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Abstract 
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with output feedback control that utilizes a collocated actuator-sensor pair. It is shown that this 

system is robust because it is globally stable for positive definite feedback. Analytical analysis 

is then completed to determine gains that minimize a cost function that is the error between the 

desired and achievable (assuming positive definite output feedback) eigenstructure. Examples are 

given at the end of the thesis to validate the computer code and theory results. 
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Robust Eigenstructure Assignment Using Positive 
Definite Output Feedback Control 

Chapter 1 - Introduction 

1.1  Background 

Many researchers have examined the problem of controlling flexible systems, the most ob- 

vious Air Force application being the control of large space structures. These systems include 

future space stations which have many flexible appendages, large antenna satellites, as well as sys- 

tems such as the Air Force Institute of Technology's (AFIT) Passive and Active Control of Space 

Structures (PACOSS) experiment. Weight considerations due to the high cost of current space lift 

systems drive designers to choose low mass and highly flexible materials which are easily excited 

by vibrations in daily operations. Passive (material considerations) and active control of these vi- 

brational problems has given rise to a large body of research material. This thesis will only cover 

active control and leaves passive control to the material designers and researchers, though it will 

draw on the methods of finite element modeling and vibrations theory. Specifically, this work will 

examine the active control methods using eigenvalue assignment. 

Previous theses by Robinson [8] and Huckabone [1] give algorithms for eigenvalue assign- 

ment using linear quadratic regulator (LQR) techniques. Robinson used MatLab™ and the LQR 

routines to minimize a cost function of weighted eigenvalues. His main complaint was the run 

time required for MatLab™ on a Compaq 286, which in one case ran for seventeen hours before 

the PC ran out of memory. The next thesis by Huckabone converted the algorithm to FORTRAN 

to save computer time and used a cost function that included both the eigenvalues and the eigenvec- 

tors. He noticed a ten fold increase in compute time for the FORTRAN algorithm over Robinson's 

MatLab™ routines.   Finally, a thesis by Solomon [9] extended Huckabone's work on the LQR 
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problem to cross correlation weighting and applied the algorithms in FORTRAN to two helicopter 

systems. Since computer speeds have increased rapidly and look like they will continue to do so, 

this thesis will use MatLab™ for an eigenstructure algorithm but will not use the LQR technique. 

The reason to use LQR is for the stability robustness guarantees. This thesis will use positive defi- 

nite output feedback to robustly guarantee stability. 

John L. Junkins and Youdan Kim wrote a book for the AIAA Education Series titled "In- 

troduction to Dynamics and Control of Flexible Structures." [3] In this work, Junkins described 

output feedback and provided a literature review which is current as of the publishing date of 1993. 

This book provided an understanding of Lyapunov stability as it applies to the problem of output 

feedback, as well as a great beginning for a literature review. Junkins also edited a work for the 

Progress in Astronautics and Aeronautics series which contained many of the papers cited in his 

literature review [2]. 

1.2  Problem Statement 

Many dynamical systems are modeled using Newton's laws or Lagrange's equations. The 

result is a second order system of linear constant coefficient differential equations. This class of 

systems can be mathematically described by the equations of motion 

Mx + Cx+Kx = Du (1) 

where x G 9l"and u G *Hmare the state and control (actuator) vectors respectively, M is the n x n 

positive definite symmetric mass matrix, C is the n x n positive semidefinite symmetric structural 

damping matrix, K is the n x n positive semidefinite stiffness matrix, D is the n x m control 

influence matrix, and (') is differentiation with respect to time. 

As an introduction to output feedback and taking advantage of collocated sensors and actua- 

tors, the control and measurement equations can be written as 

y = DTx (2) 

y = öri ' (3) 
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u=-GPy-GRy (4) 

where y € 9tm is the output (sensor) vector, and due to the assumption of collocation of the sensors 

and actuators, D is the same control influence matrix as in Equation 1, and Gp and GR are the 

m x m position and rate feedback gains. Equations 2 and 3 can be substituted into Equation 4. 

Then that equation can be substituted back into Equation 1 and everything can be taken to the left 

hand side: 

MZ+(C + DGRDT)i + (K + DGPDT)x = 0. (5) 

This equation can be simplified notationally to the following, which is used in discussions of Lya- 

punov Stability 

Mx + (C + C)± + (K + K)x = 0 (6) 

where C .= DGRDT and K = DGPDT. 

The problem statement, then, is to place the eigenvalues and eigenvectors (hereafter referred 

to as the eigenstructure) using Equation 5. This work examines a cost function that minimizes the 

difference between the actual and desired eigenstructure. Finally, this thesis presents an algorithm 

for creating computer code. 

1.3  Methodology 

The research for this thesis included a literature review, mathematical proofs, and a computer 

algorithm for designing a feedback control system. This effort began with a review of many of the 

sources available in the AFIT Library. As detailed in the introduction background, three previous 

theses by AFIT students provided a framework and excellent references to begin the literature 

search. Also, the AIAA Education Series title "Introduction to Dynamics and Control of Flexible 

Structures" by John L. Junkins and Youdan Kim provided an invaluable literature review for output 

feedback material up to 1993. [3] 



The mathematical proofs presented throughout this work have been given in the past, but have 

never been combined and used for this application. This thesis represents a melding of many 

different areas of research from dynamics, to vibrations, to material analysis. 

Finally, the computer algorithm began with a review of work done by Huckabone [1] and Lee 

[5] to validate the new and updated code. After coding this algorithm in MatLab™ and testing it 

on previous systems with known results, the code was then used on the example problems presented 

later in the final chapter. 

1.4 Organization 

This thesis is organized around creating a control system for a flexible structure. Figure 1 

illustrates how each chapter corresponds to a step in the creation process. 

This thesis begins with the mathematical theory which is necessary to carry out the eigenstruc- 

ture assignment algorithm. The theory in Chapter Two discusses Lyapunov stability and positive 

definite output feedback. Chapter Three presents a proof of the bounds on eigenvalue placement 

that is original to this work. Then, the eigenvalue assignment system is discussed in Chapter Four. 

Finally, Chapter Five provides some examples which validate the algorithm and show its useful- 

ness. The appendices are used for the computer code. 



Chapter 2-Theory 

Chapter 3—Eigenvalue Properties 

Input system matrices 

V 

Find open-loop 
eigenstructure 

1 ' 
Select desired closed- 
loop eige i structure 

Chapter 4-Eigenstructure Assignment 

Chapter 5—Examples 

Guess gain matrices 

Perturb gain matrices 

Gain matrix results 

Iterate 

A. _| 

Figure 1. Block diagram of eigenvalue assignment process 



Chapter 2 - Theory 

This chapter begins with a review of Lyapunov stability and a detailed account of how to 

guarantee asymptotic stability for second order equations of motion. Then output feedback is 

introduced showing that the stability of the controlled closed-loop system is guaranteed by choosing 

positive definite gain matrices. Finally, a method of assigning values in the gain matrices with 

a cost function is used to drive achievable eigenvalues and eigenvectors (i.e. the eigenstructure) 

optimally close to the desired eigenstructure. 

The two main equations used in this chapter and throughout this thesis are the second order 

structural equations of motion and the state space representation of a multivariable, linear, time- 

invariant feedback system. These equations are related by the following derivation beginning with 

the second order equations of motion. 

Mx + C± + Kyi = Du (7) 

where x G £R"and u G 9tmare the state and control(actuator) vectors respectively, M is the n x n 

positive definite symmetric mass matrix, C is the n x n positive semidefinite symmetric structural 

damping matrix, K is the n x n positive semidefinite stiffness matrix, D is the n x m control 

influence matrix, and (') is differentiation with respect to time. 

A variable, z, is defined as 

(8) 
x 
X 

so, 

Mz = 
M    0 
0    M 

x 
X 

0      M 
-K   -C 

x 
X 

+ 0 
D 

u 

and, since M is non-singular, it is invertible, and 

0 / 
-M~XK   -M-XC 

z + 0 
u 

which is the same as the standard state space form 

z = Az + Bu. 

(9) 

(10) 

(11) 



Therefore, the second order system and the first order state space representation are equivalent. 

They are just different forms of the same system of equations. The second order system matrices 

M, C, and K will be n x n while the first order A matrix will be 2n x 2n. The state space 

representation will be used in the eigenstructure assignment algorithm, but the second order system 

will be used to show the stability guarantees of positive definite output feedback control and the 

properties of the closed-loop eigenvalues. 

2.1  Lyapunov Stability 

The following theorems for asymptotic stability are found in Junkins [3] for a continuous, 

finite-dimensional dynamic system which can be described by the first order nonlinear equations 

i = f(x,t), xeKn. (12) 

Junkins notes that the function f (x, t) is continuous and at least piecewise differentiable one or 

more times with respect to all arguments. Also note that these theorems are descriptions of the 

stability of a system from some reference equilibrium state. 

