population. 

We therefore feel confident using educated estimates for these values, rather than pursue 

a self-consistent treatment. Future extension of the solution to a quasi-self-consistent 

model is discussed in chapter VII. 

Having estimated values for the radial potential and excited number density, we 

are left with one remaining internal variable - the total wall loss. While the wall 

boundary conditions (21) and (22) proscribe the form of the loss, both have parameters to 

adjust the total integrated loss. We use this parameter to adjust the total number of 

electrons in the system, i.e. adjust the magnitude of the EEDF. Increasing the total loss 

forces the number of electrons to increase as well, in order to maintain the steady state. If 

measurements of the axial discharge current are available, this adjustment allows us to 

match the computed axial current, equation (53), to the experimental value. Without 

these experimental measurements we are forced to estimate the value of the total wall 

loss and adjust the wall loss parameter accordingly. 
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V. Model Validation 

To validate the completed model, we compare its output to previously published 

work as well as to available approximate models. Since our solution formalism closely 

follows the development of Uhrlandt and Winkler, comparison to their work should yield 

nearly identical results. In the limit of high and low pressure, we can verify our results 

against those of the local and nonlocal approximations, using code previously developed 

by Bennett [6]. Finally, we validate the model against a totally different method, namely 

the Monte Carlo simulation technique. 

5.1. Exposition of Model Output and Comparison to Uhrlandt and Winkler Results 

Output from our strict solution is compared to the work of Uhrlandt and Winkler 

[7] for a neon discharge. The parameters for the discharge are a column radius of 

^waii= 1-7 cm, a gas pressure of 0.62 Torr, which corresponds to a density of 

N0 = 2.0xl016cnT3, and an axial current of Iz = 10 mA. The axial field strength is 2.1 

V/cm and the radial potential has a minimum at the wall of V[r] = -21 V. We chose to 

use the Uhrlandt wall loss condition (equation (21)), setting a = -0.1 and A = 1.05xl012 

in order to satisfy the proscribed axial current. For inelastic collisions we considered two 

excited states of neon, a metastable (m) and resonance (r) level, each with population 

densities of 2xl0ncm"3. Further data for those two states are shown in Table 1. 
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Table 1 Electron/Atom and Atom/Atom Collision Data Used in Neon Discharge 
Calculations. Notation: m - metastable, r- resonance, o - ground state. 

Electron/Atom Collision Process Energy loss/gain (eV) 
Excitation Ne0+e   ->Nem+e 

Ne0+e~ ->Ner+e~ 

-16.62 

-16.67 
De-excitation Nem+e~ ->Ne0+e" 

Ner+e" ->Ne0+e~ 

16.62 

16.67 

Ground State 
Ionization 

Ne0+<T ->Ne+ + 2e~ -21.56 

Atom/Atom Collision Process Rate Coefficient (cm3 s1) 
Penning Ionization Ne m + Nem^Ne0+Ne++<T Zll 3.4xl0"10 

Ne r + Ner -> Ne0 + Ne+ + e~ Z22 3.4xl0"10 

Ne m + Ner -^ Ne0 + Ne+ + e~ Z12 6.8xl(T10 

It is important to note a number of differences between the two implementations 

of this strict solution. Both solutions admit a generalized potential, but Uhrlandt used an 

experimentally derived form, while we chose a simple cubic since we didn't have access 

to the same data. In addition, Uhrlandt performed a side calculation to estimate the 

excited state number densities. Although our treatment does not include this side 

calculation, we based our excited densities on the published results of Uhrlandt. The 

input densities do not match exactly, because our model assumes they are uniformly 

distributed, while Uhrlandt allows them to vary with r. Even so the results are 

remarkably similar. 

Figure 13 displays the three scalar components of the EEDF, f0[r,u], fT[r,u], and 

fz[r,u], at two different radii, r = 0.6 and r = 1.2 cm. While examples of the isotropic 

distribution,/0, have been shown previously, this is the first example of the radial and 

axial components. Note that at all radii, the axial component of the distribution is 

52 



negative, reflecting the action of the axial electric field, directed in + z, to bias the 

electron's velocity in the - z direction. The radial distribution, on the other hand, 

undergoes a sign change. At lower energies, a positive fr corresponds to a radial flux 

toward the wall, while at higher energies,/,, turns negative for much of the solution area, 

indicating flow away from the wall. At some point this high energy flow must reverse 

sign in order to satisfy the wall loss boundary condition; this is discussed further in 

Chapter VI. 

fx[r,u] 

(eV3/2 cm-3) 
x=0,r,z 

10 15 20 

Kinetic Energy (eV) 

Figure 13 Log/linear plot of components of the EEDF, for the neon discharge at two radii, 
calculated using the strict solution: isotropic -f0[r,u], radial -fr[r,u], and axial -fz[r,u\. 

A comparison of Figure 13 with that found in the Uhrlandt paper [7, pg 537] 

shows excellent agreement for all three components. At both radial locations, the peak 
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magnitude of/0 matches exactly with those in the Uhrlandt paper, and the overall forms 

of the distributions are identical. The two anisotropic components are also very similar; 

in Figure 13, fr changes sign at energies of 10.5 and 15 eV, while in Uhrlandt's paper the 

reversal occurs at 11 and 15 eV. The anisotropic components also show many of the 

same small-scale variations in both figures. 

While a graphical comparison of our EEDF to Uhrlandt's work is satisfying, more 

rigorous tests exist. From the distribution function, we derive a host of macroscopic 

observables, which are often the true quantities of interest (see Appendix A). Space does 

not permit us to display all of the results, but we obtained excellent agreement with 

Uhrlandt for quantities such as the electron number density, mean energy, and integrated 

currents. However, the most rigorous test of the model comes from looking at particle 

and energy balances. As presented in Appendix A, the particle balance, equation (54), 

equates the particles lost at a given radius (divergence of particle current) to the particles 

gained through ionization sources (ground and Penning ionization rate). Similarly, the 

energy balance, equation (55), compares the net energy leaving a given radius 

(divergence of the energy current) to that gained and lost from collision terms as well as 

the action of the axial and radial electric fields. 

In Figure 14, we see a plot of the particle balance for the neon case considered. If 

the model achieves complete particle balance, the sum of the two ionization rates (ground 

state ionization and Penning ionization) will exactly equal the divergence of the particle 

current at each radial location. As seen in the figure, the total ionization rate for neon is 

everywhere slightly less than the net divergence. However, we obtained relative errors in 

the particle balance less than 2% for the majority of the tube, which is the same as that 
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reported by Uhrlandt. In the region between 0.9 and 1.2 cm, we see a greater deviation of 

approximately 12% in the balance that is as yet unexplained. 

Rates 
(lo14™-^-1) 

Legend 

  div(jr"ic") 
 Ground State 

Ionization (PI) 
  Penning 

Ionization (P2) 
 Total Ionization 

(PI + P2) 

Figure 14 Terms in the electron particle balance as a function of 
radius for the case of a neon discharge. 

If we compare Figure 14 to the equivalent figure in Uhrlandt's paper [7, pg 542], 

we notice immediately the difference in the Penning ionization treatment. As stated 

earlier, Uhrlandt included a radial dependence in the excited state species concentration, 

with a maximum on axis that decays to zero at the wall. Because of this, his Penning 

term reflects the.same radial dependence, contributing zero at the wall. In our model 

however, the excited state species are uniformly distributed, which results in an equal 

Penning contribution at all radii. 
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Figure 15 Important terms in the local energy balance as a function of radius for 
the neon discharge. Not shown are elastic collisional losses and inelastic 

collisional gains, which are insignificant in this case. 

