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Abstract  

The purpose of this research is to analyze and compare global precipitation data 

from the Climate Forecast System Version 2 (CFSv2) with the Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-

Climate Data Record (CDR) to improve long term precipitation forecasting. The CFSv2 

has a 0.5-degree resolution which will provide model data for precipitation forecasts. The 

PERSIANN-CDR is a satellite derived daily 0.25-degree dataset with 37 years of global 

precipitation coverage 60 N to 60 S. The 0-to-10, 15-to-25, 55-to-65, and 80-to-90 day 

forecast time frames will then be analyzed for accuracy, and a quantile mapping (QM) 

technique will be applied to correct precipitation amounts for the CFSv2. The QM 

procedure requires both training and test datasets from the CFSv2 and PERSIANN-CDR.  

Finally, the forecast correction results for the CFSv2 may be used to improve medium 

range precipitation forecasts by the operational meteorological community.  
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COMPARISON OF SPATIAL PRECIPITATION FORECASTS WITH A 

SATELLITE DATASET 

 

I.  Introduction 

General Issue 

  The Climate Forecast System version 2 (CFSv2) attempts to forecast long range 

precipitation with reliable results.  This research aims to improve the medium-range 

forecast of the CFSv2 using quantile mapping (QM) from the Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks-Climate Data 

Record (PERSIANN-CDR) and short range of the CFSv2. 

Problem Statement 

The CFSv2 is only reliable in the 0-to-10 day range using traditional forecast and 

verification approaches.  The CFSv2 is the current climate model that is run at the 

National Centers for Environmental Prediction (NCEP) for operational forecasting (Yuan 

et al., 2013).  In order to support there is a need for longer range outlooks upon which 

risk-based assessments and decisions are made.  Using statistical methods and the 

satellite-derived data, PERSIANN-CDR, we will attempt to apply corrections to sub-

seasonal CFSv2 precipitation forecasts towards creating valuable long-range outlooks. 

Precipitation measurements on climatological time scales are essential to 

understanding environmental processes at a sub-seasonal time.  Precipitation patterns at 

these time scales are important to analyze on a global scale to accurately determine the 

location of events such as floods and droughts.  Climatology of hydrologic events, 

including flooding, influences Department of Defense (DoD) planning and execution 
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(Gangrade et al., 2020).  An example of this is the placement of operating locations. It is 

necessary for operational decisions to be based on accurate scientific information, which 

is a driving factor in this research.  The runway flooding at Offutt AFB in 2019 brought 

to light how impactful these events can be (Gangrade et al., 2020).  Many overseas 

locations deal with flooding as well, especially in the Korean Peninsula, which impacts 

the full range of operations when the monsoon arrives every summer.   

The opposite climate extreme is droughts from lack of significant rainfall for a 

long duration, sometimes lasting years.  All of these real-world implications show the 

importance of forecasting and analyzing precipitation across the globe.  Another critical 

piece is understanding how quickly precipitation falls in a particular area, whether from a 

severe thunderstorm in the Great Plains of the U.S. or monsoonal rains in India 

(Trenberth et al., 2003).  The Southwest monsoon in the U.S. delivers much more rain 

than a thunderstorm and on a much longer time scale. Although much research has been 

accomplished, the challenge of forecasting precipitation accurately remains. 

II. Literature Review 

Chapter Overview 

This chapter gives a background understanding of the current state of satellite-

derived datasets and climate forecast models.  Various techniques for precipitation 

analysis were also reviewed in previous research. 

PERSIANN-CDR 

The PERSIANN-CDR is a relatively new satellite dataset (Ashouri et al., 2015).  

The PERSIANN-CDR dataset is of sufficient length for climatological studies and for 

enabling both statistical climate outlooks, dynamical climate modeling refinement and 
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postprocessing (Ashouri et al., 2015).  PERSIANN-CDR allows for higher resolution 

comparisons when looking at model forecasts of differing lengths.  

According to the World Meteorological Organization (WMO), 30 years of 

historical weather data is required for climatological studies to be conducted (Ashouri et 

al., 2015). Once the requirements meet with the various data sets, various climate 

agencies implement the climatological research's long-standing records. PERSIANN-

CDR has been suitable for estimating spatial and temporal precipitation globally from 

1983 to present (Ashouri et al., 2015).  The resolution and global coverage of the 

PERSIANN-CDR were compared to other satellite derived precipitation datasets (Figure 

1). 

  

Figure 1. Temporal and spatial resolution of global and near-global precipitation datasets 

(Ashouri et al., 2015). 

 

The PERSIANN algorithm was developed in 1997 by combining high spatial 

resolution low earth orbit satellite (LEO) data with high temporal-frequency 

geostationary satellite data (Nguyen et al., 2018).  PERSIANN is based on a multilayer 

neural feedforward network consisting of two processes (Nguyen et al., 2018).  In the 

first part, the infrared images are transformed into the hidden layer to form the self-

organizing feature map (SOFM) through an automatic clustering process (Nguyen et al., 
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2018). The second part is when the SOFM detects and classifies patterns in the input 

data, mapped to the continuous space of outputs such as rainfall (Nguyen et al., 2018). 

Parameter estimation is used in these processes, incorporating passive microwave rainfall 

from LEO satellites (Nguyen et al., 2018).   

  

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean annual precipitation (mm) for PERSIANN, PERSIANN-CCS, and 

PERSIANN-CDR (Nguyen et al., 2018).  

 

PERSIANN-CDR uses Stage IV hourly precipitation to train the artificial neural 

network (ANN) model, which allows the algorithm to run with fixed parameters (Lin et 

al., 2005).  Stage IV precipitation is a mosaic of regional multi-sensor analysis (Lin et 
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al.,2005).  The differences in annual mean precipitation between PERSIANN, 

PERSIANN-Cloud Classification System (CCS), and PERSIANN-CDR is small (Figure 

2).  The PERSIANN-CCS is another dataset which obtains precipitation amounts from 

cloud coverage and the PERSIANN is a shorter data record at 17 years compared to 37 

from the PERSIANN-CDR (Nguyen et al., 2018).  The zonal and meridional rainfall 

comparisons for the three different PERSIANN satellite products depict the variation of 

precipitation in latitude and longitude (Figures 3 and 4). These different outputs from the 

various datasets support the claim that the PERSIANN-CDR can improve the CFSv2 

(Figure 3). 

 

Figure 3. Mean annual zonal precipitation (mm/yr) for PERSIANN, PERSIANN-CCS, 

and PERSIANN-CDR (Nguyen et al., 2018). 

 

 

 

 

 

 



6 

 

 

 

 

 

 

 

Figure 4. Mean annual meridional precipitation (mm/yr) for PERSIANN, PERSIANN-

CCS, and PERSIANN-CDR (Nguyen et al., 2018). 

 

The PERSIANN-CDR was developed to estimate rainfall from geosynchronous 

satellites every half hour (Sorooshian et al., 2000).  Geosynchronous satellites provide 

extensive coverage of the Earth at high spatial and temporal resolution which aid in 

detailed retrievals for the PERSIANN-CDR (Sorooshian et al., 2000).  Artificial neural 

network (ANN) models within PERSIANN provide useful information for hydrologic 

and meteorologic impacts, specifically precipitation (Sorooshian et al., 2000). ANNs are 

tools for processing precipitation data for specific results similar to the human brain's 

biological framework with an example of supervised learning (Sorooshian et al., 2000). 

The combination of high-resolution satellite retrievals and complex neural network 

processing provide the improved precipitation results for the PERSIANN-CDR 
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(Sorooshian et al., 2000).  Neural network group techniques for the PERSIANN-CDR 

estimate convective precipitation reduced to less than 10% (Zhang et al., 1994).  

The PERSIANN-CDR system operates in two modes: simulation and updates 

(Sorooshian et al., 2000). The simulation generates regular rainfall rate output, and 

updates improve the product's quality (Sorooshian et al., 2000). The region of interest 

Sorooshian et al. (2000) uses for their study includes the Tropical Pacific which analyzes 

the performance of precipitation rates from the PERSIANN-CDR.  There is still a need 

for improved spatial and temporal accuracy of global precipitation (Sorooshian et al., 

2000). 

Extreme rain events have been studied using PERSIANN-CDR with indices such 

as percentile, absolute threshold, and maximum (Miao et al., 2014).  Since these events 

do not occur regularly, it is essential to capture them in climatic or long-term studies. 