Theorem 1 The equilibrium state xe is stable if there exists a continuously differentiable function 
Usuch that 

(1) t/(xe) = 0 
(2)U(y) >0forallx^xe 

(3) EJ(x) < Oforallx^xe 

Theorem 2 The equilibrium state xe is globally asymptotically stable if there exists a continuously 
differentiable function U such that 

(1) t/(xe) = 0 
(2) t/(x) > Ofor all x^xe 

(3) *7(x) < Ofor all x ^ xe 

(4) ?7(x) —> °° as II x II—*■ °° 

For the closed-loop system of equations we write the following: 

MX + (C + C)x +(K + K)x = 0. (13) 

The terms M, C, and K are the inertial, damping, and stiffness matrices of a structure. The C and 

K are the velocity control and displacement control matrices described in section 1.2 and further 

explored in the next section. For Lyapunov stability, we first define a candidate function, which in 
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this structural case is the total mechanical energy, as 

U = l±TMi+^T(K + K)x. (14) 
Zi Zi 

Then, we differentiate the candidate function with respect to time and get 

Ü = ixTMx + ixTMx + \±T{K + Ä> + \y?{K + K)±. (15) 

Since U is a scalar, all four terms in the above equation are scalars. Also, the transpose of a scalar 

is equal to that same scalar, and since M = MT, K = KT, and K = KT, we can rewrite the 

equation as 

Ü = ZTMZ + ±T(K + K)x = xT[Mx+(Ä" + Ä>]. (16) 

Finally, rearranging once more and using Equation 13 we find 

Ü= xT[-(C + C)x] = -±T{C + C)± (17) 

Returning to the definition of Lyapunov stability, first we look at U in Equation 14. M is 

positive definite and K is usually positive semidefinite. If there are no rigid body modes present, 

K will be positive definite and U will be greater than zero. In cases where rigid body modes 

are present, if the system is controllable, K can be chosen so that (K + K) is positive definite. 

Finally, if K has unstable modes, special care needs to be taken to ensure that K is chosen such 

that (K + K) becomes positive definite. Thus, we can choose K so that our Lyapunov function, 

U, is positive definite. 

Now we turn our attention to Equation 17 for tf. Ü will be negative semidefinite as long as 

(C + C) is positive semidefinite. The C may again have to be chosen to negate rigid body modes 

just as was done with the stiffness matrix, but usually only adjustments to the stiffness matrix will be 

necessary. Junkins proves that these conditions lead to asymptotic stability and states a conclusion 

that". . . if the system is controllable, then the closed-loop system is at least asymptotically stable 

if the gain matrices are chosen properly." [3, pg. 88] The proper choice of gain matrices refers only 

to the conditions above which state that (K + K) must be positive definite and that (C + C) must 

be positive semidefinite. 



The next section explores positive definite output feedback. Using positive definite output 

feedback C and K will be shown to be positive definite. Therefore, we will guarantee the four 

conditions for asymptotic stability. We have just shown conditions two and three. The first condi- 

tion, C(xe) = 0, is satisfied simply by choosing the equilibrium point where the total mechanical 

energy for the system is zero. This will occur when the system is at rest and the position is at an 

equilibrium state. The fourth condition is satisfied by setting the position and velocity states to 

infinity in the total mechanical energy equation. The mechanical energy will go to infinity as the 

states goes to infinity. We see that all four conditions can be satisfied, so with the proper feedback 

law we can guarantee that the system will be asymptotically stable. 

2.2  Positive Definite Output Feedback 

This thesis uses positive definite output feedback and will show how this control law guaran- 

tees asymptotic stability. The second order equations of motion are repeated here for convenience 

MX + Ci + Kx. = Du (18) 

Using output feedback and taking advantage of collocated sensors and actuators, the control 

equations can be written as 

y=DTx (19) 

y = DT± (20) 

u = -GPy - GRy (21) 

where y € £Hm is the output (sensor) vector, D is the same control influence matrix as in Equation 

7, and Gp and GR are the m x m position and rate gain matrices. Equations 19 and 20 can be 

substituted into Equation 21. Then, that equation can be substituted back into Equation 18 and 

everything can be taken to the left hand side 

Mx + (C + DGRDT)i +(K + DGPDT)x = 0 (22) 

Please note that the assumption that the sensors and actuator are linear and instantaneous in oper- 

ation was used to write the control law. If GR and Gp are positive definite, then DGDT for both 
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position and rate feedback will be symmetric positive semidefmite. The gain matrices will always 

be positive definite if we chose them using a Cholesky decomposition of the form 

where LR is defined as 

and Lp is defined as 

GR=LRLR    Gp—LpLp (23) 

LR = 

rn     0 0 

^21 ^22 0 
»"31 r32 r33 

rn\ rni rn3 

(24) 

Lp — 

Pn     0       0 
P21     P22       0 

P31     P32     P33 (25) 

^ Pnl    Pnl    PnZ     ■■■     Pnn  _ 

where the rnn and pnn are scalars so that both of the matricies are lower triangular.   Therefore, 

when we multiply L by its transpose we get a gain matrix of 

LLT = 

I2 

^11^21 

hihi 
I2 4
22 

^ll^nl     hllnl +^22^n2 

hllnl 

I2 

(26) 

positive, and the gain where L = LR or Lp and kj = r^ or pij so that the diagonal terms are always 

matrices will be positive definite. As was shown in the previous section, this class of controllers 

will guarantee asymptotic stability of the closed-loop system. An important part of this analysis is 

that since GR and GP are positive definite then M, K+DGPDT, and C+DGRDT will always be 

positive definite for a controllable system. This result is independent of any reduced order model 

used, and regardless of inaccuracies in the parameter values used in the design. Only the predicted 

performance, or optimality, will be reduced as a result of modelling errors. [3, pg. 359] 

Use of this control method must take into consideration the controllability of the system. 

As shown in the previous section, if there is an unstable mode the control system of sensors and 

actuators must first and foremost stabilize the system.   Therefore, special care must be taken to 
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ensure the positive definiteness ofM,K + DGPDT, and C + DGRDT. In a practical sense, most 

flexible structures and most systems will have positive definite mass and stiffness with positive 

semidefinite damping. Therefore, the gain matrices can be used exclusively to optimize, by some 

method, the controlled closed-loop system. 

We can conclude that if we chose positive definite gain matrices our closed-loop system will 

always be asymptotically stable. The system will be robust in the sense that stability is preserved in 

the face of modeling errors and reduced order models. The assumption that we have perfect sensors 

and perfect collocation of sensors must be taken into account in any experimental or real system and 

further robustness should be built into the assignment of gain matrices. So we have seen that with 

positive definite output feedback we can guarantee asymptotic stability for a controllable system, 

and now we must explore a method of controlling the system to a designer's specific desires. 

2.3  Eigenstructure Assignment 

Now that we can guarantee stability, the next question is how to pick our gain matrices to give 

a desired eigenstructure. Junkins and others have used techniques to find an "optimal" solution in 

the sense that he minimized the condition number of his closed-loop eigenvalues [3] [4]. Others 

have used Linear Quadratic Regulator, or LQR, techniques as an optimization method [8] [1] [9]. 

This thesis will use pole placement techniques and minimize the difference between an actual and 

desired eigenstructure. The number of eigenvalues and eigenvectors to be placed is limited by the 

number of actuators and sensors used on a system. For every sensor with velocity and feedback 

measurements, the real and imaginary parts of a complex conjugate eigenvalue pair can be placed. 

To that end, if we wish to specify the eigenvalues only, we want to minimize the following cost 

function 
n 

J = ^Fei(Xdi-Xai)
2 (27) 

i=i 
where Fei is the ith eigenvalue weighting, Xdi is the i* desired closed-loop eigenvalue, and Xai is 

the i01 achievable closed-loop eigenvalue. Remember that the closed loop equations of motion were 
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written in matrix form as 

Mx + (C + C)x + (K + Ä> = 0. (28) 

If we rearrange it to first order form we get 

z = 
0 I 

-M-\K + K)   -M-^C + C) 

We can then find the eigenvalues of A by solving the characteristic equation 

z = Az (29) 

det(A;7 - A) = 0 (30) 

or we can let a software package solve the problem for us. This work utilized the software pack- 

age MatLab™. These eigenvalues from Equation 30 are then compared to the designers desired 

eigenvalues and the cost function is minimized using a numerical algorithm which is found in many 

software packages. 