The radial energy balance is shown in Figure 15. As in the case of the particle 

balance, the divergence of the energy current should equal the sum of the various energy 

gains and losses at each radial location. It is important to note that the signs of the 

divergence and inelastic loss terms are reversed from equation (55) in an effort to 

condense the figure. As plotted, the divergence, axial heating, and radial cooling sum to 

give the inelastic loss. In addition, the magnitude of two terms, the losses due to elastic 

collisions (Lelastic) and the energy gains from collisions (Gc), are too small to appear in the 

figure. 

Figure 15 also corresponds to a similar figure in Uhrlandt's paper [7, pg 543]. In 

his results, Uhrlandt quotes relative errors in the energy balance of less than 0.1%. For 

the neon case shown, this treatment achieved errors less than 0.5% for the majority of the 
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tube radius. Near r = 1.2 cm the divergence approaches zero, and the relative error 

increases dramatically; however, this is not considered an indication of any error in the 

model. 

The figure above demonstrates why energy transport is observed from the outer to 

inner parts of the neon discharge. Near the axis, inelastic losses outweigh axial heating, 

but the terms reverse dominance at approximately r = 0.75 cm. Excess energy added 

near the wall thus moves toward the axis to fill the deficit there. Also interesting is the 

effect of the radial field. A net radial current flows outward to supply the wall loss; this 

flow is along the radial field, which (for negatively charged electrons) leads to a small 

radial cooling. 

5.2. Verification Against the Local and Nonlocal Approximations 

Local and nonlocal approximate models present another opportunity to validate 

our solution. While numerous published results exist, we have the capability to use "in- 

house" versions of these approximations developed by Bennett [6]. In this way we can 

ensure the input parameters are exactly the same. In addition, we are able to compare the 

model output directly rather than examine diagrams from a journal article. 

In these tests we want to validate the strict model, not the approximations. With 

this in mind, the input parameters are chosen to create the conditions for which the 

respective approximations are most valid. As an example, neither approximation 

includes a mechanism for wall loss; thus for this validation, we employ the wall loss cone 

formalism, with the reflection coefficient set to 1 - total reflection. Without wall loss, we 

are also forced to neglect ionization sources, in order to satisfy the steady state 

requirement. 
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The model validation was made using neon as the neutral gas, with the same input 

parameters as used in the Uhrlandt comparison above, unless specified otherwise. We 

chose input values to guarantee that the system fell into the appropriate regime, local or 

nonlocal, when comparing to the respective models. Based on the results of equation (5), 

we consider the neon column local at a PR = 50 and nonlocal at PR = 0.1. Keeping the 

ratio of E/N constant, this leads to the following input parameters: local comparison - 

P = 29A Torr, Ez = 99.6 V/cm; nonlocal comparison -P = 0.062 Torr, Ez = 0.21 V/cm. 

One difficulty that exists in the comparisons is that the local and nonlocal models 

use uniform gridding, while the strict model uses a non-uniform grid. Thus the output 

data do not coincide, and we can not calculate the relative error between specific solution 

points in the models. To overcome this, the output from both models is interpolated 

using cubic splines. The interpolation polynomials are then sampled uniformly, using the 

resulting data set to calculate the relative error. 

Another consequence of the difference in gridding is how the cross section data is 

sampled. The elastic collision cross section of neon has a feature at low energies (the 

Ramsauer minimum) that influences the shape of the distribution function. The non- 

uniform grid technique (section 3.2.1) results in high resolution of this low energy 

feature, while for the same number of bins, the uniform grid could not resolve it. To 

correct this deficiency, the local and nonlocal models were run on a mesh with twice the 

number of energy bins as the strict solution. 

Using the input parameters and methodology discussed above, the models were 

compared over a range of 30 eV and at three radial locations (r = 0, 0.5 and 1 cm). The 

results from the nonlocal case were uniformly impressive. The models deviated by no 
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more than 4% in relative error, while the distribution itself spanned over 4 orders of 

magnitude. In the local comparison, the results were equally impressive at the first two 

radial locations, with the relative error again below 4%. But at r = 1 cm, the wall 

boundary, the models deviated significantly. We believe this is due to the rapid decrease 

in the radial potential near the wall, which causes a breakdown in the local assumption of 

no radial variations over the electron energy relaxation length (section 2.2). As such, 

these errors reflect on the local approximation, and not the implementation of the strict 

solution. 

5.3. Comparison to Monte Carlo Methods Using Argon 

In the previous two sections we compared our strict kinetic solution results to 

those of other kinetic solutions. As a final check on the model, we look to a completely 

different technique for verification, Monte Carlo particle simulation. Specifically the 

strict solution is run under the conditions reported by Kortshagen et al. [9], in which they 

investigate the EEDF of an argon discharge. 

As with the Uhrlandt comparison in section 5.1, we again try to match the input 

parameters to those stated in the paper. For the radial potential, Kortshagen assumed a 

quadratic form. At the wall boundary, he employed a Monte Carlo version of the loss 

cone boundary condition, assuming Aq> - 8 eV and total absorption at the wall, % = 0. As 

explained in section 3.1.3., our treatment of the loss cone formalism differs slightly, 

incorporating the potential jump, Acp, as a steep increase in the radial potential just prior 

to the wall, rather than a step function at r = /?wall. Finally, Kortshagen made no mention 

of including the effects of Penning ionization or collisions of the 2nd kind, thus these 

features were turned off for the model comparison. 
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Figure 16 Comparison (a) of Monte Carlo calculation [9] (left) and strict 
solution, present work, (right) for an argon column at three different radii. 

Plotted is the EEDF as a function of total energy. 

We compared the two models for two cases, (a) and (b); the relevant input 

parameters are given in Table 2. Figure 16 presents the results for the first comparison: 

on the left a photocopy from the Kortshagen paper, on the right the output from our strict 

model. A similar presentation is made in Figure 17 for the second set of input 

parameters. 

Table 2 Input parameters for model comparisons between Monte Carlo 
and strict solutions in an argon column. 

Comparison (a) Comparison (b) 
Number density N = lxl0I6cnT3 Ar = 3xl016cnT3 

Pressure P = 0.31 Torr P = 0.93 Torr 
Axial Field Ez = 6.53 V/cm Ez = 12.4 V/cm 
Sheath Potential Vsheath = "8.97 V Vsheath =-10.31V 
Wall Potential Vwall = -16.97 V Vwall =-18.31V 
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Figure 17 Comparison (b) of Monte Carlo calculation [9] (left) and strict 
solution, present work, (right) for an argon column at three different radii. 

Plotted is the EEDF as a function of total energy. 

Although the two models use vastly different approaches to simulate the argon 

column, the results are remarkably similar. In Figure 16, the plots at all three radii follow 

almost exactly those of Kortshagen. In the second run, Figure 17, a slight deviation is 

noted for the EEDF at r = 0.96 cm, but this is attributable to our incorporation of the 

sheath potential increase, Aq>, into the radial potential rather than as a step increase at the 

wall. 

These results, combined with those of the previous two sections, demonstrate the 

accuracy of this strict kinetic model as compared to other well-established solutions. 
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VI. Investigation of Special Topics 

As mentioned initially in the introduction, the main purpose of this thesis was to 

develop and validate the strict solution method. Continuing the theme, this chapter looks 

more closely at some of the characteristics of the strict solution. In doing so, we further 

our understanding of the solution and at the same time reveal interesting properties of the 

electrons kinetics in a glow discharge. 

