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AFIT/GAE/ENY/99M-05 

Abstract 

Model Predictive Control (MPC) is the class of control methods that optimize 

a specified performance index in order to minimize weighted future output devia- 

tions from a setpoint trajectory. MPC operates on a receding horizon, calculating 

a set of inputs at each time step. The controller then implements the first input 

and the process begins again. The performance index can also include a weighted 

and/or constrained control sequence which can be of different length than the output 

horizon. 

This thesis applies MPC in the inverse sense - known aircraft outputs are ap- 

plied in the performance index as setpoints in an attempt to determine what control 

histories caused those outputs. Using this method, aircraft mishap investigators 

could then have a means of determining what the control surface deflections were 

throughout an incident. To accomplish these objectives, MATLAB and MATLAB 

routines are used in conjunction with SIMULINK to develop the controller and sim- 

ulate the aircraft's response. The actual Flight Data Recorder data from aircraft 

mishaps are utilized as proof of concept. 

vn 



Solving an Inverse Control Problem 

using Predictive Methods 

/.   Introduction 

1.1    Inverse Control Problem 

Recently, much interest has been placed in the area of reconstructing aircraft 

accidents based on the information available in the Cockpit Voice Recorder (CVR) 

and the Flight Data Recorder (FDR) post-crash. The CVR can provide audible 

clues of the accident's cause such as stall warnings, engine noise, landing gear exten- 

sion/retraction, etc.; whereas, the FDR provides the investigator with the operating 

conditions leading up to and during the crash such as altitude, heading, airspeed, 

etc.. Neither the CVR nor the FDR provide definitive information regarding the 

control surface locations throughout the aircraft incident. Aircraft investigators cur- 

rently use the information included in the CVR and FDR in an attempt to determine 

the cause of the accident - be it a control surface failure or other cause. However, 

of great value to the investigators would be the control histories which caused the 

aircraft response. 

The effort herein focuses on the particular application of post-processing air- 

craft data from an incident. However, the derivation and algorithm are generic 

enough so any system could be used. In fact, a distillation process on which model 

predictive control had previously been performed was used in this thesis to validate 

the solution algorithm. Any plant model of the form discussed here could be used, 

with the methods described, to obtain the inputs from known outputs. 



1.2 Model Predictive Control 

This research effort applies predictive methods to the inverse control problem 

in an attempt to determine, analytically, the control surface deflections that caused 

the aircraft response obtained in an FDR. Model Predictive Control (MPC) is such 

a method, utilizing on-line optimization of a specified performance index in order 

to minimize weighted future output deviations from a setpoint trajectory along a 

prediction horizon. Typically, the performance index also includes a weighted (and 

possibly constrained) control sequence across a control horizon which can be, but 

does not have to be, the same length as the prediction horizon. MPC has proven to 

be beneficial as a flight controller (14), especially in the realm of aircraft control in 

the presence of actuator failures (2). This thesis details the usefulness of MPC for 

the inverse control problem by developing a performance index utilizing the FDR 

data from an aircraft accident as the setpoint trajectory. 

1.3 Research Objectives 

The primary objective of this thesis is to determine whether MPC is useful 

in determining the control histories that were involved in an aircraft incident. By 

applying the theory to be developed to actual aircraft crashes of unknown (or sus- 

pected) cause, this objective will be accomplished. Also to be explored are the effects 

of including a rate term in the performance index for improved setpoint following. 

These objectives will be accomplished using MATLAB (7) to develop the controller 

and SIMULINK (8) to implement the controller on-line with the aircraft model. 

1.4 Thesis Overview 

Chapter 2 reviews the available literature used in development of this thesis. 

Chapter 3 details the methodology and necessary background information for 

the development of an MPC controller, including modifications for system constraints 

and control increments. 



Chapter 4 delves into the first application, a distillation column, for validation 

purposes. 

Chapter 5 presents the applications dealing with two aircraft mishaps, dis- 

cussing the scenarios, models used, and simulation results. 

Chapter 6 offers conclusions that can be made based on the results of the work 

presented and suggests areas for future research in the area of inverse control using 

predictive methods. 



II.  Literature Review: Inverse Simulation 

In the context of this thesis, inverse simulation is the practice of determining a 

system's input when only the outputs and the system model are known. Typically, 

inverse control is used when the effort goes one step further - including feedback 

control for disturbance rejection and plant uncertainty robustness. Several methods 

have been studied in an attempt to perform inverse simulation. The most relevant 

for the discussion here are what have been called the differential and integration 

inverse methods and those utilizing optimization. 

2.1    Differential Inverse Method 

The differential inverse method entails modeling the desired plant trajectory as 

a set of dynamic constraints imposed on the equations of motion (1). This trajectory 

can be denned analytically, as a given equation, or numerically, as a series of specific 

points which are then smoothed to provide a continuous trajectory. The constrained 

equations of motion are then integrated until the control terms arise which can be 

solved for directly. 

The shortcomings of this method of inverse simulation deal with the numbers 

of states, inputs, and outputs (3). If a typical plant is considered of the form 

x(t) = Ax(t) + Bu(t) (1) 

y(t) = Cx(t) 

the solution for the control to obtain the desired trajectory, yr>, resulting from this 

method is 

u(t) = B~x[x{t) - Ax(t)] (2) 

where 

i{t) = C-lyD{i) (3) 



initiates the state derivatives. The resulting input is used with Equation (1) to 

obtain the state derivatives at subsequent time steps. Letting nx be the number of 

states, ny the number of outputs, and nu the number of inputs, if nx = ny = nu, no 

problems arise in the solution. However, if nx > nu and nx > ny, as is typical of 

aircraft models, Equation (3) can no longer provide all the state derivatives necessary 

to solve the problem. To avoid this problem, initial guesses of the states are typically 

made. 

The differential inverse method has been shown to provide solutions to the 

problem at hand. However, it is desirable to develop an algorithm that does not con- 

tain shortcomings of this nature where the solution might depend on initial guesses 

of states. 

2.2    Integration Inverse Method 

The integration inverse method develops an error vector defined as the differ- 

ence between the actual system output and the desired system output and attempts 

to drive that error to zero (3). If 

y(kT) = G[u(kT)] (4) 

where G maps the input, u, to the output, y, then with the introduction of an error 

vector, FE, 

FE[un(kT)} = G[un(kT) - YD(kT)] (5) 

where YD is the desired trajectory. The solution then becomes 

un+1(kT) = un(kT) - (JlGKifcT)]})-1 • FE[un(kT)} (6) 



where J{} is the Jacobian matrix found through partial derivatives of the output 

approximated by 

Syi(kT)/SUj(kT) « [yi(Uj + AUj) \{k+1)T -yi(Uj) \kT]/AUj (7) 

Iteration on the desired input, un+1, is then performed until the actual output and 

the desired output differ only by the tolerance required. 

