
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

5-1999

Solving an Inverse Control Problem using Predictive Methods Solving an Inverse Control Problem using Predictive Methods

Chad J. Davis

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons

Recommended Citation Recommended Citation
Davis, Chad J., "Solving an Inverse Control Problem using Predictive Methods" (1999). Theses and
Dissertations. 5157.
https://scholar.afit.edu/etd/5157

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F5157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5157?utm_source=scholar.afit.edu%2Fetd%2F5157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GAE/ENY/99M-05

Solving an Inverse Control Problem

using Predictive Methods

THESIS
Chad Jeffrey Davis

First Lieutenant, USAF

AFIT/GAE/ENY/99M-05

Approved for public release; distribution unlimited

£&i.i. QUALITY TT'~S'nw^T>'T'n «

19990409 003

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AFIT/GAE/ENY/99M-05

Solving an Inverse Control Problem

using Predictive Methods

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Chad Jeffrey Davis, B.S. Mechanical Engineering

First Lieutenant, USAF

May, 1999

Approved for public release; distribution unlimited

AFIT/GAE/ENY/99M-05

Solving an Inverse Control Problem

Using Predictive Methods

Chad J. Davis, B.S.

First Lieutenant, USAF

Degree of Master of Science in Aeronautical Engineering

March 1999

Approved: Date

%TfTl flUHcQQVl^ fe VHP) 3?

Major Sharon Heise (Chairman)

Dr. Brad Liebst

7 /KM- ??

~1^1gyJ-^-t ~CSH <sV %' A-W H'\

Major Montgomery Hughson

Acknowledgements

I would like to express my deepest gratitude to my thesis advisor, Major Sharon

Heise. Her unending support and guidance were invaluable, especially through her

transfer out of AFIT while my thesis was still being developed. I would also like

to thank Dr. Brad Liebst for imparting to me some of his extensive knowledge

in the field of systems control and dynamics. Thank you also to the Air Vehicles

Directorate of the Air Force Research Laboratory for sponsoring my work.

Additionally, I cannot thank my wife, Courtney, enough for her support and

understanding throughout my studies and while producing this thesis. Finally, I

would like to thank my parents, Glenn and Lorene. They gave me the opportunity

and motivation to succeed.

Chad Jeffrey Davis

u

Table of Contents

Page

Acknowledgements ii

List of Figures v

Abstract vii

I. Introduction 1

1.1 Inverse Control Problem 1

1.2 Model Predictive Control 2

1.3 Research Objectives 2

1.4 Thesis Overview 2

II. Literature Review: Inverse Simulation 4

2.1 Differential Inverse Method 4

2.2 Integration Inverse Method 5

2.3 Optimization Methods 6

HI. MPC-State Space Formulation 7

3.1 Non-rate performance index 10

3.2 Rate performance index . . 10

3.3 System Constraints 13

3.4 Plant Modifications for Control Increments 14

3.5 Solution Algorithm 15

IV. Validation: Distillation Column 18

4.1 Scenario 18

4.2 Model 18

4.3 Simulation 19

iii

Page

V. Application: Transport Aircraft 23

5.1 Flight 427 23

5.1.1 Scenario 23

5.1.2 Model . 23

5.1.3 Simulation 26

5.2 N827AX 41

5.2.1 Scenario 41

5.2.2 Model 41

5.2.3 Simulation 41

VI. Conclusions and Recommendations 49

6.1 Conclusions 49

6.2 Recommendations 49

Appendix A. MATLAB Functions 51

Appendix B. Seven-Output Program . 58

Appendix C. Additional Transport Model Information 59

Bibliography 62

Vita 63

IV

List of Figures
Figure Page

1. Inverse Control SIMULINK Diagram 16

2. Distillation: Effect of control weight matrix . 19

3. Distillation: Effect of output weight matrix 20

4. Distillation: Effect of setpoint changes (r = [1,0]', r = [0,1]') 22

5. Distillation: Effect of setpoint changes (r = [.88,1.12]', r = [.39, .59]') 22

6. Output Response: h 28

7. Output Response: Vp 28

8. Output Response: gx 29

9. Output Response: gz 29

10. Output Response: ij> 30

11. Output Response: 0 30

12. Output Response: (f> 31

13. Optimal Input, 8e 31

14. Optimal Input, 8j 32

15. Optimal Input, 8a 32

16. Optimal Input, 8r 33

17. Output Response: h,R 35

18. Output Response: VrR 36

19. Output Response: gXR 36

20. Output Response: gZR 37

21. Output Response: ipR 37

22. Output Response: 6R 38

23. Output Response: (f>R 38

24. Optimal Input, 8eR 39

25. Optimal Input, 8TR 39

v

Figure Page

26. Optimal Input, SaR . . 40

27. Optimal Input, 8rR 40

28. Output Response, HAX 43

29. Output Response, VTAX 44

30. Output Response, gXAX 44

31. Output Response, gZAX . 45

32. Output Response, IJ)AX 45

33. Output Response, 0AX 46

34. Output Response, <J>AX 46

35. Optimal Input, SeAX 47

36. Optimal Input, STAX 47

37. Optimal Input, 6aAX 48

38. Optimal Input, 8TAX 48

39. Seven-Output SIMULINK Program 58

VI

AFIT/GAE/ENY/99M-05

Abstract

Model Predictive Control (MPC) is the class of control methods that optimize

a specified performance index in order to minimize weighted future output devia-

tions from a setpoint trajectory. MPC operates on a receding horizon, calculating

a set of inputs at each time step. The controller then implements the first input

and the process begins again. The performance index can also include a weighted

and/or constrained control sequence which can be of different length than the output

horizon.

This thesis applies MPC in the inverse sense - known aircraft outputs are ap-

plied in the performance index as setpoints in an attempt to determine what control

histories caused those outputs. Using this method, aircraft mishap investigators

could then have a means of determining what the control surface deflections were

throughout an incident. To accomplish these objectives, MATLAB and MATLAB

routines are used in conjunction with SIMULINK to develop the controller and sim-

ulate the aircraft's response. The actual Flight Data Recorder data from aircraft

mishaps are utilized as proof of concept.

vn

Solving an Inverse Control Problem

using Predictive Methods

/. Introduction

1.1 Inverse Control Problem

Recently, much interest has been placed in the area of reconstructing aircraft

accidents based on the information available in the Cockpit Voice Recorder (CVR)

and the Flight Data Recorder (FDR) post-crash. The CVR can provide audible

clues of the accident's cause such as stall warnings, engine noise, landing gear exten-

sion/retraction, etc.; whereas, the FDR provides the investigator with the operating

conditions leading up to and during the crash such as altitude, heading, airspeed,

etc.. Neither the CVR nor the FDR provide definitive information regarding the

control surface locations throughout the aircraft incident. Aircraft investigators cur-

rently use the information included in the CVR and FDR in an attempt to determine

the cause of the accident - be it a control surface failure or other cause. However,

of great value to the investigators would be the control histories which caused the

aircraft response.

The effort herein focuses on the particular application of post-processing air-

craft data from an incident. However, the derivation and algorithm are generic

enough so any system could be used. In fact, a distillation process on which model

predictive control had previously been performed was used in this thesis to validate

the solution algorithm. Any plant model of the form discussed here could be used,

with the methods described, to obtain the inputs from known outputs.

1.2 Model Predictive Control

This research effort applies predictive methods to the inverse control problem

in an attempt to determine, analytically, the control surface deflections that caused

the aircraft response obtained in an FDR. Model Predictive Control (MPC) is such

a method, utilizing on-line optimization of a specified performance index in order

to minimize weighted future output deviations from a setpoint trajectory along a

prediction horizon. Typically, the performance index also includes a weighted (and

possibly constrained) control sequence across a control horizon which can be, but

does not have to be, the same length as the prediction horizon. MPC has proven to

be beneficial as a flight controller (14), especially in the realm of aircraft control in

the presence of actuator failures (2). This thesis details the usefulness of MPC for

the inverse control problem by developing a performance index utilizing the FDR

data from an aircraft accident as the setpoint trajectory.

1.3 Research Objectives

The primary objective of this thesis is to determine whether MPC is useful

in determining the control histories that were involved in an aircraft incident. By

applying the theory to be developed to actual aircraft crashes of unknown (or sus-

pected) cause, this objective will be accomplished. Also to be explored are the effects

of including a rate term in the performance index for improved setpoint following.