6.1. Current Flow within the Solution Space 

An exciting consequence of the strict solution is that we can model radial current 

flow within the plasma. Since the approximate methods are one-dimensional and 

disregard wall loss, they result in no net radial flow. In this section, we revisit the results 

of the neon discharge discussed previously in section 5.1, using the same input 

parameters. 

As listed in Appendix A, the radial and axial particle currents are derived from the 

anisotropic components of the EEDF by integrating the particle flux over energy 

(equation (48)). Considering the differential flux, we can map electron flow within the 

solution grid. Figure 18 presents a vector field plot of the electron flux, or differential 

particle current, within the neon solution area. The figure is constructed by combining 

the radial and axial flux components into a vector; all of the vectors are then scaled to the 

same length. Unfortunately, this scaling removes all information about the magnitude of 

the vectors. Note that, although it is not apparent from the figure, the differential flux 

becomes negligibly small in the upper left corner of the solution grid. 
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Figure 18 Vector diagram of electron flux within the neon discharge solution area. 

Three mechanisms contribute to create a particle flux circuit in the solution space 

shown in Figure 18: particle diffusion, the action of the radial electric field, and inelastic 

collisions. Starting near the origin of the diagram, we see that diffusion dominates, 

driving low energy electrons toward the wall, along (but against the influence of) the 

radial electric field. Diffusion therefore produces a small cooling of the electrons. At the 

edge of the tube, some high-energy electrons exit the system via the wall boundary 

condition. The rest reverse course and head back toward the axis, driven now by the 

radial electric field. To complete the circuit, inelastic collisions scatter high-energy 

electrons back to lower energies. The majority of this scattering takes place near the axis, 

because, for a given total energy, electrons there have the greatest kinetic energy. Of 

course, against the backdrop of all this radial flow is the constant action of the axial field, 

driving electrons to higher energies. 
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Figure 19 Integrated current flows within the neon discharge, 
plotted as a function of the tube radius. 

A complementary view, Figure 19, displays the currents for the same neon 

column; these currents are found by integrating the differential flux shown in Figure 18 

over energy (equations (48) - (52)). The net radial current, jf"icle ,is the sum of two 

components: the flow due to diffusion, j^l
0
e

n, and that due to the radial electric field, 

JfiM1' • As described earlier, the diffusion current is comprised of low energy electrons 

moving toward the wall, while high-energy electrons make up the field driven current. 

Notice that the diffusion and field driven currents are nearly equal and opposite, although 

when summed, they result in the net positive particle current (jp
r
article), which supports the 

wall loss. While the net current is positive, most of the high-energy electrons are moving 

towards the axis, resulting in a negative energy current (je
r
nergy). Only near the wall, 

where all of the current becomes positive, does the energy current change sign. 
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It is important to reiterate that only through the 2-D strict solution are we able to 

investigate these radial currents. 

6.2. Applicability of the Approximate Methods 

The strict kinetic method provides a robust and flexible model of the EEDF, but it 

is computationally demanding. Because of this, we might be tempted to employ one of 

the approximate kinetic methods, if they are valid. As discussed in Chapter n, the local 

(nonlocal) approximation is applicable when the electron energy relaxation length is 

much less (greater) than the tube dimensions. While expressions such as (5) attempt to 

formalize this requirement, they do not provide absolute guidance concerning when the 

approximate solutions may be used. Ingold suggests a general range of applicability, 

which is listed in Table 3. 

Table 3 Range of validity for models of interest [8, pg 5943]. 

Method PR<1 1<P2?<10 10<Pi?<100 
Strict Kinetic 
Nonlocal Approximation 
Local Approximation 

Yes 
Yes 
No 

Yes 
? 

No 

Yes 
No 

? 

We know that neither approximate solution will be accurate for all r, because 

neither includes a wall loss. The nonlocal approximation assumes that -^- = 0 
dr 

7\f 
everywhere, which is violated for any nonzero wall loss since fr <>= -^-. Furthermore, in 

dr 

the local case, the radial potential varies rapidly in the vicinity of the wall (Figure 2, page 

8), which violates the assumption that the electron relaxes in energy space before 

conditions change radially. The question therefore, should not be "when are the 

approximate methods valid?", but "how accurate can we expect them to be?" 
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We have already shown in section 5.2 that in their regimes of applicability, both 

the local and nonlocal approximations yield results within 4% of the strict solution over 

at least half the tube radius. However, in that validation phase the rather unrealistic 

condition of zero wall loss was chosen to minimize the differences in the models; we now 

wish to revisit the question using a more stringent evaluation. 

Because our strict solution accurately spans both high and low pressure regimes, 

we can use it alone to determine the validity of the nonlocal and local approximations. 

For instance, in the nonlocal approximation, the EEDF is a function of total energy only. 

Thus, to test the "nonlocality" of the system, we simply compare the values of/0 at 

different radii, keeping e constant. If the system is completely nonlocal, then the relative 

difference between f0[rv ej and/0[r2; e{\ will be zero. Deviations from nonlocality 

correspond to errors in the approximation and hence, errors inherent in the nonlocal 

model. We can therefore use the deviations to gauge the accuracy of the approximation. 

As in section 5.2, we ran the tests for a neon column. The following parameters 

were used: 7?wall = 1 cm, a quadratic potential with <p[/?wall] = 20 V, and a loss cone 

condition with x = 0-5. The resulting data are presented in Table 4. It shows the 

maximum relative difference between/0 on axis and at three other radial values; this 

deviation is also mapped as a function of PR value. 

Table 4 Deviation from nonlocality (relative percent) for a neon column 
as a function of PR value and radius. 

PR (Torr-cm) r = 0.5Rwan r = 0.75RwM r ~ ^wall 

0.01 <1% <1% 1% 
0.05 1% 3% 7% 
0.1 3% 6% 14% 
0.5 2% 10% 46% 
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The results in Table 4 show that the applicability of the nonlocal approximation 

depends not only on PR, but radius as well. Note the disparity between these results and 

the general guidance in Table 3. According to Ingold, the nonlocal approximation is 

valid for PR = 0.5, but in our tests at r = /?wall the relative error is 46%. In all cases the 

maximum deviations from nonlocality occur in the high energy tail of the distribution 

function, reflecting in part the effect of the wall loss boundary condition. 

It is also interesting to compare how other gases react to the test of nonlocality. 

For neon, equation (5) gives an approximate PR value of 17 Torr-cm. Argon, on the 

other hand, results in a value of ~ 6 Torr-cm. We therefore expect that for the same PR 

value, an argon column will have greater deviations from nonlocality than neon. Table 5 

shows the results of the argon column using the same parameters as for neon. As 

expected, the deviations are much greater in each case. 

Table 5 Deviation from nonlocality (relative percent) for an argon 
column as a function of Pi? value and radius. 

PR (Torr-cm) r = 0.5 RwM r = 0.75R^ r ~ ^wall 

0.01 1% 3% 7% 
0.05 4% 8% 30% 
0.1 14% 22% 35% 
0.5 96% 99% 100% 

We can make similar comparisons in the local regime. If the column satisfies the 

local approximation exactly, the normalized EEDF will be the same at all r regardless of 

the radial potential, i.e. f0[r},u]/ne[rx] = /„[r2,u]/ne[r2]. Unfortunately, in this case we 

are comparing/0 at constant u, which means that the grid points do not coincide. To 

work around this problem, we employ the same technique as in section 5.2, interpolating 

the data and then re-sampling it uniformly to calculate the relative errors. This technique 
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worked well for the neon column, but failed for argon. The failure stemmed from the 

inability of the spline interpolation routine to adequately fit the model output over the 40- 

decade drop in the distribution function. The spline routine returned a highly oscillatory 

fit that resulted in extremely large relative errors. So we ran the comparison for neon 

only, using the same input parameters as above. 