In this manner, the integration method avoids the shortcomings of the differen- 

tial method in that the only requirement imposed upon the number of states, inputs, 

and outputs is that ny < nu. Therefore, a solution of this type is of more interest 

for this effort. 

2.3    Optimization Methods 

The final methods of relevance in available literature are those involving op- 

timization. Similar to the differential method, optimization methods formulate the 

solution by setting equality constraints on functions of the state variables. However, 

the solution is not found by differentiating the equations but as a general optimiza- 

tion problem. 

In this type of solution, a cost function is defined and is augmented by any or all 

of: constraints on initial and final conditions, path constraints, a dynamic constraint 

equation, and input control constraints (5). The necessary and sufficient conditions 

for optimality are then found as well as the input solution to optimally drive the 

system to the desired trajectory. This method does not require time differentiation or 

output derivatives, and therefore the numerical difficulties of the previous methods 

can be avoided. Also avoided are the sensitivities of the results to initial guesses. 

In this thesis, optimization is utilized via Model Predictive Control, which 

features on-line optimization of the control inputs and real-time simulation of the 

plant outputs. 



III.   MPC-State Space Formulation 

A method of control which incorporates the advantages of optimization and 

eliminates the disadvantages of time differentiation and initial guess sensitivities is 

Model Predictive Control (MPC). This section presents the development of a state- 

space, constrained MPC controller which utilizes control increments. 

It should also be noted that in several instances, users of MPC have included 

in the problem a stabilizing inner feedback loop (2). This is done in order to ensure 

that the controller in these forward loop applications produces only stabilizing inputs. 

This will not be the practice here as application of a stabilizing inner loop might 

prevent the algorithm from following an output trajectory which is in fact unstable. 

Whether the setpoint trajectory is stable or unstable, as could be the case in aircraft 

incidents, the inverse controller should be able to follow the given outputs. 

In this thesis, the controller is based on a linear discrete-time plant model of 

the form 

x(k + 1) = Ax(k) + Bu{k) (8) 

y(k) = Cx(k) + Du(k) 

where x G Rn, is the state vector, u G Bt, is the input vector, and y G BP, is the 

output vector so A G /*"*",£ € BT*, C G Ä"xn, and D G if»**. 

The Model Predictive Controller uses this plant model (Equation (8)) to cal- 

culate the future plant outputs, y, along a specified prediction horizon, p, due to the 

inputs, u, implemented over the control horizon, q, and minimize the cost function 

involving the difference between these outputs and the desired setpoint output tra- 

jectory, yd- The outputs are weighted by Q, and the inputs are weighted by R across 



their respective horizons. This gives the overall cost function 

?-i 

J = EII c*(*+*) - w(* + 0 Ik + EII «(* + 0II* (9) 
/=i /=o 

Noting that the actual plant states, x, are not assumed to be known at any 

time in the future, it is necessary to estimate the future states, x(k + £), based on 

past states and inputs and future inputs. Based on an estimator of the form 

x(k + 1) = Ax(k) + Bu(k) + L[y(k) - Cx(k)] (10) 

it is seen that 

x(k + £) = (A- LC)x{k + H - 1) + Bu(k + £ - 1) + Ly(k + £ - 1)       (11) 

With this equation, it is then possible to express the state estimates as (using the 

notation of (6)) 

x(k + £ + 1) = F(£)x(k + £) + Gu{k + £) + H(£)y(k + £) (12) 

where F,G, and H are defined as F{m) = (A - LC)m+\ G = B, H(0) = -L and 

H{m) = 0 for m = 1 • ••£. These terms dealing with output feedback in H are 

eliminated for all times greater than k + 1 since the actual system output will not 

be available at any future time. 

It is now possible to define a vector of future predicted states: 

x(k + l) 

x(k + p) 

= Tx{k) + g[u{ky ■ ■ ■ u(k + q - iy }T + n(£)y(k)      (13) 



where T, G, and H are matrix functions of F(£), G, and H(£) as follows: 

T = 

(A- -L •c) X 
(A- -L cy 

(A- -L cy\ 

> pn (14) 

ii 
i X 

\            B                        0 0    0 

(A - L ■ C)B               B 0    0 

Q = (A-L- CfB       (A-L- C)B 0    0 ► pn 

\                              j •••   0 

(A-L- cy~lB  [A-L- cy~2B ...   B 
j 

(15) 

H 
{A-L- C)L 

{A-L- cy-xL J 

► pn (16) 

The state prediction vector can then be used to transform the performance 

indices developed in the next sections into the form of a quadratic program 

J=m"}-{UTpU + fTU} 

subject to AU < b 

(17) 

where 

U = [u(k)Tu(k + l)T...u(k + q- If] TlT (18) 

since the index is minimized over the control input, U. Also, P and / will be functions 

of the state prediction matrices. In this form, MPC is easily implementable using a 



quadratic program algorithm to determine the future inputs to drive the system to 

the desired trajectory. 

3.1    Non-rate performance index 

Using the state prediction matrices, Equation (13), and expanding the cost 

function, Equation (9), into the form of Equation (17) results in 

J = U(k)T(QTCTQCg + H)U{k) + 2{[Tx{k) + Hy(k)]TCT - S}QCQU{k) + K (19) 

and K includes all terms from the expansion independent of U, and is therefore 

neglected. In addition, the matrices 

C = diag(C • • ■ C) 

Q = diag{Q ■■•Q) 

K = diag(R ■ ■ ■ R) 

Vd(k) 

Vd(k + 1) 

(20) 

5 = 

Vd(k + p) 

are defined. 

3.2   Rate performance index 

It has been suggested that inclusion of an error rate term, in addition to the 

previously discussed output error term, in the performance index may improve the 

controller's tracking of the setpoints. In order to include an error rate term, define 

the error, e, as 

e(k + £) = Cx(k + £)- yd(k + £) (21) 

10 



Then, define a performance index similar to Equation (9) as 

9-1 

j = E\\Ae(k+t) + E<k+e)\\Q+E\\<k+t)\\R (22) 
/=i 1=0 

where the notation is identical to that in Equation (9) with the addition of Ae, the 

error rate term, and E, which is a weight placed on the output error. By weighting 

the output error in this manner, the actual output approaches the setpoint arbitrarily 

fast by choice of E through Ae = — Ee, since the performance index attempts to 

drive Ae(k + /) + Ee(k + t) to zero. 