These objectives will be accomplished using MATLAB (7) to develop the controller

and SIMULINK (8) to implement the controller on-line with the aircraft model.

1.4 Thesis Overview

Chapter 2 reviews the available literature used in development of this thesis.

Chapter 3 details the methodology and necessary background information for

the development of an MPC controller, including modifications for system constraints

and control increments.

Chapter 4 delves into the first application, a distillation column, for validation

purposes.

Chapter 5 presents the applications dealing with two aircraft mishaps, dis-

cussing the scenarios, models used, and simulation results.

Chapter 6 offers conclusions that can be made based on the results of the work

presented and suggests areas for future research in the area of inverse control using

predictive methods.

II. Literature Review: Inverse Simulation

In the context of this thesis, inverse simulation is the practice of determining a

system's input when only the outputs and the system model are known. Typically,

inverse control is used when the effort goes one step further - including feedback

control for disturbance rejection and plant uncertainty robustness. Several methods

have been studied in an attempt to perform inverse simulation. The most relevant

for the discussion here are what have been called the differential and integration

inverse methods and those utilizing optimization.

2.1 Differential Inverse Method

The differential inverse method entails modeling the desired plant trajectory as

a set of dynamic constraints imposed on the equations of motion (1). This trajectory

can be denned analytically, as a given equation, or numerically, as a series of specific

points which are then smoothed to provide a continuous trajectory. The constrained

equations of motion are then integrated until the control terms arise which can be

solved for directly.

The shortcomings of this method of inverse simulation deal with the numbers

of states, inputs, and outputs (3). If a typical plant is considered of the form

x(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t)

the solution for the control to obtain the desired trajectory, yr>, resulting from this

method is

u(t) = B~x[x{t) - Ax(t)] (2)

where

i{t) = C-lyD{i) (3)

initiates the state derivatives. The resulting input is used with Equation (1) to

obtain the state derivatives at subsequent time steps. Letting nx be the number of

states, ny the number of outputs, and nu the number of inputs, if nx = ny = nu, no

problems arise in the solution. However, if nx > nu and nx > ny, as is typical of

aircraft models, Equation (3) can no longer provide all the state derivatives necessary

to solve the problem. To avoid this problem, initial guesses of the states are typically

made.

The differential inverse method has been shown to provide solutions to the

problem at hand. However, it is desirable to develop an algorithm that does not con-

tain shortcomings of this nature where the solution might depend on initial guesses

of states.

2.2 Integration Inverse Method

The integration inverse method develops an error vector defined as the differ-

ence between the actual system output and the desired system output and attempts

to drive that error to zero (3). If

y(kT) = G[u(kT)] (4)

where G maps the input, u, to the output, y, then with the introduction of an error

vector, FE,

FE[un(kT)} = G[un(kT) - YD(kT)] (5)

where YD is the desired trajectory. The solution then becomes

un+1(kT) = un(kT) - (JlGKifcT)]})-1 • FE[un(kT)} (6)

where J{} is the Jacobian matrix found through partial derivatives of the output

approximated by

Syi(kT)/SUj(kT) « [yi(Uj + AUj) \{k+1)T -yi(Uj) \kT]/AUj (7)

Iteration on the desired input, un+1, is then performed until the actual output and

the desired output differ only by the tolerance required.

In this manner, the integration method avoids the shortcomings of the differen-

tial method in that the only requirement imposed upon the number of states, inputs,

and outputs is that ny < nu. Therefore, a solution of this type is of more interest

for this effort.

2.3 Optimization Methods

The final methods of relevance in available literature are those involving op-

timization. Similar to the differential method, optimization methods formulate the

solution by setting equality constraints on functions of the state variables. However,

the solution is not found by differentiating the equations but as a general optimiza-

tion problem.

In this type of solution, a cost function is defined and is augmented by any or all

of: constraints on initial and final conditions, path constraints, a dynamic constraint

equation, and input control constraints (5). The necessary and sufficient conditions

for optimality are then found as well as the input solution to optimally drive the

system to the desired trajectory. This method does not require time differentiation or

output derivatives, and therefore the numerical difficulties of the previous methods

can be avoided. Also avoided are the sensitivities of the results to initial guesses.

In this thesis, optimization is utilized via Model Predictive Control, which

features on-line optimization of the control inputs and real-time simulation of the

plant outputs.

III. MPC-State Space Formulation

A method of control which incorporates the advantages of optimization and

eliminates the disadvantages of time differentiation and initial guess sensitivities is

Model Predictive Control (MPC). This section presents the development of a state-

space, constrained MPC controller which utilizes control increments.

It should also be noted that in several instances, users of MPC have included

in the problem a stabilizing inner feedback loop (2). This is done in order to ensure

that the controller in these forward loop applications produces only stabilizing inputs.

This will not be the practice here as application of a stabilizing inner loop might

prevent the algorithm from following an output trajectory which is in fact unstable.

Whether the setpoint trajectory is stable or unstable, as could be the case in aircraft

incidents, the inverse controller should be able to follow the given outputs.

In this thesis, the controller is based on a linear discrete-time plant model of

the form

x(k + 1) = Ax(k) + Bu{k) (8)

y(k) = Cx(k) + Du(k)

where x G Rn, is the state vector, u G Bt, is the input vector, and y G BP, is the

output vector so A G /*"*",£ € BT*, C G Ä"xn, and D G if»**.

The Model Predictive Controller uses this plant model (Equation (8)) to cal-

culate the future plant outputs, y, along a specified prediction horizon, p, due to the

inputs, u, implemented over the control horizon, q, and minimize the cost function

involving the difference between these outputs and the desired setpoint output tra-

jectory, yd- The outputs are weighted by Q, and the inputs are weighted by R across

their respective horizons. This gives the overall cost function

?-i

J = EII c*(*+*) - w(* + 0 Ik + EII «(* + 0II* (9)
/=i /=o

Noting that the actual plant states, x, are not assumed to be known at any

time in the future, it is necessary to estimate the future states, x(k + £), based on

past states and inputs and future inputs. Based on an estimator of the form

x(k + 1) = Ax(k) + Bu(k) + L[y(k) - Cx(k)] (10)

it is seen that

x(k + £) = (A- LC)x{k + H - 1) + Bu(k + £ - 1) + Ly(k + £ - 1) (11)

With this equation, it is then possible to express the state estimates as (using the

notation of (6))

x(k + £ + 1) = F(£)x(k + £) + Gu{k + £) + H(£)y(k + £) (12)

where F,G, and H are defined as F{m) = (A - LC)m+\ G = B, H(0) = -L and

H{m) = 0 for m = 1 • ••£. These terms dealing with output feedback in H are

eliminated for all times greater than k + 1 since the actual system output will not

be available at any future time.

It is now possible to define a vector of future predicted states:

x(k + l)

x(k + p)

= Tx{k) + g[u{ky ■ ■ ■ u(k + q - iy }T + n(£)y(k) (13)

where T, G, and H are matrix functions of F(£), G, and H(£) as follows:

T =

(A- -L •c) X
(A- -L cy

(A- -L cy\

> pn (14)

ii
i X

\ B 0 0 0

(A - L ■ C)B B 0 0

Q = (A-L- CfB (A-L- C)B 0 0 ► pn

\ j ••• 0

(A-L- cy~lB [A-L- cy~2B ... B
j

(15)

H
{A-L- C)L

{A-L- cy-xL J

► pn (16)

The state prediction vector can then be used to transform the performance

indices developed in the next sections into the form of a quadratic program

J=m"}-{UTpU + fTU}

subject to AU < b

(17)

where

U = [u(k)Tu(k + l)T...u(k + q- If] TlT (18)

since the index is minimized over the control input, U. Also, P and / will be functions

of the state prediction matrices. In this form, MPC is easily implementable using a

quadratic program algorithm to determine the future inputs to drive the system to

the desired trajectory.

3.1 Non-rate performance index

Using the state prediction matrices, Equation (13), and expanding the cost

function, Equation (9), into the form of Equation (17) results in

J = U(k)T(QTCTQCg + H)U{k) + 2{[Tx{k) + Hy(k)]TCT - S}QCQU{k) + K (19)

and K includes all terms from the expansion independent of U, and is therefore

neglected. In addition, the matrices

C = diag(C • • ■ C)

Q = diag{Q ■■•Q)

K = diag(R ■ ■ ■ R)

Vd(k)

Vd(k + 1)

(20)

5 =

Vd(k + p)

are defined.