If the designers have enough sensors and actuators they can also move the eigenvectors to a 

desired location. This is done by adding the eigenvectors to the cost function and replacing the 

previous one with 

J = J2 [^(Arfi - A0j)
2 + (Vdi - Vai)

TFVi(Vdi - Vai)} (31) 
i=l 

where Vdi is the 1th desired eigenvector, Vai is the 1th achievable eigenvector, and FVi is the 1th 

eigenvector weighting matrix (usually a positive semi-definite diagonal matrix). Please note that 

the eigenvectors must be normalized by some method so that a comparison between the achieved 

and desired will be a comparison of merit. A derivation for one method of normalization can be 

found in Huckabone's thesis [1]. It is sufficient to say that his method normalizes the complex 

eigenvectors to a magnitude of one so that they can be compared with the normalized desired 

eigenvalues. Since this thesis utilized the software packages MatLab™, the normalization scheme 

is done automatically when the eigenvectors are calculated by the software. 

The next chapter of this thesis will look at possible values for the eigenvalues using the tech- 

nique of positive definite output feedback control.   Then the equations in this theory chapter will 
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be put to use in the robust eigenstructure assignment algorithm and the computer code will be ex- 

plained. 
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Chapter 3 - Eigenvalue Properties 

The previous chapter introduced positive definite output feedback control. This chapter will 

explore properties of eigenvalues for different systems. First, this chapter will review the properties 

of an undamped open-loop system. Then this work will move to the closed-loop system using only 

displacement output feedback control. In the closed-loop section, a proof is offered for the possible 

values of the controlled eigenvalues. The next section contains information about damping and 

how it affects the eigenvalues. That section will take a look at velocity output feedback control. 

Finally, the entire damped system with displacement and velocity feedback will be explored. 

3.1  Open-loop System 

Suppose we begin with a simple system describing a flexible structure without damping which 

will be designated as the open loop equations of motion 

Mx + ifx = .Du. (32) 

where M and K are symmetric nxn matrices. Next, a modal coordinate transformation is intro- 

duced as follows: 

x(t) = <M*) (33) 

where $ is the open-loop modal matrix, and rj is the vector of modal coordinates. The modal matrix 

is found by solving the following eigenvalue problem, which results from assuming a solution of 

the form Xi = fae^1 and u = 0: 

ufa = M-iKfo (34) 

for the n natural frequencies, w$, and the n eigenvectors, <^. Then the open-loop modal matrix is 

$ = [^,02,-"A] (35> 

Transforming the open-loop equations of motion in Equation 32 with Equation 33, we end up with 

the following equations: 

M$rj + K^rj = Du. (36) 
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Then we pre-multiply by $T to get 

$TM$fj + $TK®q = $Tflu. (37) 

Now in classical modal analysis the eigenvectors are assumed to be normalized such that 

$TM$   =   I (38) 

<$>TK§   =   diag [coj] = Q (39) 

So we end up with the following transformed equations of motion 

r) + ürj = Du (40) 

where D = <&TD. It can also be seen that the left hand side of Equation 40 is a set of n uncoupled 

equations of motion. Each of these equations can be solved separately by assuming a solution of 

the form 

77 = £ejXt (41) 

which when substituted into Equation 40 with the right hand side equal to zero gives 

-AVAt + ^' = 0. (42) 

Now divide by eJ'A* to get the characteristic equations of each of the uncoupled equations 

[A2/ - n]£ = 0. (43) 

So the eigenvalues (A;) equal the natural frequencies of the open-loop, undamped system (u>i), 

and the eigenvectors, £is are the unit n* order basis vectors. This development assumes that the 

eigenvectors from repeated eigenvalues have been orthogonalized. 

3.2  Closed-loop System with Displacement Feedback Control 

The purpose of this proof is to show that the following statement is true: 

The natural frequencies of a structural system of equations can only increase when positive 

definite output feedback control is implemented. 

This proof begins by defining the term positive definite and then gives two lemmas to support 

the overall proof. 
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3.2.1   Definitions and Lemmas 

Definition 1       Each of the following tests is a necessary and sufficient condition for the real 
symmetric matrix A to be positive definite: [10, 331] 

(I)       XT
J4X > Ofor all nonzero vectors x. 

(II)       All the eigenvalues of A satisfy Aj > 0. 

Lemma 1 IfG is positive definite then $TDGDTQ is positive semi-definite. 
Proof.     IfG is positive definite then xTGx > Ofor all x  Now take x=Dr<& and xTGx = 
®TDGDT$ > 0 so it is positive definite unless DT® has a zero, which causes it to be positive 
semi-definite. ■ 

Lemma 2 When eigenvalues of symmetric matrices A, B and C are a» ßi and ^ respectively 
where all eigenvalues are arranged in non-increasing order and when C = A+B, then a3+ßn< 
Is 5; as + ßi- So that when B is added to A then all of the eigenvalues are changed by an amount 
which lies between the smallest and greatest eigenvalues ofB. 
Proof. See Wilkinson. [11, 101-2] ■ 

3.2.2   Problem Formulation 

Suppose we begin again with the simple system describing a flexible structure without damp- 

ing which we designated the open loop equations of motion 

MZ + Kx= Du. (44) 

As in previous sections, we will utilize positive definite output feedback control. However, we will 

begin this proof with only collocated, displacement feedback so that we have the following control 

law. 

u   =   -GPy (45) 

y   =   Z>Tx (46) 

Now combining these equations we have 

Mx + tfx = -DGpDTx (47)_ 

which will be designated as the closed loop equations of motion.    Next, the modal coordinate 

transformation is introduced as previously shown 

M$rj + K$ri = -DGpDT$ri (48) 

Then we bring the right hand side over to the left hand side 

M$T) + (K + DGPDT)$7] = 0 (49) 
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and pre-multiply by $T to get: 

$TM®ri + $T(K + DGpDT)$T) = 0 (50) 

Now with classical modal analysis the eigenvectors are normalized so that 

$TM$   =   I (51) 

§TK§   =   fl (52) 

So we end up with the following transformed equations of motion: 

T) + (ft + ®TDGPDT$)r] = 0 (53) 

Next assume that 

77 = W** (54) 

then Equation 53 becomes, with some rearrangement, 

üH = (Ü + $>TDGPDT$>)y (55) 

In the notation of Wilkinson (see Lemma 2) we then have the open-loop matrix from Equation 

40 

A = tt, (56) 

the control matrix from the right hand side of Equation 48 

B = $TDGpDT$, (57) 

and finally the closed-loop matrix 

C = p + $TDGPDT$\ (58) 

from Equation 53. The eigenvalues of A are designated ai; which we showed in the previous 

section are equal tof. The eigenvalues of B are all non-negative since B is positive semidefinite. 

Finally, the eigenvalues of C are 7; = uf where uif are the closed-loop eigenvalues. As a reminder 

of lemma 2, Wilkinson showed that when 

C = A + B (59) 

then, 

Ois+ßn<ls <OLs + ßl (60) 
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where ßn is the smallest eigenvalue of B and /^is the largest eigenvalue of B.  The conservative 

case is when ßn is equal to zero, then we can say 

<^<7,<w5-Mi (61) 

However, 

1s = *l (62) 

where u>3 are the closed-loop system natural frequencies. So Equation 61 becomes 

^<^<w2 + /3l (63) 

or taking the square root 

us < us < y/u^+ßi. (64) 

Therefore, each of the natural frequencies of the controlled system lie on the real number 

line somewhere greater than the original open-loop natural frequencies and less than yju>* + ß1. 

In other words, the magnitude of the natural frequencies will always increase. Their squares can 

increase up to the magnitude of the largest eigenvalue of the control matrix, B. 

In a practical sense, the maximum natural frequency increment due to feedback, ßx, is limited 

by the control power for a given application. 

3.3  Open-loop System with Damping 

Now if the system has damping and/or velocity feedback control, then the result on the natural 

frequencies is similar, but not quite the same as above. Meirovitch states that 

When the damping coefficients are small, a meaningful approximation can be obtained by using the modal 
matrix as the transformation matrix . . . This in effect implies that the uncoupled equations can be 
used when damping is small without causing serious errors. Physically this means that when damping 
is sufficiently small that coupling is a second order effect. [6, pg. 388-433] 

When damping is sufficiently small, as it is in many structural applications, and we keep 

the velocity control matrix sufficiently small, we can approximate the natural frequencies with the 

open-loop undamped system of equations. As we have shown previously, the natural frequencies 

can only increase with the general output feedback control with only displacement control.   So in 



the general case, the eigenvalues will follow the proof in the previous section up to second order 

effects. 

A proof of the damping case can be found inNatsiavs' and Beck's work [7]. Natsiavs' proof 

showed a methodology for separating a damping matrix into a diagonalized matrix for standard 

modal analysis and a matrix with the diagonal terms equal to zero. This allows one to analyze 

a system using classical modal techniques and also find a second order correction term for small 

off-diagonal coupling. The following proof will use a similar methodology but whereas Natsiavas 

used only small coupling effects, this proof will look at damping matrices where all of the damping 

elements can be considered small. 