The state prediction equation will require some manipulation with the inclusion 

of the error rate term, Ae(&) = e(k) — e(k — 1) or 

Ae(k + £) = Cx(k + £)- yd(k +1) - Cx(k +1 - 1) + yd(k + £ - 1)       (23) 

which can be expanded into a vector, Ae(fc), as 

Ae(Jfc) = [Ae(Jb + 1)T • • • Ae(k + pf\ (24) 

Ac(Ar) = CFx{k) + CgU{k) + CHy(k) ~y~CFx{k) -CQU(k) -CHy(k) + y (25) 

Using the notation of Equation (13) and noting T is identical to T, time-shifted 

with the first row as zeros due to the time shift between e(k) and e(k - 1): 

F = 

0 

(A-L-C) 

{A-L-Cf 

(A-L- cy-1 

pn (26) 

11 



* **2t ufui/iSi. IH t,:^ 

And G and % are defined similarly. Finally, we note 

y = 

and 

y= 

yd(k + 2)T 

y<i(k + p)T 

yd(k)T 

yd(k + p-lf 

We can then rewrite Equation (25) as 

(27) 

(28) 

Ae(fc) = c[fx(k) + gu(k) + Hy(k)} + y (29) 

if we let F,G,H, and j> equal F- T, etc. Also, from direct substitution of Equation 

(13) into (21), across the horizon, we have 

e(k) = C[fx(k) + QU(k) + Hy{k)] - y (30) 

Utilizing Equations (29) and (30) and expanding the cost function, Equation 

(22), into the general quadratic program form, we see 

J = u(kf[gTcTQ(cg + 2seg) + gTcTerQecg + n]u(k) 

+2{[cfx(k) + cHy(k) + yfQ[cg + ecg] 

+ [CFx(k) + CHy(k) - yf sTQ[cg + SCg]}U(k) + « 

(31) 

and K once again includes the neglected terms independent in U. This formulation 

allows the MATLAB functions which will perform the quadratic program to calculate 

12 
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the original matrices, T, etc. and manipulate those into the required matrices, T, 

etc. for the index including the error rate term. 

3.3   System Constraints 

Typically, the inputs determined from an MPC controller for an aerospace 

system will be constrained by rate and deflection limits based on either servo or 

physical limitations in both the maximum and minimum positions. This is in or- 

der to prevent the controller from attempting to drive the system with inputs that 

cannot be physically attained. With emphasis on the inverse control framework, the 

desire is to reconstruct inputs that have already been imposed on an actual sys- 

tem, and therefore the inputs will only be constrained to their physical deflection 

limits, both positive and negative. This restriction will ease calculations, decrease 

calculation time slightly, and provide no adverse effect on the results based on the 

above discussion. In fact, cases can be envisioned where the control deflection that 

actually occurred exceeded servo rate limits (implying some failure), and exclusion 

of those cases could prevent good setpoint tracking. Also, the output will only be 

constrained at the current time step instead of across the control horizon to allow the 

controller to be more aggressive, while still operating within limitations, in following 

the potentially volatile output trajectory. 

Finally, the constraints pertinent for an aerospace system, written across the 

control horizon, are most easily expressed as 

(32) 

"Umin\fc) u(k) Umaxy™) 

• < • < ; 

Umin(k + q~l) u(k + q-l) umax(k + q-l) 

13 



These constraints must be expressed in the same framework as the quadratic program 

given in Equation (17) as AU < b, or 

I 

-I 
u(k + q-l) 

< 

Umaxyfc) 

Umax(k + q~l) 

~Umin(k + 9-1) 

(33) 

Constraints will only be applied in this thesis when working with the trans- 

port aircraft model. No constraints are placed on the distillation process since it is 

an unconstrained benchmark problem. The physical deflections limitations for the 

transport, then, are (4) 

• Elevators (Se) = +19.33 deg,-21.83 deg 

• Ailerons (6a) = ±20 deg 

• Rudder (Sr) = ±26 deg 

• Throttle (Sr) = 0 -> 100% 

3.4    Plant Modifications for Control Increments 

The computer program used to solve the quadratic program utilizes an incre- 

mental control input instead of absolute inputs, so the aircraft model will need to 

be modified to accept these inputs. One method of achieving this is to introduce an 

additional state corresponding to each input so 

xp(k + 1) 
= A >(*) 

.(*) 
+ BAu(k) y(k) = C 

xp(k) 

xu(k) 
(34) 

14 



where 

A = 
A  B A 

B = 
B 

0    I I 
C = [CO] (35) 

In this manner, the additional input states, xu(k) = u(k — 1), allow absolute in- 

puts to be carried from one time step to the next. The performance indices found 

in Equations (19) and (31) will not change with incremental control inputs - the 

derivation could have just as easily began by replacing u with Au in Equations (9) 

and (22). 

With the introduction of control increments, the constraint equation, Equation 

(33), must be modified to reflect that the predictive controller will be determining 

a control increment, not an absolute control input. This is easily accomplished by 

substituting the equation for control increments 

u(k + £) = Au(k + £) + •■■ + Au(k + q) + u(k - 1) (36) 

into Equation (33).  After simple algebraic manipulation we see that the new con- 

straint equation, involving Au, and of the form AU < 6 is 

7    0    0 

■:    •••    0 

I   ■•■   I 

Au{k) 

Au(k + q) 

< 

"'max 

— 
I 

-I 

u(k-l) 

u(k-l) 

(37) 

3.5   Solution Algorithm 

MATLAB functions were developed (see Appendix A) to solve the quadratic 

programs given, forming the predictive controller. SIMULINK was then used to 

couple this controller with the system model to complete the system. Figure 1 

shows the complete system that was developed to solve the inverse control problem. 

15 
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U 
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System Outputl 

Mux   i 

Mux1 

Figure 1. Inverse Control SIMULINK Diagram 

The MPC-determined input is passed to the aircraft model where the actual system 

output is determined. This output, coupled with the previous input, is passed to 

the state estimator, and the process begins again with the previous inputs, outputs, 

and states being sent to the controller (MATLAB function), where the next input 

to perform is determined. The current simulation time is also an input to the MPC 

so the controller can determine where in time along the setpoint trajectory the 

simulation is, and the setpoints for the current calculation can be deduced from 

that. This allows for the prediction horizon used in the MPC calculations to be both 

less than and shifted along the given setpoint trajectory. 

The MATLAB command qp was used to solve the quadratic problem of Equa- 

tions (19) and (31) once the state prediction matrices were calculated. The matrices 

constant across the horizons were calculated prior to executing the SIMULINK pro- 

gram, while those requiring updates across time were calculated within the MATLAB 

functions (see Appendix A). 
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Once the MPC SIMULINK program was used to calculate the four input tra- 

jectories, Se, ST, Sa, and Sr, that optimally minimized the error between the derived 

outputs and the setpoint trajectory, a second SIMULINK program was utilized to 

calculate all of the outputs which were contained in the FDR information (see Ap- 

pendix B). This second model allows inclusion of the initial conditions of the flight 

since the model used in the MPC program was initialized to steady flight. In this 

manner, the inputs required to drive a selection of the outputs to the setpoints are 

determined, while the effect those inputs have on the entire set of known output 

profiles can also be found. 
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IV.   Validation: Distillation Column 

This section presents the results from applying the inverse model predictive 

control program described in the previous sections to a distillation system. This 

serves as a validation of the code and algorithm developed through comparison to 

results found under a previous study. 