3.2 Rate performance index

It has been suggested that inclusion of an error rate term, in addition to the

previously discussed output error term, in the performance index may improve the

controller's tracking of the setpoints. In order to include an error rate term, define

the error, e, as

e(k + £) = Cx(k + £)- yd(k + £) (21)

10

Then, define a performance index similar to Equation (9) as

9-1

j = E\\Ae(k+t) + E<k+e)\\Q+E\\<k+t)\\R (22)
/=i 1=0

where the notation is identical to that in Equation (9) with the addition of Ae, the

error rate term, and E, which is a weight placed on the output error. By weighting

the output error in this manner, the actual output approaches the setpoint arbitrarily

fast by choice of E through Ae = — Ee, since the performance index attempts to

drive Ae(k + /) + Ee(k + t) to zero.

The state prediction equation will require some manipulation with the inclusion

of the error rate term, Ae(&) = e(k) — e(k — 1) or

Ae(k + £) = Cx(k + £)- yd(k +1) - Cx(k +1 - 1) + yd(k + £ - 1) (23)

which can be expanded into a vector, Ae(fc), as

Ae(Jfc) = [Ae(Jb + 1)T • • • Ae(k + pf\ (24)

Ac(Ar) = CFx{k) + CgU{k) + CHy(k) ~y~CFx{k) -CQU(k) -CHy(k) + y (25)

Using the notation of Equation (13) and noting T is identical to T, time-shifted

with the first row as zeros due to the time shift between e(k) and e(k - 1):

F =

0

(A-L-C)

{A-L-Cf

(A-L- cy-1

pn (26)

11

* **2t ufui/iSi. IH t,:^

And G and % are defined similarly. Finally, we note

y =

and

y=

yd(k + 2)T

y<i(k + p)T

yd(k)T

yd(k + p-lf

We can then rewrite Equation (25) as

(27)

(28)

Ae(fc) = c[fx(k) + gu(k) + Hy(k)} + y (29)

if we let F,G,H, and j> equal F- T, etc. Also, from direct substitution of Equation

(13) into (21), across the horizon, we have

e(k) = C[fx(k) + QU(k) + Hy{k)] - y (30)

Utilizing Equations (29) and (30) and expanding the cost function, Equation

(22), into the general quadratic program form, we see

J = u(kf[gTcTQ(cg + 2seg) + gTcTerQecg + n]u(k)

+2{[cfx(k) + cHy(k) + yfQ[cg + ecg]

+ [CFx(k) + CHy(k) - yf sTQ[cg + SCg]}U(k) + «

(31)

and K once again includes the neglected terms independent in U. This formulation

allows the MATLAB functions which will perform the quadratic program to calculate

12

i-'Ii«"):*>^*.f:3i.'

the original matrices, T, etc. and manipulate those into the required matrices, T,

etc. for the index including the error rate term.

3.3 System Constraints

Typically, the inputs determined from an MPC controller for an aerospace

system will be constrained by rate and deflection limits based on either servo or

physical limitations in both the maximum and minimum positions. This is in or-

der to prevent the controller from attempting to drive the system with inputs that

cannot be physically attained. With emphasis on the inverse control framework, the

desire is to reconstruct inputs that have already been imposed on an actual sys-

tem, and therefore the inputs will only be constrained to their physical deflection

limits, both positive and negative. This restriction will ease calculations, decrease

calculation time slightly, and provide no adverse effect on the results based on the

above discussion. In fact, cases can be envisioned where the control deflection that

actually occurred exceeded servo rate limits (implying some failure), and exclusion

of those cases could prevent good setpoint tracking. Also, the output will only be

constrained at the current time step instead of across the control horizon to allow the

controller to be more aggressive, while still operating within limitations, in following

the potentially volatile output trajectory.

Finally, the constraints pertinent for an aerospace system, written across the

control horizon, are most easily expressed as

(32)

"Umin\fc) u(k) Umaxy™)

• < • < ;

Umin(k + q~l) u(k + q-l) umax(k + q-l)

13

These constraints must be expressed in the same framework as the quadratic program

given in Equation (17) as AU < b, or

I

-I
u(k + q-l)

<

Umaxyfc)

Umax(k + q~l)

~Umin(k + 9-1)

(33)

Constraints will only be applied in this thesis when working with the trans-

port aircraft model. No constraints are placed on the distillation process since it is

an unconstrained benchmark problem. The physical deflections limitations for the

transport, then, are (4)

• Elevators (Se) = +19.33 deg,-21.83 deg

• Ailerons (6a) = ±20 deg

• Rudder (Sr) = ±26 deg

• Throttle (Sr) = 0 -> 100%

3.4 Plant Modifications for Control Increments

The computer program used to solve the quadratic program utilizes an incre-

mental control input instead of absolute inputs, so the aircraft model will need to

be modified to accept these inputs. One method of achieving this is to introduce an

additional state corresponding to each input so

xp(k + 1)
= A >(*)

.(*)
+ BAu(k) y(k) = C

xp(k)

xu(k)
(34)

14

where

A =
A B A

B =
B

0 I I
C = [CO] (35)

In this manner, the additional input states, xu(k) = u(k — 1), allow absolute in-

puts to be carried from one time step to the next. The performance indices found

in Equations (19) and (31) will not change with incremental control inputs - the

derivation could have just as easily began by replacing u with Au in Equations (9)

and (22).

With the introduction of control increments, the constraint equation, Equation

(33), must be modified to reflect that the predictive controller will be determining

a control increment, not an absolute control input. This is easily accomplished by

substituting the equation for control increments

u(k + £) = Au(k + £) + •■■ + Au(k + q) + u(k - 1) (36)

into Equation (33). After simple algebraic manipulation we see that the new con-

straint equation, involving Au, and of the form AU < 6 is

7 0 0

■: ••• 0

I ■•■ I

Au{k)

Au(k + q)

<

"'max

—
I

-I

u(k-l)

u(k-l)

(37)

3.5 Solution Algorithm

MATLAB functions were developed (see Appendix A) to solve the quadratic

programs given, forming the predictive controller. SIMULINK was then used to

couple this controller with the system model to complete the system. Figure 1

shows the complete system that was developed to solve the inverse control problem.

15

r+[
u(k-1)

cumUout

System Inputl
4

Unit Delay Sum1

g Mux

Mux

MATLAB
Function Demux

MATLAB Fen Demux

du(K)

o
Clock

J <

To Workspace

xhat(K+1)

Uout

System Input

□
Scope

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Model

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

State Estimator

Yerror «r*
U

Yd-y

y(K)

Scope2

Sum

Yout

□
Scopel

System Outputl

Mux i

Mux1

Figure 1. Inverse Control SIMULINK Diagram

The MPC-determined input is passed to the aircraft model where the actual system

output is determined. This output, coupled with the previous input, is passed to

the state estimator, and the process begins again with the previous inputs, outputs,

and states being sent to the controller (MATLAB function), where the next input

to perform is determined. The current simulation time is also an input to the MPC

so the controller can determine where in time along the setpoint trajectory the

simulation is, and the setpoints for the current calculation can be deduced from

that. This allows for the prediction horizon used in the MPC calculations to be both

less than and shifted along the given setpoint trajectory.

The MATLAB command qp was used to solve the quadratic problem of Equa-

tions (19) and (31) once the state prediction matrices were calculated. The matrices

constant across the horizons were calculated prior to executing the SIMULINK pro-

gram, while those requiring updates across time were calculated within the MATLAB

functions (see Appendix A).

16

Once the MPC SIMULINK program was used to calculate the four input tra-

jectories, Se, ST, Sa, and Sr, that optimally minimized the error between the derived

outputs and the setpoint trajectory, a second SIMULINK program was utilized to

calculate all of the outputs which were contained in the FDR information (see Ap-

pendix B). This second model allows inclusion of the initial conditions of the flight

since the model used in the MPC program was initialized to steady flight. In this

manner, the inputs required to drive a selection of the outputs to the setpoints are

determined, while the effect those inputs have on the entire set of known output

profiles can also be found.