Miao et al. (2014) used five different absolute thresholds to account for correlations 

between the observations and the PERSIANN-CDR. The evaluation of the PERSIANN-

CDR was obtained by using 11 extreme precipitation indices over the China region (Miao 

et al., 2014). Many different methods have been used in better forecasting these high-end 

rain events, with little improvement that was noted because of the complexity of 

parameterization within the models for the long term beyond 30 days. 

CFSv2 

The CFS was the first quasi-global, fully coupled atmosphere-ocean-land model 

used at NCEP for seasonal forecasting (Saha et al., 2014).  The performance of the CFS 

has been broken down into seasonal and sub seasonal scales to determine forecast skill 

previously (Saha et al., 2014). The CFSv2 has limited skill beyond the 30-day mark, but 
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promising increased skill has been shown for precipitation with longer range forecasts at 

the seasonal scale (Yuan et al., 2011).  The predictive skill of precipitation can provide 

useful information for flood and drought forecasting (Yuan et al., 2011). Physical 

processes and data assimilation improvement have compensated for the relatively low 

precipitation forecasting skill beyond one month (Yuan et al., 2011).  

 
Figure 5. Percentage of positive Ranked Probability Skill Score (RPSS) comparing the 

CFSv1, CFSv2, ECMWF, MF, UKMO, and Multi-Model for monthly temperature and 

precipitation over global land areas (Yuan et al., 2011). 

 

The highest predictive skill for precipitation of the CFSv2 appeared to be over the 

Amazon, Europe, and the Middle East (Yuan et al., 2011). The CFSv2 has outperformed 

the CFSv1 in temperature and precipitation anomalies at the 1-and-2 month periods 

which is the reason for the v1 being obsolete (Yuan et al., 2011). Ensembles are 
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implemented to accurately analyze forecasts with different start dates (Yuan et al., 2011). 

The Ranked Probability Skill Score (RPSS) produced the forecasts probabilistic quality 

(Yuan et al., 2011). If the RPSS is equal to one, that meant a near-perfect forecast while a 

value of zero would indicate that the forecast is inferior to climatology (Yuan et al., 

2011). As far as precipitation anomalies go, the CFSv2 compared equally to the 

ECMWF, with skill considerably dropping beyond 30-days (Yuan et al., 2011). The need 

for accurate precipitation forecasting is to have real skills in the medium to long-range 

time scales (Yuan et al., 2011). 

A generated dataset previously used was the Climate Forecast System Reanalysis 

(CFSR) which eliminated fictitious trends caused by model and data assimilation changes 

(Saha et al., 2010). This dataset was created mainly to simulate initial conditions for the 

coupled atmosphere (Saha et al., 2010).  Artificial reanalysis model data sets were used, 

such as EMCWAF, JMA, and GFS/NCAR in comparison to the CFSR (Saha et al., 

2010). The model-generated precipitation is replaced by observation precipitation for 

added realism (Saha et al., 2010). Historical and operational archives are required for 

reanalysis projects; the data came from various sources such as aircraft, satellite, and 

observations (Saha et al., 2010). The significant improvement was due to increased 

resolution in the horizontal and vertical directions (Saha et al., 2010). Further analysis of 

the coupling between the atmosphere and the ocean is essential for further understanding 

impacts (Saha et al., 2010).  

Analysis Techniques 

The PERSIANN-CDR dataset is used to assess economic impacts of China's 

drought conditions, comparing it with 32 years of China monthly Precipitation Analysis 
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Product (CPAP) data (Guo et al., 2016). The Standardized Precipitation Index (SPI) was 

used at various time scales between 1 and 12 months for detecting drought events (Guo et 

al., 2016). Since droughts can last months and years, climatological studies are the most 

useful for this phenomenon (Guo et al., 2016). The accuracy of the precipitation 

estimation directly impacted the SPI (Guo et al., 2016). Relative bias and Pearson linear 

correlation coefficient are error indices used to determine the accuracy of the 

PERSIANN-CDR in this study (Guo et al., 2016). A comparison between the China 

monthly Precipitation Analysis Product (CPAP) and the PERSIANN-CDR have been 

noted (Figure 6). 

 
Figure 6. Spatial distribution of 32 years monthly mean precipitation data between the 

CPAP and PERSIANN-CDR along with a statistical analysis line of regression between 

the same datasets (Guo et al., 2016). 

  

Various methods for analyzing the precipitation from models and using 

Cumulative Distribution Functions (CDFs) are standard (Wang et al., 2013).  CDFs have 

long been used to bias-correct raw modeled precipitation (Wang et al., 2013).  A CDF is 

the probability that a precipitation event is less than or equal to one (Wang et al., 2013).  

Much work has been done in investigating various post-processing techniques from 

simple additive and scaling corrections with CDFs (Wang et al., 2013). QM is an 
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effective way to adjust CDFs to agree with current observations in a given reference 

period (Wang et al., 2013).  

Kadioglu et al. (2000) analyzed regional precipitation trends in Turkey, primarily 

using correlation.  The downside of using correlation is the sensitivity to the non-

normality of data, adjusted with the correlation matrix to assume a normal distribution 

(Kadioglu et al., 2000). Each observation station was analyzed using quantile to quantile 

plots, useful for visualizing transforms (Kadioglu et al., 2000). The most considerable 

drawback noted in this research was the strong seasonal signals of precipitation, which 

drive the values upwards or downwards, which affect the accuracy of the data (Kadioglu 

et al., 2000). 

Quantile mapping (QM) is a commonly used technique to correct distributional 

biases in precipitation outputs from climate models compared to observations (Cannon et 

al., 2015). A drawback with quantile mapping is that corrupt model-projected trends are 

possible with precipitation, which requires a bias correction algorithm (Cannon et al., 

2015).  QM outperformed several empirical statistical downscaling (ESD) techniques 

(Rajczak et al., 2016). This technique well represented the tails of precipitation 

probability distribution functions in extreme rain events, which reduced biases in regional 

climate models (Trinh-Tuan et al., 2018). 

The statistical analysis of extreme precipitation events is essential, and parametric 

probability distributions fit these climatological records' values in Wilks' et al. (1993).  

These fitted distributions smoothed the data, and extrapolation was obtained beyond the 

identified graphical region (Wilks et al., 1993).  The depiction of the difference between 

partial duration and annual extreme precipitation events frequency is important to 
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differentiate (Wilks et al., 1993). The partial duration series only allowed events that 

exceeded a specific predetermined value beneficial for forecasting flash floods (Figure 7).   

  

Figure 7. Histograms of 1-day annual extremes for Baltimore, MD (Wilks et al., 1993). 

III.  Methodology 

Chapter Overview 

This chapter describes the data in this research and the methods of analysis. 

Summary 

The data used in this research includes the CFSv2 and the PERSIANN-CDR. The 

CFSv2 and PERSIANN-CDR data are manipulated to fit equal resolution grids of 10-

degree boxes such that direct comparisons could be made.  The atmospheric model of the 

CFSv2 has a spectral triangular truncation of 126 waves in the horizontal and uses finite 

differencing vertically with 64 sigma pressure levels (Saha et al., 2014).  The CFSv2 is 
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0.5-degree resolution and the PERSIANN-CDR is 0.25-degree resolution so coarser 

resolutions are required for this analysis.   

The CFSv2 forecast data is broken up into forecast time scales of 0-to-10, 15-to-

25, 55-to-65, and 80-to-90 days. General comparisons will be drawn from both datasets 

comparing the means, standard deviations, maximum value, and coverage percentages 

globally (Figure 8). Datasets are created with CFSv2 from 2016 through 2019 and the 

PERSIANN-CDR from 1983 through 2019.  The PERSIANN-CDR required more data 

compared to the CFSv2 because the corrections applied were more reliable for 

climatological results.   

 

Figure 8. Various statistical indices to represent characteristics of precipitation (Heo et 

al., 2019). 

 

Time series will then be compared for PERSIANN-CDR at two different points 

globally, whereas CFSv2 forecasts for raw signal and raw mean are found using a series 

of filters, which include the Savitzky-Golay (Savgol) to smooth the data while the 

integrity remained. The Savgol filter will be used because data peaks are not flattened 

compared to other smoothing functions which was important for the seasonal variational 

analysis of precipitation (Schafer et al., 2011).  Also, the Savgol filter applies the 

smoothing to a polynomial function which is effective in continuous sets of data such as 
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yearly precipitation amounts (Schafer et al., 2011).  The points are in the Tropical Pacific 

near the international dateline and the equator and the U.S. near Colorado.  