The previous section on natural frequencies only used displacement or position feedback. In 

this section we will concentrate on small amplitude velocity or rate feedback. Thus, the positive 

definite output rate feedback control law is written as 

DGRDT = eC (65) 

where e < 1. Then, we start with the equations of motion with a small damping matrix 

Mx + eCx + Äx = 0. (66) 

Now let A° be the nth eigenvalue and xn be the nth eigenvector for the undamped problem 

((X°n)
2M + K)±n = 0. (67) 

Next construct the modal matrix $ = [xi • • • x„]T and normalize so that 

®TM$ = I,     $TK$ = A    <S>TeC$ = eC. (68) 

So we now have for the undamped system 

((A«)2I + A)xn = 0 (69) 

Notice that the x„ are now the modal eigenvectors of the undamped system. 

Using the original system in Equation 66 and using the modal transformation in Equation 68 

the eigenvalue problem can be expressed as 

((An)2/ + AneC + A)vn = 0. (70) 
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Now, for a damping matrix of the form expressed by Equation 65, the eigenvalues and eigenvectors 

of Equation 66 are expressed to second order as 

An   =   A£ + eA*+e2A2 (71) 

vn   =   xn + eyn + e2zn. (72) 

The notation of the past few equations requires some explination. The A°, A* and A2 terms are the 

zeoreth, first and second order terms in e of the eigenvalue. The term (An)2 denotes the eigenvalue 

squared. Therefore, using the expansion in Equation 71 the term (An)2 equals (A° + eA* + e2An)2. 

Substituting Equations 71 and 72 into 70 gives 

[(A° + e\l + e2A2)2/ + (A° + eA* + e2A2 )eC + A](xn + eyn + e2zn) = 0 (73) 

Collecting the terms with the same order of e gives 

((A£)2I + A)xn   =   0 (74) 

((A°)27 + A)yn   =   -(2A^/ + A£C)xn (75) 

((A°)27 + A)zn = -(2A°Ai7 + A°C)yn-[(2A^ + (Ai)2)/ + AiC')Xn. (76) 

The first of these equations is the same as Equation 69 using modal coordinates for the undamped 

system. So as expected with e to the zeroth order we have no damping and hence we have the 

equation for the undamped system. Examining the n* row of Equation 75 we notice the left hand 

side ((A°)21 + A) is a diagonal matrix that by definition has a zero at its nth diagonal element. This 

element corresponds to the modal eigenvector, xn, which is equal to zero every where except at its 

nth element, which equals one. In other words, on the right hand side the modal eigenvectors^, 

will pick off only the n* diagonal elements of (2A° A^7 + \°nC) and the left hand side will be equal 

to zero. So 

2A^7 + A°Cnn = 0 (77) 

or, 

Xl = _^ü (78) 
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Therefore, to order e we have 

But, 

so to first order in e 

An = A° - e% (79) 

A° = ±jun (80) 

^nn (81) 

(82) 

(83) 

(84) 

1 

Consequently, for the damped system to first order in e, 

u>d = un (85) 

and, 

<= .   ' , (86) 

^n - -e-r-^zcji 

An eigenvalue of the form 

A = -a±j/3 

has a damped natural frequency, u>d 

Wd = /5 

and a damping factor, £ 

1 

'     ,/^2 + l 

.(ft:) +1 

Expanding the above in a Taylor series and retaining only the terms of order e we get 

C = ^ (87) 

This has shown, as Meirovitch stated, that when damping is sufficiently small, its effect on 

the damped natural frequency is second order.   Thus we can rely on the proof in the previous 

section which gave the constraint that the undamped natural frequencies (and our damped natural 

frequencies as well due to Equation 85) of the closed-loop system will always increase compared 

to the open-loop natural frequencies. Therefore, the answer to our original question: do the natural 
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frequencies of a structural system of equations only increase when positive definite output feedback 

control is implemented, is yes if the positive definite rate feedback matrix GR is sufficiently small. 
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Chapter 4 - Eigenstructure Assignment 

This chapter will explore the computer code used in this thesis. First, we will summarize 

the equations developed in earlier chapters of this thesis. Next, we will look at the programing 

considerations for this work, including the existing MatLab™ routines, as well as, new routines 

developed for this thesis. Then, we will look at the algorithms to develop this code in any computer 

language. Finally we will examine the usage of the ear.m program. 

4.1  Algorithm Equations 

The main equations in the program have been developed through this thesis. The main equa- 

tions used in the program ear.m begin with the open-loop equations of motion 

Mx + Cx + K x = 0 (88) 

and end with the achieved closed-loop equations of motion 

MZ + (C + DGRDT)±+(K + DGPDT)x = 0. (89) 

The eigenvalues and eigenvectors are calculated by writing these equations in first order form 

(90) 0 / 
-M-XK   -M-XC 

and, 

0 I 
-M-1{K + DGPDT)   -M-\C + DGRDT) 

and then using the existing MatLab™ subroutine eig.m for the calculation.   The program ear.m 

z = (91) 

then plots the resulting eigenvalues. 

The cost function for just the eigenvalues is 
n 

J = Y,Fei{^di-K? (92) 
i=l 

and the cost function for both eigenvalues and eigenvectors is 
n 

J = J2 [FeX^ ~ K? + (Vdi - Vai)
TFVi(Vdi - Vai)] . (93) 

i=l 
These are the main equations for the program. Next, we will look at the programing considerations 

using MatLab™ and these main equations to get a useful output. 
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4.2  Programing Considerations 

As stated in the introduction, previous theses by Robinson [8] and Huckabone [1] give algo- 

rithms for eigenvalue assignment using linear quadratic regulator (LQR) techniques. Robinson 

used MatLab™ and the LQR routines to minimize a cost function of weighted eigenvalues, and 

then Huckabone converted the algorithm to FORTRAN to save computer time and used a cost 

function that included both the eigenvalues and the eigenvectors. He noticed a ten fold increase in 

compute time for the FORTRAN algorithm over Robinson's MatLab™ routines. 

Robinson wrote his code in 1990 and Huckabone wrote the FORTRAN code in 1991. It has 

been nine years since Robinson's thesis, and the current law of compute time is that processor speed 

doubles every eighteen months. So, since Robinson's time we should have doubled six times. He 

was able to use a Compaq 286, while at the time of this writing the state of the art for a personal 

computer is a Pentium II450 MHz processor from Intel. Huckabone's FORTRAN code gave him 

a ten times increase over Robinson's MatLab™ code. However, with computer speeds of today, 

most of the example problems in this thesis ran in about three to five seconds, and the examples 

with a four degree-of-freedom system took less than two minutes. 

The algorithm for this thesis is similar to the algorithms used by both Robinson and Huck- 

abone. The difference is in the control method. Robinson and Huckabone used the linear quadratic 

regulator while this thesis has explored the use of positive definite output feedback control. 

4.2.1   Existing Subroutines 

The main program structure and cost function structure were taken from Huckabone [1], but 

MatLab™ has many useful existing subroutines which proved to be advantageous for this work. 

The main subroutine used by the program ear.m is fmins.m. The subroutine fmins.m uses a 

Nelder-Mead type simplex search method and the inputs are the cost function name and a vector 

of initial conditions. The subroutine eig.m was used many times in the program. That subrou- 

tine finds the eigenvalues and eigenvectors of a matrix.  Also, the subroutine sort.m sorts a vector 
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in ascending order of magnitude. These subroutines work within the ear.m main program to opti- 

mize the difference between the desired eigenstructure and the achieved eigenstructure. The cost 

function is minimized within fmins.m and the result is sent back to the main program. 

4.2.2 Newly Developed Subroutines 

The subroutines developed for this thesis and used in the main program ear.m are getdata.m, 

eigsortm, plotinitm, value .m, and structure .m. These subroutines must be in the same directory 

as the main program ear.m for the program to run. 

The subroutine getdata.m is the input file and is fully explained in the section "Using the pro- 

gram." Next, eigsort.m is a subroutine that takes the desired eigenvalues, eigenvectors, and weight- 

ing matrices for the eigenstructure assignment algorithm and sorts the eigenvalues in ascending or- 

der with the sort routine discussed above. Then, it sorts the desired eigenvectors and weighting 

matrices so that they match the originally intended eigenvalues. 

The routine plotinitm initializes the plotting area for the graphical output of this program. The 

routine uses the magnitude of the largest desired eigenvalue to scale the axis for the final output. 

Finally, the subroutines value.m and structure.m are the cost functions used by fmins.m. These 

two routines are discussed in detail in the following sections. 

4.2.3 Program Flow 

The program for this thesis has a main program and two different cost functions. The main 

program has an algorithm as follows: 

4.2.3.1  Main Program 

Input data from file 

Variables: 

Mass Matrix 

Stiffness Matrix 
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Damping Matrix 

Control Matrix 

Desired Eigenvalues 

Desired Eigenvectors 

Weighting Factors 

Sort the eigenvalues and eigenvectors by eigenvalue magnitude 

Plot the open-loop eigenvalues 

Initialize gain matrices 

Call "fmins.m" to minimize cost function 

Plot the closed-loop eigenvalues 

4.2.3.2 Cost function for eigenvalues only 

Both of the cost functions in this program are called by the MatLab™ subroutine forms .m. 