17

IV. Validation: Distillation Column

This section presents the results from applying the inverse model predictive

control program described in the previous sections to a distillation system. This

serves as a validation of the code and algorithm developed through comparison to

results found under a previous study.

4-1 Scenario

In Morari's technical notes (9), predictive control, based on a step response

model, is performed on a high-purity distillation column. His work provides a unique

opportunity to validate the results obtained from the algorithm developed for this

thesis. The algorithm developed for this thesis will be applied to the same system,

under the same weighting and horizon conditions, to validate the program developed.

Four simulations were run, each varying a combination of the input weights, the

output weights, the prediction and control horizons, and the setpoints.

4.2 Model

The model used was a two-input, two-output transfer function system

1
75s+ 1

0.878 0.864

1.082 1.096
(38)

where the first state is reflux and the second state is buildup. This thesis utilizes

state space models so the transfer function model given was transformed into a state

space model utilizing MATLAB's tf2ss command. This results in a model in the

form of Equation (8), for continuous time, where

0133 0
B =

1 0 c =
0 -.0133 0 1

.0177 .0155

.0144 .0146

0 0
D =

0 0

18

4-3 Simulation

The first set of results determine the effect of the control weight matrix, R.

These effects were obtained by setting the setpoints to [1 0]T throughout the horizon,

q = 5,p = 20, Q = I, and letting R, the input weight, equal 0 and /. For this 2-input,

2-output system then,

R
0 0

,Ä =
1 0

0 0 0 1
(39)

The results obtained are seen in Figure 2. As expected, with the input weight set to

0, the controller utilizes large control inputs to drive the outputs to their setpoints

very quickly; while, when the input weight is set to /, the response is much slower

since less control power is being used.

R-0

400 600
Time (sec)

1000 400 600
Tim6 (sec)

800 1000

400 600
Time (sec)

1000 0 200 400 600 800 1000
Time (sec)

Figure 2. Distillation: Effect of control weight matrix

Next, the effects of the output weight matrix, Q, are determined. Both horizons

and the setpoints are kept the same as the previous set of simulations, R is set to

19

the identity, and two values are used to find the output weight effects:

Q =
100 0

,Q =
l 0

0 1 0 100
(40)

With these values, the validation results are found in Figure 3. From this figure, it

is evident that the output associated with the higher weight (100) is being driven to

its setpoint much faster than the other output, which has a weight of only one.

Q.(100,1) Q-(1,100)

1000

1000

1000

1000

Figure 3. Distillation: Effect of output weight matrix

With the weighting matrices' effects found, it is then possible to determine the

effects of varying the setpoints. This is done using four different setpoint values, r,

remaining constant throughout the trajectory:

r =
1

,r =
0

,r =
0.88

,r =
0.39

0 1 1.12 0.59
(41)

20

For all simulations, q = 5, p = 20, Q = R = I. These results are found in Figures 4

and 5. Obviously, as the setpoint changes, the controller drives the output to the

desired setpoint.

From these runs, it is evident that the code developed is valid. The results are

not exactly the same as the results found by Morari, since the exact format of the

performance index used in the previous study is not known, and is most likely not

identical to the index used in this thesis. Therefore, the equation being minimized is

not the same, and slightly differing results can be expected. From the plots, however,

it is obvious that the general trends obtained from the algorithm developed are the

same as those found by Morari.

It is also important to note that the distillation model used for these valida-

tion runs is very different from the typical dynamic model for an aerospace system.

The distillation model is smaller (two states versus the typical eight to ten) and re-

sponds much slower than expected from an aircraft model. These differences aside,

the validation runs are useful for two reasons. First, as stated previously, know-

ing the results of a completed model predictive control study allowed validation of

the algorithm. Second, utilizing this model shows the usefulness of applying model

predictive control to a variety of models.

21

r-(1,0) r-(0,1)

400 600
Time (sec)

1000 400 600
Time (sec)

800 1000

400 600
Time (sec)

800 1000
-15

200 400 600 800 1000
Time (sec)

Figure 4. Distillation: Effect of setpoint changes (r = [1,0]', r = [0,1]')

r-(.88,1.12) r-(.39,.59)

0 200 400 600 800 1000
Time (sec)

0 200 400 600 800 1000
Time (sec)

0 200 400 600 800 1000
Time (sec)

0 200 400 600 800 1000
Time (sec)

Figure 5. Distillation: Effect of setpoint changes (r = [.88,1.12]', r = [.39, .59]')

22

V. Application: Transport Aircraft

This section presents the results from applying the inverse model predictive

control program to a transport aircraft. Two actual aircraft mishaps, Flight 427 and

N827AX, will be analyzed to find the degree to which the input histories can be

determined from the FDR data.

5.1 Flight 427

5.1.1 Scenario. On 8 September, 1994, a Boeing 737-300 on Flight 427

crashed while on approach into Pittsburgh International Airport. The aircraft rolled,

turned, and nosed over into the ground. The FDR data obtained from the crash con-

tains all the relevant operating conditions of the aircraft (altitude, velocity, heading,

etc.) but none of the control surface deflections.

In an attempt to determine these inputs, Parks, Bach, and Shin (12) utilized

the Flight 427 information and an assumed set of control inputs to reproduce the

outputs that were provided from the FDR in this aircraft accident. Napolitano (10)

analyzed the same aircraft and used a neural network simulator and "Virtual" FDR

to reconstruct control surface deflections.

5.1.2 Model. A detailed model of the Boeing 737 is not available in open

literature, understandably, due to its proprietary status. However, an accurate model

estimation can be made from aircraft data more widely available in the current

literature.

The FDR data obtained for this particular incident suggested that the aircraft

was in a steady descent at about 6700 ft 100 seconds before impacting the ground.

Therefore, approximate stability derivatives (13) were used in the linearized equa-

tions of motion to provide for continuous-time aircraft dynamics, where in state-space

23

form (11)

where

x = Ax + Bu

■"■long 0

0 Alat

B =
Blong 0

0 Blat

(42)

(43)

And the A and B matrices are defined in terms of conventional stability derivatives

(see Appendix C) as

^■long —

Xu Xw 0 — g

Zu Zw uo 0

Mu + M^Zu MW + M^ZW Mq+MüU0 0

0 0 10

■Alat

Xse XsT

ng —
Zse ZsT

Mse+MüZse MsT + M^ZST

0 0

rß/u0 Yp/uo -(1 - Yr/u0) gcos(60)/u0 0

Lß Lp Lr 0 0

Nß Np Nr 0 0

0 1 0 0 0

0 0 10 0

Blat —

0 YSJUQ

ua Lsr

NSa NSr

0 0

0 0

(44)

(45)

(46)

(47)

24

The aircraft states are
x = Wong xfat]

T

where

and the inputs are

where

Xhng = [A« Aw Aq A0]

xiat = [Aß Ap Ar A<f> Aiß]

Au = forward velocity change, ft/s

Aw = vertical velocity change, ft/s

Aq = pitch rate change, rad/s

A0 = pitch angle change, rad

Aß = sideslip angle change, rad

Ap = roll rate change, rad/s

Ar = yaw rate change, rad/s

A(f> = roll angle change, rad

Aij> = yaw angle change, rad

u = [Se ST Sa 6r]T

(48)

(49)

(50)

(51)

£e = elevator angle, rad

ST — throttle position, percent

Sa = aileron angle, rad

ST = rudder angle, rad

The output equation y = Cx can then be formed depending on which states, or

linear combinations thereof, are of interest later.

Additionally, the following equations will be utilized to produce outputs in-

cluded in the FDR that are not simple linear combinations of the states described

above. The absolute velocity, rate of climb/descent, forward and vertical accelera-

25

tions are, respectively,

AVT = y/Au2 + Av2 + Aw2

Ah = u0A9 - Aw
(52)

Agx = Au/g

Agz = {Äh + ee)/g

5.1.3 Simulation. For this application, both rate and non-rate performance

indices were used to determine the input histories which produced the data contained

in the FDR. The heading, pitch, and roll angles, ij>,0, and <f>, were chosen to be

included in the performance index calculations since they carry most of the attitude

and location information for the aircraft. The final value (at t = 100s) was extended

for just enough time for the prediction horizon to allow for one final input calculation

at a simulation time of t = 99s. Before being included in the setpoint vector passed

to the MPC, the angles were resampled to the same discretization interval as the

plant model, AT=2 sec, and linearized by subtracting the initial value of each angle

throughout.