A technique used for verification is a Pearson correlation function from the 

numerical python (numpy) library. Pearson correlation is the covariance of two variables 

divided by the product of their standard deviations (Benesty et al., 2008).  Correlation 

plots with the Savgol filter are shown to explain the accuracy of the CFSv2 dataset 

forecasts. The Savgol filter uses two different window lengths and polynomial order 

numbers for the correlation plots. The correlation technique applied will evaluate the 

CFSv2's linear relationships with the observations for the different forecast periods with 

mean and coverage statistics. 

Verifications from observations of the CFSv2 ensure that accurate representation 

is attained with the values. Observations are applied to the CFSv2 forecasts to ensure the 

accuracy of the data.  Contingency tables created determine the false alarm, hits, and 

misses for the different forecast periods to determine the highest skill of the CFSv2 

compared to CFSv2 observations as quantitative percentages. 

Geometrically spaced bins create plots that are used for histogram and CDF 

analyses for precipitation events from 0 to 30. A histogram method then places the 

precipitation values into individual bins. Seasons are broken up each year to gather the 

smallest temporal scale for this research. The seasons are defined as 91 Julian day periods 

with winter 1 to 92, spring was 93 to 184, summer was 184 to 275, and fall was 276 to 

365.  Then CDFs are plotted to identify an accurate representation of significant rainfall 

events compared to the percentage of occurrences annually. Precipitation time series are 

then created using the QM correction method. The mean, standard deviation, maximum, 
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and coverage of the PERSIANN-CDR and CFSv2 0-to-10 day forecast are applied to the 

CFSv2 forecast for 15-to-25 days to show improved precipitation forecast ability for the 

QM. This comparison allows for the raw precipitation, and quantile mapped to be 

observed side by side. 

QM provids corrections to the CFSv2 15-to-25 day forecasts using both the 

PERSIANN-CDR and the CFSv2 0-to-10 day forecasts statistics. This QM method uses a 

test dataset, a year, and a training dataset that used three years of data from the CFSv2. 

The data is placed into the quantile correction function.  The quantile correction function 

equates CDFs of the observed, modeled, and bias correction data within a specific time 

period (Cannon et. al., 2015).  The training dataset is used as the modeled from the 

CFSv2 data. The QM data is manipulated based on the training set which used 2016, 

2018, and 2019 from the CFSv2.  

The test data is from the beginning and end of 2017, which is a full continuous 

year worth of CFSv2 data used as the bias corrected for the QM.  That is the most 

effective way to break up the CFSv2 data to apply the QM function.  The importance of 

using QM for this research is to apply any corrections to the CFSv2 biases in sub-

seasonal precipitation trends. The general comparison provides insight for the accuracy of 

the high-resolution data with the QM implementing correction methods for training data 

from the observations for 2017.  

IV.  Analysis and Results 

Chapter Overview 

The analysis of the PERSIANN-CDR and the CFSv2 are conducted and described 

for specific findings in this section.  
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Summary 

The 37-year period for all days with the leap days removed because of added 

complexity looking at the mean, standard deviation, maximum values, and total coverage 

for the PERSIANN-CDR. The mean aids in determining where the highest average 

precipitation values fall globally, while the standard deviation identifies regions of 

variability in the 10 by 10-degree boxes.  The PERSIANN-CDR maximum values depict 

the heaviest rain events, especially in the tropical regions. The coverage demonstrates 

how much in each grid box precipitation has fallen globally, which is measured in 

percentage compared to millimeters for the other three statistical variables.   

Figure 9. PERSIANN-CDR 37 year mean, standard deviation, maximum, and coverage 

for all days from 1983 to 2019. 

 

The standard deviation and maximum values of precipitation from the 

PERSIANN-CDR annual analysis depict the Inter Tropical Convergence Zone (ITCZ) 
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region (Figure 9).  The maximum precipitation fallen depicts the ITCZ in a broader scale 

compared to the mean and standard deviation.  The coverage for the PERSIANN-CDR is 

most useful in identifying the desert regions of the globe.  The coverage also highlights 

the tropical regions over the land along with the Indo-Pacific for all days.  

The seasonal analysis is then examined for the PERSIANN-CDR.  The 

importance of the data being broken down into the seasons is to identify signals, 

primarily large-scale rain events known to impact regions such as the Indian Monsoon.  

The identification of the signals in the satellite dataset can aid in the corrections used for 

the QM. The climatology of the PERSIANN-CDR seasonal signals will improve the 

CFSv2 forecasts. 

Figure 10. PERSIANN-CDR 37 year mean, standard deviation, maximum, and coverage 

in winter from 1983 to 2019.  
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  The winter season for the PERSIANN-CDR depicts a larger area of mean 

precipitation over the northern part of South America along with the central Pacific 

compared to the mean (Figure 10).  The standard deviation of winter does not show a 

continuous flow of higher precipitation variability in the Tropics, connected across the 

entire eastern Pacific compared to the all days analysis.  The maximum values of rainfall 

have shifted further west in the Pacific than all days, with two peak regions located over 

northern South America.  The coverage values are significantly higher in the annual 

statistics of the PERSIANN-CDR over South America, Africa, and the Indonesia region 

of the Pacific, which is associated with the ITCZ, which shifts south during the winter 

season. 

Figure 11. PERSIANN-CDR 37 year mean, standard deviation, maximum, and coverage 

in spring from 1983 to 2019.  
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The spring mean values of PERSIANN-CDR have highlighted the ITCZ more 

distinctly than winter, which had washed-out appearances from other seasonal signal 

impacts (Figure 11).  The standard deviation remains about the same, but there are higher 

values of the maximum over the globe's eastern Pacific and Atlantic regions.  The 

southeast Asia region has higher values over the land and just to the north of Papua New 

Guinea associated with the South Pacific Convergence Zone (SPCZ).  The coverage 

values for spring precipitation are higher over northern South America and central Africa. 

 

Figure 12. PERSIANN-CDR 37 year mean, standard deviation, maximum, and coverage 

in summer from 1983 to 2019. 
 

The PERSIANN-CDR summer has a much different pattern from the previous 

seasons, especially the coverage and the maximum, which yields much higher values than 

the winter and spring (Figure 12).  A prominent peak over southeast Asia is associated 

with the Indian Summer Monsoon, which typically lasts from June to September.  In 
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addition, Central and South America have high coverage percentages related to increased 

ITCZ activity and the hurricane season in the eastern Pacific.  The maximum summer 

values over the east Pacific and southeast Asia depict significant rainfall amounts, which 

line up with the synoptic meteorological activity. 

Figure 13. PERSIANN-CDR 37 year mean, standard deviation, maximum, and coverage 

in fall from 1983 to 2019. 
 

The fall season of the PERSIANN-CDR depict higher mean values over the 

central and western Pacific compared to the summer (Figure 13).  The standard deviation 

values are shifted further west, similar to the mean.  It was also noted that the higher 

values of precipitation in the northern hemisphere are further south compared to the 

summer, which is plausible with fall being a transitional season.  The maximum values in 

fall were much lower compared to summer which show the Indian Monsoon declining 

along with the hurricane season in the eastern Pacific. Finally, the coverage values are 
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shifted further south, similar to the standard deviation, which supports the large-scale 

meteorological events for this season. 

The PERSIANN-CDR data differs from the CFSv2, which has plots at different 

forecast time scales. The same basic statistics were compiled on the CFSv2 to directly 

compare with the exact resolution and latitude values since PERSIANN-CDR only 

covers up to 60 north/south.  The CFSv2 (00-24 hr) were created for an annual analysis to 

compare PERSIANN-CDR. The 00-24hr forecast did not change throughout the different 

forecast periods, which was expected with almost identical values.  The 00-24hr forecast 

depicted the verification values for the CFSv2 which was essential to compare directly 

with the PERSIANN-CDR statistical parameters (Figure 14).   

Figure 14. CFSv2 all days observations mean, standard deviation, maximum, and 

coverage for all days from 2016 to 2019. 
 

The CFSv2 plots compared to the PERSIANN-CDR all days show a significant 

difference in the mean and the coverage values.  The standard deviation and the 
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maximum of CFSv2 are similar to PERSIANN-CDR, with the main difference over 

central Africa and the central Pacific, the ITCZ is more intense across a broader area of 

the Tropics.  The coverage percentage show the absence of precipitation over the globe's 

desert regions, including the southwestern United States, the Sahara, and the Outback in 

Australia.  The CFSv2 overestimates the amount of precipitation coverage globally 

compared to the PERSIANN-CDR.  