The first cost function calculates the difference between the achievable and desired eigenvalues 

using the following algorithm: 

Form gain matrices 

Find eigenvalues 

Sort eigenvalues 

Plot eigenvalues 

Calculate cost function 

4.2.3.3 Cost function for both eigenvalues and eigenvectors 

The second cost function calculates the difference between the achievable and desired eigen- 

values and eigenvectors. The algorithm is similar to the first cost function but adds a step for the 

eigenvectors as shown in the following algorithm: 

Form gain matrices 

Find eigenvalues and eigenvectors 
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The M, C, K, D matrices are the mass, damping, stiflhess, and control matrices. These depend 

on the characteristics of the open-loop system, and as we will examine with some examples, the D 

matrix depends on the placement of the collocated sensor-actuator pairs. The D matrix must have 

the same number of rows as the mass, stiffness, and damping matrices, and it must have the same 

number of columns as sensor-actuator pairs. 

The ed vector contains the desired eigenvalues. Please note that in the example section, and 

in most cases, the desired eigenvalues will occur in complex conjugate pairs. The F vector is 

the weighting vector for the desired eigenvalues. This can be used by the designer to induce the 

program to direct its search toward the most desired eigenvalues. If the F variable is left blank, 

then the ear.m program will automatically assign ones for all the eigenvalues so that each one is 

weighted with the same values. 

The vecd matrix is a matrix of the desired eigenvectors. The program will automatically 

normalize the eigenvectors, but the user must ensure that the eigenvectors are entered in the same 

order as the desired eigenvalues. Finally, Fvec is a weighting matrix for the desired eigenvectors. 

Usually this will be the identity matrix when using the structure cost function. If Fvec is set to 

a default of zeros when using the structure cost function, then the program will only consider the 

eigenvalues in the cost function. This is exactly what is done in the value cost function, but the 

numerical subroutine does not even attempt to calculate the eigenvector part of the cost function so 

that compute time will be shorter. 

In the final chapter of this thesis we will explore some of these programing considerations, as 

well as demonstrate the usefulness of this program. 
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Chapter 5 - Examples 

This chapter will begin with some simple examples and move to more complex models. The 

first step is to look at a single degree-of-freedom (DOF) system and to explore some of the eigen- 

value properties proved in this thesis. Then, we will move on to a second order system and investi- 

gate some of the properties of the computer code. As a final validation step, we will look at a four 

degree-of-freedom system and see how the computer code handles higher order systems. Finally, 

we will look at a flexible truss example. 

5.1  Single DOF system 

The single spring-mass system is the simplest example of how the eigenvalue assignment 

algorithm works. First, let us take an example that graphically looks like Figure 2. 

X 

Figure 2. Single DOF spring-mass system 

The mathematical equation of motion for the system in Figure 2 is 

x + x = u. 

The open-loop characteristic equation is 

A2 + 1 = 0 

(94) 

(95) 
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so the eigenvalues of this equation are 

\OL = ±i. (96) 

If we close the loop, the new equation of motion is 

x + GRx + (1 + GP)x = 0. (97) 

Then the closed-loop characteristic equation is 

X2 + GRX + (1+Gp) = 0, (98) 

and, from the quadratic equation, the closed-loop eigenvalues are 

Ac^-QB±VQ|-4(1+gf) (99) 

If we desire closed-loop eigenvalues of -1 ± i, then in this single DOF problem it can be 

verified using Equation 99 that GR = 2 and GP = 1. Note that with higher order systems we will 

not be able to solve for the gain matrices in closed form. 

Therefore, in the computer program, we enter the following for the single DOF system shown 

in Table 1: 
M C K D 
1 0 1 1 

Table 1. Single DOF system properties 

Now, when the program earm is asked to find the desired eigenvalues of-1 ± i, the output is 

shown in Figure 3. The x marks on the imaginary axis are the open-loop poles of the system at ±i 

There are asterisks at the desired values of -1 ± i. In this case there are also circles at -1 ± i to 

indicate the achieved closed-loop poles. The dots on the figure indicate the intermediate steps of 

the numerical gradient search. 

Table 2 corresponding to Figure 3, which compares the desired with the achieved eigenvalues, 

and shows the position and rate gains, as well as the natural frequency and damping of the achieved 

poles. 
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Figure 3. One degree-of-freedom system 

GP GR desired achieved nat. freq. damping 
1 2 -l±i -l±i 1.4142 0.7071 

Table 2. One degree-of-fredom results 
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Now, since we have seen how this computer code works, let us look at problems we might 

encounter. The first problem was presented in the proof which showed that the natural frequency 

can only increase. Let the damping remain the same, but let us choose a set of desired eigenvalues 

with anatural frequency smaller than the open-loop natural frequency of one. Forthis example, the 

desired eigenvalues chosen were -0.5 ± 0.5i. While these eigenvalues have the same damping as 

the previous example, the desired natural frequency is the magnitude of the eigenvalue or 0.7071. 
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Figure 4. One degree-of-freedom with small desired poles 

As can be seen in Figure 4 and Table 3, we did not achieve our desired eigenvalues. In fact, 

notice that the gradient search found the closest value to the desired poles with the constraint that 

the natural frequency could not be less than one. 
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Next, just as a precaution we will test the computer algorithm with very large desired eigen- 

values in Figure 5 and Table 4. 

The previous case shows that the eigenvalues can be placed a relatively large distance from 

the open-loop position. However, notice how large the gain matrices had to become to achieve the 

larger eigenvalues. As a practical matter, the control designer must always ensure that a design 

does not exceed the control power available for a given system. 

Now that we see the achievable space for the desired eigenvalues, we can examine the effects 

of damping. Remember that our proof made the assumption that we would have small damping 

so that we could prove that damping effects were a second order perturbation to the eigenvalues. 

First, we will look at the response when we desire large damping. 

In Figure 6 and Table 5, we asked for poles at -0.5 ± O.li with a large amount of damping, 

C = 0.9806, and we also desired a natural frequency of 0.5099 which we know, since it is less 

than 1, cannot be achieved. The numerical algorithm again ended up at the closest point to the 

desired eigenvalues while constraining the natural frequency to be greater than 1. This means that 

even with large damping our proof still held. This would be a very interesting discovery since 

our closed-loop damping matrix, C + DGRDT, is larger than either the mass or stiffness matrix. 

However, we must contain our enthusiasm until we can explore a model with more than one DOF. 

Finally, we can ensure that the program will handle small damping by asking for poles at 

—0.1 ± 0.5«. This can be seen in Figure 7 

GP GR desired achieved nat. freq. damping 
0 1.4142 -0.5±0.5i -0.7071 ± 0.707H 1 0.7071 

Table 3. One degree-of-freedom with small desired results 
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Figure 5. One degree-of-freedom with large desired eigenvalues 

GP GR desired achieved nat freq. damping 
19999 200 -lOOilOOz -lOOilOOi 141.4214 0.9806 

Table 4. One degree-of-freedom with large desired results 

GP GR desired achieved nat. freq. damping 
0 1.9611 -0.5±0.1i -0.9806 ±0.1962i 1 0.9806 

Table 5. One degree-of-freedom with large damping results 

GP GR desired achieved nat. freq. damping 
0 .3922 -0.1±0.5t -.1961 ±.9806« 1 0.1961 

Table 6. One degree-of-freedom with small damping results 
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Figure 6. One degree-of-freedom system with large damping 
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Figure 7. One degree-of-freedom system with small damping 
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5.2  Two DOF system 

A two DOF system is best introduced using a model with two masses and two springs. This 

system, with collocated actuator-sensor pairs located between the masses, is shown in Figure 8. 

*  X' 

Figure 8. Two DOF spring-mass system 

The equations of motion for this system are constructed using the values in Table 7. 

The open-loop eigenvalues are on the imaginary axis at ±.68H and ±1.681i. The first step 

is to ensure that we can move the poles to a location with damping and a larger natural frequency. 

This example is shown in Figure 9 and Table 8. 

Again, we see that the numerical algorithm has no problem with the baseline system. The 

next two figures will validate the program. First, in Figure 10 and Table 9, we desire eigenvalues 

with larger natural frequencies than either of the open-loop eigenvalues. 

Second, in Figure 11 and Table 10, we examine the result of desired eigenvalues which are 

both smaller than the open-loop eigenvalues. 