5.1.3.1 Non-rate Performance Index Results. Using the algorithm as

explained in Section 3.5, and with the following parameter values:

L = observer gain matrix

Q = diag(100■■•100)

R = diag(Q.l • • • 0.1) (53)

p = 20

q = 15

the four inputs (6e,ST,Sa,ST) that optimally drive the outputs (tj;,0,(j>) to the set-

points are found. According to the developed algorithm, these inputs are next used

in conjuction with the second SIMULINK program (see Appendix B) in order to de-

termine the full set of outputs that are included in the FDR data. These calculated

26

outputs are shown, along with their associated FDR output, in Figures 6 through

12.

These figures show the good agreement between the outputs obtained from

the MPC-inverse control program and those from the FDR. The average deviation

from the setpoints, across the entire trajectory, is only 0.4909, 0.0637, and 0.1786

radians for tp, 9, and <f>, respectively. However, the disadvantages of working with a

linear model are evident in these plots. Especially when analyzing the acceleration

deviations in Figures 8 and 9 it is apparent that the linear model used here is having

difficulty matching the FDR data. In fact, Parks, Bach, and Shin (12) found that

they had to change the lift and drag characteristics of the aircraft as it approached

stall in order to match this data. The attempt here did not include this manipulation,

without significant degradation of results. The poor matching with the accelerations

is due to the lack of lift and drag manipulation in this study and due to uncertainty

in the distance from the measurement accelerometer (in the right main wheel well)

to the aircraft center of gravity. However, overall, the match between the results and

the data is very good.

The optimal inputs which produced the above output results are shown in

Figures 13, 14, 15, and 16. Upon analyzing the four inputs, elevator, throttle,

aileron, and rudder, from the Flight 427 results, it appears that the cause of deviation

from controlled flight was a rudder hard-over input. This is consistent with several

other sources. Most notably, Parks, Bach, and Shin found that they needed to input

a two or three-step rudder command, much as seen in Figure 16, in order to obtain

output profiles similar to the FDR. Moreover, the results found here are analytical

- not assumed input trajectories as others have been.

27

:***:*i*L3?S>rr~'-

7000

6000

5000-

14000

3000

2000

1000
40 SO 60

Time (sec)

Figure 6. Output Response: h

340

40 50 60
Time (sec)

Figure 7. Output Response: VT

28

40 50 60
Time (sec)

Figure 8. Output Response: gx

40 50
Time (sec)

Figure 9. Output Response: gz

29

8>

1 i i , r- , , , ,

100

0

\ '

-100 jy
-200 ! y
-300 V
-400 - r%._ ■-»!-_ ": -
 FDR

«w t i i i i i i i i

10 20 30 40 50 60
Time (sec)

70 80 90 100

Figure 10. Output Response: tß

90 100

Figure 11. Output Response: 0

30

-*J-*^*-^^«^*.-,iW-i.<M^c**jJau**ifcfJiA.M*'^: i»'

■ i i I 1 1 1 1 1

At ■ Ion
 FDR

0

-100 .

P
hi

 (
d

eg
)

.1

-300
•\

-400 V -

-500 1 1 1- - - 1 1 1 1 1 ■

10 20 30 40 50 60
Time (sec)

70 80 90 100

Figure 12. Output Response: cf>

20

15

10

-10

-15

-20

-i r-

10 20 30 40 50 60
Time (sec)

70 80 90 100

Figure 13. Optimal Input, Se

31

. xi<r

40 50 60
Time (sec)

100

Figure 14. Optimal Input, ST

40 SO 60
Time (sec)

100

Figure 15. Optimal Input, Sa

32

40 50 60
Time (sec)

100

Figure 16. Optimal Input, Sr

33

5.1.3.2 Rate Performance Index Results. Using the same solution

algorithm and setpoints as in the previous section, but replacing the performance

index with the terms including the rate term, Ae, in the MPC the results of the

Flight 427 problem can be determined and compared to the results from the MPC

without the rate term included. With the following parameter values (Note terrriR

distinguishes parameters used in the rate-term calculations):

ifl = observer gain matrix

QR = diag(100--100)

RR = diag(Q.l---0.1)
(54)

E = diag(100---1Q0)

PR = 15

qR = 15

the four inputs (SeR,STR,SaR,SrR) that optimally drive the outputs (if>,9,<f>) to the

setpoints are found, just as in the solution for the non-rate performance index.

Once again, these inputs are used in conjuction with the seven-output program to

determine the full aircraft response. These calculated outputs are shown, along with

their associated FDR output, in Figures 17 through 23. Plots of the four optimal

inputs which produced these outputs are in Figures 24, 25, 26, and 27.

Only small differences can be seen between these plots and the results from

the previous simulation. However, it is evident that there is improved setpoint

tracking from using the rate-included performance index. Figures 21 through 23

show less deviation from the setpoint than Figures 10 through 12. In comparison

to the non-rate index setpoint deviations, the average setpoint deviations across the

entire trajectory here are slightly less. The following table details these differences.

The improvement is small, however, and may not warrant the increased calculation

time required for the additional terms. (Run times on a Sun platform doubled from

approximately 45 to 90 seconds with inclusion of the rate term.)

34

Table 1. Rate and Non-rate deviation Comparison
Setpoint Rate deviation Non-rate deviation

0 0.4828 0.4909
6 0.0626 0.0637
</> 0.1539 0.1786

The lack of significantly differing results, compared to the non-rate performance

index, may be due to the fact that the inclusion of the rate term amounts to changing

the Q weight. The introduction of the error weight matrix, E, causes a direct increase

in the Q weight, and its inclusion in the cross terms resulting from the performance

index expansion, along with the time shifts between the F and T, as well as the

other matrices, introduce what is equivalent to a non-constant Q weight across time.

So slightly better results (due to higher weighting) but not significantly better results

can be expected.

7000

40 50 60
Time (sec)

100

Figure 17. Output Response: h,R

35

■ i i i —i 1 1 i 1 -

«. . ..

320 - FDR /-

300 -
/■

280
/ ■

£260
/ /

240

/ rl '
220 / -

200

— ! •

180 1 1 1 1 1 1 1 i i
10 20 30 40 50 60

Time (sec)
70 80 90 100

Figure 18. Output Response: VrR

40 50 60
Time (sec)

Figure 19. Output Response: gXR

36

IMKS.MfejUUMwA

10 20 30 40 50 60
Time (sec)

4 —i 1 1 1 1 1 1 1 r

. ;
- 3.5 FDR

3 - 5 ::/ j-

2.5 -

g. 2
3 A ■

1.5 ■ • :' 11 ■
1 ><~^ : "' 1 V

0.5

n i i i —i— - i ' ' i w
70 80 90 100

Figure 20. Output Response: gZR

200

100

-100

2
-200

-300

-400-

-500

-i 1 r

Simulation
FDR

-i 1 1 r-

10 20 30 40 50 60
Time (sec)

70 80 90 100

Figure 21. Output Response: 0#

37

-*,-i:wtrirs,rsv

10

o

-10

-20

-30

f
f-40

-50

-60

-70

-80

-90
10

Simulation
FDR

20 30 40 50 60
Time (sec)

70 80 90 100

Figure 22. Output Response: 0R

10 20 30 40 50 60
Time (sec)

70 80

iii! r 1 —1 1 1

r\- ■ >■

 FDR

0

-100 \ .