Figure 15. CFSv2 0-to-10 day forecasts mean, standard deviation, maximum, and 

coverage for all days from 2016 to 2019. 
 

The most exciting features in the CFSv2 0-to-10 day forecasts are the higher 

values of the standard deviation, which show the model's variability with precipitation 

forecasts near the tropical regions (Figure 15). The Tropics tend to provide most of the 

global higher-end precipitation events. The coverage values line up closely with the 

observed values but over forecasted the percentage globally. This may have been caused 
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by insufficient raw data from the set and limitations compared to the PERSIANN-CDR. 

The mean showed a more distinctive ITCZ feature than the PERSIANN-CDR but lined 

up closely over the Indonesia and southeast Asia regions.  As the forecasts move further 

out, a more distinctive analysis occurs when the CFSv2 has less reliable results.  

Figure 16. CFSv2 15-to-25 day forecasts mean, standard deviation, maximum, and 

coverage for all days from 2016 to 2019. 

 

The statistics for CFSv2 for 15-to-25 day forecasts from 2016 to 2019 appears 

different than the 0-to-10 day (Figure 16).  The statistical variables note the standard 

deviation, which shows slightly less variability near the tropical regions than the 0-to-10 

day forecasts. The mean values are almost identical compared to the maximum and 

coverage values, with little to no changes between 0-to-10 and 15-to-25 day forecasts for 

all days. The ITCZ region is not as clearly depicted across the Tropical Pacific in the 15-

to-25 day forecasts compared to the 0-to-10 day forecasts. The maximum values are 
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lower in the 15-to-25 day compared to the 0-to-10 day forecasts, which is associated with 

lower accuracy of hurricane season in the Atlantic and eastern Pacific regions. 

 

Figure 17. CFSv2 55-to-65 day forecasts mean, standard deviation, maximum, and 

coverage for all days from 2016 to 2019. 
 

The 55-to-65 day forecasts of the CFSv2 depict consistency in precipitation 

amounts compared to the shorter-range forecasts (Figure 17).  There is little change on 

these statistical parameters as the forecasts extend beyond 15-to-25 days.  The main 

difference is with the standard deviation, which has lower variability compared to the 0-

to-10 and 15-to-25 day forecasts.  The mean in the 55-to-65 day forecasts has a weaker 

ITCZ signal compared to the 15-to-25 and the 0-to-10 day forecasts.  The maximum 

amounts of precipitation are similar to the 15-to-25 day forecasts.  Maximum values are 

more accurately represented the further out in the forecasts for the CFSv2 compared to 

the 0-to-10 day because those events are over predicted in the short-range.  The coverage 
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remains consistent through all the different forecast time frames, suggesting that the 

model handles this variable the best. 

 The 80-to-90 day CFSv2 forecasts is the furthest out time period analyzed for all 

days with minimal differences from the shorter range forecasts mostly associated with the 

mean values over the eastern Pacific (Figure 18).  

Figure 18.  CFSv2 80-to-90 day forecasts mean, standard deviation, maximum, and 

coverage for all days from 2016 to 2019. 
 

Many of the features are different, especially near the tropical regions, as the forecasts go 

out in time compared to the 0-to-10 day forecasts, which supports the idea that models 

are not reliable beyond 30 days.  The mean for the 80-to-90 day forecasts is similar to 55-

to-65 and 15-to-25 day forecasts, which attempt to represent the ITCZ, which is visible in 

the 0-to-10 day forecasts.  The standard deviation in the 80-to-90 day forecasts are 

equivalent to the 15-to-25 and 55-to-65 day forecasts, which do not depict the high 
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variability of tropical precipitation in the globe's equatorial regions.  The maximum is 

forecasted the best at the more extended range forecasts than the 0-to-10 days. 

 The coverage is the only statistical parameter that has remained consistent during 

all forecast time frames with an over-representation of global precipitation in the CFSv2 

compared to the PERSIANN-CDR.  It is essential to break all days into seasons, which 

was also done with the PERSIANN-CDR for direct comparisons.  The seasonal signals 

within the CFSv2 for spring and summer are directly compared to the PERSIANN-CDR.  

The determination of seasonal biases forecasted in the spring and summer are identified.  

The lack of CFSv2 data do not allow for accurate analyses to be conducted with the 

winter and fall seasons.  

Figure 19.  CFSv2 0-to-10 day forecasts mean, standard deviation, maximum, and 

coverage for spring from 2016 to 2019. 
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The main difference noted in the spring CFSv2 0-to-10 day forecasts compared to 

PERSIANN-CDR is the higher variability in precipitation over the tropical region (Figure 

19).  This higher variability is associated with the models' failure to accurately depict 

precipitation in this region of the globe compared to the PERSIANN-CDR.  The ITCZ is 

not well depicted in the spring for the PERSIANN-CDR, which supports the transitional 

season precipitation complexity, while the CFSv2 for 0-to-10 day forecasts has a defined 

tropical precipitation band.  The maximum values of the spring line up with all days for 

the CFSv2, which differ from the PERSIANN-CDR, showing peaks mostly over the 

Tropical Pacific.  The coverage in the CFSv2 showed an over prediction of precipitation 

across the globe compared to the PERSIANN-CDR, which has peaks only over land in 

the Tropics. 

 
Figure 20.  CFSv2 15-to-25 day forecasts mean, standard deviation, maximum, and 

coverage for spring from 2016 to 2019.  
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 The 15-to-25 day spring mean values are weaker over the Tropical Pacific 

compared to the 0-to-10 day with a closer resemblance to the PERSIANN-CDR (Figure 

20).  The standard deviation of the 15-to-25 day forecasts has lower values across the 

ITCZ region than the 0-to-10 day forecasts for spring, reflecting the PERSIANN-CDR 

more closely.  The maximum values peak over South America, which is the same 

location from the 0-to-10 day forecasts but significantly different from the PERSIANN-

CDR.  The coverage percentage for the 15-to-25 day forecasts are consistent with the 0-

to-10 day CFSv2 forecasts but are much different from the PERSIANN-CDR. 

 
Figure 21.  CFSv2 55-to-65 day forecasts mean, standard deviation, maximum, and 

coverage for spring from 2016 to 2019. 
 

The 55-to-65 day forecasts for spring are almost equivalent in variability with the 

15-to-25 day but lower than the 0-to-10 day forecasts (Figure 21).  The mean shows an 

even closer representation compared to the PERSIANN-CDR with a weaker ITCZ signal.  
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The maximum values are lower than the previous CFSv2 forecast time frames for spring, 

widely different from the PERSIANN-CDR.  The coverage percentage for the 55-to-65 

day forecasts remain consistent with the previous CVSv2 spring forecast time frames, 

which do not line up closely with the PERSIANN-CDR. 

 

 
Figure 22.  CFSv2 80-to-90 day forecasts mean, standard deviation, maximum, and 

coverage for spring from 2016 to 2019.  

 

All of the 80-to-90 day forecasts statistical parameters are almost equivalent to the 

55-to-65 day forecasts, further supporting the lack of variability in data beyond 15-to-25 

day forecasts (Figure 22).  The mean and standard deviation of the 80-to-90 day forecasts 

represent the PERSIANN-CDR more accurately.  Forecasting heavier precipitation is 

difficult the further out from the current observational time, even more so in the Tropics.  

The spring season forecasts determine the difficulty that the CFSv2 has with the 

transitional precipitation features specifically in the Tropical Pacific. 
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Figure 23.  CFSv2 0-to-10 day forecasts mean, standard deviation, maximum, and 

coverage for summer from 2016 to 2019.  

 

 The summer CFSv2 forecasts has a stronger grasp on the ITCZ compared to 

spring (Figure 23).  The 0-to-10 day forecasts of summer overpredict the amount of 

precipitation over the ITCZ region similar to the spring for the CFSv2 compared to the 

PERSIANN-CDR mean values.  The standard deviation of the CFSv2 show very high 

variability compared to the PERSIANN-CDR over the eastern Pacific and Atlantic, 

which line up with hurricane season along with the Indian Monsoon.  The maximum 

values are associated with the hurricane season and the monsoon near the Indian ocean, 

significantly larger than the PERSIANN-CDR.  The coverage percentage remain high 

across the entire globe besides desert regions with the CFSv2 and a notable increase over 

the southeastern U.S. compared to the PERSIANN-CDR for the summer. 
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Figure 24.  CFSv2 15-to-25 day forecasts mean, standard deviation, maximum, and 

coverage for summer from 2016 to 2019. 