Notice that we did not achieve the desired eigenvalues, but also notice that the natural fre- 

quency of the second eigenvalue decreased. Our rule that the natural frequency would not get 

smaller than the open-loop natural frequencies did not hold in this case. There are two reasons for 

this result.   The first is the large amount of damping present in the second pole.   Another reason 
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M c K D 
1    0 
0    1 

0   0 
0   0 

2     -1 
-1     1 

1    -1 
0     1 

Table 7. Two DOF system properties 
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Figure 9. Two degrees-of-freedom system 

GP GR desired achieved nat. freq. damping 
1.9303     -0.0074 

-0.0074     4.4599 
3.8137     -0.0089 

-0.0089     1.0843 
-l±i -lit 1.4142 0.7071 

det = 8.6089 det = 4.1349 -2 ±2* -2±2i 2.8284 0.7071 

Table 8. Two degrees-of-freedom results 

GP GR desired achieved nat. freq. damping 
8.4956     -0.0615 

-0.0615    14.1652 
7.0519    -0.059 
-0.059     1.433 

-2±2i -2±2i 2.8284 0.7071 

det = 120.3373 det = 10.0500 -3±3i -3±3i 4.2426 0.7071 

Table 9. Two degrees-of-freedom with larger desired results 
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Figure 10. Two degrees-of-freedom with larger desired eigenvalues 

GP GR desired 

10~3* 
0.1164   0.1088 
0.1088   0.1016 

0.0001    0.0000 
0.0000    1.2558 

-0.2±0.2i 

det= 1.4249* 10"ia det = 7.8972 * 10"b -0.3 ± 0.3i 

achieved nat. freq. damping 
-0.0479 ± 0.6518z 0.6535 0.0732 
-1.2079 ±0.9396? 1.5303 0.7893 

Table 10. Two degee-of-freedom with small desired results 
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Figure 11. Two degrees-of-freedom with smaller desired eigenvalues 
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for this discrepancy is numerical error. When the algorithm is performing a gradient search with 

numbers on the order of 10~4, truncation errors must be considered. The way to avoid this prob- 

lem is for the designer to first find the open-loop eigenvalues and make sure that all of the desired 

eigenvalues have a larger natural frequency than the open-loop natural frequencies. 

Now, let us turn to large damping, as we did with the single DOF system. In Figure 12 and 

Table 11, the natural frequencies of the desired eigenvalues are slightly smaller than the natural 

frequencies of the open-loop system, but the desired damping is very large. 
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real 

Figure 12. Two degrees-of-freedom with large damping desired 

Notice how neither of the natural frequencies was smaller than the open-loop natural frequen- 

cies of 0.618 and 1.618. Also, the smaller pair of eigenvalues did not even move close to the de- 

sired values.   So, while the single DOF model in the previous section showed a lower bound on 
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the closed-loop natural frequency equal to that of the open-loop natural frequency, the rule does not 

hold with higher order models and large damping factors. In this case, the lower bound is larger 

than the predicted value of the proof. The difference is the large damping in GR which makes 

damping larger than just a second order effect. 

The next area to explore is what happens when we have a different number of sensors than 

the order of the system. First, we will look at the result when we use three sensors. Then we 

will see what happens when we have only one sensor with this two DOF system. In the rest 

of the examples, the desired natural frequencies will always be larger than the open-loop natural 

frequencies. Also, the desired frequencies will be chosen so as not to be larger than the next greater 

open-loop eigenvalue as was done in Figure 10. 

The three sensor case would look graphically like Figure 13. 

GP GR desired achieved nat. freq. damping 
0.0000   0.0000 
0.0000   2.0307 

2.5978     -0.0045 
-0.0045      1.3908 

-l±.li -0.9491 ± 0.3002t 0.9954 0.9534 

det = 6.3270* 10"'' det = 3.6129 -2±.li -1.7451 ±0.1148i 1.7489 0.9978 

Table 11. Two degrees-of-freedom with large damping results 
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x. 

Figure 13. Two DOF system with three sensors 
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The result can be seen in Figure 14 and Table 12 
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Figure 14. Two degrees-of-freedom with three sensors 

The difference between this example and the example with two sensors is that the numerical 

gradients search narrows in on the desired eigenvalues much more quickly. Also, with an additional 

sensor, the gain matrices are larger so that they have more values to iterate with in the numerical 

minimization routine. In actual systems, the designer will usually have the opposite of this case, 

where there are fewer sensors than eigenvalues to control. 

The first example, with only one sensor on a two DOF system, has the sensor between the two 

masses as in Figure 15. 

This sensor placement results in Figure 16 and Table 13. 
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GP GR desired 
1.5718       0.0000     -0.0008 
0.0000      2.0185     -0.0011 

-0.0008    -0.0011     1.4737 

2.4394     -0.0035    -0.0021 
-0.0035     0.9629     -0.0019 
-0.0021    -0.0019      1.6382 

-l±i 

det = 4.6747 det = 3.8478 -2±2t 

achieved nat. freq. damping 
-l±i -lit .7071 
-2±2i 2.8284 .7071 

Table 12. Two degrees-of-freedm with three sensors results 
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Figure 15. Two DOF system with one sensor 

GP GR desired achieved nat. freq. damping 
2.7560 2.0070 -l±i -0.0078 i 0.6861« 0.6861 0.0114 

-2±2i -1.9992 il.9955i 2.8247 0.7078 

Table 13. Two degrees-of-freedom with one sensor results 
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Figure 16. Two degrees-of-freedom with one sensor 
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The vibrations analyst will recognize that the sensor placement is such that it can only measure 

one of the modes of the system. In fact, the eigenvectors for the open-loop system show that the 

frequency at 0.618 has a mode shape where both of the masses move together. The eigenvectors 

for the second frequency have a mode shape where the masses move in opposite directions. So, 

in effect, the sensor placement for this example dictated that we could only change the second 

frequency. Now, we can change our sensor-actuator pair to measure the first mode shape, which 

looks like Figure 17. This figure is mainly for visualization, since the control matrix is set up so 

that the sensor measures x\ + x%, which is difficult to graphically display. 

/ 
/ 
/ 
/ 
/ 
/- 
/ 
/ 
/ 

yn% 
-/^Collocated[i 

kx=i 
x. 

Figure 17. Two DOF sytem with one sensor in new location 

This new sensor placement results in Figure 18 and Table 14. 

The first mode has been moved by changing the control, or D, matrix and changing the desired 

eigenvalues to reflect that only one pole would be controlled. Finally, an interesting study is when 

this two DOF system is not attached to a ground. We are going to again place the sensor-actuator 

pair between the masses, but our open-loop system will have two poles at the origin corresponding 

to rigid-body motion. This system graphically looks like Figure 19. 

The output is shown in Figure 20 and Table 15. 
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Figure 18. Two degrees-of-freedom with new sensor placement 

GP Gß desired achieved nat. freq. damping 
0.7901 1.0157 -l±i -0.9911 ±0.9937i 1.4035 0.7062 

±2i -0.0245 ± 1.585U 1.5853 0.0155 

Table 14. Two degree-of-fredom with new sensor placement results 

GP GR desired achieved nat. freq. damping 
3.2791*10-» 1 0±0i 0 0 0 

-l±li -l±li 1.4142 0.7071 

Table 15. Two degrees-of-freedom with rigid-body modes results 
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+ x, * x. 

Figure 19. Two DOF system with rigid-body modes 
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Figure 20. Two degrees-of-freedom with rigid-body modes 
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Notice that this system acted like the system in Figure 16 in that the second mode eigenvalues 

where moved to the desired location. In this case, the first mode eigenvalues are at the origin. In 

most space applications, vibrations are controlled by one system while the translation of the rigid 

body is controlled by a separate and distinct system. 

50 



5.3  Four DOF system 

We will use the four mass system shown in Figure 21 to further explore the case in which we 

have fewer sensors than degrees-of-freedom. 

A 

', 
/ 
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yi.ui 

k2=i 

tn2=l 

*2 

y2-u2 

AA/V" 
k3=l 

m3=l 

K3 

y3>u3 

AAAA 
kt=i 

n4=l 

x4 

Figure 21. Four DOF system with three sensors 

The results of the computer run can be seen in Figure 22 and Table 16. Notice that we 

have the same problem as we did with the two DOF system in that we do not move the smallest 

eigenvalue. While the theory section showed that we can only move as many eigenvalues as we 

have sensor/actuators, this case shows that there is an additional controllability/observability issue 

to contend with. We will explore this further in the next section with the 29 degree-of-freedom 

truss example. 