\
«• •\
S-200 \ .1
a. :1

-300 I -
-400 V
-500 1 1 1 1 1 1 1 1 1

90 100

Figure 23. Output Response: <J>R

38

20

15

 1 1 1 1 1 1 1 1 ■—i—

-

10 li -

5 -

o 0
a
±i
Q

/
V/N^^~^W

-5 -

-10 -

-15

-9n 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60
Time (sec)

70 80 90 100

Figure 24. Optimal Input, 6,
CR

40 50 60
Time (sec)

Figure 25. Optimal Input, 8jR

39

40 SO 60
Time (sec)

Figure 26. Optimal Input, 6, OH

30 i i i i i i i i i —

25 /

20 r "
ff15

2,
-

3
Q 10

-

5 /^A -

0

-S 1 i i i i i i ■ i
10 20 30 40 50 60

Time (sec)
70 80 90 100

Figure 27. Optimal Input, £, »•R

40

***w«^*-^>^*3**j^^«iXEiA«ftU^"Sr;t;i1;.''

5.2 N827AX

5.2.1 Scenario. On 22 December, 1996, an Airborne Express Douglas DC-

8-63F impacted mountainous terrain at about 3400 feet in Narrows, Virginia. The

crew was performing stall maneuvers on a test flight when, after one of the planned

stalls, the aircraft plunged unrecoverably into the mountains. As with Flight 427,

the FDR data obtained from the crash includes all of the operating conditions of

the flight except for the control surface deflections. This FDR data will be used to

determine the control histories during the flight in an attempt to determine what

might have caused the incident.

5.2.2 Model. The same model that was utilized for the Flight 427 cal-

culations will be incorporated here. Although that model was based on flight at

approximately 6700 feet and this flight is at approximately 13,500 feet, the flight

characteristics (and therefore stability derivatives) at each altitude vary only slightly,

so minimal differences can be expected. Additionally, although this incident involves

a Douglas DC-8 and the previous calculations were for a Boeing 737, the flight char-

acteristics for each can be well incorporated into a general transport model which is

being utilized here.

5.2.3 Simulation. Only the non-rate performance index will be utilized for

this flight since it was seen from previous results that the rate performance index

did not provide greatly improved results. For this simulation, however, four FDR

outputs will be used as the setpoints: the three flight angles, if>, 6, and (f> and the

altitude, h. As before, the final value (at t = 119s) was extended just long enough

in time for the prediction horizon to allow for a final calculation at a simulation

time of t = 118s. Also, before being included in the MPC calculations, the angles

were resampled to match the discretization interval of the plant, AT = 2sec, and

linearized by subtracting the initial value of each setpoint throughout time. It should

be noted that while the downward spike in the altitude plot around t = 118s is not

41

feasible, it was in the FDR data and will therefore be kept in the data for the

calculation.

Using the algorithm as before, and with the following parameter values (Note

term AX distinguishes terms used in the calculations for flight N827AX):

LAX = observer gain matrix

QAx = diag(100---l00)

RAX = diag(QA-- -0.1) (55)

PAX = 15

qAX = 15

the four inputs (Se,ST,Sa,Sr) that optimally drive the outputs (t/),0,<f>,h) to the

setpoints are found. Using these optimal inputs as the inputs to the seven-output

SIMULINK program produces the outputs plotted in Figures 28 through 34, along

with the associated FDR output.

Again, fairly good agreement is obtained between the outputs obtained from

the MPC-inverse control program and the FDR data. For this simulation, average

setpoint deviations across the entire trajectory are 0.2299, 0.3669, and 0.2513 radians

for ip, 0, and <j>, respectively, and 868.9 feet for h. While the agreement is not as

good as that seen from the Flight 427 results, several sources of error are entering

the problem. As stated previously, the model used is the model initially developed

for a Boeing 737 at a lower altitude. Stability derivatives more representative of a

DC-8 aircraft at altitude would produce better results. These differences are minor,

but are contributing factors to deviations from the setpoints. This compounds the

linearization factors for error seen in the Flight 427 results. Here, after approximately

605, the aircraft begins to develop highly oscillatory flight. At these conditions, the

linear assumptions at the root of the model begin to deteriorate. It is at this stage in

the simulation that the outputs depart from the setpoints. Plots of the four optimal

inputs which produced these results are shown in Figures 35, 36, 37, and 38.

42

i«M^Mtt*!«*ii#rA**Mirrfwyjpswia^

Overall, results from the N827AX simulation show good setpoint following.

The roll data is matched nearly identically, and in all other outputs, the trends that

exist in the FDR data are also in the simulation results. Additionally, Figure 35

shows a stuck elevator. This is significant since a stuck elevator is the suspected cause

of the incident involving N827AX. The results seen here support that preliminary

conclusion.

14000r

12000

10000-

8000

g 6000-

< 4000

2000

-2000

-4000
60

Time (sec)
120

Figure 28. Output Response, hAX

43

^*~*i**i*,}*A *^m^n£kmxeAicxn1*K.^»v:y j

400

60
Time (sec)

Figure 29. Output Response, VTAX

60
Time (sec)

120

Figure 30. Output Response, gXAX

44

I ■ 'i ■ 1 1

Simulation

3.5 - FDR _

3 : -

2.5 .'.: "

fe 2
&

r;

1.5

1

>

0.5

0 1 V/ 1 i 1

"

20 40 60
Time (sec)

80 100 120

Figure 31. Output Response, g *AX

440

60
Time (sec)

Figure 32. Output Response, if;AX

45

60
Time (sec)

Figure 33. Output Response, 9AX

120

60
Time (sec)

Figure 34. Output Response, <J>AX

46

60
Time (sec)

Figure 35. Optimal Input, 6,
CAX

Figure 36. Optimal Input, 8TAX

47

60
Time (sec)

Figure 37. Optimal Input, S(*AX

60
Time (sec)

120

Figure 38. Optimal Input, 6, TAX

48

VI. Conclusions and Recommendations

6.1 Conclusions

This thesis proposed that a Model Predictive Controller, used in the inverse

sense, might prove advantageous for use in aircraft mishap investigations. As a

proof of concept, the FDR data obtained from Flights 427 and N827AX, in which the

aircraft crashed for unknown reasons, were used as the setpoints for the MPC and the

control surface inputs that may have caused the known outputs were found. Those

inputs resulted in flight characteristics showing good agreement with the FDR data.

Average deviations from the setpoints, across the entire output trajectory, ranged

from 0.06 to 0.5 radians for the flight angles. Conclusions then are two-fold: first,

MPC appears to be promising for future analysis of aircraft mishap investigations,

and second, analysis of these flights using this method supports previous findings for

the causes of the incidents.

Additionally, when the results from the MPC using non-rate and rate terms

included in the performance index are compared, no advantages in the results can

be seen for the inclusion of a rate term as developed for this application. However,

other applications may warrant the use of a rate term in the performance index.

6.2 Recommendations

Two logical steps for exploration into this area of using MPC in the inverse

sense become apparent. First, it might prove beneficial to replace the model used to

find the actual outputs with a non-linear model. Some deficencies were seen when

attempting to match the setpoints to the FDR data which might be eliminated with

the aid of a non-linear model. Second, and possibly along those same lines, imple-

menting this algorithm with a high-performance aircraft, as opposed to a transport

aircraft, would be advantageous. This type of system is much more responsive, more

49

dependent upon control usage, and would therefore provide an additional test for

MPC in the inverse sense.

In the arena of including a rate term in the performance index, for inverse

control or forward control schemes, additional studies need to be performed. In

this application, its inclusion did not provide a dramatic improvement in results.

However, before a definitive statement pro or con on the rate term can be made, it

needs to be used with other applications. In the case of a more responsive aircraft, it

could provide improved setpoint tracking, above and beyond what was seen in this

thesis.

50

Appendix A. MAT LAB Functions
Two MATLAB functions were developed for use in this thesis. The first is

a setup file which calculates all time-constant matrices required and prepares the
setpoint vector. This file is slightly different for the rate-inclusion performance index
since the matrices are different than those required by the non-rate performance
index. Both are listed below:

function [G,H,F,MC,MQ,MS,P,Cona,Conb,p]=setupcon(A,B,C,L,Q,R,p,q,yd)
X Setup.m to be run prior to running the Simulink program
X to perform the inverse problem. Calculates the matrices
X required for the non-rate performance index. Of the form:
y.
y. c B o o]
X [(A-L*C)*B B 0]
X G=[(A-L*Cr2*B (A-L*C)*B 0] (pn x qxi)
X [: : 0]
X [(A-L*C)~(p-l)*B (A-L*C)~(p-2)*B ... B]
X
X H=[L (A-L*C)*L (A-L*C)-2*L....(A-L*C)~(p-l)*L]' (pn x xi)
X
X F=[(A-L*C) (A-L*C)~2 ... (A-L*C)-p]' (pn x n)
X
X MC=I*C (peta x pn)
X
X MQ=I*Q (peta x peta) (Assumes same weights across time, but)

X (q can have varying weights on certain inputs)
X
X MR=I*R (qxi x qxi) (Assumes same weights across time, but)

X (r can have varying weights on certain inputs)
X
X Constraints: Cona(u) <= Conb
X Cona=I*Con (p x qxi) matrix of constraint multipliers
X Conb=I*Max (p x 1) matrix of constraint maximums
X
X where p = prediction horizon, q = control horizon,
X n = # states, xi = # inputs, eta = i outputs,

X Q = output weighting, R = input weighting.