  

The 15-to-25 day summer forecasts of precipitation mean line up with the 0-to-10 

day forecasts but much different compared to the PERSIANN-CDR (Figure 24).  The 

standard deviation values are smaller in the 15-to-25 day forecasts compared to 0-to-10 

day but remain higher than PERSIANN-CDR summer variability in precipitation.  The 

maximum values are slightly lower in the 15-to-25 day compared to the 0-to-10 day but 

still more extensive than the PERSIANN-CDR, all associated with the mesoscale and 

synoptic meteorological patterns.  The coverage percentage is about the same in the 15-

to-25 day forecasts, with 0-to-10 day keeping the precipitation higher in the southeastern 

U.S. than the PERSIANN-CDR. 
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Figure 25.  CFSv2 55-to-65 day forecasts mean, standard deviation, maximum, and 

coverage for summer from 2016 to 2019. 

  

 The mean in the 55-to-65 day forecasts is more closely represented with the 

PERSIANN-CDR, although the Indo-Pacific region has much higher values than the 

previous CFSv2 forecast time frames for summer (Figure 25).  The increased 

precipitation values in the Indo-Pacific may be associated with typhoons and the 

monsoon season, which create an over prediction of rain for this part of the world.  The 

maximum values for the 55-to-65 day forecasts represent the higher values that the mean 

has depicted with a decent quantitative spread from southeast Asia to Papua New Guinea.  

The coverage percentage remains mostly consistent from the previous CFSv2 forecast 

time frames of summer with an over-prediction globally compared to the PERSIANN-

CDR. 
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Figure 26.  CFSv2 80-to-90 day forecasts mean, standard deviation, maximum, and 

coverage for summer from 2016 to 2019. 
 

 The 80-to-90 day forecasts shows an equivalent representation of the mean and 

standard deviation from the 55-to-65 day forecasts of summer with only slightly lower 

amounts over the Indo-Pacific (Figure 26).  The maximum values are slightly lower as 

well, which support the decreased mean amount near southeast Asia.  All of the statistics 

in the 80-to-90 day forecasts remain higher than the PERSIANN-CDR, which support the 

idea that the CFSv2 has stronger seasonal signals than a satellite dataset.  The next 

section of analysis focuses on specific time series of individual point locations for the 

Tropics and the Mid-Latitudes, specifically Colorado, for different precipitation data 

manipulation types.  The analysis of two different climate locations on the globe give 

stronger conclusions of seasonal precipitation patterns. 
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Figure 27.  PERSIANN-CDR time series of raw mean precipitation for 2016-2019 in the 

U.S. 
 

The last four years of the PERSIANN-CDR dataset raw mean precipitation depict 

an interesting trend in the United States (Figure 27).  It is explicitly around the plains 

U.S. region with a datapoint of latitude 45 N and longitude 105 W, Colorado's state, and 

it can be seen that the highest precipitation values are in the late winter and early spring.  

This is due to more active weather patterns in the Mid-Latitudes during this time frame, 

with lower values tapering off towards the end of each year.  The year 2018 does not 

peak compared to the other three years, indicating a less active heavy rainfall season.  
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Figure 28.  PERSIANN-CDR time series of raw mean precipitation for 2016-2019 in the 

Tropics. 
 

The Tropics region near the international dateline with a latitude of 5 N and 

longitude 175 E have much higher precipitation peak values compared to the U.S. above 

30 mm at the beginning of 2016 and 2019.  There is much less variability in precipitation 

than in the U.S., which line up with the consistency of rainfall in this region of the globe 

(Figure 28).  On average most of the precipitation remains at or below 15 mm daily, but 

the values are almost always above 0, which is different from the Mid-Latitudes, which 

depicted more days with 0 precipitation.  The raw mean plots are useful in identifying 

trends during each season and throughout each year.   
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Figure 29.  CFSv2 15-to-25 day forecasts of raw filtered time series from 2016 to 2019 in 

the Tropics. 
 

 The CFSv2 15-to-25 day forecasts is the only time period plotted for the raw and 

Savgol filters because of the accuracy of statistical values compared to the PERSIANN-

CDR (Figure 29).  The main difference in comparison to the PERSIANN-CDR is the 

number of days on the x-axis, which is because there is a decent amount of missing 

precipitation data from the CFSv2 for certain days.  The missing days are masked while 

the raw filtered technique allow for specific seasonal trends more identifiable than the 

mean.  In the Tropics, the peaks are around 100 mm, and the lowest value is above 30 

mm, which supported the overestimation of model precipitation in this region.  Each peak 
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is at the beginning of 2016, 2017, and 2019 with 2018 being the exception, which agreed 

with the PERSIANN-CDR.  There is still a decent amount of variability but much less 

noise compared to the raw mean.  

Figure 30.  CFSv2 15-to-25 day forecasts of raw filtered time series from 2016 to 2019 in 

the U.S. 
 

The variability of data for the U.S. is significantly higher than the Tropics in the 

filtered plots (Figure 30).  The seasonal trends of precipitation are very evident with the 

peaks located in the winter and spring.  The lowest values are in the summer months, 

especially in 2016, with 20 mm noted.  The highest value is in 2017, above 90 mm in the 
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spring months.  Another trend noted in the filtered plots is precipitation increased in the 

fall, which indicates a transition time from summer to winter. 

Figure 31. Savgol filter applied to the CFSv2 15-to-25 day forecasts for 2016-2019 in the 

Tropics. 

 

The Savgol filter is finally applied to the CFSv2 data, which allows the time 

series to depict reduced noise but keep the integrity (Figure 31).  The Savgol filter for the 

Tropics notes four distinct peaks above 90 mm of precipitation, which line up with the 

four years of data.  The lowest values hover around 50 mm, with only two valleys 

dropping below this value, which indicates high precipitation events being reasonably 
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common.  The 2018 data shows much lower rainfall values than the other years, which 

line up with the raw filtered CFSv2 data.   

Figure 32.  Savgol filter applied to the CFSv2 15-to-25 day forecasts for 2016-2019 in the 

U.S. 

 

The Savgol filter applied to the Mid-Latitude data only has peak values around 80 

mm and minimum values below 40 mm (Figure 32). All of the peaks are associated with 

each year of the dataset, which remains consistent from 2016 to 2019.  The variability in 

the peaks and valleys is still evident with the filtered technique applied, which shows that 

it is near impossible to completely smooth Mid-Latitude daily precipitation forecast data.  

These plots have established the relationships between basic statistical parameters 
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between the observed and forecast data.  Also, the raw mean, filtered, and Savgol filtered 

show how much more efficient in accuracy the quantitative results are in comparison to 

global analysis of precipitation patterns. 

The verification statistics are necessary to prove the CFSv2's accuracy at the 

different forecast time frames 0-to-10, 15-to-25, 55-to-65, and 80-to-90 days.  This is 

done by creating correlation plots to determine the statistical variables' relevancy 

compared to the CFSv2 observational data.  It was necessary to determine the accuracy of 

forecast durations and lengths done with analytical, statistical plots rather than eyeballing 

on a global visual scale with significant errors that could be made.  It is expected that the 

0-to-10 day forecasts will yield higher significant values compared to the other three 

forecast time frames.  These first sets of plots use the Savgol filter with window length 21 

and order 1, which suggest that the smoothing of the data is more significant.  
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Figure 33.  Pearson Correlation plot for CFSv2 all forecast day ranges of mean. (create a 

map and change color bar down to 0.5)  

The highest correlation is located above and below the equatorial region for the 0-

to-10 days, with the lowest values located in the Tropics region (Figure 33).  While in 

contrast, the other forecast timeframes show little correlation, so this alone is not the most 

effective way to determine accurate verification results.  These lower values in the 0-to-

10 day may be associated with oceans and the higher values located over the land regions 

since more accurate precipitation data is located on the continental locations. 
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Figure 34.  Pearson correlation plot for CFSv2 all forecast day ranges of coverage. 