4-1    Scenario 

In Morari's technical notes (9), predictive control, based on a step response 

model, is performed on a high-purity distillation column. His work provides a unique 

opportunity to validate the results obtained from the algorithm developed for this 

thesis. The algorithm developed for this thesis will be applied to the same system, 

under the same weighting and horizon conditions, to validate the program developed. 

Four simulations were run, each varying a combination of the input weights, the 

output weights, the prediction and control horizons, and the setpoints. 

4.2   Model 

The model used was a two-input, two-output transfer function system 

1 
75s+ 1 

0.878 0.864 

1.082 1.096 
(38) 

where the first state is reflux and the second state is buildup. This thesis utilizes 

state space models so the transfer function model given was transformed into a state 

space model utilizing MATLAB's tf2ss command. This results in a model in the 

form of Equation (8), for continuous time, where 

0133 0 
B = 

1   0 c = 
0 -.0133 0   1 

.0177   .0155 

.0144   .0146 

0   0 
D = 

0   0 
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4-3   Simulation 

The first set of results determine the effect of the control weight matrix, R. 

These effects were obtained by setting the setpoints to [1 0]T throughout the horizon, 

q = 5,p = 20, Q = I, and letting R, the input weight, equal 0 and /. For this 2-input, 

2-output system then, 

R 
0   0 

,Ä = 
1   0 

0   0 0   1 
(39) 

The results obtained are seen in Figure 2. As expected, with the input weight set to 

0, the controller utilizes large control inputs to drive the outputs to their setpoints 

very quickly; while, when the input weight is set to /, the response is much slower 

since less control power is being used. 

R-0 

400  600 
Time (sec) 

1000 400  600 
Tim6 (sec) 

800  1000 

400  600 
Time (sec) 

1000 0   200   400  600  800  1000 
Time (sec) 

Figure 2. Distillation: Effect of control weight matrix 

Next, the effects of the output weight matrix, Q, are determined. Both horizons 

and the setpoints are kept the same as the previous set of simulations, R is set to 
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the identity, and two values are used to find the output weight effects: 

Q = 
100 0 

,Q = 
l 0 

0 1 0 100 
(40) 

With these values, the validation results are found in Figure 3. From this figure, it 

is evident that the output associated with the higher weight (100) is being driven to 

its setpoint much faster than the other output, which has a weight of only one. 

Q.(100,1) Q-(1,100) 

1000 

1000 

1000 

1000 

Figure 3. Distillation: Effect of output weight matrix 

With the weighting matrices' effects found, it is then possible to determine the 

effects of varying the setpoints. This is done using four different setpoint values, r, 

remaining constant throughout the trajectory: 

r = 
1 

,r = 
0 

,r = 
0.88 

,r = 
0.39 

0 1 1.12 0.59 
(41) 
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For all simulations, q = 5, p = 20, Q = R = I. These results are found in Figures 4 

and 5. Obviously, as the setpoint changes, the controller drives the output to the 

desired setpoint. 

From these runs, it is evident that the code developed is valid. The results are 

not exactly the same as the results found by Morari, since the exact format of the 

performance index used in the previous study is not known, and is most likely not 

identical to the index used in this thesis. Therefore, the equation being minimized is 

not the same, and slightly differing results can be expected. From the plots, however, 

it is obvious that the general trends obtained from the algorithm developed are the 

same as those found by Morari. 

It is also important to note that the distillation model used for these valida- 

tion runs is very different from the typical dynamic model for an aerospace system. 

The distillation model is smaller (two states versus the typical eight to ten) and re- 

sponds much slower than expected from an aircraft model. These differences aside, 

the validation runs are useful for two reasons. First, as stated previously, know- 

ing the results of a completed model predictive control study allowed validation of 

the algorithm. Second, utilizing this model shows the usefulness of applying model 

predictive control to a variety of models. 
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Figure 4. Distillation: Effect of setpoint changes (r = [1,0]', r = [0,1]') 
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Figure 5. Distillation: Effect of setpoint changes (r = [.88,1.12]', r = [.39, .59]') 
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V.   Application: Transport Aircraft 

This section presents the results from applying the inverse model predictive 

control program to a transport aircraft. Two actual aircraft mishaps, Flight 427 and 

N827AX, will be analyzed to find the degree to which the input histories can be 

determined from the FDR data. 

5.1    Flight 427 

5.1.1 Scenario. On 8 September, 1994, a Boeing 737-300 on Flight 427 

crashed while on approach into Pittsburgh International Airport. The aircraft rolled, 

turned, and nosed over into the ground. The FDR data obtained from the crash con- 

tains all the relevant operating conditions of the aircraft (altitude, velocity, heading, 

etc.) but none of the control surface deflections. 

In an attempt to determine these inputs, Parks, Bach, and Shin (12) utilized 

the Flight 427 information and an assumed set of control inputs to reproduce the 

outputs that were provided from the FDR in this aircraft accident. Napolitano (10) 

analyzed the same aircraft and used a neural network simulator and "Virtual" FDR 

to reconstruct control surface deflections. 

5.1.2 Model. A detailed model of the Boeing 737 is not available in open 

literature, understandably, due to its proprietary status. However, an accurate model 

estimation can be made from aircraft data more widely available in the current 

literature. 

The FDR data obtained for this particular incident suggested that the aircraft 

was in a steady descent at about 6700 ft 100 seconds before impacting the ground. 