X

n=size(A);n=n(l);

xi=size(B);xi=xi(2);

51

eta=size(C);eta=eta(l);

for i=l:size(yd,l)

ydt((i-l)*eta+l:i*eta,l)=yd(i,:)';

end
yd=ydt;

ALC=A-L*C;

for i=l:p

F((i-l)*n+l:i*n,:)=[ALC^i];

H((i-l)*n+l:i*n,:)=[ALC~(i-l)*L];

MC((i-l)*eta+l:i*eta,(i-l)*n+l:i*n)=C;

MQ((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=q;

for j=l:q

if i>=j
G((i-l)*n+l:i*n,(j-l)*xi+l:j*xi)=[ALC~(i-j)*B];

end

MR((j-l)*xi+l:j*xi,(j-l)*xi+l:j*xi)=R;

end
end

p=2*(G'*MC'*MQ*MC*G+MR);

for i=l:q

for j=l:q

if i>=j
a((i-l)*xi+l:i*xi,(j-l)*xi+l:j*xi)=eye(xi,xi);

end
end

end

Cona=[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*a;

save dataf ile P F H MC MQ G Cona p q A B C yd

function [G,H,F,MC,MQ,MS,P,Cona,Conb,p]=setupconrate(A,B,C,L,Q,R,E,p,q,yd)
Setup.m to be run prior to running the Simulink program
to perform the inverse problem. Calculates the matrices
required for the rate performance index. Of the form:

[B 0 0]
[(A-L*C)*B B 0]

52

G=[(A-L*C)~2*B (A-L*C)*B 0] (pn x qxi)

[: : 0 }
[(A-L*C)~(p-l)*B (A-L*C)~(p-2)*B ... B]

H=[L (A-L*C)*L (A-L*C)~2*L....(A-L*C)-(p-l)*L]' (pn x xi)

F=[(A-L*C) (A-L*C)~2 ... (A-L*C)-p]' (pn x n)

MC=I*C (peta x pn)

MQ=I*Q (peta x peta) (Assumes same weights across time, but)

(q can have varying weights on certain inputs)

ME=I*E (peta x peta)

MR=I*R (qxi x qxi) (Assumes same weights across time, but)

(r can have varying weights on certain inputs)

Constraints: Cona(u) <= Conb

Cona=I*Con (p x qxi) matrix of constraint multipliers
Conb=I*Max (p x 1) matrix of constraint maximums

where p = prediction horizon, q = control horizon,
n = # states, xi = # inputs, eta = # outputs,
Q = output weighting, R = input weighting.

n=size(A);n=n(l);

xi=size(B);xi=xi(2);
eta=size(C);eta=eta(l);

for i=l:size(yd,l)

ydt((i-l)*eta+l:i*eta,l)=yd(i,:)';
end
yd=ydt;

ALC=A-L*C;

for i=l:p

F((i-l)*n+l:i*n, :) = [AL(Ti] ;
H((i-l)*n+l:i*n, :)=[AL<T(i-l)*L];

MC((i-l)*eta+l:i*eta,(i-l)*n+l:i*n)=C;

53

MQ((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=Q;
ME((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=E;
for j=l:q

if i>-j
G((i-l)*n+l:i*n,(j-l)*xi+l:j*xi)=[AL(T(i-j)*B];

end
MR((j-l)*xi+l:j*xi,(j-l)*xi+l:j*xi)=R;

end
end

Gtil=[zeros(n,q*xi);G(l:(p-l)*n,:)];
Ghat=G-Gtil;

Ftil=[zeros(n,n);F(l:(p-l)*n,:)];
Fhat=F-Ftil;

Htil=[zeros(n,xi);H(l:(p-l)*n,:)];
Hhat=H-Htil;

P=2* (Ghat' *MC' *MQ* (MC*Ghat+2*ME*MC*G) +G' *MC' *ME' *MQ*ME*MC*G+MR) ;

for i=l:q
for j=l:q

if i>=j
a((i-l)*xi+l:i*xi,(j-l)*xi+l:j*xi)=eye(xi,xi);

end
end

end
Cona=[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*a;

save dataf ile P F Fhat H Hhat MC MQ G Ghat ME Cona p q A B C yd

Within the SIMULINK inverse control program is a MATLAB function which

performs the inverse control calculation. Again, it is slightly different for each index,

due to the differing matrices. These inverse problem functions are listed below:

function 0UT=ip737con(IN)
'/, Performs the inverse problem (non-rate) and outputs the current
'/, J value and the next input to perform, driving the
'/, actual output to the desired output.

'/.
ü MS=[yd(k)' yd(k+l)' yd(k+2)' ... yd(k+p)']

54

'/.

'/. Load P F H MC MQ G Cona p q A B C yd from 'datafile.m'.
load datafile

n=size(A);n=n(l);

xi=size(B);xi=xi(2);

eta=size(C);eta=eta(l);

'/, Extract u(k-l),y,x,t from input vector {u(k-l) ,y,x;t}:
Uk_l=IN(l:xi,l);

y=IN(l+xi:xi+eta,1);

x=IN(l+xi+eta:xi+eta+n,1);
t=IN(xi+eta+n+l,l);

% Calculate where we are along the desired output vector:
X Round to ensure integer value, add one timestep since

V, t=0 is row 1, x by eta to step along yd vector for pmax
pmin=round(t/2)*eta+l;
pmax=pmin+p*eta-l;

'/. Store the current yd for (Yd-y) calculation:
curyd=yd(pmin:pmin+eta-l);

7, Calculate the MS matrix for f calculation
MS=yd(pmin:pmax)';

f=2*((F*x+H*y)'*MC'-MS)*MQ*MC*G;f=f';

Umax=[19.33*pi/180 69.5 20*pi/180 26*pi/180]';
Umin=-[21.83*pi/180 30.5 20*pi/180 26*pi/180]';
for i=2:q

Umax((i-l)*xi+l:i*xi,l)=[inf inf inf inf]'j

Umin((i-l)*xi+l:i*xi,l)=-[inf inf inf inf]';
Uk_l((i-l)*xi+l:i*xi,l)=Uk_l(1:4);

end

Conb=([Umax;-Umin]-[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*Uk_l);

du=qp(P,f,Cona,Conb);

J=.5*du'*P*du+f'*du;
du=du(l:xi);

55

'/, Establish the output vector: {curydjdu;J}:

OUT=[curyd;du;J] ;

function 0UT=ip737conr(IN)

'/, Performs the inverse problem (rate) and outputs the current

'/, J value and the next input to perform, driving the

'/, actual output to the desired output.

'/.

'/. Y=[yd(k)J yd(k+l)' yd(k+2)' ... yd(k+p)']

'/.