Table 6 Deviation from locality (relative percent) for a neon 
column as a function of PR value and radius. 

PR (Torr-cm) r = 0.5Rwan r = 0.75R^x r - "^wall 

10 19% 55% 350% 
50 7% 23% 145% 

The most important observation from the data above is how poor the local 

approximation is at r = /?wall. This again relates to the fact that near the wall, two 

assumptions are violated. First, as mentioned in section 2.2, at the wall the radial electric 

field is not negligible compared to the axial field. And second, the potential varies 

rapidly in this area, violating the assumption of radial homogeneity over the scale of an 

electron mean free path. 

After including the effects of wall loss, it is apparent from the data above that the 

approximate methods are limited to a range of pressure, as well as a fraction of the tube 

radius. 

6.3. Effect of the Wall Loss Boundary Condition 

As first explained in section 3.1.3, the wall loss boundary condition is an 

extremely important, yet almost arbitrary restriction on the solution. We choose simple 

expressions to represent the loss, masking the true nature of this problem, which involves 

complicated physical processes including ion/electron recombination, absorption, and 
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reflection [20]. While the wall loss cone has some physical basis, both it and the wall 

loss function largely neglect these complicated processes. 

In his paper, Uhrlandt mentions that he tested a number of different forms for the 

loss function, including various exponential and trigonometric functions, but found that 

in general they "yielded almost the same results for the EVDF except for the region very 

near to the wall" [7]. In our studies, we found that while this statement was true for the 

two cases Uhrlandt presented, it is not true in general. 

F0[r,u] 
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F0[r,u] 
(eV-3/2) 

10 15 20 

Energy (eV) 
30 10 15 20 25 

Energy (eV) 

30 

Figure 20 Comparison of the on-axis EEDF for the wall loss cone (dashed) and wall loss 
function (solid) at two PR values: (a) PR = 1.0 and (b) PR = 0.1. 

Both of Uhrlandt's studies considered gases in which the PR value was greater 

than one. As shown in Figure 20(a), for PR- I, the two boundary conditions are indeed 

very similar far away from the wall. However, as we should expect from the earlier 

discussions of the nonlocal regime, at low PR, the EEDF is a function of total energy 

only, and any differences that exist at the wall are reflected on axis as well. Part (b) of 

the figure shows that at PR ~ 0.1 the solutions diverge significantly, even on axis. We 

thus need the "insulation" provided by high PR to confine our uncertainties in boundary 

condition to the region near the wall. 
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Within Uhrlandt's wall loss function, it is interesting to look more closely at how 

different choices for the parameter a (equation (21), page 29) effect the form of the 

EEDF. As explained earlier, we used a = -0.1 throughout this thesis, as Uhrlandt did in 

his treatment, but we never gave a physical justification for this choice. The parameter A, 

on the other hand, is chosen at run-time so the output matches experimental data (section 

4.4). 

Legend 

 a = -0.05 
   a = -0.1 
    a = -1.0 

10-3 

5 10-4 

F0[r,u] 
(eV-3/2) 

10"4 

5 10"5 

10~5 

5 10-6 

4 6 

Kinetic Energy (eV) 

Figure 21 Isotropie component of the EEDF at r = i?wall for three 
different values of the wall loss function parameter a. 

Figure 21 illustrates how three different values of the parameter a effect the shape 

of the isotropic component of the EEDF, for PR=\. As the magnitude of a increases, 

the exponential loss function drops more quickly to zero with increasing energy; thus to 

support a fixed loss, the majority of the loss occurs at low energies. On the other hand, as 

a decreases the loss function diminishes less rapidly with energy, and hence more of the 
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loss occurs at high energies. This effect is reflected in the sharp dip seen in the EEDF at 

low energies for a = -1.0, as opposed to the sustained decrease seen for a = -0.05 . 

Since the wall loss function is arbitrary, and only loosely physically based, we 

really have no basis for one choice of a over another. In the end, it comes down to 

aesthetics. From the figure, we see that when a = -0.1, the model produces an EEDF 

which is smooth and relatively flat on a log scale. In addition, this particular choice 

produces an EEDF similar to that given by the approximate methods; it thus has the 

shape we have come to expect. Other choices for a, especially a = -1.0, produce 

distortions, which without any physical justification to use them, we choose not to accept. 
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VII. Conclusions and Recommendations 

7.1. Conclusions 

The primary objective of this thesis was to implement and test a strict kinetic 

solution to the CBE of a glow discharge. We have achieved this goal, and thus fashioned 

a powerful tool to explore the electron kinetics of weakly ionized non-equilibrium gases. 

In the process, we developed numerical techniques that are directly applicable to the 

solution of related PDEs and gained insight into the applicability of other approximate 

kinetic models. Furthermore, we treated important mechanisms such as radial particle 

and energy transport, which are neglected in the approximations. 

The general numerical techniques discussed in chapter III comprise a robust set of 

tools applicable to a variety of numerical problems. In section 3.2.1, we presented a 

method to generate non-uniform grids over a variable solution area. This gridding 

scheme required us to develop non-uniform differencing equations, as well as special 

counting variables to access the points in the solution grid. In section 3.2.3, we discussed 

our use of publicly available algorithms to solve sparse banded matrices and detailed an 

efficient memory storage scheme for the model. Our treatment of the resulting system of 

equations reduced the computational load significantly over "brute-force" methods. 

During the course of the investigation we frequently validated our model against 

approximate kinetic methods. We saw that, given the proper assumptions, the strict 

solution matched very closely both analytic (section 4.1 and 4.2) and numerical results 

(section 5.2) of the local and nonlocal approximations. In later investigations however, 

we recognized that for realistic systems, the approximate methods failed to adequately 
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describe the entire solution area, due in large part to their lack of a wall loss condition 

(section 6.2). We concluded therefore, that only a strict solution provides a complete 

description of the positive column, especially at the operating pressures of today's 

physical devices. 

Throughout the validation and investigation phases of the thesis, we repeatedly 

demonstrated the necessity of employing a two-dimensional solution. It was only 

through this strict solution that we were able to properly account for radial current flows 

and energy transport, and explain such phenomenon as radial electron cooling and the 

negative energy current in a neon column. 

After devoting much of this thesis to the development and validation of the strict 

kinetic model, we have only begun to demonstrate its capabilities. The material 

presented here accounts for a mere fraction of the possible permutations. In fact, we 

considered only single species atomic gases throughout the treatment, but our solution 

also accommodates gas mixtures and molecular gases6. In its present form, practical 

applications for the solution are enormous. The model is ready to be used to optimize the 

kinetic design of lighting, electric discharge lasers, and plasma processing devices. But 

development should not end here. As mentioned previously in the Introduction, this 

research marks a first generation effort toward the future exploitation of plasmas in 

modifying aircraft flight characteristics. With this goal in mind, a number of model 

extensions are recommended as future research projects. 