Therefore, approximate stability derivatives (13) were used in the linearized equa- 

tions of motion to provide for continuous-time aircraft dynamics, where in state-space 
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form (11) 

where 

x = Ax + Bu 

■"■long        0 

0      Alat 

B = 
Blong        0 

0      Blat 

(42) 

(43) 

And the A and B matrices are defined in terms of conventional stability derivatives 

(see Appendix C) as 

^■long — 

Xu                       Xw 0 — g 

Zu                   Zw uo 0 

Mu + M^Zu MW + M^ZW Mq+MüU0    0 

0                     0 10 

■Alat 

Xse                  XsT 

ng — 
Zse                   ZsT 

Mse+MüZse   MsT + M^ZST 

0                      0 

rß/u0 Yp/uo   -(1 - Yr/u0)   gcos(60)/u0   0 

Lß Lp              Lr                    0           0 

Nß Np             Nr                   0           0 

0 1                0                    0           0 

0 0                10           0 

Blat — 

0 YSJUQ 

ua Lsr 

NSa NSr 

0 0 

0 0 

(44) 

(45) 

(46) 

(47) 
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The aircraft states are 
x = Wong xfat]

T 

where 

and the inputs are 

where 

Xhng = [A« Aw Aq A0] 

xiat = [Aß Ap Ar A<f> Aiß] 

Au = forward velocity change, ft/s 

Aw = vertical velocity change, ft/s 

Aq = pitch rate change, rad/s 

A0 = pitch angle change, rad 

Aß = sideslip angle change, rad 

Ap = roll rate change, rad/s 

Ar = yaw rate change, rad/s 

A(f> = roll angle change, rad 

Aij> = yaw angle change, rad 

u = [Se ST Sa 6r]T 

(48) 

(49) 

(50) 

(51) 

£e = elevator angle, rad 

ST — throttle position, percent 

Sa = aileron angle, rad 

ST = rudder angle, rad 

The output equation y = Cx can then be formed depending on which states, or 

linear combinations thereof, are of interest later. 

Additionally, the following equations will be utilized to produce outputs in- 

cluded in the FDR that are not simple linear combinations of the states described 

above. The absolute velocity, rate of climb/descent, forward and vertical accelera- 
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tions are, respectively, 

AVT = y/Au2 + Av2 + Aw2 

Ah = u0A9 - Aw 
(52) 

Agx = Au/g 

Agz = {Äh + ee)/g 

5.1.3 Simulation. For this application, both rate and non-rate performance 

indices were used to determine the input histories which produced the data contained 

in the FDR. The heading, pitch, and roll angles, ij>,0, and <f>, were chosen to be 

included in the performance index calculations since they carry most of the attitude 

and location information for the aircraft. The final value (at t = 100s) was extended 

for just enough time for the prediction horizon to allow for one final input calculation 

at a simulation time of t = 99s. Before being included in the setpoint vector passed 

to the MPC, the angles were resampled to the same discretization interval as the 

plant model, AT=2 sec, and linearized by subtracting the initial value of each angle 

throughout. 

5.1.3.1    Non-rate Performance Index Results.     Using the algorithm as 

explained in Section 3.5, and with the following parameter values: 

L = observer gain matrix 

Q = diag(100■■•100) 

R = diag(Q.l • • • 0.1) (53) 

p = 20 

q = 15 

the four inputs (6e,ST,Sa,ST) that optimally drive the outputs (tj;,0,(j>) to the set- 

points are found. According to the developed algorithm, these inputs are next used 

in conjuction with the second SIMULINK program (see Appendix B) in order to de- 

termine the full set of outputs that are included in the FDR data. These calculated 
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outputs are shown, along with their associated FDR output, in Figures  6 through 

12. 

These figures show the good agreement between the outputs obtained from 

the MPC-inverse control program and those from the FDR. The average deviation 

from the setpoints, across the entire trajectory, is only 0.4909, 0.0637, and 0.1786 

radians for tp, 9, and <f>, respectively. However, the disadvantages of working with a 

linear model are evident in these plots. Especially when analyzing the acceleration 

deviations in Figures 8 and 9 it is apparent that the linear model used here is having 

difficulty matching the FDR data. In fact, Parks, Bach, and Shin (12) found that 

they had to change the lift and drag characteristics of the aircraft as it approached 

stall in order to match this data. The attempt here did not include this manipulation, 

without significant degradation of results. The poor matching with the accelerations 

is due to the lack of lift and drag manipulation in this study and due to uncertainty 

in the distance from the measurement accelerometer (in the right main wheel well) 

to the aircraft center of gravity. However, overall, the match between the results and 

the data is very good. 

The optimal inputs which produced the above output results are shown in 

Figures 13, 14, 15, and 16. Upon analyzing the four inputs, elevator, throttle, 

aileron, and rudder, from the Flight 427 results, it appears that the cause of deviation 

from controlled flight was a rudder hard-over input. This is consistent with several 

other sources. Most notably, Parks, Bach, and Shin found that they needed to input 

a two or three-step rudder command, much as seen in Figure 16, in order to obtain 

output profiles similar to the FDR. Moreover, the results found here are analytical 

- not assumed input trajectories as others have been. 
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5.1.3.2 Rate Performance Index Results. Using the same solution 

algorithm and setpoints as in the previous section, but replacing the performance 

index with the terms including the rate term, Ae, in the MPC the results of the 

Flight 427 problem can be determined and compared to the results from the MPC 

without the rate term included. With the following parameter values (Note terrriR 

distinguishes parameters used in the rate-term calculations): 

ifl = observer gain matrix 

QR = diag(100--100) 

RR = diag(Q.l---0.1) 
(54) 

E = diag(100---1Q0) 

PR = 15 

qR = 15 

the four inputs (SeR,STR,SaR,SrR) that optimally drive the outputs (if>,9,<f>) to the 

setpoints are found, just as in the solution for the non-rate performance index. 

Once again, these inputs are used in conjuction with the seven-output program to 

determine the full aircraft response. These calculated outputs are shown, along with 

their associated FDR output, in Figures 17 through 23. Plots of the four optimal 

inputs which produced these outputs are in Figures  24,  25,  26, and  27. 

Only small differences can be seen between these plots and the results from 

the previous simulation. However, it is evident that there is improved setpoint 

tracking from using the rate-included performance index. Figures 21 through 23 

show less deviation from the setpoint than Figures 10 through 12. In comparison 

to the non-rate index setpoint deviations, the average setpoint deviations across the 

entire trajectory here are slightly less. The following table details these differences. 

The improvement is small, however, and may not warrant the increased calculation 

time required for the additional terms. (Run times on a Sun platform doubled from 

approximately 45 to 90 seconds with inclusion of the rate term.) 
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Table 1. Rate and Non-rate deviation Comparison 
Setpoint Rate deviation Non-rate deviation 

0 0.4828 0.4909 
6 0.0626 0.0637 
</> 0.1539 0.1786 

The lack of significantly differing results, compared to the non-rate performance 

index, may be due to the fact that the inclusion of the rate term amounts to changing 

the Q weight. The introduction of the error weight matrix, E, causes a direct increase 

in the Q weight, and its inclusion in the cross terms resulting from the performance 

index expansion, along with the time shifts between the F and T, as well as the 

other matrices, introduce what is equivalent to a non-constant Q weight across time. 

So slightly better results (due to higher weighting) but not significantly better results 

can be expected. 
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5.2   N827AX 

5.2.1 Scenario. On 22 December, 1996, an Airborne Express Douglas DC- 

8-63F impacted mountainous terrain at about 3400 feet in Narrows, Virginia. The 

crew was performing stall maneuvers on a test flight when, after one of the planned 

stalls, the aircraft plunged unrecoverably into the mountains. As with Flight 427, 

the FDR data obtained from the crash includes all of the operating conditions of 

the flight except for the control surface deflections. This FDR data will be used to 

determine the control histories during the flight in an attempt to determine what 

might have caused the incident. 