The coverage variable notes similar results from the mean with high correlation 

only evident in the 0-to-10 day period associated with the landmasses (Figure 34).  It is 

challenging, but a considerable difference between the 0-to-10 day and 15-to-25 day plots 

is where the p-value is above the 95% confidence interval, indicating the statistical 

significance of the observed difference.  The null hypothesis rejected is the CFSv2 

forecast and observed correlation occurred by chance.  The 0-to-10 day p value is 432, 

which indicates a lower chance to reject the null hypothesis compared to the 15-to-25 day 

value of 122, which is a much higher chance to reject the null hypothesis.  

Only the p-value being slightly higher up to 148 for the coverage parameter for 

days 55 to 65 is calculated, and parallels from 15-to-25 days.  The p-value is significantly 

lower, though, for this forecast period with a value of 95, which showed the best time 

frame to reject the null hypothesis.  The fact that the correlation is zero beyond 30 days 
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supports the claim that models are unreliable with precipitation forecasts beyond one 

month from previous literature. The 80-to-90 day forecast plots do not show any different 

information with p values equal to or less than the 55-to-65 day forecast.  The next set of 

plots have shown the Savgol filter with a window length of 15 and order 9, which 

indicates that the correlation values should be lower for the 0-to-10 day forecast 

compared to observed.  

 

Figure 35. Pearson correlation plot for CFSv2 all forecast day ranges of mean. 

The mean with the new window length and order applied depict a much larger 

area of low correlation in the Tropics, which spread to the lower parts of the Mid-

Latitudes in both hemispheres (Figure 35).  
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Figure 36. Pearson correlation plot for CFSv2 all forecast day ranges of coverage. 

The coverages illustrate that most of the globe has low correlation values even in the 

Tropical regions for the 0-to-10 days (Figure 36). This is all driven by the window length 

and order of the Savgol filter, which show the importance of smoothing the data as 

efficiently as possible. The following forecast periods have little to no correlation with 

the p values dropping off significantly starting at the 15-to-25 day range. Around the 80-

to-90 day range, there was a p-value of 80, which is the lowest value. 

Contingency tables are then created to show the accuracy of forecasts in a 

confusion matrix, which depicts the specific metrics. This part of the analysis provides 

the most useful quantitative values for the performance of the CFSv2 at different forecast 

times. The different metrics are shown for every forecast period along with each of the 

statistical parameters such as mean, standard deviation, maximum, and coverage. The 

metrics include true positive and negative, which is the equivalent to a hit in operational 
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meteorology when the model and human forecasters are compared to the actual 

observations. The other metrics are false positive, which is a false alarm, and false-

negative, which indicates that precipitation fell, but it is not forecasted.  

 

 Table 1.  False alarm, hits, and misses of precipitation for 0-to-10 day forecasts. (add 

map to each contingency table) 

The metrics for the first forecast time of 0-to-10 days depicts a hit rate of 78% for 

rain or no rain within each grid box (Table 1). The false alarm rate is 13% when rain was 

forecasted to occur but did not from the observations. The miss rate of precipitation 

globally for the CFSv2 is 9%, which showed that short term forecasts are handled 

relatively accurately.  

 

Table 2.  False alarm, hits, and misses of precipitation for 15-to-25 day forecasts.  

The 15-to-25 day forecasts hit rate for precipitation is 53%, significantly lower 

than 0 to 10 days (Table 2). The false alarm rate is 27%, which is twice as high as the 

short-term forecast rate.  The miss rate of precipitation is 20%, which is also twice as 

high as the previous forecast.  The further out in time, the models' accuracy drops 

significantly, especially between the short and medium-range forecasts.  
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Table 3.  False alarm, hits, and misses of precipitation for 55-to-65 day forecasts. 

 The 55-to-65 day forecasts hit rate for precipitation is 52%, which is slightly 

worse than the 15-to-25 days but not significantly (Table 3). The false alarm rate for 

overpredicting rain globally is 28%, which is also not much lower than the previous 

medium length. The miss rate is 20%, equivalent to the 15-to-25 day range miss of 

precipitation events. It is surprising that the further out beyond 30 days of forecasting, the 

CFSv2 does not show significantly worse metrics, which indicates that the graphical 

depiction is exponential with a plateau about halfway across.  

 

Table 4.  False alarm, hits, and misses of precipitation for 80-to-90 day forecasts. 

 The 80-to-90 day forecasts hit rate for precipitation is 51%, which is slightly 

worse than the 55-to-65 days (Table 4).  The false alarm rate for the precipitation 

forecasts is 29%, which is slightly higher than the previous forecast.  Finally, the miss 

rate of precipitation events globally is 20%, equivalent to the 15-to-25 and 55-to-65 day 

miss rates.  The miss rates would depict a much more drastic exponential curve beginning 

with it rapidly flattening about halfway across.  The main piece to note is that the hit rate 

dropped as we went further out in time while the miss rate increased, which is another 

piece of quantitative evidence that the model is not reliable beyond 30 forecast days.  The 
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15-to-25 day forecast range verification results provide the best reason for why QM was 

only applied to this time frame. 

 

Figure 37.  Line graph depiction of the 30 bins created for the CDF, histogram, and QM.   

 

Bins are then created to produce histogram and CDF plots which is ultimately 

how the QM was applied to the CFSv2 data (Figure 37). There are 30 bins created, with 

each of them containing precipitation values as low as 0.1 mm up to 200 mm, which 

cover the entire spread of data for the PERSIANN-CDR and the CFSv2.  The maximum 

value statistical parameter is used for this part of the analysis to ensure that all of the data 

is covered on the upper-end extreme.   
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Figure 38.  Three panel time series plots of raw data of PERSIANN-CDR, CFS 

verification, and CFS 15-to-25 day forecasts in the Tropical Pacific for 2018-2019. 

 

 All of the time series plots for the raw precipitation data identified the CFSv2 15-

to-25 day forecast accuracy and limitations compared to the PERSIANN-CDR (Figure 

38).  The Tropics location is analyzed for determination of forecast results.  Toward the 

beginning of the PERSIANN-CDR dataset, there is a significant spike of over 200 mm of 

precipitation, which is not visible in either of the CFSv2 sets of data.  The 15 to 25-day 

forecasts of the CFSv2 seem to underpredict the higher amounts of precipitation while 

accurately depicting little to no rain for a specific day.  The end of the time series for the 

CFSv2 15-to-25 day forecasts depict accurate precipitation results. 
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Figure 39.  Three panel time series plot of raw data of PERSIANN-CDR, CFS 

verification, and CFS 15-to-25 day forecasts in the U.S. for 2018-2019. 

 

 The U.S. is similar to the Tropics, with the PERSIANN-CDR precipitation values 

higher compared to the CFSv2 (Figure 39).  The 15-to-25 day forecasts attempts to 

represent the higher precipitation events, but these are not as common as a Tropical 

location, so the accuracy improves in the Mid-Latitudes.  There is higher variability in the 

maximum and minimum values throughout each of the datasets, especially the 

PERSIANN-CDR and the CFSv2 verification.  Since the raw data has been compared, it 

is necessary to then analyze the three datasets histograms and look to see the peak 

locations.  
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Figure 40.  Histogram plots of PERSIANN-CDR, CFSv2 verification, and CFSv2 15-to-

25 day forecasts in the Tropical Pacific. 

 

 Histogram plots are created for all three datasets, which identify peaks in the 

different bin locations (Figure 40).  The higher the bin then, the larger the precipitation 

event that occurred, which is represented by that specific dataset.  The 15-to-25 day 

CFSv2 forecast has a peak around the 18th bin while the verification is around the 22nd 

at a higher percentage.  The PERSIANN-CDR peaks around the same height as the 

forecast but, around bin 24. 
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Figure 41.  Histogram plots of PERSIANN-CDR, CFSv2 verification, and CFSv2 15-to-

25 day forecasts in the U.S. 

 

The main difference from the U.S. was that the histograms are noisy, which 

means there is much more variability in precipitation events (Figure 41).  The CFSv2 

verification plot depicted with the jagged line toward the bottom of the bins that there is 

no smoothed data, and the forecasted CFSv2 has some variability toward the lower end of 

bins created.  The peaks are also sporadic for the PERSIANN-CDR and the CFSv2 

verification, but the CFSv2 15 to 25 days are flat at the peak bin.  The peak bins for all of 

the U.S. histogram plots are located at the 20th bin.  The last set of 3-panel plots with 

these datasets consisted of the CDF, which is created by taking the cumulative sum of the 

histograms and dividing by the length of each dataset.  
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Figure 42.  CDF plots of PERSIANN-CDR, CFSv2 verification, and CFSv2 15-to-25 day 

forecasts in the Tropical Pacific. 