6 We are able to treat molecular gases by including the vibrational and rotational energy level cross- 
sections and increasing the energy grid density in order to resolve the finer details of these interactions. 
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7.2. Recommendations for Future Work 

The most obvious extension of the model is to make it time dependent, rather than 

steady state. This modification only involves the inclusion of one additional term into the 

CBE. And as noted in section 3.2.3, our current numerical technique is well suited to 

employ this time dependence. By adding time dependence, the solution could then be 

used to investigate wave propagation as well as plasma instabilities in the positive 

column. 

A more radical variation would be to switch from a study of radial to axial 

kinetics. The present solution models the axially homogenous positive column region of 

the glow discharge, but a change in coordinates would allow investigation of axial 

inhomogeneities. One practical use for this is the study of shocks in a discharge tube. 

Shocks can be modeled by rapid variations in the constituent number density and 

resulting space charge field. Our current solution accepts a general potential, which in 

the new problem would allow for a jump in the electric field strength; however, the 

model does not include a mechanism to vary the number density spatially. We could add 

a spatial dependence to the density in two ways, either as a constantly varying parameter 

like the potential, or as a step function, taking on two different values, one on either side 

of the shock. The most difficult part of the transition would be to specify appropriate 

conditions at the two spatial boundaries. Unlike the cylindrical case, there are no 

symmetries to take advantage of at these boundaries. One possible technique would be to 

specify the absolute axial flux at both boundaries, similar to Uhrlandt's wall loss 

function. 
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Further modifications to the code would allow us to investigate an even wider 

class of physical problems. As an example, the solution method could be applied to 

studies in the space environment. As with shocks in a discharge tube, after a simple 

change of coordinates and boundary conditions, we should be able to employ the strict 

solution technique to solve for the EEDF and resulting macroscopic quantities. Of course 

in this case, we would also need to add a magnetic field to the acceleration terms. 

During the development of our solution, we noted a number of limitations to the 

model, some of which could also be the subject of future research. The two most 

important involve the excited state number densities and the radial potential. In both 

cases, the current solution method does not solve for these parameters self-consistently; 

rather it leaves them as variables to be determined through experiment or supplementary 

analysis. 

Uhrlandt and Winkler have employed a quasi-self-consistent technique that solves 

for the excited state number densities. Their technique uses a complementary calculation 

to the strict solution, adjusting the excited state densities iteratively after a rate balance 

analysis [7]. In order to add this functionality to our model, the first step would be to 

make the excited state number density a function of radius. With the radial variation 

included, the next step would be to add Uhrlandt's rate balance analysis as a new 

component to the existing code. Once included, the modified code would require an 

iterative approach, starting with an assumed form for the number densities and updating 

the fraction of excited neutrals after each iteration, until the computed axial discharge 

current converges on an experimental or expected value. 
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The radial potential also presents an opportunity for future work. To date no one 

has performed a self-consistent strict solution for the radial potential, although Bennett 

[6] has done so for the nonlocal approximation. In order to incorporate this calculation, 

we would have to simultaneously determine a radial distribution for the ions as well as 

the electrons. The resulting distributions would then be used to solve Poisson's equation 

for the radial potential. While we could theoretically write a CBE for the ions and solve 

it directly, Bennett has shown that for the conditions of interest a far more simple 

technique is to employ a fluid analysis for the ions, while solving for the electron 

distribution directly. This is analogous to the method Uhrlandt used in his treatment of 

excited state number densities. After including the fluid calculation into the code, the 

solution proceeds iteratively, starting with an assumed form for the radial potential and 

updating it after each calculation, until it converges on a self-similar form. 

In both these self-consistent treatments, as well as any time dependent approach, a 

limiting factor on the model's usefulness is program run-time. We mentioned in section 

3.2.3, that the current code actually calls two algorithms. The first, and most 

computationally intensive, finds the LU decomposition of the input matrix (A), while the 

second uses that result along with the forcing vector to solve the system of equations. If, 

between iterations or time-steps, the A matrix does not change much, we can bypass the 

decomposition and solve the system quickly. In practice we might update the matrix only 

once every 5 or 10 iterations or time-steps, vastly reducing the overall run-time. Even so, 

both the self-consistent and time dependant problems will require much more computing 

power than used in this thesis. 
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Appendix A Macroscopic Quantities Derived from the Distribution Function 

While the result of solving (10) is the isotropic distribution function, as a practical 

matter we are more concerned with macroscopic quantities such as the axial current, 

ionization rate, and electron mean energy. Not only are these the quantities used to 

design functioning equipment, but they constitute the easiest values to compare our 

results to other published works. 

All of the macroscopic quantities are derived from an energy space integration 

over one of the three distribution functions f0, fr, ovfz, where the anisotropic distributions 

are given by equations (15) and (16) respectively. Averaging over /0 leads to the 

electron density, ne[r], the mean energy, ue[r], and the mean electron collision rates 

ne[r] = jf0[r,u]uV2du (42) 
o 

ue[r] = jf0[r,u]ui/2du   ne[r] (43) 

*M = ß-~JNk Qr*"Wfolr,u]u du (44) 
) process f ^  

m 

The mean ionization collision rate is found by substituting Q°nimtion jnto (44), with 

analogous substitutions to determine the excitation and de-excitation rates. 

Energy loss densities associated with elastic and inelastic processes are given by, 

Lelasnc[r] = Yß^_ JXlNkQelas[u]f.^ ^ (45) 

t   Mk  Vm, 0 

Tinelastic f   -i _ 'V"1 \'     excitation r>excitation   . V"1 „ionization rtionization r   T (4-6) u      \-ri- 2-i2Luki      r«       +Zauk      ^k       \-ri 
k     I k 
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and associated energy gains determined from 

Gc[r] = YJY,u?rxcimimPtexcimion W + X X "" r'"S P**r""* M (47) 
k     l k    k* 

Using the anisotropic components of the distribution, we obtain particle and 

energy current densities 

1   / 2 
jric,e[r] = { J—jfx[r,u]udu (48) 3vme0 

1     2 jerym = {\—\fx[r,u]u2du (49) 

where x refers to either r or z. The radial particle current is composed of two parts, 

■ particle r   -■ _   -particle r„1  ,     -particle      r-i 
■/r V 1 — J diffusion*-'\^ J field driven*-'1 (50) 

ÄL.[''] = ^f^f^lIT|-|/.['-,«]]»<i« (52) 
3 y rae J AT/,£] du 

(53) 

where ÄT/,£] is given by (83). The total axial discharge current is given by 

Rwall 

h=-27leo \jz[r]rdr 
o 

Finally, the solution is checked for self-consistency using particle and energy 

balances. The local particle balance equation for electrons is 

1 ± (r jparticie [r])=J^ potion [r] + £ £ P^ing [r] (54) 

r dr 

And the local electron energy balance is given by 

1 d 

k    k* 

(r jersnr])= -e0Er[r]Jr'icle -e0Ez[r]fz
ar,ide + Gc[r]-Lelas,ic[r]-ZTto>]     (55) 

r dr 
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Appendix B Derivation of Strict Solution Equations 

This appendix presents a more thorough derivation of the equations given in 

section 3.1.1. It is based entirely on the previous developments of Holstein [10, 12] and 

Allis [13, 21]. As in section 3.1, the derivation begins with the collisional Boltzmann 

equation, 

^L + v-V f + a-V f = A ,,. (56) -\, rJ \J V -\   / collision ' 

where / = f[r,v,t] is the electron velocity distribution function (EVDF); the other terms 

are described more fully on page 17. 