5.2.2 Model. The same model that was utilized for the Flight 427 cal- 

culations will be incorporated here. Although that model was based on flight at 

approximately 6700 feet and this flight is at approximately 13,500 feet, the flight 

characteristics (and therefore stability derivatives) at each altitude vary only slightly, 

so minimal differences can be expected. Additionally, although this incident involves 

a Douglas DC-8 and the previous calculations were for a Boeing 737, the flight char- 

acteristics for each can be well incorporated into a general transport model which is 

being utilized here. 

5.2.3 Simulation. Only the non-rate performance index will be utilized for 

this flight since it was seen from previous results that the rate performance index 

did not provide greatly improved results. For this simulation, however, four FDR 

outputs will be used as the setpoints: the three flight angles, if>, 6, and (f> and the 

altitude, h. As before, the final value (at t = 119s) was extended just long enough 

in time for the prediction horizon to allow for a final calculation at a simulation 

time of t = 118s. Also, before being included in the MPC calculations, the angles 

were resampled to match the discretization interval of the plant, AT = 2sec, and 

linearized by subtracting the initial value of each setpoint throughout time. It should 

be noted that while the downward spike in the altitude plot around t = 118s is not 
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feasible, it was in the FDR data and will therefore be kept in the data for the 

calculation. 

Using the algorithm as before, and with the following parameter values (Note 

term AX distinguishes terms used in the calculations for flight N827AX): 

LAX = observer gain matrix 

QAx = diag(100---l00) 

RAX = diag(QA-- -0.1) (55) 

PAX = 15 

qAX = 15 

the four inputs (Se,ST,Sa,Sr) that optimally drive the outputs (t/),0,<f>,h) to the 

setpoints are found. Using these optimal inputs as the inputs to the seven-output 

SIMULINK program produces the outputs plotted in Figures 28 through 34, along 

with the associated FDR output. 

Again, fairly good agreement is obtained between the outputs obtained from 

the MPC-inverse control program and the FDR data. For this simulation, average 

setpoint deviations across the entire trajectory are 0.2299, 0.3669, and 0.2513 radians 

for ip, 0, and <j>, respectively, and 868.9 feet for h. While the agreement is not as 

good as that seen from the Flight 427 results, several sources of error are entering 

the problem. As stated previously, the model used is the model initially developed 

for a Boeing 737 at a lower altitude. Stability derivatives more representative of a 

DC-8 aircraft at altitude would produce better results. These differences are minor, 

but are contributing factors to deviations from the setpoints. This compounds the 

linearization factors for error seen in the Flight 427 results. Here, after approximately 

605, the aircraft begins to develop highly oscillatory flight. At these conditions, the 

linear assumptions at the root of the model begin to deteriorate. It is at this stage in 

the simulation that the outputs depart from the setpoints. Plots of the four optimal 

inputs which produced these results are shown in Figures 35,  36,  37, and 38. 
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Overall, results from the N827AX simulation show good setpoint following. 

The roll data is matched nearly identically, and in all other outputs, the trends that 

exist in the FDR data are also in the simulation results. Additionally, Figure 35 

shows a stuck elevator. This is significant since a stuck elevator is the suspected cause 

of the incident involving N827AX. The results seen here support that preliminary 

conclusion. 
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VI.   Conclusions and Recommendations 

6.1 Conclusions 

This thesis proposed that a Model Predictive Controller, used in the inverse 

sense, might prove advantageous for use in aircraft mishap investigations. As a 

proof of concept, the FDR data obtained from Flights 427 and N827AX, in which the 

aircraft crashed for unknown reasons, were used as the setpoints for the MPC and the 

control surface inputs that may have caused the known outputs were found. Those 

inputs resulted in flight characteristics showing good agreement with the FDR data. 

Average deviations from the setpoints, across the entire output trajectory, ranged 

from 0.06 to 0.5 radians for the flight angles. Conclusions then are two-fold: first, 

MPC appears to be promising for future analysis of aircraft mishap investigations, 

and second, analysis of these flights using this method supports previous findings for 

the causes of the incidents. 

Additionally, when the results from the MPC using non-rate and rate terms 

included in the performance index are compared, no advantages in the results can 

be seen for the inclusion of a rate term as developed for this application. However, 

other applications may warrant the use of a rate term in the performance index. 

6.2 Recommendations 

Two logical steps for exploration into this area of using MPC in the inverse 

sense become apparent. First, it might prove beneficial to replace the model used to 

find the actual outputs with a non-linear model. Some deficencies were seen when 

attempting to match the setpoints to the FDR data which might be eliminated with 

the aid of a non-linear model. Second, and possibly along those same lines, imple- 

menting this algorithm with a high-performance aircraft, as opposed to a transport 

aircraft, would be advantageous. This type of system is much more responsive, more 
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dependent upon control usage, and would therefore provide an additional test for 

MPC in the inverse sense. 

In the arena of including a rate term in the performance index, for inverse 

control or forward control schemes, additional studies need to be performed. In 

this application, its inclusion did not provide a dramatic improvement in results. 

However, before a definitive statement pro or con on the rate term can be made, it 

needs to be used with other applications. In the case of a more responsive aircraft, it 

could provide improved setpoint tracking, above and beyond what was seen in this 

thesis. 
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Appendix A.   MAT LAB Functions 
Two MATLAB functions were developed for use in this thesis. The first is 

a setup file which calculates all time-constant matrices required and prepares the 
setpoint vector. This file is slightly different for the rate-inclusion performance index 
since the matrices are different than those required by the non-rate performance 
index. Both are listed below: 

function  [G,H,F,MC,MQ,MS,P,Cona,Conb,p]=setupcon(A,B,C,L,Q,R,p,q,yd) 
X Setup.m to be run prior to running the Simulink program 
X to perform the inverse problem. Calculates the matrices 
X required for the non-rate performance index.    Of the form: 
y. 
y.    c      B o o    ] 
X [(A-L*C)*B                                B                     0         ] 
X G=[(A-L*Cr2*B                 (A-L*C)*B              0         ]   (pn x qxi) 
X [           :                                        :                   0        ] 
X [(A-L*C)~(p-l)*B      (A-L*C)~(p-2)*B    ...  B] 
X 
X H=[L  (A-L*C)*L (A-L*C)-2*L....(A-L*C)~(p-l)*L]'       (pn x xi) 
X 
X F=[(A-L*C)     (A-L*C)~2     ...     (A-L*C)-p]'       (pn x n) 
X 
X MC=I*C      (peta x pn) 
X 
X MQ=I*Q  (peta x peta)  (Assumes same weights across time, but) 

X (q can have varying weights on certain inputs) 
X 
X MR=I*R  (qxi x qxi)  (Assumes same weights across time, but) 

X (r can have varying weights on certain inputs) 
X 
X Constraints: Cona(u)  <= Conb 
X      Cona=I*Con (p x qxi) matrix of constraint multipliers 
X      Conb=I*Max (p x 1) matrix of constraint maximums 
X 
X      where p = prediction horizon, q = control horizon, 
X n = # states, xi = # inputs, eta = i outputs, 

X Q = output weighting, R = input weighting. 