*/, Load P F Fhat H Hhat MC MQ G Ghat ME Cona Conb p A B C yd
'/, from 'datafile.m'.
load datafile

n=size(A);n=n(l);

xi=size(B);xi=xi(2);

eta=size(C);eta=eta(l);

'/. Extract u(k-l),y,x,t from input vector {u(k-l) ;y;x;t}:
Uk_l=IN(l:xi,l);

y=IN(l+xi:xi+eta,l) ;

x=IN(l+xi+eta:xi+eta+n,l);
t=IN(xi+eta+n+l,1);

'/, Calculate where we are along the desired output vector:
y, Round to ensure integer value, add one timestep since

•/, t=0 is row 1, x by eta to step along yd vector for pmax
pmin=round(t/2)*eta+l;
pmax=pmin+p*eta-l;

'/, Store the current yd for (Yd-y) calculation:

curyd=yd(pmin:pmin+eta-l);

'/, Calculate the Y matrices for f calculation
Y=yd(pmin:pmax);
if pmin-eta<0

Ytil=[zeros(eta,1);yd(pmin:pmax-eta)] ;
else

Ytil=yd(pmin-eta:pmax-eta);
end

56

Yhat=Ytil-Y;

f=2*((MC*Fhat*x+MC*Hhat*y+Yhat)'*MQ*(MC*G+ME*MC*G)+

(MC*F*x+MC*H*y-Y)'*ME'*MQ*(MC*Ghat+ME*MC*G));f=f';

Umax=[19.33*pi/180 69.5 20*pi/180 26*pi/180] ';

Umin=-[21.83*pi/180 30.5 20*pi/180 26*pi/180]';

for i=2:q

Umax((i-l)*xi+l:i*xi,l) = [inf inf inf inf] ';

Umin((i-l)*xi+l:i*xi,l)=-[inf inf inf inf]';
Uk_l((i-l)*xi+l:i*xi,l)=Uk_l(l:4);

end

Conb=([Umax;-Umin]-[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*Uk_l);

du=qp(P,f,Cona,Conb);

J=.5*du'*P*du+f'*du;
du=du(l:l+xi-l);

% Establish the output vector: {curyd;du;J}:
0UT=[curyd;du;J] ;

57

Appendix B. Seven-Output Program

A second SIMULINK diagram was utilized in the solution algorithm in order to

determine the full seven outputs that were included in the FDR data. This program

is found in Figure 39 below.

timel.Uoutru

Optimal Inputs

x' = Ax+Bu
y = Cx+Du

State-Space
7-output model

Figure 39. Seven-Output SIMULINK Program

58

Appendix C. Additional Transport Model Information

The following tables show the stability derivative values used to develop the

transport aircraft model (13).

Derivative Value (3-1) Derivative Value (s~2)

xu -.0292 MSe -.4430
Ziu -.2260 h -3.190
Aw .1400 Nß .4990
&W -.6740 Lsa 3.840
Yr 0 NSa .4010
u .9800 LsT .3350
Nr -.2150 Nsr -.3270
LP -1.390 YSr .0250 ft
Np -.1130 YP 0
Mq -.4810 Yß -31.50 ft

Derivative Value

Mw -.0016 ft/s
Mu .894e"5 ft/s
M* -.0007 1/ft
Xge .4500 ft/52

zSe -4.950 ft/52

XsT .0003
ZsT -.134e~4

MST .8160e-6

Additional values required for calculation of the A and B matrices are:

u0 = 316.26 ft/s

60 = .0723 rad

£ = 0ft

g = 32.2 ft/s2

59

where u0 and 0O are taken from the FDR data, g is gravity, and £ is the distance

from the aircraft center of gravity to the location of the measurement accelerometer

(estimated here to be zero or approximately zero). The resulting ten-state A and B

matrices are:

A =

0 0 -1.0000 0 316.2612 0 0 0 0 0

0 -0.0292 0.1400 0 -32.2000 0 0 0 0 0

0 -0.2260 -0.6740 316.2612 0 0 0 0 0 0

0 0.0002 -0.0011 0.7097 0 0 0 0 0 0

0 0 0 1.0000 0 0 0 0 0 0

0 0 0 0 0 -0.0996 0 -1.0000 0.1015 0

0 0 0 0 0 -3.1900 - -1.3900 0.9800 0 0

0 0 0 0 0 0.4990 - -0.1130 -0.2150 0 0

0 0 0 0 0 0 1.0000 0 0 0

0 0 0 0 0 0 0 1.0000 0
(56)

0

0 0 0 0

0.4500 0.0003 0 0

—i 1.9500 0.0000 0 0

-1 3.4394 0.0000 0 0

B =
0

0

0

0

0

0

0

0.0001
(57)

0 0 3.8400 0.3350

0 0 0.4010 -0.3270

0 0 0 0

0 0 0 0

where the states are

xT = [Ah Au Aw Aq A0 Av Ap Ar A<j> A^>] (58)

60

as defined in the thesis text.

This model results in poles in the following table, along with two poles at the

origin:

Pole(s) Location
Phugoid —.0150 ± .1171»

Short Period -.6915 ± .6047»
Spiral -.0142
Roll -1.5891

Dutch Roll -.0506 ± .9386»'

61

Bibliography

1. Abdelrahman, M.M. and A.M. Al-Bahl, "A Generalized Technique for the In-
verse Simulation of Aircraft Motion Along Predetermined Trajectories." AIAA
94-3523, 1994.

2. Ebdon, D.W. Model Predictive Control of Aerospace Systems. MS thesis, Air
Force Institute of Technology, 1996.

3. Hess, R.A., et al. "Generalized Technique for Inverse Simulation Applied to Air-
craft Maneuvers," AIAA Journal of Guidance, Control, and Dynamics (1990).

4. Kerrigan, James W., "Personal communication." Boeing.

5. Lee, S. and Y. Kim. "Solution of the Inverse Simulation Problem by Opti-
mization Technique and It's Application to Aircraft Nonlinear Large Angle Ma-
neuvers." AIAA Guidance Navigation and Control Conference. Number AIAA
96-3701. 1996.

6. Maciejowski, J.M. and S.A. Heise, "Heuristic Robustness Analysis of Model-
Based Predictive Controllers." Cambridge University Engineering Department.

7. Mathworks. MATLAB User's Guide. Prentice-Hall, Inc., 1997.

8. Mathworks. SIMULINK User's Guide. Prentice-Hall, Inc., 1998.

9. Morari, Manfred. Model Predictive Control Draft Notes.

10. Napolitano, Marcello. "Virtual Flight Data Recorder: A neural extension of ex-
isting capabilities," AIAA Journal of Guidance, Control, and Dynamics, (AIAA
97-3538) (1998).

11. Nelson, Robert C. Flight Stability and Automatic Control. Boston: The Mc-
Graw Hill Companies, 1998.

12. Parks, Edwin K., et al. "Reconstruction of the 1994 Pittsburgh Airplane Acci-
dent Using a Computer Simulation," AIAA Journal of Guidance, Control, and
Dynamics, (AIAA 98-0503) (1998).

13. R.K., Heffley and W.F. Jewell. Aircraft Handling Qualities Data CR-2144-
Technical Report, NASA, 1972.

14. Shearer, CM. and S.A. Heise. "Constrained Model Predictive Control of a Non-
linear Aerospace System," AIAA Journal of Guidance, Control, and Dynamics,
(AIAA 98-4235) (1998).

62

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of InformMlon I« estimated to average 1 hour par response, Including tht time for reviewing Inttructloni, lurching existing diti tourcit,
getherlng and maintaining the data naadad, and competing and ravlawlng tha eollactlon of Information. Sand commanta regarding this burden aatlmata or any othar aspect of thla
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reporte, 1215 Jefferson
Devls Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management end Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503,

1. AGENCY USE ONLY fteave D/anW | 2. REPORT DATE ' | 3. REPORT TYPE AND DATES COVERED

March 1999 Master's Thesis
4. TITLE AND SUBTITLE

SOLVING AN INVERSE CONTROL PROBLEM USING PREDICTIVE METHODS

6. AUTHOR(S)

Chad J. Davis, Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

6. FUNDING NUMBERS

Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GAE/ENY/99M-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Siva Banda
AFRL/VAAD
2210 8th St.
WPAFB OH 45433-7521

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Advisor: Sharon A. Heise, Major, USAF

DSN: 898-1583
e-mail: saheise@mindspring.com

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Model Predictive Control is the class of control methods that optimizes a specified performance index in order to minimize
the weighted future output deviations from a setpoint trajectory. This thesis applies MPC in the inverse sense - known
aircraft outputs are applied in the performance index as setpoints in an attempt to determine what control histories caused
those outputs. Using this method, aircraft mishap investigators could then have a means of determining what the control
surface deflections were throughout an incident since Flight Data Recorder data does not include control surface deflections.
The actual Flight Data Recorder data from aircraft mishaps are utilized as proof of concept.

14. SUBJECT TERMS
Control theory, Jet transport aircraft, Flight simulation, Mathematical models,
Model Predictive Control, Inverse simulation

15. NUMBER OF PAGES

74
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION ÖF ABSTRAC1

UL

Designed using Perform Pro, WH
2-89HE6)

WHS/DIOR, Oct 94

	Solving an Inverse Control Problem using Predictive Methods
	Recommended Citation

	/tardir/tiffs/A361653.tiff