The treatment in this thesis considers a steady state solution, in which case 

— = 0.   In addition, the only applied force is an electric field, which has both a radial 
at 

c   — 
and axial component, thus a = —-E. 

m 

Under the conditions described in section 3.1.1, we make the assumption that the 

EVDF is nearly isotropic, allowing an expansion in spherical harmonics. Keeping only 

the first two terms gives 

/[?,v] = X^(cos[0])/,(r,v) 
/ 

v-/i 
= fo+^^ (57) 

v 

where /„ is the isotropic part of the distribution, and /,[r,v] = frer+fzez is the 

anisotropic part. 
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The next step is to substitute the results of (57) into (56) and simplify the result. 

Considering each piece separately, we have for the radial flux term 

v-Vr/ = |v|Vr(cos[0]/)=|v|VrXcos[ö]/;P,[cos[Ö]] (58) 

Using the identity, 

cos[0] P. [cos[0]] = (/ + 1)P;+1 + lP>-1 (59) 
' 2/ + 1 

equation (58) becomes 

Since this is an infinite series, we are free to re-index it to a new /, and then take two 

terms in the series. 

1 '    rAt      12/ - 1 2/ + 3    J 

= |v|Vr 

= |v|Vr(/0cos[ö]+/1/3) 

3     + /°^ +      5 

= |v|Vrcos [e]f0 + \v\V r-fj3 

v-Vr/ = v-Vr/0+vVr-/,/3 (61) 

Where we made use of the definition of P,, and the term f2 was dropped since we are 

considering only a two-term expansion. 

The energy flux term in equation (56) is tackled in a similar fashion, although we 

first need to rewrite the expression Vv. Assume we align a hypothetical z axis along the 

same direction as a, then only the z component of Vv / will contribute to a ■ Vv/ . For 

that case we write, 
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and use further relations to recast the term 

vv 

Vz = vcos[0] 

vv 
dv 
dvz 

d 
dv 

dcos[0] d 

'   avz dcos[0] 

^ras t thp. tf k.rm 
dv 
dv ' 

(62) 

2 2 2? 
V     =V   x+V    y+V   Z 

_^ = ^ = cos[0] 
dV,      V 

We also recast 
dcos[0] 

dv, 

3cos[0]      3   vz     1    v\     1 
9v,       3v, v    v    v3    v 

then combine both results with (62) to give 

 V = -(!-cos2[Ö]): sin2[0] 

V7 m, 3     sin2[0]      d 
Vv = cos[0]— + - 

dv        v     dcos[0] 

(63) 

(64) 

(65) 

Continuing the assumption of alignment along a, and using the results above, we are 

able to write the energy flux term in (56) as 

a-Vv/ = fl-^ = a 
dv 

COS[0]TT- + 
dv       v     dcos[0] 

Now make use of fundamental identities for Legendre polynomials 

CQS[0]P;=
(/ + 1)^+^ 

2/ + 1 

dcos[0] 2/ + 1 

Expanding (66) in spherical harmonics and using the identities above we obtain, 

(66) 

(67) 

(68) 
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a-Vj=a sin2[0]      3 
—cos[e]2/,/>[cos[0]] + 
3v ; v     3cos[0] , 

£/;P,[cos[6l]] 

= a 
(J + 1)P,+1+/P,_ 

2/ + 1 

\ 
// 

rv 
/(/+i)(pM-pM) 

2/ + 1 
(69) 

Since the summations are infinite, we are again free to re-index them, and solve for the 

zeroth and first order terms. 

5-Vv/ = fl Ypjd/M     I     ,a//+i   * + l   , /M (/ + !)(/+ 2)    /M /(/-l) 

= a 

= a 

dv 2/-1     3v 2Z + 3     v       21 + 3 

3dv    3 v     9v 

v   2Z-1 

JL^!£)+^C0S[6] 
3v2    9v       3v 

(70) 

Recalling that /, is a vector, the final result for the energy flux is, 

a.V / =   1^9(v^-^) + £-.?-#o 
3V 3v v   3v 

(71) 

The final term in (56) is the collision integral. As first shown by Holstein [10, pp 

368-372], this has two components: the contribution from elastic collisions and those 

from inelastic collisions. Following his derivation we arrive at an equation for each 

component. 

3/ N m  d 
= -Nvcos[d]flQ

e,as[v] + ^^-(v4f0Q
e,as[v]) 

Bt   plastic V     M ÖV 
'collisions 

dt nelastic 
collisions 

= 5>, /oKi 
fu'\ 

KV  J 

\ inelas ß;  [v;]-/o[v]örto[v]-/1[v]cos[0]ßrto[v] 

(72) 

(73) 

where Q refers to the cross sections for either elastic or inelastic collisions, and / to a 

specific inelastic process. 7Y is the colliding partner number density, v the velocity for 
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which the distribution function is being solved, i.e. fQ[r,v], and v\ a different velocity at 

which a specific inelastic collision / is taking place. 

All of the terms are now combined by substituting (61), (71), (72), and (73) into 

(56). After moving to cylindrical coordinates, and expressing the dot product using 

cos[&], the Boltzmann equation in steady state becomes 

or     3 r or 
(vzä-fx) + acos[d]^L=      (74) 3V^(Va^ 

N m  3 -NvcomlQe,asW+^~-?-^f0Q
elas[vi) 

V   M dv 

+ 2>/v '     v^2 

/otV,'] 
vv ; 

\inelas 
Qi   W - foMQi   [v] - /, [v]cos[ö]ö;netas [v] 

We can split the above equation into three parts by first integrating over 6 to 

remove the cos[6] terms; this gives (75). Next we multiply (74) by cos[0] and again 

integrate over 6; this removes those terms without a cos[6]. The resulting equation is 

further divided into two parts corresponding to the two terms in /,, giving (76) and (77). 

v 1 3 . ..      1    9 , 2_  - 
--^-(tf,) + -r—(vV/,) 3 r or 3v   ov 

-^^'^>')-5> /„[v OL"/. 

\ 
-k meto r., f 

Qi    [v'A-foMQT [v] 

v^ + ar^ + iVv/rß
e""[v] + XArv/rß;>!e'a'[v]=0 

9r       'dv 

a/o az-^ + Nv fzQ
e,a°[v] + YNv fzQine!as[v]=0 

dv , 

(75) 

(76) 

(77) 
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The next step is to change variables from velocity, v, to kinetic energy, u. At this 

e„ - time we also include the form of the acceleration given by a = —-E. With these 
m 

changes, the three equations (75)-(77) become, 

^(rfr)-^HEr[r)fr+EjJ)-—[G[r,u]f0]+uH[r,u]f0=S0[r,u,f0]       (78) 
3r or 3 du du 

^-eoEr[r]^ + K[r,u]fr=0 (79) 
dr du 

-eoEz^ + K[r,u]fz=0 (80) 
du 

Where the new terms below follow the formalism of Uhrlandt and Winkler [7], and are 

fully described in section 3.1. 

m 
G[r,u]^2^2NkQl<[u] (81) 

H[r,u]^J^Nk 0£M + X5X Ö« M + 2X Q?[u] (82) 
*      / k     I k 

K[r,u]^NkQ
e

k
l[u] + H[r,u] (83) 

S0[r,«,/0]
s SX "' ^ ßf ,aJK] /„[r.",'] (84) 

A      / 

In writing (81)-(84) we have anticipated the need to consider more than one 

neutral species, which leads to the summation over k. The S0 term shown is simplified 

from the one in equation (17). Where that equation is specific about the types of inelastic 

processes considered; equation (84) is more general. 