X 

n=size(A);n=n(l); 

xi=size(B);xi=xi(2); 
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eta=size(C);eta=eta(l); 

for i=l:size(yd,l) 

ydt((i-l)*eta+l:i*eta,l)=yd(i,:)'; 

end 
yd=ydt; 

ALC=A-L*C; 

for i=l:p 

F((i-l)*n+l:i*n,:)=[ALC^i]; 

H((i-l)*n+l:i*n,:)=[ALC~(i-l)*L]; 

MC((i-l)*eta+l:i*eta,(i-l)*n+l:i*n)=C; 

MQ((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=q; 

for j=l:q 

if i>=j 
G((i-l)*n+l:i*n,(j-l)*xi+l:j*xi)=[ALC~(i-j)*B]; 

end 

MR((j-l)*xi+l:j*xi,(j-l)*xi+l:j*xi)=R; 

end 
end 

p=2*(G'*MC'*MQ*MC*G+MR); 

for i=l:q 

for j=l:q 

if i>=j 
a((i-l)*xi+l:i*xi,(j-l)*xi+l:j*xi)=eye(xi,xi); 

end 
end 

end 

Cona=[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*a; 

save dataf ile P F H MC MQ G Cona p q A B C yd 

function [G,H,F,MC,MQ,MS,P,Cona,Conb,p]=setupconrate(A,B,C,L,Q,R,E,p,q,yd) 
Setup.m to be run prior to running the Simulink program 
to perform the inverse problem. Calculates the matrices 
required for the rate performance index. Of the form: 

[    B 0        0   ] 
[(A-L*C)*B B        0   ] 
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G=[(A-L*C)~2*B      (A-L*C)*B     0   ] (pn x qxi) 

[    : :       0   } 
[(A-L*C)~(p-l)*B  (A-L*C)~(p-2)*B ... B] 

H=[L (A-L*C)*L (A-L*C)~2*L....(A-L*C)-(p-l)*L]'  (pn x xi) 

F=[(A-L*C) (A-L*C)~2 ...  (A-L*C)-p]'  (pn x n) 

MC=I*C  (peta x pn) 

MQ=I*Q  (peta x peta)  (Assumes same weights across time, but) 

(q can have varying weights on certain inputs) 

ME=I*E  (peta x peta) 

MR=I*R  (qxi x qxi)  (Assumes same weights across time, but) 

(r can have varying weights on certain inputs) 

Constraints: Cona(u) <= Conb 

Cona=I*Con (p x qxi) matrix of constraint multipliers 
Conb=I*Max (p x 1) matrix of constraint maximums 

where p = prediction horizon, q = control horizon, 
n = # states, xi = # inputs, eta = # outputs, 
Q = output weighting, R = input weighting. 

n=size(A);n=n(l); 

xi=size(B);xi=xi(2); 
eta=size(C);eta=eta(l); 

for i=l:size(yd,l) 

ydt((i-l)*eta+l:i*eta,l)=yd(i,:)'; 
end 
yd=ydt; 

ALC=A-L*C; 

for i=l:p 

F((i-l)*n+l:i*n, :) = [AL(Ti] ; 
H((i-l)*n+l:i*n, :)=[AL<T(i-l)*L]; 

MC((i-l)*eta+l:i*eta,(i-l)*n+l:i*n)=C; 
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MQ((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=Q; 
ME((i-l)*eta+l:i*eta,(i-l)*eta+l:i*eta)=E; 
for j=l:q 

if i>-j 
G((i-l)*n+l:i*n,(j-l)*xi+l:j*xi)=[AL(T(i-j)*B]; 

end 
MR((j-l)*xi+l:j*xi,(j-l)*xi+l:j*xi)=R; 

end 
end 

Gtil=[zeros(n,q*xi);G(l:(p-l)*n,:)]; 
Ghat=G-Gtil; 

Ftil=[zeros(n,n);F(l:(p-l)*n,:)]; 
Fhat=F-Ftil; 

Htil=[zeros(n,xi);H(l:(p-l)*n,:)]; 
Hhat=H-Htil; 

P=2* (Ghat' *MC' *MQ* (MC*Ghat+2*ME*MC*G) +G' *MC' *ME' *MQ*ME*MC*G+MR) ; 

for i=l:q 
for j=l:q 

if  i>=j 
a((i-l)*xi+l:i*xi,(j-l)*xi+l:j*xi)=eye(xi,xi); 

end 
end 

end 
Cona=[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*a; 

save dataf ile P F Fhat H Hhat MC MQ G Ghat ME Cona p q A B C yd 

Within the SIMULINK inverse control program is a MATLAB function which 

performs the inverse control calculation. Again, it is slightly different for each index, 

due to the differing matrices. These inverse problem functions are listed below: 

function 0UT=ip737con(IN) 
'/, Performs the inverse problem (non-rate) and outputs the current 
'/, J value and the next input to perform, driving the 
'/, actual output to the desired output. 

'/. 
ü MS=[yd(k)'    yd(k+l)'    yd(k+2)'   ...    yd(k+p)'] 
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'/. 

'/. Load P F H MC MQ G Cona p q A B C yd from 'datafile.m'. 
load datafile 

n=size(A);n=n(l); 

xi=size(B);xi=xi(2); 

eta=size(C);eta=eta(l); 

'/,  Extract u(k-l),y,x,t from input vector {u(k-l) ,y,x;t}: 
Uk_l=IN(l:xi,l); 

y=IN(l+xi:xi+eta,1); 

x=IN(l+xi+eta:xi+eta+n,1); 
t=IN(xi+eta+n+l,l); 

% Calculate where we are along the desired output vector: 
X Round to ensure integer value, add one timestep since 

V,    t=0 is row 1, x by eta to step along yd vector for pmax 
pmin=round(t/2)*eta+l; 
pmax=pmin+p*eta-l; 

'/.  Store the current yd for (Yd-y) calculation: 
curyd=yd(pmin:pmin+eta-l); 

7,  Calculate the MS matrix for f calculation 
MS=yd(pmin:pmax)'; 

f=2*((F*x+H*y)'*MC'-MS)*MQ*MC*G;f=f'; 