 

Comparison of the three different CDFs in the Tropics produced from the 

individual datasets suggests the only difference is the forecast CFSv2 did not capture 

heavy precipitation events as often, which is also noticed in the histograms (Figure 42).  

Based on the PERSIANN-CDR CDF, this dataset seems to capture precipitation events 

more accurately than the forecast CFSv2 in the Tropics, which agreed well with the 

statistical analysis performed on the global scale.  
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Figure 43.  CDF plots of PERSIANN-CDR, CFSv2 verification, and CFSv2 15-to-25 day 

forecasts in the U.S. 

 

The CDFs plotted for the U.S. are similar to the Tropics, with the exception of the CFSv2 

forecast that has a more flattened appearance toward the top (Figure 43).  This suggests 

that the forecast dataset handled the heavier precipitation events in the Mid-Latitudes 

better than the Tropical Pacific.  Also, the CFSv2 verification has a lower amount of 

high-end precipitation events that are recorded.  So, this would make the forecasted 

precipitation amounts over predicted compared to the Tropical Pacific, which makes 

sense since precipitation variability is much higher in the Mid-Latitudes.  The final part 

of the analysis is focused on applying QM to the 15 to 25 day forecasts of the CFS using 

the PERSIANN-CDR and the 0 to 10-day forecast statistics.  There is corrected, and the 
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difference between corrected and raw data plots is created looking at the same two 

geographic points.  

 
Figure 44.  QM correction of 15-to-25 day forecasts CFSv2 mean for the Central Tropical 

Pacific utilizing PERSIANN-CDR as the observation corrector (top) and the difference 

between QM corrected minus raw mean (bottom). 

 

The raw CFSv2 data under forecasted mostly throughout the time frame, with the 

QM having to raise the values slightly (Figure 44).  The difference between the two 

datasets should remain close to 0 for mean values, proving that the data is not biased.  

There are only two areas that show the raw data is larger than the QM from PERSIANN-

CDR corrections.  This is supported from the CDFs, which depict a higher frequency of 

lower precipitation events for CFSv2 15-to-25 day forecasts than the PERSIANN-CDR 

with more significant rainfalls captured.  The four-panel analysis charts for all days with 

PERSIANN-CDR and CFSv2 15-to-25 day forecasts shows similar results. 
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Figure 45.  QM correction of 15-to-25 day forecasts CFSv2 standard deviation for the 

Central Tropical Pacific utilizing PERSIANN-CDR as the observation corrector (top) and 

the difference between QM corrected minus raw mean (bottom). 

 

The standard deviation values for the Tropics showed large variability of 

precipitation QM corrections (Figure 45).  There are eight noticeable peaks on the 

negative side of the difference, which means that the raw CFSv2 data has a higher 

variability.  The four plot analyses analyzed for the CFSv2 and the PERSIANN-CDR 

supports these results over the Tropical Pacific.  The QM plot depicts four different peaks 
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which resemble slight seasonal variation in precipitation.

 

Figure 46. QM correction of 15-to-25 day forecasts CFSv2 maximum for the Central 

Tropical Pacific utilizing PERSIANN-CDR as the observation corrector (top) and the 

difference between QM corrected minus raw mean (bottom). 

 

The maximum values corrections shows seasonal variability for the Tropics which 

suggests that the corrections are most noticeable with this statistical parameter (Figure 

46).  The QM of the CFSv2 depicts the same seasonal variations that the standard 

deviation picked up throughout the year.  The difference shows that the QM has higher 

precipitation values than the raw CFSv2 except for one value below negative 50, which 

indicates a potential anomaly.  The anomalous data associated with the corrections should 

be disregarded since there are very few and it does not impact the integrity of the CFSv2 

dataset. 
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Figure 47.  QM correction of 15-to-25 day forecasts CFSv2 coverage for the Central 

Tropical Pacific utilizing PERSIANN-CDR as the observation corrector (top) and the 

difference between QM corrected minus raw mean (bottom). 

 

The coverage amounts of precipitation are depicted as a percentage which is the 

equivalent to the global analysis of the PERSIANN-CDR and CFSv2 (Figure 47).  The 

QM peaks' coverage toward the middle is associated with no difference in the raw 

CFSv2.  Throughout the rest of the year, the CFSv2 has over forecasted precipitation 

coverage in the Tropical Pacific by amounts of up to 20%.  The four panel plots of 

PERSIANN-CDR coverage compared to CFSv2 15-to-25 day forecasts shows a 

difference of 30% above the observation amounts on a global scale.  There are about five 

days that the QM values are higher than the CFSv2.  The coverage percentage correction 

supports the over forecasted precipitation in the Tropics region. 
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Figure 48.  QM correction of 15-to-25 day forecasts CFSv2 mean for the U.S. utilizing 

PERSIANN-CDR as the observation corrector (top) and the difference between QM 

corrected minus raw mean (bottom). 

 

The U.S. location QM depicts a lower mean amount of precipitation compared to 

the Tropics (Figure 48). There are more noticeable peaks throughout the year, with the 

largest toward the beginning of the dataset.  The difference shows that the QM is higher 

than the CFSv2 raw data by more than 5 mm of precipitation.  There is another peak 

toward the end of the dataset with less than 5 mm difference.  The mean difference in the 

U.S. is closer to 0 compared to the Tropics, which supports the lower variability in high 

rainfall events.  
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Figure 49.  QM correction of 15-to-25 day forecasts CFSv2 standard deviation for the 

U.S. utilizing PERSIANN-CDR as the observation corrector (top) and the difference 

between QM corrected minus raw standard deviation (bottom). 

 

The standard deviation values of the QM in the U.S. is much lower compared to 

the Tropics meaning less variability in rain throughout the year (Figure 49).  There is a 

peak near day 52 along with day 175 for anomalously high precipitation from the QM 

correction. The four-panel analysis plots in the 15-to-25 day and PERSIANN-CDR 

supports rainfall variability over the central U.S. for all days.  The heavy rainfall events 

that occurred in the U.S. location for this year impact the mean more than the standard 

deviation which is also why different statistical parameters are analyzed. 
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Figure 50. QM correction of 15-to-25 day forecasts CFSv2 maximum for the U.S. 

utilizing PERSIANN-CDR as the observation corrector (top) and the difference between 

QM corrected minus raw maximum (bottom). 

 

The QM maximum values show that the U.S.'s significant rainfall events are more 

significant compared to the Tropics with a lower frequency (Figure 50).  The U.S.'s 

maximum values are higher than the Tropics, with three peaks around 150 mm 

throughout the entire dataset.  The differences depicted the raw CFSv2 under forecasted 

maximum precipitation amounts in the U.S. throughout most of the year.  Maximum 

value corrections aided in identifying the accuracy of the significant rainfall events and 

the CFSv2 forecast limitations.   
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Figure 51.  QM correction of 15-to-25 day forecasts CFSv2 coverage for the U.S. 

utilizing PERSIANN-CDR as the observation corrector (top) and the difference between 

QM corrected minus raw coverage (bottom). 

 

The QM coverage percentages are higher for the U.S. than the Tropics, supported 

by the PERSIANN-CDR 4 panel analysis (Figure 51). The difference shows how much 

the raw CFSv2 over forecasted the coverage of precipitation in the U.S. There are some 

points in the difference between the QM and CFSv2; the rainfall coverage amounts are 

more extensive than the PERSIANN-CDR but not significantly. The next sets of plots use 

the CFSv2 0-to-10 day forecasts for the QM corrections on the CFSv2 15-to-25 day 

forecasts.  
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Figure 52.  QM correction of 15-to-25 day forecasts CFSv2 mean for the Central Tropical 

Pacific utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) and the 

difference between QM corrected minus raw mean (bottom). 

 

The QM which applied the CFSv2 0-to-10 day forecasts shows similar results of 

mean values in the Tropics from the PERSIANN-CDR with a peak of 20 mm, which is a 

significant amount of precipitation (Figure 52).  The differences between the 0-to-10 day 

and the PERSIANN-CDR corrections depict the higher accuracy of the PERSIANN-CDR 

due to the negative peaks.  The 0-to-10 day forecasts are limited with representing the 

significant precipitation events.  The QM and raw are relatively equal throughout the year 

overall, with the mean precipitation values.  The 0-to-10 day forecasts statistics appear to 

under forecast precipitation compared to the PERSIANN-CDR mean values.  
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Figure 53.  QM correction of 15-to-25 day forecasts CFSv2 standard deviation for the 

Central Tropical Pacific utilizing CFSv2 0-to-10 day forecasts as the observation 

corrector (top) and the difference between QM corrected minus raw standard deviation 

(bottom). 