The next step is another change of variables, this time from kinetic energy, u to 

the total energy e[r]. The total energy is a function of r because of the radial electric 

field. The relationship is 
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£[r] = u-e0V[r] (85) 

r 

V[r] = -JEr[r]dr (86) 
o 

With this transformation, the distributions are functions of e, and we adopt the tilde to 

differentiate the two forms. 

fx[r,u[r,e]] = fx[r,e] (87) 

5      /. 3     7 T,   r    n   d     y 

—fx=—fx (89) 
du        de 

where x can refer to 0, r, or z. 

With the transformation to total energy, equations (79) and (80) are solved for 

fr and fz respectively to give 

We then use (90) and (91) to eliminate fr and fz from (78). The result is the elliptic 

partial differential equation, 

19       ru      8r       8 Me0Ezf  8-9 
rdr 3K[r,e-\drJo)    d£3K[r,e]deJo     de 

(^^^/o) + ^(i7S^^/o) + i(G^e]/o)-^[''.£]/o+50[r,e;70] = 0      (92) 

This is the equation used in the strict solution. 
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Appendix C Derivation of Upper Boundary Condition 

This appendix derives an approximate EEDF based on a limiting form of equation 

(10), valid at high energies. The resulting solution is used as an upper boundary 

condition for f0[r,e^]; this boundary condition is discussed further in section 3.1.3 page 

26. 

The derivation begins with the strict kinetic CBE, 

13.     ru      d ~ .     d  .u{e0E)    d  ~       3  ._r     ,7.      Tjr     ,7   , =• r       7,    _     /QO\ 

r or  3K[r,e]dr de    3K[r,£] d£ d£ 

At the highest energies the system is approximated by a balance between the field driven 

flux and the losses from inelastic collisions. The equation takes the form 

(94) a U&E£_ a j j 
de   3K[r,e] de   ° 

We assume an EEDF of the form f0=cc exp[-/3 u], substitute this into (94), and expand 

the result. 

3 t    u     ,   Q^7^_3uH[r,e] ~ 
"V T,r        ^ I,    P)Jo)—    ,      T-,  -.2    JO 

de K[r,e] 
(95) 

(e0EzY 

/o 
' °2-      a' _^*—ß^ 

K[r,e]       de 

u \\ 

{K[r,e]j 

To continue, we must assume a functional form for the inelastic cross section. In the case 

of neon, assume a weak dependence, Q[u] = Q0u    . Then 

df    u     }     df    u     \    d(u2n\ 

de [K[r,e]j de NQ[u] de NQo) 
(96) 

.1/3 3uUiNQ0    3K[r,e] 

After substituting back into (95), solve for ß. 
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/o 
ß2u 2/3 

K[r,£]    3K[r,£] 

3uH[r,£] ~ 

teßz?  U 

-&-lßu-2/3]= 
K[r,£] 

lß2u = 

o (97) 
02=——r*Tr,eM>-,£] 

where the term 2/3 is dropped by assuming it is small in comparison to ßu. A quick 

check of this assumption is appropriate. For typical values in a Neon discharge, 

Neutral density ~ 2 • 1016 cm"3 Qelastic ~ 3 • 1(T16 cm2 

Ez~2V/cm Qinelastic~1.4-10-17cm2 

"max ~ 30eV 

ß ~ 0.4, and thus ßu ~ 12.0, which justifies the earlier assumption. 

Based on the earlier assumed form for the distribution, f0=oc exp[-ß u], we can 

relate f0[r,jmiiK] to f0[r,jmax-l], where j signifies an energy bin counter. To simplify the 

expression assume ß[u] does not vary between jmax-l and jmax, then 

fo[rJmm] = Af0[r,jmax-l] (98) 

A = exp[-ß(uJma-uJnm_1)] 
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Appendix D Boltzmann Equation in Finite Differenced Form 

Finite differencing begins with the analytic CBE derived in Appendix B, 

^d^f^^T^ (99) 
r dr  3K[r,e]dr de    3K[r,e] de de 

For the computer implementation, we change notation slightly. The two functions K[r,e] 

andH[r,£] are given descriptive names, mtr[r,e] and inelas[r,e] respectively (see 

discussion in section 3.1.1). Furthermore, let f0 -» / , to ease the notation. With these 

changes, rewrite (99) as, 

-|-(rÄ[r,£]|-/)+|-(D[r,e]|-/)+^-(G[r,e]/)-Mwieto[r,e]/ + 50[r,e,/] = 0    (10 
r dr or       de de       de 0) 

where 

H[r,£]=        " (101) 
3mtr[r,e] 

D[r,e] = ^^ (102) 
3mtr[r,e] 

Now tackle the terms in (100) individually. First the radial flux term, 

——(rH[r,e]—f0) ■ Using the differencing equations (36)-(40), we write this as 
r or or 

\hrü{n£]hf)^TijMi -^j+s'M-j+s'-jf^.j (i03) 
5.2 

S,j = — (rMHMJ +(l- ß?)rfiu■ + A(2 + Ak-A-J 
i 

Next the energy terms, using modified forms of (36)-(40): 
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^(Dir^n^J^-iY^+W^f^+Y^f^ (104) 

W,.JS CJ Go (2+Y j k*.+(i - y) )DU+Dlthl) 

Yu EC)(Du+1 + (l-8))DU + 5, (2 + 5y)DUH) 

and 

A(G[r,£];0) = KltJflt„+{N,,j -hj)fu+**„/,,„ (105) 

As the last two terms of (100) don't involve any derivatives, they are evaluated 

simply at each i,j.   The equations given above form the complete set for all interior 

points on the grid. At the boundaries we must use forward or backward differencing, and 

consider the boundary conditions. 

Start first with the r = 0 boundary. Note that the only term that needs 

modification is the radial flux term, since as (103) is written, it tries to access a point 

/)_! . outside of the grid. To fix this we first take the limit of the radial flux as r —> 0, 

a2/ 13.- n d    .. 
-—(rH[r,e] — f) 
r or or 

= 2H[r,£] 
r->0 °' 

.2 
(106) 

r = 0 

Since we are on the edge of the grid, invent a hypothetical grid point at i = -1 and 

assume uniform grid spacing, then <L£ becomes 
dr2 

o2f     f,-i.j-*f,.j+fM.j 
dr2 Ar 

Use the r = 0 boundary condition 

(107) 
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dr 
0. 

r=0 

J\,j       J-IJ 

2~K 

dr2 

J\,j ~ J-\j 

„4H0J(fhj-f0J) 
(108) 

r=0 

At the next boundary, u = 0, directly enforce the boundary condition given in 

(19). The condition is 

(^>f Mr] df 
H=0 dr   dr 

0 (109) 
«=0 

where (p[r] = —V[r]. Since both derivatives involve the boundary, neither can be treated 

with central differencing. Instead, employ backward differencing for the radial 

derivative, and forward for the energy derivative. As discussed in section 3.2.3, we have 

made a decision to limit our radial increments to +/- 1 around these solution points, in 

order to speed the solution. This forces us to use a two-point derivative in the radial 

direction, while for the energy derivative we are free to use equation (37). The resulting 

differenced equations are 

0 = -Ä1, fu + R2, fiJ+1 - R3t fiJ+2 + RA, /MJ (110) 

Rh = 
d(p 

iVi-n-i) 

R2^E2
zCM(yM+SM+2) 

R3^E2
zCMyi+i 

1 

dr i(ri-ri-i) 
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There is a special point at the origin where both the r = 0 and u = 0 boundary 

conditions hold. At this point — = 0 and (110) reduces to 
dr 

0 = -Ql0f0:0+Q20fol-Q3Joa (111) 

ßloS£,2C1(51+2) 

ß2oS£z
2CI(y1+5I+2) 

Q30=E2
zCl7l 

At the wall boundary, similar to the r = 0 boundary, only the radial equation 

needs alteration. The technique is to substitute forfi+lj in equation (103) with a discrete 

version of whatever wall loss condition is used. In the case of the wall loss function, this 

leads to 

^(rHlr^n^T.^-^+S^f^ + iT.j+S^f^j (112) 
r or dr 

Fu =-2(ri-ri-i) mtrlrlt£u]A exp[aufj] 

where A and a are input parameters as shown in equation (21). 