Umax=[19.33*pi/180 69.5 20*pi/180 26*pi/180]'; 
Umin=-[21.83*pi/180 30.5 20*pi/180 26*pi/180]'; 
for i=2:q 

Umax((i-l)*xi+l:i*xi,l)=[inf inf inf inf]'j 

Umin((i-l)*xi+l:i*xi,l)=-[inf inf inf inf]'; 
Uk_l((i-l)*xi+l:i*xi,l)=Uk_l(1:4); 

end 

Conb=([Umax;-Umin]-[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*Uk_l); 

du=qp(P,f,Cona,Conb); 

J=.5*du'*P*du+f'*du; 
du=du(l:xi); 
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'/, Establish the output vector: {curydjdu;J}: 

OUT=[curyd;du;J] ; 

function 0UT=ip737conr(IN) 

'/, Performs the inverse problem (rate) and outputs the current 

'/, J value and the next input to perform, driving the 

'/,  actual output to the desired output. 

'/. 

'/. Y=[yd(k)J yd(k+l)' yd(k+2)' ... yd(k+p)'] 

'/. 

*/, Load P F Fhat H Hhat MC MQ G Ghat ME Cona Conb p A B C yd 
'/, from 'datafile.m'. 
load datafile 

n=size(A);n=n(l); 

xi=size(B);xi=xi(2); 

eta=size(C);eta=eta(l); 

'/. Extract u(k-l),y,x,t from input vector {u(k-l) ;y;x;t}: 
Uk_l=IN(l:xi,l); 

y=IN(l+xi:xi+eta,l) ; 

x=IN(l+xi+eta:xi+eta+n,l); 
t=IN(xi+eta+n+l,1); 

'/, Calculate where we are along the desired output vector: 
y, Round to ensure integer value, add one timestep since 

•/, t=0 is row 1, x by eta to step along yd vector for pmax 
pmin=round(t/2)*eta+l; 
pmax=pmin+p*eta-l; 

'/, Store the current yd for (Yd-y) calculation: 

curyd=yd(pmin:pmin+eta-l); 

'/, Calculate the Y matrices for f calculation 
Y=yd(pmin:pmax); 
if pmin-eta<0 

Ytil=[zeros(eta,1);yd(pmin:pmax-eta)] ; 
else 

Ytil=yd(pmin-eta:pmax-eta); 
end 
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Yhat=Ytil-Y; 

f=2*((MC*Fhat*x+MC*Hhat*y+Yhat)'*MQ*(MC*G+ME*MC*G)+ 

(MC*F*x+MC*H*y-Y)'*ME'*MQ*(MC*Ghat+ME*MC*G));f=f'; 

Umax=[19.33*pi/180 69.5 20*pi/180 26*pi/180] '; 

Umin=-[21.83*pi/180 30.5 20*pi/180 26*pi/180]'; 

for i=2:q 

Umax((i-l)*xi+l:i*xi,l) = [inf inf inf inf] '; 

Umin((i-l)*xi+l:i*xi,l)=-[inf inf inf inf]'; 
Uk_l((i-l)*xi+l:i*xi,l)=Uk_l(l:4); 

end 

Conb=([Umax;-Umin]-[eye(q*xi,q*xi);-eye(q*xi,q*xi)]*Uk_l); 

du=qp(P,f,Cona,Conb); 

J=.5*du'*P*du+f'*du; 
du=du(l:l+xi-l); 

%  Establish the output vector: {curyd;du;J}: 
0UT=[curyd;du;J] ; 
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Appendix B.  Seven-Output Program 

A second SIMULINK diagram was utilized in the solution algorithm in order to 

determine the full seven outputs that were included in the FDR data. This program 

is found in Figure 39 below. 

timel.Uoutru 

Optimal Inputs 

x' = Ax+Bu 
y = Cx+Du 

State-Space 
7-output model 

Figure 39. Seven-Output SIMULINK Program 
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Appendix C.  Additional Transport Model Information 

The following tables show the stability derivative values used to develop the 

transport aircraft model (13). 

Derivative Value (3-1) Derivative Value (s~2) 

xu -.0292 MSe -.4430 
Ziu -.2260 h -3.190 
Aw .1400 Nß .4990 
&W -.6740 Lsa 3.840 
Yr 0 NSa .4010 
u .9800 LsT .3350 
Nr -.2150 Nsr -.3270 
LP -1.390 YSr .0250 ft 
Np -.1130 YP 0 
Mq -.4810 Yß -31.50 ft 

Derivative Value 

Mw -.0016 ft/s 
Mu .894e"5 ft/s 
M* -.0007 1/ft 
Xge .4500 ft/52 

zSe -4.950 ft/52 

XsT .0003 
ZsT -.134e~4 

MST .8160e-6 

Additional values required for calculation of the A and B matrices are: 

u0 = 316.26 ft/s 

60 = .0723 rad 

£ = 0ft 

g = 32.2 ft/s2 
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where u0 and 0O are taken from the FDR data, g is gravity, and £ is the distance 

from the aircraft center of gravity to the location of the measurement accelerometer 

(estimated here to be zero or approximately zero). The resulting ten-state A and B 

matrices are: 

A = 

0 0 -1.0000 0 316.2612 0 0 0            0 0 

0 -0.0292 0.1400 0 -32.2000 0 0 0            0 0 

0 -0.2260 -0.6740 316.2612 0 0 0 0            0 0 

0 0.0002 -0.0011 0.7097 0 0 0 0            0 0 

0 0 0 1.0000 0 0 0 0            0 0 

0 0 0 0 0 -0.0996 0 -1.0000   0.1015 0 

0 0 0 0 0 -3.1900   - -1.3900 0.9800        0 0 

0 0 0 0 0 0.4990    - -0.1130 -0.2150       0 0 

0 0 0 0 0 0 1.0000 0            0 0 

0 0 0 0 0 0 0 1.0000        0 
(56) 

0 

0 0 0 0 

0.4500 0.0003 0 0 

—i 1.9500 0.0000 0 0 

-1 3.4394 0.0000 0 0 

B = 
0 

0 

0 

0 

0 

0 

0 

0.0001 
(57) 

0 0 3.8400 0.3350 

0 0 0.4010 -0.3270 

0 0 0 0 

0 0 0 0 

where the states are 

xT = [Ah Au Aw Aq A0 Av Ap Ar A<j> A^>] (58) 
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as defined in the thesis text. 

This model results in poles in the following table, along with two poles at the 

origin: 

Pole(s) Location 
Phugoid —.0150 ± .1171» 

Short Period -.6915 ± .6047» 
Spiral -.0142 
Roll -1.5891 

Dutch Roll -.0506 ± .9386»' 
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