 

The standard deviation in the 0-to-10 day forecasts line up with the mean 

differences (Figure 53).  The variability in the 0-to-10 day forecasts is higher compared 

to the PERSIANN-CDR QM correction, which suggests that the model has a difficult 

time capturing the amount of precipitation in the Tropics region.  Another possibility is 

that the PERSIANN-CDR smoothed out the precipitation over the Tropical Pacific 

compared to the CFSv2.  The raw data has higher variability than the QM, which 

indicates some improvement in corrections for the 15-to-25 day forecasts with the 0-to-10 

day. 
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Figure 54.  QM correction of 15-to-25 day forecasts CFSv2 maximum for the Central 

Tropical Pacific utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) 

and the difference between QM corrected minus raw maximum (bottom). 

 

The 0-to-10 day forecasts maximum values are under forecasted with the peaks 

larger compared to the PERSIANN-CDR (Figure 54).  The corrections are much less 

significant and support the need for the PERSIANN-CDR maximum values for the 

Tropics.  The average maximum value appeared to remain around 25 mm for the QM 

with a difference of 5 mm above the raw CFSv2 data in the Tropical Pacific. 
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Figure 55.  QM correction of 15-to-25 day forecasts CFSv2 coverage for the Central 

Tropical Pacific utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) 

and the difference between QM corrected minus raw coverage (bottom). 

 

The coverage percentages for the 0-to-10 day forecasts corrections are similar to 

the PERSIANN-CDR (Figure 55).  Compared to the PERSIANN-CDR, there are no days 

that the CFSv2 0-to-10 day forecasts has coverage values larger than the raw CFSv2 15-

to-25 day forecasts.  These observations are also noticeable in the four-panel analysis 

plots between the PERSIANN-CDR and the CFSv2 0-to-10 day forecast days.  The 

Tropics have more improvement from the PERSIANN-CDR corrections for all of the 

statistical precipitation parameters. 
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Figure 56.  QM correction of 15-to-25 day forecasts CFSv2 mean for the U.S. utilizing 

CFSv2 0-to-10 day forecasts as the observation corrector (top) and the difference 

between QM corrected minus raw mean (bottom). 

 

In comparison to the tropic’s location the U.S. CFSv2 0-to-10 day forecasts 

corrections for the mean are almost equivalent (Figure 56).  The only difference noted is 

that the CFSv2 0-to-10 day forecasts slightly under predicted the average amount of 

precipitation in the U.S.  There is little change with the mean statistical parameter 

between the CFSv2 and the PERSIANN-CDR which indicates the need to identify any 

other possible discrepancies with the standard deviation, maximum, and coverage.  
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Figure 57.  QM correction of 15-to-25 day forecasts CFSv2 standard deviation for the 

U.S. utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) and the 

difference between QM corrected minus raw standard deviation (bottom). 

 

The variability of precipitation in the U.S. is slightly higher than the Tropics with 

the CFSv2 0-to-10 day forecasts corrections applied with a peak value of 34 mm which is 

larger than the PERSIANN-CDR (Figure 57).  The CFSv2 0-to-10 day forecasts has 

higher variability in precipitation amounts for the U.S.  The differences show that the QM 

has higher variation in precipitation amounts than the raw CFSv2 data, which mean that 

the local precipitation patterns are impacted in the longer-range forecasts of the CFSv2.  

The lower standard deviation values of the PERSIANN-CDR in the U.S. determine 

higher accuracy compared to the CFSv2 0-to-10 day forecasts. 
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Figure 58.  QM correction of 15-to-25 day forecasts CFSv2 maximum for the U.S. 

utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) and the 

difference between QM corrected minus raw maximum (bottom). 

 

The maximum values has been under forecasted in the U.S. with the CFSv2 raw 

15-to-25 day forecasts (Figure 58).  The CFSv2 0-to-10 day forecasts are supported by 

the four-plot analysis of maximum values shown globally, which has the 0-to-10 day 

maximum values higher than the 15-to-25 day forecasts. The PERSIANN-CDR QM 

compared to the CFSv2 0-to-10 day QM are similar in the results of maximum 

precipitation values over the U.S. with the only difference of under forecasted peak 

amounts. 
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Figure 59.  QM correction of 15-to-25 day forecasts CFSv2 coverage for the U.S. 

utilizing CFSv2 0-to-10 day forecasts as the observation corrector (top) and the 

difference between QM corrected minus raw coverage (bottom). 

 

The final statistical parameter analyzed for the QM is the coverage percentage in 

the U.S. with the CFSv2 0-to-10 day forecasts (Figure 59).  The coverage percentage 

from CFSv2 0-to-10 day forecasts shows higher fluctuations in value compared to the 

Tropics but, similar to the PERSIANN-CDR for the U.S.  The difference plot shows that 

the raw CFSv2 data over forecasted precipitation coverage values for the entire year in 

comparison to the QM for the 0-to-10 day forecasts.  The CFSv2 0-to-10 day forecasts 

has more similar values compared to the 15-to-25 day forecasts which supports that the 

PERSIANN-CDR provides more accurate corrections for the coverage of precipitation.  

The two specific geographic locations gave a more precise and accurate analysis of the 

CFSv2 data's QM correction limitations compared to the PERSIANN-CDR. 
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V.  Conclusions and Future Research 

Chapter Overview 

The 15-to-25 day forecasts from the CFSv2 show the most promising results for 

future improvement in precipitation forecasts.  Forecasting precipitation beyond 30 days 

show little skill meaning QM will have no appreciable effect. 

Summary 

The main conclusions about this analysis and research are that the PERSIANN-

CDR statistics highlight the accuracy of the CFSv2 in the 0-to-10 day range.  On the 

other hand, once the forecast days grow beyond 30 days, the correlation and accuracy 

values are much too low for promising results to apply the QM technique.  The QM 

technique is most useful in the 15-to-25 day range due to the model having some skill at 

this range and the fact that the model solution shows drift and bias from the observed 

statistics.  The 0-to-10 day forecasts does not need any correction applied since the 

accuracy is relatively high for most of the globe besides the Tropics regions.  The QM 

from the PERSIANN-CDR statistics provides a more accurate representation of global 

precipitation values compared to the CFSv2 0-to-10 day forecasts.  The accuracy 

percentages of hits and misses with the CFSv2 does not worsen significantly beyond the 

15-to-25 day forecast range.  The contingency tables and correlation plots for the 

different forecast time frames helped support the use of the 15-to-25 day range for the 

QM corrections.  

Future research can implement the findings here in conjunction with precipitation 

impacts from the El Nino Southern Oscillation (ENSO) and the Madden Julian 

Oscillation (MJO).  The Oceanic Nino Index (ONI) can then be applied to analyze years 
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above and below normal Sea Surface Temperatures (SSTs) present in the Pacific and 

compare annual scales of global precipitation patterns.  The MJO can then be used to 

have all 8 phases broken down into four, so there will be enough useable days for 

comparison.  Another useful direction to apply this data is by clustering dependent on 

precipitation distribution.  K-Means clustering would allow the distributions to be 

separated by statistical parameters such as the mean into individual bins. 

There are many different directions this research can head with the foundational 

understanding from the statistical values and improvements from the QM.  The K-Means 

clustering will further break down the data to specifically highlight areas of the higher 

reliability of forecasts than lower from significant precipitation events for different parts 

of the globe.  Another way to analyze the CFSv2 data is to break the QM down into the 

individual seasons with enough data available combined with the teleconnection patterns 

to identify peaks throughout the year and cut down on the seasonal signals from large 

scale meteorological events.  Applying the QM to a larger time series dataset will also 

help compare different years of El Nino or La Nina events and the model's accuracy to 

handle precipitation pattern changes across the Tropical Pacific.  Implementing another 

satellite data set, such as the Global Precipitation Climatology Project (GPCP), may help 

gather more statistical analysis combined with the PERSIANN-CDR.  The PERSIANN-

CCS can provide detailed information on assigning precipitation values to various cloud 

types at greater spatial and temporal resolution. 
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