For now, notice that we can still control a Four DOF system if it has a rigid body mode and we 

have three sensors/actuator pairs. This is shown graphically in Figure 23 and the results are shown 

in Figure 24 and Table 17. 
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Figure 22. Four degrees-of-freedom with three sensors 

GP GR 

8.1219     -0.0022 
-0.0022     5.4504 
-0.0113    -0.0163 

-0.0113 
-0.0163 
0.2237 

2.0370     -0.0003 
-0.0003     2.4575 
0.0001     -0.0012 

0.0001 
-0.0012 
1.5039 

de* = 9.8988 det = 24.7742 

desired achieved nat. freq. damping 
0±0j 0±0i 0 0 
-1±1« -l±li 1.4142 0.7071 
-2±2i -2±2i 2.8284 0.7071 
-3±3z -3±3z 4.2426 0.7071 

Table 16. Four degrees-of-freedom with three sensors results 
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Figure 23. Four DOF system with rigid body modes 
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Figure 24. Four degrees-of-freedom with rigid body modes 
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GP GR 

16.3530    -0.0744     0.0067 
-0.0744    16.1186    -0.0239 
0.0067     -0.0239     2.6464 

2.3347     -0.0047    -0.0042 
-0.0047     3.9421     -0.0312 
-0.0042    -0.0312     2.6920 

det = 697.5459 det = 24.7742 

desired achieved nat. freq. damping 
l±li -0.0023 ± 0.4846i 0.4846 0.0048 
-2±2i -2.0009 ± 1.9995J 2.8288 0.7074 
-2±2i -3.0009 ± 3.0002i 4.2434 0.7072 
-2±2i -4.0006 ± 4.0004z 5.6576 0.7071 

Table 17. Four degrees-of-freedom with rigid-body modes results 
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5.4 Truss system 

The final example we will explore is the 29 degree-of-freedom truss in Figure 25. There are 16 

nodes on this system, and each can move in the horizontal and vertical directions. A simple finite 

element computer algorithm was used to develop the mass and stiffness matrices for this system. 

The mass and stiffness were input into ear.m, and many sensor/actuator combinations were 

tried. The objective was to control the first five modes of the system, which we have seen with the 

two and four DOF systems to be difficult without the correct sensor/actuator placement. Also, each 

of the runs of this system took approximately an hour of computation time, so guessing the sensor 

placement to control the first five modes became prohibitive. An example run is shown in Figure 

26. 

The general problem of output feedback control does not follow the traditional analysis for 

controllability and observability. Thus, further analysis and further research should be conducted 

to analyze the controllability and observability of this specific control problem. Until that time, this 

method is limited to either increasing the number of sensors or reducing the model order. However, 

model reduction may affect the mode shapes of the full order system. 
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Figure 25. 29 degree-of-freedom planar trass 
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Figure 26. Truss problem which shows the difficulty of sensor placement 
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Chapter 6 - Conclusion and Recommendations 

6.1  Summary 

As a summary, we can look once again at the figure given in the introduction shown here as 

Figure 27. 

Chapter 2-Theory ■ 

Chapter 3—Eigenvalue Properties 

Chapter 4—Eigenstructure Assignment 

Chapter 5-Examples 

Input system matrices 

Find open-loop 
eigenstructure 

Select desired closed- 
loop eigenstructure 

Guess gain matrices 

Perturb gain matrices 

Gain matrin results 

Iterate 

Figure 27. Block diagram of eigenvalue assignment process 

This thesis began with the mathematical theory necessary to carry out the eigenstructure as- 

signment algorithm. Chapter Two discussed Lyapunov stability and positive definite output feed- 

back, which provided a framework for investigating the open-loop eigenvalues of a system, ensur- 

ing stability of a closed-loop system, and exploring the specific methodology used in this thesis. 
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Chapter Three gave a proof of the bounds on eigenvalue placement that was completely origi- 

nal to this work. That proof showed that the eigenvalues of a system using positive definite output 

feedback control will always increase because of the positive definite gain matrices. The proof not 

only explored an undamped system, but showed that a system with small damping will follow the 

same rule as the undamped system. 

Next, the eigenvalue assignment system was discussed in Chapter Four, and a discussion of 

the computer code used in this work was given. Finally, some examples were provided which both 

validated the algorithm and showed its usefulness. 

With all of the research accomplish in this thesis, there are still plenty of topics for future 

research and study. The next section discusses a few of the myriad of possible topics. 

6.2  Recommendations For Further Study 

This thesis effort has given rise to a number of future research topics. Perhaps the most 

important is to look at sensor/actuator placement. This could be done through a computer algorithm 

or possibly the problem could be solved in closed form. The researcher wishing to pursue this type 

of work could start with the controllability/observability criteria for full state feedback and adapt 

it to output feedback. Perhaps, if there is no closed form solution, another cost function could be 

created which finds an optimal sensor/actuator arrangement for a given system. 

The next area of study would be non-collocated sensors. There are two definitions for this 

problem in the literature. The first is to assume the designer wanted collocated sensors, but could 

not get them exactly aligned. Research could then be conducted to measure the error when there 

was a given offset in the hardware placement. The second definition of non-collocation dealt with 

purposefully locating the sensor away from the actuator on, for example, a flexible beam. An 

example of this research would determine if a better sensor placement could be found to measure 

the eigenvalues of a system, and the actuator could still control specific modes. 
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Further, non-symmetric gain matrices could be explored using the same algorithm of this thesis 

to determine if there is any improvement in the eigenstructure placement. The new algorithm may 

speed up processing time and provide some insight into the problem of optimal sensor placement. 

Finally, a study could be conducted to combine this thesis research with an optimum pole 

placement method. Through out this thesis the desired eigenvalues and eigenvectors were assumed 

to be given by a designer. However, there is extensive literature on optimization that could help a 

researcher examine a method of pole placement that optimizes other criteria than examined here, 

such as other stability robustness measures. 
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Appendices 



APPENDIX A - Computer Code 

This appendix includes the computer code used for this thesis including EAR.M and its sub- 

routines. 

A.1  EAR.M 

%- 
% 
% EIGENSTRUCTURE ASSIGNMENT ALGORITHM 
% 
% Author: Adam G. Harris Date: 31 March 1999 
0/ /o 

% This routine implements the eigenstructure assignment algorithm 
% used in this thesis. The input file called "getdata.m" must be 
% created before running this routine. 
% 
% ructions calls: getdata.m 
% eigsortm 
% plotinitm 
0/ /o 
0/  /o  

clear all 
ea=[]; 
veca=[]; 
%  

% Pre process the data 
0/  /o  

getdata % call getdata.m with M,C,K,D,ed,F 
Minv=inv(M); 
[rowD,columD]=size(D); 
if isempty(F)=l, F=ones(2*rowD,l);, end % if F undefined make it ones 
if isempty(Fvec)==l, Fvec=zeros(2*rowD,l)„ end %if Fvec undefined make it zero 
eigsort; 
/o  

% Process the data 
0/  /o  

%initialize the matrixx=[p 11 p21 p22...pnnrll r21 r22...rnn]' 
%init. to Gp=Gr=I 
s=l; 
fori=l:columD 

forj=l:i 
ifi=j,xO(s)=l; 
else xO(s)=0; 
end 
s=s+l; 

end 
end 
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plotinit(2 * rowD,ed) 
% Plot the open loop eigenvalues 
oltemp=[[zeros(rowD,rowD);eye(rowD)]';[-Minv*K';-Minv*C']']; 
ol=eig(oltemp) 
for index=l: size(ol, 1) 

plot(real(ol(mdex)),imag(ol(index)),'xb') 
end 
% Initialize finins routine 
xO=[xO xO]; % 2 xO for Gp and Gr equal Identity 
%xO=zeros(l,columDA2+columD); 
x=finins(rourine,xO,[],[],C,K,D,ed,F,vecd,Fvec,Minv); %minimize the cost function 
0/  /o  

% Post process the data 
%  
% Create and print pos definite gain maticies 
[dummy,colx]=size(x); %note m is both p and r 
sizeG=(-l+sqrt(l+4*colx))/2; 
s=l; 
Lp=zeros(sizeG,sizeG); 
Lr=zeros(sizeG,sizeG); 
forind=l:sizeG 

forj=l:ind 
Lp(indj)=x(s); 
Lr(indj)=x(s+colx/2); 
s=s+l; 

end 
end 
Gp=Lp*Lp', detGp=det(Gp) 
Gr=Lr*Lr', detGr=det(Gr) 
% Create pos definite gain maticies and CL A matrix 
Ktil=-Minv*[K+D*Gp*D']; 
Ctil=-Minv*[C+D*Gr*D']; 
A=[[zeros(rowD?rowD);eye(rowD)]';[Ktil';Ctir]']; 
% Calculate achievable eigenvalues and vectors 
[vecat,eatemp]=eig(A); 
for ind=l :size(eatemp,l) 

ea(ind, l)=eatemp(ind,ind); 
end 
% sort eigenvalues and corresponding eigenvectors 
[ea,index]=sort(ea); 
for ind=l :size(eatemp, 1) 

vecatmp(:,ind)=vecat(:,index(ind)); 
end 
veca=vecatmp; 
% Plot final eigenvalues 
for count=l :2*rowD 

plot(real(ea(count)),imag(ea(count)),'og') 
end 
title('Gradient Search For Achievable Poles') 
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xlabel('real') 
ylabel('imaginary') 
hold off 
% print final results 
ed 
ea 
for iii=l:2:size(ea,l) 

nat=abs(ea(iii)) 
gamma=-real(ea(iii))/abs(ea(iii)) 

end 
vecd 
veca 
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A.2  GETDATA.M 