For the wall loss cone, the radial flux becomes 

^W[r,elj-f)SHTuXu +TiJ+SiJ)fiJ+(TiJ+SiJ)fi_1J 

XljS2(rJ-rH)mlKi;,eIJ]||^ 

When j = NJ-l, we substitute into (104) and (105) fovfiJ+1. Using equation (20), 

the energy flux terms become 
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where 

lm,e]lf) = (W,jAA-Y,J -^,)/,, +YtJfltH (113) 

l(G[rte]f0) = (KlJAA+Nu -L,,.)/. . +Muf^ (114) 

AA = exp[-/3 (w,max -ii        )] (115) 

VOA) 

This completes the set of differenced equations. 

92 



Bibliography 

1 Hilbun, William M. "Shock Waves in Nonequilibrium Gases and Plasmas," Doctoral 
Dissertation, Air Force Institute of Technology, 1997. 

2 Ganguly, B. N. and Bletzinger, P. "Shock Wave Dispersion in Nonequilibrium 
Plasmas," AIAA Paper 96-4607 (1996). 

3 Ganguly, B. N., Bletzinger, P., and Garscadden, A. "Shock Wave Damping and 
Dispersion in Nonequilibrium Low Pressure Argon Plasmas," Physics Letters A, 
230(3-4):218-222 (1997). 

4 Nasser, E. Fundamentals of Gaseous Ionization and Plasma Electronics. New York: 
John Wiley & Sons, 1971. 

5 Howatson, A. M. An Introduction to Gas Discharges. New York: Pergamon Press, 
1976. 

6 Bennett, E. J. (Private Communication, 1998), Bennett provided the author with 
models that implement the local and nonlocal approximations as well as a derivation 
of the nonlocal equation set. In addition we borrow from his discussion of the basic 
physics underlying the Glow Discharge. 

7 Uhrlandt, D. and Winkler, R. "Radial Structure of the Kinetics and Production of 
Electrons in the dc Column Plasma," Plasma Chemistry and Plasma Processing, 
16(4):517-545 (1996). 

8 Ingold, J.H. "Nonequilibrium Positive Column," Physical Review E, 56(5):5932- 
5944 (November 1997). 

9 Kortshagen, U., et al. "Comparison of Monte Carlo Simulations and Nonlocal 
Calculations of the Electron Distribution Function in a Positive Column Plasma," 
Physical Review E, 54(6): 6746-6761 (December 1996). 

10 Holstein, T. "Energy Distribution of Electrons in High Frequency Gas Discharges," 
Physical Review, 70(5): 367-384 (September 1946). 

11 Rockwood, S. "Elastic and Inelastic Cross Sections for Electron-Hg Scattering from 
Hg Transport Data," Physical Review A, 8(5):2348-2358 (November 1973). 

12 Bernstein, LB. and Holstein, T. "Electron Energy Distributions in Stationary 
Discharges," Physical Review, 94(6): 1475-1482 (June 1954). 

13 Electrons, Ions, and Waves: Selected Works of William Phelps Allis. Cambridge: 
MIT Press, 1967, edited by S.C. Brown. 

93 



14 Kortshagen, U., Busch C, and Tsendin L.D. "On Simplifying Approaches to the 
Solution of the Boltzmann Equation in Spatially Inhomogeneous Plasmas," Plasma 
Sources Sei. Technology, 5:1-17 (1996). 

15 Bush, C. and Kortshagen, U. "Numerical Solution of the Spatially Inhomogeneous 
Boltzmann Equation and Verification of the Nonlocal Approach for an Argon 
Plasma," Physical Review E, 51(l):280-288 (January 1995). 

16 Uhrlandt, D. and Winkler, R. Poster presented at the Gaseous Electronics 
Conference, Madison, WI, 5-9 October 1997. 

17 Alves, L.L., Gousset, G., and Ferreira, CM. "Self-Contained Solution to the 
Spatially Inhomogeneous Electron Boltzmann Equation in a Cylindrical Plasma 
Positive Column," Physical Review E, 55(l):890-906 (January 1997). 

18 Tsendin, L. D. and Golubovskii, Y. B. "Positive Column of a Low Density, Low 
Pressure Discharge. I. Electron Energy Distribution," Soviet Physics Technical 
Physics, 22(9): 1066-1073 (1977). 

19 Burden, Richard L. and Faires J. Douglas, Numerical Analysis, New York, 
Brooks/Cole Publishing Company, 1997. 

20 Uhrlandt, D. and Winkler, R. "Radially Inhomogeneous Electron Kinetics in the DC 
Column Plasma," J Phys D: Apply Phys, 29:115-120 (1996). 

21 Allis, W.P. Handbuch der Physik, Berlin: Springer-Verlag, 1956, Vol. XXI 

94 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

March 1999 
3.  REPORT TYPE AND DATES COVERED 

4.  TITLE AND SUBTITLE 

Numerical Solutions to the Two Dimensional Boltzmann Equation 

6.  AUTHOR(S) 

Christopher G. Smithtro, Capt, USAF 

5.  FUNDING NUMBERS 

None 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
AFIT/ENP 
2950 P. St. 
Wright-Patterson AFB, OH 45433 
Advisor: William F. Bailey, COMM: (937) 255-3636 ext 4501 
Email: william.bailev@afit.af.mil  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GAP/ENP/99M-13 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFRL/PR, Air Force Research Laboratory, Propulsion Directorate 
Bldg 18 
1950 Fifth St. 
WPAFB, OH 45433-7251 
Dr. Alan Garscadden COMM 937-255-2246  

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

A strict kinetic, two-dimensional model of the electron kinetics within a glow discharge positive column is developed. The 
problem is solved in cylindrical geometry using the standard two-term Legendre expansion of the electron velocity 
distribution function. The model establishes a steady state solution, such that the net ionization rate is exactly balanced by the 
wall loss. In addition to a thorough analytic development, we present the numerical techniques used to solve the resulting 
elliptic partial differential equation, including an efficient method to treat sparse banded matrices. The model is validated 
against published results, local and nonlocal kinetic approximations, and a previous Monte Carlo treatment. Having created a 
working model, we conduct an investigation into current flow within the solution area of a neon column, made possible by 
this 2-D treatment. Furthermore, we investigate the range of applicability of the earlier local and nonlocal kinetic 
approximations and finally present a short discussion on the effect different forms of wall loss have on the overall distribution 
function. 

14. SUBJECT TERMS 

Boltzmann Equation, Glow Discharge, Positive Column, Non-equilibrium Weakly Ionized 
Gases 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

109 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 


	Numerical Solutions to the Two Dimensional Boltzmann Equation
	Recommended Citation

	/tardir/tiffs/A361382.tiff