%  
% 
% GET DATA INITIALIZATION 
% 
% Author: Adam G. Harris Date: 31 March 1999 
% 
% This input file must be created before running the 
% eigenstructure assignment algorithm. 
0/ /o 

% routine = 'value' uses eigenvalue cost function 
% 'structure' uses eigenstructure cost function 
% M = mass matrix 
% C = damping matrix 
% K = stiffness matrix 
% D = control matrix 
% ed = desired eigenvalues 
% F = eignvalue weighting 
% vecd = desired eigenvectors 
% Fvec = eigenvector weighting 
% 
% :  

routine='value'; 
M=[l 0;0 1]; 
C=[0 0;0 0]; 
K=[2 -1;-1 1]; 
D=[l;l]; 
ed=[-l+li-l-li0+2i0-2i]'; 
F=[l 1 1 1]; 
vecd=[ 
0.3947 + 0.0976i 0.3947 - 0.0976i 0.2631 + 0.115H 0.2631 - 0.115H 
0.4011 - 0.0849i 0.4011 + 0.0849i 0.0551 - 0.1599i 0.0551 + 0.1599i 
-0.2970 - 0.4923i -0.2970 + 0.4923i -0.2960 - 0.7566i -0.2960 + 0.7566i 
-0.4859 - 0.3162i -0.4859 + 0.3162i -0.4301 + 0.2096i -0.4301 - 0.2096i]; 
Fvec=[0 0 0 0]; 
% routine may be given 'value' or 'structure' depending on whether the user 
% desires a cost function of just the eigenvalues or a cost function with 
%both eigenvalues and eigenvectors. Note: using 'value' is equivalent to using 
% 'structure' and setting Fvec=[zeros], however 'value' will run much quicker 
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A.3  EIGSORT.M 

%  
% 
% EIGENSTRUCTURE SORTING 
0/ /o 

% Author: Adam G. Harris Date: 31 March 1999 
% 
% This routine sorts the eigenvalues, eigenvectors, and weighting 
% matricies for the eigenstructure assignment algorithm. 
0/ /o 

% ed = desired eigenvalues 
% F = eigenvalue weighting 
% vecd = desired eigenvectors 
% Fvec = eigenvector weighting 
% 
%  

%sort eigenvalues 
[count,dumb]=size(ed); 
[ed,index]=sort(ed); 
Ftmp=zeros(count, 1); 
Fvectmp=zeros(count,l); 
for k=l: count 

Ftmp(k)=F(index(k)); 
vecdtmp(:,k)=vecd(:,index(k))/norm(vecd(:,index(k))); %normto 1 
Fvectmp(k)=Fvec(index(k)); 

end 
F=diag(Ftmp); %diagonalize into a square matrix 
vecd=vecdtmp; 
Fvec=diag(Fvectmp); %diagonalize into a square matrix 
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A.4 PLOTINIT.M 
%  

% 
% PLOT INITIALIZATION 
% 
% Author: Adam G. Harris Date: 31 March 1999 
% 
% This function initializes the plot for the ear.m routine. 
0/ /o 

% plotinit(n,ed) 
% 
% n = number of eigenvalues 
% ed = desired eigenvalues 
% 
%  
function plotinit(n,ed) 
% used to set up the plotting feature 
axis('square') 
e=sort(ed); 
ifabs(real(e(n)))>abs(imag(e(n))), axisize=ceil(abs(real(e(n))))-0.5; 
elseaxisize=ceil(abs(imag(e(n))))-0.5; 
end 
axis([-axisize axisize -axisize axisize]) 
plot([0 0],[-axisize axisize]/-b',[-axisize axisize],[0 0],'-b') 
hold on 
fori=l:size(e,l) 

plot(real(e(i)),imag(e(i)),' * c') 
end 
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A.5 VALUE.M 

%  
% 
% VALUE 
/o 

% Author: Adam G. Harris Date: 31 March 1999 
% 
% This function is used by forms to minimize the cost function for 
%the eigenvalues only. 
0/ /o 

%[Jtemp]=value(x,C,K,D,ed,F,vecd,Fvec,Minv) 
0/ /o 

% x = input gain matricies reduced to vector form 
% C = damping matrix 
% K = stiffness matrix 
% D = control matrix 
% ed = desired eigenvalues 
% F = eignvalue weighting 
% vecd = desired eigenvectors (not used in this routine) 
% Fvec = eigenvector weighting (not used in this routine) 
% Minv = inverse of the mass matrix 
% 
%  
function Jtemp=value(x,C,K,D,ed,F,vecd,Fvec,Minv) 
[rowK,dummy]=size(K); 
%x=[pll p21...pnnrll r21...rnn]' 
% form initial gain matrix lower triangular portion of Cholesky factorization 
[dummy,colX]=size(x); %note colX is both p and r 
sizeG=(-l+sqrt(l+4*colX))/2; 
s=l; 
Lp=zeros(sizeG,sizeG); 
Lr=zeros(sizeG,sizeG); 
forind^hsizeG 

forj=l:ind 
Lp(indj)=x(s); 
Lr(indj)=x(s+colX/2); 
s=s+l; 

end 
end 
% Create pos definite gain maticies and CL A matrix 
Gp=Lp*Lp'; 
Gr=Lr*Lr'; 
Ktil=-Minv* [K+D*Gp*D']; 
Ctil=-Minv*[C+D*Gr*D']; 
A=[[zeros(rowK,rowK);eye(rowK)]'; [Ktil' ;Ctil' ]']; 
% Calculate achievable eigenvalues 
eatemp=eig(A); 
% sort eigenvalues 
ea=sort(eatemp); 
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% Calculate Cost Function for all eigenvalues 
Jtemp=(ed-ea)' * F* (ed-ea) 
for index=l:size(ea,l) 

plot(real(ea(index)),imag(ea(index)),'.r') 
end 
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A.6  STRUCTURE.M 

%  
% 
% STRUCTURE 
% 
% Author: Adam G. Harris Date: 31 March 1999 
% 
% This function is used by fmins to minimize the cost function for both 
%the eigenvalues and eignevectors. 
0/ /o 

%[J]=stracture(x,C,K,D,ed,F,vecd,Fvec,Minv) 
0/ /o 

% x = input gain matricies reduced to vector form 
% C = damping matrix 
% K = stiffness matrix 
% D = control matrix 
% ed = desired eigenvalues 
% F = eignvalue weighting 
% vecd = desired eigenvectors 
% Fvec = eigenvector weighting 
% Minv = inverse of the mass matrix 
% 
%  

function J=structure(x,C,K,D,ed,F,vecd>Fvec,Minv) 
[rowK,dummy]=size(K); 
%x=[pll p21...pnnrll r21...mn]' 
% form initial gain matrix lower triangular portion of Cholesky factorization 
[dummycolX]=size(x);%note colX is both p and r 
rowG=(-l+sqrt(l+4*colX))/2; 
s=i; 
Lp=zeros(rowG,rowG); 
Lr=zeros(rowG,rowG); 
forind=l:rowG 

forj=l:ind 
Lp(indj)=x(s); 
Lr(indj)=x(s+colX/2); 
s=s+l; 

end 
end 
% Create pos definite gain maticies and CL A matrix 
Gp=Lp*Lp'; 
Gr=Lr*Lr'; 
Ktil=-Minv* [K+D*Gp*D']; 
Ctil=-Minv* [C+D*Gr*D']; 
A=[[zeros(rowK3rowK);eye(rowK)]';[Ktir;Ctil']']; 
% Calculate achievable eigenvalues and vectors 
[vecat,eatemp]=eig(A); 
numeig=size(eatemp, 1); 
% Change from a diagonal matrix to a vector 
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forind=l:numeig 
ea(ind, l)=eatemp(ind,ind); 

end 
% sort eigenvalues and corresponding eigenvectors 
[ea,index]=sort(ea); 
% Calculate Cost Function for all eigenvalues 
Jtemp=(ed-ea)' * F* (ed-ea); 
forind=l:numeig 

vecatmp(:,ind)=vecat(:,index(ind)); 
end 
veca=vecatmp; % remember that MatLab normalizes e-vecs to one 
Jvec=0.0; 
fori=l:numeig 

Jvec=Jvec+(vecd( :,i) -veca(: ,i))' * Fvec(i,i) * (vecd(: ,i)-veca(: ,i)); 
end 
%  
% calculte J and plot 
%  
J^Jtemp+Jvec; 
for i=l: size (ea,l) 

plot(real(ea(i)),imag(ea(i)),' .r') 
end 
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